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Abstract

Large software systems frequently manifest as complex, concurrent, reactive systems
and their correctness is often crucial for the safety of the application. Hence, modern
techniques of software engineering employ incremental, component-based approaches to
systems design. These are supported by interface theories which may serve as specification
languages and as semantic foundations for software product lines, web-services, the
internet of things, software contracts and conformance testing. Interface theories enable
a systems designer to express communication requirements of components on their
environments and to reason about the mutual compatibility of these requirements in order
to guarantee the communication safety of the system. Further, interface theories enrich
traditional operational specification theories by declarative aspects such as conjunction
and disjunction, which allow one to specify systems heterogeneously.
However, substantial practical aspects of software verification are not supported by

current interface theories, e.g., reusing components, adapting components to changed
operational environments, reasoning about the compatibility of more than two components,
modelling software product lines or tracking erroneous behaviour in safety-critical systems.
The goal of this thesis is to investigate the theoretical foundations for making interface
theories more practical by solving the above issues. Although partial solutions to some
of these issues have been presented in the literature, none of them succeeds without
sacrificing other desired features. The particular challenge of this thesis is to solve these
problems simultaneously within a single interface theory. To this end, the arguably
most general interface theory Modal Interface Automata (MIA) is extended, yielding the
interface theory Error-preserving Modal Interface Automata (EMIA).
The above problems are addressed as follows. Quotient operators are adjoint to

composition and, therefore, support component reuse. Such a quotient operator is
introduced to both MIA and EMIA. It is the first one that considers nondeterministic
dividends and compatibility. Alphabet extension operators for MIA and EMIA allow for
the change of operational environment by permitting one to adapt system components to
new interactions without breaking previously satisfied requirements. Erroneous behaviour
is identified as a common source of problems with respect to the compatibility of more
than two components, the modelling of software product lines and erroneous behaviour in
safety-critical systems. EMIA improves on previous interface theories by providing a more
precise semantics with respect to erroneous behaviour based on error-preservation. The
relation between error-preservation and the usual error-abstraction employed in previous
interface theories is investigated, establishing a Galois insertion from MIA into EMIA that
is relevant at the levels of specifications, composition operations and proofs. The practical
utility of interface theories is demonstrated by providing a software implementation of
MIA and EMIA that is applied to two case studies. Further, an outlook is given on
the relation between type checking and refinement checking. As a proof of concept, the
simple interface theory Interface Automata is extended to a behavioural type theory
where type checking is a syntactic approximation of refinement checking.
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Zusammenfassung

Große Softwaresysteme bilden häufig komplexe, nebenläufige, reaktive Systeme, deren
Korrektheit für die Sicherheit der Anwendung entscheidend ist. Daher setzen moderne
Verfahren der Softwaretechnik inkrementelle, komponentenbasierte Ansätze zum Software-
Entwurf ein. Diese werden von Interface-Theorien unterstützt, die als Spezifikationsspra-
chen und semantische Grundlagen für Softwareproduktlinien, Web-Services, das Internet
der Dinge, Softwarekontrakte und Konformanztests dienen können. Interface-Theorien
ermöglichen es, Kommunikationsanforderungen von Komponenten an ihre Umgebung aus-
zudrücken, um die gegenseitige Kompatibilität dieser Anforderungen zu überprüfen und
die Kommunikationssicherheit des Systems zu garantieren. Zudem erweitern Interface-
Theorien traditionelle operationale Spezifikationstheorien um deklarative Aspekte wie
beispielsweise Konjunktion und Disjunktion, die heterogenes Spezifizieren ermöglichen.

Allerdings werden wesentliche praktische Aspekte der Softwareverifikation von Interface-
Theorien nicht unterstützt, z.B. das Wiederverwenden von Komponenten, das Anpassen
von Komponenten an geänderte operationale Umgebungen, die Kompatibilitätsprüfung
von mehr als zwei Komponenten, das Modellieren von Softwareproduktlinien oder das
Zurückverfolgen von Fehlverhalten sicherheitskritischer Systeme. Diese Arbeit untersucht
die theoretischen Grundlagen von Interface-Theorien mit dem Ziel, die oben genannten
praktischen Probleme zu lösen. Obwohl es in der Literatur Teillösungen zu manchen dieser
Probleme gibt, erreicht keine davon ihr Ziel, ohne andere wünschenswerte Eigenschaften
aufzugeben. Die besondere Herausforderung dieser Arbeit besteht darin, diese Probleme
innerhalb einer einzigen Interface-Theorie zugleich zu lösen. Zu diesem Zweck wurde die
wohl allgemeinste Interface-Theorie Modal Interface-Automata (MIA) zu der Interface-
Theorie Error-preserving Modal Interface Automata (EMIA) weiterentwickelt.

Die obigen Probleme werden wie folgt gelöst. Ein zur Komposition adjungierter Quo-
tientenoperator, der das Wiederverwenden von Komponenten ermöglicht, wurde für
MIA und EMIA eingeführt. Es handelt sich dabei um den ersten Quotientenoperator,
der nichtdeterministische Dividenden und Kompatibilität betrachtet. Alphabeterweite-
rungsoperatoren erlauben eine Änderung der operationalen Umgebung, indem sie es
ermöglichen, Komponenten an neue Interaktionen anzupassen, ohne zuvor erfüllte Anfor-
derungen zu missachten. Fehlerhaftes Verhalten wird als eine gemeinsame Ursache von
Problemen bezüglich der Kompatibilität von mehr als zwei Komponenten, der Model-
lierung von Softwareproduktlinien und des Fehlverhaltens sicherheitskritischer Systeme
erkannt. EMIA verbessert bisherige Interface-Theorien durch eine präzisere Fehlerseman-
tik, die auf dem Erhalten von Fehlern beruht. Als Beziehung zwischen diesem Fehlererhalt
und der in bisherigen Interface-Theorien üblichen Fehlerabstraktion ergibt sich eine
Galois-Einbettung von MIA in EMIA, die auf den Ebenen der Spezifikationen, Operato-
ren und Beweise relevant ist. Die praktische Anwendbarkeit von Interface-Theorien wird
mittels einer Implementierung von MIA und EMIA als Software und deren Anwendung
auf zwei Fallstudien demonstriert. Zudem wird das Verhältnis zwischen Verfeinerung und
Typprüfung diskutiert. In einer Machbarkeitsstudie wurde die einfache Interface-Theorie
Interface Automata zu einer Verhaltenstyptheorie erweitert, bei der die Typprüfung eine
syntaktische Approximation der Verfeinerung ist.
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1. Introduction

This chapter motivates the subject of this thesis, namely, the investigation of interface
theories for designing complex reactive systems and presents the context of the research
project within which this thesis has been developed. The thesis is summarised, and a list
of contributions is given.

1.1. Motivation and Context

Large software systems have to manage resources, coordinate a multitude of hardware
devices, and organise the interaction between software components. Interconnecting such
systems of interacting components (whether application-level or OS-level) to even larger
systems of systems is nowadays standard in many areas, such as cloud computing, auto-
motive, avionics, or industrial automation. As a consequence, today’s software frequently
manifests as complex, concurrent, reactive systems, and the correctness of the software is
often crucial for the safety of the entire application. In order to tackle the complexity of
developing such large systems, a common practice of software engineering is to decom-
pose a system into components and to distribute the development work component-wise
among different teams or vendors. Such an incremental, component-based design approach
requires that the components of a system may be implemented independently and the
system may be composed from these components successively [AH05; Rac+11].

However, precise reasoning about the complex interactions and the mutual requirements
of components to ensure the interoperability of the independent implementations is
difficult and requires support of formal methods. Such support is provided by modern,
refinement-based approaches to software design. In particular, interface theories [AH01a;
AH05; Bau+10; Buj+16; BV14; Che+12; FL16b; LNW07; LVF15; Rac+11] have been
developed as specification theories that permit one to specify requirements of components
on their environment and to check the mutual compatibility of these requirements at
the level of the component interfaces. Following [AH05; Rac+11], we discuss properties
of interface theories that are desired in practice, and minimum requirements that are
necessary to support these properties:

Independent implementability. A compositional refinement preorder permits a systems
designer to start with coarse specifications of components and to refine them stepwise
by taking decisions on underspecified properties until an implementation is reached.
Compositionality guarantees the substitutivity of these stepwise refinements, i.e., a speci-
fication of a component may be substituted by any of its refinements or implementations.
Hence, components may be implemented independently, and the communication safety
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of the component specifications guarantees that the component implementations are also
communication safe.

Communication safety. In order to interoperate correctly, components of a system have
to mutually meet their communication requirements. These mutual requirements must
be preserved by the refinement preorder in order to preserve the communication safety of
the system when implementing independently. Communication safety is often reduced
to a binary compatibility concept, e.g., [AH05]. However, the communication safety
of multi-component assemblies, i.e., compositions with more than two components, is
independent of the pairwise compatibility of their components even if the composition
operation is associative [HK15]. Hence, a more general approach to communication safety
is required.

Incremental design. An interface theory supports incremental design if one may com-
pose a system from components incrementally by starting with a subset of the components
to which other components may be added successively. A minimum requirement for
supporting incremental design is a binary composition operation, i.e., a parallel oper-
ator, that is associative and commutative. In addition, the intermediate results of an
incremental composition are open systems in the sense that they may have unbound
communication channels [Mil80]. Such unbound channels may change the relevance of
potential communication errors depending on whether these channels are used in the
larger scope of the system, e.g., a communication error may become unreachable when a
channel is not used. Hence, interface theories should support an open systems view.

Component reuse. A quotient operator that is adjoint to composition complements
incremental design by permitting one to reuse components. Starting from a global system
specification and some existing components, the quotient operator synthesises a coarsest
specification of the remaining parts of a partially implemented system [And95].

Perspective-based specification. Specifying a system component from separate per-
spectives such that the component satisfies each of these perspective specifications is a
common practice in software engineering. For example, each requirement for a component
might describe a perspective. The component’s overall specification is obtained as the
conjunction of the perspective specifications. It should be the coarsest specification
refining all perspective specifications, i.e., the greatest lower bound with respect to
the refinement preorder [LV11]. Such an approach is particularly effective, if a single
perspective is only required to cope with the interactions relevant for this perspective. In
order to merge the action alphabets of different perspectives, interface theories should
provide alphabet extension operators.

Nondeterminism and abstraction from internal behaviour. Different behaviours of a
system may become indistinguishable when abstracting from implementation/specification
details. Therefore, even deterministic systems may appear nondeterministic at a certain
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level of abstraction, in particular, in the context of concurrency. When developing a
concurrent system, the internal communication between components of a subsystem may
be unobservable from outside the subsystem. Hence, a specification theory should provide
operators for hiding such internal interactions, and the refinement preorder should allow
one to abstract from such hidden actions [Mil80].

Variability of implementations. When distributing the development process among
different teams or vendors, one wishes to provide a variability of implementations in order
to increase the reusability of a component in different contexts. Implementation variants
may be organised into software product lines that may be expressed by more abstract
specifications, e.g., by employing underspecification or disjunction. When composing
concrete products of different software product lines, one is usually not interested in the
overall compatibility of the whole product lines but in finding compatible subfamilies of
concrete software products [LNW07].

Behavioural types. When transitioning from design to implementation, it is necessary
to consider data. Communication safety then also must include type safety because
components may exchange typed data during interaction, i.e., one wishes to prevent
that one component tries reading a string when a different one is sending an integer.
To this end, an interface theory must support to refine behavioural specifications into
behavioural types. In particular, type checking may be a computationally more efficient
approximation of refinement checking.

Current languages for specifying complex, concurrent systems [AH01a; AH05; BHW11;
Bau+10; Buj+16; BV14; Che+12; CE81; HIJ15; LNW07; LV13a; LVF15; QS82; Rac08;
Rac+11] support some of the above properties but are in conflict with other ones. They
have several gaps in the mathematical robustness of their semantics, in particular, with
respect to concurrency and communication safety, impeding the development of tools that
make these theories practical. Examples of such gaps and of theories that are affected by
these gaps are (see also Section 2.4):

1. A non-compositional refinement preorder makes interface theories unsuitable for
independent implementability, e.g., [AH01a; LNW07];

2. A non-associative composition operator undermines the suitability of interface
theories for incremental design, e.g., [Rac+11];

3. Lack of support for nondeterminism and internal behaviour limits the practical
applicability of interface theories, e.g., [Rac08; Rac+11] with no support and
[AH01a; AH05; LNW07; LV13a] with limited support;

4. Lack of support for checking compatibility of multiple components restricts the
guarantees an interface theory can provide with respect to communication safety,
e.g., [AH01a; AH05; Bau+10; Buj+16; BV14; Che+12; LNW07; LV13a; LVF15;
Rac08; Rac+11];
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5. Lack of support of an open systems view restricts the suitability of an interface
theory for incremental design, e.g., [Bau+10] and the pessimistic variant of [LVF15];

6. Limited support for reasoning about variability of implementations makes several
theories unsuitable for modelling software product lines, e.g., [AH01a; AH05;
Bau+10; Buj+16; BV14; Che+12; LNW07; LV13a; LVF15; Rac08; Rac+11];

7. The possibility to introduce unwanted behaviour when refining a system undermines
communication safety and is particularly undesired when considering safety-critical
systems, e.g., [AH01a; AH05; Buj+16; BV14; Che+12; LNW07; LV13a; LVF15;
Rac+11];

8. Lack of support for reasoning about data restricts all current interface theories to
design and makes them unsuitable for implementation; first steps towards relaxing
this limitation are presented in [BHW11; HIJ15];

9. Logic and operational semantics exist on separate levels and cannot be freely
intermixed in a truly heterogeneous specification, e.g., when checking an operational
model against temporal logic formulas in modern verification approaches [CE81;
QS82].

The collaborative research project Foundations of Heterogeneous Specifications Using
State Machines and Temporal Logic supported by the German Research Foundation (DFG;
grants No. LU1748/3-1&2 and VO615/12-1&2) investigates the theoretical foundations
and the practical utility of languages combining operational and declarative formalisms
for specifying concurrent, reactive systems. The aim of the project is to address the
abovementioned gaps in such heterogeneous languages. An additional goal of this project,
which is beyond the scope of this thesis, is to extend interface theories to support reasoning
about further properties such as liveness and fairness.

1.2. Summary and Structure of the Thesis

This thesis presents the interface theory Error-preserving Modal Interface Automata
(EMIA) that improves on previous interface theories by closing several of the gaps
mentioned in Section 1.1. In particular, it provides a more detailed semantics with respect
to unwanted behaviour and investigates the relation between this refined semantics and
the error-abstracting semantics of previous interface theories.

Chapter 2 of this thesis defines basic concepts and a formal theory of specification
(Section 2.1). A summary of existing specification formalisms is presented, and the term
‘specification’ as used in this thesis is classified into this summary (Section 2.2.1). Existing
formalisms for concurrent systems are reviewed (Sections 2.2.2–2.2.7). Special attention
is paid to interface theories based on Interface Automata (IA) [AH01a] (Section 2.3), and
a comparative study of existing specification theories with respect to the features they
support is conducted (Section 2.4).
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Chapter 3 presents two variants of the interface theory Modal Interface Automata,
namely Error-preserving Modal Interface Automata (EMIA) and Error-abstracting Modal
Interface Automata (MIA). The theory EMIA (Section 3.1) is the main contribution
of this thesis. It supports a compositional refinement preorder, the operators parallel
composition, hiding, restriction, quotient, conjunction, disjunction and several alphabet
extension operators. Due to error-preservation, EMIA has a more detailed semantics with
respect to unwanted behaviour, which fixes several shortcomings of previous interface
theories. In addition, the logical operators implication and negation are investigated, and
it is shown that specification theories based on Modal Transition Systems (MTS) [LT88;
LX90] are not closed under these operators. The theory MIA (Section 3.2) has been
co-developed with Bujtor, Lüttgen and Vogler [Buj+16]. Historically, it has been devised
first. However, in this thesis MIA is presented as an abstraction of EMIA by establishing
a Galois insertion between the two theories. In particular, this sheds light on the role of
error-abstraction with respect to the weaknesses of error-abstracting theories (Section 3.3).
Alternative approaches, possible extensions and the computational complexity of the
most important EMIA operators are discussed (Section 3.4).

Chapter 4 presents the incremental, component-based design methodology supported
by interface theories. This methodology is then applied to the design of a client-server
application within MIA (Section 4.2) and to the design of a railway control system
within EMIA (Section 4.3). An overview of software tools implementing specification
theories is given, including two tools that have been developed in the context of this
thesis (Section 4.4).

Chapter 5 gives an outlook of how interface theories based on IA may be extended
to behavioural type theories that support sending and receiving typed messages. A be-
havioural type system similar to session types [Hon93] is presented, and the standard
theorems of subject reduction, congruence and type safety are proved.

Chapter 6 summarises the thesis and discusses open issues. The appendix introduces
mathematical notation (Appendix A), lists the source code of our tool implementation
Gemia (Appendix B) and the source code of the two case studies (Appendix C).

1.3. Contributions

Being developed within the research project Foundations of Heterogeneous Specifications
Using State Machines and Temporal Logic mentioned in Section 1.1, this thesis closes
all of Gaps 1–7 and makes a first step towards closing Gap 8. Gap 9 is partially closed
by supporting some of the logical operators and showing that some others cannot be
supported in interface theories. Several previous interface theories attempted to close
some of these gaps, however, the complex interdependencies of the above properties made
these attempts sacrifice other desired properties. The particular challenge that has been
solved in this thesis is to address all of these properties simultaneously within a single
interface theory.

Parts of this dissertation have been published in research papers. These publications
and the author’s contributions to these are as follows:
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• G. Lüttgen, W. Vogler, S. Fendrich. “Richer Interface Automata with Optimistic
and Pessimistic Compatibility” In: Acta Informatica 52.4–5 (2015), pp. 305–336
[LVF15]: The author contributed an investigation of alphabet extension for op-
timistic interface theories, which shows that IA-based refinement is insufficient
for supporting perspective-based specification because it yields a conjunction that
is unintuitive in practice. As a consequence of this result, modal refinement was
adopted in later versions of MIA.

• F. Bujtor, S. Fendrich, G. Lüttgen, W. Vogler. “Nondeterministic Modal Inter-
faces”. In: Theory and Practice of Computer Science (SOFSEM). Vol. 8939. LNCS.
Springer, 2015, pp. 152–163 [Buj+15], as well as the accompanying technical re-
port [Buj+14]: The author contributed a definition of a quotient operator for MIA,
an example of quotienting and a proof that the quotient is adjoint to parallel
composition. It is the first quotient for interface theories that supports nondeter-
ministic dividends and compatibility. The author also contributed the—to the best
of our knowledge—first discussion of alternative alphabet choices for the quotient.
Further, the author adapted conjunction including the relevant proofs to the new
refinement preorder introduced as a consequence of [LVF15] (see the first bullet
point above).

• F. Bujtor, S. Fendrich, G. Lüttgen, W.Vogler. “Nondeterministic Modal Interfaces”.
In: Theoretical Computer Science 642 (2016), pp. 24–53. [Buj+16]: In addition
to the contributions already published in the conference paper [Buj+15] and the
technical report [Buj+15], the author discussed in more detail the quotient operator
and the difficulties when considering the quotient with regards to nondeterministic
divisors and alphabet-extension; these difficulties lead to a non-unique quotient.
The author also contributed a more detailed explanation of the conjunction example
of [Buj+15] and adapted disjunction to the new refinement preorder introduced as
a consequence of [LVF15] (see the first bullet point above). Further, the author
conducted a small case study concerning a client-server application (Section 4.2
below) that has been checked with the software tool Gemia presented in Section 4.4.1
below).

• S. Fendrich, G. Lüttgen. “A Generalised Theory of Interface Automata, Compo-
nent Compatibility and Error”. In: Integrated Formal Methods (iFM). Vol. 9681.
LNCS. Springer, 2016, pp. 160–175 [FL16b], as well as the accompanying technical
report [FL16a]: The author contributed all of the paper’s technical content and
discussed it extensively with the co-author. This includes the error-preserving inter-
face theory EMIA (Section 3.1 below), which solves Gaps 1–7 listed in Section 1.1
above, and the investigation of error-abstracting and error-preserving interface
theories which are related by a Galois insertion. Error-abstraction is identified as a
major source of several issues listed in Section 1.1.

The following list comprehensively summarises the author’s detailed contributions of this
dissertation. A reference to the corresponding section in this thesis is provided and, in
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case the contribution is already published, the according scientific publication is cited.

• An abstract theory of specification (Section 2.1): The idea to consider a specification
as a description of a set or class of implementations is well-known and often used
implicitly, e.g., [Mil71; LX90; FS08; BHW11; Ben+13]. In this thesis we exercise
this idea explicitly, yielding a general, algebraic formalisation of the concepts of
specifications, composition, refinement, compositionality and adjoint operations.
This formalisation permits a precise definition of heterogeneous specification as a
combination of domain-specific and logic-based specification. We also relate this
formalisation to the concept of independent implementability as employed, e.g.,
in software engineering. A benefit of this abstract formalisation is that we get
a better understanding of the role of logical operations such as conjunction and
disjunction and the idea of heterogeneous specifications. Further, we can already
prove several properties of adjoint operations at this abstract level such that we
get these properties for free when instantiating with concrete operations, e.g., the
quotient.

• A comparative study of specification theories (Section 2.4): A comparative study
of 27 specification theories for concurrent systems with respect to 21 features is
conducted. To our knowledge this is the largest study of that kind.

• A general definition of the concept of alphabet extension (Section 3.1.9): Alphabet
extension is used in interface theories since the first paper by de Alfaro and
Henzinger on Interface Automata (IA) [AH01a]. Alphabet extension operators
are either provided explicitly, e.g., [Buj+16; Rac+11], or implicitly included in
the refinement preorder, e.g., [AH01a; LVF15]. However, only concrete alphabet
extension operators are considered in the literature. This thesis provides a general
definition of the concept of an alphabet extension operator whereof the above
operators are concrete instances. Such a formalisation permits one to separate
the concept of extension from desired properties, e.g., monotonicity, and eases the
study of nonuniform extension operators where different variants of extension are
intermixed.

• An investigation of alphabet extension for interface theories (Sections 3.1.9 and 3.4,
published in [LVF15]): Different concrete variants of alphabet extension operators
that add transition loops to states of an interface are investigated, showing that
IA-based refinement is insufficient for perspective-based specification. This insight
provides the reason for reconsidering the MIA-theory of [LVF15] under a different
refinement in [Buj+16] (the reconsideration is joint work with the co-authors of
the latter article).

• A quotient operator for MIA (Sections 3.1.7 and 3.2.2, published in [Buj+15;
Buj+16]): As a part of the reconsideration mentioned in the previous contribution,
the author contributed a quotient operator that supports incremental design and
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component reuse. In particular, this quotient operator is the first one support-
ing nondeterministic dividends and compatibility. The quotient is shown to be
monotonic in the left argument (Lemma 2.1(2)). The difficulties of generalising
the quotient to nondeterministic divisors are discussed. Further, it is shown that
relaxing the alphabet conditions on the operands renders the quotient nonunique
for all interface theories based on IA, a question that has not been considered
before.

• The error-preserving interface theory EMIA (Section 3.1, published in [FL16b]): The
interface theory EMIA is developed and solves all of Gaps 1–7 listed in Section 1.1
due to a refined semantics based on error-preservation. As a consequence, EMIA
is the most general and most practical interface theory to date. In addition
to the publication [FL16b], universal states, hiding and restriction are adapted
from [Buj+16] and a quotient operator for EMIA is contributed including additional
properties of quotienting for MIA and EMIA (see Lemma 2.1), when compared
with [Buj+16], where only item (2) of Lemma 2.1 is proved.

• An investigation of error-preserving and error-abstracting interface theories (Sec-
tions 3.2 and 3.3, published in [FL16b]): The error-abstraction employed in previous
interface theories is shown to be the source of several issues listed in Section 1.1.
The mathematical relation between error-abstraction and EMIA’s error-preservation
is shown to relate MIA and EMIA by a Galois insertion. This results in a better
understanding of the role of error-abstraction in interface theories, in particular, be-
cause the Galois insertion not only relates interface specifications but also manifests
itself at the levels of operations on interfaces and proofs of properties.

• An investigation of implication and negation for interface theories (Section 3.1.8):
As a result of the abstract specification theory mentioned above, it is natural to
investigate implication as an adjoint of conjunction, and negation as a special case
of implication. We show, that any specification theory based on (finite state) MTS
is not closed under negation and, therefore, implication and negation cannot be
provided in practice. An underapproximation of implication presented in [GR09] is
shown to be impractical, too.

• A case study on a client-server application (Section 4.2, published in [Buj+16]):
The practical utility of the MIA-theory is demonstrated in the design of a non-
deterministic client-server application. In particular, this example shows that, in
general, deterministic interface theories are insufficient for software design.

• A case study concerning parts of a railway control system (Section 4.3): The
practical utility of the EMIA-theory is demonstrated by applying it as a specification
language to the design of a safety-critical railway control system that has to secure
a railway junction. The whole case study has been conducted with our software-tool
MiaGo that is described below and implemented in Go.
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• An implementation of MIA in Haskell (Section 4.4): An embedded DSL providing
several operators of the MIA-theory has been implemented in Haskell in order to
check many examples including the above client-server case study. In addition, the
tool has been used for cross-checking the Go-implementation below.

• An implementation of EMIA in Go (Section 4.4): Based on an existing implemen-
tation of MIA [Gar15] that was written by a Master’s student supervised by the
author, EMIA has been implemented as a software tool in order to demonstrate its
practical applicability.

• An investigation of interface theories as behavioural types (Section 5): While
interface theories are a well studied family of specification languages for software
design, their uniform interaction model makes them unsuitable for transitioning
to implementation. Therefore, a typed version of IA called ΠIA is developed as a
behavioural type theory, and standard properties of type systems such as subject
reduction, congruence and type safety are proved. In particular, type checking may
be seen as a syntactic approximation of refinement checking that is computationally
more efficient. The weaknesses of IA, in contrast to MIA, as a foundation are
analysed, and the differences and commonalities to the well-known session types,
e.g., [HYC16], are discussed. This proof of concept shows the principle applicability
of interface theories as behavioural type theories, and the author believes that this
work may start a promising new research direction for interface theories.
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2. Preliminaries

This chapter defines some basic concepts related to formal specification and develops
a formal theory of specification. A summary of formalisms for specifying concurrent
reactive systems is given with a focus on those formalisms that are relevant to the present
thesis, in particular, on interface theories.

2.1. A Formal Theory of Specification

In this section we develop an abstract theory of specification that is suitable for comparing
different concrete specification theories on a common basis. In contrast to [FS08] and
[Bau+12], where specification theories are devised for special purposes, we define a
general purpose concept of specification theory that serves a better understanding of the
concepts of specification, composition, refinement, compositionality and adjoint operations.
This formalisation also permits a precise definition of heterogeneous specification as a
combination of domain-specific and logic-based specification. Further, we relate this
formalisation to the concept of independent implementability as employed, e.g., in software
engineering.

A problem domain is given by a collection of problems and a collection of potential
solutions to problems. For example, the problem of a task that is to be done may have a
computer program completing the task as a solution. A compositional problem domain
additionally has operations on the solutions, which allow one to compose more complex
solutions from simpler ones. In the case of the above computer program, the program
might be composed of simpler programs that perform subtasks of the original problem.

For a given problem, one is interested in describing which solutions one considers as
admissible. Mathematically, this can be done by giving a set of admissible solutions.
Such an extensional description renders the powerset over all possible solutions into a
specification theory that plays a central role for comparing different specification theories
over the same problem domain. However, a set of admissible solutions may be very large,
e.g., infinite, such that an extensional representation is impractical. The purpose of a
specification is to provide a finite intensional description of a set of admissible solutions
for a given problem. These solutions are called the implementations of the specification.

A specification theory should provide the problem domain’s composition operations as
well as the set-theoretical operations intersection, union and inclusion on the intensional
level, i.e., on the level of specifications. Figure 2.1 illustrates this relation between a
specification theory S with a given interpretation function [[·]] into the powerset of a set
I of implementations, where ◦ is a placeholder for operations of the underlying problem
domain and of set theory. Note that, in general, ◦S only approximates ◦P and the square
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P(I) P(I)n P(I) operations & set theory

In I operations

S Sn S operations & specification logic

[[·]] [[·]] [[·]]

◦I

◦P

◦S

Figure 2.1.: An interpretation [[·]] : S → P(I) of specifications S as subsets of a universe
of implementations I should reflect operations ◦ of a problem domain and of
set theory.

is not required to commute.

Because the set-theoretical operations turn the powerset P(I) into a boolean lattice,
it is quite natural to use classical propositional logic or fragments thereof as a basis for
a specification formalism. However, depending on the nature of the problem domain,
some domain specific formalism may be more suitable for describing certain aspects of a
specification. Ideally, one would be able to combine logic based formalisms with domain
specific formalisms into a heterogeneous specification theory which permits a designer
to choose the most suitable description for each aspect of a specification. In such an
approach, conjunction is a particularly important operator, which allows one to combine
specifications of such aspects into an overall specification as desired for perspective-based
specification.

2.1.1. Specification Theories

For the purpose of investigating the concept of specification formally, the problems
themselves are not of much interest to us. A specification theory should be agnostic with
respect to problems because, in general, the problems may even consist of rather vague
ideas for which one cannot give a formal description. Recalling the above example, a
systems designer may be able to decide whether a specific computer program solves a
given task, even if he or she is unable to formally describe the task in full detail. In
such a case, a specification may also serve to make an informal description more precise.
Therefore, we intentionally omit the problems from our formal theory and consider only
implementations.

Formally, a compositional problem domain is given by a pair (A,≡) consisting of a
Σ-algebra A of implementations and a congruence relation ≡ on A. The signature Σ
describes which operations are defined on implementations and the congruence relation ≡
abstracts from implementation details that are irrelevant with respect to the admissibility
of problem solutions. Implementations related by ≡ are called semantically equivalent .
In the following we abbreviate (A,≡) by A.

Let Σ := (FΣ, arΣ) be a signature, A a problem domain over Σ, and Λ := {⊓,⊔,→}
the set of propositional logic operators conjunction, disjunction and implication, re-
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spectively, with arities arΛ := {(⊓, 2), (⊔, 2), (→, 2)}. A specification theory on A is
a tuple (S,⊑, L, [[·]]), where L ⊆ Λ and S is a Σ′-algebra over the signature Σ′ :=
(FΣ ∪ L, arΣ ∪ arL), ⊑ is a preorder on |S| and [[·]] : |S| → P(|A|) is a function. The
elements of |S| are called the specifications of S, ⊑ the refinement preorder and [[·]]
the interpretation function that assigns each specification its set of implementations.
The logic operators and the refinement preorder represent set intersection, set union,
implication, and set inclusion on the intensional level, respectively.

If s ∈ |S| and i ∈ [[s]], we say that i implements s, which we sometimes write as i ⊨ s.
A specification theory is sound with respect to ≡ if, for all i ∈ [[s]], we have [i]≡ ⊆ [[s]].
Soundness is an important property because in an unsound specification theory, if i
implements s, an equivalent implementation j ≡ i does not necessarily also implement s.
We say, a specification theory reflects an operation f ∈ FΣ, if [[·]] is homomorphic with
respect to fA. Otherwise, it is said to approximate f .

While set inclusion provides a mathematically convenient way to compare specifications
with respect to the implementations they permit, this comparison is computationally
intractable for infinite implementation sets. In order to sufficiently approximate set
inclusion, a minimal requirement on a specification theory is that [[·]] is monotonic with
respect to the refinement preorder ⊑, i.e., that s ⊑ s′ implies [[s]] ⊆ [[s′]]. Under a mono-
tonic interpretation, refining a specification means restricting its set of implementations,
i.e., refining means becoming more specific. In the other direction, if [[s]] ⊆ [[s′]] implies
s ⊑ s′, then ⊑ is said to be thorough. Thorough refinement represents the ideal world.
However, in many cases thorough refinement is computationally hard and, therefore,
one often prefers a non-thorough approximation [Ben+15]. The refinement preorder is
called compositional with respect to an operation f ∈ FΣ′ , if s1 ⊑ t1, . . . , sar f ⊑ tar f
implies fS(s1, . . . , sar f ) ⊑ fS(t1, . . . , tar f ), i.e., if f

S is monotonic in each argument.
A specification theory is called compositional if its refinement preorder is compositional
with respect to all operations. A specification theory is particularly well behaved if
conjunction ⊓ and disjunction ⊔ correspond to the greatest lower bound and the least
upper bound with respect to ⊑, respectively. In such a case, it is easy to see that ⊑ is
also compositional with respect to ⊓ and ⊔.
Compositionality of the refinement preorder and monotonicity of the interpretation

enable a systems designer to employ the principle of independent implementability intro-
duced in Section 1.1 and illustrated in Figure 2.2. Starting with coarse specifications
S1, . . . , Sk of the components of a system fS(S1, . . . , Sk), one may refine these specifica-
tions stepwise until one reaches an implementation, i.e., one may substitute less specific

specifications by more specific specifications R
(i1)
1 , . . . , R

(ik)
k during the design process.

