Mapping the sub-cellular proteome

```
Laurent Gatto

lg390@cam.ac.uk - @lgatt0

http://www.damtp.cam.ac.uk/user/lg390/

Slides @ https://zenodo.org/record/1063508
```

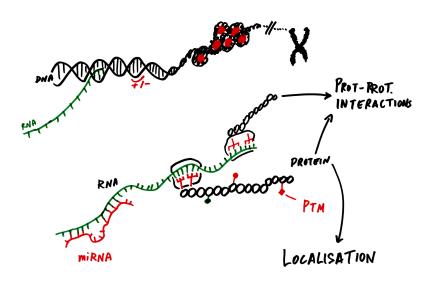
22 Nov 2017, Cambridge Computational Biology Institute

These slides are available under a creative common CC-BY license. You are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) for any purpose, even commercially

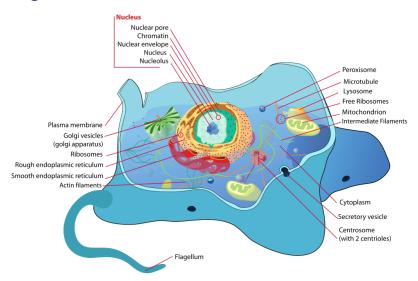
Plan

Spatial proteomics
The LOPIT pipeline
Improving on LOPIT

Experimental advances: hyperLOPIT


Computational advances: Transfer learning

Biological applications


Trans-localisation

Open development: R/Bioconductor software

Regulations

Cell organisation

Spatial proteomics is the systematic study of protein localisations.

Spatial proteomics - Why?

Localisation is function

- ► The cellular sub-division allows cells to establish a range of distinct micro-environments, each favouring different biochemical reactions and interactions and, therefore, allowing each compartment to fulfil a particular functional role.
- Localisation and sequestration of proteins within sub-cellular niches is a fundamental mechanism for the post-translational regulation of protein function.

Re-localisation in

- ▶ Differentiation: Tfe3 in mouse ESC (Betschinger et al., 2013).
- Activation of biological processes.

Examples later.

Spatial proteomics - Why?

Mis-localisation

Disruption of the targeting/trafficking process alters proper sub-cellular localisation, which in turn perturb the cellular functions of the proteins.

- Abnormal protein localisation leading to the loss of functional effects in diseases (Laurila and Vihinen, 2009).
- Disruption of the nuclear/cytoplasmic transport (nuclear pores) have been detected in many types of carcinoma cells (Kau et al., 2004).

Spatial proteomics - How, experimentally

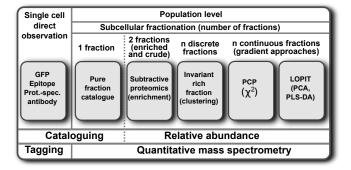


Figure: Organelle proteomics approaches (Gatto et al., 2010)

Fusion proteins and immunofluorescence

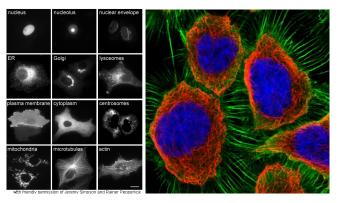


Figure: Targeted protein localisation.

Fusion proteins and immunofluorescence

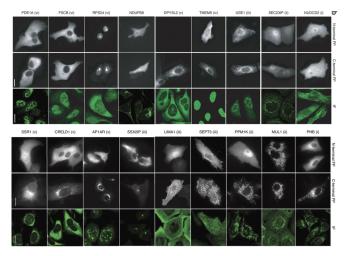


Figure: Example of discrepancies between IF and FPs as well as between FP tagging at the N and C termini (Stadler et al., 2013).

Spatial proteomics - How, experimentally

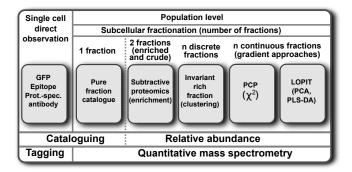
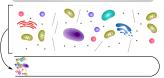
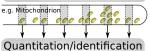



Figure: Organelle proteomics approaches (Gatto et al., 2010). Gradient approaches: Dunkley et al. (2006), Foster et al. (2006).


