

Montowska, Magdalena and Alexander, Morgan R. and Tucker, Gregory A. and Barrett, David A. (2015) Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry. Food Chemistry, 187 . pp. 297-304. ISSN 0308-8146

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/48918/2/FoodChem_08-03-2015.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

Authentication of processed meat products by peptidomic analysis 1 using rapid ambient mass spectrometry 2 3 Magdalena Montowska^{a,b,*} Morgan R. Alexander^c, Gregory A. Tucker^d, 4 David A. Barrett ^{a,*} 5 6 7 ^a Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, 8 Nottingham NG7 2RD, United Kingdom 9 ^b Institute of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, Poznan 60-10 624, Poland ^c Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 11 12 University Park, Nottingham NG7 2RD, United Kingdom ^d Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington 13 Campus, Leics LE12 5RD, United Kingdom 14 15 **Corresponding Authors** 16 17 *MM, Present address: Institute of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, Poznan 60-624, Poland. Tel.: +48 61 8487251; fax: +48 61 8487254. 18 *E-mail address:* magdalena.montowska@gmail.com (M. Montowska). 19 *DB, Tel.: +44 115 95 15062. Fax: +44 115 95 15102. 20 E-mail address: david.barrett@nottingham.ac.uk (D.A. Barrett). 21 22 23 24 25

26 ABSTRACT

We present the application of a novel ambient LESA-MS method for the authentication of processed meat products. A set of 25 species and protein-specific heat stable peptide markers has been detected in processed samples manufactured from beef, pork, horse, chicken and turkey meat. We demonstrate that several peptides derived from myofibrillar and sarcoplasmic proteins are sufficiently resistant to processing to serve as specific markers of processed products. The LESA-MS technique required minimal sample preparation without fractionation and enabled the unambiguous and simultaneous identification of skeletal muscle proteins and peptides as well as other components of animal origin, including the milk protein such as casein alpha-S1, in whole meat product digests. We have identified, for the first time, six fast type II and five slow/cardiac type I MHC peptide markers in various processed meat products. The study demonstrates that complex mixtures of processed proteins/peptides can be examined effectively using this approach.

Keywords:

Food adulteration, Ambient Mass Spectrometry, Liquid Extraction Surface Analysis Mass
Spectrometry, Peptide markers, Fast and slow type MHC isoforms

51 **1. Introduction**

Despite the existence of extensive mandatory regulations in most countries, food 52 adulteration is still a global issue which attracts attention at international level and increases 53 public concern regarding food quality. In 2013, the horse meat scandal revealed the weaknesses 54 in the food safety system and contributed to a decrease of confidence in the food industry. 55 Fraudulent practices, i.e. the presence of undeclared horse DNA in food products labeled as 56 57 containing beef, were confirmed in 4.66% and 0.61% of controlled foods in 2013 and 2014, respectively (European Commission, 2014) as a result of tests in the 28 EU countries. Recent 58 59 studies have revealed an even higher level of food mislabeling, for example 68% mislabeling was found in sausages, burger patties and meats collected from butcheries and retail outlets in 60 South Africa (Cawthorn, Steinman, & Hoffman, 2013) and in seafood in the USA, a rate of 61 62 33% of investigated samples were mislabeled according to U.S. Food and Drug Administration (FDA) guidelines (Kimberly, Walker, Lowell, & Hirshfield, 2013). Similarly, the results of 63 inspections carried out in Poland in 2011 by the Office of Competition and Consumer 64 Protection (UOKiK) and Department of Trade Inspection revealed that 24.7% of the examined 65 batches of luxury processed meat products, i.e. conventional, traditional and organic products 66 sold at high prices, were adulterated/labeled incorrectly (UOKiK, 2012). Continuous 67 monitoring of food quality and safety is now mandatory in the EU and other countries but the 68 increasing sophistication of adulteration means that analytical methods require continuous 69 70 improvement to ensure effective fraud detection. The rigorous analysis of complex and processed products requires the development of novel analytical methodology which has 71 potential for high-throughput analysis and provides rapid, specific and reliable results. 72

At present, established methods for meat speciation are based on ELISA and PCR
techniques, which are robust when applied to raw or moderately processed samples (Chen &
Hsieh, 2000; Ballin, Vogensen, & Karlsson, 2009; Fajardo, González, Rojas, García, & Martín,

2010; Köppel, Eugster, Ruf, & Rentsch, 2012). The reported lower efficiency of these methods 76 in highly processed samples has been linked to processing conditions, thermal denaturation and 77 degradation of the markers compounds monitored (typically DNA or protein epitope) and 78 79 problems with cross-reactivity between species giving unreliable results (Arslan, Irfan-Ilhak, & Calicioglu, 2006; Şakalar, Abasiyanik, Bektik, & Tayyrov, 2012; Musto, Faraone, Cellini, 80 & Musto, 2014). The difficulty with reliable multiplex detection in a single test and 81 82 contamination of DNA from other organisms also place severe limitations on analysis of complex samples. However, some proteins are quite resistant to heating (Buckley, Collins, 83 84 Thomas-Oates, & Wilson, 2009; Montowska & Pospiech, 2012; Buckley, Melton, & Montgomery, 2013) and hence peptidomic analysis techniques have potential advantages when 85 applied to authenticate processed (cooked) food. 86