Due to the monotonicity of the interpretation, this approach preserves implementation
properties of a specification, i.e., if s ⊑ s′, then any property that is true for all imple-
mentations of s′ is obviously true for the implementations of s. With compositionality,
one may also apply this approach to components of a system while keeping the desired
properties of the system as a whole. A practical application of this process can be found
in Chapter 4.

For a binary operation ◦ we may also be interested in an inverse operation, i.e., an
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Components System

Specification S1 . . . Sk fS(S1, . . . , Sk)

⊑ ⊑

R
(1)
1 . . . R

(1)
k ⊑

⊑ ⊑

Refinements
...

... fS(R
(i1)
1 , . . . , R

(ik)
k )

⊑ ⊑

R
(n1)
1 . . . R

(nk)
k ⊑

⊑ ⊑

Implementation I1 . . . Ik fA(I1, . . . , Ik)

Figure 2.2.: The design approach of independent implementability.

operation ▷ such that t ◦ (t ▷ s) ≡ s. Of course, such an inverse does not exist for all
interesting operations ◦. However, it may sometimes still be sufficiently approximated
by an operation that is adjoint [Mac71] to ◦, i.e., that yields a largest specification
t ▷ s satisfying the bound t ◦ (t ▷ s) ⊑ s. Hence, an adjoint operation is defined by
x ⊑ t ▷ s ⇐⇒ t ◦ x ⊑ s. We can show some general properties of adjoint operations:

Lemma 2.1. For any specification theory with an operation ◦ and an operation ▷ that is
adjoint to ◦, we have

1. t ⊑ s ▷ (s ◦ t),

2. t ⊑ t′ =⇒ s ▷ t ⊑ s ▷ t′,

3. s ⊑ s′ =⇒ s ▷ t ⊒ s′ ▷ t, if ⊑ is compositional with respect to ◦,

4. s ◦ (s ▷ (s ◦ t)) ≡⊑ s ◦ t, if ⊑ is compositional with respect to ◦,

5. (s ⊔ t) ▷ u ⊑ (s ▷ u) ⊓ (t ▷ u), if ⊑ is compositional with respect to ◦,

6. (s ◦ t) ▷ u ≡⊑ t ▷ (s ▷ u), if ◦ is associative.

Proof. Claim 1: By definition of adjoints, we have x ⊑ s ▷ (s ◦ t) ⇐⇒ s ◦ x ⊑ s ◦ t. Due
to reflexivity of ⊑, t is a solution for x in the right inequation. Hence, t is also a solution
in the left inequation.

Claim 2: By definition of adjoints, x ⊑ s ▷ t implies s ◦x ⊑ t. Applying the assumption
t ⊑ t′ and the transitivity of ⊑, we conclude that s ◦ x ⊑ t′. The definition of adjoints
implies x ⊑ s ▷ t′. By reflexivity of ⊑ we may substitute s ▷ t for x.

Claim 3: By definition of adjoints, x ⊑ s′ ▷ t implies s′ ◦ x ⊑ t. Our assumption s ⊑ s′

and the compositionality of ◦ imply s ◦ x ⊑ s′ ◦ x. Transitivity of ⊑ yields s ◦ x ⊑ t.
Then, the definition of adjoints implies x ⊑ s ▷ t. By reflexivity of ⊑, we may substitute
s′ ▷ t for x.
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Claim 4: Direction “⊑” follows from s ▷ (s ◦ t) ⊑ s ▷ (s ◦ t) and the definition of adjoint
operations. Direction “⊒” is a direct consequence of Claim 1 and compositionality.

Claim 5: x ⊑ (s ⊔ t) ▷ u ⇐⇒ (s ⊔ t) ◦ x ⊑ u =⇒ (s ◦ x) ⊑ u ∧ (t ◦ x) ⊑ u ⇐⇒ x ⊑
s ▷ u ∧ x ⊑ t ▷ u ⇐⇒ x ⊑ (s ▷ u) ⊓ (t ▷ u).

Claim 6: By applying the definition of adjoint operations, we get the equivalences
x ⊑ (s ◦ t) ▷ u ⇐⇒ s ◦ t ◦ x ⊑ u ⇐⇒ t ◦ x ⊑ s ▷ u ⇐⇒ x ⊑ t ▷ (s ▷ u).

For instance, defining s▷ t := s =⇒ t makes implication the adjoint of logical conjunction
∧ with respect to the entailment preorder. Then, Lemma 2.1(6) instantiates to currying.
Similarly, the quotient operator // present in many concurrent specification theories is
adjoint to parallel composition when defining s ▷ t := t // s (see Section 3.1.7).

2.1.2. Comparing Specification Theories over a Problem Domain

In this section we define some generic specification theories over arbitrary problem
domains. We also discuss how one may compare different specification theories over the
same problem domain, in particular, with respect to their expressiveness.

The extensional representation mentioned above can be formalised as a specification
theory:

Definition 2.2 (Extensional Specification Theory). Given a problem domain A, the
extensional specification theory over A is defined by the carrier set |S| := P(|A|/≡)
with the functions fS(s1, . . . , sar f ) := {fA(i1, . . . , iar f ) | i1 ⊨ s1, . . . , iar f ⊨ sar f}, for all
f ∈ FΣ, the logical operators ⊓ := ∩, ⊔ := ∪ and → := (s, s′) →→ ∁s ∪ s′, the refinement
preorder ⊑ := ⊆ and the interpretation function [[·]] : s →→


s.

Obviously, the extensional specification theory of a problem domain A is sound and
thorough and reflects all operations. Because the powerset is a boolean algebra, exten-
sional specification theories permit a natural interpretation of implication and negation
and, hence, provide a propositional logic of specification. Implication, as an adjoint of
conjunction, is defined by x ⊑ s→ t ⇐⇒ x⊓ s ⊑ t, whereas negation is a special case of
implication, where t is the inconsistent specification ⊥. In an extensional specification
theory, this equivalence translates to x ⊆ s→ t ⇐⇒ x ∩ s ⊆ t. Hence, s→ t is the
largest set, whose intersection with s is contained in t, namely s→ t = ∁s ∪ t. Therefore,
negation results in complementation, ¬s = ∁s.

Because the interpretation function [[·]] of a specification theory defines an implementa-
tion relation ⊨, each specification S over a problem domain A defines a formal context
(|A|, |S|,⊨), which gives rise to a concept lattice B(|A|, |S|,⊨). This concept lattice may
also be considered as a specification theory over A:

Definition 2.3 (Conceptual Specification Theory). Let S be a specification theory over
a problem domain A. The conceptual specification theory of S is defined by the carrier
set C := |B(|A|, |S|,⊨)|, where ⊔, ⊓ and ⊑ are inherited from B(|A|, |S|,⊨). That is,
each specification is a formal concept c = (A,S), where the sets A ⊆ |A| and S ⊆ |S| are
mutually closed with respect to ⊨. The interpretation function assigns each specification
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its extension, i.e., [[·]] : (A,S) →→ A. Given specifications c1, . . . , car f ∈ C, the function fC

maps to the concept generated by the set If (c1, . . . , car f ) := {fA(i1, . . . , iar f ) | i1 ⊨ c1,
. . . , iar f ⊨ car f}, i.e., fC(c1, . . . , car f ) := (If (c1, . . . , car f )

′′, If (c1, . . . , car f )
′).

Obviously, the conceptual specification theory of S is sound if S is sound, and it is always
thorough and closed under ⊓ and ⊔, even if S is not.
On a preordered problem domain, intervals may serve as specifications, where larger

intervals represent coarser specifications:

Definition 2.4 (Interval Specification Theories). Let (A,≲) be a preordered problem
domain where fA is monotonic with respect to ≲ for all f ∈ FΣ. We define the interval
specification theory of A by |S| := {(l, u) ∈ |A|2 | l ≲ u}, (l1, u1) ⊑ (l2, u2) iff l2 ≲ l1 and
u1 ≲ u2, and the interpretation function [[(l, u)]] := {i ∈ |A| | l ≲ i ≲ u}. The functions
are defined by fS((l1, u1), . . . , (lar f , uar f )) := (fA(l1, . . . , lar f ), f

A(u1, . . . , uar f )). Due
to the transitivity of ≲, if l1 ≡≲ l2, u1 ≡≲ u2, l1 ≲ u1 and l2 ≲ u2, then any i ∈ |A|
satisfies l1 ≲ i ≲ u1 iff l2 ≲ i ≲ u2; hence, [[(l1, u1)]] = [[(l2, u2)]] and (l1, u1) ≡⊑ (l2, u2).

When investigating specification theories S and T over the same problem domain (A,≡),
one wishes to compare them with respect to the sets of implications they may express.
In this sense, S is less or equally expressive than T , if {[[s]] | s ∈ |S|} ⊆ {[[t]] | t ∈ |T |}.
Obviously, the extensional specification theory is always the most expressive and the

empty specification theory the least expressive. The conceptual specification theory of
S is at least as expressive than S and is the least expressive specification theory that
is complete with respect to conjunctions and disjunctions of S. In particular, if S is
complete, then it is equally expressive than its conceptual specification theory.

2.1.3. Related Work

In order to compare their One-selecting Modal Transition Systems (1MTS) to Disjunctive
Modal Transition Systems (DMTS), Fecher and Schmidt [FS08] define implementation
settings and abstraction settings. An implementation setting is a set I of implementations
together with an equivalence relation ≡ on I. In contrast to our problem domains,
operations and compositionality are not considered. An abstraction setting over an
implementation setting (I,≡) is a preordered set (A,⊑) of abstractions together with an
embedding h : I → A satisfying i1 ≡ i2 ⇐⇒ h(i1) ⊑ h(i2). This condition requires that
mutual refinement coincides with ≡ on implementations and that every implementation
is representable by some specification. Such requirements are acceptable for theories
based on MTS. However, they render abstraction settings less general than our definition
of specification theories.
Bauer et al. [Bau+12] define a concept of specification theory in order to study

assume/guarantee contracts. There, a specification theory is a preordered set with a
composition operation. Such specifications are not related to implementations but serve
themselves as implementations of contracts. Similarly, the composition operator, its
adjoint quotient and conjunction are only used to construct specifications from contracts
and are not related to implementations and to the fundamental logic of the extensional
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specification theory. Our more general framework subsumes this approach by a problem
domain over the signature (⊗, ar), where ar⊗ = 2.

An alternative approach to specification based on category theory and model theory is
provided by institutions [GB92]. Institutions define an abstract framework for comparing
logical systems and are mainly targeted to specification and verification of algebraic data
types in functional programming languages. The basic idea is that theories represent
specifications and models represent implementations. This is similar to our approach;
however, institutions employ a much more complex mathematical machinery because
they are intended to capture structural properties of specifications when translating
between different specification languages.

2.2. Formalisms for Specifying Concurrent Systems

This section is intended as a summary of specification languages for concurrent systems.
Due to the many existing languages we restrict ourselves to a selection of well-known
languages.

2.2.1. Overview of Specification Languages for Concurrent Systems

There are several description languages that are widely used in practice, such as the
Specification and Description Language (SDL) [Sdl17], behavioural diagrams of the
Unified Modeling Language (UML) [Uml17], Event-driven Process Chains (EPCs) [KNS92],
Business Process Model and Notation (BPMN) [Bpmn17] and Business Process Execution
Language (BPEL) [Bpel17]. These languages do not provide a formal semantics and,
therefore, may rather be seen as a syntactic front-end to specification than as a foundation
of system verification and design.

Two well-known refinement-based approaches to systems design are the Z nota-
tion [Spi92] and the B-method [Abr+91]. The Z notation employs predicate logic
for describing the effect of system operations. Modularisation is achieved by employing
so-called schema which collect descriptions of state spaces, pre- and post-conditions,
invariants, state changes and relationships between abstract and concrete specifications.
While this enables a refinement-based approach, one has to manually prove that invariants
are maintained. The B-method employs a syntactically different but similar approach
with a stronger focus on generating proof obligations, e.g., via weakest preconditions,
that have to be shown in order to maintain invariants. In contrast to the Z notation,
the B-method explicitly supports concurrency by means of a parallel operator. In both
approaches, refinement is targeted towards data refinement and algorithmic refinement,
i.e., the concretisation of data structures and algorithms from abstract behaviours, in
contrast to the behavioural refinement employed in interface theories. Both the Z notation
and the B-method have been combined with process algebras (Section 2.2.2) such as
CSP [Hoa85] in order to address concurrency, e.g., the Circus language [WC01] combines
CSP with Z, whereas [But00] presents a combination of CSP and B.

17



2. Preliminaries

The remaining languages presented here may serve as models of concurrency. Fol-
lowing [WN93] we distinguish interleaving and noninterleaving models. Examples of
noninterleaving models are Petri nets [Pet62], event structures [Win87] and Mazurkiewicz
traces [Maz88]. Their fundamental view on concurrency is that actions may be indepen-
dent and, thus, the components of a system may perform their actions simultaneously.
Noninterleaving models support a refinement notion called action refinement, where
an action may be replaced by a more complex behaviour, e.g., [GR01]. In contrast,
interleaving models, such as transition systems or trace models, assume that simultaneous
actions are not actually happening at the same time but nondeterministically interleaved
in an arbitrary order. A more detailed comparison may be found in [Gla01; Gla93; WN93].
The usual refinement notion employed in interleaving models is behavioural refinement
such as trace inclusion, failures, testing or various forms of simulation (see [BPS01]).
Further, we may distinguish synchronous and asynchronous concurrency. In syn-

chronous concurrency, parallel processes synchronise their input and output channels on
a regular basis defined by a clock tick. Languages supporting synchronous concurrency
are typically employed in systems with real-time requirements, such as hardware circuits,
signal processing or controllers of physical systems. Asynchronous concurrency considers
processes as independent entities that synchronise via communication, e.g., by sending
messages or by performing actions that are observable by other processes. Typical appli-
cations of asynchronous concurrency are found in distributed, service-oriented software
systems.
We also distinguish synchronous communication, where a communication signal is

immediate, from asynchronous communication, where messages may be delayed, e.g., by
employing message queues.

The work investigated in this thesis employs an interleaving model of asynchronous con-
currency with synchronous communication. It is based on labelled transition systems with
a bisimulation semantics [Mil80] within a simulation-based refinement preorder [Gla01;
Gla93].

2.2.2. Process Algebras and Labelled Transition Systems

Concurrent systems may be represented algebraically by means of process algebras such as
CCS [Mil80; Mil89], ACP [BK82], CSP [Hoa85] or the π-calculus [MPW92]. See [BPS01]
for a more thorough treatment of the topic.
Process algebras permit one to compose processes from simpler ones via algebraic

operations. Basically, a process may engage in an action a out of an action alphabet A or
deadlock/terminate which is denoted 0. More complex processes may be constructed by
the sequencing operator . (dot), i.e., a.0 denotes a process that first engages in action a
and then terminates. The branching operator + permits a process to choose between
alternatives, i.e., p+q specifies a process that may choose between behaving like process p
or like process q. For instance, a process a.0 + b.0 may choose between engaging in
action a or b, and afterwards terminates in either case. Concurrency is expressed via the
parallel operator ∥, where p ∥ q denotes a process that runs processes p and q in parallel.
The possible actions are usually sending and receiving messages or signals on channels
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that are given by channel names. Parallel processes may interleave or synchronise on
their actions. A term µX. p(X), where X occurs freely in process term p, expresses
recursion via the fixed point operator µ.

Many variants of process algebras have been presented in the literature, which differ in
details such as available actions, interleaving and synchronisation of actions, or treatment
of internal behaviour, i.e., actions that are invisible to other processes. Some process
algebras, in particular those based on the π-calculus, support higher-order features
such as channel creation and name passing (sending and receiving channel names).
A more abstract view on different variants of the π-calculus may be gained through
ψ-calculi [Ben+11b].

Central questions of process algebras are behavioural relations and congruences. That
is, one is interested whether a process term p may substitute a process term q, e.g.,
because p exhibits only behaviour that may also be exhibited by q. A rigorous study
of behavioural equivalences may be found in [Gla01; Gla93] on the basis of labelled
transition systems.
Labelled transition systems (LTS) provide a semantic foundation of process alge-

bras [BPS01] and may also be used as a graphical specification formalism. Because LTSs
will serve us as implementations of our problem domain, we give a formal definition:

Definition 2.5 (Labelled Transition System). A labelled transition system (LTS) is a
triple L := (S,A,−→), where S is a set of states, A is a set called the action alphabet,
and −→⊆ S ×A× S is a relation called the transition relation of L.

We also define the behavioural relations of similarity and bisimilarity because our semantic
model is based on them:

Definition 2.6 (Simulation [Par81]). Let L := (L,A,−→L) and M := (M,A,−→M ) be
labelled transition systems. A relation R ⊆ L×M is a simulation if for all (l,m) ∈ R,

SI1. l
a−→L l

′ implies ∃m′.m
a−→M m′ and (l′,m′) ∈ R.

Two states l and m are called similar if there is a simulation R with (l,m) ∈ R.

Definition 2.7 (Bisimulation [Par81]). Let L := (L,A,−→L) and M := (M,A,−→M )
be labelled transition systems. A relation R ⊆ L×M is a bisimulation if for all (l,m) ∈ R,

BI1. l
a−→L l

′ implies ∃m′.m
a−→M m′ and (l′,m′) ∈ R,

BI2. m
a−→M m′ implies ∃l′. l a−→L l

′ and (l′,m′) ∈ R.

Two states l and m are called bisimilar if there is a bisimulation R with (l,m) ∈ R.

Note that the behavioural equivalence of mutual similarity is coarser than the behavioural
equivalence of bisimilarity because for mutual simulation it is sufficient to have two
simulation relations, while bisimilarity requires that one relation simulates in both
directions simultaneously.
Lüttgen and Vogler extended labelled transition systems into a heterogeneous spec-

ification theory called logic labelled transition systems (LLTS) [LV06; LV07; LV10] by
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providing a conjunction operator and an interpretation of temporal logic operators as
labelled transition systems. These ideas have further been developed into the interface
theory Modal Interface Automata (MIA) [LV12; LV13a; LV13b], which started the line of
research to which this thesis belongs (see also Section 2.3).

2.2.3. Modal Transition Systems

Modal Transition Systems (MTS) [LT88] is a family of specification formalisms based
on labelled transition systems. MTS supports underspecification by means of must- and
may-modalities on the transition level. Must-transitions represent transitions that are
required, while may-transitions denote permitted transitions.

Definition 2.8 (Modal Transition System [LT88]). A modal transition system (MTS)
is a tuple M := (S,A, , ), where S is a set of states, A is a set called the action
alphabet, ⊆ S ×A× S and ⊆ S ×A× S are relations called the must transition
relation and the may transition relation of M, respectively.

An MTS is syntactically consistent if and only if every required transition is permitted,
i.e., if ⊆ .

The idea of underspecification is reflected in the modal refinement preorder. Intuitively,
an MTS L refines an MTS M if the must-transitions of M are implemented in L and
the may-transitions of L are permitted by M.

Definition 2.9 (Modal Refinement [Lar89]). Let L := (L,A, L, L) and M :=
(M,A, M , M ) be modal transition systems. A relation R ⊆ L ×M is a modal
refinement relation if for all (l,m) ∈ R,

MTS1. m
a

M m′ implies ∃l′. l a
L l

′ ∧ (l′,m′) ∈ R,
MTS2. l

a
L l

′ implies ∃m′.m
a

M m′ ∧ (l′,m′) ∈ R.

We say that l refines m and write l ⊑mts m if and only if there is a modal refinement
relation R between L and M with (l,m) ∈ R.

In the following, we omit the indices L and M of the transition relations if the transition
systems are clear from the context.
MTS comprises LTS as a special case where = . This justifies us to consider

LTSs as implementations in the sense that they are syntactically consistent and fully
specified, i.e., not subject to underspecification. For LTSs, modal refinement reduces to
bisimilarity. Hence, MTS is a specification theory over the problem domain of LTSs and
bisimulation equivalence.

When considering the must- and may-transition relations as separate LTSs on the same
state set, the must-LTS constitutes a lower and the may-LTS an upper bound on the
implementation. However, due to being defined on the same state set, modal refinement
is finer than the interval specification theory (Definition 2.4) over LTS with simulation
as refinement, because interval refinement reduces to mutual simulation on LTSs.

MTS employs a composition concept which we call unanimous composition. A transition
is permitted (required) in the composed system, if it is permitted (required) in all
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components, i.e., all components of a system unanimously agree on the behaviour of the
composition. This is in contrast to the error-aware composition employed in interface
theories (Section 2.3).
Many extensions to the basic MTS-formalism have been presented in the literature,

such as DMTS [LX90], dMTS [LV13a], 1MTS [FS08] and PMTS [Ben+15], to name a few.
Disjunctive Modal Transition Systems (DMTS) have been introduced in [LX90] in order
to describe the solution sets of equation systems on processes. The variability provided
by MTS is insufficient for this purpose because may-transitions can only express optional
alternatives. In order to express the requirement that at least one of several alternatives
must be implemented, DMTS extends MTS by disjunctive must-transitions. That is,
the must-transition relation of DMTS is defined as ⊆ S ×P(A× S). A disjunctive
must-transition s S′ with S′ ⊆ A × S expresses the requirement that at least one
of the alternatives (a, s′) ∈ S′ has to be implemented as a transition s

a
s′. This

meaning is reflected in the definition of modal refinement, where Rule MTS1 is replaced
by DMTS1:

DMTS1. m M ′ implies ∃L′. l L′ ∧ ∀(a, l′)∈L′.∃(a,m′)∈M ′. (l′,m′) ∈ R.

A DMTS-specification of a state s may be considered as a description of the required
and permitted successor states of s in conjunctive normal form.
The theory disjunctive Modal Transition Systems (dMTS)—note the lower case ‘d’—

has been presented as a foundation of the interface theory MIA in [LV13a]. dMTS is a
variant of DMTS that restricts disjunctive must-transitions to single actions and extends
DMTS by internal behaviour. Hence, the disjunctive must-transition relation of dMTS
is defined as ⊆ S × (A ∪ {τ}) ×P(S), where τ denotes invisible actions. In order
to abstract from internal behaviour, weak transition relations and are defined.

Intuitively, a weak transition
a

denotes an a-transition that is preceded and succeeded
by arbitrarily many τ -transitions. See Definition 3.3 in Section 3.1 for a formal definition.
In the definition of modal refinement, Rules MTS1 and MTS2 are replaced by dMTS1
and dMTS2, respectively:

dMTS1. n
a
N ′ implies ∃M ′.m

a
M ′ ∧ ∀m′∈M ′.∃n′∈N ′. (m′, n′) ∈ R.

dMTS2. m
a
m′ implies ∃n′. n

a
n′ ∧ (m′, n′) ∈ R.

The restriction to a single action per transition is sufficient for defining conjunction for
nondeterministic specifications while avoiding the complications of how to define weak
transitions in DMTS, where τ might appear together with visible actions in the same
disjunctive must-transition (see Section 3.1). Considering dMTS as a conjunctive normal
form as above for DMTS, each clause may only address a single action.
One-selecting Modal Transition Systems (1MTS) [FS08] is a syntactic variant of

DMTS that supports disjunctive must-transitions with exclusive choice, i.e., where
an implementation must select exactly one of the disjunctive branches of a transition.
This feature does not add expressiveness to the theory but permits a more compact
representation of some specifications.
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Parametric Modal Transition Systems (PMTS) [Ben+15] extend DMTS by global
parameters. Each state of a PMTS is specified with obligations in the form of logical
formulas that may range over the global parameters and the specified transitions. The
global parameters permit one to specify persistent choices, e.g., when choosing between
options of a disjunctive transition during refinement of a state s, all states refining s
must make the same choice. A deterministic variant which we call PMTS’ is also studied,
leading to a computationally more efficient check of thorough refinement.

2.2.4. Acceptance Automata

Due to their similarity to DMTS, we summarise Acceptance Automata only briefly.
Acceptance Automata (AA) have been introduced in [AP91] as a generalisation of
Acceptance Trees [Hen85]. They have been employed in Modal Specifications (MS) [Rac08],
a trace-based deterministic variant of MTS, in order to extend the expressiveness of MS
to include disjunctive transitions. AA have been used in [Ben+13] in order to define a
parallel composition operator for DMTS and as a bridge between νHML (Section 2.2.5)
and DMTS, showing that νHML, AA and DMTS are equally expressive.

Definition 2.10 (Acceptance Automaton). An acceptance automaton (AA) is a tuple
A := (S,Acc), where S is a set of states and Acc: S → P(P(A× S)) is a function that
assigns each state a collection of acceptance sets.

The set Acc(s) represents the permitted implementations of a state s, i.e., an implemen-
tation of s chooses one set S′ ∈ Acc(s) and implements exactly the transitions s

a
s′

given by the elements (a, s′) ∈ S′. Hence, an AA-specification of s corresponds to a
disjunctive normal form of the required and permitted successor states of s.

Similar to DMTS, difficulties arise with AA when extending it to reasoning about
internal behaviour. If a process p comprises an internal loop, then p may have an infinite
number of acceptance sets. That is, AA is “too extensional” to allow for a computationally
tractable description in the presence of internal behaviour.

2.2.5. Hennessy-Milner Logic and the Modal µ-Calculus

Hennessy-Milner Logic (HML) [HM80] and the Modal µ-Calculus (Lµ) [Koz83] are two
dynamic logics that may be employed for expressing properties of labelled transition
systems. The syntax of Lµ is as follows:

Φ ::= p | ⊤ | ⊥ | Φ ∧ Φ | Φ ∨ Φ | [a]Φ | ⟨a⟩Φ |
¬Φ | X | µX.Φ | νX.Φ

p denotes propositonal constants that are interpreted individually for each state of an
LTS. The symbols ⊤, ⊥, ∧, ∨ and ¬ have the standard meaning of propositional logic.
Given an action a, [a]Φ means after a necessarily Φ, while ⟨a⟩Φ means after a possibly Φ.
The operators µ and ν denote least and greatest fixed points, respectively.
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Basically, HML is a fragment of Lµ without the fixed point operators µ and ν. The
literature varies about whether p and ¬ are included in HML. The fragment νHML
that includes only greatest fixed points is particularly interesting because it is equally
expressive than DMTS and AA (see Section 2.2.3, Section 2.2.4 and [Ben+13]).

2.2.6. Coalgebras and Interaction Categories

Coalgebras provide a category-theoretic perspective on systems [Rut00]. Therefore, they
are very useful for understanding the general mathematical structure of a specification
theory. Bisimulation is characterised as a system, i.e., a coalgebra, with a universal
property. However, the usual coalgebraic definition of homomorphism is too strong for a
characterisation of simulation. Some relaxations of the homomorphism concept, e.g., lax
homomorphisms [CGH01] and weak homomorphisms [CS08], have been proposed in the
literature, see also [HJ04].

Given a category C and an endofunctor F : C → C, an F -coalgebra is a C-morphism
c : C → FC, for some object C ∈ C. Coalgebras generalise labelled transition systems
to the categorical setting, where the object C represents the state space, the functor
F describes the type of labellings, and the morphism c corresponds to the transition
relation. For example, a labelled transition system over a set A of action labels is an
F -coalgebra over the functor F : Set → Set : X →→ P(A×X).

Although coalgebras are mathematically compelling and a helpful tool for getting a
deeper theoretical understanding of systems, we believe that the language of coalgebra
is too abstract from a perspective of tool implementation and systems engineering.
Therefore, the coalgebraic view is not considered in this thesis.

A different categorical approach to concurrency has been presented as interaction cate-
gories in [AGN96], with the goal of establishing a Curry-Howard-Lambek-correspondence
in the spirit of “processes as morphisms”. While focusing on synchronous concurrency, the
paper also shows that several promises, such as composition of processes corresponding to
composition of morphisms, cannot be kept in the asynchronous case. Hence, interaction
categories are not suitable for our asynchronous setting.

2.2.7. Session Types

The specification formalisms presented in the previous subsections employ a uniform
communication model, i.e., actions are abstract entities with no internal structure. For
example, when action a represents sending a message on channel a, we cannot distinguish
whether the sent message is of type integer or type string. In contrast, session types are
a family of behavioural type systems going back to [Hon93], which may be employed
to extend modelling languages for concurrent systems, such as the π-calculus, by typed
actions. The main idea behind session types is to define a global type describing the
interaction protocol of a communication session. This global type is projected on the
communicating components, yielding a local session type for each component. Such a
local session type describes the intended behaviour of the component within a session.
The type system guarantees that, if each component typechecks against its local session
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type, then the whole system adheres to the global session type. Due to the projection
on local types, the type check is computationally efficient. A more detailed summary of
session types may be found in Chapter 5, where we develop a behavioural type theory
similar to session types but based on Interface Automata (Section 2.3.2).

2.3. Interface Theories

The specification formalisms presented in the previous subsections provide component
models that may be employed in component-based verification. In contrast, interface
theories [AH01a; AH05; Bau+10; Buj+16; BV14; Che+12; FL16b; LNW07; LVF15;
Rac+11], have been developed as specification formalisms for component-based de-
sign [AH05; Bau+10; Cai11; KS13] and may serve as specification languages for software
product lines [LNW07; FL16b], web services [Bey+07], the Internet of Things [LL15]
and conformance testing [LML15; LML17]. Interface theories may also be employed as
contract languages or behavioural type theories when transitioning from software design
to implementation (see Chapter 5 and [Bau+12; Gar15]).

Interface theories allow one to model the interactive behaviour of a concurrent sys-
tem’s components at the level of their interfaces. One of their main goals is to detect
incompatibilities between the communication requirements of different components early
in the design phase. To this end, an interface theory has a notion of compatibility as one
of its central concepts. This section gives a brief summary of interface theories with a
focus on stateful interfaces based on Interface Automata [AH01a].

2.3.1. Assume-Guarantee Interfaces

Assume-guarantee interfaces [AH01b; AH05; Ben+12] is a class of stateless interface
theories. Here, an interface is specified by a set of assumptions on input variables and a
set of guarantees about output variables, e.g., as logical formulas. If the environment
satisfies an interface’s input assumptions, then the interface assures its output guarantees.
Interfaces P and Q are considered compatible if P ’s output guarantees satisfy Q’s input
assumptions and Q’s output guarantees satisfy P ’s input assumptions. Due to their
stateless nature, assume-guarantee interfaces are not suited as a model of behaviour and
concurrency.

2.3.2. Interface Automata

Many stateful interface theories [LNW07; Bau+10; Rac+11; LVF15; Buj+16] extend de
Alfaro and Henzinger’s Interface Automata (IA) [AH01a; AH05], which are based on
labelled transition systems. IA allows one to specify requirements of an interface on its
environment by dividing each interface’s alphabet of transition labels into input actions
(‘?’), output actions (‘!’) and an internal action τ .

Definition 2.11 (Interface Automaton). An Interface Automaton (IA) is a tuple P :=
(S, I,O,−→), where S is a set of states, I and O are disjoint sets of input actions and
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P : {a}/{b} : p0 p1 p2a? b!

Q : {a, b}/∅ : q0 q1a?

R : {a}/{b} : r0 r1a?

S : {a, b}/∅ : s0 s1 s2a? b?

Figure 2.3.: Example of Interface Automata and refinement.

output actions, respectively, the set A := I ∪O is called the action alphabet not including
the silent action τ , and −→ ⊆ S× (A∪{τ})×S is a relation called the transition relation
of P . We also write I/O instead of A when highlighting the input and output alphabets.

Examples of interface automata are given in Figure 2.3. When composing interface
automata in parallel, they are assumed to synchronise on shared actions, e.g., action a? in
a composition of P and Q. The a?-transition from some state p0 expresses P ’s readiness to
participate in action a initiated by P ’s environment. The b!-transition at p1 expresses that
P may initiate b and P ’s environment must be ready to receive b, i.e., the environment
must specify a b?-transition at its current state such as for state s1 when P is running
in environment S. Otherwise, e.g., when employing Q as an environment that does not
specify a b?-transition at state q1, we have a communication mismatch and the parallely
composed state p1 ∥ q1 is considered illegal. In this sense, IA-based interface theories are
error-aware in contrast to the unanimous composition concept of MTS.

