著者
SAKAI Manabu

雑誌名及び出版年
鹿児島大学理学部紀要 数学・物理学・化学

巻号
10

発行号
1-17

URL
http://hdl.handle.net/10232/6358

別言語のタイトル
点境界値問題の 5 次のスプラインによる両側近時にについて
表題：両側五次スプライン近似法
著者：佐々木 眞

<table>
<thead>
<tr>
<th>論文のタイトル</th>
<th>鹿児島大学理学部紀要・数学・物理学・化学</th>
</tr>
</thead>
<tbody>
<tr>
<td>別言語のタイトル</td>
<td>両側五次スプラインによる両側近似法について</td>
</tr>
<tr>
<td>リンク</td>
<td>http://hdl.handle.net/10232/00010033</td>
</tr>
</tbody>
</table>
TWO-SIDED QUINTIC SPLINE APPROXIMATIONS FOR TWO-POINT BOUNDARY VALUE PROBLEMS

By

Manabu Sakai

(Received September 14, 1977)

Two-sided quintic spline approximations for two-point boundary value problems are considered. A selection of numerical results is illustrated in Tables 1-3.

I. Introduction

Splines are of much use for approximating solutions of simple two-point boundary value problems for both linear and nonlinear ordinary differential equations. Recently we have considered the two-sided cubic spline approximations of second order ([7]). This paper discusses the two-sided quintic spline approximations of fourth order.

The two-point boundary value problems to be solved is

\[a \dddot{x} + b \dddot{x} + f(t, x, \dddot{x}) = 0 \quad (0 \leq t \leq 1) \]

with boundary conditions

\[A_0 x(0) - B_0 x'(0) = a, \]

\[A_1 x(1) + B_1 x'(1) = b, \]

where \(f(t, x, y) \) is defined and four times continuously differentiable in a region \(D \) of \((t, x, y) \)-space intercepted by two planes \(t=0 \) and \(t=1 \).

Now making use of \(B \)-spline \(Q_h(t) = (1/120) \sum (-1)^i(t-i)(t-i)^2 \), we consider spline function \(x_k(t) (k=1, 2) \) of the form

\[x_k(t) = \sum a_i Q_h(t-h-i) \quad (nh = 1) \]

and

\[x_k(t) = \sum \beta_i Q_h(t-h-i) \]

with undetermined coefficients \(a_i \) and \(\beta_i \) \((i=-5, -4, \ldots, n-1)\). The above \(x_k(t) (k=1, 2) \) will be the approximate solution to the problem (1.1)-(1.3) if it satisfies

\[x_k(t) = P_h f(t, x_k(t), x_k'(t)) \quad (0 \leq t \leq 1) \]

with boundary conditions

\[A_0 x_k(0) - B_0 x_k'(0) = a, \]

\[A_1 x_k(1) + B_1 x_k'(1) = b. \]
Here the operator \(P_k(k=1, 2) \) is defined as follows:

(i) \((P_1 g)(t)\) is the cubic spline function with the node \(t_i (i=0, 1, \ldots, n) \) such that
\[
(P_1 g)(t_i) = g(t_i) \quad (t_i = ih, \ i = 0, 1, \ldots, n),
\]
\[
(P_1 g)'(t_i) = g'(t_i) \quad (i = 0, n).
\]

(ii) \((P_2 g)(t)\) is the cubic spline function with the node \(t_i (i=0, 1, \ldots, n) \) such that
\[
(P_2 g)(t) = \frac{h(g_{i+1} + 10g_i + g_{i-1})}{12} \quad (i = 1, 2, \ldots, n-1)
\]
\[
(P_2 g)(t) = \frac{h(7g_0 + 3g_1)}{20} + \frac{h^3(3g_0 - 2g_1)}{60} \quad (i = 0)
\]
\[
(P_2 g)(t) = \frac{h(7g_n + 3g_{n-1})}{20} - \frac{h^3(3g_n - 2g_{n-1})}{60} \quad (i = n).
\]

and \((P_2 g)'(t_i) = g'(t_i) \quad (i = 0, n)\),

where for any \(\varphi(t) \) and \(\psi(t) \in L^2[0, 1] \), let us denote
\[
\int_0^1 \varphi(t) \psi(t) \, dt \quad \text{by} \quad (\varphi, \psi).
\]

For \(k=1 \), it follows that Eqs. (1.4)-(1.6) are equivalent to the following system of \((n+5)\) equations:
\[
F_{-2}(a) = A_0(a_5 + 26a_4 + 66a_3 + 26a_2 + a_1)/120
\]
\[
- B_0(a_1 + 10a_2 - 10a_4 - a_6)/24h - a = 0,
\]
\[
F_{-1}(a)/h = (- a_5 - 2a_4 - 2a_2 + a_1)/2h^3
\]
\[
- f_1(0, (a_5 + 26a_4 + 66a_3 + 26a_2 + a_1)/120, (-a_5 - 10a_4 + 10a_2 + a_1)/24h)
\]
\[
- f_2(0, \cdots) (a_1 + 10a_2 - 10a_4 - a_6)/24h
\]
\[
- f_3(0, \cdots) (a_5 + 2a_4 - 6a_3 + 2a_2 + a_1)/6h^2 = 0,
\]
\[
F_t(a) = (a_{i-5} + 2a_{i-4} - 6a_{i-3} + 2a_{i-2} + a_{i-1})/6h^2
\]
\[
- f(t_i, (a_{i-5} + 26a_{i-4} + 66a_{i-3} + 26a_{i-2} + a_{i-1}))/120,
\]
\[
(a_{i-1} + 10a_{i-2} - 10a_{i-4} - a_{i-6})/24h = 0,
\]
\[
F_{n+1}(a)/h = (a_{n-1} - 2a_{n-2} + a_{n-4} - a_{n-6})/2h^3
\]
\[
- f_1(t_n, (a_{n-1} + 26a_{n-2} + 66a_{n-3} + 26a_{n-4} + a_{n-5}))/120,
\]
\[
(a_{n-1} + 10a_{n-2} - 10a_{n-4} - a_{n-6})/24h
\]
\[
- f_2(t_n, \cdots) (a_{n-1} + 10a_{n-2} - 10a_{n-4} - a_{n-6})/24h
\]
\[
- f_3(t_n, \cdots) (a_{n-1} + 2a_{n-2} - 6a_{n-3} + 2a_{n-4} + a_{n-5})/6h^2 = 0,
\]
\[
F_{n+2}(a) = A_1(a_{n-1} + 26a_{n-2} + 66a_{n-3} + 26a_{n-4} + a_{n-5})/120
\]
\[
+ B_1(a_{n-1} + 10a_{n-2} - 10a_{n-4} - a_{n-6})/24h - b = 0,
\]

where
\[
f_k(x_1, x_2, x_3) = \frac{\partial f(x_1, x_2, x_3)}{\partial x_k} \quad (k = 1, 2 \text{ and } 3).
\]
For \(k=2 \), Eq. (1.4) is equivalent to the following system of \((n+1)\) equations:

\[
\begin{align*}
G_0(\beta) &= \frac{(x_0(h) - x_0(0))/h - x_0'(0) - h(7f_0 + 3f'_1)/20 - h(3f''_0 - 2f''_1)/60,} \\
G_i(\beta) &= \frac{(x_i(t_{i-1}) - 2x_i(t_i) + x_i(t_{i+1}))/h^2 - (f_{i+1} + 10f_i + f_{i-1})/12} \\
G_n(\beta) &= \frac{(x_n(1) - x_n(1-h))/h - x_n'(1) + h(7f_n + 3f_{n-1} - 2f''_{n-1})/20 - h(3f''_n - 2f''_{n-1})/60,}
\end{align*}
\]

where \(x_i(t) = \sum \beta_iQ_i(t)/h - i, f_i = f(t_i, x_i(t_i), x_i'(t_i)) \) and

\[
f'_i = f_i(t_i, x_i(t_i), x_i'(t_i)) + f_{ii}(t_i, x_{ii}(t_i), x_i'(t_i)) x_i'(t_i) + f_{i}(t_i, x_i(t_i), x_i'(t_i)) x_i'(t_i).
\]