⇒ Explorative/discovery approches, steady-state global localisation maps.

Cell lysis

Fractionation/centrifugation

by mass spectrometry e.g. Mitochondrion

Quantitation data and organelle markers

	$Fraction_1$	Fraction ₂		Fraction _m	markers
p ₁	q _{1,1}	q _{1,2}		q _{1,m}	unknown
p ₂	q _{2,1}	$q_{2,2}$		q _{2,m}	loc ₁
p ₃	q _{3,1}	$q_{3,2}$		q _{3,m}	unknown
p ₄	q _{4,1}	$q_{4,2}$		q _{4,m}	loci
:	<u>:</u>	:	÷	:	:
pj	$q_{j,1}$	$q_{j,2}$		q _{j, m}	unknown

Visualisation and classification

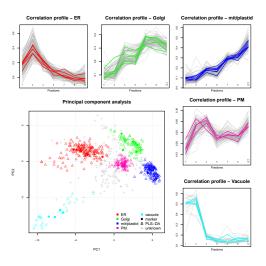
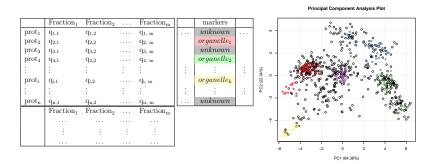



Figure : From Gatto et al. (2010), *Arabidopsis thaliana* data from Dunkley et al. (2006)

Data analysis

Supervised machine learning

Using labelled marker proteins to match unlabelled proteins (of unknown localisation) with similar profiles and classify them as residents to the markers organelle class.

Supervised ML

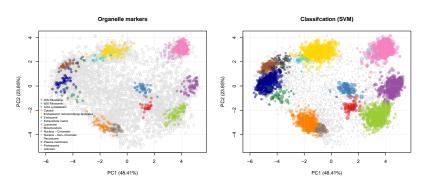
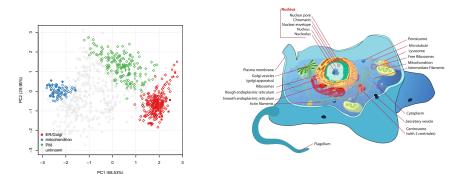



Figure: Support vector machines classifier (after classification cutoff) on the embryonic stem cell data from Christoforou et al. (2016).

Importance of annotation

Incomplete annotation, and therefore lack of training data, for many/most organelles. *Drosophila* data from Tan et al. (2009).

Semi-supervised learning: novelty detection

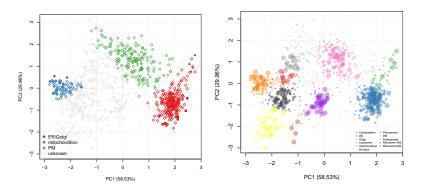


Figure: Left: Original *Drosophila* data from Tan et al. (2009). Right: After semi-supervised learning and classification, Breckels et al. (2013).

Improving on LOPIT

Improving is obtaining better sub-cellular resolution to increase the number of protein that can be **confidently** assigned to a sub-cellular niche.

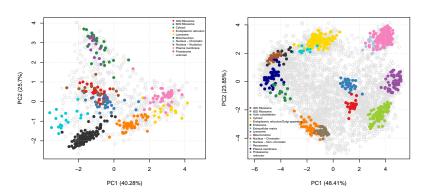


Figure: E14TG2a embryonic stem cells: old (left) vs. new, better resolved (right) experiments (Christoforou et al. (2016)).

Improving on LOPIT

Improving is obtaining better sub-cellular resolution to increase the number of protein that can be **confidently** assigned to a sub-cellular niche \Rightarrow **biological discoveries**.