Depending on the reachability of illegal states, we distinguish optimistic and pessimistic
compatibility. With optimistic compatibility, a composed system P ∥ Q is assumed to
operate in a helpful environment that tries to steer away from communication mismatches
by controlling P ∥Q via its input transitions. Hence, components P and Q are optimisti-
cally compatible if an environment exists in which P ∥Q cannot reach illegal states. This
corresponds to an open systems view, where a composition is considered as a part of a
larger system, the remaining part of which is responsible to avoid illegal states. In our
example from Figure 2.3, P and Q are optimistically compatible because an environment
can avoid reaching the illegal state p1 ∥ q1 by never engaging in output a!. In contrast,
pessimistic compatibility makes no assumption on the behaviour of the environment of
P ∥Q, i.e., P ∥Q must expect arbitrary behaviour of its environment. Hence, P and Q
are pessimistically compatible if illegal states are unreachable in all environments. This
corresponds to a closed systems view , where a composition is seen as a system by itself
and must avoid illegal states autonomously, because an environment exists in which
illegal states may be reached. In our example, P and Q are pessimistically incompatible
because in an environment that engages in action a as an output the illegal state p1 ∥ q1
would be reached, whereas P and S are pessimistically compatible. Note that pessimistic
compatibility is a stricter concept, i.e., the pessimistically compatible compositions are a
subset of the optimistically compatible ones.
Because the larger context may still be in development when composing components

of a system during design, IA employs an open systems view, i.e., it adheres to optimistic
compatibility. When composing components P and Q, one wishes to synthesise the weak-
est requirement on their environment that guarantees that communication mismatches
are avoided. Therefore, the IA parallel composition employs the following pruning of
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illegal states. A composed state p′ ∥ q′ from which an illegal state is reachable by output
or internal transitions is also considered illegal, because the environment cannot prevent
the system from reaching a mismatch. All illegal states are removed from the parallel

composition. This also removes input transitions p ∥ q a?
p′ ∥ q′ leading to illegal states,

including all a-input transitions starting at the same state p∥ q [BV14]. In the example of
Figure 2.3, P ∥Q consists of a single state p0 ∥ q0 and no transitions, due to the removal
of the illegal state p1 ∥ q1.
In order to preserve compatibility when refining interfaces, one should not introduce

new communication mismatches. A new communication mismatch might be introduced
during refinement or implementation by adding a previously unspecified output transition
or by removing a previously specified input transition. For this reason, IA considers
unspecified outputs as forbidden and specified inputs as mandatory. Vice versa, an existing
communication mismatch can be reconciled in refined versions of the components, either
by removing the responsible output transition or by adding a suitable input transition with
some arbitrary subsequent behaviour. Hence, IA considers specified output transitions as
optional and unspecified inputs as permitted with arbitrary subsequent behaviour. This
reasoning leads to the definition of alternating refinement, where the weak transition

relations and abstract from internal behaviour. Intuitively, a weak transition
a

denotes an a-transition that is preceded and succeeded by arbitrarily many τ -transitions

and a trailing-weak a-transition
a

denotes one that is only succeeded but not preceded
by arbitrarily many τ -transitions. See Definition 3.3 in Section 3.1 for a formal definition.

Definition 2.12 (Alternating Refinement). Let (L, I,O,−→L) and (M, I,O,−→M ) be
interface automata. A relation R ⊆ L×M is an alternating refinement relation if for all
(l,m) ∈ R, ω ∈ O ∪ {τ} and i ∈ I:

AR1. l
ω

L l
′ implies ∃m′.m

ω
M m′ and (l′,m′) ∈ R,

AR2. m
i

M m′ implies ∃l′. l
i

L l
′ and (l′,m′) ∈ R.

Revisiting Figure 2.3, R refines P because we may remove the b-output transition at
state p1, and S refines Q because the b-input transition may be added at state s1. Note
that both refinements resolve the communication mismatch between P and Q.

Under the requirement that an error-free specification may only have error-free im-
plementations, the pruning of parallel composition is theoretically justified in the sense
that it renders IA-refinement the coarsest compositional refinement preorder satisfying
the requirement [BV14]. Therefore, many IA-based interface theories [LNW07; BV14;
Rac+11; LVF15; Buj+16] employ a similar pruning in their definition of parallel compo-
sition (Section 2.3.3). However, this thesis also shows that the pruning causes several
issues that are undesired in practice (Section 3.3).

2.3.3. Modal Interface Theories

By declaring all output transitions as optional, IA permits designers to remove all outputs
and, thus, all functionality, because any actual behaviour is initiated by output transitions.
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As a consequence, any interface automaton has a trivial implementation with no actual
behaviour. That is, it is impossible to specify required behaviour in IA. This problem has
been addressed in IOMTS [LNW07], MIO [Bau+10], MI [Rac+11] and MIA [Buj+15;
LVF15] by combining IA with Modal Transition Systems (MTS) [Lar89] or Disjunctive
Modal Transition Systems (DMTS) [LX90], which allow one to specify required, optional
and forbidden behaviour. Taking stepwise decisions on the optional behaviour allows for
an incremental, component-based design that is supported by a compositional refinement
preorder based on modal refinement. By combining IA and (D)MTS, modal interface
theories promote two main features: requirements on environments and requirements on
implementations.

Because unspecified inputs are allowed in IA but forbidden in (D)MTS, several views
on how to merge these differences appropriately have been studied in the abovementioned
literature. We summarise those results in the following.

In IOMTS [LNW07], this difference is not considered. As a consequence, modal
refinement is not compositional with respect to parallel composition as was pointed out
in [Rac+11] and proved in [LV12]. In addition, internal must-transitions are not treated
properly in IOMTS-refinement [LV13b].

Internal behaviour and the abstraction thereof has been studied in several strong and
weak variants of refinement and compatibility in MIO [Bau+10], which is a pessimistic
version of IOMTS. The above compositionality issue is irrelevant in MIO because the
problematic compositions are undefined in a pessimistic setting.

An attempt to repair the compositionality bug in an optimistic setting has been made in
MI [Rac+11] for deterministic interfaces without internal behaviour. When illegal states
are removed, MI replaces them by an ordinary state that permits arbitrary behaviour by
specifying may-loops for all actions. Although this resolves the compositionality issue, the
resulting parallel operator is not associative as shown by Bujtor and Vogler in [Buj+16].

This thesis belongs to the line of research on Modal Interface Automata (MIA) [LV13a;
LV13b; LVF15; Buj+15; Buj+16; FL16b] that was started by Lüttgen and Vogler with
the goal of establishing a nondeterministic interface theory supporting heterogeneous
specification. In this thesis we distinguish different variants of MIA by employing the
acronyms MIA1 [LV13a], MIA2 [LV13b] and MIA3 [Buj+15; Buj+16]. We append a
lower-case letter ‘o’ or ‘p’ to these acronyms, e.g., MIA2o, if we want to highlight that
we consider optimistic or pessimistic compatibility, respectively.

MIA1 [LV13a] is the first nondeterministic interface theory that supports conjunction
and disjunction with respect to a weak refinement preorder. This preorder is similar to
IA-refinement in that specified inputs are mandatory and unspecified inputs are implicitly
permitted. For outputs, the full range of MTS-modalities is available. In MIA2 [LV13b]
the refinement preorder is modified to properly treat internal must-transitions. Further,
a pessimistic version MIA2p is studied including conjunction, disjunction and alphabet
extension.

This is where the work on this thesis started. An investigation of alphabet extension
for the optimistic setting MIA2o showed that conjunction in MIA2—although mathemat-
ically correct—does not yield results as desired in practice, which is a consequence of the
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refinement preorder implicitly permitting unspecified inputs like in IA (see Section 3.1.9
and [LVF15]). This led to the adoption of modal refinement in MIA3 [Buj+15; Buj+16],
which is the first interface theory that supports optimistic compatibility, nondeterminism,
a compositional refinement preorder that abstracts from internal behaviour, hiding, re-
striction, an associative parallel composition, conjunction, disjunction, alphabet extension
and a quotient operator, where alphabet extension and the quotient are contributions
by the author of this thesis. Compositionality is achieved by employing a universal
state ⊤, similar to MI. However, in contrast to MI’s ordinary universal state, ⊤ is treated
specially in the definition of refinement and parallel composition, which resolves the
associativity issue of MI. Intuitively, state ⊤ allows one to selectively adopt the IA view
where necessary. In addition, the work of [LV10] on temporal logic operators has been
adapted to MIA3 [BV16].

Although all of the above interface theories are error-aware in the tradition of IA, they
are error-abstracting in the sense that they consider erroneous behaviour equivalent and
eliminate it from the parallel composition, either by considering the parallel composition
as undefined (MIO, MIA2p) or by pruning (IA, IOMTS, MI, MIA1, MIA2o, MIA3). As
a consequence, interface theories combining IA and MTS have several issues that impact
their practical use:

I1. The possibility to redefine unwanted behaviour to not being an error when refining a
composition impacts the usability of interface theories for safety-critical systems;

I2. The inability to check the compatibility of multiple components requires one to resort
to separate assembly theories [HK15];

I3. A compatibility concept that is too strict for modelling product line families [LNW07];
I4. A global composition concept that requires a fixed view on composition.

These issues led to the development of the error-preserving interface theory EMIA [FL16b],
which is the main contribution of this thesis (Chapter 3).

2.4. Comparative Study of Specification Theories

Table 2.1 summarises the features provided by different specification theories. We only
include theories based on or related to MTS. Each line of the table summarises one theory,
and each column a feature. Because some of the theories exist in different versions, we
cite a concrete reference. The entries of the table read as follows:

+ The theory fully supports the feature; a proof may be found in the literature or is
easy to see.

∼ The feature is partially supported by the theory; the reason why it is not fully
supported is obvious in most cases.

− The feature is not supported by the theory; a proof may be found in the literature or
is easy to see.

? The feature is not considered in the given paper, however, there is no obvious reason
why the theory would not support it.
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n.a. The feature is not applicable because it depends on a different feature that is either
not supported (−) or not considered (?).

We discuss the table feature-wise:

N Nondeterminism arises ubiquitously in concurrent systems, e.g., due to races or
abstraction. Some theories require input-determinism and, therefore, support
nondeterminism only partially.

D Disjunctive transitions with single label (‘d’) or with multiple labels (‘D’). Although
not stated explicitly, the definition of refinement in [AH01a] makes that version
of IA input deterministic with disjunctive input must-transitions. For the other
theories, support of these features is obvious from the definitions.

τ Support of internal and weak transitions enables a theory to abstract from internal
behaviour. This feature is obvious from the definitions.

P Global parameters permit one to express persistent choices. Only PMTS and its
deterministic variant PMTS’ support this feature.

Par A parallel composition operator expresses concurrency. Column ‘∥’ shows whether a
parallel operator is supported. Column ‘⊑’ denotes whether the refinement preorder
is compositional with respect to ∥. Compositionality is a strongly desired feature,
and it is generally considered a bug if a theory is not compositional. Column ‘a’
shows associativity of ∥. In general, the parallel operator of interface theories
is a partial operation. In optimistic theories ∥ is usually strongly associative, in
pessimistic theories weakly.

Cp Compatibility of components may be considered optimistically, pessimistically or
unanimously. Obviously, any optimistic theory may also consider pessimistic
compatibility.

And A conjunction operator supports specifying components from different perspectives.
Column ‘glb’ shows whether ⊓ is the greatest lower bound with respect to the
refinement preorder.

Or A disjunction operator completes a heterogeneous specification theory. Column ‘lub’
denotes whether ⊔ is the least upper bound with respect to the refinement preorder.

Quo A quotient operator supports synthesis and reuse of component specifications.
Column ‘cp’ denotes whether the quotient operator considers compatibility.

θ The refinement preorder is thorough. When based on modal refinement, this is usually
the case for deterministic theories [Ben+15].

α Alphabet extension allows one to add new features to a specification and supports
perspective-based specification when joined by conjunction.

Asm Support of multi-component assemblies enables one to check the compatibility of
more than two components. This feature does not apply to the variants of MTS
because MTS does not support compatibility.
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EMIA

MIA

dMTS IOMTS, MIO

MTS

mLTS

MI

PMTS

DMTS, 1MTS

AS IA CS

MS

Figure 2.4.: Hasse diagram showing the expressiveness of specification theories, where
expressiveness increases from bottom to top.

Err Error-awareness. Ignoring compatibility, the variants of MTS do not support this
feature. The error-abstracting interface theories have partial implicit support of
this feature. Full support is only present in error-preserving theories.

We may also compare specification theories with respect to their expressiveness as
explained in Section 2.1.2. A Hasse diagram of this comparison is shown in Figure 2.4,
where expressiveness increases from bottom to top. Most of the inclusions are obvious. In
particular, any member of the MTS family may be included as the input-only fragment of
an interface theory based on this member. We discuss the interesting cases of incomparable
theories. DMTS and dMTS are incomparable because dMTS supports internal transitions
and DMTS does not. Otherwise, DMTS would be more expressive than dMTS. MI
and mLTS are incomparable because MI is deterministic and mLTS employs a coarser
refinement preorder. MI and IA are incomparable because MI is deterministic and
IA does not support modalities. We also included Chilton’s Component Specifications
(CS) [Chi13], which are similar to IA. However, IA and CS are incomparable because IA
is more restrictive with respect to inconsistency and CS employs a coarser refinement
preorder.
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Modal Interface Automata [LV13a; LVF15; Buj+16; FL16b] belong to a family of interface
theories that combine Interface Automata (IA) [AH01a] with Modal Transition Systems
(MTS) [LT88]. They have been applied to conformance testing [LML15; LML17], to
the parametrised refinement problem [SH15] and to the analysis of assume-guarantee
rules [STH17].

In this thesis we distinguish two versions of Modal Interface Automata, namely error-
preserving Modal Interface Automata (EMIA) and error-abstracting Modal Interface
Automata (MIA).

From an axiomatic viewpoint, the difference between MIA and EMIA is as follows.
The basic idea of errors e present in both variants of interface theories may be captured
by the law e ∥ p ≡ e, expressing that a composed system is in an erroneous state if a
component is. However, erroneous systems do not exist in the MIA semantics. Errors
are abstracted away by universal states and, therefore, may be considered as models
of unknown behaviour for which no guarantees can be made. Hence, they satisfy the
law e ⊑ q =⇒ q ≡ e, capturing the idea that an error cannot be introduced when
refining an ordinary state. The only guarantee that this axiom gives is that a correct
specification can only be refined to a correct implementation. However, a specified error
may be refined (hence, redefined) to not being an error. In contrast, an error in EMIA
models unwanted behaviour for which we know that it must not be implemented. This
is captured by the additional law q ⊑ e =⇒ q ≡ e, expressing that refinement cannot
redefine an erroneous situation to be non-erroneous.

Historically, the theory MIA has been developed first [LV13a; LVF15; Buj+16; FL16b].
It is the first complete interface theory that combines IA and MTS without compromising
standard properties such as compositionality of the refinement preorder or associativity
of parallel composition in a nondeterministic setting with internal computations. In
the tradition of IA, MIA includes the pruning of illegal states directly in the parallel
composition operator. The theory EMIA has been developed afterwards in order to
resolve several issues related to this error-abstraction of IA-based interface theories, which
are unintuitive in practice (Section 3.3). In EMIA, errors have a semantic justification by
themselves, and the error abstraction is an operator separate from parallel composition.
However, because EMIA is one of the main contributions of this thesis and MIA may be
seen as an abstraction of EMIA via a Galois insertion, it is more compelling to present
EMIA first. Large parts of the work presented in this chapter are published in [Buj+15;
FL16a; FL16b].
The author’s own contributions presented in this chapter are as follows: The error-

preserving interface theory EMIA that solves all of Gaps 1–7 listed in Section 1.1 yielding
the most general interface theory to date; a general definition of the concept of alphabet
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3. Modal Interface Automata

extension subsuming the concrete alphabet extension operators that are considered in
the literature; an investigation of different alphabet extension operators for interface
theories shows that IA-based refinement is insufficient for perspective-based specification;
a quotient operator for MIA and EMIA, which is the first one supporting nondeterminis-
tic dividends and compatibility; a detailed discussion of quotienting including several
properties of the quotient, the difficulties of generalising the quotient to nondeterministic
divisors, and the proof that relaxing the alphabet conditions on the operands renders
the quotient nonunique for all interface theories based on IA; an investigation of error-
preserving and error-abstracting interface theories relating them by a Galois insertion
that results in a better understanding of error-abstraction in interface theories; an inves-
tigation of implication and negation for interface theories and a proof that implication
and negation cannot be provided in practice.

3.1. Error-preserving Modal Interface Automata

Our interface theory Error-preserving Modal Interface Automata (EMIA), which we
present in this section, is equipped with a parallel composition operator modelling
concurrency and communication, a conjunction operator permitting the specification of a
component from different perspectives, a disjunction operator for providing alternatives,
a quotienting operator allowing for component reuse, and a compositional refinement
preorder enabling the substitution of an interface by a more concrete version. In addition
to these standard requirements on interface theories, EMIA solves Issues I1–I4 presented
in Section 2.3.3 and discussed in Section 3.3. We achieve this by introducing fatal error
states, which represent unresolvable incompatibilities between interfaces, in contrast to
illegal states in IA, which may be resolved in a refinement. This enables EMIA to deal
with errors on a semantic level, because forbidden behaviour can be modelled by input
transitions leading to a fatal error state.

3.1.1. Basic Definitions

Definition 3.1 (Error-preserving Modal Interface Automata). An Error-preserving
Modal Interface Automaton (EMIA) is a tuple P := (SP , IP , OP , P , P , S

0
P , EP , UP ),

where SP is the set of states, IP , OP are the disjoint alphabets of input and output
actions not including the silent action τ (we define AP := IP ∪OP and ΩP := OP ∪ {τ}),

P ⊆ SP × (AP ∪ {τ}) ×P(SP ) is the disjunctive must-transition relation, P ⊆
SP × (AP ∪ {τ})× SP is the may-transition relation, S0

P ⊆ SP is the set of initial states,
EP ⊆ SP is the set of fatal error states and UP ⊆ SP is the set of universal states , if the
following conditions hold:

E1. For all α ∈ AP ∪ {τ} and p
α
P ′, we have ∀p′∈P ′. p

α
p′,

(syntactic consistency)
E2. States in EP ∪ UP have no outgoing transitions, (sink condition)
E3. EP ∩ UP = ∅. (exclusive markings)
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Figure 3.1.: Running example of a driving assistance system including a garage G and
a car C with alphabets AG := {rqstPass?, drive?}/{closeDoor!} and AC :=
{rqstCar?}/{rqstPass!, drive!}, respectively.

If S0
P = ∅, then P is called inconsistent and often denoted as ⊥. An EMIA P is an

implementation (i.e., an LTS) if |S0
P | = 1, |P ′| = 1 for all p

α
P ′ and, for each

p
α

p′, there is a p
α {p′}. We define must(p, α) :=


{P ′ ∈ SP | p α

P ′} and
may(p, α) := {p′ ∈ SP | p α

p′}.

In the following we often omit the index P when referring to components of an EMIA P ,
e.g., we write I for IP . Similarly, we write, e.g., I1 instead of IP1 for EMIA P1. In
addition, we let i, o, a, ω and α stand for representatives of the alphabets I, O, A, Ω
and A ∪ {τ}, respectively; we write A = I/O when highlighting inputs I and outputs O
in an alphabet A. In the context of weak transitions that abstract from τs, we use the
notation α̂, where α̂ := a if α = a ≠ τ and α̂ := ϵ if α = τ . In figures, we often refer to
an action a as a? if a ∈ I, and a! if a ∈ O. Must-transitions (may-transitions) are drawn
using solid, possibly splitting arrows (dashed arrows); any depicted must-transition also
implicitly represents the underlying may-transition(s) due to syntactic consistency. For
notational convenience, we let p

a
p′, p ̸ a and p ̸ a denote p

a {p′}, ∄P ′. p
a
P ′

and ∄p′. p a
p′, respectively.

In contrast to [FL16b] we include universal states in the definition of EMIA for several
reasons. First, because the quotient is the maximal specification Q satisfying Q⊗D ⊑e P ,
an action that is not used by D may be implemented with arbitrary subsequent behaviour
in Q, which is exactly the meaning of input transitions leading to universal states. Second,
as universal states are already necessary in MIA in order to make the refinement preorder
compositional when pruning errors [Buj+16], allowing universal states in EMIA yields a
more uniform presentation of the two theories. As a side benefit, the Galois insertion of
MIA into EMIA becomes simpler because an infinite disjunction is not needed anymore
(see Section 3.2). Note that one may choose to replace the sets U and E by single elements
⊤ and err without changing the underlying semantics of the theory. We decided to employ
sets instead of single elements because this representation is easier to be implemented in
a software tool.

Example 3.2. As a running example, we consider a driving assistance system that
enables a car to drive into and out of a garage autonomously. Such a system must
communicate with the garage in order to make it open and close its door. Figure 3.1
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Figure 3.2.: Examples of weak transitions and weak refinement.

shows a specification G of the garage’s interface. Starting in state g0, the garage is
ready to receive a passage request (rqstPass?). After such a request, the garage opens its
door (openDoor!), waits for a car driving in or out (drive?) and, finally, closes the door
(closeDoor!) again. The fatal error state err reachable via drive?-transitions from states
g0, g1 and g3 expresses the safety requirement that driving into or out of the garage is
undesired when the garage door is closed or about to be closed. The car C starts in
state c0 waiting for a user’s request (rqstCar?). Upon receiving such a request, the car
requests passage from the garage (rqstPass!) and then drives into or out of the garage
(drive!), reaching state c0 again.

Next, we define weak transitions that abstract from internal behaviour. Our definition
of weak transitions is adopted from MIA [Buj+16]:

Definition 3.3 (Weak Transition Relations). Let P be an EMIA. We define weak must-
and may-transition relations, and respectively, as the smallest relations satisfying

the following conditions, where we use P ′ α̂
P ′′ as a shorthand for ∀p∈P ′.∃Pp. p

α̂
Pp

∧ P ′′ =


p∈P ′ Pp:

WT1. p
ϵ

{p} for all p ∈ SP ,

WT2. p
τ
P ′ and P ′ α̂

P ′′ implies p
α̂
P ′′,

WT3. p
a
P ′ and P ′ ϵ

P ′′ implies p
a
P ′′,

WT4. p
ϵ
p,

WT5. p
ϵ
p′′

τ
p′ implies p

ϵ
p′,

WT6. p
ϵ
p′′

α
p′′′

ϵ
p′ implies p

α
p′.

We write
a

for transitions that are built up according to WT3 and call them trailing-

weak must-transitions. Similarly,
a

stands for trailing-weak may-transitions.

Example 3.4. For examples of weak transitions, consider the EMIA on the left-hand
side of Figure 3.2. By applying WT1 and WT2 of Definition 3.3, any τ -transition is also
a weak ϵ-transition. Similarly, every a-transition is also a weak a-transition by WT1

and WT3. Transition 2
τ {4, 5} can be extended to 2

o
{7, 8} by applying WT2.

Hence, 0
τ {1, 2} extends to 0

o
{3, 7, 8}. Observe that our weak must-transitions

correspond to standard weak transitions of LTS in the case that only must-transitions
with a single target state are used.
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We employ dMTS instead of DMTS (see Section 2.2.3), i.e., we require that all branches
of a disjunctive transition have the same label. We do so because dMTS is sufficient
for our purposes and does away with technical complications of parallel composition in
the presence of weak transitions. In dMTS, a disjunctive must-transition guarantees the
existence of an action, which is exploited in the definition of weak transitions, e.g., in
WT2. Such a guarantee is not provided in DMTS. In a DMTS-rule similar to WT2, α
would represent a set of possible labels and could be implemented differently for each
p′ ∈ P ′. Hence, the existence of weak transitions of a specification depends on the
transitions of its implementations. In particular, τ may be included in the set of possible
labels.

This issue becomes even more complicated in the context of parallel composition. The
usual way of defining parallel composition on DMTS, e.g., as is done in [BČK10], is by
unfolding each disjunctive must-transition into its set of possible implementation variants,
i.e., selections of transition branches. The parallel composition of two components is then
obtained by forming all pairwise products of the components’ implementation variants.
The unfolding operation corresponds to a transformation of a conjunctive normal form
into a disjunctive normal form and, thus, is only a change of representation. However,
in order to define weak transitions in the unfolded representation, one has to unfold
the τ -closure of each transition. If τ -loops are involved, this may result in an infinite
unfolding—even in case of finite DMTS—because a different implementation may be
chosen in each iteration of the loop.

3.1.2. Refinement

Our error-preserving modal refinement preorder ⊑e is adapted from standard modal
refinement of MTS (see Section 2.2.3 and [Lar89; LX90]). Intuitively, P ⊑e Q for EMIAs
P and Q enforces that P ’s may-transitions are permitted by Q while for any of Q’s
disjunctive must-transitions at least one of the branches is implemented by P .

In addition, error-preserving modal refinement reflects the meaning of universal states
that may be refined by everything, as well as the meaning of fatal error states that may
only be refined by states that are erroneous themselves. In other words, universal states
are reflected and fatal error states are reflected and preserved by ⊑e.

Note that our definition of refinement (as well as conjunction and disjunction) is for
interfaces with equal alphabets; this is not a restriction because we consider alphabet
extension later.

Definition 3.5 (Error-preserving Modal Refinement). Let P and Q be EMIAs with equal
alphabets, i.e., IP = IQ and OP = OQ. A relation R ⊆ SP × SQ is an error-preserving
modal refinement relation if, for all (p, q) ∈ R with q /∈ UQ,

R1. p ∈ EP iff q ∈ EQ,
R2. p /∈ UP ,

R3. q
i

Q Q′ implies ∃P ′. p
i

P P ′ ∧ ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,

R4. q
ω

Q Q′ implies ∃P ′. p
ω

P P ′ ∧ ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,
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R5. p
i

P p′ implies ∃q′. q
i

Q q′ ∧ (p′, q′) ∈ R,

R6. p
ω

P p′ implies ∃q′. q
ω

Q q′ ∧ (p′, q′) ∈ R.

We write p ⊑e q if there is a refinement relation R with (p, q) ∈ R. Similarly, we write
P ⊑e Q if, for all p ∈ S0

P , there is a q ∈ S0
Q with p ⊑e q. If p ⊑e q and q ⊑e p, we employ

the symbol p ≡e q, and similar for EMIAs P,Q.

Note that err ⊑e ⊤ for all err ∈ E and ⊤ ∈ U , i.e., universal states also include the
possibility of error.

An example of a refinement can be found in Figure 3.2, where the left EMIA refines the
right one due to the refinement relation {(0, 0′), (1, 0′), (2, 0′), (4, 0′), (5, 0′), (3, 1′), (7, 1′),
(8, 1′), (6, 2′)}. Observe how the refined states 3 and 7 (and 8) of state 1′ implement the
outgoing i?-may-transition differently.

Introducing leading τs during refinement is not permitted for an input must-transition

p
i

P P ′ in Rule R3 because, otherwise, the guarantee of being ready for input i that

is expressed by transition q
i

Q Q′ would not be preserved and a new communication
mismatch would be introduced. In a pure EMIA setting we may relax Rule R5 by per-
mitting leading τ -transitions in Q. In MIA, this relaxation would break compositionality
with respect to parallel composition due to the employed pruning operation. Therefore,
we do without this relaxation in order to make the two theories more comparable. In
particular, we employ the same pruning operation for establishing the Galois insertion
between MIA and EMIA.
The refinement relation ⊑e is a preorder:

Lemma 3.6 (⊑e is a Preorder). Error-preserving modal refinement ⊑e is reflexive and
transitive.

Proof sketch. Reflexivity is easy because the identity relation is an isomorphism, which
trivially satisfies all refinement conditions. The proof of transitivity closely follows the
proof of Bujtor and Vogler in [Buj+16]; therefore, we only sketch the proof idea: given
EMIAs P,Q,R with refinement relations RPQ and RQR, we have to show that R :=
{(p, r) | ∃q∈SQ. (p, q) ∈ RPQ ∧ (q, r) ∈ RQR} is an error-preserving modal refinement
relation. It is easy to see that conditions R1 and R2 hold transitively. If a relation
satisfies conditions R3 through R6, then it also satisfies the same conditions with weak

transitions in the premises, e.g., a rule R3’ of the form q
i
Q′ implies ∃P ′. p

i
P ′

and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R. Hence, these conditions also follow transitively.

3.1.3. Parallel Composition

IA’s parallel composition operator synchronises input and output transitions to τ -
transitions. In contrast, we define a multicast parallel composition, where an output can
synchronise with multiple input transitions as in MI [Rac+11] and MIA [Buj+16].

Definition 3.7 (Parallel Composition). Let P and Q be EMIAs. We call P and Q
composable if OP ∩OQ = ∅. If P and Q are composable, their error-preserving multicast

38



3.1. Error-preserving Modal Interface Automata

G⊗ C:

(g0, c0) (g0, c1)

(g1, c2)

err(g3, c0)

(g2, c2)

rqstCar?

rq
st
P
as
s!

openDoor!
drive!

closeDoor!

drive!

Figure 3.3.: Parallel composition G ⊗ C of the specifications in Figure 3.1, with A :=
{rqstCar?}/{rqstPass!, drive!, openDoor!, closeDoor!}.

parallel composition P ⊗Q is defined by SP⊗Q := SP × SQ, IP⊗Q := (IP ∪ IQ) \OP⊗Q,
OP⊗Q := OP ∪ OQ, S

0
P⊗Q := S0

P × S0
Q, EP⊗Q := (EP × SQ) ∪ (SP × EQ), UP⊗Q :=

((SP \ EP ) × UQ) ∪ (UP × (SQ \ EQ)), and the transition relations are given by the
following rules:

P1. (p, q)
α
P ′ × {q} if p

α
P ′ and α ̸∈ AQ,

P2. (p, q)
α {p} ×Q′ if α ̸∈ AP and q

α
Q′,

P3. (p, q)
a
P ′ ×Q′ if p

a
P ′ and q

a
Q′ for some a ∈ AP ∩AQ,

P4. (p, q)
α

(p′, q) if p
α
p′ and α ̸∈ AQ,

P5. (p, q)
α

(p, q′) if α ̸∈ AP and q
α
q′,

P6. (p, q)
a

(p′, q′) if p
a
p′ and q

a
q′ for some a ∈ AP ∩AQ.

We also write p⊗ q for (p, q).

Note that an error in one component implies an error in the overall system, whereas
universal behaviour in one component extends to the overall system only in absence of
errors.
IA-based interface theories usually define a communication mismatch for p at q as

a situation where an action a ∈ OP ∩ IQ is permitted at p and not required at q. In
EMIA, such an optional input transition, which may be refined to required or forbidden
behaviour, is expressed as a disjunctive must-transition containing a fatal error state in
its set of target states. For example, optional a?-transitions from q to states q1 and q2

are modelled as q
a? {q1, q2, q3} for some fatal error state q3 ∈ EQ.

Example 3.8. Figure 3.3 shows the parallel composition G ⊗ C of the garage’s and
the car’s specifications from Figure 3.1. The components synchronise on their shared
actions (rqstPass, drive, openDoor, closeDoor) by P3, while the unshared action rqstCar
is interleaved due to P2.

It is easy to see that parallel composition is associative and commutative. Further, ⊑e

is a precongruence with respect to ⊗:

Theorem 3.9 (Compositionality). If P1, P2 and Q are EMIAs such that P1 ⊑e P2 and
P2, Q are composable, then P1 and Q are composable and P1 ⊗Q ⊑e P2 ⊗Q.
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Proof. We write IP , OP and AP for the equal alphabets of P1 and P2. Composability
is trivial. We show that R := {(p1 ⊗ q, p2 ⊗ q) | p1 ⊑e p2} is an error-preserving modal
refinement relation. For (p1 ⊗ q, p2 ⊗ q) ∈ R with p2 ⊗ q /∈ UP⊗Q, we consider the
following cases:

R1 p1 ⊗ q ̸∈ EP1⊗Q iff (by Definition 3.7) p1 ̸∈ EP1 ∧ q ̸∈ EQ iff (by p1 ⊑e p2 and R1)
p2 ̸∈ EP2 ∧ q ̸∈ EQ iff (by Definition 3.7) p2 ⊗ q ̸∈ EP2⊗Q.

R2 We consider two cases:

1. (p2, q) ∈ EP2⊗Q: As shown for Case R1, we have (p1, q) ∈ EP1⊗Q and, by
Definition 3.7 and E3, (p1, q) /∈ UP1⊗Q.

2. (p2, q) /∈ EP2⊗Q: By (p2, q) /∈ UP2⊗Q, we have p2 /∈ UP2 and q /∈ UQ. Then,
p1 ⊑e p2 implies p1 /∈ UP1 ; hence, (p1, q) /∈ UP1⊗Q.

R3 Let p2 ⊗ q
i
R due to one of P1, P2 or P3:

P1 R = P ′
2 × {q} for some transition p2

i
P ′
2. By p1 ⊑e p2, there is a p1

i
P ′
1

such that, for all p′1 ∈ P ′
1, there exists a p′2 ∈ P ′

2 with p′1 ⊑e p
′
2. Thus, we have

(p′1 ⊗ q, p′2 ⊗ q) ∈ R, and P1 implies p1 ⊗ q
i
P ′
1 × {q}.

P2 R = {p2} × Q′ for some q
i
Q′. By P2 we have p1 ⊗ q

i {p1} × Q′, and
p1 ⊑e p2 implies (p1 ⊗ q′, p2 ⊗ q′) ∈ R for all q′ ∈ Q′.

P3 R = P ′
2 × Q′ due to p2

i
P ′
2 and q

i
Q′. The argument is analogous to

that of case P1, when replacing the application of P1 by P3 in the last step.

R4 Analogous to R3.