In the present paper we assume that the problem (1.1)-(1.3) has the isolated solution \(\psi(t) \) satisfying the internality condition

\[
U = \{(t, x, y) \mid |x-\mathcal{B}(t)| + |y-\mathcal{B}(t)| \leq \delta, t \in [0,1] \} \subset D \quad \text{for some } \delta > 0.
\]

The object of this paper is to show the following asymptotic expansion of the error function:

\[
\varepsilon_k(t) = (\mathcal{B} - \mathcal{B}_k)(t) = d_kh^k\psi(t) + o(h^k) \quad (h \to 0) \quad (k = 1, 2),
\]

where \(d_1 = 1/720, d_2 = -1/240, \mathcal{B}_k(t) (k = 1, 2) \) is the solution of the approximate problem (1.4)-(1.6) and \(\psi(t) \) is the solution of the following variation equation of (1.1)-(1.3):

\[
\psi''(t) = f_0(t, \mathcal{B}(t), \mathcal{B}'(t)) \psi(t) + f_2(t, \mathcal{B}(t), \mathcal{B}'(t)) \psi'(t) + \mathcal{A}(t) \psi(t) \quad (0 \leq t \leq 1),
\]

subject to the boundary conditions

\[
\begin{align*}
A_0\psi(0) - B_0\psi'(0) &= 0, \\
A_1\psi(1) + B_1\psi'(1) &= 0.
\end{align*}
\]

2. Some Properties of Spline Functions

In what follows, for any continuous function \(\varphi(t) \), we shall denote its maximum norm by \(\|\varphi\|_{\infty} \), and for any finite dimensional vector \(c \), we shall denote its maximum norm by \(\|c\|_{\infty} \). For any square matrix \(A \), we shall denote the norm induced by the maximum vector norm by \(\|A\|_{\infty} \).

Lemma 1 ([1]). Let \(B = (b_{ij}) \) be diagonally dominant, then

\[
\|B^{-1}\|_{\infty} \leq \max[(|b_{ii}| - \sum |b_{ij}|)^{-1}].
\]

As an application of this Lemma, we shall prove the following Lemmas 2–9.

Lemma 2. Let \(g(t) \in C^4[0, 1] \), then

\[
\|\widehat{I - P_k}g\|_{\infty} \leq ch^k\|g^{(4)}\|_{\infty} \quad (k = 1, 2),
\]

where \(\widehat{I} \) is the unit operator and \(c \) is a constant independent of \(h \).

Proof. For \(k=1 \), see [1].

For \(k=2 \), let us rewrite \((I-P_k)g\) in the form:

\[
(I-P_k)g = (g-P_1g) + (P_1-P_2)g, \quad (2.1)
\]
where \[\|g - P_1 g\|_\infty \leq ch^4 \|g^{(4)}\|_\infty.\] (2.2)

For the second part of (2.1), we have
\[(P_1 - P_2) g = \sum (\beta_i - \gamma_i) Q_i(t|h-i) \]
with \[P_1 g = \sum \beta_i Q_i(t|h-i) \quad \text{and} \quad P_2 g = \sum \gamma_i Q_i(t|h-i).\] (2.3)

From the definition of the operator \(P_2 \), it follows that
\[(\sum \gamma_i Q_i(t|h-i), L_k) = h(g_{k+1} + 10g_k + g_{k-1})/12 \quad (k = 1, 2, \ldots, n-1). \]
Thus we have
\[(\gamma_i' + 26\gamma_{i-1} + 66\gamma_{i-2} + 26\gamma_{i-3} + \gamma_{i-4})/120 \]
\[= (g_{k+1} + 10g_k + g_{k-1})/12 \quad (k = 1, 2, \ldots, n-1). \] (2.4)

Similarly we have
\[(\sum \gamma_i Q_i(t|h-i), L_0) = (4\gamma_{i-3} + 32\gamma_{i-2} + 23\gamma_{i-1} + \gamma_i)/60 \]
\[= (7g_0 + 3g_1)/20 + h(3g_0^2 - 2g_1)/60, \]
\[(\sum \gamma_i Q_i(t|h-i), L_n) = (4\gamma_{n-1} + 32\gamma_{n-2} + 23\gamma_{n-3} + \gamma_{n-4})/60 \]
\[= (7g_n + 3g_{n-1})/20 + h(-3g_n + 2g_{n-1})/60. \] (2.5)

Since \(\varphi(t) = (P_1 g)(t) \) is a polynomial of degree 3 on \([t_i, t_{i+1}]\), \(\varphi(t) \) is represented as follows:
\[\varphi(t) = \varphi_i L_i(t) + \varphi_{i+1} L_{i+1}(t) + \varphi_i' T_i(t) + \varphi_{i+1}' T_{i+1}(t), \]
where
\[T_i(t) = \begin{cases} (t-t_i)^3/2 - (t-t_i)^3/6h - h(t-t_i)/3 & \text{if } t \leq t_{i+1} \\ (t-t_{i-1})^3/6h - h(t-t_{i-1})/6 & \text{if } t_{i-1} \leq t \leq t_i \\ 0 & \text{otherwise}. \end{cases} \]
Thus we have
\[(\varphi, L_k)/h = (\varphi_{k+1} + 4\varphi_k + \varphi_{k-1})/6 - h^2(7\varphi_{k+1} + 16\varphi_k + 7\varphi_{k-1})/360 \]
\[= (g_{k+1} + 10g_k + g_{k-1})/12 \quad (k = 1, 2, \ldots, n-1). \] (2.7)

Similarly we have
\[(\varphi, L_0)/h = (7\varphi_0 + 3\varphi_1)/20 + h(3\varphi_0^2 - 2\varphi_1)/60, \] (2.8)
\[(\varphi, L_n)/h = (7\varphi_n + 3\varphi_{n-1})/20 + h(-3\varphi_n + 2\varphi_{n-1})/60. \] (2.9)

Since \((P_2 g)(t_0) = \varphi_0' = \varphi_0' (k = 0, n) \), we have two equations for
\(\theta_0(=\gamma_0 - \beta_0) \):
\[\begin{align*}
\theta_0 &= \theta_0' = 0 \\
\theta_1 &= \theta_0' = \theta_1' = 0.
\end{align*} \] (2.10)

