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Abstract
Modern wearable devices are equipped with increasingly

powerful microcontrollers and therefore are increasingly ca-
pable of doing computationally heavy operations, such as
feature extraction from sensor data. This paper quantifies
the time and energy costs required for on-board computa-
tion of features on acceleration data, the reduction achieved
in subsequent communication load compared with transmis-
sion of the raw data, and the impact on daily activity recog-
nition in terms of classification accuracy. The results show
that platforms based on modern 32-bit ARM Cortex-M mi-
crocontrollers significantly benefit from on-board extraction
of time-domain features. On the other hand, efficiency gains
from computation of frequency domain features at the mo-
ment largely remain out of their reach.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Models, Applications

General Terms
Algorithms, Performance

Keywords
Wearables, Embedded Systems

1 Introduction
Recognition of activities of daily living (ADL) using

wearable accelerometer sensors is a core enabling technol-
ogy for healthcare, fitness, and ambient assisted living appli-
cations [2]. ADL classification algorithms usually do not
directly operate on the raw data, but rely on various fea-
tures computed from that data. At the moment, acceleration
data often is collected on wearable sensor nodes powered
by batteries and equipped with low-power embedded micro-
controllers, while the classification of ADL themselves typ-
ically happens on computationally more powerful devices,
such as smartphones or computational elements in the cloud.

However, recent generations of wearable devices are increas-
ingly capable of doing the feature extraction and data pre-
processing on their own; rather than fully transmitting the
raw data, they are able to compute the features on-board and
transmit just the results, which then can be used as input for
activity classification on a more powerful device. This ap-
proach has a potential to save energy & increase battery life.
Contribution This paper presents a comparative perfor-
mance evaluation study of a large number of features from
acceleration data; the costs of their computation are com-
pared on multiple low-power microcontroller platforms.
Methods We quantify the costs and benefits of a num-
ber of different features in terms of associated energy con-
sumption and their importance for activity recognition. The
features include both time domain and frequency domain
features – for example, the mean, the median, and his-
tograms of the raw acceleration data. For this study, we con-
sider multiple recent low-power hardware platforms suitable
for wearables: two ARM Cortex-M3 based and one ARM
Cortex-M4F based. Additionally in the comparison we in-
clude Texas Instruments msp430 MCU and ARM Cortex-
A53, which serve as the lower and upper bounds of perfor-
mance. For each of the platforms, we evaluate the energy
cost of computing each feature and the cost of transmitting
the data obtained as the result of that computation. For each
of the features, we calculate its mutual information score on
the ground-truth labels of activities, and its usefulness for
activity recognition using a random forest classifier. Finally,
we present system-level energy-consumption results on two
platforms – SPW-2 [5], a wearable device with Texas Instru-
ments CC2650 System-on-Chip (SoC) that is based on ARM
Cortex-M3 core, and the msp430-based Zolertia Z1.
Results The intention of this paper is twofold: first, it is
to serve designers of new wearable platforms, and the net-
worked embedded system research community in general,
by facilitating informed choices about microcontroller selec-
tion and system-level software design. Second, it is to pro-
vide cost/benefit analysis of on-board computation of various
features known from the research literature. Some particular
highlights of the results are:

• On-board computation of both time-domain and
frequency-domain features on modern microcontrollers
is feasible while keeping the duty cycle low. On-board
computation of time-domain features in particular leads
to extensive energy savings compared with transmission



of raw data.

• The historically accurate cost/performance tradeoff be-
tween 8/16-bit and 32-bit platforms [11] is now obso-
lete, as recent 32-bit Cortex-M based microcontrollers
show unequivocally better results both in performance
(by one or more orders of magnitude) and energy effi-
ciency than older 16-bit systems.

• Neither the model of the MCU core, nor its system
clock frequency determine its performance and energy
consumption. In particular, for some features the differ-
ences in performance between two different generations
of Cortex-M3 based microcontrollers dwarf the differ-
ences between two single-generation Cortex-M3 MCU
and Cortex-M4F based microcontrollers.

• Using Cortex-M4F based MCU with floating-point
co-processor may lead to significant performance-per-
MHz reduction on integer-only features.