87 Recently, considerable improvement in mass spectrometry (MS) instrumentation has enabled the detection of peptide markers by liquid chromatography-MS techniques (LC-MS) 88 and this has enabled identification of specific proteins from soybean (Leitner, Castro-Rubio, 89 Marina, & Lindner, 2006), fish (Carrera et al., 2011) and meat species (Buckley et al., 2009; 90 Sentandreu, Fraser, Halket, Patel, & Bramley, 2010; Montowska & Pospiech, 2013; von 91 Bargen, Brockmeyer, & Humpf, 2014). In our previous work, we evaluated ambient MS 92 techniques for standard protein identification in mixtures and for the analysis of meat digests 93 94 to discriminate between five meat species (Montowska, Rao, Alexander, Tucker, & Barrett, 95 2014a). Subsequently, we detected heat stable peptide markers derived from meat proteins after thermal denaturation using our previously introduced ambient liquid extraction surface analysis 96 mass spectrometry (LESA-MS) methodology (Montowska, Alexander, Tucker, & Barrett, 97 98 2014b).

99 It is known that the primary structure of some meat proteins is relatively resistant to 100 processing and that certain skeletal muscle proteins are both species- and tissue-specific and

101 hence there is good potential for the use of specific muscle proteins and peptide markers for meat authentication (Buckley et al., 2009, 2013; Sentandreu & Sentandreu, 2011; Montowska 102 103 & Pospiech, 2012). We consider that the ease of use and rapid nature of ambient MS has advantages for high-throughput screening of processed food and we wish to explore the 104 potential application of our LESA-MS peptidomic approaches (Montowska et al., 2014a,b) for 105 this purpose. We suggest that the peptidomic analysis can serve as a tool not only for species 106 107 identification but also for the assessment of the quality of the product. In this study we define 'product quality' as a general term linked with different authenticity issues, such as the 108 109 detriment of the quality of the product by illegal change of meat to less valuable components of animal origin (e.g. meat of lower class, offal, connective tissue, blood plasma), undeclared 110 plant or milk additives as well as a change in proportion of ingredients. Analysis of myosin 111 isoforms due to their extensive diversity may help to trace some illegal practices in processed 112 meat products. 113

Unlike highly conserved actin, myosin exhibits extensive variations in vertebrate striated 114 muscles, which is translated into differences in fibre composition and shortening velocity. In 115 adult mammals, pure fibres (slow type I red, and fast type white IIA, IIX, IIB) are expressed 116 by a single myosin heavy chain (MHC) isoform (1, 2A, 2X, and 2B) whereas hybrid fibres may 117 contain several MHC isoforms (1/2A, 2A/1, 2AX, 2XA, 2XB, and 2BX) each encoded by a 118 separate gene (Pette & Staron, 2000). Therefore in this study, besides species identification, 119 120 we wish to identify heat stable peptides unique to fast and slow type MHC isoforms. Peptidomic analysis may be a viable way to discriminate between the processed meat and non-121 meat components to examine the quality of the processed meat products. 122

In this paper, we present the application of our previously established LESA-MS methodology (Montowska et al., 2014a,b) for detection and identification of heat stable beef, pork, horse and poultry peptide markers in various processed meat products. This rapid

peptidomic approach aims to identify heat stable peptides without the need for purification and chromatographic separation. We also describe the application of in-solution tryptic digestion of processed meat samples followed by deposition onto a polymer surface, desorption and direct analysis by LESA-MS for protein/peptide composition of processed meat in order to compare the identified MHC isoforms and select heat stable peptides unique to fast and slow type MHCs.

132

133 2. Materials and methods

134 2.1. Preparation of samples

Meat products (n=18) were purchased at English and Polish supermarkets or 135 manufactured in our own pilot plant. Samples of raw sausages were cooked from chilled in an 136 oven at 190°C for 30 min according to the manufacturers' instructions. In-house processed 137 sausages (3 batches) were prepared in a pilot plant of the Institute of Meat Technology in 138 Poznan (Poland) exclusively from cured pork with the addition of spices and were coarsely 139 minced, smoked and cooked. All samples of about 5 cm length or 5 g were cut from fresh 140 products and kept at -80 °C until further MS analysis. Sample information and details about 141 processing methods and meat composition are given in Table 2. 142

Washing, digestion and mass spectrometry analysis were performed according to the 143 procedure described previously (Montowska et al., 2014b). Preparation for LESA-MS analysis 144 145 of samples of processed meat products involved washing procedures followed by digestion. For this purpose, thin sections of sausages (slices of 0.5 g) or 1 g of meat spreads were 146 transferred to glass vials and washed to remove contaminants such as physiological salts, fat, 147 and other soluble low molecular weight compounds. Sample was rinsed twice for 30 s in 148 ethanol/water (70:30) followed by a 15 s wash in ethanol and then by a 30 s wash in 149 methanol/water (90:10). The sample then was rinsed for 2 x 30 s in deionized water, and finally 150

151 for 30 s in 100 mM of aqueous ammonium bicarbonate. Washed samples were placed to dry152 for 30 min in a desiccator.

153

154 2.2. In-solution digestion

Dried samples (10 mg) were rehydrated in 100 μ L of water and subsequently digested in a solution containing 0.083 μ g/ μ L of trypsin in ammonium bicarbonate at room temperature over a period of 24 h. Digested solution was then centrifuged for 10 min at 13400 rpm, and the supernatant was diluted 10-fold with deionized water. Samples of 1 μ L were spotted onto a Permanox slide, 75 x 25 mm (Nunc, Thermo Fisher Scientific, Rochester, NY, USA) and allowed to evaporate in air at room temperature prior to analysis.