From (2.4)–(2.10), we have the following system of equations for \(\theta_k (k = -2, -1, \ldots, n-2) \):
\[(\theta_k + 26\theta_{k-1} + 66\theta_{k-2} + 26\theta_{k-3} + \theta_{k-4})/120 \]
\[= -(g_{k+1} - 2g_k + g_{k-1})/12 + h^2(7\varphi_{k+1} + 16\varphi_k + 7\varphi_{k-1})/360 \]
\[= (g_{k+1} + 10g_k + g_{k-1})/12 \quad (k = 2, 3, \ldots, n-2). \] (2.11)
Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

\[(32\theta_n + 27\theta_{n-1} + \theta_0)/60 = -h(g_i - \phi'_i)/30,\]
\[(32\theta_{n-2} + 27\theta_{n-3} + \theta_{n-4})/60 = h(g''_{n-1} - \phi''_{n-1})/30.\]

Since \(|g_i^{(m)} - \phi_i^{(m)}| \leq ch^{4-m}\|g^{(4)}\|_\infty (i = 0, 1, \ldots, n \text{ and } m = 1, 2)\), by Lemma 1 and (2.10) we have

\[|\theta_i| \leq ch^4\|g^{(4)}\|_\infty \quad (i = 0, 1, \ldots, n).\]

Thus we have

\[\|(P_1 - P_2) g\|_\infty \leq \|\theta\|_\infty \leq ch^4\|g^{(4)}\|_\infty.\] \hspace{1cm} (2.12)

Combining (2.2) and (2.12) yields the desired result.

Lemma 3. Let \(g(t) \in C[0, 1]\), then we have

\[\|(I - P_k) g\|_\infty \leq c h \|g'\|_\infty \quad (k = 1, 2).\]

Proof. For \(k = 1\), we have

\[(\varphi i+1 + 4\varphi i + \varphi i-1)/6 = (g_{i+1} - g_{i-1})/2h\]

with

\[\varphi(t) = (P_1 g)(t).\]

Thus we have

\[[(\varphi i+1 - g_{i+1}) + 4(\varphi i - g'_i) + (\varphi i-1 - g_{i-1})]/6 \]
\[= (g_{i+1} - g_{i-1})/2h - (g_{i+1} + 4g'_i + g_{i-1})/6.\] \hspace{1cm} (2.13)

From the definition of the operator \(P_1\), we have two additional equations:

\[\varphi_{i} - g_{i} = 0 \quad \text{and} \quad \varphi_{i} - g_{i} = 0.\] \hspace{1cm} (2.14)

Applying Lemma 1 to (2.13) and (2.14), we have the desired result. For \(k = 2\), let us rewrite \((I - P_k) g\) in the form:

\[(I - P_k) g = (g - P_k g) + (P_1 - P_2) g,\]

where

\[\|(I - P_k) g\|_\infty \leq c h \|g'\|_\infty.\] \hspace{1cm} (2.15)

In a similar manner analogous to Lemma 2, we have only to show:

\[((P_1 - P_2) g, L_k) = (P_1 g, L_k) - h(g_{k+1} + 10g_k + g_{k-1})/12\]
\[= h(3\varphi_{k+1} + 4\varphi_k + 3\varphi_{k-1})/20 - h^2(\varphi_{k+1} - \varphi_{k-1})/30 - h(g_{k+1} + 10g_k + g_{k-1})/12\]
\[= h(g_{k+1} - 2g_k + g_{k-1})/15 - h^2(\varphi_{k+1} - \varphi_{k-1})/30 \quad (k = 1, 2, \ldots, n-1).\] \hspace{1cm} (2.16)

A simple calculation shows:

\[((P_1 - P_2) g, L_0) = 0 \quad \text{and} \quad ((P_1 - P_2) g, L_n) = 0.\] \hspace{1cm} (2.17)

Thus we have the desired result.

Lemma 4 ([4]). Let \(g(t) \in C^5[0, 1]\), then there exists a quintic spline function of the form

\[\varphi(t) = \sum a_i \zeta_i(t)/\delta - \delta\]
so that

(i) \(\phi(t_i) = g(t_i) \quad (i = 0, 1, \ldots, n) \)

(ii) \(\phi^{(m)}(t_i) = g^{(m)}(t_i) \quad (i = 0, n \text{ and } m = 1, 2) \)

and

\[\|\phi^{(m)} - g^{(m)}\|_\infty = O(h^{6-m}) \quad (m = 0, 1, 2, 3) \quad (h \to 0). \]

Proof. By the use of consistency conditions, we shall prove this Lemma. In the case of the quintic spline, there are the following relationships between the first and second derivatives of the spline:

\[
\frac{\phi_i + 26\phi_{i+1} + 66\phi_i + 26\phi_{i-1} + \phi_{i-2}}{120} - \frac{\phi_i + 10\phi_{i+1} - 10\phi_{i-1} - \phi_{i-2}}{24h} = 0, \quad (i = 2, 3, \ldots, n-2) \tag{2.18}
\]

and

\[
\frac{\phi_i + 26\phi_{i+1} + 66\phi_i + 26\phi_{i-1} + \phi_{i-2}}{120} - \frac{\phi_i + 2\phi_{i+1} - 6\phi_i + 2\phi_{i-1} + \phi_{i-2}}{6h} = 0, \quad (i = 2, 3, \ldots, n-2). \tag{2.19}
\]

If restricted on \([0, t_3], \phi(t)\) depends upon 8 parameters. Therefore 9 quantities \(\phi_0, \phi_i\) and \(\phi_i^\prime, (i=0, 1, 2, 3)\) are not mutually independent, there is a unique linear relation:

\[
37\phi_0 - 54\phi_1 + 8\phi_2 + 8\phi_3 + 12h\phi_0^\prime = h^2(-23\phi_0 + 354\phi_i^\prime + 201\phi_i^2 + 8\phi_i^3)/20 \tag{2.20}
\]

Similarly we have

\[
37\phi_n - 54\phi_{n-1} + 8\phi_{n-2} + 8\phi_{n-3} - 12h\phi_n^\prime = h^2(-23\phi_n + 354\phi_{n-1} + 201\phi_{n-2} + 8\phi_{n-3})/20. \tag{2.21}
\]

Also we have

\[
-235\phi_0 + 65\phi_1 + 155\phi_2 + 15\phi_3 = 16h^2\phi_0^\prime + h(111\phi_0^\prime + 227\phi_i^\prime + 79\phi_i + 3\phi_i^3)/20 \tag{2.22}
\]

and

\[
235\phi_n - 65\phi_{n-1} - 155\phi_{n-2} - 15\phi_{n-3} = -16h^2\phi_n^\prime + h(111\phi_n^\prime + 227\phi_{n-1}^\prime + 79\phi_{n-2} + 3\phi_{n-3}). \tag{2.23}
\]

Since \(\phi^{(m)}_i - g^{(m)}_i = 0 (i=0, n \text{ and } m=1, 2)\), by Taylor series expansion and Lemma 1 we have

\[
|\phi_i - g_i| = O(h^6) \quad (i = 0, 1, \ldots, n) \quad \text{from (2.18), (2.22), and (2.23)} \tag{2.24}
\]

and

\[
|\phi_i - g_i| = O(h^4) \quad (i = 0, 1, \ldots, n) \quad \text{from (2.19), (2.20) and (2.21)} \tag{2.25}
\]

Thus we have the desired result.