R5 Let p1 ⊗ q
i
p′1 ⊗ q′ due to one of the rules P4, P5 or P6:

P4 q′ = q for a transition p1
i
p′1. By p1 ⊑e p2, there is a p2

i
p′2 such that

p′1 ⊑e p
′
2. Thus, we have (p

′
1 ⊗ q, p′2 ⊗ q) ∈ R, and P4 implies p2⊗ q

i
p′2⊗ q.

P5 p′1 = p1 for some q
i
q′. By P5, we have p2 ⊗ q

i
p2 ⊗ q′, and p1 ⊑e p2

implies (p1 ⊗ q′, p2 ⊗ q′) ∈ R.

P6 R = P ′
1 ×Q′ due to p1

i
P ′
1 and q

i
Q′. The argument is similar to that

of case P4, where the application of P4 is replaced by P6 in the last step.

R6 Analogous to R5.

3.1.4. Hiding and Restriction

We now define the standard process algebraic operators hiding [Hoa85] and restric-
tion [Mil89], which are easily adapted from [Buj+15]. When scoping output actions,
these are still performed because they are under the control of the system. However, the
action is no longer observable from outside of the scope. Hence, the action is internal,
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i.e., a hiding operator is employed. In contrast, input actions are only performed because
of an outside stimulus. Scoping an input action blocks the system from listening to
this stimulus. Therefore, scoped input actions are removed, i.e., a restriction operator
is employed. A similar idea is used in the IA-setting of [CJK13], where hiding and
restriction are combined into a single operation.

Definition 3.10 (Hiding). Let P = (SP , IP , OP , P , P , S
0
P , EP , UP ) be an EMIA

and L a set of actions with L ∩ IP = ∅. We define P hiding L as the EMIA P / L :=
(SP , IP , O \L, P/L, P/L, S

0
P , EP , UP ), where all transition labels o ∈ L are replaced

by τ .

Definition 3.11 (Restriction). Let P = (SP , IP , OP , P , P , S
0
P , EP , UP ) be an

EMIA and L a set of actions with L ∩OP = ∅. We define P restricted L as the EMIA
P \ L := (SP , IP \ L,OP , P\L, P\L, S

0
P , EP , UP ), where all transitions with a label

contained in L are removed.

Observe that hiding and restriction yield well-defined EMIAs.

Lemma 3.12 (Weak Must-Transitions under Hiding). Let P be an EMIA, L ∩ IP = ∅
and o ∈ L ∩OP . If p

o
P P ′, then p

ϵ
P/L P

′.

Proof. By induction on the definition of p
o

P P ′. If p
o

P P ′ is due to WT3 of

Definition 3.3, then the claim is obvious. Otherwise, p
o

P P ′ is due to some p
τ

P P̄

and P̄
o

P P ′ according to WT2. By induction hypothesis, we have p̄
ϵ

P/L Pp̄ for

each p̄ ∈ P̄ and P ′ =


p̄∈P̄ Pp̄. By WT2, we obtain p
ϵ

P/L P
′.

As desired, EMIA-refinement is a precongruence with respect to hiding and restriction:

Proposition 3.13. Let P , Q be EMIAs with equal alphabets and P ⊑e Q.

1. P / L ⊑e Q / L for any set L of actions excluding τ with L ∩ I = ∅.

2. P \ L ⊑e Q \ L for any set L of actions excluding τ with L ∩O = ∅.

Proof. Since P ⊑e Q, there is an EMIA-refinement relation R with (p, q) ∈ R. We show
that R is also an EMIA-refinement relation for P / L ⊑e Q / L and P \ L ⊑e Q \ L. The
only interesting case concerns hiding and Rule R4 of Definition 3.5, i.e., q

τ
Q/L Q′

due to q
o

Q Q′ for o ∈ O ∩ L. The latter is matched by a transition p
o

P P ′ with

∀p′ ∈P ′ ∃q′ ∈Q′. (p′, q′) ∈ R. By Lemma 3.12, this yields p
ϵ

P/L P
′.

Originally, IA employs a parallel composition with immediate hiding [AH01a]. This
can easily be expressed by combining our parallel composition and the hiding operator,
such that P | Q = (P ⊗ Q) / S, where S is the set of synchronising actions. However,
the immediate hiding weakens the associativity of this composition operation, e.g., if
a ∈ IP ∩OQ ∩OR, then (P |Q) |R may be composed while P | (Q |R) is uncomposable.
We omit the details here, because they are presented in [Buj+16] for MIA and may
directly be adopted to EMIA.
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3.1.5. Conjunction

Perspective-based specification is concerned with specifying a system component from
separate perspectives, such that the component satisfies each of these perspective specifi-
cations. For example, each requirement for a component may describe a perspective. The
component’s overall specification is the most general specification refining all perspective
specifications, i.e., it is the greatest lower bound with respect to the refinement preorder.
This conjunction operator is defined in two stages. In the first stage, the conjunctive prod-
uct defines the combined requirements of the conjuncts. In the second stage, inconsistent
states that capture contradictory requirements are removed.

Definition 3.14 (Conjunctive Product). Let P , Q be EMIAs with equal alphabets. The
conjunctive product of P and Q is P &Q := (SP&Q, I, O, P&Q, P&Q, S

0
P&Q, EP&Q,

UP&Q) with SP&Q := SP × SQ, S
0
P&Q := S0

P × S0
Q, EP&Q := (EP × (EQ ∪ UQ)) ∪

((EP ∪ UP ) × EQ), UP&Q := UP × UQ, and the transition relations are given by the
following rules:

C1. (p, q)
i {(p′, q′) | p′ ∈ P ′, q

i
q′} if p

i
P ′ and q

i
,

C2. (p, q)
i {(p′, q′) | p

i
p′, q′ ∈ Q′} if p

i
and q

i
Q′,

C3. (p, q)
ω {(p′, q′) | p′ ∈ P ′, q

ω
q′} if p

ω
P ′ and q

ω
,

C4. (p, q)
ω {(p′, q′) | p

ω
p′, q′ ∈ Q′} if p

ω
and q

ω
Q′,

C5. (p, q)
α
P ′ × {q} if p

α
P ′ and q ∈ UQ,

C6. (p, q)
α {p} ×Q′ if p ∈ UP and q

α
Q′,

C7. (p, q)
i

(p′, q′) if p
i
p′ and q

i
q′,

C8. (p, q)
ω

(p′, q′) if p
ω
p′ and q

ω
q′,

C9. (p, q)
τ

(p′, q) if p
τ
p′,

C10. (p, q)
τ

(p, q′) if q
τ
q′,

C11. (p, q)
α

(p′, q) if p
α
p′ and q ∈ UQ,

C12. (p, q)
α

(p, q′) if p ∈ UP and q
α
q′,

A state (p, q) of P &Q is a candidate for refining both p and q. Because (p, q) cannot
simultaneously require and forbid the same action a or be at once fatal and non-fatal,
some states p and q do not have a common refinement. In such cases, (p, q) is called
(logically) inconsistent and has to be removed from the candidates, which also includes
the removal of all states that require transitions leading to inconsistent states. In order
to be the greatest common refinement of p and q, a state (p, q) may only be erroneous if
p and q are erroneous or universal. This explains the definition of EP&Q which obviously
must exclude UP&Q.

Definition 3.15 (Conjunction). The set F& ⊆ SP&Q of logically inconsistent states is
defined as the smallest set satisfying the following rules:

CF1. (p, q) ∈ (EP × (SQ \ (EQ ∪ UQ))) ∪ ((SP \ (EP ∪ UP ))× EQ) implies (p, q) ∈ F&,

CF2. (p, q) ̸∈ EP&Q ∪ UP&Q, p
i

and q ̸ i
implies (p, q) ∈ F&,

42



3.1. Error-preserving Modal Interface Automata

R1:

0

1

2

openDoor1!,
openDoor2!

o
p
en
D
o
or

1
!

o
p
en
D
o
or

2
!

rq
st
P
as
s?

id
fy
!

R2:

0

1 2

rqstPass?,
openDoor1!,
openDoor2!

idfy! idfy!

rqstPass? rqstPass?

o
p
en
D
o
or

1
!

o
p
en
D
o
or

2
!

R1,2 = R1 ⊓R2:

(0, 0)

(1, 0)

(2, 1) (2, 2)

openDoor1!,
openDoor2!

idfy!

rq
st
P
as
s?

o
p
en
D
o
or

1
!

o
p
en
D
o
or

2
!

Figure 3.4.: Example of conjunction with the alphabet {rqstPass?}/{idfy!, openDoor1!,
openDoor2!}.

CF3. (p, q) ̸∈ EP&Q ∪ UP&Q, p ̸
i

and q
i

implies (p, q) ∈ F&,

CF4. (p, q) ̸∈ EP&Q ∪ UP&Q, p
ω

and q ̸
ω

implies (p, q) ∈ F&,

CF5. (p, q) ̸∈ EP&Q ∪ UP&Q, p ̸
ω

and q
ω

implies (p, q) ∈ F&,

CF6. (p, q)
α
R and R ⊆ F& implies (p, q) ∈ F&.

The conjunction P ⊓ Q is obtained from P & Q by deleting all states in F&. This
deletes all transitions exiting deleted states and removes all deleted states from targets
of must-transitions.

Fatal error states are excluded in Rules CF2 through CF5 because we do not care about
consistency for these states. Note that the states in E and F& are different in nature:
E-states represent states with possible but unwanted behaviour, whereas F&-states
represent contradictory specifications that are impossible to implement.
Figure 3.4 illustrates how conjunction may be employed for perspective-based spec-

ification. Consider a double garage for which we want to specify a single controller
appropriately operating both garage doors according to an identification of the car
requesting passage. We state two requirements for such a controller, each of which may
be considered as a separate perspective on the controller:

R1: After a passage request (rqstPass?), the garage shall identify the car (idfy!) and may
then open one of the doors (openDoor1!, openDoor2!).

R2: After the car is identified (idfy!), the garage shall open either Door 1 or Door 2
(openDoor1!, openDoor2!).

A representation of these requirements as EMIAs is shown in Figure 3.4. In Specification
R1, the rqstPass?-transition from state 0 to state 1 is the entrance condition that may
be triggered by a car in order to request passage. Upon such a request, the garage
must identify (idfy!) the car, and may then open Door 1 or Door 2. Requirement R2

specifies that after an identification, either Door 1 or Door 2 must be opened, i.e., the
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choice of door is a result of the identification. The overall specification must satisfy both
requirements simultaneously. Hence, we use conjunction in order to construct the greatest
lower bound R := R1 ⊓R2, which is also shown in Figure 3.4. Notably, the combination
of nondeterminism and modalities of action idfy! yields a disjunctive must-transition in
the conjunction.
In order to prove that conjunction is the greatest lower bound with respect to the

refinement preorder ⊑e, we need the notion of a witness along the lines of [LV07]:

Definition 3.16 (Witness). Let P and Q be EMIAs with equal alphabets. A set
W ⊆ SP × SQ is a witness of P &Q if, for all (p, q) ∈W, the following conditions hold:

W1. p ∈ EP implies q ∈ EQ ∪ UQ,
W2. q ∈ EQ implies p ∈ EP ∪ UP ,

W3. p
o

P implies q
o

Q or q ∈ EQ ∪ UQ,

W4. q
o

Q implies p
o

P or p ∈ EP ∪ UP ,

W5. p
i

P implies q
i

Q or q ∈ EQ ∪ UQ,

W6. q
i

Q implies p
i

P or p ∈ EP ∪ UP ,

W7. (p, q)
α
R′ implies R′ ∩W ̸= ∅.

We instantiate the concept of a witness concretely as follows:

Lemma 3.17 (Concrete Witness). Let P , Q, R be EMIAs with equal alphabets.

1. For any witness W of P &Q, we have W ∩ F& = ∅.
2. The set W := {(p, q) ∈ SP ×SQ | ∃r∈SR. r ⊑e p and r ⊑e q} is a witness of P &Q.

Proof. Claim 1 is obvious, so we only prove Claim 2:

W1 By R1, we get p ∈ EP implies r ∈ ER implies q ∈ EQ ∪ UQ.

W2 Symmetrically to W1.

W3 If q ∈ EQ, then W2 applies and there is nothing to show. Otherwise, let p
o

P . By

r ⊑e p, there is a transition r
o

R and, by syntactic consistency and r ⊑e q, a

q
o

Q.

W4 Symmetrically to W3.

W5 Analogous to W3 when replacing
o

and
o

with
i

and
i
, respectively.

W6 Symmetrically to W5.

W7 Let (p, q) ∈W due to r such that (p, q)
ω
R′ because of C3. By r ⊑e p, there is a

matching r
ω

R R′. For all r′ ∈ R′, by syntactic consistency, we have a transition

r
ω

R r′, such that r ⊑e q implies the existence of a transition q
ω

Q q′ with
r′ ⊑e q

′. Hence, there is a (p′, q′) ∈ R′ ∩W due to r′. The case of inputs is shown
analogously.
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Next, we show that ⊓ is indeed conjunction:

Proposition 3.18 (⊓ is And). If P and Q are EMIAs with equal alphabets, then (i) an
R with R ⊑e P and R ⊑e Q exists iff P and Q are consistent. Further, if P and Q are
consistent, then, for any R, (ii) R ⊑e P and R ⊑e Q iff R ⊑e P ⊓Q.

Proof. (i) “⇒′′ follows from Lemma 3.17.
(i), (ii) “⇐”: Let R ⊑e P ⊓ Q. We prove that R := {(r, p) | ∃q. r ⊑e p ⊓ q} is an

error-preserving modal refinement relation. By choosing S0
R := {r ∈ SR | ∃p ⊓ q ∈

S0
P⊓Q. (r, p ⊓ q) ∈ R} we may conclude (i) “⇐”. Let (r, p) ∈ R due to q. The proof

follows closely the lines of [Buj+16] and proceeds as follows:

R1 If r ∈ ER, then p ⊓ q ∈ EP⊓Q; thus, p ∈ EP .

R3, R4 Let p
α

P P ′, then we have q
α

Q and p ⊓ q
α {p′ ⊓ q′ | p′ ∈ P ′,

q
α

Q q′, p′ ⊓ q′ defined}. By r′ ⊑e p
′ ⊓ q′ we get a matching r

α
R R′, i.e.,

∀r′ ∈R′ ∃p′ ∈P ′. (r′, p′) ∈ R. (In case of inputs,
α

must be replaced by
α

.)

R5, R6 Let r
α

r′. By r ⊑e p ⊓ q, there is a p ⊓ q
α

p′ ⊓ q′ such that r′ ⊑e p
′ ⊓ q′;

thus, (r′, p′) ∈ R due to q′. (In case of inputs,
α

must be replaced by
α

.)

(ii) “⇒”: We show that R := {(r, p ⊓ q) | r ⊑e p and r ⊑e q} is an error-preserving
modal refinement relation.

R1 Obvious.

R3, R4, R5, R6 As above, the proof closely follows the lines of [Buj+16].

As a standard result from category theory, Proposition 3.18 implies that ⊓ is associative:

Corollary 3.19 (Associativity of ⊓). Conjunction is associative, i.e., for all EMIAs P ,
Q, and R, we have P ⊓ (Q ⊓R) ≡e (P ⊓Q) ⊓R.

3.1.6. Disjunction

It is easy to also define a disjunction operator, which may be employed for specifying
alternative implementations:

Definition 3.20 (Disjunction). For a family of EMIAs P := (Pj)j∈J with equal alphabets,
we define the disjunction of P as the following EMIA:

j∈J
Pj := (


j∈J

SPj , I, O,

j∈J

Pj ,

j∈J

Pj ,

j∈J

S0
Pj
,

j∈J

EPj ).

In case we consider only two EMIAs P and Q, we write P ⊔Q for their disjunction.

Proposition 3.21 (⊔ is Or). If Pj, for j ∈ J , and R are EMIAs with equal alphabets,
then


j∈J Pj ⊑e R iff Pj ⊑e R for all j ∈ J .
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Proof. Let Pj (j ∈ J) and R be EMIAs with equal alphabets and w.l.o.g. disjoint
state sets Sj and SR, and let Pj ⊑e R due to the error-preserving modal refinement
relation Rj . Because, in general, the union of error-preserving modal refinement relations
is an error-preserving modal refinement relation, (


j∈J Rj) ∪RQ is an error-preserving

modal refinement relation, too. Vice versa, if


j∈J Pj ⊑e R due to an error-preserving
modal refinement relation R, then, for any j ∈ J , Rj := R ∩ (Sj × SR) is a suitable
error-preserving modal refinement relation, showing Pj ⊑e R.

It is easy to see that conjunction and disjunction are distributive.

Corollary 3.22 (Distributivity). Any EMIAs P , Q and R with equal alphabets satisfy
the distributive laws:

1. (P ⊓Q) ⊔R ≡e (P ⊔R) ⊓ (Q ⊔R),

2. (P ⊔Q) ⊓R ≡e (P ⊓R) ⊔ (Q ⊓R).

Proof. Obvious, because disjunction of EMIAs is essentially a disjoint union.

3.1.7. Quotient

The quotient operation is adjoint to parallel composition. It equips the theory with the
possibility of component synthesis, which allows for component reuse and incremental,
component-based design. Given EMIAs P and D, the quotient of P over D is the coarsest
EMIA Q such that the defining inequality of the quotient , Q⊗D ⊑e P , holds. We denote
the quotient by P // D if it exists. In the following, P is the dividend (one may think of
it as an overall system specification), D the divisor (an already implemented component)
and Q the quotient (the synthesised completion of D).

We define the quotient for a restricted set of EMIAs, namely where the specification P
has no τs and where the divisor D is may-deterministic and without τs. We call D
may-deterministic if d

α
d′ and d

α
d′′ implies d′ = d′′ for all d, d′, d′′ and α. Due

to syntactic consistency, a may-deterministic EMIA has no disjunctive must-transitions,
i.e., the target sets of must-transitions are singletons. We discuss the difficulties with
nondeterministic divisors in Section 3.4.2.

Like conjunction above, we define the quotient in two stages. Regarding the choice of the
input and output alphabets in the following definition, we adopt the one by Chilton [Chi13]
and Raclet et al. [Rac+11]. Alternative choices are discussed in Section 3.4.2.

Definition 3.23 (Pre-quotient). Let P and D be τ -free EMIAs with AD ⊆ AP and
OD ⊆ OP . The pre-quotient of P over D is defined as the EMIA P⊘D := (SP×SD∪{⊤},
I, O, , , S0

P ×S0
D, E, U), where I := IP ∪OD, O := OP \OD, E := EP × (SD \ED)

and U := (UP × SD) ∪ (EP × ED) ∪ {⊤}. The transition relations of a state (p, d) are
defined by the following rules:

PQ1. (p, d)
a
P ′ × {d} if p

a
P ′ and a /∈ AD,

PQ2. (p, d)
a
P ′ ×D′ if p

a
P ′ and d

a
D′,
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PQ3. (p, d)
a

(p′, d) if p
a

and a /∈ AD,
PQ4. (p, d)

a
(p′, d′) if p

a
and d

a
d′,

PQ5. (p, d)
a ⊤ if p ̸ a and d ̸ a .

A state q = (p, d) in P ⊘D encodes the condition that q should be the coarsest state
with respect to ⊑e such that q composed in parallel with d refines p. The purpose of the
new state ⊤ is to ensure that U is nonempty, in order to have a universal target state
in Rule PQ5. In case U is nonempty anyway, an arbitrary state from U may replace ⊤.
With this in mind, we now justify the choices of E and U and the rules of Definition 3.23
intuitively. A formal proof is given in Lemma 3.26 and Theorem 3.27 below.
An error state q ∈ E of the quotient satisfies q ⊗ d ⊑e p for some state d ∈ SD if and

only if p ∈ EP ∪ UP . However, if d ∈ ED or p ∈ UP , then nothing is required for q to
satisfy q⊗d ⊑e p and, hence, q has to be universal instead of erroneous in order to ensure
the maximality of the quotient. This justifies the choices of E and U .

Rule PQ1 is necessary due to the following consideration. If P has an a-must-transition
where a is unknown to D, then this can only originate from an a-must-transition in the
quotient Q that we wish to construct. To be most permissive, each p′ ∈ P ′ must have
a match in Q⊗D. The corresponding consideration is true for Rule PQ3, which also
ensures syntactic consistency for Rule PQ1.

Rule PQ2 is obvious in the light of the choice of alphabet in Definition 3.23. Because
P ⊘ D has all actions of P and D in its alphabet, it also needs an a-must-transition
to produce such a transition at (p, d) ⊗ d. Here, Rule PQ4 is the companion rule for
guaranteeing syntactic consistency.

Rule PQ5 makes P ⊘D as coarse as possible. The input a-may-transitions introduced
here just disappear in (P ⊘D)⊗D since a is blocked by D.
It is easy to see that P ⊘ D is indeed an EMIA. Up to now we have only defined

the pre-quotient. Considering a candidate pair (p, d), it may be impossible that p is
refined by a state resulting from a parallel composition with d; this depends, e.g., on
the modalities and the labels of the transitions leaving p and d. We call such pairs
divisionally inconsistent states and remove them from the pre-quotient. For example,
consider states p

a
and d

a
such that d ̸ a ; no parallel composition with d refines p.

While may-transitions can be refined by removing them and disjunctive transitions can be
refined to subsets of their targets in order to prevent the reachability of inconsistent states,
all states having a must-transition to only inconsistent states must also be removed.

Definition 3.24 (Quotient). Let P ⊘ D be the pre-quotient of P over D. The set
F⊘ ⊆ SP × SD of divisionally inconsistent states is defined as the least set satisfying the
following rules:

QF1. p /∈ UP ∪ EP and d ∈ UD ∪ ED implies (p, d) ∈ F⊘,
QF2. p

a
P and d ̸ a D and a ∈ AD implies (p, d) ∈ F⊘,

QF3. (p, d)
a

P⊘D R′ and R′ ⊆ F⊘ implies (p, d) ∈ F⊘.

The quotient P // D is obtained from P ⊘ D by deleting all states in F⊘. This also
removes any may- or must-transition exiting a deleted state and any may-transition
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Figure 3.5.: Synthesis of a user interface Q from a given component C and a global
specification P , where AC := {rqstCar?}/{drive!}, AP := ∅/{rqstCar!, drive!}
and AQ := {drive?}/{rqstCar!}.

entering a deleted state; in addition, deleted states are removed from targets of disjunctive
must-transitions. If (p, d) ∈ SP//D, then we write p // d. If S0

P//D is empty, then the
quotient of P over D is inconsistent.

Rule QF1 captures the division by universal states and error states. A state d ∈ UD ∪ED

in parallel with any state is either universal or an error state, and does not refine
p /∈ UP ∪EP . Rule QF2 is obvious since (p, d) cannot ensure that p

a
P is matched if d

has no a-must-transition, as an a-may-transition or a forbidden action a at d can in no
case compose to a refinement of a must-transition at p. Rule QF3 propagates back all
inconsistencies that cannot be avoided by refining.
Since P ⊘D is an EMIA and since syntactic consistency and the special states are

preserved by pruning, P // D is an EMIA, too. If the target set of a disjunctive must-
transition became empty due to pruning, i.e., R′ ⊆ F⊘, Rule QF3 would be applicable
and the source state and its must-transition are deleted.

Example 3.25. We reconsider our running example of a driving assistant system.
Figure 3.5 shows a simple implementation C of a car that allows a user to request
assistance (rqstCar?) upon which the car drives into or out of a garage autonomously
(drive!). We consider C as a given implementation which we want to reuse in order to
synthesise a specification of the user interface. The composition C ⊗ U of the car C and
its user interface U must satisfy the global specification P which requires that, after some
request, the car may drive and new requests are blocked until the drive is completed. A
specification Q of the user interface may now be synthesised from P and C by quotienting,
i.e., Q := P // C. Note that drive? is an input action in Q. The two transitions leading
to universal states (drive? in q0 and rqstCar! in q1) are only due to the maximality of Q.
They disappear in the parallel composition with C. It is easy to see that the defining
inequality Q⊗ C ⊑e P is satisfied. The example also shows that, in general, we do not
have equality of (P // C)⊗ C and P .

We show next that the quotient operation above yields the coarsest EMIA satisfying
the defining inequality. For this proof, the following lemma ensures that errors and
inconsistencies of // are preserved across refinement:
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Lemma 3.26. Let P, D and Q be EMIAs such that P is τ -free, D is τ -free and may-
deterministic, AD ⊆ AP , OD ⊆ OP , OQ = OP \OD and IQ = IP ∪OD. Further, let p,
d, q be states in P , D, Q, respectively. Then, the following statements hold:

1. If q ⊗ d ⊑e p, then (p, d) /∈ F⊘.

2. If q ⊑e p // d and p /∈ UP ∪ EP , then q ⊗ d /∈ EQ⊗D.

Proof. We write ⊗, ⊘ and // as shorthands for Q⊗D, P⊘D and P//D,
respectively, and analogously for may-transitions.
Claim 1: We show that (q ⊗ d ⊑e p) ∧ ((p, d) ∈ F⊘) implies a contradiction. We

prove this by induction on the rules of Definition 3.24, where our induction hypothesis is
formalised as H(p, d) ≡ ∀q. (q ⊗ d ⊑e p ∧ (p, d) ∈ F⊘) =⇒ ⊥.

QF1 p /∈ EP ∪ UP and d ∈ ED ∪ UD: By Definition 3.7, we have q ⊗ d ∈ EQ⊗D ∪ UQ⊗D,
and q ⊗ d ⊑e p implies p ∈ EP ∪ UP which contradicts our assumption.

QF2 p
a
, d ̸ a and a ∈ AD: By q ⊗ d ⊑e p, we have q ⊗ d

a
⊗, which can only be

due to P2 or P3; thus, d
a
, which is a contradiction.

QF3 (p, d)
a

⊘ R′ with R′ ⊆ F⊘: By induction hypothesis H(p′, d′) holds for all
(p′, d′) ∈ R′. The transition is due to one of the rules PQ1 and PQ2:

PQ1 p
a
P ′, a /∈ AD andR′ = P ′×{d}: By q⊗d ⊑e p, we have q⊗d

a
⊗ Q′×{d}

for some Q′ such that ∀q′∈Q′.∃p′∈P ′. q′ ⊗ d ⊑e p
′. Since (p′, d) ∈ R′ ⊆ F⊘,

H(p′, d) implies a contradiction.

PQ2 p
a
P ′, d

a {d′} and R′ = P ′ × {d′}: By q ⊗ d ⊑e p, there is a Q′ with
q

a
Q′ and ∀q′∈Q′. ∃p′∈P ′. q′ ⊗ d′ ⊑e p

′. Due to (p′, d′) ∈ R′ ⊆ F⊘ we can
derive a contradiction from H(p′, d′).

Claim 2: We show that (q ⊑e p//d)∧ (p /∈ EP )∧ (q, d) ∈ EQ⊗D implies a contradiction.
By Definition 3.7, there are two cases for (q, d) ∈ EQ⊗D:

A (q, d) ∈ EQ × SD: By q ⊑e p // d, we have p // d ∈ EP//D. Hence, p ∈ EP , which is a
contradiction.

B (q, d) ∈ SQ × ED: By QF1, (p, d) ∈ F⊘, which contradicts q ⊑e p // d.

Now, we can show that // is indeed a quotient operator with respect to ⊗:

Theorem 3.27 (// is a Quotient Operator with respect to ⊗). Let P , D and Q be
EMIAs such that P is τ -free, D is τ -free and may-deterministic, AD ⊆ AP , OD ⊆ OP ,
OQ = OP \OD and IQ = IP ∪OD. Then, Q ⊑e P // D iff Q⊗D ⊑e P .

Proof. We use the same shorthands as in Lemma 3.26.

“⇒”: We show that R := {(q⊗d, p) ∈ SQ⊗D × SP | q ⊑e p // d or p ∈ UP } is an error-
preserving modal refinement relation. We only have to consider a (q⊗d, p) ∈ R
with p /∈ UP . Note that Cases R4 and R6 are mostly analogous to Cases R3 and R5,
respectively.
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R1 q ⊗ d /∈ EQ⊗D iff (by Definition 3.7) q /∈ EQ ∧ d /∈ ED iff (by q ⊑e p // d)
p // d /∈ EP//D ∧ d /∈ ED. Definition 3.23 implies p /∈ EP . Vice versa, p /∈ EP

implies p // d /∈ EP//D. Now, q ⊑e p // d implies that p // d is consistent, hence,
d /∈ ED and, due to Definition 3.7, q ⊗ d /∈ EQ⊗D.

R2 By Definition 3.23, p /∈ UP implies p // d /∈ UP//D. Due to q ⊑e p // d, we have
q /∈ UQ. Now, QF1 implies d /∈ UD, hence, q ⊗ d /∈ UQ⊗D.

R3 p
i
P ′ for i ∈ IP :

1. If i ∈ AD and d
i {d′}, then PQ2 implies (p, d)

i
⊘ P ′×{d′}. In P //D,

the target set might only be a subset P ′′×{d′} of P ′×{d′}. By q ⊑e p//d,

we have q
i

Q′ for some Q′ such that ∀q′∈Q′. ∃p′∈P ′′. q′ ⊑e p
′ // d′,

whence (q′⊗d′, p′) ∈ R. Now, by P3, there is a transition (q, d)
i

⊗
Q′ × {d′}.

2. If i ∈ AD and d ̸ i
, then (p, d) ∈ F⊘ by QF2, which is impossible since

p // d is consistent.

3. If i /∈ AD, the proof is analogous to Case 1 with d = d′, when replacing PQ2
by PQ1 and P3 by P1.

R4 p
o
P ′ for o ∈ OP : Here, the same arguments as for R3 apply.

R5 q ⊗ d
i

⊗ q′ ⊗ d′ and i ∈ IP = IQ⊗D: This transition is due to one of the
rules P4 or P6. Rule P5 is impossible as AQ = AP ⊇ AD.

P4 q
i
q′ and i /∈ AD: We have d = d′, and q ⊑e p // d implies p // d

i
//

p′ //d′′ for some p′, d′′ such that q′ ⊑e p
′ //d′′. Since i /∈ AD, we get d = d′′

and p
i
p′ by PQ3. We have (q′⊗d′, p′) ∈ R since q′ ⊑e p

′ // d′.

P6 q
i
q′ and d

i
d′: Since q ⊑e p // d, we conclude p // d

i
// p

′ // d′′

for some p′, d′′ with q′ ⊑e p
′ // d′′. This can be due to PQ3 or PQ4; in

both cases we have p
i
p′. Due to may-determinism, d′′ = d′ and, since

q′ ⊑e p
′ // d′, we have (q′⊗d′, p′) ∈ R.

R6 q ⊗ d
o

⊗ and o ∈ OP = OQ⊗D: The proof proceeds analogous to the one
of R5.

“⇐”: We show that R := {(q, p // d) ∈ Q× (P //D) | q ⊗ d ⊑e p or p // d ∈ UP//D} is an
error-preserving modal refinement relation. It suffices to consider some (q, p//d) ∈ R
with p // d /∈ UP//D.

R1 q ∈ EQ implies (by Definition 3.7) q ⊗ d ∈ EQ⊗D iff (by q ⊗ d ⊑e p) p ∈ EP iff
(by Definition 3.23) p // d ∈ EP⊘D. For the reverse direction, it remains for
us to show that the first implication can be reversed, i.e., that d /∈ ED. By
q ⊗ d ∈ EQ⊗D and q ⊗ d ⊑e p, we have p ∈ EP ∪ UP . Hence, p // d /∈ UP//D

implies d /∈ ED.
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R2 By Definition 3.23, p // d /∈ UP//D implies p /∈ UP and (p, d) /∈ EP ×ED. There
are two cases:

1. p ∈ EP and d /∈ ED: q ⊗ d ⊑e p implies q ⊗ d ∈ EQ⊗D; hence, q ∈ EQ.

2. p /∈ EP : q ⊗ d ⊑e p implies q ⊗ d /∈ EQ⊗D ∪ UQ⊗D.

In both cases we conclude q /∈ UQ.

R3 p // d
i

// R
′ ⊆ P ′ × {d′} for i ∈ IP//D, where (p, d)

i
⊘ P ′ × {d′} is due

to one of the rules PQ1 or PQ2, and R′ consists of the consistent states of
P ′ × {d′}. In the following, we use AP = AQ throughout.

PQ1 p
i

P ′, d = d′ and i /∈ AD: By q ⊗ d ⊑e p, we have a transition

q ⊗ d
i

⊗ Q′ × {d′′} for some Q′, d′′ with ∀q′∈Q′. ∃p′∈P ′. q′ ⊗ d′′ ⊑e p
′.

Since i /∈ AD, this transition can only be due to Rule P1; hence, q
i
Q′

and d′′ = d. By Lemma 3.26, q′ ⊗ d ⊑e p
′ implies p′ // d /∈ F⊘; thus,

p′ // d ∈ R′.

PQ2 p
i

P ′ and d
i

d′: By q ⊗ d ⊑e p, we get q ⊗ d
i

⊗ Q′ × {d′}
for some Q′ such that ∀q′∈Q′. ∃p′∈P ′. q′ ⊗ d′ ⊑e p

′. The transition must
result from P3, and the rest of the proof is as in PQ1.

