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Abstract

This paper designs (1) the H-infinity RLS Wiener fixed-point smoother and filter for the
observation equation with the linear modulation and (2) the extended H-infinity
recursive Wiener fixed-point smoother and filter in discrete-time wide-sense stationary
stochastic systems. In the extended estimators, it is assumed that the signal is observed
with the nonlinear modulation and with additional white observation noise. In the
estimators, the system matrix @ for the state vector x(k), the observation vector C
for the state vector, the variance K(k,k)=K(0) of the state vector, the nonlinear
observation function and the variance of the white observation noise are used. ®, C
and K(0) are calculated from the auto-covariance data of the signal.

A simulation example, on the estimation of a speech signal in the phase demodulation
problem, is demonstrated to show the estimation characteristics of the proposed

extended H-infinity recursive Wiener estimators.

Keyword : H-infinity estimation, Discrete-time stochastic systems, Extended recursive
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1. Introduction

The extended Kalman filter [1],[21,[3] is useful in the wide area of engineering
such as signal demodulation problems etc. for the signal observed with nonlinear
observation mechanism and with additional white observation noise. Also, the extended
recursive Wiener fixed-point smoother and filter are designed in discrete-time
wide-sense stationary stochastic systems [4]. The extended recursive Wiener estimators
use the information of the system matrix @, the observation vector C for the state
vector x(k), the variance K(k,k)=K(0) of the state vector, the nonlinear function on
the observation mechanism and the variance of the observation noise. Since the
extended recursive Wiener estimators do not use the input noise variance in the state
equation, they might be superior in estimation accuracy to the extended Kalman
estimators [4]. In [5], the robust extended Kalman filter is proposed for the
discrete-time nonlinear systems with norm-bounded parameter uncertainties in Krein
space.

In [6], [7], for input noise signals with the bounded energies, the H'infinity
estimation problem is considered based on the discrete-time state-space model in Krein
spaces. The H-infinity estimators are designed so as to be more robust and less sensitive
for parameter variations. Also, the H-infinity recursive least-squares (RLS) Wiener
fixed-point smoother and filter are presented in linear discrete-time stochastic systems
[8). The criterion is provided with an inequality that the maximum value of the ratio of
the energy by the filtering error to the sum of the weighted square values of the input
variables is smaller than 7.

The purpose of this paper, at first, is to design the H-infinity RLS Wiener
fixed-point smoother and filter for the observation equation (1) with the linear
modulation of the signal in discrete-time wide-sense stationary stochastic systems. Then,
the extended H-infinity recursive Wiener estimators are designed for the observation
equation (25) with the nonlinear modulation of the signal and with the additional white
observation noise. In the estimators, the system matrix @ for the state vector x(k), the
observation vector C for the state vector, the variance K(k,k)=K(0) of the state
vector, ¥, the nonlinear observation function and the variance of the white observation
noise are used. @, C and K(0) are calculated from the auto-covariance data of the
signal.

In [Theorem 1], by using the the information of @, C, K(0) and R, the
H-infinity RLS Wiener fixed-point smoother and filter are presented. The estimators

are derived, based on the estimation technique and the algorithms in (4], [8], for the
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observation equation (1) with the linear modulation. In [Theorem 2], the extended
H-infinity recursive Wiener fixed-point smoother and filter are proposed in
discrete-time wide-sense stationary stochastic systems. The estimators in [Theorem 2}
are obtained by extending the linear H-infinity RLS Wiener estimators in [Theorem 1]
similarly as the derivation of the extended Kalman filter from the Kalman filter.

A simulation example on the estimation of a speech signal, concerning the phase
demodulation problem, shows that the extended H-infinity recursive Wiener estimators

are superior in estimation accuracy to the extended recursive Wiener estimators [4].