Lemma 5. Let \(\phi(t) = \sum \alpha_i Q_4(t/h - i)\), then

\[\|\alpha\|_\infty \leq c\|\phi\|_\infty. \]
Proof. As is readily seen, we have

\[3a_{i-1} + a_i = 6\varphi_i - 8\varphi_{i-2} + \frac{(\varphi_i + \varphi_{i-1})}{3} \]

\[(a_{i-1} + 4a_{i-2} + a_{i-3})/6 = \varphi_i \quad (i = 2, 3, \ldots, n-2)\]

\[3a_n + a_{n-1} = 6\varphi_n - 8\varphi_{n-1}/3 + \frac{(\varphi_n + \varphi_{n-1})}{3}.\]

From Lemma 1, it follows that

\[|a_i| \leq c\|\varphi\|_\infty \quad (i = -1, 0, \ldots, n-3).\]

Since

\[a_{i-3} = 6\varphi_i - 4a_{i-2} - a_{i-1} \quad (i = 1, 0)\]

\[a_{i-1} = 6\varphi_i - 4a_{i-2} - a_{i-3} \quad (i = n-1, n),\]

we have

\[\|a\|_\infty \leq c\|\varphi\|_\infty.\]

Lemma 6. Let \(\varphi(t) = \sum a_i Q_i(t/h - i)\) such that

\[\varphi(t_i) = \eta_i \quad (i = 0, 1, \ldots, n), \quad \varphi'(t_0) = \eta_{-1}/h \quad \text{and} \quad \varphi'(t_n) = \eta_{n+1}/h.\]

Then we have

\[\|\varphi\|_\infty \leq c\|\eta\|_\infty.\]

Proof. By consistency relations, it follows that

\[(\varphi_{i+1} + 4\varphi_i + \varphi_{i-1})/6 = (\varphi_{i+1} - \varphi_{i-1})/2h\]

\[= (\eta_{i+1} - \eta_{i-1})/2h \quad (i = 1, 2, \ldots, n-1),\]

\[\varphi'_i = \eta_{-1}/h \quad \text{and} \quad \varphi'_i = \eta_{n+1}/h.\]

According to Lemma 1, we have

\[|\varphi_i| \leq c\|\eta\|_\infty/h \quad (i = 0, 1, \ldots, n). \quad (2.26)\]

Since \(|\varphi_i| \leq \|\eta\|_\infty\), by (2.26) we have

\[\|\varphi\|_\infty \leq c\|\eta\|_\infty.\]

The following Lemma 7 follows through the same arguments as in the proof of the latter part of Lemma 2.

Lemma 7. Let \(\varphi(t)\) be cubic spline function with the node \(t_i \quad (i = 0, 1, \ldots, n)\) such that

\[(\varphi, L_i) = h\eta_i \quad (i = 0, 1, \ldots, n), \quad \varphi'(t_0) = \eta_{-1}/h \quad \text{and} \quad \varphi'(t_n) = \eta_{n+1}/h.\]

Then we have

\[\|\varphi\|_\infty \leq c\|\eta\|_\infty.\]

Lemma 8 ([3]). Let \(g(t) \in C^4[0, 1]\), then

\[(P_1 g)'(t) = g'(t) - h^2 g^2_i/12 + o(h^2) \quad (h \rightarrow 0).\]

Proof. Let us denote \(\varphi(t) = (P_1 g)(t)\), then we have

\[(\varphi_{i+1} + 4\varphi_i + \varphi_{i-1})/6 = (\varphi_{i+1} - 2\varphi_i + \varphi_{i-1})/h^2\]

\[= (g_{i+1} - 2g_i + g_{i-1})/h^2 \quad (i = 1, 2, \ldots, n-1). \quad (2.27)\]
Thus we have
\[
[(\varphi_{i+1}^*-g_{i+1}^*)+4(\varphi_{i}^*-g_{i}^*)+4(\varphi_{i-1}^*-g_{i-1}^*)]/6
\]
\[
= -h^2g_{i}^{(4)}/12 + o(h^2) \quad (i = 1, 2, \ldots, n-1).
\]
(2.28)

Since \(\varphi(t) \) is cubic on \([t_0, t_4]\), we have
\[
h(2\varphi_0^*+\varphi_1^*)/6 = (\varphi_1-\varphi_0)/h - \varphi_1^*,
\]
from which follows
\[
[2(\varphi_{1}^*-g_{0}^*)+(\varphi_{0}^*-g_{1}^*)]/3 = -h^2g_{0}^{(4)}/12 + o(h^2).
\]
(2.29)

Similarly we have
\[
[2(\varphi_{n}^*-g_{n}^*)+(\varphi_{n-1}^*-g_{n-1}^*)]/3 = -h^2g_{n}^{(4)}/12 + o(h^2).
\]
(2.30)

From (2.28)–(2.30), we have the desired result.

Lemma 9. Let \(g(t) \) be continuously differentiable on \([0, 1]\), then we have
\[
\| P_1 g \|_{\infty} \leq c(\| g \|_{\infty} + \| g' \|_{\infty}).
\]

Proof. Let \((P_1 g)(t) = \sum a_i Q_i(t)/h-i) \), then
\[
\| P_1 g \|_{\infty} \leq \| a \|_{\infty}.
\]

It follows from the definition of operator \(P_1 \) that
\[
(a_{i-1}-a_{i-3})/2h = g_i^*,
\]
\[
(a_{i-1}+4a_{i-2}+a_{i-3})/6 = g_i \quad (i = 0, 1, \ldots, n),
\]
\[
(a_{n-1}-a_{n-3})/2h = g_n^*.
\]

Hence, from Lemma 1, we have
\[
\| a \|_{\infty} \leq c(\| g \|_{\infty} + \| g' \|_{\infty}).
\]

Thus we have the desired result.

3. **Existence and Convergence of Spline Approximations**

In this section, using Kantorovich's theorem on Newton's method, we shall prove the solvability of the determining equations \(F(\varphi_0) = (F_{-2}(\varphi_0), F_{-1}(\varphi_0), \ldots, F_{n+1}(\varphi_0)) \) and \(G(\beta) = (F_{-2}(\beta), F_{-1}(\beta), G_{0}(\beta), \ldots, G_{n}(\beta), F_{n+1}(\beta), F_{n+2}(\beta)) = 0 \).