R4 p//d
o

// R
′ with o ∈ OP//D = OP \OD: The same arguments as for R3 apply.

R5 q
i
q′ for i ∈ IQ:

1. i /∈ AD: By P4, we have (q, d)
i

⊗ (q′, d). There is a transition p
i
p′

for some p′ with q′ ⊗ d ⊑e p
′, because of q ⊗ d ⊑e p. By PQ3, we have

(p, d)
i

⊘ (p′, d), and Lemma 3.26 implies the consistency of p′ //d; hence,

p // d
i

// p
′ // d.

2. i ∈ AD and d ̸ i
: Due to d ̸ i D and QF2, we have p ̸ i P . Hence, PQ5

yields p // d
i ⊤, and (q′,⊤) ∈ R is trivial.

3. i ∈ AD and d
i
d′: By P6, a transition (q, d)

i
⊗ (q′, d′) exists. The

proof proceeds as for Case 1, except for using PQ4 instead of PQ3.

R6 q
o
q′ for o ∈ OQ:

1. o ∈ AD, d
o
d′ for some d′: By P6, we have (q, d)

o
⊗ (q′, d′) and, by

q⊗d ⊑e p, we obtain p
o
p′ for some p′ with q′⊗d′ ⊑e p

′. Applying PQ4,
we get (p, d)

o
⊘ (p′, d′). Lemma 3.26 implies the consistency of p′ // d′;

hence, p // d
o

// p
′ // d′.

2. o ∈ AD, d ̸ o : Analogous to case R5(2).

3. o /∈ AD: q ⊗ d
o

⊗ q′ ⊗ d by P4. Due to q ⊗ d ⊑e p, there is a p
o
p′

for some p′ with q′ ⊗ d ⊑e p
′. The rest follows as in the proof of Case 1,

applying PQ3 instead of PQ4.
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This theorem establishes // as an adjoint of ⊗ when setting D ▷ P := P // D (see
Section 2.1.1). Due to the associativity and the compositionality of ⊗, Lemma 2.1 holds
for //. In particular, we may conclude that // is monotonic with respect to ⊑e in the
left argument and antitonic with respect to the right argument, and that // satisfies a
De Morgan-like law.

Corollary 3.28 (Monotonicity to the Left of // with respect to ⊑e). Let P1, P2, D be
EMIAs with P1 ⊑e P2. If P1, P2 are τ -free and D is τ -free and may-deterministic, then
P1 // D ⊑e P2 // D.

Corollary 3.29 (Antitonicity to the Right of // with respect to ⊑e). Let P , D1, D2 be
EMIAs with D1 ⊑e D2. If P is τ -free and D1, D2 are τ -free and may-deterministic, then
P // D1 ⊒e P // D2.

Corollary 3.30 (De Morgan-like Law for //). Let P , Q and R be EMIAs, then P //(Q⊔R)
⊑e (P // Q) ⊓ (P // R).

By Lemma 2.1 and commutativity of parallel composition, we get:

Corollary 3.31 (Quotienting by Composition). Let P , Q and R be EMIAs, then
P // (Q⊗R) ≡e (P // Q) // R.

3.1.8. Implication and Negation

In addition to conjunction and disjunction, we would appreciate to define further logical
operators like implication and negation. Implication →, as an adjoint to conjunction (see
Section 2.1.1), is defined by the condition X ⊑e P → C iff X ⊓ P ⊑e C. In particular,
we have P ⊑e C iff P → C ≡e ⊤. Negation arises as the special case ¬P := P →⊥. A
straightforward way of defining implication is by setting P → C :=


{X | X ⊓ P ⊑e

C}. However, this declarative definition is impractical due to the infinite disjunction.
Unfortunately, we can show that DMTS and, thus, any MTS-based interface theory is not
closed under negation, so that an operational construction of implication and negation in
the spirit of the other operators is impossible (see Theorem 3.32).

In a trace-based setting similar to deterministic IA, Dill argues that safety properties
are not closed under negation and, therefore, a negation operator does not exist in his
setting [Dil89]. However, it is unclear in how far this argument applies to an MTS-based
setting where must-transitions express a limited form of liveness.
Gössler and Raclet [GR09] introduced an underapproximation ⇝ of implication for

deterministic MTS. This sub-implication satisfies X ⊑ P ⇝ C =⇒ X ⊓ P ⊑ C,
but the reverse direction does not hold in general. Specifications X and P are called
non-conflicting—a concept introduced as independence in [LSW95]—if F& = ∅. For non-
conflicting specifications X and P , Gössler and Raclet show that the reverse direction
also holds, i.e., X ⊓ P ⊑ C =⇒ X ⊑ P ⇝ C. In particular, P ⇝ C and P are
non-conflicting. However, Gössler and Raclet do not consider that non-conflicting X
and P satisfy X ⊓ P ⊑ C only if P and C, as well as X and C, are also non-conflicting.
This undermines the purpose of disjunctive must-transitions to provide a choice between
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alternatives in case of a conflict such that, in a non-conflicting conjunction, all alternatives
must be preserved. Further, as P ⇝ ⊥ and P are non-conflicting, P ⇝ ⊥ ≡⊑ ⊥ for
all consistent specifications P , which renders negation completely useless. These issues
significantly restrict the usability of sub-implication.

Gössler and Raclet also show that an implication operator does not exist for MTS.
Because their counter-example does not work in the nondeterministic setting of EMIA,
we provide a more general argument:

Theorem 3.32 (DMTS and Negation). Disjunctive Modal Transition Systems (DMTS)
are not closed under negation; hence, conjunction has no adjoint in DMTS.

Proof. DMTS have been shown to be equally expressive than Hennessy-Milner-Logic
with greatest fixed points (νHML), if the number of initial states is required to be
finite [Ben+13]. If DMTS were closed under negation, then least fixed points were ex-
pressible by defining µX. ϕ(X) := ¬νX.¬ϕ(¬X), and DMTS would be equally expressive
to the modal µ-calculus, which is strictly more expressive that νHML.

A concrete example that illustrates the difficulty with negation is a specification S over
alphabet {a} with a single state s and a looping transition s

a
s. The negation of

S comprises all implementations that are inconsistent with S, i.e., all implementations
that include a finite chain of a-transitions, e.g., T : t0

a
t1

a
t2. In some sense,

sub-implication captures the non-negative part of implication, which explains the relation
to non-conflicting conjunctions.

In order to extend the proposed sub-implication to nondeterministic interfaces, one
may employ an exponential construction similar to the one presented in [Ben+13] for the
quotient. However, this would lead to similar complications (see also Section 3.1.7) and
would still result in a questionable underapproximation.

3.1.9. Alphabet Extension

In perspective-based specification as employed in software engineering, one wishes to
specify a component from multiple separate perspectives (also called views). Each
perspective should be specifiable independently of the other perspectives and consider only
those actions that are relevant for the current perspective, i.e., each perspective has its own
alphabet; these alphabets may be identical, disjoint or overlapping. The specification of
the overall component should then arise as the conjunction of all perspective specifications.

So far, conjunction, disjunction and refinement are defined for EMIAs P and Q with
equal alphabets, i.e., where IP = IQ and OP = OQ. That is, given two EMIAs specifying
perspectives with different alphabets, one wishes to merge these alphabets in order to
make conjunction, disjunction and refinement applicable. This may be done by employing
alphabet extension operators. In addition, alphabet extension may be employed to add
extra features that are not covered by the specification interface (see [Rac+11]).

Definition 3.33 (Universal Alphabet Extension). Given an EMIA P := (SP , IP , OP ,

P , P , S
0
P , EP , UP ), a state ⊤ /∈ SP and two disjoint sets I and O of input and
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respectively output actions with I∩AP = ∅ = O∩AP , the universal alphabet extension of
P by I and O is the EMIA P ′ := (SP ∪ {⊤}, IP ∪ I,OP ∪O, , , S0

P , EP , UP ∪ {⊤})
obtained from P by adding to each state s ∈ SP \ (EP ∪ UP ) transitions s

a ⊤ for all
a ∈ I \ IP and all a ∈ O \OP .

Definition 3.34 (Alphabet Extension Operators). An alphabet extension operator over
a pair of disjoint sets I and O is a function ϵ on EMIA that maps each EMIA P to a
refinement of its universal extension P ′. Operator ϵ is compositional if the preorder given
by P ⊑ϵ Q iff P ⊑ ϵ(Q) is compositional:

Following the lines of MI and MIA, the operations on EMIAs can be lifted to different
alphabets by extending the alphabets of the operands by their mutually foreign actions.
When a specification’s alphabet is extended, the least possible assumptions should be
made on a new action a, while the same specification with respect to known actions
should hold before and after a. This can be achieved by adding an optional a-loop to each
state. For output actions this is straightforward, but the exact meaning of optional input
transitions depends on the desired composition concept (see Section 3.3, Issue I4). Here,
we define the standard error-aware alphabet extension employed in interface theories:

Definition 3.35 (Error-aware Alphabet Extension & Refinement). Given an EMIA
P := (SP , IP , OP , , , S0

P , EP , UP ), a state err ∈ EP and disjoint action sets I
and O satisfying I ∩ AP = ∅ = O ∩ AP , the error-aware alphabet extension of P by I
and O is given by [P ]I,O := (SP , IP ∪ I,OP ∪ O, ′, ′, S0

P , EP , UP ) for ′ :=
∪ {(p, i, {p, err}) | p ∈ SP \ (EP ∪ UP ), i ∈ I} and ′ := ∪ {(p, i, err) | p ∈

SP \ (EP ∪ UP ), i ∈ I} ∪ {(p, a, p) | p ∈ SP \ (EP ∪ UP ), a ∈ I ∪ O}}. We often write
[p]I,O for p as state of [P ]I,O, or [p] in case I, O are understood from the context.

For EMIAs P and Q with p ∈ P , q ∈ Q, IP ⊇ IQ and OP ⊇ OQ, we define p ⊑′
e q

if p ⊑e [q]IP \IQ, OP \OQ
. Since ⊑′

e extends ⊑e to EMIAs with different alphabets, we
write ⊑e for ⊑′

e and abbreviate [q]IP \IQ, OP \OQ
by [q]P ; the same notations are used for

P and Q.

Lemma 3.36. Operator [·] of Definition 3.35 is a compositional alphabet extension
operator in the sense of Definition 3.34.

Proof. It is obvious that [·] is an alphabet extension operator. The proof of its composi-
tionality is standard and may be found, e.g., in [Buj+16].

A separate alphabet extension operator may be defined for unanimous and broadcast
parallel composition. A broadcasting alphabet extension operator is similar to the error-
aware one, except that we do not add err as a target of input transitions. A unanimous
extension operator simply adds may loops to all states for all new actions. Alternatively,
a mixed extension combining different composition concepts for each state and each new
action is also possible.
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3.2. Error-abstracting Modal Interface Automata

Because IA-based interface theories prune errors, it is important to investigate the relation
between such error-abstracting interface theories and our error-preserving EMIA theory.
We do this for MIA3 [Buj+16] because it was (before EMIA) the most general IA-based
interface theory to date in that it is nondeterministic rather than deterministic and
optimistic rather than pessimistic, thus subsuming MI [Rac+11] and MIO [Bau+10]
(with respect to strong compatibility). In this section, we establish a Galois insertion
between MIA and a subtheory of EMIA, i.e., a Galois connection (γ, α) for which
α◦γ = idMIA up to mutual refinement ≡m of MIAs [CC77]. Recall that states from which
a communication mismatch is reachable via output- or τ -transitions are called illegal.
Intuitively, α abstracts from EMIAs by considering all illegal states to be equivalent, and
γ concretises MIAs as EMIAs without any loss of information.

3.2.1. Error-abstraction

We slightly generalise the MIA3 theory given in [Buj+16; FL16b] in order to get a more
uniform presentation of MIA and EMIA, which also simplifies the proof of Theorem 3.48
compared to [FL16b] by avoiding infinite disjunctions.

Definition 3.37 (Error-abstracting Modal Interface Automata [Buj+16]). An EMIA P
is called an error-abstracting Modal Interface Automaton (MIA) if

M1. ∀p ∈ SP \(EP ∪ UP ), i ∈ IP . ∃p′ ∈ SP . p
i
p′, (input enabledness)

M2. p
i
p′ =⇒ ∃P ′. p′ ∈ P ′ ∧ p

i
P ′, (input must)

M3. s ∈ EP ∪ UP ∧ p
a
s =⇒ a ∈ IP . (error abstraction)

We write EMIA′ for the class of EMIAs satisfying M1 and M2, and MIA for the class of
MIAs. With ⊑m we denote the restriction of ⊑e to MIAs.

Note that input enabledness and the input must condition do not restrict our definition of
MIA when compared to MIA3 because a transition may target states in EP and UP . The
purpose of these conditions is to distinguish the error-aware parallel composition of MIA
from the unanimous parallel composition of MTS in our unified model, because the latter
mode of composition is not supported by MIA. The intuition behind the distinguishing
axiom M3 is that a MIA is error-abstracted by definition, i.e., no error state may be
reached via output- or τ -transitions. We generalise MIA3 by permitting that an action
a? chooses nondeterministically between an error state and a regular successor state, e.g.,

p′
a?

p
a?

err. It is easy to see that EMIA′ is closed under ⊗:

Lemma 3.38. If P,Q ∈ EMIA′, then P ⊗Q ∈ EMIA′.

Proof. As a direct consequence of Definition 3.7, if p ∈ SP and q ∈ SQ are input enabled
and satisfy the input must condition, then p⊗ q satisfies both conditions, too.

In order to make parallel composition on MIA respect error abstraction, we need to
consider the reachability of illegal states:
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Definition 3.39 (Backward Closure). Let P be an EMIA, X ⊆ AP ∪ {τ} and S ⊆ SP .
The X-backward closure of S in P is the smallest set bclXP (S) ⊆ SP such that S ⊆ bclXP (S)
and, for all α ∈ X and p′ ∈ bclXP (S), if p

α
p′, then p ∈ bclXP (S). If XP is one of IP ,

OP , ΩP or AP , then we also write bclXP (S) instead of bclXP
P (S).

Definition 3.40 (Illegal States). The set of illegal states of an EMIA P is defined as
illP := bclΩP (EP ∪ UP ) \ (EP ∪ UP ).

The set illP⊗Q of an EMIA composition P ⊗Q corresponds to the set of illegal states in
IA [AH01a], MI [Rac+11] and MIA [Buj+16]. In contrast to these theories, EMIA requires
one to match transitions of such states in the refinement ⊑e. The resulting refinement
preorder is comparable to other refinement preorders for error-free interfaces, but is more
detailed for erroneous ones. Indeed, MIA can be seen as an abstraction of EMIA, where
all states in illP⊗Q are deemed equivalent as we show in Theorem 3.48. For instance, the

interfaces P : {i}/{o1, o2} : p0
i?

p1
o1! errP and Q : {i}/{o1, o2} : q0

i?
q1

o2! errQ are
equivalent in MIA because after receiving input i, both may reach an error autonomously,
whereas EMIA distinguishes P and Q according to the different behaviours (o1! vs. o2!)
that lead to an error.

Definition 3.41 (Error Abstraction). The error abstraction of an EMIA P ∈ EMIA′

is the EMIA α(P ) := (Sα(P ), IP , OP , α(P ), α(P ), S
0
α(P ), EP , Uα(P )) with Sα(P ) :=

(SP \ illP ) ⊎ {⊤α(P )} and Uα(P ) := UP ⊎ {⊤α(P )}. If S0
P ∩ illP ̸= ∅, then S0

α(P ) :=

(S0
P ∩ Sα(P )) ∪ {⊤α(P )}, else S0

α(P ) := S0
P ∩ Sα(P ). The transitions of α(P ) are obtained

from P as follows: if a state p specifies an i?-transition into illP , then all i?-transitions

starting from p are replaced by a transition p
i? ⊤α(P ) and the underlying may-transition.

Obviously, α(P ) ∈ MIA for all P ∈ EMIA′. Hence, by abuse of notation, we write α for
both a function in EMIA′ → EMIA′ and in EMIA′ → MIA. Further, α is monotonic:

Lemma 3.42 (Monotonicity of α). The map α defined in Definition 3.41 is monotonic
with respect to ⊑e.

Proof. Let R be an error-preserving modal refinement relation between EMIAs P and Q.
We show that the relation Rα := (R∩ (SαP ×SαQ))∪ (SαP ×UαQ) is an error-preserving
modal refinement relation between αP and αQ. Let (p, q) ∈ Rα. In case q ∈ UαQ,
the definition of refinement is trivially satisfied, so we can assume q /∈ UαQ. Hence, by
definition of Rα, we may assume (p, q) ∈ R and distinguish the following cases:

R1, R2 Because R is an error-preserving modal refinement relation, (p, q) ∈ R trivially
implies that R1 and R2 are satisfied.

R3 Let q
i

αQ Q′
α. We consider two cases:

1. The transition is due to a transition q
i

Q q′ with q′ ∈ illQ, i.e., Q
′
α = {⊤αQ}:

Any P ′
α is a possible implementation of Q′

α.
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2. The transition is due to a transition q
i

Q Q′: Because all transitions into
illQ are replaced in Definition 3.41, we know that Q′

α = Q′ and that none of

these target states is in illQ or EQ ∪ UQ. By (p, q) ∈ R, there is a p
i

P P ′

such that P ′ matches Q′. With the same argument as before, we may conclude
that P ′

α := P ′ matches Q′
α.

R4 Similar to R3(2), where
i

is replaced by
ω

.

R5 Let p
i

αP p′. If p′ ̸= ⊤αP , then p
i

P p′ and, due to (p, q) ∈ R, there is a

q
i

Q q′ such that (p′, q′) ∈ R. There are two cases:

1. ∃q′′ ∈ illQ. q
i

Q q′′: By definition of α we have illQ ∩SαQ = ∅; thus, q′′ ̸∈ SαQ.

Hence, it follows from q ∈ SαQ that q
i

Q ⊤αQ by definition of α, and
(p′,⊤αQ) ∈ Rα is obvious.

2. ∀q′′ ∈ illQ. q ̸ i Q q′′: The definition of α implies q′ ∈ SαQ and q
i

αQ q′.
Therefore, (p′, q′) ∈ Rα.

If p′ = ⊤αP , then there is a p′′ ∈ illP with p
i

P p′′. By (p, q) ∈ R, there

exists a q′′ ∈ illQ such that q
i

Q q′′ and (p′′, q′′) ∈ R. Thus, q
i

αQ ⊤αQ, and
(⊤αP ,⊤αQ) ∈ Rα is trivial.

R6 Analogous to R5 with
i

and
i

replaced by
ω

and
ω

, respectively, and where
we always have p′ ̸= ⊤αP and only Case 2 applies (otherwise, we would have
q ∈ illQ).

Now we can define MIA parallel composition and show that it is compositional.

Definition 3.43 (MIA Parallel Composition [Buj+16]). For composable MIAs P and Q,
the parallel product is given by P ⊗ Q as defined in Definition 3.7. The MIA-parallel
composition is defined as the MIA P ∥Q := α(P ⊗Q).

Due to Lemma 3.38 and α(P ) being a MIA, P ∥Q is also a MIA.

Lemma 3.44 (Compositionality of ∥). If P1, P2 and Q are MIAs such that P1 ⊑e P2

and P2, Q are composable, then P1, Q are composable and P1 ⊗Q ⊑e P2 ⊗Q.

Proof. Composability is obvious. By Theorem 3.9 and Lemma 3.42, we have P1 ∥Q =
α(P1 ⊗Q) ⊑e α(P2 ⊗Q) = P2 ∥Q.

Figure 3.6 illustrates why leading τs cannot be permitted in Rule R5 of Definition 3.5 when
error-abstraction is used. If leading τs were permitted, then specification P would refine
Q. However, P ∥R ̸⊑m Q ∥R due to the universal states introduced by error-abstraction,
i.e., the ⊑m would not be compositional with respect to ∥.
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P : {i}/{d}

p0 p2

p4

p3

i?

i? d!

Q : {i}/{d}

q0 q1

q4

q2 q3

i?

τ i? d!

R : {d}/∅

r0

Q ∥R : {i}/{d}

q0 ∥ r0 q1 ∥ r0

q4 ∥ r0

⊤

i?

τ i?

P ∥R : {i}/{d}

p0 ∥ r0 ⊤i?

Figure 3.6.: Compositionality flaw with leading τ and error-abstraction.

Lemma 3.45 (α is Homomorphic with respect to Parallel Composition). The mapping
α defined in Definition 3.41 is homomorphic with respect to parallel composition, i.e.,
α(P ⊗Q) ≡m α(P ) ∥ α(Q).

Proof. First, observe that α(P ⊗ Q) and α(P ) ∥ α(Q) have the same state set S :=
Sα(P⊗Q) = Sα(P )∥α(Q), because the same pruning operation is used in α and in MIA’s
parallel composition operator (see also [Buj+16; BV14]).
“⊑m”: We show that the relation R := idS ∪ (Sα(P⊗Q) × {⊤α(P )∥α(Q)}) is a MIA-

refinement relation. Let (s, t) ∈ R. If t = ⊤α(P )∥α(Q), there is nothing to show. Thus, we
assume s = t and distinguish the following cases:

R1, R2 From s = t one directly concludes R1 and R2.

R3 Let s = (p, q) ∈ Sα(P∥Q). A transition (p, q)
i

α(P )∥α(Q) S
′ is due to one of the

rules P1, P2 or P3:

P1 S′ = P ′ ×{q} for some p
i

α(P ) P
′ and i ̸∈ Aα(Q): because this transition has

neither been pruned nor replaced by a may-transition to ⊤α(P )∥α(Q), the same
transition also exists in α(P ∥Q).

P2 S′ = {p} ×Q′ for some q
i

α(Q) Q
′ and i ̸∈ Aα(P ): Analogous to P1.

P3 S′ = P ′ ×Q′ for some p
i

α(P ) P
′ and q

i
α(Q) Q

′: Similar to P1 and P2.

R4 Analogous to R3.

R5 Let (p, q)
i

α(P∥Q) s
′′. In case s′′ = ⊤α(P )∥α(Q), then this transition is due to

a replacement of a transition (p, q)
i

α(P∥Q) s
′ by ⊤α(P )∥α(Q). In case s′′ ̸=

⊤α(P )∥α(Q), by choosing s′ = s′′, we also have a transition (p, q)
i

α(P∥Q) s
′. In

both cases, this transition is due to one of the rules P4 through P6, which all result

in a similar line of argument. In the case of P4, we have s′ = (p′, q), p
i

α(P ) p
′

and a ̸∈ AQ. By the definition of α, there must be a p′′ such that p
i

P p′′. By

P4, (p, q)
i

P∥Q (p′′, q) and, thus, also (p, q)
i

α(P∥Q) (p
′′, q).
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R6 Analogous to R5.

Direction “⊒m” can be shown dually.

3.2.2. The Galois Insertion

The Galois insertion between MIA and EMIA consists of a concretisation γ : MIA →
EMIA′ and an abstraction α : EMIA′ → MIA such that (γ, α) is a Galois connection and
(α ◦ γ)(Q) ≡m Q. As presented in Section 3.2, the main idea behind α is to consider the
states illP as equivalent. Each equivalence class of EMIAs resulting from this abstraction
has a greatest element with respect to the refinement preorder, and α assigns each EMIA
in such a class the greatest element of the class, which turns out to be a MIA. Vice
versa, γ is the identical embedding of MIA into EMIA, such that a MIA represents its
equivalence class.

Definition 3.46 (Concretisation Function from MIA to EMIA′). The concretisation
function γ : MIA → EMIA′ is defined as γ(P ) := P .

Obviously, γ is monotonic:

Lemma 3.47 (Monotonicity of γ). The map γ defined in Definition 3.46 is monotonic
with respect to ⊑m and ⊑e .

The monotonicity of α and γ is key to the proof that α and γ form a Galois insertion:

Theorem 3.48 (Galois Insertion). The maps α : EMIA′ → MIA and γ : MIA → EMIA′

defined in Definitions 3.41 and 3.46 form a Galois insertion between MIA and EMIA′

up to ≡m, i.e., P ⊑e γ(Q) iff α(P ) ⊑m Q and (α ◦ γ)(Q) ≡m Q for all P ∈ EMIA′ and
Q ∈ MIA.

Proof. First, observe that α ◦ γ = idMIA (up to ≡m). Second, the extensivity of α implies
that γ ◦ α is extensive, i.e., P ⊑e (γ ◦ α)(P ). Third, we show that α and γ form a Galois
connection, i.e., P ⊑e γ(Q) iff α(P ) ⊑m Q. Direction “⇒” holds due to α◦γ = idMIA and
the monotonicity of α: P ⊑e γ(Q) ⇒ α(P ) ⊑m (α ◦ γ)(Q) ≡m Q. Direction “⇐” follows
from the monotonicity of γ, the extensivity of γ ◦ α and the transitivity of ⊑e by the
following chain of implications: α(P ) ⊑m Q ⇒ (γ ◦ α)(P ) ⊑e γ(Q) ⇒ P ⊑e γ(Q).

The extensivity of α makes γ non-homomorphic with respect to parallel composition;
however, γ satisfies the inequality γ(P ∥Q) ⊒e γ(P )⊗ γ(Q) for MIAs P,Q. Although
this follows directly from the definition of γ, we can prove a more general fact:

Lemma 3.49. Let K and L be preorders, and · a binary operation on K respectively L.
If (γ, α) is a Galois insertion between K and L such that α is homomorphic with respect
to ·, then γ(k · k′) ⊒ γ(k) · γ(k′).

Proof. γ(k) · γ(k′) ⊑ (γ ◦ α)(γ(k) · γ(k′)) ≡ γ((α ◦ γ)(k) · (α ◦ γ)(k′)) ≡ γ(k · k′).

Corollary 3.50. Let P and Q be MIAs. Then, γ(P ∥Q) ⊒e γ(P )⊗ γ(Q).
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Proof. By Theorem 3.48 and Lemma 3.45, we can apply Lemma 3.49.

In the following lemmas 3.51 and 3.52 about abstraction and quotienting, we consider ⊑e

rather than ⊑m because we do not know a priori that the quotient of MIAs is a MIA. In
particular, the equivalence ≡e in Lemma 3.52 is not trivial because Lemma 3.51 only
guarantees ⊑e instead of ≡e.

Lemma 3.51 (Abstraction Respects Quotienting). If Q ⊑e P //D for EMIAs P , Q and
D, then α(Q) ⊑e α(P ) // α(D).

Proof. We have Q ⊑e P // D
Def. 3.27⇐⇒ Q ⊗ D ⊑e P

Lem. 3.42
=⇒ α(Q ⊗ D) ⊑e α(P )

Lem. 3.45⇐⇒
α(Q) ∥ α(D) ⊑e α(P )

Def. 3.27⇐⇒ α(Q) ⊑e α(P ) // α(D).

Substituting P // D for Q in Lemma 3.51 yields α(P // D) ⊑e α(P ) // α(D).

Lemma 3.52 (MIA Quotient). Let P and D be MIAs. We have P//D ≡e α(γ(P )//γ(D)),
i.e., MIA is closed under quotienting.

Proof. By Lemma 3.51, Theorem 3.48, Definition 3.46 and extensivity of α (again
Theorem 3.48), we get the following chain of inequalities: α(γ(P ) // γ(D)) ⊑e α(γ(P )) //
α(γ(D)) ≡e P // D ≡e γ(P ) // γ(D) ⊑e α(γ(P ) // γ(D)). By transitivity, all inequalities
are equalities.

3.2.3. Logical Operators under Galois Insertion

In this subsection we briefly discuss how the Galois insertion relates MIA and EMIA
with respect to the logical operators presented in Section 3.1. First, we show that MIA
is closed under conjunction.

Lemma 3.53 (MIA-Conjunction [Buj+16]). If P and Q are MIAs with equal alphabets,
then their conjunction P ⊓Q is also a MIA.

Proof. It is easy to see that the conjunctive product & (see Definition 3.14) preserves
the properties M1 through M3. Hence, it remains for us to show that the pruning of
inconsistent states also preserves these properties. A state p⊓ q may only have a disabled
input i if all i-may-transitions lead to states in F&. Then, p ⊓ q would be inconsistent
due to CF6, because P &Q satisfies M1 and M2. Therefore, p⊓ q must be input enabled.
The same line of reasoning applies to M2. Property M3 is trivial.

Hence, conjunction is the greatest lower bound with respect to ⊑m. The map α is not
homomorphic with respect to conjunction: although α(P ⊓Q) ⊑m α(P ) ⊓ α(Q) holds
for P,Q ∈ EMIA′ because α is monotonic, the converse direction “⊒m” does not hold
in general, because MIA’s replacement of illegal states by ⊤ must be reproduced by α.
An example of EMIAs P and Q with α(P ⊓Q) ̸⊒m α(P ) ⊓ α(Q) is shown in Figure 3.7.
State p1 of specification P is in illP due to the b!-transition. Therefore, α prunes p1 and
replaces it by a universal state ⊤ in α(P ). The conjunction P ⊓Q is inconsistent because
P ’s regular state p1 is conjoined with Q’s fatal error state err, and the a?-must-transition
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P :

p0

p1

err

a?

a?b!

α(P ):

p0

⊤

a?

Q:

q0

err

a?

α(Q):

q0

err

a?

P ⊓Q = α(P ⊓Q):

∅

α(P ) ⊓ α(Q):

(p0, q0)

err

a?

Figure 3.7.: Example of EMIAs P , Q with α(P⊓Q) ̸⊒m α(P )⊓α(Q), where A = {a}/{b}.

propagates this inconsistency back to the initial state. In the abstract setting, both the
error and the inconsistency are avoided resulting in a regular and consistent initial state
that is trivially refined by P ⊓Q.

It is obvious that MIAs are closed under disjunction and that α is homomorphic
with respect to disjunction. Further, α respects implication although we cannot define
implication operationally:

Lemma 3.54 (Abstraction Respects Implication). Given EMIAs X, P and C, then
X ⊑e P → C implies α(X) ⊑e α(P )→ α(C).

Proof. X ⊑e P →C ⇐⇒ X ⊓P ⊑e C ⇐⇒ X ⊑e C ∧ P ⊑e C =⇒ α(X) ⊑e α(C) ∧
α(P ) ⊑e α(C) ⇐⇒ α(X) ⊓ α(P ) ⊑e α(C) ⇐⇒ α(X) ⊑e α(P )→ α(C).

3.3. Error-preserving vs. Error-abstracting Interface Theories

In this section we illustrate how the fatal error states employed in EMIA solve the issues
I1–I4 of Section 2.3.3 present in error-abstracting interface theories such as IA [AH01a],
MI [Rac+11] or MIA [Buj+16]:

I1. The possibility to redefine unwanted behaviour to not being an error when refining a
composition impacts the usability of interface theories for safety-critical systems;

I2. The inability to check the compatibility of multiple components requires one to resort
to separate assembly theories [HK15];

I3. A compatibility concept that is too strict for modelling product line families [LNW07];
I4. A global composition concept that requires a fixed view on composition.

Bujtor and Vogler [BV14] have shown that keeping or removing illegal states on a purely
syntactic level are equivalent for IA with respect to preserving compatibility. In this
spirit, current interface theories [Bau+10; Buj+16; BV14; AH01a; AH05; LNW07; LVF15;
Rac+11] eliminate erroneous behaviour either by regarding it as undefined (pessimistic)
or by pruning (optimistic); all errors are treated semantically equivalently. Due to this
equivalence, theories combining IA and MTS cannot remove illegal states completely

61



3. Modal Interface Automata

(a)

errp q

a! a?

(b)

errp q

a! a?

(c)

errp q

a! ×a?

(d)

p q

a! a?

(e)

p q

×a! a?

Figure 3.8.: Examples of errors: potential error (a) can be refined to potential error (b),
to actual error (c) or resolved by refinement as in (d) or (e).

but must replace them by a special, arbitrarily refinable behaviour as is done in our
error-abstraction function α of Definition 3.41.

However, because optional transitions (i.e., may-transitions) and disjunctive transitions
allow for underspecification in MTS-based interface theories, one may distinguish potential
errors that can be resolved by a suitable refinement from actual, unresolvable errors that
arise when an output is required and the corresponding input is forbidden. For instance,
specification (a) in Figure 3.8 shows a potential error: p might implement output a!
whereas q does not guarantee that a? can be received in an implementation. This error
can be refined to the potential error in (b) by turning the optional a!-transition in p
into a mandatory a!-transition. It can be refined even further to the actual error in (c)
by additionally forbidding the optional a?-transition in q. However, the potential error
in (a) can also be resolved, e.g., by refining q’s optional a?-transition into a mandatory
a?-transition (d) or by removing p’s optional a!-transition (e). An actual error as in (c)
cannot be resolved by refining the components because it indicates that there is a concrete
incompatibility between the components’ specifications.

That is, specifications based on MTS contain more information with respect to compat-
ibility, which we make explicit in EMIA. EMIA guarantees that compatible specifications
have only compatible implementations, potential errors have both compatible and erro-
neous implementations, and actual errors have only erroneous implementations (see also
Issue I3).