LOPIT	Computational:	
Dunkley et al. (2006)	transfer learning	
Gatto et al. (2014a)	Breckels et al. (2016a)	
Experimental:	Biological discoveries	
hyperLOPIT		
Christoforou et al. (2016)		
Mulvey et al. (2017)		
Breckels et al. (2016b)		

Experimental advances: hyperLOPIT

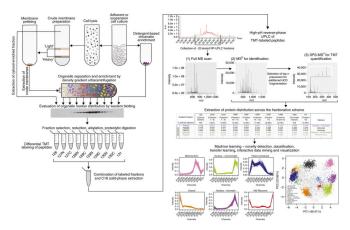


Figure: From Mulvey et al. (2017) Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.

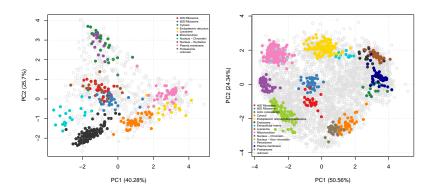
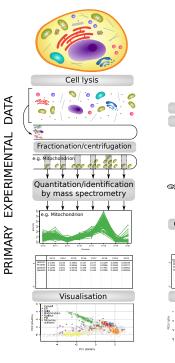
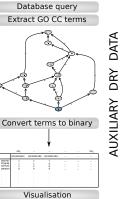


Figure: E14TG2a LOPIT on 8 fractions (using iTRAQ 8-plex) and 1109 proteins *vs.* hyperLOPIT on 10 fractions (using TMT 10-plex) and SPS-MS³ for 5032 proteins.

Computational advances: Transfer learning

What about using **addition data**, such as annotations from the Gene Ontogy (GO), sequence features (pseudo aminoacid composition), signal peptide, trans-membrane domains (length, number, ...), images (IF, FP), prediction software, ...

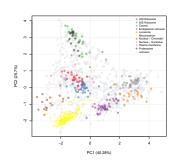

- ► From a <u>user perspective</u>: "free/cheap" vs. expensive and time-consuming experiments.
- ► Abundant (all proteins, 100s of features) vs. (experimentally) limited/**targeted** (1000s of proteins, 6 20 of features)
- ► For localisation in system at hand: low vs. high quality
- ► Static vs. dynamic


Transfer learning

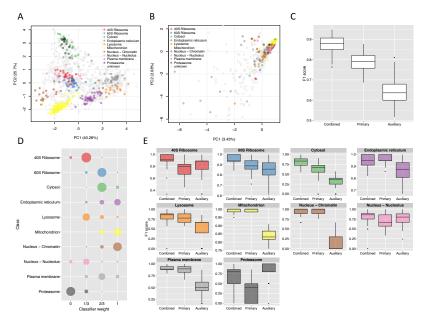
What about annotation data from repositories such as the Gene Ontology (GO), sequence features, signal peptide, transmembrane domains, images, prediction software, . . .

Transfer learning

Support/complement the **primary** target domain (experimental data) with **auxiliary** data (annotation, imaging, PPI, ...) features without compromising the integrity of our primary data (Breckels et al., 2016a).



Transfer learnig, based on Wu and Dietterich (2004):

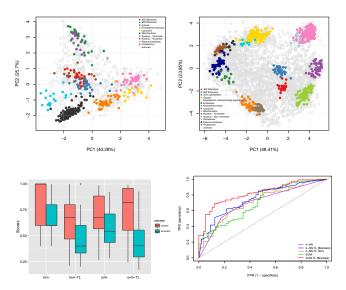

Class-weighted kNN

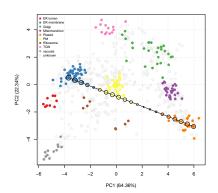
$$V(c_i)_j = \theta^* n_{ij}^P + (1 - \theta^*) n_{ij}^A$$

Linear programming SVM

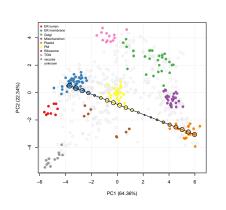
$$f(\mathbf{x}, \mathbf{v}; \boldsymbol{\alpha}_P, \boldsymbol{\alpha}_A, b) = \sum_{l=1}^m y_l \left[\alpha_l^P K^P(\mathbf{x}_l, \mathbf{x}) + \alpha_l^A K^A(\mathbf{v}_l, \mathbf{v}) \right] + b$$

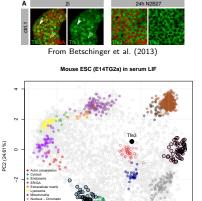
Data from mouse stem cells (E14TG2a).