Corresponding to \(\hat{f}(t) \), one can determine uniquely a quintic spline function \(\hat{f}_h(t) \), of the form
\[
\hat{f}_h(t) = \sum \hat{a}_i Q_i(t)/h-i)
\]
so that
\[
\hat{f}_h(t_i) = \hat{f}(t_i) \quad (i = 0, 1, \ldots, n)
\]
\[
\hat{f}_h^{(m)}(t_i) = \hat{f}^{(m)}(t_i) \quad (i = 0, n \text{ and } m = 1, 2).
\]

Since \(\hat{f}(t) \in C^4[0, 1] \) due to the assumption \(f(t, x, y) \in C^4(D) \), it is valid that
\[
\| \hat{f}_h^{(m)} - \hat{f}^{(m)} \|_{\infty} = O(h^{4-m}) \quad (m = 0, 1, 2, 3) \quad (h \to 0).
For simplicity, we shall consider the special case when \(f(t, x, y) \) is independent of \(y \). Let \(J_1(\alpha) \) be the Jacobian matrix with respect to \(\alpha_i \) \((i=-5, -4, \ldots, n-1)\). In order to investigate the properties of \(J_1(\alpha) \), let us consider a linear system

\[
J_1(\alpha) \xi = \eta, \tag{3.1}
\]

where \(\xi = (\xi_{-5}, \xi_{-4}, \ldots, \xi_{n-1}) \) and \(\eta = (\eta_{-2}, \eta_{-1}, \ldots, \eta_{n+2}) \).

Corresponding to \(\xi \) and \(\eta \), we consider quintic and cubic splines \(y_1(t) \) and \(y_2(t) \) defined by

\[
y_1(t) = \sum \xi_i Q_i(t/h - i)
\]

and

\[
y_2(t) = \eta_i \quad (i = 0, 1, \ldots, n)
\]

\[
y_1'(t_0) = \eta_{-1}/h, \quad y_1'(t_o) = \eta_{n+1}/h.
\]

From (3.1), we have

\[
y_1''(t_0) = \left[f_{21}(t_0, \mathcal{A}(t_0)) + f_{22}(t_0, \mathcal{A}(t_0)) \mathcal{A}'(t_0) \right] y_1(t_0)
\]

\[
+ f_2(t_0, \mathcal{A}(t_0)) y_1'(t_0) + y_2'(t_0),
\]

\[
y_1''(t_i) = f_2(t_i, \mathcal{A}(t_i)) y_1(t_i) + y_2(t_i) \quad (i = 0, 1, \ldots, n),
\]

\[
y_1''(t_n) = \left[f_{21}(t_n, \mathcal{A}(t_n)) + f_{22}(t_n, \mathcal{A}(t_n)) \mathcal{A}'(t_n) \right] y_1(t_n)
\]

\[
+ f_2(t_n, \mathcal{A}(t_n)) y_1'(t_n) + y_2'(t_n),
\]

\[
A_0 y_1(0) - B_0 y_1'(0) = \eta_{-2},
\]

\[
A_1 y_1(1) + B_1 y_1'(1) = \eta_{n+2}.
\]

Since \(\mathcal{A}(t_i) = \mathcal{A}(t_i) \quad (i = 0, 1, \ldots, n) \), \(\mathcal{A}(t_i) = \mathcal{A}'(t_i) \quad (i = 0, n) \),

thus we have

\[
y_1(t) = P_1 \left[f_2(t, \mathcal{A}(t)) y_1(t) \right] + y_2(t) \quad (0 \leq t \leq 1). \tag{3.2}
\]

Equation (3.2) can be rewritten as follows:

\[
y_1 - f_2(t, \mathcal{A}(t)) y_1 = y_2 + R,
\]

where \(R = -[I - P_1](f_2 y_1) \).

Since \(\mathcal{A}(t) \) is isolated, there exists the Green function \(H(t, s) \) such that

\[
y_1 = \int_0^1 H(\cdot, s) \left[y_2(s) + R(s) \right] ds + \varphi,
\]

where \(\varphi(t) \) is the solution of the following equation:

\[
\varphi''(t) - f_2(t, \mathcal{A}(t)) \varphi(t) = 0 \quad (0 \leq t \leq 1)
\]

subject to the boundary conditions

\[
A_0 \varphi(0) - B_0 \varphi'(0) = \eta_{-2},
\]

\[
A_1 \varphi(1) + B_1 \varphi'(1) = \eta_{n+2}.
\]

A simple calculation shows that
Throughout this section, \(c_i \) (\(i=1,2,\ldots,15 \)) will denote the constant independent of \(h \).

From (3.3) we have the inequality of the form:

\[
\|y_1\|_\infty \leq c_6 (\|y_2\|_\infty + \|R\|_\infty) + c_9 \|\varphi\|_\infty .
\]

Application of Lemma 3 yields

\[
\|R\|_\infty \leq c_6 \tilde{h}(\|y_1\|_\infty + \|y_1\|_\infty).
\]

By virtue of the well-known inequality:

\[
\|y_1\|_\infty \leq c_5 \|y_1\|_\infty + c_6 \|y_1\|_\infty
\]

we have

\[
\|R\|_\infty \leq c_7 \tilde{h}(\|y_1\|_\infty + \|y_1\|_\infty)
\]

\[
\leq c_8 \tilde{h}(\|y_1\|_\infty + \|y_2\|_\infty + \|R\|_\infty).
\]

Hence we have the estimate of \(\|R\|_\infty \) of the form

\[
\|R\|_\infty \leq c_9 \tilde{h}(\|y_1\|_\infty + \|y_2\|_\infty)
\]

for some \(c_5 \) and \(c_6 \) such that

\[
\tilde{h} + \tilde{h} \leq 7\,\text{for sufficiently small} \ h.
\]

Thus we have

\[
\|y_1\|_\infty \leq c_{10}(\|y_2\|_\infty + \|y_1\|_\infty).
\]

Since \(\|y_1\|_\infty \geq c_{11}\|\xi\|_\infty \) and \(\|y_2\|_\infty \leq c_{12}\|\eta\|_\infty \) we finally have the inequality of the form

\[
\|\xi\|_\infty \leq c_{13}\|\eta\|_\infty
\]

for any \(h \leq h_0 \). (3.4)

provided \(h_0 \) is sufficiently small.

By (3.1), inequality (3.4) implies the non-singularity of \(J_1(\tilde{a}) \) and in addition the inequality

\[
\|J_1^{-1}(\tilde{a})\|_\infty \leq c_{14}(= c_{13})
\]

for any \(h \leq h_0 \).

Let \(\alpha = (\alpha_{\beta-5}, \alpha_{\beta-4}, \ldots, \alpha_{\beta-1}) \) and \(\beta = (\beta_{\beta-5}, \beta_{\beta-4}, \ldots, \beta_{\beta-1}) \) be arbitrary vectors such that

\[
|a_{\beta-5} + 6a_{\beta-4} + 6a_{\beta-3} + 26a_{\beta-2} + 26a_{\beta-1}|/120 - 2|t_i| \leq \delta,
\]

\[
|b_{\beta-5} + 6b_{\beta-4} + 6b_{\beta-3} + 26b_{\beta-2} + 26b_{\beta-1}|/120 - 2|t_i| \leq \delta,
\]

\((i = 0, 1, \ldots, n) \).

