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Premise of research. The Neotropical endemic Macrolobium is one of the most species-rich genera (ca. 75
species) within subfamily Detarioideae (Fabaceae, alternatively Leguminosae). Two sections distinguished by
floral morphology have been recognized in the past. Although morphologically diverse, species within the ge-
nus share several characters, including a single well-developed petal in adaxial position. However, previous
analyses based on plastid markers have suggested that the genus is not monophyletic. We produce the most
densely sampled molecular phylogeny of Macrolobium and test the monophyly of the genus and the two sec-
tions.

Methodology. We analyzed nucleotide sequence data from the nuclear ribosomal internal transcribed spacer
(ITS) and plastid (matK, trnG) genomes using Bayesian and maximum likelihood analyses.

Pivotal results. The combined analysis retainsMacrolobium as amonophyletic genus, with twowell-supported
subclades corresponding to the two recognized sections.Macrolobium pendulum is the only species placed in a sec-
tiondifferent from its taxonomic treatment. The relationships recoveredwith the plastidmarkers differ slightly from
the combined and ITS analyses, but without significant support.

Conclusions. Macrolobium is shown to be a monophyletic genus and to contain two well-supported and
morphologically defined sections with differing Amazonian and Andean/Central American distributions cor-
responding to the Gentry pattern. Species are also found to group partly according to habitat preferences and
leaf morphology. Both sections contain groups of multijugate and unijugate species, and there appear to have
been multiple shifts of this character.
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Introduction

Macrolobium Schreb is aNeotropical genus of ca. 75 species of
trees and shrubs within the Leguminosae. The latter has repeat-
edly been found to be the most abundant and species-rich Neo-
tropical plant family (Valencia 1994; Burnham and Johnson
2004; ter Steege et al. 2013, 2016).Within the new six-subfamily
arrangement of the family (LPWG 2017), Macrolobium is the
most species-rich genus within the Detarioideae, after the appar-
ently paraphyletic Cynometra (de la Estrella et al. 2017; Rado-
savljevic et al., forthcoming).

Macrolobiumwas described by von Schreber in 1789 (in von
Linnaeus and von Schreber’s Genera Plantarum) to merge two
genera, Vouapa and Outea, described by Aublet (1775). This
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circumscription was followed by Bentham (1870) in his treat-
ment of the legume family for Martius’s Flora Brasiliensis. In
order to preserve nomenclatural stability, Macrolobium was
proposed and approved as a nomina conservanda (Rendle
1935). Initially, Macrolobium included South American and
African species, but Léonard (1952, 1954, 1955) considered
South American and African taxa to be distinct. To accommo-
date the African species, he reinstated the genus Anthonotha
P. Beauv. and published three new genera: Paramacrolobium
J. Léonard, Pellegriniodendron J. Léonard, and Gilbertioden-
dron J. Léonard (see de la Estrella and Devesa 2014 for a brief
taxonomic history of this group). Cowan (1953) agreed with
Léonard’s Neotropical circumscription of Macrolobium but
considered it most closely related to the African genus Berlinia
Sol. ex Hook. f. (Cowan 1953). Later, Cowan and Polhill
(1981) described a Macrolobium group that placed the genus
Macrolobium with the four morphologically similar African
genera described or revived by Leonard (1952, 1954, 1955).
Many new species of Macrolobium have been described since
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Cowan’s (1953) monograph, increasing the total species num-
ber by more than 50% (e.g., Cowan 1955, 1957, 1964, 1973,
1977, 1985; Burger 1968; Little 1969; Simpson 1975; Zarucchi
1990; Barneby 1992; see app. B for a list of Macrolobium spe-
cies).Manyof these new taxawere described fromCentral Amer-
ica and the Guianas.

Previous molecular studies have shown Macrolobium to be
part of the tribe Detarieae, which, in response to the long-
known paraphyly of the former Caesalpinioideae, has now
been stabilized as a subfamily (Detarioideae) and revealed as
one of the early branching lineages within the Leguminosae
(Bruneau et al. 2001, 2008; LPWG 2017). The Detarioideae
(or Detarieae) has been the focus of several studies in recent
years (e.g., Bruneau et al. 2001, 2008, 2014; Fougère-Danezan
et al. 2007, 2010; Redden et al. 2010; de la Estrella et al. 2014,
2017). Contrary to Cowan’s (1953) and Cowan and Polhill’s
(1981) Macrolobium group hypothesis, Bruneau et al. (2001)
found Macrolobium not closely related to African genera but
part of a Brownea clade with five other endemic Neotropical
genera (Brownea Jacq., Browneopsis Huber, Paloue Aubl.,
Elizabetha Schomb. ex Benth., and EcuadendronNeill). Subse-
quent analyses with increased sampling and additional markers
confirmed the monophyly of the Brownea clade (Herendeen
et al. 2003; Bruneau et al. 2008, 2014), with the addition of
Heterostemon Desf. by Bruneau et al. (2008) and Paloveopsis
R.S. Cowan and Brachycylix (Harms) R.S. Cowan by Redden
et al. (2010). Although the Brownea clade was strongly sup-
ported (Bruneau et al. 2008; de la Estrella et al. 2017), some
of the constituent genera, including Macrolobium, were not
monophyletic or appeared poorly resolved in these studies
(e.g., Bruneau et al. 2008; de la Estrella et al. 2017).