Figure: From Breckels et al. (2016a) Learning from heterogeneous data sources: an application in spatial proteomics.

Biological discoveries


- Multi-localisation
- ▶ Trans-localisation


Dependent on good sub-cellular resolution.

Dual-localisation Proteins may be present simultaneously in several organelles (e.g. trafficking). Simulation on *A. thaliana* data from Dunkley et al. (2006) (Gatto et al., 2014b) (left). Example from embryonic stem cells (Christoforou et al., 2016) (right).

Dual-localisation Proteins may be present simultaneously in several organelles (e.g. trafficking). Simulation on *A. thaliana* data from Dunkley et al. (2006) (Gatto et al., 2014b) (left). Example from embryonic stem cells (Christoforou et al., 2016) (right).

PC1 (50.05%)

Plasma Membrane
 Proteasome
 Ribosome 40S

Ribosome 60S

Spatial dynamics

Trans-localisation event during monocyte to macrophage differenciation

Investigate the effect of LPS-mediated inflammatory response in human monocytic cells (THP-1)

Data

- ► Triplicate **temporal** profiling (0, 2, 4, 6, 12, 24 hours).
- ► Triplicate **spatial** profiling (0 vs 12 hours) early trafficking, before actual morphological differentiation at 24h.

Work lead by **Dr Claire Mulvey**, Cambridge Centre for Proteomics.

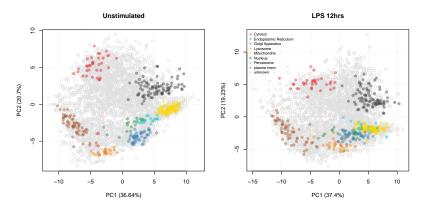


Figure: Spatial maps: unstimulated and LPS-treated.

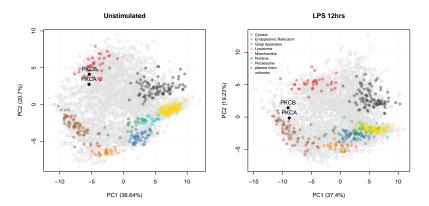


Figure: Relocation of Protein Kinase C alpha and beta from the cytosol to the plasma membrane, **driving maturation into a differentiated macrophage phenotype**.

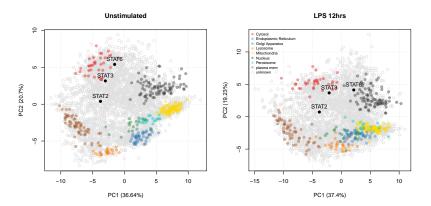


Figure: Relocation of Signal transducer and activator of transcription 6 (STAT6) from the cytosol to the Nucleus, **activating anti-bacterial and anti-viral-like response**. Validated by microscopy and see also Chen et al. (2011).

Beyond organelles: application to PPI/Protein complexes

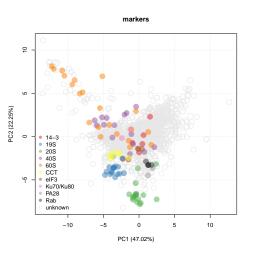


Figure: Data on proteasome complexes from Fabre *et al.* Mol Syst Biol (2015), DOI: 10.15252/msb.20145497

Plan

Spatial proteomics
The LOPIT pipeline
Improving on LOPIT
Experimental advances: hyperLOPIT
Computational advances: Transfer learning
Biological applications
Dual-localisation
Trans-localisation

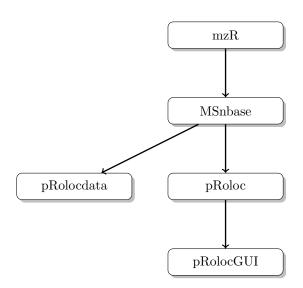
Open development: R/Bioconductor software

But none of this would matter if it wasn't reproducible!