Hence by the means of the mean value theorem we have

\[
\|J_1(\alpha) - J_1(\beta)\|_\infty \leq c_{15}\|\alpha - \beta\|_\infty
\]

(3.5)

By Lemma 2, we have the equality of the form

\[
\|F(\tilde{a})\|_\infty = O(h^4).
\]

(3.6)

The expressions (3.4)-(3.6) show that all the conditions of Kantorovich's theorem on Newton's method are fulfilled ([5]). Therefore the determining equation \(F(\alpha = 0 \) has the solution \(\tilde{a} \) such that
Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

Thus we have
\[\| \bar{x} - x \|_\infty = O(h^4). \]

Thus we have
\[\| \bar{x}_1 - \bar{x}_2 \|_\infty \leq \| \bar{x}_1 - \bar{x}_2 \|_\infty + \| \bar{x}_2 - \bar{x} \|_\infty = O(h^4) \quad (h \to 0), \]
where
\[\bar{x}_1(t) = \sum \bar{\alpha}_i Q(t/h - i). \]
For the second derivative, we have
\[\bar{x}_1' - \bar{x}'' = P_1 f(t, \bar{x}_1) - f(t, \bar{x}) \]
\[= P_1 [f(t, \bar{x}_1) - f(t, \bar{x})] - (I - P_1) f(t, \bar{x}). \]
By the means of Lemma 9 we have
\[\| \bar{x}_1' - \bar{x}'' \|_\infty = O(h^4). \]
For the first derivative, it follows that
\[\| \bar{x}_1' - \bar{x}' \|_\infty \leq c_6 \| \bar{x}_1 - \bar{x} \|_\infty + c_6 \| \bar{x}_1 - \bar{x} \|_\infty = O(h^4) \quad (h \to 0). \]
Therefore we have
\[\| \bar{x}_1^{(m)} - \bar{x}^{(m)} \|_\infty = O(h^4) \quad (m = 0, 1, 2) \quad (h \to 0). \]

In the general case when \(f(t, x, y) \) contains the component \(y \), we can show the same result by reducing the equations (1.1)-(1.3) into the system of first order differential equations ([6,8]).

Thus we have the following

Theorem 1. In the sufficiently small neighbourhood of the isolated solution \(\bar{x}(t) \) of the problem (1.1)-(1.3), there exists a quintic spline function \(\bar{x}_1(t) \) of the form:
\[\bar{x}_1(t) = \sum \bar{\alpha}_i Q(t/h - i) \]

such that
\[\| \bar{x}_1^{(m)} - \bar{x}^{(m)} \|_\infty = O(h^4) \quad (m = 0, 1, 2) \quad (h \to 0). \]
In analogy with Theorem 1, we now have Theorem 2.

Theorem 2. Let the hypotheses of Theorem 1 hold. There exists a quintic spline function \(\bar{x}_2(t) \) of the form
\[\bar{x}_2(t) = \sum \bar{\beta}_i Q(t/h - i) \]
so that
(i) the coefficient \(\bar{\beta} = (\bar{\beta}_{-5}, \bar{\beta}_{-4}, \ldots, \bar{\beta}_{n-1}) \) satisfies the determining equation \(G(\bar{\beta}) = 0 \),
(ii) \(\| \bar{x}_2^{(m)} - \bar{x}^{(m)} \|_\infty = O(h^4) \quad (m = 0, 1, 2) \quad (h \to 0). \)

Proof. For the operator \(P_{2n} \), let \(G(\bar{\beta}) = (F_{-2}(\bar{\beta}), F_{-1}(\bar{\beta}), G_0(\bar{\beta}), \ldots, G_{n-1}(\bar{\beta}), F_{n-2}(\bar{\beta}) \) and \(J_2(\bar{\beta}) \) be the Jacobian matrix with respect to \(\bar{\beta}_i \) \((i = -5, -4, \ldots, n-1)\). For simplicity, we shall consider the special case when \(f(t, x, y) = f(t, x, 0) \). In a similar manner analogous to Theorem 1, let us consider a linear system:
\[J_2(\bar{\alpha}) \xi = \eta. \quad (3.7) \]
Corresponding to ξ and η, we consider quintic and cubic spline functions $z_1(t)$ and $z_2(t)$ defined by

$$z_1(t) = \sum \xi_i Q_6(t/h - i)$$

and

$$(z_i, L_i) = h\eta_i \quad (i = 0, 1, \ldots, n)$$

From (3.7), we have

$$(z_i, L_i) + (z_2, L_i) = \eta_i \varsigma(t_i) + z_1(t_i)(i = 0, 1, \ldots, n).$$

Applying Lemma 7 to the equations (3.8) and (3.9) we have

$$z_i = P_6(f_{\xi_2}) + z_2 \quad (0 \leq t \leq 1).$$

Thus in a similar way as in Theorem 1, we have the desired result.

4. Asymptotic Expansion of Error Function $E_k(t) (k=1, 2)$

By the means of the results of the previous sections, we shall prove in this section the asymptotic expansion of the error function $e_k(t) = \tilde{z}(t) - z_1(t)$ ($k=1, 2$).

Theorem 3. With the hypotheses of Theorem 1, then we have the asymptotic expansion:

$$e_k(t) = d_k h^k g(t) + o(h^k) \quad (h \to 0) \quad (k = 1, 2).$$

Proof. From Theorem 1, we have

$$e_k(t) = f_2(t, \xi, \xi') e_k + f_3(t, \xi, \xi') e_k + (I-P_k) f(t, \xi, \xi') + O(h^3),$$

$$A_6 e_k(0) - B_6 e_k(1) = 0,$$

$$A_7 e_k(1) + B_7 e_k(1) = 0. \quad (k = 1, 2) \quad (h \to 0).$$

Since $\xi(t)$ is isolated, equations (4.1)–(4.3) can be rewritten in the form:

$$e_k(t) = \int_0^1 H(t,s)(I-P_k) g(s) \, ds + O(h^2) \quad (k = 1, 2) \quad (h \to 0).$$

with $g(t) = \xi(t)$. For $k = 1$, we have

$$(I-P_1) g(t) = g(t) - g_1(t) + g_2(t) - (P_1 g)(t) \quad \text{for } t \in [t_i, t_{i+1}],$$

where

$$g_3(t) = g_1 L_1(t) + g_{i+1} L_{i+1}(t) + g_{i+1} T_i(t) + g_{i+1} T_{i+1}(t).$$

According to Lemma 8, we have

$$g_3(t) - (P_1 g)(t) = [g_i - (P_1 g)i] T_i(t) + [g_{i+1} - (P_1 g)i+1] T_{i+1}(t)$$

$$= (1/12) h^2 (g_i^{(ii)} T_i(t) + g_{i+1}^{(ii)} T_{i+1}(t)) + o(h^4),$$

from which follows, using the second mean value theorem on the definite integral,
Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

\[
\int H(t, s) [g(s) - (P_1 g)(s)] \, ds
\]

\[
= \left(\frac{h^2}{12} \right) \int g^{(4)}(s) \, ds + g^{(4)}(t) \int H(t, s) T_i(s) \, ds + o(h^5)
\]

\[
= - \left(\frac{1}{288} \right) h^5 [g^{(4)}(H(t, \xi_i) + g^{(4)}(H(t, \eta_i))] + o(h^5)
\]

for some \(\xi_i \) and \(\eta_i \in [t_i, t_{i+1}] \).

Thus we have

\[
\int_0^1 H(t, s) [g(s) - P_1 g(s)] \, ds = - \left(\frac{1}{144} \right) \int H(t, s) g^{(4)}(s) \, ds + o(h^4) \quad (4.4)
\]

Furthermore, a simple calculation shows:

\[
g(t) - g_0(t) = \left[((t-t_1)^2 - h^2(t-t_1)]/24 - (h(t-t_1)^2 - h^2(t-t_1))/12 \right] g^{(4)} + o(h^4)
\]

for any \(t \in [t_i, t_{i+1}] \).