2 Related work
2.1 Cost/benefit analysis of features

An activity recognition system that is based resource-
constrained sensing systems needs to balance the trade-off
between the accuracy of the output knowledge and the cost
of collecting the data. This trade-off is reported in the liter-
ature as the cost-accuracy conflict [10]. A number of works
attempt to solve this conflict proposing the assignment of a
cost value to each potential feature; the goal of the learning
process is to jointly minimize both the cost and classification
error. This cost value can be an abstract measure [9], or can
depend on computational costs [19] or financial costs [22].
However, the analysis is often done on mobile phones [4],
without taking into account the specifics of more energy-
constrained embedded systems – the focus of this paper.
2.2 On-board computation on wearables

At the moment majority of wearables belong to one of
two classes. One of those is the class of highly-efficient sys-
tems with low-power microcontrollers and battery lifetimes
of weeks or more. For this class, 16-bit microcontrollers are
still used both in commercial devices (e.g., SHIMMER [12])
and for research – as a brief perusal of recent papers from
SenSys and EWSN confirms [7, 6, 15]. The other extreme is
computationally more capable systems, often with > 1 GHz
MCU, but with higher energy consumption and more fre-
quent requirements for recharge. This class contains most
of commercial smartwatches and smartphones, as well as

Figure 1: SPW-2: A CC2650 SoC based wearable accelerometer sensor [5].

many research prototypes [8, 18]. The contribution of the
present paper is to show that the more powerful modern 32-
bit MCUs combine the best of both worlds: high efficiency
with sufficient power for on-board processing. The 16-bit vs.
32-bit energy/power tradeoff [11] is now obsolete.

3 Platforms
We primarily evaluate on-board feature extraction on

32-bit Cortex-M processors, commonly found in modern
IoT platforms. SPW-2 [5], shown in Fig. 1, is a wrist-
worn accelerometer-based wearable sensor that is designed
for long-term residential monitoring with minimum main-
tenance. SPW-2 is equipped with the CC2650, a multi-
standard 2.4 GHz ultra-low power wireless System-on-Chip
that is based on the Cortex-M3 processor.

In addition to SPW-2, we perform the evaluation on a
series of commercial IoT platforms, namely Zolertia Zoul,
Nordic nRF52-DK, Zolertia Z1 and the Raspberry Pi 3B
(summarized in Table 1). These platforms do not have the
form-factor of a wearable sensor; however, with the excep-
tion of the Raspberry Pi, their MCUs can be potentially
used in wearables. Zolertia Zoul is based on the CC2538,
a System-on-Chip for 2.4-GHz IEEE 802.15.4 that is also
equipped with the Cortex-M3 processor [25]. Performance
comparisons between CC2538 and CC2650, i.e. two plat-
forms with the same processing unit, would help to iden-
tify the importance of the other elements within the System-
on-Chip. Nordic nRF52-DK is a development kit for the
nRF52832 System-on-Chip [16]. This platform employs the
Cortex-M4F processing unit; in contrast to the Cortex-M3
based platforms, it has an extended instruction set and a
Floating-Point Unit (FPU).

The benchmarks also include results obtained on Zoler-
tia Z1 and Raspberry Pi Model 3B. Zolertia Z1 [24] has

Table 1: Comparison of the hardware platforms and microcontrollers

Platform name MCU / SoC MCU core MCU
frequency

Nonvolatile
memory

RAM FPU
present

Active-mode
MCU current

Zolertia Z1 [24] MSP430F2617 msp430 8 MHz 116 kB 8 kB − 4.2 mA
Zolertia Zoul [25] CC2538 Cortex-M3 32 MHz 512 kB 32 kB − 13.0 mA
SPW-2 [5] CC2650 Cortex-M3 48 MHz 128 kB 20 kB − 2.9 mA
Nordic nRF52-DK [16] nRF52832 Cortex-M4F 64 MHz 512 kB 64 kB + 3.3 mA
Raspberry Pi 3B [17] BCM2837 Cortex-A53 1200 MHz Multiple GB1 1 GB1 + 221.0 mA23

1 Separate from the CPU
2 Assuming single active core @ 1.2 GHz
3 At lower voltage than other platforms: ≈ 1.0 V



a 16-bit msp430 processor, typical for previous generation
low-power embedded platforms. In contrast, the Raspberry
Pi Model 3B [17] serves as an upper performance bound.
The Raspberry Pi employs the BCM2837 System-on-Chip
which incorporates a Cortex-A53 processor. We node that
the BCM2837 is too energy-hungry to be supported from the
batteries of long-lifetime wearable sensing platforms.