Macrolobium is morphologically and ecologically diverse
(Cowan 1953) but is well delimited by its grooved leaf rachis,
single petal with auriculate claw, lack of vasculature in occa-
sional vestigial petals, narrowly alate petiole and rachis, ab-
sence of staminodia, smooth fruit, and densely striate pollen ex-
ine (Cowan 1953; Redden et al. 2010). Despite these defining
characters, recent molecular studies have questioned the mono-
phyly of the genus (Bruneau et al. 2001, 2008; but see also Red-
den et al. 2010).However, these studies were focused on generic
level relationships, and sampling withinMacrolobiumwas lim-
ited.

Two subgeneric sections have been distinguished within
Macrolobium: Vouapa (Aubl.) Benth., correctly named section
Macrolobium (according to article 22.1 of the International
Code of Nomenclature; McNeill et al. 2012), and Stenosolen
Harms (fig. 1). Species belonging to sectionMacrolobium have
fully opening bracteoles, a cuplike hypanthium, four or five
sepals (when five, the adaxial pair is often partially fused),
and an obvious petal claw, while species belonging to section
Stenosolen have bracteoles that only partially separate along
the adaxial seam, a cylindrical hypanthium, four sepals, and a
more or less sessile petal.

Species belonging to section Stenosolen (sensu Cowan 1953)
are distributed in the foothills on either side of the northern and
central Andes, in the western Amazon, and in Central America
(plus Trinidad), while species in section Macrolobium have
a predominantly central and eastern Amazonian distribution,
with an outlier group extending to coastal Brazil. This distribu-
tion appears to correspond to the Gentry pattern, a term coined
This content downloaded from 155.198
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by Antonelli and Sanmartin (2011) in recognition of Gentry’s
(1982) observations concerning Amazonian-centered and Andean-
centered plant groups. The rest of the Brownea clade displays a
similar distribution pattern, withBrachycylix,Brownea,Brown-
eopsis, and Ecuadendron (Cowan 1975; Klitgård 1991; Neill
1998) having a center of diversity in northwestern SouthAmerica
andElizabetha,Heterostemon,Paloue, andPaloveopsis centered
intheGuianaShieldregionintheeast (Cowan1976a,1976b;Red-
den et al. 2010). The occurrence of the same distribution pattern
within Macrolobium that occurs between other genera of the
Brownea clade further raises the question ofwhether the two sec-
tions ofMacrolobium are separately derived.

Given the clear morphological differences and contrasting
distributional patterns between sectionsMacrolobium and Ste-
nosolen, our objective is to test whether they are monophyletic
and also to investigate themonophyletic nature of the genus. To
address these questions, we sequenced the plastid matK gene
(including the flanking trnK intron) and trnG regions, as well
as the nrDNA ITS region, producing the first densely sampled
molecular phylogeny for Macrolobium.
Material and Methods

Taxon Sampling

Sequences were obtained for 39 Macrolobium species, to-
gether broadly representing all of Cowan’s (1953, 1964) major
groupings (fig. 1), along with a number of unidentified or new
Macrolobium species. Sixty-three Detarioideae outgroup spe-
cies were also included, 33 from within the Brownea clade.
Samples were acquired from dried herbarium specimens from
AAU, BOL, E, K,MT, NY, US, andWAG (acronyms following
Index Herbariorum; Thiers 2016) and/or silica-collected field
samples, and were complemented with sequences downloaded
fromGenBank.A total of 43Macrolobium accessionswere newly
sequenced for at least one marker by the authors, amounting
to 25 previously unsequenced Macrolobium species and a fur-
ther seven Macrolobium accessions unidentified to species.
Outgroup sequences were all from previous or forthcoming
studies and available through GenBank. Details of voucher ma-
terial and GenBank accession numbers are provided in appen-
dix A.
Molecular Methods

DNA extractions were performed using an adapted cetyltri-
methylammonium bromide method (Doyle and Doyle 1987).
For the most recalcitrant samples, the Qiagen DNeasy Plant
Mini Kit (Qiagen, Manchester, UK) was used according to
the manufacturer’s instructions. PCR amplifications and cycle
sequencing were performed as described by de la Estrella et al.
(2017), with nested amplifications used for difficult samples as
described in that study and references therein, but also using
the internal ITS primers ITS2 and ITS3 (White et al. 1990). Clon-
ing was not performed, as double peaks were not common in the
resulting chromatograms and polyploidy has not been reported
in the genus. Sequencing reactions were run on an ABI 3730 au-
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tomated sequencer (AppliedBiosystems, FosterCity, CA) follow-
ing the manufacturer’s protocols.