Thus it follows that

\[
\int_0^1 H(t, s) (g(s) - g_0(s)) \, ds = \left(\frac{h^2}{120} \right) \int H(t, s) g^{(4)}(s) \, ds + o(h^4) \quad (4.5)
\]

From (4.4) and (4.5), we have the following asymptotic expansion:

\[
e(t) = \int_0^1 H(t, s) (I - P_2) g(s) \, ds = \left(\frac{h^4}{120} \right) \int H(t, s) g^{(4)}(s) \, ds + o(h^4). \quad (4.6)
\]

On the other hand, we have

\[
e_2(t) = \int_0^1 H(t, s) (I - P_2) g(s) \, ds = \sum I_i,
\]

where, for each \(i = 0, 1, \ldots, n-1 \),

\[
I_i = \int H(t, s) (I - P_2) g(s) \, ds
\]

\[
= \int \left[H(t, t_i) L_i(s) + H(t, t_{i+1}) L_{i+1}(s) \right] (I - P_2) g(s) \, ds + o(h^6)
\]

\[
= H(t, t_i) \int L_i(s) (I - P_2) g(s) \, ds + H(t, t_{i+1}) \int L_{i+1}(s) (I - P_2) g(s) \, ds + o(h^6).
\]

Thus we have

\[
e_2(t) = H(t, t_0) \int L_0(s) (I - P_2) g(s) \, ds
\]

\[
+ \sum_{i=0}^{n-1} H(t, t_i) \int L_i(s) (I - P_2) g(s) \, ds + H(t, t_n) \int L_n(s) (I - P_2) g(s) \, ds + o(h^6)
\]
\[H(t, t_0) = H(t, t_n) \]
\[= H(t, t_0) \left[\int L_0(s) g(s) \, ds - h(7g_0 + 3g_1)/20 - h^2(3g_0^2 - 2g_1)/60 \right] \]
\[+ \sum H(t, t_i) \left[\int L_i(s) g(s) \, ds - h(5g_{i+1} + 10g_i + g_{i-1})/12 \right] \]
\[+ H(t, t_n) \left[\int L_n(s) g(s) \, ds - h(7g_n + 3g_{n-1})/20 + h^2(3g_n^2 - 2g_{n-1})/60 \right]. \]

By Taylor expansion, we have
\[e_4(t) = - (h^{4}/240) \int_0^1 H(t, s) g^{(4)}(s) \, ds + o(h^4). \] (4.7)

Thus we have the desired result.

As an immediate consequence of Theorem 3, we have the Corollary. With the hypotheses of Theorem 1, then we have
\[(3\bar{x}_4(t) + \bar{x}_2(t))/4 = \bar{x}(t) + o(h^4) \quad (h \to 0). \]

Finally it should be remarked that for the type of the first derivatives absent the approximate problem \((k=2) \) (1.4)–(1.6) is identical with the well-known difference scheme as the Numerov formula. Thus the collocation method using quintic spline function gives the opposite approximation to the solution of the problem (1.1)–(1.3) as compared with the Numerov difference method.

5. Numerical Examples

In this section, we discuss numerical results obtained from some concrete examples. These numerical results conform the theoretical accuracies established in previous sections. In the case of examples 1 and 2, the approximate problems \((k=2) \) (1.4)–(1.6) are identical with the Numerov difference schemes. We now consider the numerical solutions of particular examples (1.1)–(1.3).

Example 1 ([1]). As our first example, we consider the linear problem:
\[x'' = 100x \quad (0 \leq t \leq 1) \]
\[x(0) = x(1) = 1. \]

The unique solution is \(x(t) = \cosh (10t-5)/\cosh 5. \)

<table>
<thead>
<tr>
<th>Table 1.1 (e_1(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

1.5 \((-5) = 1.5 \times 10^{-4}. \)
Two-Sided Quintic Spline Approximations for Two-Point Boundary Value Problems

Table 1.2 \((e_2(t)) \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(h=1/20)</th>
<th>(h=1/40)</th>
<th>(h=1/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>4.7568 ((-5))</td>
<td>2.9940 ((-6))</td>
<td>1.8747 ((-7))</td>
</tr>
<tr>
<td>0.2</td>
<td>3.5945 ((-5))</td>
<td>2.2185 ((-6))</td>
<td>1.3891 ((-7))</td>
</tr>
<tr>
<td>0.3</td>
<td>2.0081 ((-5))</td>
<td>1.2641 ((-6))</td>
<td>7.9151 ((-8))</td>
</tr>
<tr>
<td>0.4</td>
<td>1.1365 ((-5))</td>
<td>7.1537 ((-7))</td>
<td>4.4793 ((-8))</td>
</tr>
<tr>
<td>0.5</td>
<td>8.6570 ((-6))</td>
<td>5.4661 ((-7))</td>
<td>3.4245 ((-8))</td>
</tr>
</tbody>
</table>

For this simple problem we have
\[
(3\bar{x}_1(0.5)+\bar{x}_2(0.5))/4 = \bar{x}(0.5) = 2.25 \text{ for } h = 1/80.
\]

Example 2. Let us consider the nonlinear differential equation:
\[
x'' = 1.5x^2 \quad (0 \leq t \leq 1)
\]
\[
x(0) = 4, \quad x(1) = 1.
\]
This problem has two isolated solutions such that
\[
\bar{x}(t) = 4/(t+1)^2 \quad \text{and} \quad \bar{x}(0.5) \approx -10.53.
\]

Table 2.1 \((e_1(t)) \) for \(\bar{x}(0.5)=16/9 \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(h=1/20)</th>
<th>(h=1/40)</th>
<th>(h=1/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-1.0389 ((-6))</td>
<td>-6.5916 ((-8))</td>
<td>-4.1385 ((-9))</td>
</tr>
<tr>
<td>0.2</td>
<td>-1.3211 ((-6))</td>
<td>-8.4604 ((-8))</td>
<td>-5.3121 ((-9))</td>
</tr>
<tr>
<td>0.3</td>
<td>-1.3507 ((-6))</td>
<td>-8.3576 ((-8))</td>
<td>-5.2656 ((-9))</td>
</tr>
<tr>
<td>0.4</td>
<td>-1.1586 ((-6))</td>
<td>-7.5272 ((-8))</td>
<td>-4.7484 ((-9))</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.0034 ((-6))</td>
<td>-6.3654 ((-8))</td>
<td>-3.9970 ((-9))</td>
</tr>
<tr>
<td>0.6</td>
<td>-8.0610 ((-7))</td>
<td>-5.1147 ((-8))</td>
<td>-3.2098 ((-9))</td>
</tr>
<tr>
<td>0.7</td>
<td>-6.0576 ((-7))</td>
<td>-3.9427 ((-8))</td>
<td>-2.4113 ((-9))</td>
</tr>
<tr>
<td>0.8</td>
<td>-4.0552 ((-7))</td>
<td>-2.5719 ((-8))</td>
<td>-1.6138 ((-9))</td>
</tr>
<tr>
<td>0.9</td>
<td>-2.0447 ((-7))</td>
<td>-1.2567 ((-8))</td>
<td>-0.8161 ((-10))</td>
</tr>
</tbody>
</table>