4 The dataset and features
4.1 The dataset

This paper evaluates feature extraction on the SPHERE
challenge dataset [20], a publicly available research dataset
that includes ground-truth labels of activities. The dataset
captures wrist-worn accelerometer data (20 Hz sampling
rate, ± 4 g range) from 10 participants, and has already been
used in a number of activity recognition works [1, 14]. In
order to avoid having to deal with missing data, we use a
subset of the dataset: the activities of six participants, each
of which has < 5% of samples missing because of lost over-
the-air packets, and quantize the readings as 8-bit integers.

4.2 The features
Activity recognition using wrist-worn accelerometer data

is typically based on features calculated from the raw ac-
celerometer data. We decided on a set of features (Table 2)
to investigate, many of which are commonly used across ex-
isting studies of activity recognition [21, 23]. To capture the
temporal nature of activities, the features are calculated over
a window of time. The chosen window size in this paper is
64 samples (3.2 sec at 20 Hz sampling rate); this is a com-
mon window size for activity recognition. Each feature is
computed once per second, i.e., sequential rolling windows
are largerly overlapping. The features are computed both in
the time domain and frequency domain; for the latter, the
Fourier transform is first applied on the window before cal-
culating the feature.

We evaluate the usefulness of the features in two dimen-
sions. The first dimension is their discriminating power for
activity recognition; the second is the energy cost associated
with the extraction and transmission of each feature. Thus a
balance must be struck between the effectiveness of the fea-
ture and the energy required for its extraction.

4.3 Implementation of the features
We implement the features as a stand-alone C program-

ming language library4. The code is fully portable and does
not contain any ARM Cortex specific functionality. Using
an ARM-specific library such as CMSIS5 could potentially
further improve the speed of the code; however, due to its
non-portability and large binary code size it is not appro-
priate for some of the test platforms. The computations of
trigonometric functions and the entropy are sped up using
pre-computed lookup tables. For the evaluation, we com-
pile the library with msp430-gcc 4.7.2 for Zolertia Z1,
arm-linux-gnueabihf-gcc 4.9.2 for Raspberry Pi, and
arm-none-eabi-gcc 4.9.3 for the ARM Cortex-M based
platforms. Optimization option -O2 is selected.

4https://github.com/IRC-SPHERE/embedded-features
5http://www.keil.com/cmsis

5 Performance evaluation
5.1 Feature-specific cost evaluation

The first experiment is to evaluate the cost (in terms of
time and electric charge) of computing each specific feature
on the different microcontrollers. To this end, we design and
run a test application on each of the platforms under consid-
eration. The application goes through a list of features and
computes each one on the input data (Section 4.1). For better
accuracy, for features that are fast to compute (≤ 0.1 seconds
required) the computation is repeated multiple times and the
average computation time is used. The spectral features are
not evaluated on the msp430-based system as too complex.
The execution time is measured in software; in contrast, the
electric charge is extrapolated from time measurements. We
provide electric charge instead of energy, as the latter is heav-
ily dependent on the operating voltage, so mainly character-
izes the performance of the platform as whole, not the MCU.

The results are shown in Fig. 2. First of all, there is an or-
der of magnitude difference between Cortex-M and msp430,
both in speed and in energy consumption (using the charge
as a proxy). There is also an order of magnitude difference in
energy consumption between the older Cortex-M based plat-
form and the two newer ones. When compared with Cortex-
A, the two newer Cortex-M MCU differ by one or two mag-
nitudes in speed, but have similar or smaller requirements for
the charge. Still, the operating voltage of Cortex-A (≈ 1.0 V)
is much lower than any of the other MCU (typically in the
range from 1.7–2.0 V up to 3.6–3.8 V), the Cortex-A demon-
strates the best energy consumption overall, by a small mar-
gin. This is not surprising, as the strength of the other micro-
controllers lies in their highly efficient low power modes.

Figure 3 shows the comparison of the per-MHz perfor-
mance of different groups of feature on the different micro-
controllers. Several interesting observations can be made.
First, the performance on the two Cortex-M3 based plat-
forms is not identical, even though they both are made by the
same manufacturer and meant for the same application area.
Second, while the Cortex-M4F based microcontroller with
FPU on the average computes floating point much faster, it
is less performing for integer-only operations (up to 3 times
slower per MHz), up to the point that it is slower even for
some features that involve floating point, but also require a
lot of integer operations (such as the standard deviation).