Phylogenetic Analyses

Forward and reverse sequences were inspected, aligned, and
manually edited using default parameters in Geneious, ver-
sion 8.0 (Biomatters, http://www.geneious.com). Where occa-
sionally two conflicting peaks were present, bases were called
This content downloaded from 155.198
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using International Union of Pure and Applied Chemistry am-
biguity codes (Cornish-Bowen 1985). All sequences were veri-
fied using the BLAST approach (Altschul et al. 1990) and elimi-
nated if they did not correspond to Leguminosae sequences in
GenBank. Sequences were aligned using MAFFT v.7 (Katoh
and Standley 2013). Maximum likelihood (ML) and Bayesian
phylogenetic analyses were performed on ITS and combined
matK1trnG matrices and subsequently on a combined ITS and
plastid data set. The analyses were run on the CIPRES Science
Fig. 1 Cowan’s (1953) diagram of putative relationships in Macrolobium, adapted with permission of New York Botanical Garden. Colors
indicating different groups have been added and correspond to the same colors in figs. 2, 3, and B1–B5, available online. Note that while the
original author probably intended distance from the root to indicate evolutionary distance, he warned that “a line in the diagram from one spe-
cies to another does not necessarily imply that . . . the one species has given rise to the other” (Cowan 1953, pp. 263, 266.). Illustrations show
floral morphology typical of each section, also reproduced from Cowan (1953) with permission of New York Botanical Garden.
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Gateway (Miller et al. 2010). For the ML analysis, RaxML-HPC2
v8.2.8 (Stamatakis 2014) was used with the GTRCAT model
and the default settingswith 1000 rapid bootstrap replicates fol-
lowed by the search of the best ML tree. The Bayesian analysis
was conductedwithMrBayes 3.2.3 (Ronquist andHuelsenbeck
2003). The Akaike information criterion (AIC; Akaike 1974),
as implemented in Jmodeltest 2.1.6 (Darriba et al. 2012), was
used to estimate the best evolutionary model for each DNA lo-
cus separately. Based on the AIC (Akaike 1974), the best models
were GTR1I1G for ITS, TVM1G for matK, and TIMG11G
for trnG.Nevertheless, for all markers GTR1I1G was the model
with the best likelihood, and it was implemented in subsequent
MrBayes analyses.

Two independent runs of 50 # 106 generations were used,
with two Markov chain Monte Carlo chains and four swaps
per generation, sampling parameters and trees every 1000 gen-
erations. Tracer v 1.6 (Rambaut et al. 2014) was used to com-
pare density plots of estimated parameters and likelihoods to
ensure that effective sample sizes were sufficient and that chains
hadmixed appropriately. All estimated sample sizes were greater
than200.Thefirst 5000 samples (10%)were discarded as burn-in,
to ensure all retained samples were subsequent to reaching sta-
tionarity.

Mapping

Macrolobium distribution data were downloaded from the
Global Biodiversity Information Facility and records sorted into
sections Macrolobium and Stenosolen, according to Cowan’s
(1953, 1964) infrageneric classification and subsequent pub-
lications (Cowan 1957, 1973, 1976b, 1977, 1985; Burger
1968; Simpson 1975; Zarucchi 1990; Barneby 1992). The data
set was manually reviewed and records not identified to species
were removed, along with any obviously erroneous records such
as those placed off the coast of South America. Georeferenced
records for those sections were plotted using Simplemappr
(http://www.simplemappr.net).
Results

The ITS matrix included 115 accessions, with a total aligned
length of 1029 nucleotides; the plastid matrix was 2519 nucle-
otides long and contained 115 accessions; the combined ITS 1
plastid matrix had an aligned length of 3548 nucleotides and
contained 127 accessions (table B1, available online). Although
the plastid and ITS matrices contained the same number of
accessions, there were several differences in the accessions they
included, while for some accessions in the plastid matrix, trnG
and matK markers were not both successfully sequenced (see
app A). There were only 17.6% missing sequences in the com-
binedmatrix, although 37%of taxaweremissing at least one of
the three markers (table B1).

Combined Analyses

Analyses of the combined ITS 1 plastid matrix resolve a
monophyletic Macrolobium with strong support (posterior
probability [PP]: 1.0, bootstrap [BS]: 94%; figs. 2, B1; figs. B1–
B5 available online).Macrolobium is returned as sister to a clade
containing Heterostemon (except for H. ingifolius), Elizabetha,
This content downloaded from 155.198
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and Paloue with strong PP (0.97) but weaker BS support (71%;
figs. 2, B1). WithinMacrolobium both Bayesian andML trees re-
trieve two clades corresponding to Cowan’s (1953) sections
Macrolobium and Stenosolen, except for the position of M. pen-
dulumWilld. ex Vogel (figs. 3, B1), which is resolved with section
Stenosolen. Support for these clades is again weaker in the ML
analysis (PP: 0.97, 0.97; BS: 66%, 68%). The Bayesian analysis
(fig. 3) resolves a separate multijugate clade within section Sten-
osolen (PP : 0.97), as suggested by Cowan (1953) but without
the multijugate M. stenosiphon, which appears with unijugate
species. These clades are not resolved in the ML analysis (fig. B1).
Relationships within the sections are otherwise poorly resolved
in both Bayesian and ML analyses.