161

162 2.3. LESA Mass Spectrometry

The LESA source was a TriVersa NanoMate (Advion, Ithaca, NY) coupled to a Thermo 163 Fisher LTQ Velos ion trap mass spectrometer (Thermo Fisher Scientific, San Jose, CA) 164 operated in positive-ion electrospray ionization mode. The NanoMate platform operated at 165 nanoESI tip voltage of 1.6 kV, with a gas pressure of 0.4 psi and a capillary temperature of 166 190°C. The same spray/extraction solvent acetonitrile/water/formic acid (50:50:1) was used in 167 all LESA experiments. Total solvent extraction volume was 5 µL, dispensed and aspirated 168 volumes were 3.5 and 3.2 µL, respectively. Each data set was collected from a single protein 169 170 spot. Data-dependent analysis (DDA) tandem MS/MS data were collected in full scan mode with m/z range of 50-2000 divided into four segments (m/z 60-600, 550-1050, 1000-1550 and 171 1500-2000), 1 microscan, 100 ms max injection time, AGC mode on. DDA mode as well as 172 standard MS/MS experiments were used for the analysis of samples. Collision-induced 173 dissociation (CID) experiments were performed at a normalized collision energy of 38%. Data 174 were analyzed using Xcalibur software (Thermo Fisher Scientific). For protein and peptide 175

identification raw files were converted to MASCOT generic format using MSCONVERT 176 provided by the ProteoWizard project (http://proteowizard.sourceforge.net/tools.shtml). The 177 resulting files were searched via MS/MS ions search using MASCOT against the SwissProt 178 and the National Center for Biotechnology Information (NCBInr) databases with the following 179 parameters: trypsin enzyme, taxonomy bone vertebrates, one missed cleavage, peptide mass 180 tolerance of 1.2 Da, MS/MS tolerance 0.6 Da, no modifications, peptide charge 1+, 2+ and 3+. 181 182 All samples were analyzed at least in three technical replicates. A decoy search was performed automatically and the matches and MASCOT scores were evaluated at 1% of a false discovery 183 184 rate (FDR) for identity and homology threshold. Selected peptides in FASTA format were searched against the NCBInr database using the protein BLAST alignment research tool and 185 blastp algorithm for species and protein specificity. 186

187

188 **3. Results and discussion**

189 *3.1. Myofibrillar proteins as a source of heat stable peptide markers*

The workflow for the rapid identification of heat stable peptide markers in processed 190 meat products proposed in this study is presented in Figure 1. The methodology involves three 191 main steps: (a) washing thin slices of samples to remove contaminants which would interfere 192 with the electrospray signal, (b) in-solution tryptic digestion, and (c) data collection using 193 LESA-MS/MS with the acquisition time of 4 min. We focused on the identification of the more 194 195 abundant proteins using readily detectable peptides which were resistant to processing as well as unique to both species and meat protein. Although, we observed that the sequence coverage 196 of proteins for processed meat products was lower compared to raw and cooked meats 197 198 (Montowska et al., 2014b) we found this methodology robust and specific and competitive to LC-MS methods, especially when monitoring particular heat stable peptides (see following 199 sections). In our opinion three factors enhanced the efficiency of the analysis: (1) washing all 200

samples, (2) purification/centrifugation to remove undigested material and reduce the mixture
complexity as well as effect of ion suppression, and (3) achieving stable nanoelectrospray
during MS data acquisition.

We examined the applicability of the LESA-MS method using various commercial 204 processed meat products purchased from supermarkets as well as in-house processed sausages 205 as reference samples. Data sets were collected with data-dependent tandem LESA-MS for 206 207 screening of whole products digests and with standard MS/MS experiments using a list of 80 ions which was generated in our previously reported studies of cooked beef, pork, horse, 208 209 chicken and turkey meat (Montowska et al., 2014b). The dominant MHC isoforms found in processed meat products and their MASCOT output scores are shown in Table 1. In the 210 processed samples we identified the same most abundant skeletal muscle and sarcoplasmic 211 proteins as previously detected for cooked meat, such as MHCs, MLCs, actin, tropomyosin, 212 myoglobin, GAPDH, beta-enolase (Montowska et al., 2014b), but the MASCOT scores and 213 sequence coverages were lower in the case of processed products analysed. In this study turkey 214 MHC was classified to the closely related chicken species since no full sequence of turkey 215 myosin has been published and only short fragments are available in the NCBI database. 216

A list of peptide markers identified in this study for the 18 different processed meat products is presented in Table 2. Most of the observed peptides were identified as heat stable markers belonging to MHCs, MLCs and myoglobin, and were unique to both species and single muscle protein. Predominantly, MASCOT scores were above the homology or identity threshold and all presented peptides were ranked first in the list of matched peptides of MASCOT results. Figure 2 shows a typical MS/MS spectrum of pork fast type myosin-1 and myosin-4 marker SALAHAVQSSR (563.67²⁺) obtained from frankfurters (sample 15).