2. H-infinity smoothing problem for linear modulation

2.1 Krein-space observation equation
Let a scalar observation equation be given by

(k)= H(k)z, (k) +v(k), z(k)=Cx(k), m

in linear discrete-time stochastic systems. Here, z,(k) is a scalar signal, H(k) is a
linear modulation function of z(k) and x(k) is an »nx1 state vector with the
wide-sense stationary property. C isa lx# observation vector that transforms x(k)
to z(k). v (k) is white observation noise. Also, let the state equation for the state
vector x(k) be expressed by

x(k+1)=Ox(k) +u(k+1), 2

where @ is the state-transition matrix and u#(k) is white noise input. It is assumed
that the signal and the observation noise are mutually independent and are zero mean.

Let the auto-covariance function of v;(k) and u(k) be expressed by

E[vl(k)v;(j)]=R5K(k_j)’ R>0, 3
Elu(b)u’ (H]=T1,6, (k- j), T,>0. @

Here, J,(-) denotes the Kronecker & function and the asterisk denotes the complex
conjugation. Also, it is assumed that the mean and the variance matrix of the initial

value x(0)(=x,) are given by
Elx,1=0, E[xx,]1=0,, O, >0. 5)

In general, we consider to estimate some arbitrary linear combination of the state as
z,{k) = D(k)Ux(k) 6)

in terms of the observed value y,(k), where U isgiven 1xn matrix. From (1) and (6),
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for D(k)= H(k), U =C, the problem to estimate z,(k) is reduced to the estimation of
z,(k).

Let Z(j) be a filtering estimate of z,(j). Here, Z(j) is also called a fictitious
observed value of z,(J). In the finite-horizon H-infinity suboptimal estimation problem

for z,(Jj), the estimators are designed so as to obtain the filtering estimate Z(k) which

achieves the performance criterion

AL
<y, ¥v>0,
e P TT R

L
ALY =Y e, (Ne, (),
Jj=0

M(L) = (5, = %) 05" (%0 = o)+ 2" (DI () + v (DR, (), @

for the input noise signals, u(j) and w(j), j=0, 1, ---, L, with the bounded
energies. Here, ), I, and R are positive weighting matrices. (J, reflects a priori

knowledge as to how close X, is to its initial guess X,. (7) means that the maximum

value for the ratio of the energy of the filtering error e,(j) =Z(j)—Ux(j) to the sum of

the energies by the input variables x,—X,, #(j) and v(j) is smaller than 7?. The

H-infinity estimation algorithms are robust and less sensitive to parameter variations.
For L=, the performance criterion (7) is reduced to that in the infinite-horizon
H-infinity estimation problem.

By referring to [8], the H-infinity estimation problem described above in the linear
modulation is transformed into the linear least-squares estimation of z(j), which
consists of z,(j)=Cx(j) and z,(j)=Ux(j),

z()) =Tx(J)

iy
z,(J) U

for the observation equation

b2 (J')} _ [H(j)CX(j) +(J)

T D(HU()) +v,(f)

Hmc}
H6)) ’

} =H()x())+v()), H() {D(j)U

) —{

NIEC)
V(]) - |:V2 (])} ’ (9)
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N — , _ IR 0
[Ev(j)v ()] =ESc(J—5), :{0 2 } (10)
-y

Here, [Ev( j)v‘(s)], 0<j,s<L, represents the auto-covariance function of v(:) in

Krein spaces [6],[7]. The variance = of the observation noise v(j) in the Krein spaces

is indefinite.

2.2 Least-squares estimation of x(k) based on Krein-space observation equation

Let a fixed-point smoothing estimate x{(k|L) of x(k) be expressed by
L
(k| L)=D h(k,i,L)y(i), 1Sk<L, (11)
il

as a linear transformation of the observed values y(i), 1<i<L.In (1D, h(k,i,L) isa
time-varying impulse response function and k& is the fixed point respectively. The
fixed-point smoothing estimate Z(k|L) of the signal z(k) 1is given by
Z(k|L)=H(k)x(k|L).