In particular, we establish in this section that EMIA treats unwanted behaviour more
intuitively (Issue I1), that EMIA, in contrast to MIA, is an assembly theory (Issue I2),
that EMIA provides better support for specifying product families (Issue I3), and that
EMIA unifies the composition concepts of MTS and interface theories (Issue I4).

3.3.1. Issue I1: Unwanted Behaviour

In error-abstracting interface theories, forbidden inputs are preserved by the refinement
preorder but are widely ignored by parallel composition, such that behaviour that is
forbidden in one component may be re-introduced in the composed system if another com-
ponent defies this prohibition. This unintuitive treatment of communication mismatches
and, in particular, unwanted behaviour, is dangerous for safety-critical applications.
We illustrate this issue by reconsidering our running example of a driving assistance

system and its communication with a garage in an IA-like interface theory such as
IA, MI or MIA. Figure 3.9 shows specifications G and C of the garage’s and the car’s
interfaces, respectively. Starting in state g0, the garage is ready to receive a passage
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G:

g0 g1

g2g3

rqstPass?

o
p
en
D
o
or
!

drive?

cl
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D
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!

C:

c0 c1

c2

rqstCar?

rq
st
P
as
s!drive!

Figure 3.9.: The driving assistant system in IA or MIA including a garage G and a
car C, where AG := {drive?, rqstPass?}/{closeDoor!, openDoor!} and AC :=
{rqstCar?}/{drive!, rqstPass!}.

G⊗ C:

(g0, c0) (g0, c1)

(g1, c2)

(g3, c0)

(g2, c2)

rqstCar?

rq
st
P
as
s!

openDoor!

drive!

closeDoor!

G ∥ C (IA):

(g0, c0)

G ∥ C (MIA):

(g0, c0)

⊤

rq
st
C
ar
?

Figure 3.10.: Parallel product in IA or MIA (left), and parallel composition in IA (middle)
and MIA (right) of the components depicted in Figure 3.9, where AG⊗C =
AG∥C := {rqstCar?}/{drive!, closeDoor!, openDoor!, rqstPass!}.

request (rqstPass?). After such a request, the garage opens its door (openDoor!), waits
for a car driving in or out (drive?) and, finally, closes the door (closeDoor!) again. The car
starts in state c0 waiting for a user’s request (rqstCar?). Upon receiving such a request,
the car requests passage from the garage (rqstPass!) and then drives into or out of the
garage (drive!), reaching state c0 again.

Specifications G and C have a communication mismatch due to the drive!-transition
at state c2 and the fact that no drive?-transition is specified at state g1. Hence, in the
parallel product G ⊗ C shown in Figure 3.10 (left), state (g1, c2) is considered illegal.
In interface theories employing pessimistic compatibility, e.g., [Bau+10; LVF15], the
parallel composition of G and C is undefined, because the illegal state (g1, c2) is reachable
from the initial state (g0, c0). In contrast, optimistic theories, e.g., [AH01a; AH05;
Buj+16; BV14; Che+12; LNW07; LVF15; Rac+11], consider a state optimistically illegal
if a communication mismatch is reachable via uncontrollable actions, i.e., output or
τ -transitions. The parallel composition G ∥ C is obtained from G ⊗ C by removing
all illegal states. In our example, state (g1, c2) is illegal, just as state (g0, c1) from
which (g1, c2) is reachable by an output (rqstPass!). This pruning leaves a single state
(g0, c0) with no transitions; all other states are unreachable. The rqstCar?-transition
at state (g0, c0), which would allow one to reach illegal states when triggered by the
environment, is also removed. However, in order to ensure compositionality of refinement,
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G′:
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G′ ⊗ C:
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drive!
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⊤
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Figure 3.11.: Driving assistant system in EMIA and its Galois abstraction with the
alphabets AG′ := {drive?, rqstPass?}/{closeDoor!, openDoor!} and AG′⊗C =
Aα(G′⊗C) := {rqstCar?}/{closeDoor!, drive!, openDoor!, rqstPass!}.

rqstCar? must be permitted with arbitrary behaviour afterwards (see [Buj+16]); IA-
based refinement [AH01a; AH05; LVF15] allows this implicitly for all unspecified inputs
(Figure 3.10, middle). In MTS-based interface theories, where unspecified transitions
represent forbidden behaviour, compositionality is achieved by replacing the pruned
behaviour by an explicit optional transition to a special, universally refinable state ⊤
(Figure 3.10, right) that semantically stands for arbitrary behaviour [Buj+16]. This
corresponds to the error-abstraction α of Section 3.2.

Due to this possibility of introducing arbitrary behaviour in case of a communication
mismatch, stepwise refinement may re-introduce behaviour that has previously been
removed due to the mismatch. Hence, optimistic theories accept a car driving into or
out of the garage before the door is opened as a valid implementation of G ∥ C. This
contradicts G’s sensible requirement that driving in or out is only permitted after the
door has been opened, i.e., the meaning of a car crashing into the door can simply be
‘refined’ to not being an error. In other words, the assumptions and guarantees expressible
in current interface theories are insufficient for expressing unwanted behaviour.

In EMIA, the garage’s constraint that a car shall not drive in or out in state g1
would be specified by a drive?-transition to a fatal error state err, which represents an
unresolvable error as is illustrated in specification G′ in Figure 3.11. In the resulting
parallel composition G′ ⊗ C, also shown in Figure 3.11, driving in or out too early in
state (g1, c2), when the door is still closed, leads to the fatal error state err, where the
car crashes into the door. This information is not removed and cannot be redefined
to not being an accident by refining G′ ⊗ C. Keeping this information is essential for
pinning down the location and the cause of the error within the specification. Because G′

forbids action drive? between rqstPass? and openDoor! but allows drive? after openDoor!,
we can infer that specification C must be aware of action openDoor! in order to be
compatible with G′. This way, a software design tool based on EMIA could propose
possible specification changes to the designer. For example, the tool may propose to add
action openDoor? to the car’s alphabet and to insert an openDoor?-transition between
rqstPass! and drive!, so as to avoid the fatal error state err that is reachable from (g1, c2).
The resulting specification is shown as C ′ in Figure 3.12.

However, when applying the abstraction function α of the Galois insertion between
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Figure 3.12.: Corrected car C ′ and user interfaces U, V, where AC′ := {openDoor?,
rqstCar?}/{drive!, rqstPass!} and AU = AV := ∅/{rqstCar!}.

MIA and EMIA in order to move into the error-abstracting setting, all the information
about errors is lost. Figure 3.11 (right) illustrates the Galois abstraction of the composed
system G′ ∥C. We have illG′∥C = {(g1, c2), (g0, c1)} (see Section 3.2). The rqstCar?-must-
transition at (g0, c0) leading to illG′∥C is replaced by a rqstCar?-transition to ⊤α(G′∥C).
Due to α being a homomorphism with respect to ∥, this result corresponds exactly to
the MIA shown in Figure 3.10 (right).

3.3.2. Issue I2: Multi-component Assemblies

Pairwise binary compatibility of multiple components is neither necessary nor sufficient
for their overall compatibility when being considered as a multi-component assembly,
even if parallel composition is associative. To address this, Hennicker and Knapp [HK15]
have introduced assembly theories that extend interface theories by a separate level of
assemblies where multi-component compatibility is checked. However, these assemblies
have to be re-interpreted as interfaces to be of further use.

When adding the specification of a simple user interface, shown as U in Figure 3.12, as
a third component to the specifications G and C of Figure 3.9, the three components G,
C and U are pairwise optimistically compatible. However, the composed system G∥C ∥U
is incompatible, because the mismatch for action drive! is reachable from the initial state
⟨g0, c0, u0⟩. A different but related problem arises in pessimistic theories due to weak
associativity: the user interface specification V in Figure 3.12 promises to never request
a car. The components G and C are pessimistically incompatible and (G ∥ C) ∥ V is
undefined. However, G∥ (C ∥V ) is a perfectly valid composition. In other words, pairwise
compatibility is neither necessary nor sufficient for compatibility of multiple components,
i.e., IA, MI, MIO and MIA are not by themselves assembly theories.

To lift their interface theory MIO to an assembly theory, Hennicker and Knapp propose
an enrichment EMIO of MIO by error states similar to our fatal errors [HK15]. However,
they do not develop EMIO into a full interface theory: EMIOs are only employed
to describe the result of a multi-component parallel composition and to check the
communication safety of such an assembly, i.e., the absence of communication mismatches.
In addition, refinement is lifted to assemblies by providing an error-preserving refinement
relation for EMIOs, which is similar to error-preserving modal refinement. However, no
further operations like parallel composition or conjunction are defined for assemblies;
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instead, EMIO forms a second layer on top of MIO, and an EMIO is re-interpreted as
MIO via an encapsulation function that removes all error-information. In contrast to
this loose integration, EMIA provides a uniform and tight integration of interfaces and
assemblies by directly including its canonical assembly theory in the sense of [HK15].
In particular, EMIA does not need two separate refinement relations for interfaces and
assemblies.

Translating the above examples of assemblies with U and V into EMIA, the composition
G′⊗C⊗U resembles G′⊗C (Figure 3.11), except that action rqstCar is an output instead
of an input. Further, (G′ ⊗ C)⊗ V and G′ ⊗ (C ⊗ V ) are equivalent in EMIA. In both
examples, compatibility is checked via reachability of fatal error states in the composed
system. However, it is up to the systems designer to decide which error behaviour yields
an incompatibility, i.e., compatibility is not necessarily a globally predefined concept as
is the case for optimistic and pessimistic compatibility.

In order to establish EMIA as an assembly theory, we recap the definition of assembly
theory by Hennicker and Knapp [HK15], with the following generalisation: in Hennicker
and Knapp’s definition of an interface theory, an interface cannot contain errors by itself
and, thus, a single interface is always communication safe. EMIA additionally allows
one to specify erroneous interfaces, which should not be considered communication safe.
Therefore, we introduce a communication safety predicate cs on interfaces and generalise
Conditions A1 and A3 below accordingly. This predicate also generalises the binary
compatibility predicate cp employed in [HK15] by defining cp(P,Q) : ⇐⇒ cs(P ⊗Q). We
use the same symbol cs for interfaces and assemblies because it will always be clear from
the context whether the interface-theoretic or the assembly-theoretic communication
safety is meant.

Definition 3.55 (Assembly Theory [HK15]). Let I := (I, cs, ∥,⊑) be an interface
theory, where I is a class of interfaces, cs ⊆ I is a communication safety predicate, ∥
is a (binary) parallel composition operator, and ⊑ is the refinement preorder. A tuple
A := (A, cs, φ,⪯) consisting of a collection of assemblies A := {⟨Ik⟩k∈K | 0 < |K| < ∞
and Ik, Il ∈ I composable for k ̸= l}, a communication safety predicate cs ⊆ A, a partial
encapsulation operation φ : A ⇀ I and an assembly refinement relation ⪯ ⊆ A × A
is called an assembly theory over I if, for all A,B,A1, . . . , An, B1, . . . , Bn ∈ A (where
n ∈ N) and I, J ∈ I, we have:

A1. cs(⟨I⟩) iff cs(I),
A2. if cs(A), then φ(A) is defined,
A3. if φ(⟨I⟩) is defined, then φ(⟨I⟩) = I,
A4. ⪯ is reflexive and transitive,
A5. I ⊑ J implies ⟨I⟩ ⪯ ⟨J⟩,
A6. if A = A1 ⊎ · · · ⊎An and cs(Ak) for k = 1, . . . , n, then ⟨φ(A1), . . . , φ(An)⟩ ∈ A,
A7. if A = A1 ⊎ · · · ⊎An, cs(Ak) for k = 1, . . . , n and cs(⟨φ(A1), . . . , φ(An)⟩),

then cs(A),
A8. if A = A1 ⊎ · · · ⊎An, cs(Ak) for k = 1, . . . , n and cs(⟨φ(A1), . . . , φ(An)⟩),

then φ(A) = φ(⟨φ(A1), . . . , φ(An)⟩),
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A9. if A ⪯ B and cs(B), then cs(A),
A10. if A ⪯ B and cs(B), then φ(A) ⊑ φ(B),
A11. if A = A1 ⊎ · · · ⊎ An, B = B1 ⊎ · · · ⊎Bn, cs(⟨φ(B1), . . . φ(Bn)⟩), as well as cs(Bk)

and Ak ⪯ Bk for k = 1, . . . , n, then A ⪯ B.

Rule A1 expresses that a single-component assembly is communication safe if and
only if the underlying component is communication safe. Rule A2 ensures that any
communication safe assembly may be encapsulated into an interface. By Rule A3, the
interface of a single-component assembly is equivalent to this single component. Rule A4
states that assembly-refinement shall be a preorder. Rule A5 expresses that interface
refinement translates to refinement of single-component assemblies. Rule A6 means that
assemblies may be constructed hierarchically. Rule A7 expresses that communication
safety is compositional. Rule A8 says that assemblies may be encapsulated according to
the hierarchy of their construction. Rule A9 requires that assembly-refinement preserves
communication safety. Rule A10 says that encapsulation is monotonic for communication
safe assemblies. Rule A11 ensures the compositionality of assembly-refinement with
respect to the construction of assemblies, i.e., the substitutability of components by
refinements thereof.

Intuitively, the encapsulation φ(A) of an assembly A represents the composition of A’s
components as an interface. Therefore, an assembly theory is called canonical if there is
a strong correspondence between φ and ∥. We write


k∈K for the generalisation of ∥ to

multiple interfaces.

Definition 3.56 (Canonical Assembly Theory [HK15]). An assembly theory is called
canonical if the following conditions hold:

1. cs(⟨Ik⟩k∈K) iff, for all l ∈ K, cs(Il ∥


k∈K\{l} Ik),

2. φ(⟨Ik⟩k∈K) =


k∈K Ik if cs(⟨Ik⟩k∈K), and undefined otherwise.

It is straightforward to define a canonical assembly theory over EMIA:

Definition 3.57 (Assembly Theory over EMIA). Let IEMIA := (EMIA, cs,⊗,⊑e) with
cs(I) iff S0

I ∩ bclΩI (EI ∪ UI) = ∅. We define AEMIA := (A, cs, φ,⪯) by:

1. A := {⟨Ik⟩k∈K | 0 < |K| <∞ and Ik, Il ∈ EMIA composable for k ̸= l},

2. cs(A) iff S0
φ(A) ∩ bclΩφ(A)(Eφ(A) ∪ Uφ(A)) = ∅,

3. φ(⟨I⟩) := I and φ(⟨I1, . . . , In⟩) := I1 ⊗ . . .⊗ In, and

4. A ⪯ B iff φ(A) ⊑e φ(B).

Note that the interface-level predicate cs employed in Definition 3.57 corresponds to
optimistic compatibility. Due to the flexibility of EMIA, a pessimistic variant may easily

be defined by cs(I) ⇐⇒ S0
I ∩ bcl

A∪{τ}
I (illI) = ∅ (cf. Definition 3.40).

Lemma 3.58. AEMIA is an assembly theory over IEMIA.
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Proof. A1 holds by definition. A2 is trivial because φ is defined for all assemblies. A3
holds by definition. A4 is trivial because ⊑e is reflexive and transitive. A5 holds by
definition. A6, A7 and A8 are trivial due to the associativity of EMIA parallel composition
and the definition of the encapsulation function φ. A9 holds by definition of ⊑e. A10
holds by definition of ⪯. A11 holds due to the compositionality of ⊑e.

AEMIA obviously satisfies the first condition of Definition 3.56. It almost satisfies the
second condition, except that instead of being undefined in the ‘otherwise’-branch, an
erroneous interface results from the composition. We can either artificially set such a
result to undefined in order to match the definition exactly, or argue that undefinedness is
only necessary here because interface theories in [HK15] do not support the specification
of erroneous interfaces (and, thus, one may change that definition accordingly). In both
cases we have:

Theorem 3.59 (Assembly Theory). AEMIA is a canonical assembly theory over IEMIA.

Because the encapsulation function φ directly corresponds to ⊗ and ⪯ corresponds to ⊑e,
IEMIA includes its own assembly theory AEMIA. In addition, EMIA obviously constitutes
an assembly theory over MIA:

Definition 3.60 (Assembly Theory over MIA). Let IMIA := (MIA, cs, ∥,⊑m) with cs(I)
for all I ∈ MIA. We define AMIA := (A, cs, φ,⪯) by:

1. A := {⟨Ik⟩k∈K | 0 < |K| <∞ and Ik, Il ∈ MIA composable for k ̸= l},

2. cs(⟨Ik⟩k∈K) iff S0
I1⊗...⊗IK

∩ bclΩI1⊗...⊗IK
(EI1⊗...⊗IK ∪ UI1⊗...⊗IK ) = ∅,

3. φ(⟨I⟩) := I and φ(⟨I1, . . . , In⟩) := I1 ∥ . . . ∥ In, and

4. A ⪯ B iff φ(A) ⊑m φ(B).

Lemma 3.61. AMIA is a canonical assembly theory over IMIA.

Proof. Obvious.

3.3.3. Issue I3: Software Product Lines

Optional behaviour, modelled via may-transitions as in MTS, may be employed to
express variability inherent in software product lines. In current interface theories, two
product families may be considered compatible only if all products of one family are
compatible with all products of the other. However, one would prefer a more detailed set
of guarantees, such that one may distinguish if all, some or none of the product lines’
products are compatible [LNW07] in order to compute compatible subfamilies.

Consider specifications D and W of a car and a user interface product family, re-
spectively, both of which are shown in Figure 3.13. These specifications allow product
variations of a car and a user interface, respectively, which enable drivers to initiate the
automatic driving assistance manually (go!), e.g., when parking in a different garage
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D:

d0 d1

d2d3

rqstCar?

rq
st
P
as
s!

openDoor?

d
ri
ve
!

g
o
?

W :

w0

w1
rq
st
C
ar
!

g
o
!

D′ ∥W :

(d0, w0) (d1, w1)

(d2, w1)(d3, w1)(d0, w1)

err

rqstCar!

rqstPass!

openDoor?drive!

go!
go!

Figure 3.13.: Product families D and W and their composition in EMIA, where AD :=
{go?, openDoor?, rqstCar?}/{drive!, rqstPass!}, AW := ∅/{go!, rqstCar!} and
AD′∥W := {openDoor?}/{drive!, go!, rqstCar!, rqstPass!}.

P :
a

Q:

P ∥Q: (unanimous or a ∈ IP ∩ IQ)

P ∥Q: err (IA with a ∈ OP ∩ IQ)

R: r0 r1 erro! i?

Figure 3.14.: Unanimous and error-aware composition of components with alphabets
AP = AQ = {a} and AR = {i}/{o}.

that is not equipped with an automatic door opener. Obviously, a user interface that
provides this feature is incompatible with a car that does not, i.e., although some product
combinations of D and W are compatible, some of them are not. Hence, D and W are
incompatible, and no information that might help finding compatible product combina-
tions is provided in current interface theories (see also the discussion about actual and
potential errors in the introduction of this section).

In EMIA, the optional go?-transition at state d0 would be modelled as a disjunctive go?-
must-transition from d0 to {d3, err}, for a fatal error state err. We refer to this specification
as D′. The specified error information is still present in the parallel composition of D′ and
W, so that one may derive additional conditions on the go-transitions. These conditions
result in compatible refinements of D′ and W, which describe compatible sub-families
of the original product families. For example, refining the optional go?-transition into
a mandatory one in D′, or removing the optional go!-transition in W; both result in
appropriate restrictions to sub-families. The necessary error information is present in the
EMIA parallel composition of D′ and W (Figure 3.13).

3.3.4. Issue I4: Unified Composition Concepts

MTS and interface theories combining IA with MTS share many aspects of the modality
semantics with respect to refinement. However, the meaning of may- and must-modalities
differs with respect to parallel composition. Required and forbidden actions never cause
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an error in a parallel composition in MTS: either all components unanimously agree
on implementing an action, or the action is forbidden in the composed system. For
example, when composing specifications P and Q from Figure 3.14 (left), action a is
forbidden in the composition P ∥Q (Figure 3.14, top right). The possibility to disagree
on transitions enables an environment to control all transitions of an MTS, such that
they may be interpreted as input transitions from an interface-theoretic view, i.e., if
a ∈ IP ∩ IQ. However, the MTS parallel composition is not directly applicable to output
actions, because these cannot be controlled by the environment. Consequently, previous
interface theories have adopted an IA-like error-aware parallel composition that considers
P ∥ Q erroneous if a ∈ OP ∩ IQ (Figure 3.14, middle right) and is tightly bound to a
fixed compatibility concept, such as optimistic or pessimistic compatibility. The choice of
composition and compatibility concept is global and does not allow one to mix different
such concepts according to what is suitable for the application at hand. In contrast, one of
our goals for EMIA is to provide a general-purpose semantic theory that is independent of
such fixed compatibility and composition concepts. EMIA’s explicit error representation
allows for a local description of compatibility that is independent of composition. For
example, a composition with specification R (Figure 3.14, left) is unanimous with respect
to input i in state r0 and error-aware in state r1. Thus, EMIA unifies unanimous and
error-aware parallel composition, i.e., it permits the mixing of these composition concepts
within a specification. As an aside, note that EMIA collapses to MTS when considering
input actions only.
In particular, the traditional notions of optimistic and pessimistic compatibility may

still be expressed in EMIA:

Definition 3.62 (Optimistic and Pessimistic Compatibility). Two composable EMIAs P ,
Q are optimistically compatible if and only if S0

P⊗Q∩bclΩP⊗Q(EP⊗Q∪UP⊗Q) = ∅. Further,
P and Q are pessimistically compatible if and only if S0

P⊗Q ∩ bcl
A∪{τ}
P⊗Q (illP⊗Q) = ∅.

As explained in Issue I1, the error-information is not removed, i.e., in an optimistic
variant of EMIA one cannot introduce unwanted behaviour as is the case in previous
optimistic theories.

3.4. Discussion

Of course, there are alternative possibilities for defining some of the details of our theory.
In this section we discuss some of these alternatives and how they influence the theory. In
particular, we investigate whether the alternatives break some of the desired properties.
In addition, we discuss the complexity of operators on EMIAs and give a brief outlook
on the integration of temporal logic operators into EMIA.

3.4.1. Refinement and Alphabet Extension

In the original work on IA [AH01a; AH05], a different notion of refinement is employed,
which has also been investigated in the context of MIA in [LVF15]. Recall that an
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incompatibility arises when one component specifies an output whereas another component
does not require the corresponding input. The IA refinement is based on the intuition
that removing outputs or adding missing inputs may only reduce the risk of having
incompatibilities. In particular, an unspecified input represents an input that allows for
arbitrary subsequent behaviour. The formalisation presented in the literature is obtained
from Definition 3.5 by omitting Rule R5, which is equivalent to replacing Rule R5 by R5’:

R5. p
i

P p′ implies ∃q′. q
i

Q q′ ∧ (p′, q′) ∈ R,

R5’. p
i

P p′ implies ⊤.

As a consequence, may-transitions are irrelevant for input actions and one cannot
specify optional input transitions. This refinement preorder is compositional if one
requires that interfaces are input deterministic.

This determinism requirement is due to a misconception when formalising the intuition
that unspecified inputs represent inputs with arbitrary subsequent behaviour. The
mistake is that adding inputs is always permitted, no matter whether the same input is
already specified. However, the above intuition only applies for unspecified inputs. If an
action is already present, additional transitions of this action may of course introduce
new incompatibilities. In order to formalise the alternative refinement correctly, we have
to replace Rule R5 by

R5”. p
i
p′ implies q ̸ i or ∃q′. q

i
q′ ∧ (p′, q′) ∈ R.

With this corrected definition, an unspecified input is equivalent to an input may-
transition targeting a universal state, and input determinism is not required for composi-
tionality.

A different problem with this alternative definition of refinement is that conjunction
leads to inadequate artefacts when the alphabets of the conjuncts must be extended
[LVF15]. The main source of problems is due to the inability to specify optional inputs
when employing this notion of refinement. For example, if conjunct P specifies a transition

p
i
P ′ where input i is unknown to Q then p ⊓ q i

P ′ for any q ∈ Q because input i
is required at p and implicitly permitted in q. Thereby, one loses the behavioural
requirements expressed by conjunct Q. This is usually undesired in perspective-based
specification. To keep conjunct Q, one could add an i-must-loop to each state q ∈ Q

such that then p ⊓ q i {p′ ⊓ q | p′ ∈ P ′}, expressing the neutrality of Q with respect

to i in each of its states. But now the problem is at those states p′′ ∈ P with p′′ ̸ i , i.e.,

p′′ stipulates on the environment not to produce i, because p′′⊓q i
q is also undesirable.

However, this problem may be resolved in EMIA where optional transitions may be

expressed with the help of fatal error states, i.e., by adding a transition q
i {q, err} to

each state q (where originally q ̸ i ) as in Definition 3.35.

A different approach to alphabet extension is presented in [BV16] for MIA. There, the
action alphabets I and O are enriched by two special actions νI and νO that represent
unknown input and output actions, respectively. With ν-may-transitions, an interface
specifies the permitted behaviour with respect to new actions, e.g., a transition p

νI p′

permits one to refine state p by adding arbitrary new input actions with subsequent

71



3. Modal Interface Automata

P : {a, b}/{o, x, y}

p0
a? b?

o!

x!

o!

y!

D : {a, b}/{o}

d0
a? b?

o! o!

Q′ : {a, o}/{x, y}

q0
a? o?

o?

x!

y!

Figure 3.15.: Complications of quotienting in the context of alphabet extension.

behaviour p′. Such a specification is local to each state but global for all unknown
actions. In particular, two components of a system may not be extended by the same new
actions. Otherwise, compositionality of the refinement preorder with respect to parallel
composition is not guaranteed [BV16].

3.4.2. Quotient

In Section 3.1.7 we restrict the choice of alphabet of the quotient and require that divisors
are deterministic. In this section we explain the difficulties that arise when trying to
relax these restrictions [Buj+16] and discuss related work.

Releasing Alphabet Restriction

For Q ∥D ⊑e P to hold, Q ∥D and P must have the same input alphabet and the same
output alphabet; also such Q, D must be compatible. Thus, we have OQ = OP \OD and
IQ ⊇ IP \ ID. Concerning the actions of D, quotient Q may listen to them but does not
have to. Hence, IQ ⊆ (IP \ ID) ∪AD = IP ∪OD. The more inputs Q has, the easier it is
to supply the behaviour ensuring Q ∥D ⊑e P . Thus, we have chosen the largest possible
input alphabet IP ∪OD for our quotient P // D, just as in [CJK13] and [Rac+11].

When extending refinement via alphabet extension one may compare EMIAs with
different alphabets. Hence, one could aim for a generalisation of Theorem 3.27 where Q
and P // D may have different alphabets. Because Q ⊑e P // D, the quotient should
have a minimal alphabet in this version, in contrast to our choice of IP//D = IP ∪OD.
However, this leads to complications as one can see from the example in Figure 3.15.
An EMIA Q satisfying Q ∥ D ⊑e P must have OQ = {x, y}, but IQ = IP \ ID = ∅
clearly does not suffice because Q is allowed to produce x or y only after o. Furthermore,
Q must see a or b to distinguish between the branches. Solutions are possible, e.g., for
IQ = {a, o} and IQ = {b, o}; a solution Q′ for {a, o} is also shown in Figure 3.15, where
transitions to the universal state are not drawn for readability. It looks like there are
several maximal solutions.
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P : ∅/{a}

a!

D : {a}/∅

a?

Q := (P⊥ ∥D)⊥ : ∅/{a}

a!

Q ∥D : ∅/{a}

a!

Figure 3.16.: The dual construction of the quotient is incorrect for modal transitions.

Note, however, that Theorem 3.27 in its present form still holds for our extended
refinement preorder. This is important in practice where one would want for Q and D to
be able to communicate via new internal actions, i.e., those that are hidden immediately
after taking the parallel composition of Q and D. Since only outputs can be hidden, the
new actions must form a set O′ of outputs in Q ∥D. Then, one proceeds by determining
Q := [P ]∅,O′ // D. Theorem 3.27 implies Q ∥ D ⊑e [P ]∅,O′ , which in turn implies
(Q ∥D) / O′ ⊑e P by Proposition 3.13(1).

Another aspect of alphabet extension for quotienting is that we can generalise the
problem by permitting D to have actions unknown to P . A straightforward generalisation
of our approach in Section 3.1.7 would make these actions inputs for the quotient, but
there can also be solutions to Q ∥D ⊑e P where Q has some new inputs of D as outputs.
We leave a further investigation of these aspects to future work.

Related Work

Quotient operators for interface theories are also discussed by Raclet [Rac08], Bhaduri
and Ramesh [BR08], Raclet et al. [Rac+11] and Chilton [Chi13].

Bhaduri and Ramesh [BR08] present an elegant construction of quotients for deter-
ministic interface automata. If P⊥ denotes the interface automaton P with alphabets
I and O interchanged, then the quotient may be constructed as P // D ≡ (P⊥ ∥D)⊥.
However, their work does not consider internal transitions and modalities. Figure 3.16
shows that this dual construction is incorrect when modal transitions are involved: the
parallel composition Q ∥D of the quotient Q := (P⊥ ∥D)⊥ and the divisor D does not
refine P .

Our quotient Q = P // D is most similar to the one in MI [Rac+11], where D is
assumed to be may-deterministic, P and D have no internal transitions, and IQ =
IP ∪ OD. However, P must also be may-deterministic in [Rac+11], whereas we also
allow nondeterminism and disjunctive must-transitions in P . In addition, we have
corrected some technical shortcomings of MI. MI adapts the quotient operation for
Modal Specifications from [Rac08], with some additional rules defining the input and
output alphabets of the quotient interface. However, compatibility is ignored for the
quotient operation, which in [Rac+11] is an inverse or adjoint to their parallel product
but not to parallel composition. This has been recognised in a technical report [Ben+12].
Unfortunately, that report employs a changed setting without the universal state as
in [Rac+11] or a universal state as in our work. This is reflected by a different, non-
compositional parallel composition that does not allow arbitrary behaviour in case of an
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inconsistency and that employs a more aggressive pruning strategy, where a mismatch
can also occur when synchronising on shared inputs, i.e., when one component specifies
input i and another component does not require input i.

Beneš et al. [Ben+13] investigate quotienting for nondeterministic specifications in the
setting of DMTS. This comes with an exponential blowup in the quotient size, because the
powerset of quotient states is used as state space. In principle, a similar solution would
be necessary in order to relax our determinism requirement on the divisor. However,
it is not straightforward to adopt this solution in the context of internal transitions
and input/output with the related compatibility issues, which are core ingredients of
interface theories being present since the first publications on IA by de Alfaro and
Henzinger [AH01a]. Not considering input/output simplifies the quotient because a
significantly simpler composition operator is involved. In addition, Beneš et al. assume
a single global alphabet and do not consider alphabet extension, which is particularly
difficult for the quotient, as seen above.

3.4.3. Computational Complexity of EMIA Operations

In this section we briefly discuss the computational complexity of the EMIA operators,
assuming that all involved EMIAs are finite. Most of the operators are of polynomial
complexity. In these cases, we give a concrete upper bound #(t) on the complexity
of computing a term t. Sometimes we decompose our complexity consideration action-
wise, where #α(t) stands for the complexity of computing t for a single action α. The
cardinality of a set X is denoted |X|. Given an EMIA with state set S, a state s ∈ S
and a subset Q ⊆ S, we write Tα

s for the set of all α-transitions leaving s and Tα
Q for

the set of all α-transitions leaving Q. Given a transition t ∈ Tα
s , we write trg(t) for the

number of target states of t, i.e., if t = s
α
S′, then trg(t) = |S′|. The total number of

target states over all α-transitions of an EMIA R is

trgαR :=

r∈SR


t′∈Tα

r

trg(t′) (3.1)

Of course, the complexity of an operation depends on the data structure used to represent
EMIAs. In the following, we assume a data structure that is optimal for the operation
under consideration. However, a data structure optimal for one operation may be
suboptimal for a different one. Therefore, the complexities given in this section may be
unachievable in practice.

Refinement

The complexity of refinement checking has been studied for several variants of MTS
in [Ben+11a]. According to these findings, the complexity is P-complete for both MTS
and DMTS. Because EMIA is based on dMTS, these complexities constitute a lower and
an upper bound on the complexity of checking strong refinement for EMIA, i.e., when
not considering weak transitions. In the worst case, one has to touch all transitions in
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order to calculate the weak extensions of a single transition. Hence, weakening adds at
most quadratic complexity. Therefore, refinement checking on EMIAs is also P-complete.

Backwards Closure, Pruning and Galois Abstraction

In the worst case of computing the backwards closure bclLQ(X) of a set of states X ⊆ SQ
with respect to a set of actions L ⊆ AQ (Definition 3.39), one has to touch each state
and each of its incoming transitions, resulting in the complexity

#(bclQ(X)) = |SQ| ·

α∈A

|Tα
Q |. (3.2)

Because one may remove states on the fly while computing the backwards closure, bcl
is the main source of complexity for the pruning operations employed in the Galois
abstraction and the MIA parallel composition, as well as in conjunction and quotienting.