The limit of detection is a critical step towards quantitative analysis using the peptidomic
LESA-MS approach. At present, sensitivity rises when chromatographic separation is

involved, for example pork or horse meat can be detected down to 0.24% in processed products 226 using HPLC-MS//MS method coupled with multiple reaction monitoring (Von Bargen, 227 Brockmeyer, & Humpf, 2014). In the aforementioned article, five peptide markers for 228 processed pork and horse meat have been identified. These findings overlap with our studies, 229 since three of the peptides, i.e., TLAFLFAER (pork), SALAHAVQSSR (pork), and 230 LVNDLTGQR (horse) were identified in cooked meats using LESA-MS/MS as described 231 232 previously (Montowska et al., 2014b). It is likely, that lower sensitivity compared with LC-MS methods due to dynamic range of protein concentration and the lack of fractionation stage, may 233 234 be enhanced by the use of the LESA instrument with high resolution/accurate mass/MSⁿ mass spectrometer. 235

236

237 *3.2. Sarcoplasmic proteins as a source of heat stable peptide markers*

We also present the detection of heat-stable species-specific markers for sarcoplasmic 238 proteins (glyceraldehyde-3-phosphate dehydrogenase GAPDH, myoglobin, beta-enolase), 239 which can address the needs of species identification (Table 2). Myoglobin peptides were found 240 to be good markers for processed red meats, i.e., beef and horse meat, whereas pork GAPDH 241 peptide WGDAGATYVVESTGVFTTMEK (1125.32²⁺) is a good marker for the processed 242 products containing pork. This is consistent with previous studies, where enzymatic activity of 243 glycolytic enzymes, for instance GAPDH, was found to be higher in fast-twitch glycolytic 244 245 muscles (Takekura & Yoshioka, 1987; Okumura et al., 2005). In kabanos sausage (sample 10) and frankfurters (sample 14) milk proteins were detected, and thus two peptides unique to 246 casein alpha-S1 (HQGLPQEVLNENLLR and EPMIGVNQELAYFYPELFR) were identified 247 with significant MASCOT output scores (Table 2). These results are consistent with the 248 product labels since the milk or cheese proteins were included in the list of ingredients. One 249 sample of pork sausages (sample 11) was declared to contain veal at 6%, another two samples 250

of cocktail sausage (sample 12) and frankfurters (sample 13) were labeled to contain turkey 251 meat at 6% and turkey MRM respectively, however we did not detect cattle and turkey markers 252 using our LESA methodology. We cannot exclude the possibility that the meat content was 253 below the limit of detection of the method. We have already shown in previous work that 254 ambient LESA-MS can detect 10% of cooked cattle, pork, horse, and turkey meat and 5% of 255 chicken meat in a beef matrix (Montowska et al., 2014b). Horse sausage (sample 9) turned out 256 257 to be made not only from horse meat but also from pork. However there was no list of ingredients on the label, hence we cannot confirm the adulteration of this product. 258

259

260 3.3. Discrimination between fast and slow type MHC isoforms in processed meat products

Having identified markers for protein and species identification in processed meat 261 products our next stage was to discriminate between fast and slow type MHCs to identify heat 262 stable peptides unique to these isoforms. For this purpose, the same data sets as for meat 263 speciation obtained with DDA LESA-MS/MS were analysed individually. Similarly, each 264 potential marker was searched against the NCBInr database with the BLAST tool for isoform 265 specificity. Table 3 shows six fast type II and five slow/cardiac type I MHC unique peptides 266 identified for beef, pork and horse meat using this approach. Examples of type I myosin-7 267 peptides obtained from cooked ham (sample 1) and fried horse sausage (sample 8) are shown 268 in Figure 3 as fragmented spectra for pig LLSNLFANYAGADTPVEK (962.10²⁺) and horse 269 MLSNLFANYLGADAPIEK (984.29²⁺). As far as we are aware, this is the first time that the 270 peptides specific to slow-twitch type 1 myosin-7 isoform were identified in processed meat 271 products. 272

Frequent detection of slow MHC isoform and peptides unique to slow type isoforms over the fast MHC isoforms implies that processed pork and beef products investigated in this study were manufactured mainly from smaller red or intermediate muscles. In our previous studies,

protein/peptide differentiation between samples of cattle, pig and horse longissimus dorsi 276 muscle was performed (Montowska et al., 2014a,b). Since this muscle is composed mostly of 277 278 fast, white fibres, peptides unique to fast myosin-1(2X) and myosin-4(2B) isoforms were detected in those samples with the highest scores. In two samples of potted beef and corned 279 beef (samples 3 and 4) we were able to detect only slow myosin-7 isoform. The peptide 280 GQNVQQVVYAK, unique to beef myosin-7, was identified in both samples but with the 281 282 MASCOT scores below the identity and homology threshold (Table 2). This may indicate that: (a) the amount of meat was below the declared content, (b) these products were manufactured 283 284 from the meat of lower class containing high amount of connective tissue and fat, and/or (c) high amounts of non-meat components, such as collagen preparations, offal and fat were added 285 to the products. Only horse myoglobin was detected in horse sausage (sample 9), therefore the 286 ability/inability to detect markers of specific proteins and tissues may indicate a good/poor 287 quality ingredients in a given product or even an ingredient's substitution. 288

Because myosin is the most abundant muscle protein and its content corresponds to 40-289 50% of the total muscle proteins, myosin peptides might be a good indicator of the meat content 290 in the processed products. They also might be used to assess the fibre-type composition of meat 291 components, and thus indirectly to assess the product quality. Although, markers obtained from 292 MHC isoforms, may be a robust tool to indicate the quality of meat ingredients, in our opinion 293 the authentication of processed meat product defined as the quality assessment needs to be 294 295 based on appropriate and reliable quantitative analysis of several peptide markers of meat and non-meat origin in parallel. 296