Subsequently, the amounts of the data produced by the
features are evaluated in order to quantify the transmission
cost. We assume the data is efficiently encoded: for integers,
CBOR [3] is used, for floating point numbers: their size is
reduced to 16 bits. 100 % radio overhead is assumed for ra-
dio transmissions: i.e., the radio stays on for twice as long as
required to transmit the payload data itself. This is a typical
overhead in BLE and IEEE 802.15.4 6LoWPAN networks.

Figure 4a shows that the time-domain features require
computational costs that are proportionally negligible com-
pared with the transmission cost of the original data: < 10 %
for all of them, < 1 % for most. On the other hand, the out-
put data size of a single feature is up to an order of magni-
tude smaller than the original data size. Consequently, com-
puting and sending out time-domain features instead of the
raw data leads to large energy savings. In contrast, spec-

https://github.com/IRC-SPHERE/embedded-features
http://www.keil.com/cmsis
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(a) Integer-based features
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(b) Floating-point features

Figure 2: Time and electrical charge required to compute the features on the
test platforms. The time is measured; the charge is calculated by multiplying
the time with the MCU active-mode current given in Table 1.
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Figure 3: Performance of the different low-power platforms per 1 MHz
relative to SPW-2. The error bars show the best and the worst performing
feature of each group. Note that features with few FPU-specific operations
(e.g. magnitude f) show reduced performance on the system with FPU.

tral features (Fig. 4b) all require computation of the Fourier
transform, which is relatively heavy on its own, and often in-
cur high computational costs on top of that. Some of these
features, such as the spectral energy density and the spectral
histogram, increase the output data size, therefore are wholly
unsuitable for generation of data that is transmitted over the
air. However, some of them, especially the features with the
smaller computational costs, may be suitable for on-board
classification of activities.

The results are generalizable to systems that store data
locally. In particular, the energy costs for writing the data on
the the flash storage unit on SPW-2 are on the same order of
magnitude as for transmitting the data via the CC2650 radio.

5.2 Importance of the features
We use two common methods to measure the importance

of features for activity recognition. The first method con-
sists of calculating the Mutual Information (MI) [13] metric
between each feature and the activity labels. The second in-
volves training a number of Random Forest (RF) classifiers
on the dataset, and measuring (1) the importance of each fea-
ture in classifiers allowed to use all features (Fig. 6) and (2)
the classification accuracy of each feature taken separately
(Table 2). For these tasks, we select (by random sampling)
a balanced subset of the dataset (Section 4.1) with 13 min of
each of 4 core activities: walking, standing, sitting and lying.

5.2.1 Mutual information
The MI of two random variables measures their mutual

dependence; higher values imply higher dependency, zero
implies statistical independence. In this work, the total MI
of features consisting of multiple parts (e.g., the histograms)
is approximated as the sum of the MI of their parts.

Figure 5 shows the calculated informativeness of the var-
ious features w.r.t. activity labels; features with a combined
MI value less than 0.01 are excluded for clarity. Various sta-
tistical time domain features cluster together in terms of im-
portance and energy cost. On the other hand, spectral his-
tograms and the spectral density have significantly higher
mutual information, but with an increased energy cost.

5.2.2 Classification accuracy
We look at how well the features perform at the activity

recognition task, which is defined as: given the extracted fea-
tures at a given timepoint t, and an associated activity label,
build a model that given the extracted feature(s) for t deter-
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Table 2: RF classifier trained and evaluated on each individual feature.

Feature Accuracy Extraction Total
(=F1 score) cost, mC/h cost, mC/h

Max i 0.66 0.35 5.83
Spectral histogram f 0.63 153.38 223.96
Spectral histogram i 0.63 33.19 146.23
Median i 0.63 1.65 8.19
Quartile 25 i 0.62 1.67 8.21
Min i 0.62 0.35 6.89
Quartile 75 i 0.62 1.78 8.32
Spectral density f 0.59 49.42 308.19
Mean i 0.58 0.61 5.38
Spectral density i 0.57 10.35 356.60
Mean f 0.57 7.03 14.87
Std f 0.51 1.54 9.39
Variance i 0.49 0.77 19.74
Histogram i 0.43 0.31 70.04
Spectral entropy f 0.43 515.95 523.79
Zero crossings i 0.39 0.97 5.08
Spectral flux f 0.39 176.67 184.51
Magnitude2 i 0.36 0.19 78.48
Entropy f 0.36 7.26 15.10
Magnitude f 0.36 3.52 55.89
Spectral centroid f 0.34 174.93 182.77
Spectral magnitude area2 i 0.34 32.29 38.91
Spectral magnitude area f 0.34 170.32 172.93
Spectral maxima i 0.32 31.87 41.35
Spectral maxima f 0.30 143.51 151.35