Parallel Product and Pre-quotient

The same consideration applies to the parallel product and the pre-quotient. Therefore,
we only elaborate for the parallel product.

In order to calculate the parallel product Q⊗R of two EMIAs Q and R, we iterate, for
each pair of states (q, r) ∈ SQ × SR and each action α, through all pairs of α-transitions
of q and r. Hence, the complexity of the local product q ⊗ r for a single action α is

#α(q ⊗ r) =

t∈Tα

q


t′∈Tα

r

trg(t) · trg(t′). (3.3)

The complexity of Q⊗R with respect to α is then

#α(Q⊗R) =

q∈SQ


r∈SR

#α(q ⊗ r) (3.4)

=

q∈SQ


r∈SR


t∈Tα

q


t′∈Tα

r

trg(t) · trg(t′) by (3.3) (3.5)

=

q∈SQ


t∈Tα

q


r∈SR


t′∈Tα

r

trg(t) · trg(t′) by commutativity (3.6)

=


q∈SQ


t∈Tα

q

trg(t)

 ·


r∈SR


t′∈Tα

r

trg(t′)

 by distributivity (3.7)

= trgαQ · trgαR . by (3.1) (3.8)

Note that this complexity does not depend on the number of states but on the number of
transitions and their target states. Hence, computing Q⊗R via the state space product
SQ × SR may be particularly inefficient in cases with many unreachable states. If the
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average numbers of target states trg
α
Q and trg

α
R are known, we can reformulate (3.8) as

#α(Q⊗R) = |SQ| · |SR| · trgαQ · trgαR, (3.9)

which captures the intuition that the complexity depends on the number of states and the
average branching size. The overall complexity of the parallel product may be computed
as

#(Q⊗R) =

α∈A

trgαQ · trgαR = |A| · |SQ| · |SR| · trgQ · trgR. (3.10)

We do not need to consider unshared actions explicitly because a foreign action α
corresponds to an α-must loop at each state, which yields trgαQ = |SQ|. This result
corresponds to the intuition that, in order to extend Q with loops, we have to touch each
state once.

Hiding and Restriction

Given a set L ⊂ A of actions of an EMIA Q, the worst case complexity of hiding and
restriction is obviously

#(Q / L) = #(Q \ L) =

α∈L

Tα
Q . (3.11)

Conjunctive Product

When computing the conjunction Q & R of two EMIAs Q and R, one combines any
α-transition of a state q ∈ SQ with all α-may-transitions of a state r ∈ SR and vice versa.
We get

#α(q & r) =

t∈Tα

q

trgα(t) · |mayαR(r)|+

t∈Tα

r

trgα(t) · |mayαQ(q)|. (3.12)

The complexity of Q&R with respect to α is then

#α(Q&R) =

q∈Sq


r∈SR

#α(q & r) (3.13)

=

q∈Sq


r∈SR


t∈Tα

q

trgα(t) · |mayαR(r)|+

t′∈Tα

r

trgα(t′) · |mayαQ(q)|

 (3.14)

=


q∈Sq


r∈SR


t∈Tα

q

trgα(t) · |mayαR(r)|

+ (3.15)


q∈Sq


r∈SR


t′∈Tα

r

trgα(t′) · |mayαQ(q)|

 (3.16)
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=


q∈Sq


t∈Tα

q

trgα(t)

 ·

r∈SR

|mayαR(r)| + (3.17)


r∈SR


t′∈Tα

r

trgα(t′)

 ·

q∈Sq

|mayαQ(q)| (3.18)

= trgαQ · |mayαR |+ trgαR · |mayαQ |. (3.19)

As a consequence, the overall complexity of Q&R is

#(Q&R) =

α∈A

trgαQ ·|mayαR |+ trgαR ·|mayαQ |. (3.20)

In terms of the state spaces and the average sizes trgQ, trgR, mayQ and mayR, 3.20 may
be reformulated as

#(Q&R) = |A| · |SQ| · |SR| · (trgQ ·mayR + trgR ·mayQ). (3.21)

Disjunction

Because disjunction corresponds to a disjoint union, its complexity depends on whether
the operation happens in-place or out-of-place. An in-place implementation obviously
has constant complexity for joining the initial states. For an out-of-place implementation,
one additionally needs to copy the two components, i.e., to touch each state and each
transition. Hence,

#(Q ⊔R) = |Q|+ |R|+ trgQ+trgR . (3.22)

3.4.4. Temporal Logic Integration

We have developed EMIA into a heterogeneous specification theory in the sense of
Section 2.1 in so far as it supports state-based specification based on modal transition
systems and logic-based specification by providing a conjunction and a disjunction
operator on EMIAs. In addition, we would appreciate to support temporal logic formulas
in the style of HML, but on the level of EMIAs, e.g., given an EMIA P and an action a,
we would like to express a formula ϕ := [a]P (see Section 2.2.5) as an EMIA Mϕ in such
a way that logical satisfaction corresponds to refinement:

P ⊨ ϕ ⇐⇒ P ⊑Mϕ. (3.23)

This would allow for truly heterogeneous specification, where transition systems and
logical formulas may be freely intermixed. In their work on Logic LTS, Lüttgen and
Vogler elaborate on this idea for LTS and MTS, however within a different semantic
setting based on ready-simulation and a CSP-style parallel operator [LV11]. This work
has been adapted to MIA by Bujtor and Vogler [BV16]. An adaptation to EMIA should
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be straightforward, including for the Galois insertion. However, we do not anticipate
much new insight from such an adaptation and, therefore, leave it for future work.
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In this chapter we summarise the incremental, component-based design methodology
provided by interface theories and illustrate it by means of two case studies. In the
first study on a client-server system, we design a nondeterministic system using MIA.
Although designed manually, all examples of this study are checked with tool support.
In the second case study, we employ EMIA to design a railway control system sufficiently
large to require tool support. We also present our two tool implementations Gemia and
MiaGo that have been developed during the work on this thesis and have been used to
carry out these studies.

4.1. The Incremental, Component-based Design Methodology

The incremental, component-based design methodology provided by interface theories
is mainly based on the compositional refinement preorder and the operators parallel
composition, quotienting and conjunction. The refinement preorder allows a systems
designer to start with a coarse specification and then refine it step-by-step by taking
decisions about underspecified behaviour. As soon as a system is fully specified, i.e., any
underspecification is resolved, one reaches an implementation represented as a labelled
transition system.

Due to the compositionality of the refinement preorder, this design methodology may
be employed for designing system components independently and composing the overall
system from these components via the parallel composition operator. Such a composition
may be checked for the mutual communication requirements of its components. Potential
incompatibilities may be resolved by suitably refining the components or the system. The
parallel operator allows one to design a system incrementally by starting with a subset of
the components to which further components may be added successively. This approach
is further supported by the quotient operator, which is adjoint to parallel composition
and enables component reuse by synthesising a specification of the remaining part(s) of a
system from the reused component and a global system specification.

The conjunction operator permits perspective-based specification where one may specify
several requirements on a component or a system independently. The overall requirement
is obtained as the conjunction of the individual requirements.

4.2. Designing a Client Server System with MIA

In this section we discuss a case study that employs MIA to design a client-server
system [Buj+16]. The example exercises several important operators of MIA; it also
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G:

0

1

rqst? resp! fail!

B1:

0

1

rqst1? resp1! miss!

B2:

0

1

rqst2? resp2!

Figure 4.1.: Global specification G, local cache B1 and remote database B2 with the
alphabets AG = {rqst}/{resp, fail}, AB1 = {rqst1}/{resp1,miss} and AB2 =
{rqst2}/{resp2}.

R1:

(0, 0)

(1, 0)

(2, 1) (2, 2)

rqst1!, rqst2!,
resp!

rqst?

sel!

rqst1! rqst2!

R2:

0

1 2

rqst1!

resp!

resp1?

miss?

resp!

R3:

0

1 2

rqst2!

resp!

resp2?

resp!

R4:

0

1 2

miss?

fail!

resp!,
rqst2!

fbck!

rqst2!

Figure 4.2.: Front-end requirements R1 through R4 with the alphabets A1 =
{rqst}/{rqst1, rqst2, resp, sel}, A2 = {resp1,miss}/{rqst1, resp}, A3 =
{resp2}/{rqst2, resp} and A4 = {miss}/{rqst2, resp, fail, fbck}.

uses nondeterminism, which means that it cannot be modelled in MI [Rac+11]. All
constructions have been checked with our Haskell implementation of MIA, which we
present in Section 4.4.1. The source code of our example is shown in Appendix C.1 and
available online [Fen17]. Although the results are generated automatically, we improved
the layout of the figures manually.

We consider a data server S that is composed of a front-end F and two already existing
back-ends, a local cache B1 and a remote database B2. The server forwards requests
received by the front-end to (one of) the two back-ends. Based on a global specification G
of S, we wish to develop the specification of F . The global specification and the back-end
specifications are shown in Figure 4.1.

Specification G defines the communication protocol with a client. The data server shall
wait for a request and then may return a response or, alternatively, a failure message.
Action rqst? is of must-modality because a data server makes no sense if it cannot accept
a request. Actions resp! and fail! are of may-modality since refinements of G might at
some stage decide to give only answer resp! or only fail!. The local cache B1 also waits
for a request and answers with a response; optionally, it may implement a cache miss
after a request (miss). The remote database B2 is similar to the cache but without a
miss. In both cases we have must-transitions for rqsti? and respi!, so that the acceptance
of inputs and issuing of answers is guaranteed.
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(0, 0, 0, 0, 0)

(1, 0, 0, 0, 0)

(2, 1, 0, 0, 0) (2, 2, 0, 0, 0)(0, 0, 1, 0, 0)

(0, 0, 0, 0, 1) (0, 0, 0, 0, 2)

(0, 0, 2, 0, 0)

(0, 0, 0, 1, 0)

(0, 0, 0, 2, 0)

resp!

rqst?

rqst1! rqst2!

fbck!

fail!

sel!

rqst1! rqst2!

resp1?

miss?

resp!

resp2?

rqst2!

resp!

Figure 4.3.: Conjunction of the front-end requirements, R = R1 ⊓R2 ⊓R3 ⊓R4 with the
alphabets I = {rqst, resp1, resp2,miss}, O = {resp, rqst1, rqst2, sel, fbck, fail}
(implicitly extended).

We now develop the front-end specification F , which forwards a request to either
cache B1 or to database B2. In case of the former and a cache miss, F may fall back
to B2. To this end, we assume the following requirements for F , which are specified in
Figure 4.2:

R1. The front-end shall pass on a client’s request to one of the back-ends.
R2. After forwarding a request to back-end B1, the front-end shall wait for B1’s response

and route it back to the client. Additional to the response, the front-end shall accept
a cache miss when waiting for a response.

R3. After redirecting the request to back-end B2, the front-end shall wait for B2’s
response and route it back to the client.

R4. In case of a cache miss, the front-end may fall back to the database or fail.

Requirement R1 specifies that after receiving a request (rqst?), a back-end is selected
(sel!) to which the request has to be forwarded (rqst1!, rqst2!). Requirement R2 states
that, after forwarding a request to the cache (rqst1!), the front-end must wait for a
response (resp1?) or a cache miss (miss?). In case of a response (resp1?), the response has
to be routed back to the client (resp!). Requirement R3 is the corresponding requirement
for the database back-end. Requirement R4 specifies that, in case of a cache miss, the
request can be redirected to the database back-end (fbck!) or the whole conversation may
fail (fail!).

The conjunction R := R1⊓R2⊓R3⊓R4 is shown in Figure 4.3, where the alphabets of
the conjuncts are extended implicitly, and inconsistent and unreachable states are pruned.
Observe that one could simplify R by merging states (0, 0, 0, 0, 2) ≡m (2, 2, 0, 0, 0).

All in all, the desired front-end specification F must guarantee that (i) the server S
obeys the global specification, (ii) S is the parallel composition of the front-end and the
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(0, 0, 0)
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rqst2!

rqst2!

rqst1!

rqst2!

rqst1!

resp!,
fail!

rqst?

resp1?, miss?

rqst?

resp1?,
miss?

rqst?

resp2?

resp2?

resp2?

resp1?, miss?

resp2?

rqst?

resp1?,
miss?

Figure 4.4.: Upper bound UF on F with the alphabets I := {rqst, resp1, resp2,miss} and
O := {resp, rqst1, rqst2, fail}.

two back-ends, and (iii) F satisfies all its requirements. Formally:

S ⊑m G S ≡m F ∥B1 ∥B2 F ⊑m R

Quotienting now gives us an upper bound UF on F . To satisfy the alphabet requirements
for quotienting, we first need to extend G’s alphabet with the unknown actions O′ :=
{rqst1, rqst2, resp1, resp2,miss} of B1 ∥B2; see the discussion at the end of Section 3.1.9
and observe that these actions are indeed outputs in the parallel composition of F with
B1 ∥B2. Now,

UF = [G]∅,O′ // (B1 ∥B2) ,

i.e., UF (see Figure 4.4) is the least specific interface that composes with the back-ends
such that, after hiding of O′, they together satisfy the global specification, as discussed
in Section 3.1.9. Hence, overall:

(UF ∥B1 ∥B2) / O
′ ⊑m G.

Note that, in Figure 4.4, we have omitted the universal state and its transitions, labelled
resp1, resp2 and miss. These transitions do not play a role in UF ⊓ R in the next step,
because the only three transitions in R with these labels are solely combined with
transitions actually shown in Figure 4.4.
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0

1

2 34 5

6 7

8

fail!

fbck!

sel!

rqst?

rqst1! rqst2!
miss?

resp1? resp2?

resp! resp!

Figure 4.5.: Final front-end specification F with alphabets I = {rqst, resp1, resp2,miss}
and O = {rqst1, rqst2, resp, sel, fail, fbck}.

Thus, the front-end is specified as follows, because it also has to satisfy the requirements
given by R:

F := UF ⊓R

This specification leaves the implementor as much freedom as possible. It is shown in
Figure 4.5, where all unreachable and inconsistent states have already been removed.

This case study illustrates the usage of the operators parallel composition, conjunction
and quotienting for designing a nondeterministic system that requires disjunctive must-
transitions. The example demonstrates perspective-based specification by combining
requirements R1 through R4 conjunctively and shows how to design a system incrementally
by extending a partial implementation via quotienting. Also, the quotient in this example
has must-transitions.

4.3. Designing a Railway Control System with EMIA

This section describes a case study involving a railway control system. The goal is to
demonstrate the practical applicability of the EMIA interface theory with an example
that requires tool support because it is too large to be designed manually. However,
we omit many details that are relevant for a real railway control system in order to
make the example easy to understand for a broad audience. All examples have been
carried out with our tool MiaGo, the visualisations are generated automatically using
Graphviz [Gra17].
We start by applying stepwise refinement to the specification of a single component

(Section 4.3.1) and illustrate the composition of a small system from two such components
(Section 4.3.2). The same procedure is carried out on variants of these components, in
order to illustrate the differences when employing fatal error states (Section 4.3.3). The
actual case study of a railway control system is then presented in Section 4.3.4.
In the automatically generated visualisations, we employ the following node shapes

(Figure 4.6). An initial state is represented by a rectangle with an incoming, source-less
arrow, ordinary states as elliptic nodes universal states are filled in yellow, and fatal error
states are indicated by a diamond shape filled in red.

83



4. Case Studies and Tool Support

initial ordinary universal error

Figure 4.6.: Illustration of initial, ordinary, universal and erroneous states.

A = ∅/∅
u

A = {go, stop}/∅
u

Figure 4.7.: Initial signal design (left) and extended alphabet (right).

4.3.1. Designing a Single Component

We illustrate the incremental design process of a single component by means of the
specification of a railway signal. One may always start the design process with a fully
underspecified interface, i.e., an EMIA consisting of an empty alphabet and a single
universal state as initial state (Figure 4.7 (left)), and refine this universal specification
step by step.

The first step is to extend the alphabet by necessary actions. In case of the railway
signal, we want to switch the signal between a stop and a go mode; hence, we extend the
alphabet by two input actions stop and go (Figure 4.7 (right)).

In order to have an observable effect, the signal also needs two states s and g representing
the stop and the go mode (Figure 4.8 (left)), respectively. We decide that the signal
always initialises itself in the stop state s and that action go transfers to state g, from
which action stop transfers back to s. The cases of receiving a stop signal in state s or a
go signal in state g are left fully underspecified in order to defer the decision to the next
refinement steps.

Next, we want to refine the underspecification of action go in state g and of action
stop in state s, which currently allow for arbitrary behaviour. An adequate reaction to
such a signal would be either to ignore it or to consider it as an error. These options are
collected using the disjunctive must-transitions in Figure 4.8 (right).

4.3.2. Combining Components

In principle, there are two interesting implementations of the above specification. Either
(A) the signal ignores receiving an action multiple times, or (B) the signal considers an

A = {go, stop}/∅

g u
?go

s

?stop

?go

?stop

A = {go, stop}/∅

g

s

?stop

 ?go 

?go

 ?stop 
e

Figure 4.8.: Refinements of the signal design.
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A = {go0, stop0}/∅

g0

?go0

s0

?stop0

?go0

?stop0

A = {go1, stop1}/∅

g1

?go1

s1

?stop1

?go1

?stop1

Figure 4.9.: Refinements S0 and, respectively, S1 of the signal design (A) up to renaming
of actions.

A = {go0, stop0, go1, stop1}/∅

(g0|g1)

?go0
?go1

(g0|s1)?stop1

(s0|g1)?stop0
?go1

?go0
?stop1
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?stop0
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?go1
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?go0 ?go1

?stop0
?stop1

A = ∅/{go0, stop0, go1, stop1}

g0

!go0
!stop1

s

!stop0

e

!go1

g1

!stop0
!go1

!stop1

!go0

!go0
!go1

!stop1
!stop0

Figure 4.10.: Composition S1⊗S2 of two signals of type (A) (left) and safety requirement
RC on the controller (right).

action as an error when receiving it several times. Of course one may also combine these
behaviours, but such a combination does not give us additional insight.

We start by investigating option (A) for two signals S0 and S1 that shall secure the
junction of two railway tracks (Figure 4.9). Composing these two specifications in parallel
reveals the behaviour S1 ⊗ S2 that the signals may exhibit in principle (Figure 4.10
(left)). Of course, the two signals must not be in their respective go states simultaneously.
We express this as a requirement on the controller by the specification RC shown in
Figure 4.10 (right).

Note that in error-abstracting interface theories such as IA, MI or MIA, one cannot
employ an error state in order to forbid output transitions, because the error would
immediately be propagated backwards to the initial state although the specification has
error-free implementations. Alternatively, one may remove the output may-transitions
leading to the error state. This way, one would simultaneously express that error states
should be unreachable, which we include anyway as a global requirement in the next
step. However, employing an error state makes the purpose of the requirement more
explicit. In particular, it eases the specification of more complex requirements including
must-transitions. For example, if we had a !go1-must-transition from g0 to e, then we
would have to remove the !go0-may-transition from s to g0. This backward propagation of
error information along output must-transitions happens automatically when employing
error states and a suitable global requirement.

The global requirement G that we use in order to synthesise a safe controller permits
any output sequence in general (Figure 4.11). However, due to the absence of an error
state, the system is required to be error-free. Note that the state of G is not universal.
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A = ∅/{go0, stop0, go1, stop1}

u

!go0
!stop1
!go1
!stop0

Figure 4.11.: Global specification G requiring error-freedom. G includes a may-loop for
each action.

A = ∅/{go0, stop0, go1, stop1}

0

!go0
!go1

1!stop1

2!stop0
!go1

!go0
!stop1

3

!stop0

!go0

!go1
!stop0

!stop1

!go0 !go1

!stop1
!stop0

Figure 4.12.: Quotient G // (S0 ⊗ S1) for signal type (A).

A safe controller C must satisfy the following inequations:

C ⊑ RC , (4.1)

C ⊗ S0 ⊗ S1 ⊑ G. (4.2)

As a consequence of (4.2) we get C ⊑ G // (S0 ⊗ S1), leading to the overall inequation

C ⊑ RC ⊓ (G // (S0 ⊗ S1)). (4.3)

Figure 4.12 illustrates the quotient in (4.3) and Figure 4.13 its conjunction with RC .
Note that there are many unreachable states shown in the conjunction, leaving only
three reachable states. This specification gives an upper bound on the controller that
guarantees safe operation of the railway junction. It is clear that no implementation of
this specification may guide the system into an unsafe state.
In this simple example, it was easy to specify the controller requirement RC directly.

In a more complex situation, it may be easier to identify unwanted behaviour in the
parallel composition S1⊗S2. The safety requirement can then be specified as an observer
that is obtained from S1 ⊗ S2 by marking unwanted states as errors. Transitions leaving
such a state may be removed. In our case, state (g0 ⊗ g1) has to be marked as erroneous
(Figure 4.14).

Using global specification G, a safe controller C ′ must now satisfy the inequations

C ′ ⊗RC′ ⊑ G, (4.4)

C ′ ⊗ S0 ⊗ S1 ⊑ G. (4.5)
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Figure 4.13.: Specification RC ⊓ (G// (S0 ⊗ S1)) of a safe controller with reachable states
marked in bold.
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Figure 4.14.: Safety requirement RC′ specified as an observer.
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Figure 4.15.: Quotients G // (S0 ⊗ S1) (top left) and G // RC′ (top right) and their
conjunction (bottom, with reachable states marked in bold).

Hence, C ′ ⊑ G // RC′ and C ′ ⊑ G // (S1 ⊗ S2) yielding the overall inequation

C ′ ⊑ (G // (S0 ⊗ S1)) ⊓ (G // RC′). (4.6)

Figure 4.15 illustrates the two quotients in (4.6) and their conjunction. Again, there
are many unreachable states shown in the conjunction, leaving only the three reachable
states s&3, g0&1 and g1&2.

4.3.3. Variation of the Components

Here, we briefly discuss the variation of the above system when employing signals of type
(B), which consider receiving signal stop in state s or signal go in state g as an error
(Figure 4.16). Their parallel composition is shown in Figure 4.17.

Using the same safety requirement and the same global specification as above, the
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Figure 4.16.: Refinements of signal design (B).
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Figure 4.17.: Composition of two signals of type (B).
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Figure 4.18.: Quotient G // (S0 ⊗ S1) for signal type (B).
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A = ∅/{go0, stop0, go1, stop1}

(0&0)

(0&2)!stop1

(2&6)!stop0

(2&8)

!stop0
(0&6)

!go0

(0&8)

!stop1
!go0

(1&0) (1&6)
!stop0

(2&2)

!stop1

(1&2) !go1

(1&8)
!stop0

!stop1

!go1

(2&0)

!stop1

!stop0

!go1

!stop0

!go0

!stop1

!go0

!go1

Figure 4.19.: Specification of the controller for signal type (B) with reachable states
marked in bold.

B0 S0▷

B1 S1▷ B2

Y2

B3

◁·S3

Figure 4.20.: Track layout of a safety-critical railway system.

quotient is shown in Figure 4.18. This leads to the controller shown in Figure 4.19, with
again only three reachable states.

Remarkably, when comparing with variant (A), the may-loops disappeared at several
states in the quotient and the controller, because these actions would provoke an error
when employing signal variant (B).

4.3.4. Controlling a Railway Junction

In the previous section, we have illustrated the design process of a safety-critical system
by means of an example that is small enough to be checked manually. In this section, we
apply the same design process to a larger system that requires tool support. Again, we
consider a railway system that has to be operated safely by a controller.

The track layout is illustrated in Figure 4.20. The track is divided into several blocks Bi

that are bounded by small circles, where i denotes a unique block identifier. The purpose
of these blocks is to organise a safe operation of trains on the track. A block may be
either free or blocked, and one wishes to ensure that a block is blocked at most once
in order to prevent trains from sharing the same block and risking an accident. The
symbol ▷ indicates that the end of a block is secured by a signal Si towards the right,
i.e., a train coming from the left may have to stop at the signal in order to not endanger
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e0?block0

f0

?free0

?block0

?free0

A = {alt, norm}/∅

n

?norm

a?alt
?norm

?alt

Figure 4.21.: Specification of Block B0 (left) and Switch Y2 (right).

A = {go0, stop0}/∅

g0

?go0

s0

?stop0

?go0

?stop0

A = {go3, slow3, stop3}/∅

g3

?go3

s3

?stop3
sl3

?slow3

?go3
?stop3

?slow3

?go3

?stop3

?slow3

Figure 4.22.: Two-mode signal S0 and three-mode signal S3.

the next block to the right. Similarly, a signal indicated by ◁ secures the end of a block
towards the left (not used in the example of Figure 4.20). The symbols ◁· and ▷· indicate
three-mode signals which, in addition to the modes ‘stop’ and ‘go’, have a third mode
‘slow’. We indicate switches by Y and assume that the normal direction of a switch is
straight and the alternate direction is to turnoff. In summary, the basic components are
blocks, two-mode signals, three-mode signals and switches.

Our track layout has four blocks, B0 through B3. An EMIA-specification of B0 is
shown in Figure 4.21 (left), the other blocks are specified analogously. Each block may
be either free or blocked. When trying to block the same block multiple times, an error
occurs. In this sense, ‘blocked’ means ‘blocked by a different train’. Note that this
treatment of blocks as binary values (blocked or free) simplifies reality significantly. In a
real railway controlling system a block would be blocked by a train, which would require
to send a train-ID when blocking a track section. We employ this simplification because
we do not support the modelling of data in the current state of the theory and the tool
implementation (see Chapter 5 for an extension). A switch may be in normal or in
alternate position (Figure 4.21, right).

The track is equipped with two two-mode signals, S0 and S1, which allow or disallow
a train to enter the junction from Blocks B0 and B1, respectively (Figure 4.22, left).
Further, Three-mode Signal S3 (Figure 4.22, right) controls trains coming from the right
through B3. The purpose of its slow-mode is to limit the speed of trains taking the
alternate direction.

The behaviour of the railway system is defined by the following parallel composition:

S := S0 ⊗ S1 ⊗ S3 ⊗B0 ⊗B1 ⊗B2 ⊗B3 ⊗ Y2. (4.7)
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A = ∅/{stop0, go0, stop1, go1, stop3, go3, slow3}

g0

!stop1
!go0
!stop3

s

!stop0

e

!go1

!go3

!slow3

g1

!go1
!stop3
!stop0

!stop1
!go3

!slow3

!go0

g3

!stop0
!stop1
!go3!stop3

sl3

!slow3

!go0

!go1

!go0
!go1

!go3

!stop3
!stop0
!stop1

!slow3

!go3

!stop3
!slow3
!stop0
!stop1

!go0

!go1

Figure 4.23.: Requirement R1.

That is, S has 2 · 2 · 3 · 3 · 3 · 3 · 3 · 2 = 23 · 35 = 1944 states. We consider the following
requirements for the safe operation of this system:

R1. At most one of S0, S1 and S3 may be in go or slow mode (Figure 4.23).
R2. If B0 is blocked and Y2 is in alternate position, then S3 must be in stop mode

(Figure 4.24).
R3. If B1 is blocked and Y2 is in normal position, then S3 must be in stop mode

(Figure 4.25).
R4. If B2 is blocked, then S0, S1 and S3 must be in their stop mode (Figure 4.26).
R5. If B2 is blocked, then Y2 may not change its state (Figure 4.27).
R6. If B3 is blocked, then S0 and S1 must be in their stop mode (Figure 4.28).
R7. If S0 is in go mode, then Y2 must be in alternate position (Figure 4.29).
R8. If S1 is in go mode, then Y2 must be in normal position (Figure 4.30).
R9. If S3 is in go mode, then Y2 must be in normal position (Figure 4.30).

The controller’s overall safety requirement is the following conjunction, for which we
implicitly apply alphabet extension to each conjunct:

RC := R1 ⊓ . . . ⊓R9. (4.8)

92



4.3. Designing a Railway Control System with EMIA

A = ∅/{stop3, go3, slow3, block0, free0, norm2, alt2}
s3b0n2 !block0!norm2!stop3

s3b0a2

!alt2

g3b0n2

!go3 !slow3

s3f0n2

!free0

s3f0a2 !alt2!stop3!free0

!block0

g3f0a2

!go3 !slow3

!norm2

g3f0n2 !go3!slow3!norm2!free0

!block0!alt2

!stop3

!norm2

!free0

!stop3!block0!alt2

g3b0a2

!go3!slow3

!stop3

!free0

!slow3!norm2!block0!go3

!alt2

!stop3

!norm2

!free0!slow3!alt2!go3

!block0

!block0

!alt2

!slow3 !go3

!norm2!stop3!free0

Figure 4.24.: Requirement R2; the loops comprise those actions that do not change the
state of the related component.
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A = ∅/{block1, free1, alt2, norm2, go3, slow3, stop3}

g3b1n2

g3f1a2 !go3!slow3!free1!alt2

g3b1a2

!block1

s3f1a2

!stop3

g3f1n2

!norm2

!norm2

!free1

!block1!alt2!go3!slow3

s3b1a2

!stop3

s3f1n2 !free1!norm2!stop3

s3b1n2

!block1

!alt2

!go3 !slow3

!go3 !slow3

!free1

!block1!norm2!stop3

!alt2

!go3!slow3

!norm2

!alt2!stop3!free1

!block1

!block1

!alt2

!stop3

!go3!slow3!free1!norm2

!go3!slow3

!norm2

!free1

!block1!alt2!stop3

Figure 4.25.: Requirement R3; the loops comprise those actions that do not change the
state of the related component.
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A = ∅/{go0, stop0, block2, free2}

b2s0

!block2
!stop0

f2s0

!free2

b2g0

!go0

!block2

!free2
!stop0

f2g0!go0
!stop0

!go0
!free2

!block2

A = ∅/{go1, stop1, block2, free2}
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!block2
!stop1
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!free2

b2g1

!go1

!block2

!free2
!stop1

f2g1!go1
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!go1
!free2

!block2

A = ∅/{block2, free2, go3, slow3, stop3}

b2s3

!block2
!stop3

f2s3

!free2
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!go3

!slow3

!block2 !free2
!stop3

f2g3

!go3

!slow3

!stop3

!go3
!slow3
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Figure 4.26.: Requirement R4 results from a conjunction of three EMIAs.

A = ∅/{alt2, block2, free2, norm2}

f2a2

!free2
!alt2 b2a2!block2

f2n2

!norm2

!free2

!block2
!alt2

e

!norm2

b2n2

!alt2
!norm2
!block2

!free2
!alt2 !block2

!free2
!norm2

Figure 4.27.: Requirement R5.
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A = ∅/{go0, stop0, block3, free3}

b3g0
b3s0

!go0
!stop0
!block3

f3s0

!free3
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!stop0

f3g0!go0

!block3

!stop0

!go0
!free3

A = ∅/{go1, stop1, block3, free3}

b3s1
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!stop1
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!free3
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!go1

!block3

!free3
!stop1

f3g1!go1
!stop1

!free3
!go1

!block3

Figure 4.28.: Requirement R6 results from a conjunction of two EMIAs.

A = ∅/{go0, stop0, alt2, norm2}

s0n2

!stop0
!norm2

g0n2

!go0

s0a2

!alt2

!norm2

!alt2
!stop0
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Figure 4.29.: Requirement R7.

A = ∅/{go1, stop1, alt2, norm2}
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A = ∅/{alt2, norm2, go3, slow3, stop3}
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!slow3
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!stop3

!slow3

!norm2
!go3
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!stop3
!slow3
!alt2

!go3

Figure 4.30.: Requirements R8 (left) and R9 (right).
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A = ∅/{go0, stop0, block1, free1, go1, stop1,
alt2, block2, free2, norm2, block3, free3, go3, slow3, stop3}
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Figure 4.31.: Sketch of the reduced controller specification RC(G//S); the loops comprise
those actions that do not change the state of the related component.

The controller C must satisfy the inequation

C ⊑ RC ⊓ (G // S). (4.9)

Concerning the complexity, the conjunctive product underlying RC has 6 ·8 ·8 ·43 ·5 ·42 ·4 ·
4 ·4 = 6 ·82 ·48 ·5 = 125 829 120 states and the quotient G//S has 1944 states (as we have
seen before). These numbers have to be multiplied in the conjunction of (4.9). From this
consideration, the necessity of tool support is obvious, and we have to reduce intermediate
results, e.g., by removing unreachable states and merging indistinguishable error states. In
order to get an impression, the controller specification we get after applying intermediate
reductions is sketched in Figure 4.31, counting 26 states. Remarkably, this final result is
relatively small despite the large size of intermediate results. In particular, the whole
computation is a question of minutes on a standard laptop hardware (Intel Core i5-4210M,
16GiB memory) while we were unable to visualise some of the intermediate results within
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an arbitrarily chosen time limit of 12 hours. The source code of this case study is found
in Appendix C.2.