297

298 4. Conclusions

We have examined the applicability of a novel and rapid LESA-MS method to identify peptide markers in different types of processed meat products for authentication purposes. The

301 entire procedure is radically simplified over other peptidomic methodologies by excluding fractionation steps before and after the protein digestion stage. Sample preparation is therefore 302 limited only to the processes of washing and digestion. By the application of data-dependent 303 LESA-MS/MS for fast screening of whole product digests, we were able to identify a set of 25 304 heat stable peptide markers derived from myofibrillar and sarcoplasmic proteins. We have also 305 proved that this novel method of peptidomic examination from processed meat products has 306 307 good specificity to readily identify peptide markers for fast and slow type MHC isoforms. We have demonstrated that there is a set of specific peptides resistant to thermal treatment and 308 309 easily detectable in various industrially processed meat products which not only serve as markers of meat speciation but also can help to track down other illegal practices linked with 310 the substitution of ingredients. 311

Since this work was focused on authenticity issues, only peptides from the most abundant proteins were identified. However, the use of LESA interfaced with high resolution mass spectrometry may enhance sensitivity sufficiently to enable analysis of less abundant proteins. This easy to use and versatile ambient methodology has great potential to be implemented in the routine, rapid high-throughput screening of processed products, and in addition displays specificity sufficient to enable examination of other important issues in meat science, e.g., variations in muscle metabolism and meat quality.

- 319
- 320
- 321
- 322
- 323
- 324
- 325

326	Acknowledgements
327	The Postdoctoral Fellowship of Magdalena Montowska was supported by the European
328	Commission under the Marie Curie Intra-European Fellowship Programme (Call: FP7-PEOPLE-2011-
329	IEF).
330	
331	The contents reflect only the authors' views and not the views of the European Commission.
332	
333	
334	References
335	Arslan, A., Ilhak, O.I., & Calicioglu, M. (2006). Effect of method of cooking on identification of heat
336	processed beef using polymerase chain reaction (PCR) technique. Meat Science, 72(2), 326–330.
337	Ballin, N.Z., Vogensen, F.K., & Karlsson, A.H. (2009). Species determination - Can we detect and
338	quantify meat adulteration? Meat Science, 83(2), 165–174.
339	Buckley, M., Collins, M., Thomas-Oates, J., & Wilson, J.C. (2009). Species identification by analysis
340	of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass
341	spectrometry. Rapid Communications in Mass Spectrometry, 23(23), 3843-3854.
342	Buckley, M., Melton, N.D., & Montgomery, J. (2013). Proteomics analysis of ancient food vessel
343	stitching reveals >4000-year-old milk protein. Rapid Communications in Mass Spectrometry,
344	27(4), 531–538.
345	Carrera, M., Cañas, B., López-Ferrer, D., Piñeiro, C., Vázquez, J., & Gallardo, J.M. (2011). Fast
346	monitoring of species-specific peptide biomarkers using high-intensity-focused-ultrasound-
347	assisted tryptic digestion and selected MS/MS ion monitoring. Analytical Chemistry, 83(14),
348	5688–5695.
349	Cawthorn, DM., Steinman, H.A., & Hoffman, L.C. (2013). A high incidence of species substitution
350	and mislabelling detected in meat products sold in South Africa. Food Control, 32(2), 440-449.
351	Chen, F.C., & Hsieh, Y.H. (2000). Detection of pork in heat-processed meat products by monoclonal
352	antibody-based ELISA. Journal of AOAC International, 83(1), 79-85.
353	European Commission (2014). Outcome of the coordinated control plan with a view to establish the
354	prevalence of fraudulent practices in the marketing of certain foods.
355	http://ec.europa.eu/food/horsemeat/tests_results_en.htm (accessed November 20, 2014).
356	Fajardo, V., González, I., Rojas, M., García, T., & Martín, R. (2010). A review of current PCR-based
357	methodologies for the authentication of meats from game animal species. Trends in Food Science
358	& Technology, 21(8), 408–421.

Kimberly, W., Walker, T., Lowell, B., & Hirshfield, M. (2013). Oceana study reveals seafood fraud
 nationwide. Oceana, February, 1-69.
 <u>http://oceana.org/sites/default/files/reports/National Seafood Fraud Testing Results FINAL.p</u>
 <u>df.</u>