ITS Analyses

The ITS analyses produced much the same topology as the
combined analysis (figs. B2, B3). However, within Macro-
lobium support is higher for the two sections (PP: 1.0, BS: 98%,
99%). The unijugate and multijugate clades within section Steno-
solen are also strongly resolved (PP: 0.99, 1; BS: 97%, 81%).
Within sectionMacrolobium a main subclade (PP: 0.99; BS: 73%)
is resolved, with a polytomy of mainly 10–45 jugate species un-
resolved outside it and clades partially corresponding to jugacy
also resolved within it. The positions of species and clades within
section Macrolobium have few similarities with those in the
poorly resolved combined analysis.

Plastid Analyses

In the Bayesian analysis of the plastid matrix (matK-trnK
and trnG; fig. B4) a Brownea clade is also strongly supported
(PP: 0.99), although the outlying species H. ellipticus is oddly
placed elsewhere in this tree. Support is much weaker in the
ML analysis (BS: 64%; fig. B5). Within the Brownea clade,
two main clades plus the single species H. ingifolius are returned
with moderate support in the Bayesian analysis (PP: 0.89, 0.9).
Unlike for the nuclear marker, the two large clades both com-
bineMacrolobiumwith other species, although most of section
Macrolobium is placed within a single clade, sister to species
from Elizabetha and Heterostemon. Resolution is poor within
these clades. Section Stenosolen is contained within two separate
clades without other species. In the ML analysis, the Brownea
clade is largely a polytomy (fig. B5).

Discussion

The Monophyly of Macrolobium

Our study achieves in-depth sampling across all groupings
of Macrolobium species suggested by Cowan (1953, 1964),
and our combined and ITS analyses (figs. 2, 3, B1–B3) resolve
a monophyletic Macrolobium, in contrast with all previous
studies based on plastid markers and more limited sampling
(Bruneau et al. 2001, 2008). However, our plastid tree (figs. S4,
S5), which is poorly resolved, fails to return a monophyletic
Macrolobium. The sequenced plastid regions are known not
to be the most variable at the species level (Shaw et al. 2005,
2007) but were used to allow the placement of Macrolobium
in the context of the Brownea clade using previously published
sequences. Other systematic and biogeographic studies using
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Fig. 2 Bayesian maximum credibility tree based on the combined ITS and plastid partitions. Posterior probability support values are indi
ated at nodes; for values lower than 0.5, nodes have been collapsed. Colors correspond to groups suggested by Cowan (1953) as indicated on
g. 1. Species published after Cowan (1953) have been allocated to color groups based on published descriptions (Cowan 1957, 1964, 1973

1985; Burger 1968; Zarucchi 1990; Barneby 1992). Undescribed species are black.
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the ITS marker (although with limited species-level sampling)
also found Macrolobium to be monophyletic (Redden et al.
2010; de la Estrella et al. 2017). The monophyly of Macro-
lobium is an important finding because it is the most species-
rich genus in subfamily Detarioideae after Cynometra, which
has been revealed as paraphyletic (de la Estrella et al. 2017;
Radosavljevic et al., forthcoming). The degree of morphological
and ecological variation withinMacrolobium also makes mono-
phyly noteworthy (Cowan 1953; Berry et al. 1995; Mackinder
et al. 2005).

At a lower taxonomic level, several species are resolved as
nonmonophyletic in our combined analysis, notably,Macrolo-
This content downloaded from 155.198
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bium huberianum, M. suaveolens, and M. bifolium. However,
resolution is poor in this part of the combined tree, and these
species are monophyletic in the ITS tree. In the ITS tree, other
species are nonmonophyletic, including the widespread and
abundantM. acaciifolium. These findings merit further investi-
gation with greater within-species sampling.