Let us consider the estimation problem, which minimizes the mean-square value
J = E[| x(k) - %k | D) '] (12)

of the fixed-point smoothing error. From an orthogonal projection lemma [1]

x(k)—ih(k,i,L)y(i)_Ly(i), 0</j,k<L, (13)
i=1

the optimal impulse response function satisfies the Wiener-Hopf equation

[Ex(k)y'(s)]= ih(k,i, L)E[y(D)y" ()] -9

Here, ¢ L’ denotes the notation of the orthogonality. Let K(,) represent the

auto-covariance function of x(:). Substituting (9) and (10) into (14), we obtain

hk,s,L)E = K(k,)H (s)~ i h(k,i, LYH()K (i,s)H (s). (15)

Let K, (k,s) represent the auto-covariance function of the signal z (k). K, (k,s)

is expressed as
K, (k,5)= CO* " K (s,5)C 1(k - 8)+ CK" (k,k)(@") ™ C"I(s — k), (16)

where 1(k —5) represents the unit step function. In wide-sense stationary stochastic

systems [1], the variance of x(k) satisfies K(s,s5)=K(0).
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3. RLS Wiener fixed-point smoothing and filtering algorithms in case of linear

modulation

According to the linear H-infinity estimation problem of the signal z(k) in Section
2, [Theorem 1] shows the H-infinity recursive Wiener fixed-point smoothing and filtering

algorithms, which use the covariance information of the signal and observation noise.

[Theorem 1]

Let the observation equation, concerned with the linear modulation for the signal
z,(k), be given by (1). Let the auto-covariance function of the signal be given by (16) and
let the variance of white observation noise v,(k) be R in wide-sense stationary
stochastic systems. Then, the H-infinity recursive Wiener algorithms, using the
information of the system matrix @, the variance K(0) of the state vector, the
observation vectors C and U and the linear modulation functions H(k) and D(k),

for the fixed-point smoothing and filtering estimates of z(k) consist of (17)-(24).

Fixed-point smoothing estimate of the signal z,(k)=Cx(k) at the fixed point £ :
Z,(k,L)
g (k,L)=2(k,L=1)+Ch(k,L,L)(»(L) - H(L)z,(L,L - 1))
+Chy(k, L, LYZ(L) - D(L)2,(L,L-1)),
2(L,L-1)=CDX(L-1,L-1),

2, (L, L-1)=Udx(L-1,L-1) an
Fixed-point smoothing estimate of the signal z,(k)=Ux(k) at the fixed point Xk :
Z,(k,L)
2,(k, L) = 2,(k, L=+ Uh(k, L, L)(y,(L) - H(L)2,(L, L - 1))

+Uh, (k, L, LY(Z(L)— D(L)2,(L,L - 1)) (18)

Smoother gain:
[k, L, LYy hy(k L, L)]
=[K(k, k)@Y C H' (L) - q(k, L-DD'C"H (L) Kk, k)(D")*U D (L)-q(k, L~ HO'U'D (LR

(19)
Re’[‘ =|:;211 212},
21 22

Q, =R+ H(L)CK(L,L)C"H' (L)- H(L)COS(L-DND'C'H' (L),
Q, = H(L)CK(L,L)C'H' (L) - H(LYCOS(L-HD'U'D'(L),
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Q,, = D(LYUK(L,LYC'H' (L) — D(LYUDS(L ~ DO'C'H (L),
Q,, ==y + D(L)UK(L,L)YU" D" (L)~ D(L)UDS(L-1)®'U'D'(L)
Auto-variance function of the fixed-point smoothing estimate X(k|L): q(k,L)
q(k| Ly=qlk| L-1)®" + h(k,L,LYH(L)C(K(L,L)— DS(L - Ho')

+hy(k, L, LYD(LYU(K(L,L) - DS(L - DY), g(L|L)=S(L) (20)
Auto-variance function of the filtering estimate x(k,k): S(k)
S(k) = DSk - 1D +(G,(k)H(k)C + G, (k) D(k)U XK (k,k) = DS(L -1)D"),
[6,(}) G, (0)]=[K(k, )C"H" (k) - DS(k~1)D'C H' (k) K(k,K)U"D" (k) -~ ®S(k ~1)'U" D" (IR, »
S(©)=0 21D
Filtering estimate of the signal z,(k)(= Cx(k)): Zz,(k.,k)
2,(k,k) = Cx(k,k)
Filtering estimate of the signal z,(k)(=Ux(k)): Z,(k,k)

z,(k, k) =Ux(k, k) 22)
Fictitious observed value: Z(k)
Z(k) = D(k)z,(k. k) (23)