- Köppel, R., Eugster, A., Ruf, J., & Rentsch, J. (2012). Quantification of meat proportions by measuring
 DNA contents in raw and boiled sausages using matrix-adapted calibrators and multiplex real time PCR. *Journal of AOAC International*, 95(2), 494–499.
- Leitner, A., Castro-Rubio, F., Marina, M.L., & Lindner, W. (2006). Identification of marker proteins
 for the adulteration of meat products with soybean proteins by multidimensional liquid
 chromatography-tandem mass spectrometry. *Journal of Proteome Research*, 5(9), 2424–2430.
- Montowska, M., & Pospiech, E. (2012). Myosin light chain isoforms retain their species-specific
 electrophoretic mobility after processing, which enables differentiation between six species: 2DE
 analysis of minced meat and meat products made from beef, pork and poultry. *Proteomics, 12*(18), 2879–2889.
- Montowska, M., & Pospiech, E. (2013). Species-specific expression of various proteins in meat tissue:
 proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected
 poultry species. *Food Chemistry*, *136*(3-4), 1461–1469.
- Montowska, M., Rao, W., Alexander, M.R., Tucker, G.A., & Barrett, D.A. (2014a). Tryptic digestion
 coupled with ambient desorption electrospray ionization and liquid extraction surface analysis
 mass spectrometry enabling identification of skeletal muscle proteins in mixtures and
 distinguishing between beef, pork, horse, chicken, and turkey meat. *Analytical Chemistry*, 86(9),
 4479–4487.
- Montowska, M., Alexander, M.R., Tucker, G.A., & Barrett, D.A. (2014b). Rapid detection of peptide
 markers for authentication purposes in raw and cooked meat using ambient liquid extraction
 surface analysis mass spectrometry. *Analytical Chemistry*, 86(20), 10257–10265.
- Musto, M., Faraone, D., Cellini, F., & Musto, E. (2014). Changes of DNA quality and meat
 physicochemical properties in bovine supraspinatus muscle during microwave heating. *Journal of the Science of Food and Agriculture*, 94(4), 785–791.
- Okumura, N., Hashida-Okumura, A., Kita, K., Matsubae, M., Matsubara, T., Takao, T., & Nagai, K.
 (2005). Proteomic analysis of slow- and fast-twitch skeletal muscles. *Proteomics*, 5(11), 2896–
 2906.
- Pette, D., & Staron, R.S. (2000). Myosin isoforms, muscle fiber types, and transitions. *Microscopy Research and Technique*, *50*(6), 500–509.
- 392 Şakalar, E., Abasiyanik, M.F., Bektik, E., & Tayyrov, A. (2012). Effect of heat processing on DNA
 393 quantification of meat species. *Journal of Food Science*, *77*(9), N40–44.

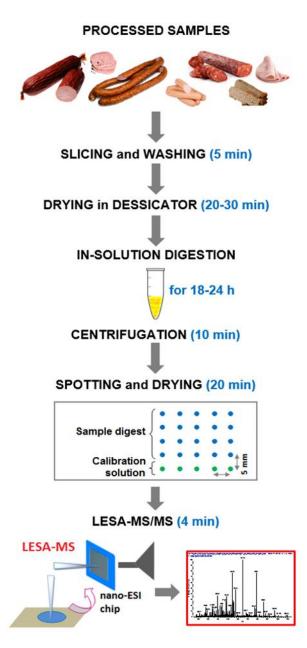
- 394 Sentandreu, M.A., Fraser, P.D., Halket, J., Patel, R., & Bramley, P.M. (2010). A proteomic-based 395 approach for detection of chicken in meat mixes. Journal of Proteome Research, 9(7), 3374-396 3383.
- 397 Sentandreu, M.A., & Sentandreu, E. (2011). Peptide biomarkers as a way to determine meat 398 authenticity. Meat Science, 89(3), 280-285.
- Takekura, H., & Yoshioka, T. (1987). Determination of metabolic profiles on single muscle fibres of 399 400 different types. Journal of Muscle Research and Cell Motility, 8(4), 342-348.
- Urzad Ochrony Konkurencji i Konsumentów (UOKiK Office of Competition and Consumer 401 Protection) (2012). Raport: Produkty żywnościowe z segmentu luksusowych w świetle kontroli 402 przeprowadzonych przez Inspekcję Handlową. Warsaw, December 2012 [in Polish]. 403 http://www.uokik.gov.pl/raporty z kontroli inspekcji handlowej.php (accessed November 20, 404 2014). 405
- 406 Von Bargen, C., Brockmeyer, J., & Humpf, H.-U. (2014). Meat authentication: a new HPLC-MS/MS 407 based method for the fast and sensitive detection of horse and pork in highly processed food. Journal of Agricultural and Food Chemistry, 62(39), 9428–9435.
- 408

			NCBI	Matched	Sequence	MASCOT	
No	Sample	Identified protein	accession number	peptides ^a	coverage (%) ^b	score ^c	
1	Cooked ham	myosin-2 (Sus scrofa)	gi 55741490	55	20	388	
		myosin-1 (Sus scrofa)	gi 157279731	51	19	388	
		myosin-7 (Sus scrofa)	gi 55741486	31	12	226	
2	Beef spread	myosin-2 (Bos taurus)	gi 75055812	54	21	429	
3	Potted beef	myosin-7 (Bos taurus)	gi 41386711	25	14	162	
4	Corned beef	myosin-7 (Bos taurus)	gi 41386711	54	21	519	
5	Beef sausage	myosin-2 (Bos taurus)	gi 75055812	66	29	419	
	U	myosin-1 (Bos taurus)	gi 41386691	66	28	434	
6	Chorizo	myosin-1 (Sus scrofa)	gi 157279731	50	20	547	
		myosin-7 (Sus scrofa)	gi 55741486	24	11	190	
7	Hunters	myosin-4 (Sus scrofa)	gi 178056718	57	24	392	
8	sausage Horse sausage	myosin-2 (Equus caballus)	gi 126352598	71	26	842	
0	noise sausage	myosin-2 (Equus caballus) myosin-7 (Equus caballus)	gi 126352398	48	19	702	
9	Horse sausage	myosin-7 (Equus caballus)	gi 126352320	30	19	155	
9	(smoked)	myosin-1 (Sus scrofa)	gi 120332320 gi 157279731	20	9	86	
10	Kabanos	myosin (Gallus gallus)	gi 13432175	40	19	376	
10	sausage with	myosin-4 (Sus scrofa)	gi 13432173	38	19	282	
	cheese	myösm-4 (sus scroja)	gi 1/8030/18	50	19	282	
11	Pork sausage	myosin-4 (Sus scrofa)	gi 178056718	55	22	797	
12	Cocktail sausage	myosin-2 (Bos taurus)	gi 75055812	54	22	448	
13	Frankfurters poultry	myosin (Gallus gallus)	gi 13432175	54	21	520	
14	Frankfurters	myosin-1 (Sus scrofa)	gi 157279731	46	16	425	
15	Frankfurters	myosin-2 (Bos taurus)	gi 75055812	53	20	325	
	,	myosin-1 (Sus scrofa)	gi 157279731	39	15	403	
16	Hotdogs	myosin-1 (Sus scrofa)	gi 157279731	33	10	164	
	<u>0</u> -	myosin (Gallus gallus)	gi 13432175	23	11	220	
18	In-house sausages	myosin-1 (Sus scrofa)	gi 157279731	44	17	274	
	suusuges	1		1	l		