Distribution Patterns and Sectional Divisions

The Brownea clade has two centers of diversity that cor-
respond to the Gentry pattern observed by Gentry (1982) and
further discussed byAntonelli and Sanmartin (2011). The Ecua-
Fig. 3 Enlarged portion of fig. 2 showing the genus Macrolobium. Major clades discussed in the text are marked on the right of the tree.
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dendron clade (fig. 2) containing Brachycylix, Brownea, Brow-
neopsis, andEcuadendron is centered in the northwestern part
of South America, while the Elizabetha clade comprising Eliza-
betha, Paloue, Paloveopsis, and Heterostemon is centered in the
northeast and eastern parts of South America (Cowan 1975,
1976a, 1976b; Klitgård 1991; Neill 1998; Redden et al. 2010).
Our mapping of Macrolobium shows that the geographical
ranges of the two sectionswithin the genus follow this same pat-
tern (fig. 4). These two sections are well supported by our mo-
lecular analysis, with only M. pendulum not placed according
to the taxonomic scheme of Cowan (1953). Given the distribu-
tional differences of these sections, the monophyly of Macro-
lobium is an interesting outcome, as previously the two sections
could have been considered to have evolved from separate an-
cestors with different distributions.

Andean uplift has been linked with species diversity in the
Neotropics (Antonelli et al. 2009; Hoorn et al. 2010; Antonelli
and Sanmartin 2011; Luebert and Weigend 2014), but it is no-
table that section Stenosolen accounts for only one-quarter
(19 out of 75) of the accepted species in the genusMacrolobium
despite occurring in species-rich areas in the foothills of the
This content downloaded from 155.198
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Andes. In fact, section Macrolobium contains approximately
half of the entire Brownea clade’s species (Mackinder 2005).
Diversification has been found to have little to do with Andean
orogeny in the Chrysobalanaceae (Bardon et al. 2013) despite
its importance for many other Neotropical lineages, and this
may also be the case for Macrolobium.

Phylogenetic and Morphological Correspondence

In each section ofMacrolobium, Cowan (1953, 1964) grouped
species based largely on leaf jugacy (fig. 1). Cowan (1953) sug-
gested that multijugate leaves are plesiomorphic for Macrolo-
bium and that in both sections a gradual reduction in leaflet
number is correlated with advancement in floral morphology.
Within the Brownea clade Redden and Herendeen (2006) found
multijugacy to be ancestral, with a reduction to unijugate leaves
in Heterostemon and simple or unifoliolate leaves in Paloue.
However, their analysis excluded Macrolobium from the Brow-
nea clade, while Cowan (1953) considered Macrolobium most
closely related to the African genusBerlinia. Our combined anal-
ysis generally has insufficient resolution to test these hypotheses
Fig. 4 Distribution of Macrolobium occurrence divided into sections Macrolobium (red circles) and Stenosolen (blue triangles).
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properly, but some grouping of species by jugacy can be ob-
served. Within section Stenosolen, Cowan (1953) suggested that
multijugate and unijugate groups were evolutionarily separated.
Our analyses appear to support this, particularly our ITS anal-
ysis (fig. B2), in which clades S1 and S2 are well supported and
in agreement with Cowan’s taxonomy, except for the position
of M. stenosiphon, which appears to indicate a separate origin
of multijugacy.

Within section Macrolobium, Cowan (1953) suggested two
separate origins of unijugacy (red and pink lines in fig. 1) and
indicated a separation of many-jugate (light green) from few-
jugate (dark green) species. These groups are not resolved in our
combined analysis, but there is some support for them on our
ITS tree (fig. B2). On this tree, many-jugate (light green) species
are found mainly in a polytomy outside of the main M1 clade.
Several (dark green) 2- to 10-jugate species (M. longipes,M.molle,
M. montanum) are found in a well-supported clade along with
M. campestre. This latter species is also multijugate and there-
fore fits well with this clade, but Cowan (1953) considered it
to be allied with one of the unijugate groups.Theunijugate species
M. angustifolium, M. bifolium, and M. suaveolens are also re-
solved together as Cowan (1953) suggested. Macrolobium lati-
folium and M. rigidum, both unijugate species from the coastal
restinga of Bahia and Espírito Santo in Brazil (Lewis 1987), are
grouped together with M. parvifolium, also placed by Cowan
(1953) in a closely related group. UnijugateM. arenarium is also
included in this clade, rather than in the separate (red) unijugate
group of figure 1. The latter group is scattered in our analysis,
suggesting more transitions between multijugacy and unijugacy
than envisioned by Cowan (1953).

Overall, it is evident that there have been at least two changes
between unijugacy andmultijugacy (or vice versa)withinMacro-
lobium because both sections contain well-supported unijugate
andmultijugate ormixed clades (fig. 3).Our analysisfindsMacro-
lobium tobe sister to the group containingmany-jugateElizabetha
as well as simple/unifoliolate Paloue and mixed-jugateHeteroste-
mon, rather than the group containing bijugateEcuadendron and
few- to many-jugate Brownea and Browneopsis. However, it is
not possible to speculate further on Cowan’s (1953) hypothesis
that multijugacy was plesiomorphic for Macrolobium without a
full reconstruction based on a better-resolved tree.