Filtering estimate of state vector x(k): x(k|k)
Sk | k) = DRk~ 1]k = 1)+ (K (k, k) - DSk~ 1)OYC'H (k)R + H(k)C(K (k, k) (24)
— DSk -1)D)CH (k) (3,(k) - H(k)COR(k -1|k-1)), £(0,0)=0

From [8], it is found that the proposed filter that achieves the performance criterion
(7) for L=k existsif, and only, if,
R+ H(H)CK(J, )YC'H" (j) - H(HCDS(j -1@'C'H'(j) >0
-y 1+ D()HUK(j, U D' (j) = D(HUDS(j -H@'U D' (/) <0,
j=0, L, 2, -, k.
Proof. The H-infinity recursive Wiener fixed-point smoother and filter [8], using the
information of ®, C, U, K(0) and R correspond to the case of H(k)=1 in the
observation equation (1) with the linear modulation of the signal z,(k). The H-infinity
recursive Wiener fixed-point smoothing and filtering algorithms in [Theorem 1] are
derived by applying the estimation technique in [8] to the case of the observation

equation (1) with the linear modulation. (Q.E.D).

4. Extended recursive Wiener estimation algorithms in case of nonlinear modulation

Let a scalar observation equation with the nonlinear modulation of the signal z,(k)

be given by
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y(k) = f(z,(B), k) +v(k), z(k)=Cx(k), (25)

where the signal z,(k) and the observation noise v(k) have the same stochastic

properties as those in Section 2.
Similarly to the design of the extended Kalman filter, in the design of the extended
recursive Wiener estimators using the covariance information, the modulation function is
of (z,(k), k) _ (k). k)

put as H(k)= , D(k)
azl(k) 2, (k)=2, (kik=1) 622(k)

in [Theorem 1]

2y (k)=2; (klk=1)

after expanding the nonlinear observation function in a first-order Taylor series about
2(k|k-1) and Z,(k|k-1) 1. Here, Z(k|lk-1)=COx(k-1]k-1) and
2,(k|k-1)=U®i(k—1|k—1) represent the one-step ahead prediction estimates for the
signals z,(k) and z,(k) respectively. Also, H(L);(L|L-1) and H(K)Ci(k|k-1)
in [Theorem 1] are replaced with f(3(L|L~1),L) and f(Z,(k|k—-1),k) respectively.
Similarly, D(L)z,(L|L-1) and D(k)Ux(k|k—1) in [Theorem 1] are replaced with
fG,(LIL-1),L) and f(2,(k|k—1),k) respectively. _

As a consequence, the H-infinity recursive Wiener fixed-point smoothing and
filtering algorithms in the case of the observation equation (25), with the nonlinear
modulation of the signal z,(k), is summarized in [Theorem 2]. It is noted that the
proposed extended recursive Wiener estimators are sub-optimal because of the Taylor

series approximation of the modulation function.

[Theorem 2]
Let the observation equation, with the nonlinear modulation of the signal z(k), be

given by the (25). Let the auto-covariance function of the signal be expressed by (16) and
let the variance of white observation noise v (k) be R in wide-sense stationary
stochastic systems. Then, the H-infinity recursive Wiener algorithms, using the
information of the system matrix @, the variance K(0) of the state vector, the
observation vectors C and U and the linear modulation functions H(k) and D(k),
for the fixed-point smoothing and filtering estimates of z(k) consist of (26)-(35).
Fixed-point smoothing estimate of the signal z,(k)=Cx(k) at the fixed point k'
(kL)
(k. L) = 3,0k, L 1)+ Chy(k, L D3 (D) — £ G(LL=1), 1))