Table 1. Dominant skeletal myosin heavy chain (MHC) isoforms identified in tryptic digests
 of processed meat products

^aNumber of matched peptides in the database search. ^bPercent of coverage of the entire amino acid sequence. ^cMASCOT score at FDR of 1%.

Sample	Processing method	Declared meat composition	Identified species	Protein	Peptide marker	NCBI accession number	MASCOT ion score ^a	Identity threshold ^b	Homology threshold ^c
1. Cooked	sliced, cured,	pork 78%	pig	myosin-1	SALAHAVQSSR	gi 157279731	42	>59	>38
ham	cooked			myosin-2	TLAFLFSGAQTGEAEAGGTK	gi 55741490	41	>60	>57
				myosin-7	LLSNLFANYAGADTPVEK	gi 55741486	86	>64	>49
				GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	37	>55	>44
2. Beef spread	minced,	beef 66%	cattle	myosin-2	TLAFLFSGTPTGDSEASGGTK	gi 75055812	30	>62	>34
-	canned			MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	60	>62	>40
				myoglobin	HPSDFGADAQAAMSK	gi 27806939	56	>71	>67
3. Potted beef	minced,	beef 67%,	cattle	myosin-7	GQNVQQVVYAK	gi 41386711	28	>46	>44
	canned	beef heart		MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	88	>38	>26
4. Corned beef	cured, cooked,	beef	cattle	myosin-7	GQNVQQVVYAK	gi 41386711	32	>68	>50
	corned			MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	54	>54	>22
5. Beef	raw, oven	beef 53%	cattle	myosin-2	TLAFLFSGTPTGDSEASGGTK	gi 75055812	51	>100	>63
sausage	cooked from			myosin-1	ALEDQLSELK	gi 41386691	38	>40	>39
	chilled			MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	87	>54	>28
				myoglobin	HPSDFGADAQAAMSK	gi 27806939	42	>60	>43
6. Chorizo	raw, oven	pork 87%	pig	myosin-1	SALAHAVQSSR	gi 157279731	61	>64	>51
style sausage	cooked from			myosin-7	LLSNLFANYAGADTPVEK	gi 55741486	62	>60	>33
	chilled			GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	98	>58	-
7. Hunters	smoked,	pork 70%,	pig	myosin-4	SALAHAVQSSR	gi 178056718	60	>60	>50
sausage	cooked,	beef 20%		GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	112	>61	-
	roasted		cattle	MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	19	>35	>13
8. Horse	raw, oven	horse meat	horse	myosin-2	VVETMQTMLDAEIR	gi 126352598	87	>58	-
sausage	cooked from			myosin-7	MLSNLFANYLGADAPIEK	gi 126352320	83	>58	>40
	chilled			myoglobin	GLSDGEWQQVLNVWGK	gi 7546624	72	>56	>36
				myoglobin	VEADIAGHGQEVLIR	gi 7546624	67	>54	-
				myoglobin	HGTVVLTALGGILK	gi 7546624	99	>59	-
9. Horse	smoked,	no data	pig	myosin-1	SALAHAVQSSR	gi 157279731	16	>40	>24
sausage	cooked, dried		horse	GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	63	>35	>17
-				myoglobin	GLSDGEWQQVLNVWGK	gi 7546624	59	>38	>22
				myoglobin	VEADIAGHGQEVLIR	gi 7546624	80	>38	-
				myoglobin	HGTVVLTALGGILK	gi 7546624	83	>40	-


Table 2. Peptide markers for both species and protein identified in processed meat products; all presented peptides were ranked first in the list of matched peptides of MASCOT peptide view results