Try it out yourselves:

```
> source("http://www.bioconductor.org/biocLite.R")
Bioconductor version 3.6 (BiocInstaller 1.28.0), ?biocLite for help
> BiocInstaller::biocLite(c("pRoloc", "pRolocdata"))
BioC_mirror: https://bioconductor.org
Using Bioconductor 3.6 (BiocInstaller 1.28.0), R 3.4.2 Patched (2017-10-12 r73548).
*** output flushed ***
> library("pRoloc")
> library("pRolocdata")
> data(hyperLOPIT2015)
> plot2D(hyperLOPIT2015)
```

R/Bioconductor:


- Software for spatial proteomics.
- ► Ecosystem for high throughput biology data analysis and comprehension.

Software for mass spectrometry and (spatial) proteomics

Bioconductor Open source, enable **reproducible research**, enables understanding of the data (not a black box) and **drive scientific innovation**.

- mzR low level access to raw and identification mass spectrometry data (Chambers and et al., 2012)
- MSnbase infrastructure to handle quantitative data and meta-data (Gatto and Lilley, 2012) (~500 unique IP download/month in 2016).
- pRoloc and pRolocGUI dedicated visualisation and ML infrastructure for spatial proteomics (Gatto et al., 2014a) (~200 unique IP download/month in 2016). Try it out at https://lgatto.shinyapps.io/christoforou2015/
- pRolocdata structured and annotated spatial proteomics data (Gatto et al., 2014a).
- ► And more generally RforProteomics (Gatto and Christoforou, 2014) (~160 unique IP download/month in 2016).

http://www.bioconductor.org

Bioconductor Open source, and **coordinated open development**, enabling **reproducible research**, enables understanding of the data (not a black box) and **drive scientific innovation**.

- Bioconductor core team (lead by Dr. Martin Morgan)
- Common infrastructure
- Common documentation standards
- Common testing infrastructure
- Open package technical peer review

Quick getting started guide: https://lgatto.github.io/2017_11_ 09_Rcourse_Jena/navigating-the-bioconductor-project.html

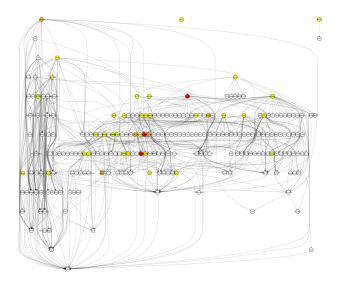


Figure: Dependency graph containing 41 MS and proteomics-tagged packages (out of 100+) and their dependencies. Showing all packages and deps would produce a big hairball.

MSnbase example

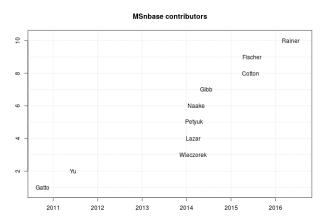


Figure: Contributions to the MSnbase package since its creation, the last one leading to **common proteomics/metabolomics infrastructure**. More details: https://lgatto.github.io/msnbase-contribs/