+Chy(k, L, DYE(L) - £ (3,(L, L=1), 1)),
3(LL-1)=COX(L-1,L-1), (L, L-1)=UDx(L-1,L-1) (26)
Fixed-point smoothing estimate of the signal z,(k)=Ux(k) at the fixed point k:
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Z,(k, L)
2y(k,L) = 2,(k, L -1) + Un(k, L, LY(3(L) - f(£(L,L -1),L))
+Uny(k, L, LY(Z(L) - f(2,(L, L-1),1)) (27)
Smoother gain:
[h(k, L, LY hy(k, L, L)]
=[K (kKD )-HCH (L) - gk, L-D)®'C H (L) K(k, kYD YU’ D (L)~ q(k, L-1)®'U D' (L)IR,

(28)
Re,[, ={211 glzj}’
21 22

Q, =R+ H(L)CK(L,L)C'H" (L) - H(LYCO®S(L -1)®'C'H" (L),

Q, = H(L)CK(L,L)C'H" (L) - H(L)CDS(L-1)d'U'D (L),

Q,, = D(L)UK(L,LY)C'H" (L) - D(LYUDS(L-1)D'C'H" (L),

Q,, =~y*I+ D(L)UK(L, L)U' D" (L) - D(LYUDS(L-1)®'U'D"(L)

Auto-variance function of the fixed-point smoothing estimate x(k|L): g(k,L)
g(k|Ly=q(k| L-D)D +h(k,L, L)H(L)C(K(L,L)- DS(L-1)D")

+hy(k, L, LYD(L)U(K(L,L) - ®S(L-1)®"), q(L|L)=S(L) (29)

Auto-variance function of the filtering estimate x(k,k): S(k)

S(k)y = DSk 1)@ +(G,(k)H(k)C + G, (k) D(k)UXK (k,k) ~ PS(L -1)D"),
' [G/(k) G,(0)]=[K(k,K)C H (k) ~ DSk ~DD'C'H' (k) K(k,k)U'D" (k) - DSk —1)D'U D' (k)R »

SO)=0 (30)
Filtering estimate of the signal z,(k)(= Cx(k))® Z,(k,k)

2,(k, k)= Cx(k,k) 3D
Filtering estimate of the signal z,(k)(=Ux(k)): Z,(k,k)

2,(k, k) =Ux(k,k) (32)
Fictitious observed value: Z(k)

Z(k) = D(k)z,(k, k) (33)

Filtering estimate of state vector x(k): X(k|k)
k) k)= Ok -1k =1+ (K(k, k)~ DS (k - DO )C'H' (k)R + H(k)C(K (k, k)

(34)
- OS(k ~-1)O)C H (k)" (k) - fE(k | k=1),k)), £(0,0)=0
Here, the functions H(k) and D(k) are given by

6zl(k) azz(k)

2 (k)=5, (kik=1) 2, (k)=2, (klk-1)

The difference of the H-infinity recursive Wiener estimators from the extended

Kalman estimators is based on the information used. The H-infinity recursive Wiener
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estimators use the information of ®©, K(0), C, U, H(k) D(k) and R. The
extended Kalman estimators use the information of @, C and the variance II; of the
white noise input u(k) in (2). Both estimators use the information of nonlinear
modulation function. Since S(k{k) is the auto-variance function of the filtering
estimate X(k|k), the Kalman filtering algorithm for the filtering error variance function
P(k|k) is obtained by substituting S(k| k)= K{(0)— P(k|k) into (30) in the H-infinity
extended recursive Wiener estimation algorithms of [Theorem 2]. For the quantities
Stklk-D)=®Sk-1k-D®" and Plklk-1)=DPP(k-1{k-1)D" , there is a
relationship S(k|k-1)=K(0)-I1,-P(k{k-1).

5. A numerical simulation example

Let a scalar observation equation with the nonlinear modulation of the signal z, (k)
be given by
(k)= f(z(k), k) +v(k), z(k)=Cx(k),
Sz (k). k) =cosCnf kA +m z(k)), f.=1000(Hz), A=0.0001, m, =1.2.