Table 2.2 \((e_2(t)) \) for \(\bar{x}(0.5)=16/9 \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(h=1/20)</th>
<th>(h=1/40)</th>
<th>(h=1/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>3.1666 ((-6))</td>
<td>1.9871 ((-7))</td>
<td>1.2439 ((-8))</td>
</tr>
<tr>
<td>0.2</td>
<td>4.0657 ((-6))</td>
<td>2.5507 ((-7))</td>
<td>1.5957 ((-8))</td>
</tr>
<tr>
<td>0.3</td>
<td>4.0309 ((-6))</td>
<td>2.5234 ((-7))</td>
<td>1.5017 ((-8))</td>
</tr>
<tr>
<td>0.4</td>
<td>3.6174 ((-6))</td>
<td>2.2687 ((-7))</td>
<td>1.4192 ((-8))</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0605 ((-6))</td>
<td>1.9192 ((-7))</td>
<td>1.2005 ((-8))</td>
</tr>
<tr>
<td>0.6</td>
<td>2.4580 ((-6))</td>
<td>1.5413 ((-7))</td>
<td>9.6405 ((-9))</td>
</tr>
<tr>
<td>0.7</td>
<td>1.8466 ((-6))</td>
<td>1.1578 ((-7))</td>
<td>7.2429 ((-9))</td>
</tr>
<tr>
<td>0.8</td>
<td>1.2360 ((-6))</td>
<td>7.7489 ((-8))</td>
<td>4.8469 ((-9))</td>
</tr>
<tr>
<td>0.9</td>
<td>6.2313 ((-7))</td>
<td>3.9066 ((-8))</td>
<td>2.4455 ((-9))</td>
</tr>
</tbody>
</table>

As in the previous example, we have
\[
(3\bar{x}_1(0.5)+\bar{x}_2(0.5))/4 - \bar{x}(0.5) = -3.5 \text{ for } h = 1/80.
\]
Example 3 ([2]). As our final example, we consider the following nonlinear differential equation:

\[x'' = x^3 - (1 + \cos t)^3 \cos t, \]

\[x'(0) = 0, \quad x'(1) = -x^2(1) \sin 1/(1 + \cos 1)^3. \]

The unique solution is \(\hat{x}(t) = 1 + \cos t. \)

Table 2.3 \((\hat{x}_1(t)) \) for \(\hat{x}(0.5) = -0.53) \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(h=1/20)</th>
<th>(h=1/40)</th>
<th>(h=1/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.47888 2153</td>
<td>0.47890 7800</td>
<td>0.47890 9356</td>
</tr>
<tr>
<td>0.2</td>
<td>-3.00817 147</td>
<td>-3.00811 801</td>
<td>-3.00811 477</td>
</tr>
<tr>
<td>0.3</td>
<td>-6.33106 639</td>
<td>-6.33100 275</td>
<td>-6.33099 890</td>
</tr>
<tr>
<td>0.4</td>
<td>-9.03861 971</td>
<td>-9.03877 472</td>
<td>-9.03857 195</td>
</tr>
<tr>
<td>0.5</td>
<td>-10.53624 51</td>
<td>-10.53622 75</td>
<td>-10.53622 63</td>
</tr>
<tr>
<td>0.6</td>
<td>-10.41020 88</td>
<td>-10.41019 40</td>
<td>-10.41019 30</td>
</tr>
<tr>
<td>0.7</td>
<td>-8.69761 989</td>
<td>-8.69738 515</td>
<td>-8.69738 301</td>
</tr>
<tr>
<td>0.8</td>
<td>-5.86094 255</td>
<td>-5.86089 832</td>
<td>-5.86089 552</td>
</tr>
<tr>
<td>0.9</td>
<td>-2.49164 475</td>
<td>-2.49161 604</td>
<td>-2.49161 439</td>
</tr>
</tbody>
</table>

Table 2.4 \((\hat{x}_2(t)) \) for \(\hat{x}(0.5) = -0.53) \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(h=1/20)</th>
<th>(h=1/40)</th>
<th>(h=1/80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.47898 8923</td>
<td>0.47891 4396</td>
<td>0.47890 9796</td>
</tr>
<tr>
<td>0.2</td>
<td>-3.00794 894</td>
<td>-3.00780 426</td>
<td>-3.00781 391</td>
</tr>
<tr>
<td>0.3</td>
<td>-6.33080 168</td>
<td>-6.33098 639</td>
<td>-6.33099 788</td>
</tr>
<tr>
<td>0.4</td>
<td>-9.03843 071</td>
<td>-9.03856 294</td>
<td>-9.03857 122</td>
</tr>
<tr>
<td>0.5</td>
<td>-10.53616 63</td>
<td>-10.53622 24</td>
<td>-10.53622 60</td>
</tr>
<tr>
<td>0.6</td>
<td>-10.41014 19</td>
<td>-10.41018 97</td>
<td>-10.41019 27</td>
</tr>
<tr>
<td>0.7</td>
<td>-8.69747 345</td>
<td>-8.69737 604</td>
<td>-8.69738 344</td>
</tr>
<tr>
<td>0.8</td>
<td>-5.86075 761</td>
<td>-5.86068 678</td>
<td>-5.86069 481</td>
</tr>
<tr>
<td>0.9</td>
<td>-2.49132 480</td>
<td>-2.49160 861</td>
<td>-2.49161 382</td>
</tr>
</tbody>
</table>

Table 3.1 \((\epsilon_1(t)) \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(h=1/8)</th>
<th>(h=1/16)</th>
<th>(h=1/32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.7463(8)</td>
<td>1.7128(9)</td>
<td>1.0700(10)</td>
</tr>
<tr>
<td>1/8</td>
<td>2.7378(8)</td>
<td>1.7076(9)</td>
<td>1.0067(10)</td>
</tr>
<tr>
<td>1/4</td>
<td>2.7110(8)</td>
<td>1.6912(9)</td>
<td>1.0555(10)</td>
</tr>
<tr>
<td>1/8</td>
<td>2.6615(8)</td>
<td>1.6607(9)</td>
<td>1.0375(10)</td>
</tr>
<tr>
<td>1/2</td>
<td>2.5832(8)</td>
<td>1.6111(9)</td>
<td>1.0071(10)</td>
</tr>
<tr>
<td>5/8</td>
<td>2.4626(8)</td>
<td>1.5384(9)</td>
<td>9.6138(11)</td>
</tr>
<tr>
<td>3/4</td>
<td>2.3290(8)</td>
<td>1.4326(9)</td>
<td>8.9551(11)</td>
</tr>
<tr>
<td>7/8</td>
<td>2.0504(8)</td>
<td>1.2857(9)</td>
<td>8.0405(11)</td>
</tr>
<tr>
<td>1</td>
<td>1.7350(8)</td>
<td>1.0890(9)</td>
<td>6.8148(11)</td>
</tr>
</tbody>
</table>
For this example, we have

\[
(3\bar{x}_1(0.5) + \bar{x}_2(0.5))/4 - \bar{x}(0.5) = -1.7(-12) \quad \text{for } h = 1/32.
\]

References