References I

- J Betschinger, J Nichols, S Dietmann, P D Corrin, P J Paddison, and A Smith. Exit from pluripotency is gated by intracellular redistribution of the bhlh transcription factor tfe3. *Cell*, 153(2):335–47, Apr 2013. doi: 10.1016/j.cell.2013.03.012.
- L M Breckels, S B Holden, D Wojnar, C M Mulvey, A Christoforou, A Groen, M W Trotter, O Kohlbacher, K S Lilley, and L Gatto. Learning from heterogeneous data sources: An application in spatial proteomics. *PLoS Comput Biol*, 12(5):e1004920, May 2016a. doi: 10.1371/journal.pcbi.1004920.
- LM Breckels, L Gatto, A Christoforou, AJ Groen, KS Lilley, and MW Trotter. The effect of organelle discovery upon sub-cellular protein localisation. *J Proteomics*, 88:129–40, Aug 2013.
- LM Breckels, CM Mulvey, KS Lilley, and L Gatto. A bioconductor workflow for processing and analysing spatial proteomics data [version 1; referees: awaiting peer review]. F1000Research, 5(2926), 2016b. doi: 10.12688/f1000research.10411.1.
- MC Chambers and et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol, 30(10): 918–20. Oct 2012.
- H Chen, H Sun, F You, W Sun, X Zhou, L Chen, J Yang, Y Wang, H Tang, Y Guan, W Xia, J Gu, H Ishikawa, D Gutman, G Barber, Z Qin, and Z Jiang. Activation of stat6 by sting is critical for antiviral innate immunity. *Cell*, 147(2):436–46, Oct 2011. doi: 10.1016/j.cell.2011.09.022.
- A Christoforou, C M Mulvey, L M Breckels, A Geladaki, T Hurrell, P C Hayward, T Naake, L Gatto, R Viner, A Martinez Arias, and K S Lilley. A draft map of the mouse pluripotent stem cell spatial proteome. *Nat Commun*, 7:8992, Jan 2016. doi: 10.1038/ncomms9992.
- TPJ Dunkley, S Hester, IP Shadforth, J Runions, T Weimar, SL Hanton, JL Griffin, C Bessant, F Brandizzi, C Hawes, RB Watson, P Dupree, and KS Lilley. Mapping the Arabidopsis organelle proteome. *PNAS*, 103(17): 6518–6523, Apr 2006.
- LJ Foster, CL de Hoog, Y Zhang, Y Zhang, X Xie, VK Mootha, and M Mann. A mammalian organelle map by protein correlation profiling. Cell, 125(1):187–199, Apr 2006.
- L Gatto and A Christoforou. Using R and Bioconductor for proteomics data analysis. Biochim Biophys Acta, 1844 (1 Pt A):42–51, Jan 2014.
- L Gatto and KS Lilley. MSnbase an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. *Bioinformatics*, 28(2):288–9, Jan 2012.

References II

- L Gatto, JA Vizcaino, H Hermjakob, W Huber, and KS Lilley. Organelle proteomics experimental designs and analysis. Proteomics, 2010.
- L Gatto, L M Breckels, S Wieczorek, T Burger, and K S Lilley. Mass-spectrometry based spatial proteomics data analysis using pRoloc and pRolocdata. *Bioinformatics*, Jan 2014a.
- L Gatto, LM Breckels, T Burger, DJ Nightingale, AJ Groen, C Campbell, N Nikolovski, CM Mulvey, A Christoforou, M Ferro, and KS Lilley. A foundation for reliable spatial proteomics data analysis. *MCP*, 13(8): 1937–52, Aug 2014b.
- TR Kau, JC Way, and PA Silver. Nuclear transport and cancer: from mechanism to intervention. *Nat Rev Cancer*, 4(2):106–17, Feb 2004.
- K Laurila and M Vihinen. Prediction of disease-related mutations affecting protein localization. BMC Genomics, 10:122, 2009.
- C M Mulvey, L M Breckels, A Geladaki, N K Britov?ek, DJH Nightingale, A Christoforou, M Elzek, M J Deery, L Gatto, and K S Lilley. Using hyperlopit to perform high-resolution mapping of the spatial proteome. Nat Protoc, 12(6):1110-1135, Jun 2017. doi: 10.1038/nprot.2017.026.
- DJL Tan, H Dvinge, A Christoforou, P Bertone, A Arias Martinez, and KS Lilley. Mapping organelle proteins and protein complexes in Drosophila melanogaster. *J Proteome Res*, 8(6):2667–2678, Jun 2009.
- P Wu and TG Dietterich. Improving svm accuracy by training on auxiliary data sources. In *Proceedings of the Twenty-first International Conference on Machine Learning*, ICML '04, New York, NY, USA, 2004. ACM.

Acknowledgements

- Lisa Breckels, Computational Proteomics Unit, Cambridge (ML, algo)
- Kathryn Lilley, Cambridge Centre of Proteomics (Proteomics)
- ► Funding: BBSRC, Wellcome Trust
- Slides: https://zenodo.org/record/1063508
- ► License: © ①

Thank you for your attention