(36)

The nonlinear function in (36) expresses the phase modulation in analogue
communication systems [9]. Here, f,, A and m, represent the carrier frequency, the
sampling period of the signal z,(k) and the phase sensitivity respectively. The

observation function is given by

Yz (k).k)

oz, (k) = —m, SinQ2af kA +m,z,(k [k -1)). (37

2 (k)=2 (kik-1)

H(k)=

Let v, (k) be white Gaussian observation noise having the mean zero and the variance
R, which is expressed by N(0,R).

Let the signal z,(k) be expressed by the state vector x(k), which consists of the
state variables x,(k) =z, (k), x,(k)=z(k+1), -, x,(k)=z(k+n-1), as

40 =Cx(), x(K)=[x(k) xnE) -~ %@, z(®k)=xKk), C=[1 0 - 0.

(38)
Let us consider to estimate a vowel signal spoken by the author. Its phonetic symbol is
written as “AY’. The sampling frequency of the voice signal is 10.025[kHz]. The
auto-covariance function of the signal is calculated in terms of the N =350 sampled

signal data. Let the stochastic process of the vowel signal be modeled in terms of the AR
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process of order 7.

z(k)=—azk-D~-a,z(k=2)—---—a,z(k—n)+e(k), Ele(k)e(s)]= 02§K (k-35)

(39)
Let K_({), i=1, ---, n, represent the auto-covariance function of the signal z, (k)
in wide-sense stationary stochastic systems. The AR parameters a,, i=1, -, n,
are calculated by the Yule-Walker equations
KO KO o o K@-D]a ] [ -K@® ]
K. KO - - K.(n=-2)) a, -K.,(2)
: : : : : D= : . (40)
K(n-2) - - KO KO la,| |-K0-D
| K.(n-1) K. (n-2) - - KO ja | | -K.(m |

By referring to [4], the 1x#n observation vector C, the auto-variance function K(0)
of the state vector x(k) and the system matrix @ are obtained in terms of the

auto-covariance function of the signal as follows:

C=[1 0 --- 0], (41
( K_(0) KO - - K@m-D]
K. K.©0 - - K/(n-2)
K(@0)= : : : : : \ (42)
K.(n-2) - K00 K,(D
| K.(n-1) K,(n-2) - - K.(0) |
[0 0 0]
0 0 0 0
O=| : : : : ol (43)
0 0 - 0 1
=4, —4,4 " T4 —a]

K(0) is also called the Hankel matrix. As indicated in [10], a finite dimensional
realization for z (k) exists if and only if the rank of the Hankel matrixis ».

By substituting @, C and K(0) into the H-infinity extended recursive Wiener
estimation algorithms of [Theorem 2], the fixed-point smoothing estimate Z,(k|L) at
the fixed point & and the filtering estimate Z(k|k) of the signal are calculated

recursively.
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Fig.1 illustrates the signal z(k), the filtering estimate Z,(k|%) and the fixed-point
smoothing estimate Z,(k|k +5) by the extended H-infinity recursive Wiener fixed-point
smoother and filter in [Theorem 2] vs. k for SNR=35 [dBland y =2. Fig.2 illustrates
the mean-square values (MSVs) in [dB] of the fixed-point smoothing error
z(k)-Z(k{k+5) and the filtering error z(k)—Z(k{k) by the extended H-infinity
recursive Wiener estimators vs. 7, 1.5<y <1000, for SNR =5 [dB]. Fig.2 indicates
that the smoother is superior in estimation accuracy to the filter. For the large value of ¥
such as y =1000, the MSVs by the extended H-infinity recursive Wiener estimators are
same as those by the extended recursive estimators {4]. The MSV of the filtering errors
decreases gradually as the value of y increases. In the fixed-point smoother, for
1.5<y £2, the MSV decreases gradually as y increases. It might be found that the
minimum value of the MSV exists around y =2.0. Here, the MSVs, by the dB expression,

of the fixed-point smoothing errors and the filtering errors are calculated respectively by