mine the activity. As mentioned previously, RF is used for
the classification.

First, we use the fact that RFs provide a means of deter-
mining the “importance” of a feature by measuring the to-
tal node impurity decrease, weighted by the probability of
reaching it, averaged over all of the trees in the Random For-
est. The results for this can be seen in Fig. 6. Interestingly,
there are similarities between the importance of the best fea-
tures in the RF have a similar ranking to those determined
via measuring their MI.

Second, we show the performance of each individual fea-
ture against the associated energy cost. For each feature a
randomized search is performed over parameter space to op-
timize important parameters for the RF. Table 2 demonstrates
that some of the best performance is shown by lowest en-
ergy cost features, such as the “max” feature. However, the
second-best performing features are the spectral histograms,
which consume considerably more power. Many other high
energy cost features have considerably worse performance
on the dataset. Finding a subgroup of features with the best
combined cost/accuracy score is a future work item.
5.3 System-level evaluation

Next, we perform a system-level evaluation of on-board
processing on SPW-2 and Zolertia Z1. In particular, we set
the ADXL362 accelerometer of SPW-2 and the ADXL345
accelerometer of Z1 to generate data at 25 Hz frequency
and store the samples in their internal FIFO buffers. The
MCU is collecting the samples periodically and extract dif-
ferent time-domain features. The samples generated by the
accelerometer are integers: one 8-bit integer per axis. Subse-
quently, the output data is communicated from the wearable
to a receiver using the IEEE 802.15.4-2015 TSCH standard
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Figure 7: Evaluation of the system-level current consumption and radio
duty cycle on the SPW-2 platform. On x axis: several representative time
domain features arranged by their computational complexity. On y axis: the
cumulative energy and duty cycle of an application that samples accelerom-
eter and computes & transmits the single specified feature. This energy
consumption is directly proportional to battery lifetime, assuming a linear
discharge model and negligible self-discharge.

at 2.4 GHz. At the link layer, the system uses a broadcast-
ing communication scheme that resembles the undirected
non-connectable advertisements of Bluetooth Low Energy
(BLE), which is a popular option for transporting wearable
data. The radio duty cycle depends on the amount of data
that need to be communicated after the on-board process-
ing stage: we use an adapted version of the 6tisch minimal
schedule with slotframe size 17 and transmit-only slots.

We compare the system-level energy costs for on-board
extraction of four time-domain integer features, namely: his-
togram, variance, zero-crossing rate and entropy with trans-
mitting the raw data directly (labeled original data). Fig-
ure 7a plots the long-term average current draw for each sce-
nario, and shows that the long-term average current of the
wearable system can be significantly reduced with on-board
processing, especially on SPW-2. The savings are primarily
due to the reduction of the amount of data the are transmit-
ted, which leads to a significant reduction of the radio duty
cycle, as shown in Figure 7b. The cost of using the MCU for
additional on-board processing, on the other hand, is negligi-
ble on the SPW-2, and is countered by the fact that after the
data are reduced in size, fewer MCU operations need to be
spent on other operations, for example, for framing the data
in packets and moving them from RAM to the output buffer
of the radio. The secondary reason for the savings is the very
efficient deep-sleep mode on SPW-2, in which it consumes
only 4.0 µA [5], on par with the best msp430 prototypes, and
an order of magnitude less than Z1 during its sleep mode
with a wake-up timer running [24].

6 Conclusion
In this paper, we demonstrated that on-board extraction of

features on modern low-power wearables is both feasible and
beneficial for increased system lifetime. In terms of feature
comparison, our result show that simple time-domain fea-
tures have the best cost/benefit properties. We hope the re-
sults will stimulate increased research activity in using low-
power wearables for more than simple collection of data.
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