Cowan’s (1953) interpretation of floral evolution in Macro-
lobium is also affected by the analysis presented. Three floral
characters suggested by Cowan (1953) to indicate the more de-
rived status of section Stenosolen relative to section Macro-
lobium are better seen as plesiomorphic when the genus is con-
sidered as part of the Brownea clade. First, Cowan (1953)
suggested that a reduction from five to four sepals took place
in several lineages within Macrolobium, including the whole
of section Stenosolen (fig. 1). However, while Leguminosae gen-
erally have five sepals, fusion of the adaxial sepals to form a te-
tramerous calyx is common in the Detarioideae and the norm
for other genera within the Brownea clade (Klitgård 1991; Red-
den et al. 2010; Bruneau et al. 2014). Similarly, Cowan (1953)
This content downloaded from 155.198
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considered the failure of the bracteoles to open completely along
the adaxial seam in section Stenosolen to be a derived character
state. However, although bracteoles are free in most of the De-
tarioideae (Bruneau et al. 2014), they are fusedwithin theBrownea
clade, again suggesting that section Macrolobium, not section
Stenosolen, may feature the derived character state. Finally, the
cylindrical hypanthium found in section Stenosolen is also more
common to other Brownea clade genera than the cuplike hypan-
thiumof sectionMacrolobium (Redden andHerendeen 2006, ta-
ble 2). Floral morphology therefore does not appear to support
Cowan’s theory that sectionMacrolobium is closer to the ances-
tral Macrolobium flower.

Conclusions

While effort was made to sample across the genus, some
groups and species are not well represented in our phylogeny
and further sampling of Macrolobium pendulum is required
to confirm its anomalous position. Other species of interest
not sequenced here include those from the branch containing
M. furcatumDucke (fig. 1);M. conjunctumR.S. Cowan, an un-
usual species with a staminal tube; andM. trinitenseUrban, the
only nonmainland species. Dating the phylogeny produced here
could help to test the theory that Neotropical diversity is recent
and rapid. It could also enable comparison of speciation patterns
within different areas and habitats of South America, and within
the Detarioideae between the Neotropical Brownea clade and re-
lated groups fromAfrica, such as the Berlinia clade (de la Estrella
et al. 2014, 2017; Schley et al., forthcoming). A monophyletic
Macrolobium and the two well-delimited sections represent pro-
mising groups for further work examining speciation, adaptive
radiation, and evolution of Neotropical diversity.
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Appendix A

Voucher Specimens
Voucher Information with GenBank Accession Numbers for Phylogenetic Analyses

Herbaria codes are indicated in parentheses. Sequences appearing in previously published work are indicated by an asterisk fol-
lowing the GenBank accession number. Data are ordered by matK-trnK intron, trnG intron, and ITS. Missing data are indicated
with a dash.