600 600

D (2(k) - 2(k |k +5))* 1600 D (z(k) - 2(k| k))* /600
10log,, =—-r [dB] and 10log,,+——( . Fig.3
> 22 (k)/600 Dz (k)/600
k=1 k=1

illustrates the MSVs of the filtering error z(k)—Zz(k|k) and the fixed-point smoothing
error z(k)—2z(k|k+5) by the extended H-infinity recursive Wiener filter and smoother
vs. SNR[dB], 1<SNR <10, for ¥ =2. The MSVs of the fixed-point smoothing errors
and filtering errors decrease, as the value of SNR increases. Also, from Fig.3, it is
shown that the estimation accuracy of the extended H-infinity recursive Wiener
fixed-point smoother is superior to that of the extended H-inﬁflity recursive Wiener filter.
Fig.4 illustrates the MSVs of the filtering error z(k)—Z(k|k) and the fixed-point
smoothing error z(k)-Z(k|k+ Lag) by the extended H-infinity recursive Wiener
fixed-point smoother and the extended recursive Wiener fixed-point smoother vs. Lag,
1<Lag<10, for =2 and SNR=35 [dBl. As Lag increases, the estimation
accuracies by the extended H-infinity recursive Wiener fixed-point smoother and the
extended recursive Wiener fixed-smoother are improved. It is seen that the estimation
accuracy of the extended H-infinity fixed-point smoother is superior to that of the

extended recursive Wiener fixed-point smoother.
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Filtering estimate and fixed-point smoothing estimate

— — Filtering estimate
« Fixed-point smoothing estimate

Signal,

) I I I I
0 50 100 150 200 250

time k

Fig.1 Signal z,(k), the filtering estimate Z(k|k) and the fixed-point smoothing

estimate Z,(k|k+5) by the extended H-infinity recursive Wiener fixed-point smoother
and filter in [Theorem 2] vs. k& for SNR=5 [dB]land y=2.
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Fig.2 Mean-square values in [dB] of the fixed-point smoothing error z(k)—Zz(k|k+5)
and the filtering error z(k)—-Z2(k[k) by the extended H-infinity recursive Wiener
estimators in [Theorem 2] vs. ¥ for SNR=5 [dB].
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—— (a) Extended H-infinity recursive Wiener filter for gamma=2
— — (b) Extended H-infinity recursive Wiener fixed-point smoother for gamma=2

SNR[dB]

SVs [dB] of estimation errors by the extended H-infinity recursive Wiener estimators

Fig.3 Me:n-square values of the filtering error z(k)—2Z(k|k) and the fixed-point
smoothing error z(k)—Z(k|k+5) by the extended H-infinity recursive Wiener filter
and smoother vs. SNR [dB], 1< SNR <10, for y=2.

-11.8 T T T T T T T -

-12.2

-12.4

-12.6

-12.8

-13.2

-13.4

-13.6

MSVs [dB] of estimation errors by the extended estimators

—— (a) Extended H-infinity estimators for gamma=2 vs. Lag
— — (b) Extended recursive Wiener estimators vs. Lag

-13.8 .
10 10
Lag

Fig.4 Mean-square values in [dB] of the filtering error z(k)—Z(k|k) and the fixed-point
smoothing error z{(k)—Z(k|k + Lag) by the extended H-infinity recursive Wiener
estimators in [Theorem 2] and the extended recursive Wiener estimators vs. Lag,

1< Lag €10, for y =2 and SNR=5 [dBl
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6. Conclusions

In this paper, the H-infinity RLS Wiener fixed-point smoother and filter for the
observation equation with the linear modulation of the signal are proposed, in [Theorem
11, in discrete-time wide-sense stationary stochastic systems. Then, in [Theorem 2, the
extended H-infinity recursive Wiener fixed-point smoother and filter for the observation
equation with the nonlinear modulation of the signal are presented in [Theorem 2].

From the simulation example, it has been shown that the the extended H-infinity
recursive Wiener fixed-point smoothing and filtering algorithms proposed in [Theorem

2] are feasible.
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