10. Kabanos	smoked,	chicken	chicken	myosin	VAEQELLDATER	gi 13432175	81	>44	>43
sausage with	cooked, dried	meat 58%,		MLC1/3f	DQGTFEDFVEGLR	gi 212330	39	>59	>44
cheese		pork 12%,		MLC2f	GADPEDVIMGAFK	gi 223047	58	>60	-
		cheese 7.5%	pig	myosin-4	SALAHAVQSSR	gi 178056718	43	>44	>43
			cattle	casein alpha-S1	HQGLPQEVLNENLLR	gi 225632	43	>60	>36
				casein alpha-S1	EPMIGVNQELAYFYPELFR	gi 225632	48	>58	>26
11. Pork	smoked,	pork 92%,	pig	myosin-4	SALAHAVQSSR	gi 178056718	64	>44	-
sausage	cooked	veal 6%		GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	88	>45	>27
12. Cocktail	cured, cooked	beef 60%,	cattle	myosin-2	TLAFLFSGTPTGDSEASGGTK	gi 75055812	70	>74	>53
sausage		turkey meat		MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	62	>69	>41
		6%		myoglobin	HPSDFGADAQAAMSK	gi 27806939	51	>55	>40
13.	cooked,	chicken &	chicken	myosin	GQTVSQVHNSVGALAK	gi 13432175	60	>56	>46
Frankfurters	smoked	turkey MRM		myosin	TLALLFATYGGEAEGGGGK	gi 13432175	15	>59	>31
poultry		65%		myosin	VAEQELLDATER	gi 13432175	79	>56	>52
				MLC1/3f	DQGTFEDFVEGLR	gi 212330	63	>58	>54
				MLC2f	GADPEDVIMGAFK	gi 223047	62	>60	-
				beta-enolase	AAIAQAGYTDK	gi 46048765	51	>59	>36
14.	smoked	pork 71%,	pig	myosin-1	SALAHAVQSSR	gi 157279731	61	>63	-
Frankfurters		milk		GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	71	>57	-
classics		proteins	cattle	casein alpha-S1	HQGLPQEVLNENLLR	gi 225632	91	>59	>48
				casein alpha-S1	EPMIGVNQELAYFYPELFR	gi 225632	81	>59	>48
15.	cooked,	veal 50%,	cattle	MLC2f	EASGPINFTVFLNMFGEK	gi 115497166	73	>37	>18
Frankfurters	smoked	pork 28%	pig	myosin-1	SALAHAVQSSR	gi 157279731	31	>45	>34
				GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	65	>40	>22
16. Hotdogs	cooked,	pork 40%,	pig	myosin-1	SALAHAVQSSR	gi 157279731	47	>62	>41
	smoked	chicken 18%	chicken	myosin	VAEQELLDATER	gi 13432175	57	>58	>47
				MLC1/3f	DQGTFEDFVEGLR	gi 212347	81	>68	-
				MLC2f	GADPEDVIMGAFK	gi 223047	90	>60	-
17. Roast	sliced, cooked,	turkey meat	turkey	MLC1f	ALGQNPTNAEMNK	gi 326922419	79	>59	>42
turkey	roasted	84%		troponin C	PSMTDQQAEAR	gi 136044	42	>63	>41
18. In-house	smoked,	pork	pig	myosin-1	SALAHAVQSSR	gi 157279731	41	>37	-
sausages	cooked			GAPDH	WGDAGATYVVESTGVFTTMEK	gi 329744642	63	>54	-
				beta-enolase	NYPVVSIEDPFDQDDWK	gi 113205498	53	>57	>53

^aMASCOT score at FDR of 1%. ^{b,c}Individual ion scores to indicate identity or extensive homology.

Species	Protein	Peptide marker					
	MHC type II fast						
cattle	myosin-1(2X)	ALEDQLSELK					
	myosin-2(2A)	MEIDDLASNVETISK					
	myosin-2(2A)	TLAFLFSGTPTGDSEASGGTK					
horse	myosin-2(2A)	VVETMQTMLDAEIR					
pig	myosin-4(2B)	SALAHAVQSSR					
	myosin-1(2X)						
	myosin-2(2A)	TLAFLFSGAQTGEAEAGGTK					
	MHC type I slow/cardiac						
cattle	myosin-7	SAETEKEIALMK					
	myosin-7	GQNVQQVVYAK					
horse	myosin-7	GTLEDQIIEANPALEAFGNAK					
	myosin-7	MLSNLFANYLGADAPIEK					
pig	myosin-7	LLSNLFANYAGADTPVEK					

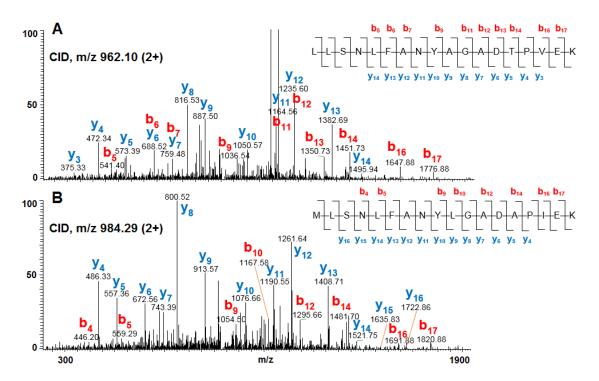

Table 3. Peptides unique to fast and slow type MHC isoforms

Figure 1. Analytical workflow for fast detection of peptide markers in processed meat products using LESA-MS/MS.

Figure 2. Example of sequenced spectrum of the pork myosin-1 and myosin-4 peptide SALAHAVQSSR (563.67²⁺), fast type isoforms, obtained from frankfurters made from veal and pork (sample 15) using LESA-MS/MS.

Figure 3. Sequenced LESA-MS/MS spectra of slow type 1 myosin isoform; (A) pig myosin-7 peptide LLSNLFANYAGADTPVEK (962.10²⁺) obtained from cooked ham (sample 1); (B) horse myosin-7 peptide MLSNLFANYLGADAPIEK (984.29²⁺) obtained from horse sausage (sample 8) cooked in oven.