Macrolobium Accessions

Macrolobium acaciifolium, Dexter 5541 (E), MF946625, MF987572, MF987606; Macrolobium acaciifolium, Korning 47735
(AAU), KX162225*, KY313050*, KY306616*; Macrolobium acaciifolium, Redden 1098, (US), MF946644, MF987573,
MF987607; Macrolobium; Macrolobium angustifolium, Neves 2010 (K), MF946641, MF987583, MF987609; Macrolobium
angustifolium, Neves 1982 (K), MF946640, MF987577, MF987608;; Macrolobium archeri, Klitgaard 683 (K), KX162227*,
KY313051*, KY306617*; Macrolobium arenarium, Martins 8 (K), -, -, MF987611; Macrolobium arenarium, Dexter 7003 (E),
MF946627, MF987591, MF987610; Macrolobium bifolium, van Ogtrop 2 (WAG), KX162229*, MF987574, MF987613;
Macrolobium bifolium, Clarke 7712 (US), KX162228*, KY313052*, KY306618*; Macrolobium bifolium, Redden 1626 (US), -, -,
MF987612; Macrolobium bifolium, Breteler 13794 (WAG), MF946643, -, -; Macrolobium brevense, Neves 2040 (K), MF946637,
MF987594, MF987614; Macrolobium campestre, Redden 3649 (US), KX162230*, KY313053*, FJ817499*; Macrolobium
canaliculatum, Kawasaki 141 (K), MF946632, MF987569, MF987615; Macrolobium cidii, Bonadeu 644 (E), MF946626, -,
MF987616; Macrolobium colombianum, Klitgaard 682 (K), MF946624, MF987575, MF987617; Macrolobium costaricense,
Hammel 20702 (K), -, -, MF987618; Macrolobium discolor, Iganci 886(E), MF946633, MF987582, MF987619; Macrolobium
dressleri, McPherson 15998 (US), KX162231*,-,KY306619*; Macrolobium sp., Garcia 140037350 (E), -, -, MF987620;
Macrolobium furcatum, Liesner 9132 (US), -, MF987590, -; Macrolobium gracile, Redden 3687 (US), KX162232*, KY313054*,
FJ817500*; Macrolobium grallator, de Benavides 8737 (NY), -, MF987596, MF987621; Macrolobium herrerae, Marshall 392
(K), -, MF987568, MF987622; Macrolobium huberianum, Neves 2004 (K), MF946650, -, -; Macrolobium huberianum, Redden
2197 (US), KX162233*, KY313055*, KY306620*; Macrolobium sp., Dexter 7087 (E), MF946628, MF987593, MF987640;
Macrolobium ischnocalyx, Klitgaard 669 (K), EU361997*, KY313056*, KY306621*; Macrolobium latifolium, de Lima 7880 (K),
MF946631, MF987578, MF987623; Macrolobium latifolium, Neves 1643 (K), MF946649, -, -; Macrolobium limbatum, Dexter
6867 (E), MF946629, MF987592, MF987624; Macrolobium longeracemosum, Redden 1242 (K), -, MF987563, MF987625;
Macrolobium longipedicellatum, de Lima 2790 (K), MF946634, MF987581, MF987626; Macrolobium longipes, Diaz 7545
(NY), -, -, MF987627; Macrolobium longipes, Redden 3679 (US), -, -, MF987628; Macrolobium machaerioides, Begazo 31 (US), -,
MF987587, MF987629; Macrolobium microcalyx, Santos 960 (K), -, -, MF987630; Macrolobium microcalyx, Queiroz 13048
(E), MF946642, -, -; Macrolobium modicopetalum, Galdames 6979 (US), MF946652, MF987566, MF987631; Macrolobium
molle, Redden 3344 (US), KX162234*, KY313057*, KY306622*; Macrolobium montanum, Andel 5548 (K), MF946645,
MF987589, MF987632; Macrolobium montanum, Breteler 13798 (WAG), KX162235*, -, KY306623*; Macrolobium
multijugum, Dexter 5610 (E), MF946635, -, MF987633; Macrolobium multijugum, Dexter 5612 (E), MF946636, MF987588,
MF987634; Macrolobium multijugum, Redden 3700 (US), KX162236*, KY313058*, FJ817502*; Macrolobium parvifolium,
de Lima 6814 (US),MF946648,MF987584,MF987635;Macrolobium pendulum, Sales 1355 (NY), -, -,MF987636;Macrolobium
pittieri, Croat 26245 (US), MF946653, MF987567, MF987637; Macrolobium punctatum, Redden 3650 (US), KX162237*,
KY313059*, KY306624*; Macrolobium rigidum, Jardim 574 (NY), -, MF987579, MF987638; Macrolobium rubrum, Iganci 867
(E), MF946646, -, -;Macrolobium longipes, Rodriguez 10875 (K),MF946639,MF987585,MF987639;Macrolobium sp., Redden
1408 (E), KX162239, MF987564, MF987644;Macrolobium sp., Bruneau 1154 (MT), -, 1154, -;Macrolobium sp., Klitgaard 663
(K), KX162238, MF987586, MF987641;Macrolobium sp., Redden 3678 (US), -, -, MF987645;Macrolobium sp. nov., Nee 8741
(US), -, -, MF987642; Macrolobium sp.nov., Prance 28836 (US), MF946647, -, MF987643; Macrolobium sp., Garcia 8306 (E),
MF946630, -, MF987646; Macrolobium stenosiphon, Little 21084 (NY), -, -, MF987647; Macrolobium suaveolens, Dexter
6994 (E), MF946638, MF987595, MF987648; Macrolobium suaveolens, Redden, 1637 (US), KX162240*, KY313060*,
KY306625*; Macrolobium taxifolium, Wurdack 43350 (US), -, MF987580, MF987649.

Brownea Clade Accessions

Brownea ariza, Fougere AA04210 (MT), KX161984*, KY312906*, KY306520*; Brownea ariza, Wieringa 4167 (WAG),
KX161985*, MF987562, MF987598; Brownea capitella, Fougere 5419 (MT), KX161986*, KY312907*, KY306521*; Brownea
coccinea, Baker 600 (K), KX161987*, -, MF987599*; Brownea coccinea, Clarke 4139 (US), EU361891*, MF987565,
MF987600*; Brownea coccinea, Fougere 33 (MT), KX161988*, KY312908*, KY306522*; Brownea grandiceps, Klitgaard
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67040 (K), KX161989*, -, MF987601; Brownea grandiceps, Fougere D10364 (MT), KX161990*, KY312909*, KY306523*;
Brownea latifolia, Steyermark 88845 (NY), KX161991*, -, KY306524*; Brownea leucantha, Klitgaard 666 (K), KX161992*,
KY312910*, KY306525*; Brownea sp., Fougere 11 (MT), KX161993*, MF987561*, MF987602; Brownea sp., Pitman 5721 (K),
KX161994*, MF987570, MF987603; Browneopsis_disepala, Klitgaard 67032 (US), KX161995*, KY312911*, KY306526*;
Browneopsis ucayalina, Neill 6376 (K), KX161996*, -, KY306527*; Ecuadendron acostasolisianum, Clark 6220 (US), -,
MF987571, MF987604; Ecuadendron acostasolisianum, Lewis 2876 (K), KX162067*, KY312951*, KY306561*; Ecuadendron
acostasolisianum, Neill 10437 (K), EU361938*, KY312952*, KY306562*; Elizabetha coccinea, Redden 1181 (US), KX162068*, -,
KY306563*; Elizabetha fanshawei, Redden 1733 (US), KX162069*, -, KY306564*; Elizabetha grahamiae, Redden 3090 (US),
KX162070*, KY312953*, KY306565*; Elizabetha grahamii, Redden 3307 (US), KX162071*, KY312954*, KY306566*;
Elizabetha macrostachya, Redden 3714 (US), KX162072*, KY312955*, FJ817516*; Elizabetha paraensis, Redden 13791 (US),
EU361941*, KY312956*, KY306567*; Elizabetha princeps, Redden 3692 (US), KX162073*, KY312957*, FJ817519*;
Heterostemon ellipticus, Cid 8361 (K), -, KY313007*, KY306581*; Heterostemon ingifolius, Redden 3194 (US), KX162178*,
KY313008*, FJ817525*; Heterostemon mimosoides, Cowan 10415 (NY), -, -, MF987605; Heterostemon mimosoides, Redden
3727 (US), KX162179*, KY313009*, FJ817528*; Paloue guianensis, Lindeman 874 (U), KX162250*, -, KY306633*; Paloue
induata, Clarke 7587 (US), EU362015*, KY313069*, KY306634*; Paloue riparia, Redden 1161A (US), EU362016*,
KY313070*, FJ817546*; Paloue riparia, Redden 3314 (US), -, -, MF987650.

Other Outgroup Accessions

Afzelia africana, Jongkind 2440 (WAG), KX161926*, KY312862*, KY306485*;Anthonotha macrophylla, Breteler 1435 (WAG),
EU361852*, -, MF987597; Anthonotha stipulacea, Walters 591 (WAG), KX161940*, KY312871*, KY306496*; Aphanocalyx
djumaensis, Breteler 13056 (WAG), EU361856*, KY312874*, AF513655*; Aphanocalyx ledermannii, Wieringa 131 (WAG),
KX161942*, KY312875*, AF513660*; Berlinia brunelii, Sosef, 2248 (WAG), KX161961*, KY312887*, KY306505*; Berlinia
confusa, Breteler 15455 (WAG), EU361879*, KY312888*, KY306506*; Copaifera officinalis, Fougere 27 (MT), EU361918*,
KY312915*, AY955816*; Crudia gabonensis, Breteler 13770 (WAG), KX162004*, KY312922*, KY306534*; Crudia klainei,
Wieringa 2104 (WAG), KX162006*, -, KY306535*; Daniellia pilosa, Wieringa 1462 (WAG), KX162042*, KY312940*,
KY306552*; Englerodendron conchyliophorum, Sosef 1151 (WAG), KX162074*, KY312959*, KY306569*; Gilbertiodendron
aylmeri, Jongkind 7003 (WAG), KX162087*, KY312969*, KJ777191*; Gilbertiodendron dewevrei, Andel 4045 (WAG), KX1
62100*, KY312974*, KJ777205*; Gilbertiodendron diphyllum, Andel 3502 (WAG), KX162106*, KY312976*, KJ777211*;
Gilbertiodendron jongkindii, Jongkind 4502 (WAG), KX162123*, KY312981*, KJ777227*; Hymenostegia elegans, Wieringa
6066 (WAG), KX162188*, KY313021*, KY306589*; Julbernardia hochreutineri, Breteler 13009 (WAG), KX162211*, KY3
13040*, AF513693*; Kingiodendron platycarpum, Smith 7549 (K), KX162280*, KY313089*, -; Lysodice rhodostegia, Manos
(K), EU361995*, -, KY306614*; Oddoniodendron micranthum, Wieringa 6165 (WAG), KX162247, KY313068, KY306632;
Prioria oxyphylla, Breteler 14768 (WAG), KX162279, KY313088, KY306642; Prioria platycarpa, Smith 7549 (K), KX162280,
KY313089, AY955784; Schotia afra, Hodgkiss 1 (BOL), EU362037, KY313095, AY955774; Schotia brachypetala, Bruneau sn
(K), KX162288, KY313096, KY306646; Sindora klaineana, Breteler 14415 (WAG), -, KY313101, AY955819;Tamarindus indica,
Herendeen 29.IV.99.5 (US), KX162297, KY313111, KY306654; Tamarindus indica, Steeves sn (MT), KX162298, -, KY306655;
Tetraberlinia bifoliata, Breteler 13081 (WAG), KX162310, KY313119, KY306662; Tetraberlinia morelina, Breteler 13097
(WAG), KX162313, KY313120, AF513702;Tetraberlinia polyphylla,Wieringa 3151 (WAG), EU362061, KY313121, AF513705.
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