We summarise the methodology that we employed for designing a railway system.
First, we designed railway signals by stepwise refinement, which we composed with
switches and blocks to a partial system S. This was possible due to EMIA’s support of
independent implementability. Second, we employed perspective-based specification in
order to combine the requirements R1 through R9 via conjunction into an overall safety
requirement R. Third, we applied incremental design to extend S by a controller. To
do so, we synthesised a controller specification G // S from a global requirement G and
the already existing partial system S via quotienting. Finally, we refined the controller
specification by conjoining G // S and R yielding a specification C that guarantees the
safe operation of the railway system.

4.4. Tool Support

During the work on this thesis, two prototypical tools that implement the Modal Interface
Automata have been developed. The main reason, why we developed new tools instead of
extending one of the existing tools, is that several major requirements of MIA are insuffi-
ciently supported by these tools, e.g., internal transitions, disjunctive must-transitions,
nondeterminism and input/output, such that extending these tools would require major
refactoring and significantly more effort than a new implementation.

4.4.1. Haskell Implementation of MIA

The MIA theory has been implemented in Haskell [Has17] as a tool called Gemia, which is
available as free software at [Fen17] and in Appendix B. Gemia has been used to validate
the examples in Section 4.2 and to cross-validate the Go implementation presented in
Section 4.4.2. The Gemia tool supports the following features:

• Pruning of unreachable and inconsistent states,

• Alphabet extension,

• Parallel product,

• Conjunctive product and conjunction,

• Pre-quotient,

• Visualisation via Graphviz [Gra17].

At the current state of the implementation, the following aspects of MIA are not supported:
internal and weak transitions, hiding, restriction, error-pruning and disjunction. In
particular, we did not miss error-pruning in practice because we were always interested
in the reasons for a communication mismatch.
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-- Global server specification.

global :: Gemia Int

global = makeGemia (Leaf 0)

[req 0 Input "rqst" [1],

opt 1 Output "fail" 0,

opt 1 Output "resp" 0]

G : {rqst}/{resp, fail}

0

1

rqst? resp! fail!

Figure 4.32.: Example of a Gemia specification of the global requirement from Figure 4.1.

Gemia’s main data structure used to represent MIAs is based on records and lists.
States are represented as binary trees in order to make tracing back to the origin of
a state in a composed system easier. An alternative implementation that uses IDs for
states and maps instead of lists, as was done in the Go implementation below, did not
prove to be a performance benefit.

Gemia is provided as an embedded DSL such that the full expressiveness of the
Haskell programming language may be employed for specification. An example of such a
specification is given in Figure 4.32 by means of the global requirement of our client-server
example from Section 4.2. The specification has the name global and is of type Gemia
Int, i.e., it corresponds to a MIA where the basic type for representing states is Int.
However, the actual type for node representation is a tree of Int, so that the compositional
structure resulting from applying MIA-operations is still visible in a composed system.
This is the reason why the initial state is given as Leaf 0.

The transitions are given as a list of calls to req and opt for required and optional
transitions, respectively. For both functions, the first argument is the source node of the
transition, the second is the IO-type, namely Input or Output, and the third argument
is a string that represents the action label of the transition. Target nodes are given as
the fourth argument in a slightly different manner for req and opt. As MIA supports
disjunctive must-transitions, req expects a list of nodes as a target, while the target for
opt is just a single node. All nodes, source and target, are given as the basic node type,
Int in our example. Note that ‘required’ and ‘optional’ have a slightly different meaning
than ‘must’ and ‘may’. A required transition is a must-transition that automatically
includes the may-transitions required by syntactic consistency, while an optional transition
represents a may-transition that is not required by any must-transition. This way, it is
impossible to specify syntactically inconsistent systems in Gemia. The complete source
code of the client-server case study is found in Appendix C.1.

4.4.2. Go Implementation of MIA and EMIA

The MIA theory has also been implemented in Go as a part of Gareis’ Master’s the-
sis [Gar15], which was supervised by the author. The main goal of this tool, which is
called MiaGo, was to extract MIAs from Go source code in order to check them against
specifications also given as MIAs. The choice of Go was made due to its direct support
of channels similar to those in MIA. This implementation has been extended to EMIA
by the author of this dissertation and used to carry out the case study in Section 4.3. It
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specification Signal {

states { s, g, u }

inis { s }

unis { u }

errs { }

channels { go, stop }

s {

go?? -> g

stop? -> u

}

g {

stop?? -> s

go? -> u

}

};

g u
?go

s

?stop

?go

?stop

Figure 4.33.: Example of a MiaGo specification of a railway signal from Section 4.3.1.

supports the following operations:

• Pruning of unreachable and inconsistent states,

• Alphabet extension,

• Hiding and restriction,

• Parallel product and parallel composition,

• Conjunctive product and conjunction,

• Pre-quotient and quotient,

• Disjunction,

• Refinement checking via boolean equation systems,

• Construction of counter-examples in case refinement does not hold,

• Extraction of MIAs from Go source code,

• Visualisation via Graphviz [Gra17].

The main data structure employed in MiaGo is very similar to that of the Haskell
implementation. States are represented as unique integer IDs and may carry possibly
non-unique string identifiers used for displaying.

MiaGo employs an external DSL for specifying interfaces. As an example, Figure 4.33
shows the specification of a signal as designed in our railway case study in Section 4.3.1.
The specification is named Signal. With the keyword states we declare three state
identifiers, s, g and u. Only declared state identifiers may be used in the remainder of
the specification. The keywords inis, unis and errs are used to declare which states
are initial, universal or erroneous, respectively. In our case, no error-state is declared.
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Q : ∅/{a}
q0

q1

q2 q3

a

a

a

P : ∅/{a}
p0

p1

p2 p3

a

a a

Counter example:

Xp0,q0

Xp1,q1

Xp2,q3 Xp3,q3

Figure 4.34.: Counter example when checking refinement with boolean equation systems.

With the channels-keyword we declare two channel names, go and stop. Afterwards,
the state transitions are defined. For example, state s has a go-input must-transition
(marked with ??) leading to state g and a stop-input may-transition (marked with ?)
leading to state u. Similarly, output must-transitions are marked with !! and output
may-transitions with !.

Most operators have a straightforward implementation. Therefore, we only describe
how refinement checking is implemented. Refinement checking is translated into a boolean
equation system (BES) [GW05] that is solved with the external solver pbes2bool from the
mCRL2 toolset [mCRL17]. A refinement relation R between two MIAs P , Q by boolean
variables Xp,q, for p ∈ SP , q ∈ SQ, where Xp,q is true if and only if (p, q) ∈ R. Based on
this representation, the refinement check is encoded as a BES containing, for all p ∈ SP ,
q ∈ SQ, an equation of the form

Xp,q =


a∈A


{p′|p

a
P p′}


{q′|q

a
Qq′}

Xp′,q′

∧


a∈A


{Q′|q

a
Q′}


{P ′|p

a
PP ′}


p′∈P ′


q′∈Q′

Xp′,q′

 . (4.10)

Hereby, the first conjunct of the equation’s right-hand side expresses the refinement
conditions on may-transitions and the second conjunct the conditions on must-transitions
(see Definition 3.5 on page 37). Further, the equation Xp0,q0 = true is added in order to
include initial states p0, q0; otherwise, the empty refinement relation is always a trivial
solution of the BES.

The greatest fixed point of such a BES yields the greatest refinement relation between
P and Q if the BES has a solution. Otherwise, P does not refine Q and pbes2bool
returns a counter-example in the form of a tree of variables Xp,q. In our case, such a tree
is rooted in Xp0,q0 and represents paths that explain why (p0, q0) /∈ R.

Example 4.1. Consider the MIAs P and Q shown in Figure 4.34. Checking whether P
refines Q is translated into the following BES, where we omit equations of uninteresting
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node pairs for brevity:

Xp0,q0 = Xp1,q1

Xp1,q1 = ((Xp2,q2 ∧Xp2,q3) ∧ (Xp3,q2 ∧Xp3,q3)) ∧ ((Xp2,q2 ∧Xp2,q3) ∨ (Xp3,q2 ∧Xp3,q3))

Xp2,q2 = true

Xp3,q2 = true

Xp2,q3 = false

Xp3,q3 = false

It is easy to see that P does not refine Q. A counter-example tree (out of several possible
ones) is also shown in Figure 4.34. Node Xp0,q0 is false due to Xp1,q1 being false because
both alternatives Xp2,q3 and Xp3,q3 are false. This counter-example explains that P does
not refine Q because neither p2 nor p3 refines q3. Hence, we may focus on a further
analysis of states p2, p3 and q3, revealing that the refinement check fails due the a-loop
that is required by q3 but not implemented by p2 or p3.

Further, Gareis [Gar15] extended the Go language by means of a preprocessor that
enables one to annotate Go functions with MIAs given in the above DSL. MiaGo is able
to extract MIAs from Go source code, where the action labels correspond to the channel
names of the program. By checking whether the extracted MIA refines the annotated
MIAs one may verify the communication behaviour of a function against a behaviour
specification. For further details see [Gar15].

4.4.3. Overview of Existing Tools

The material presented in this section is based on currently unpublished joint work with
Gareis [FG17]. We compare different software tools that implement specification theories
such as IA, MTS and their extensions. Namely, we consider the MIO Workbench [Bau+10;
BML11], Mica [Cai11; Rac+11], Ticc [Adl+06; LAF06], MoTraS [Ben+15; KS13] and
MTSA [DIp+07; DIp+08].

The MIO Workbench [Bau+10; BML11] implements Bauer et al.’s MIO as a series
of Eclipse plug-ins [Ecl17] in Java. It offers a command line shell as well as a graphical
editor provided by an Eclipse perspective. The graphical editor can be used to create and
change MIOs, to check for refinement and to investigate errors. The plugin itself offers
checking for strong, weak and may-weak modal refinement, optimistic and pessimistic
compatibility, and satisfyability. Nondeterminism and the operations operations parallel
composition, conjunction and quotient are supported. However, the above research
papers leave it unclear how refinement checking and the quotient are implemented. The
latest update of the MIO Workbench is from August 2012 and requires Eclipse version
3.7 from 2011.

The tool Mica [Cai11; Rac+11] implements Caillaud et al.’s Modal Interfaces (MI) in
OCaml. Interfaces are specified in an embedded DSL such that the full expressiveness of
the OCaml language is available for specification. Mica provides a graphical visualisation
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of interfaces via Graphviz [Gra17]. Beyond modal refinement and the standard operations
of interface theories, subimplication and several temporal operators are also implemented.
Many checks like consistency, compatibility, satisfyability, completeness and inconsistency
are provided. As the tool is based on MI, it inherits MI’s associativity bug and does
not support nondeterminism and internal behaviour. The current version is 0.08a, last
updated in April 2014.
Ticc [Adl+06; LAF06] implements Sociable Interfaces [Alf+05] in OCaml. A textual

language is used to specify interfaces which are stored as MDDs/BDDs employing the
CU decision diagram package CUDD [Som15]. The tool implements the operations
parallel product, parallel composition and the restriction of input actions. Compatibility
of components can be checked. Refinement, modalities, internal behaviour and the
operations conjunction, disjunction and quotient are not supported. Unfortunately, the
tool is not available anymore. Therefore, our tool description is taken from the previously
mentioned citations.

MoTraS [Ben+15; KS13] implements several variants of Larsen et al.’s Modal Transition
Systems (MTS), such as disjunctive and parametric MTS, and is written in Java. The
tool provides a command line interface to an external DSL and a graphical interface on
the NetBeans platform [NB17]. It offers many operators such as conjunction, parallel
product, quotient and deterministic hull. Modal refinement checking is translated into
quantified boolean formulas (QBF) which are solved with external QBF solvers. LTL
model checking and consistency checks are also provided. A unique property of MoTraS
is the possibility to handle parametric systems. Internal behaviour is not supported. The
current version is 1.0, and its latest update is from September 2014.

MTSA [DIp+08; DIp+07] also realises Larsen et al.’s Modal Transition Systems. It is
implemented in Java as an Eclipse plugin [Ecl17]. Eclipse perspectives offer a graphical
user interface. In addition, the textual language FSP [MK99] may be used to describe
processes and complex systems. LTL model checking is supported, and MTS models
may be synthesised from FLTL safety properties [GM03]. The tool supports parallel
composition, and refinement checking. Furthermore, it offers checks for deadlocks, safety,
and progress. Internal behaviour is not supported. The latest version is from August
2016.

All of the above tools have been implemented for a particular theory and, therefore,
differ in many small aspects. Some of them are not maintained anymore, and the last
updates have been made years ago. We were unable to install Ticc due to its source code
being unavailable, and it was hard to install the MIO Workbench and MoTraS due to
the required old versions of software on which the tools depend.
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Interface theories [AH01a; AH05; Bau+10; Rac+11; Buj+16] provide an incremental,
component-based design methodology for the specification of concurrent reactive systems.
Being specification-oriented, they employ a uniform interaction model, i.e., one may
observe whether an action is performed whereas the internal structure of an action is
invisible. When moving towards implementations, one wishes to model interactions
that include structured data, e.g., exchanging a typed message or calling a method
with typed parameters. Examples of actions in such a structured interaction model
are reading and writing typed messages on communication channels that are given by
channel names. Such models have been investigated in various forms of behavioural
type systems; an overview can be found in [Hüt+16]. In particular, session types have
developed into a promising family of formalisms for providing behavioural type systems
for concurrent programming languages [BY09; Car+16; CDY14; CPT16; GH05; Hon93;
HYC16; KGG14].

Session types are well-studied behavioural type systems for programming languages
based on the π-calculus [MPW92] and support higher order features such as name
passing and session delegation. A session type is intended to describe the communication
protocol of an interactive session between communicating components, e.g., in service-
oriented applications. The major goals of session types are to guarantee the following
properties [HYC16]:

• Session fidelity : The communication sequence of the interacting components adheres
to the communication protocol specified in the session type.

• Communication safety : A session is always free of communication errors, i.e.,
communicating components agree on the type of a message when it is sent and
received.

• Linearity : A communication channel is always used linearly, i.e., every sent message
is received exactly once within a session.

• Progress : A session always comes to its intended end, i.e., a session is deadlock-free
in the sense that communicating components never get stuck in an intermediate
state of the communication protocol.

These guarantees are achieved due to strong assumptions such as a closed systems view
via global types, pessimistic compatibility and private communication. Further, session
types strictly distinguish branching and selection, which are similar to external and
internal choice in CSP [Hoa85]. Branching describes several options, e.g., services a
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component offers to its communication peers, while selection describes a choice that a
component may make between the services offered by one of its peers.
In this chapter, we present a first step towards bridging the gap between the more

specification-oriented interface theories and the more implementation-oriented session
types. We develop de Alfaro and Henzinger’s Interface Automata (IA) [AH01a; AH05]
into a behavioural type theory similar to session types. In this theory, IA-refinement
corresponds to behavioural subtyping and type checking is a computationally efficient
approximation of refinement checking. Hence, our behavioural type system is applicable
from abstract levels of specification theories down to concrete levels of type theories.

In contrast to session types, we employ an open systems view and optimistic compati-
bility. This is achieved by integrating the parallel composition operator into the type
system deliberating us from the necessity of a manually defined global type. Our type
system provides a type-level operational semantics and a more explicit and more precise
typing of processes than is usual for session types. Further, we do not separate branching
and selection, i.e., any state may specify branching and selection options simultaneously.
Instead of private communication, we employ a multicast parallel composition as usual in
interface theories [Rac+11; Buj+16]. However, we assume an information flow direction
from output to input in contrast to interface theories, which are agnostic with respect
to this question (see Remark 5.1). In order to study the differences between interface
theories and session types, we present a simple proof of concept that is as close as possible
to a typed version of Interface Automata. In particular, we do not consider name passing.

Remark 5.1 (Terminological Pitfall). The terms input and output have a different
meaning in interface theories and session types. In interface theories, an output is active
and an input reactive, and—despite the suggestive terms—no information flow direction
is considered in these theories due to the uniform communication model. In session
types, input, output and selection are active, whereas branching is reactive. In addition,
information flow is directed from output to input.

5.1. The ΠIA Behavioural Type System

In this section we develop the ΠIA behavioural type system, consisting of an implementa-
tion language based on the π-calculus and a type language based on IA. A simple way of
enriching interface theories with data types is to extend the action alphabet with types.
If A is an alphabet of uniform actions and T a set of data types, we may employ the
set A × T as typed action alphabet of an interface. This is possible for any IA-based
interface theory. We do so for IA because it is a simple interface theory and sufficient for
illustrating the idea.

Definition 5.2 (Interface Automata with Typed Actions). Let A be a set of channel
names and T a set of data types. An Interface Automaton with Typed Actions (IATA) is
an interface automaton (seen as a subclass of EMIA) with alphabets I ∪O ⊆ A× T . We
write a : t for (a, t) ∈ A× T , a?t for (a, t) ∈ I, a!t for (a, t) ∈ O, and call such a tuple a
typed action.
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P :
a!s

a!t

Q:
a?
s

a?t

P ′:
l1!

l2 !

a!s

a!t

Q′:
l1?

l2?

a?s

a?t

Figure 5.1.: Should nondeterministic specifications be considered compatible?

While nondeterminism is quite natural for IA, we face some subtleties if the actions are
typed. For example, it is debatable whether the behavioural types P and Q in Figure 5.1
should be considered compatible. Considering P and Q compatible presupposes some
kind of type reflection because Q must know whether the object that P is sending over
channel a is of type s or t in order to choose the appropriate transition. Hence, Q’s
choice is determined by P and cannot be considered nondeterministic anymore. This
consideration also applies to IATA because a!s and a!t are different actions if s and t are
different types.
In session types this issue is solved by employing a strict way of determinising such

nondeterministic choices. Transitions are uniquely labelled on the implementation and
the type level [HYC16]. Such a labelling is made explicit in an IA-based setting as shown
in specifications P ′ and Q′ of Figure 5.1. For these reasons, we restrict our investigation to
deterministic systems in this chapter, which is necessary in the proof of Proposition 5.14.
For the same reason we exclude internal transitions labelled τ .

5.1.1. The Type Language

While IATAs may serve as a type language for typing processes, they are not optimal
for type checking because they deviate significantly from the syntactic structure of an
implementation language suitable for programming. For example, the behaviour of a
channel is modelled only implicitly in IATA. Therefore, we first define an alternative
type language and investigate its relation to IATAs in Section 5.1.5.

Definition 5.3 (ΠIA Type Language). The ΠIA type language is defined by the following
grammar:

T ::= D | C | P (general types)

D ::= t1 | t2 | . . . (data types)

C ::= end | ?T̄.C | !T̄.C | C+ C |
C ∥ C | α | µα.C (channel types)

P ::= S | P ∥ P (process types)

S ::= err | α | µα.A | µα. err | A (sequential types)

A ::= end | N?T̄.S | N!T̄. S | A+ A (interaction types)

N ::= n1 | n2 | . . . (channel names)

In this thesis, T̄ = D; however, we envision T̄ = T for future work. We assume that the
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precedence of the operators decreases from left to right as follows: . > ∥ > + > µ.

A ΠIA type T is either a data type, a channel type or a process type. Data types
are the types of a standard type language such as a typed λ-calculus. A channel type
describes how a channel may be used: type end denotes a terminated channel; ?T̄.C
means receiving an action of type form T̄ on the channel and then using the channel like
C; a type of form !T̄.C means performing an action observable as type form T̄ on the
channel and then using the channel like C; types of forms C+C and C∥C denote branching
and parallel composition, respectively; α is a channel variable and µα.C describes the
recursive usage of a channel. A process type is either a sequential (process) type or a
parallel process type. Sequential types are structured as follows: err denotes an error
type; α is a process variable and µα. S denotes a recursive process type. Interaction types
describe how processes may interact with their environment: end means termination;
a type of form N?T̄. S denotes receiving an action of type T̄ on channel N and then
behaving as S; type form N!T̄.S means acting as T̄ on channel N and then behaving as
S; type A+ A means branching. Finally, N are channel names. We do not distinguish
the channel-level from the process-level symbols end, ∥, +, ?, !, α and µ because they
are easily disambiguated from the context. Also, we often omit the symbol end, e.g., we
write N!T̄ instead of N!T̄. end. We also use different letters than t1, t2, . . . or n1, n2, . . .
for data types and channel names, which will always be clear from the context.

Some syntactically different type expressions may semantically denote the same type.
Hence, we need equivalence rules that abstract from such purely syntactic differences.
To do so, we define the concept of free variables:

Definition 5.4 (Free Variables). The set of free variables of a type expression is defined
recursively by the following rules:

fv(end) = fv(err) = ∅, fv(x) = {x},
fv(n!y. S) = fv(S), fv(n?y. S) = fv(S) \ {y},

fv(S ∥ T ) = fv(S + T ) = fv(S) ∪ fv(T ), fv(µx. S) = fv(S) \ {x}.

Now we can define structural equivalence for types:

Definition 5.5 (Type-level Structural Equivalence). Let S, T and U be type expressions
according to Definition 5.3. Two types are structurally equivalent if they are equivalent
according to the following rules:

S + T ≡ T + S (S + T ) + U ≡ S + (T + U)

S ∥ T ≡ T ∥ S (S ∥ T ) ∥ U ≡ S ∥ (T ∥ U)

S + end ≡ S S ≡ S

S ∥ end ≡ S S ∥ err ≡ err

µx. end ≡ end µx. err ≡ err

µx. S ≡ S[µx. S/x] µx. S ∥ T ≡ S ∥ µx. T , if x /∈ fv(S)
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For traditional data type systems, the subject reduction property means that the type of
an expression stays stable under evaluation of the expression. For example, evaluating
expression ‘3 + 4’ of type integer yields expression ‘7’, which still is of type integer.
A common application of subject reduction is that one does not need to evaluate an
expression operationally in order to compute its type. In contrast, a behavioural type
captures the dynamics of an object and, thus, may change when the object is used. For
behavioural types, the stability requirement of the subject reduction property means that
such changes may only happen in a controlled way, i.e., we need an operational semantics
on the type level that conforms with the implementation-level operational semantics. In
addition, the usual interface-theoretic synchronisation of input and output happens at
this operational semantics level.

Definition 5.6 (Type-level Operational Semantics). The operational semantics [[S]] of a
ΠIA behavioural type S is an LTS defined by the following rules:

(n!s. t) + r
n!s−→ t (5.1)

(n?s. t) + r
n?s−→ t (5.2)

((n!s. t) + t′) ∥ (n?s. r + r′)
n!s−→ t ∥ r (5.3)

((n?s. t) + t′) ∥ (n?s. r + r′)
n?s−→ t ∥ r (5.4)

It is obvious that the operational semantics of a behavioural type defines an IATA. Hence,
we can lift the interface-theoretic compatibility to types:

Definition 5.7 (Compatibility of Types). A process type T is optimistically compatible
if its operational semantics [[T ]] is optimistically compatible, i.e., if errors may not be
reached by only output transitions.

5.1.2. The Implementation Language

Similar to session types, we base our implementation language on a variant of the
π-calculus.

Definition 5.8 (ΠIA Implementation Language).

P ::= S | P ∥ P (general processes)

S ::= A | x | µx.P | err (sequential processes)

A ::= end | N?y.S | N!y.S | A+ A (process interactions)

N ::= n1 | n2 | . . . (channel names)

Analogous to the type language, we have parallel composition, recursion, error, termina-
tion, observation, action, and branching. Further, the implementation language shares
the same channel names with the type language. Note that, in contrast to Definition 5.3,
an explicit µx. err is not required in Definition 5.8 because this expression is already
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included in µx.P. The implementation-level structural equivalence follows the same rules
as type-level structural equivalence (see Definition 5.5), except that S, T and U denote
processes instead of types, and we denote it by the same symbol ≡. The operational
semantics is then defined as follows:

Definition 5.9 (Implementation-level Operational Semantics). Given variables y and z,
where we assume w.l.o.g. that y /∈ fv(Q), the implementation-level operational semantics
is defined by the following rules:

(n!y. P ) +Q
n!y−→ P (5.5)

(n?y. P ) +Q
n?y−→ P (5.6)

(n!y. P + P ′) ∥ (n?z.Q+Q′)
n!y−→ P ∥Q[y/z] (5.7)

(n?y. P + P ′) ∥ (n?z.Q+Q′)
n?y−→ P ∥Q[y/z] (5.8)

Because we take an open systems view as is usual in interface theories, the operational
semantics rules 5.5 and 5.6 capture actions which are not synchronised. In (5.8) we
need the substitution [y/z] in order to synchronise the information received from the
environment of P ∥Q, which may also communicate on n.

5.1.3. The Type System

The purpose of the type language is to constrain the validity of expressions of the
implementation language to well-typed or typable expressions. This is achieved via typing
rules that relate valid expressions to types. We employ typing contexts in order to reason
about the type of free variables and channel names:

Definition 5.10 (Typing Context). Given variables or channel names x1, . . . , xk and
type expressions T1, . . . , Tk, a typing context is a collection Γ := x1 :T1, . . . , xk :Tk, where
x :T means that variable x has type T .

We do not distinguish typing contexts that differ only with respect to ordering or multi-
plicity of elements. In particular, our type system is not in Curry-Howard correspondence
with a purely linear logic, which would constrain us to private communication as in
session types [CPT16; Car+16]. We also need operations for merging contexts:

Definition 5.11 (Merging of Contexts). For typing contexts Γ = x1 :S1, . . . , xk :Sk and
Γ′ = y1 :T1, . . . , yl :Tl, we define Γ + Γ′ and Γ ∥ Γ′ as the smallest contexts satisfying the
following rules:

CB1. if z :S ∈ Γ and z /∈ Γ′, then z :S ∈ Γ + Γ′,
CB2. if z :T ∈ Γ′ and z /∈ Γ, then z :T ∈ Γ + Γ′,
CB3. if z :S ∈ Γ and z :T ∈ Γ′, then z :S + T ∈ Γ + Γ′.

CP1. if z :S ∈ Γ and z /∈ Γ′, then z :S ∈ Γ ∥ Γ′,
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(ax)
x :S ⊢ x :S

(weak)
Γ,∆ ⊢ x :S

Γ, y :T,∆ ⊢ x :S
[y ̸∈ fv(x)]

(end)
Γ ⊢ end : end

(err)
Γ ⊢ err : err

(out)
Γ ⊢ y :S Γ, x :T ⊢ P :R

Γ, x : !S. T ⊢ (x!y. P ) :x!S.R
(in)

Γ, x :T, y :S ⊢ P :R

Γ, x : ?S. T ⊢ (x?y :S. P ) :x?S.R

(bra)
Γ ⊢ P :S Γ′ ⊢ Q :T

Γ + Γ′ ⊢ (P +Q) :S + T
(par)

Γ ⊢ P :S Γ′ ⊢ Q :T

Γ ∥ Γ′ ⊢ (P ∥Q) :S ∥ T

(rec)
Γ, x :α ⊢ E :T

Γ ⊢ (µx.E) :µα. T

Figure 5.2.: The ΠIA typing rules.

CP2. if z :S ∈ Γ′ and z /∈ Γ, then z :S ∈ Γ ∥ Γ′,
CP3. if z :S ∈ Γ and z :T ∈ Γ′, then z :S ∥ T ∈ Γ ∥ Γ′.

Note that S + T is only defined if S and T are types of a kind that may be composed
according to Definition 5.3. Otherwise, Γ + Γ′ is not defined and the expression cannot
be typed. The same is true for ∥. The merging operations allow us to define the ΠIA
typing rules:

Definition 5.12 (Typing Rules). An expression E of the implementation language is
well-typed if and only if there is a context Γ and a type expression T such that Γ ⊢ E :T
is derivable by the rules shown in Figure 5.2.

The structural rules (ax) and (weak) are standard. Rules (end) and (err) ensure that,
in any context, a terminated process is of type end and an error process is of type err.
Rule (out) is concerned with outputting a variable y :S on a channel x. Note how the
behavioural type of x changes when applying the rule. Rule (in) is the corresponding
input rule which mainly differs from (out) by the fact that variable y is bound by the
application of (in). Branching (bra) and parallel composition (par) are straightforward.
In particular, (par) does not require a compatibility check due to our explicit error
representation. Rule (rec) is a standard recursion rule, where E is either a process or a
channel name.

Example 5.13. We consider a client-server application where a client may send an
account-id i via a channel q (query) to a server that responds with an account-balance b
via a channel r (response). A possible client implementation is C = q!i. r?y. end and a
possible server implementation S = q?j. r!b. end. We show that the composition C ∥ S is
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well-typed. The typing of the client due to rules (ax), (in) and (out) is:

i : string, r : ?int. end ⊢ i : string
q : end, i : string, r : end, y : int ⊢ end : end

q : end, i : string, r : ?int. end ⊢ (r?y : int. end) : r?int. end

q : !string. end, i : string, r : ?int. end ⊢ (q!i. r?y : int. end) : q!string. r?int. end.

We abbreviate the last sequent with Γ ⊢ C :TC . A similar derivation yields the following
typing for the server, which we abbreviate with ∆ ⊢ S :TS :

q : ?string. end, b : int, r : !int. end ⊢ (q?j : string. r!b. end) : q?string. r!int. end.

Applying rule (par) yields Γ ∥∆ ⊢ C ∥ S :TC ∥ TS .

5.1.4. Subject Reduction, Congruence and Type Safety

Subject reduction and congruence are two important properties of a type system in that
they guarantee that the type language and the implementation language fit well together.

Subject reduction ensures stability of the type under evaluation of an object. For
behavioural types, this means that an implementation may only engage in behaviour
that is permitted by its behavioural type.

Proposition 5.14 (Subject Reduction). Let † ∈ {!, ?}, Γ ⊢ P :S and y :T . Then,

P
n†y−→ P ′ implies the existence of a context Γ′ and a type S′ such that S

n†T−→ S′ and
Γ′ ⊢ P ′ :S′.

Proof. Assume Γ ⊢ P :S and y :T . A transition P
n†y−→ P ′ is due to one of the operational

semantics rules (5.5)–(5.8):

Rule (5.5): P = n!y. P ′ +Q. Applying (bra) yields Γ = Γ1 +Γ2 and S = S1 + S2 with
Γ1 ⊢ n!y. P ′ :S1 and Γ2 ⊢ Q :S2. By rule (out), we get Γ1 = Γ̃, n : !T. T ′ and S1 = n!T.S′

with premises Γ′ := Γ̃, n :T ′ ⊢ P ′ :S′ and Γ̃ ⊢ y :T . By rule (5.1) we establish S
n!T

S′.

Rule (5.6): P = n?y. P ′ +Q. By applying typing rules (bra) and (in), we establish
Γ = Γ̃, n : ?T. T ′, y :T and S = n?T. S′ + R as well as Γ̃, n :T ′, y :T ⊢ P ′ :S′. Rule (5.2)

implies S
n?T−→ S′.

Rule (5.7): P = (n!y.R1 +R2) ∥ (n?z.Q1 +Q2) and P
n!y−→ R1 ∥Q1[y/z]. A derivation

of Γ ⊢ P :S is due to typing rule (par) with Γ = Γ̃ ∥ ∆̃, where Γ̃ is obtained by (out) and
(bra) from the derivation

Γ1 ⊢ y :T Γ1, n :T
′ ⊢ R1 :U1

Γ1, n : !T. T ′ ⊢ n!y.R1 :n!T.U1 Γ2 ⊢ R2 :U2

Γ1, n : !T. T
′ + Γ2  

Γ̃

⊢ n!y.R1 +R2 :n!T.U1 + U2

and ∆̃ from a similar derivation of ∆1, n : ?T. T
′ +∆2 ⊢ n?z.Q1 +Q2 :n?T. S1 + S2 due

to (in) and (bra). We choose Γ′ = (Γ1, n :T
′) ∥ (∆1, n :T

′, z :T ).
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From the above derivations we conclude that S = V ∥W for types V = n!T.U1 + U2

and W = n?T. S1 + S2. Note that y and z are of the same type because V and W

are deterministic and synchronise on n. Hence, (5.3) applies and S
n!T−→ S′ := U1 ∥ S1.

Rule (par) implies Γ′ ⊢ R1 ∥Q1[y/z] :S
′.

Rule (5.8): similar to (5.7) but easier.

Congruence relates the type-level and the implementation-level structural equivalence:

Proposition 5.15 (Congruence). If P ≡ Q and Γ ⊢ P :S, then there is a T ≡ S such
that Γ ⊢ Q :T .

Proof. P +Q ≡ Q+ P : obvious due to typing rule (bra).
(P +Q) +R ≡ P + (Q+R): easy due to structural equivalence on types.
P ∥Q ≡ Q ∥ P : obvious due to typing rule (par).
(P ∥Q) ∥R ≡ P ∥ (Q ∥R): easy due to structural equivalence on types.
P ∥ end ≡ P : easy due to structural equivalence on types.
P ∥ err ≡ err: easy due to structural equivalence on types.
µx.P ≡ P [µx.P/x]: easy due to structural equivalence on types.

The purpose of a type system is to ensure type safety, in the sense that a typable program
cannot go wrong, for some definition of ‘wrong’. Our definition of ‘wrong’ is concerned
with the reachability of errors in the operational semantics:

Proposition 5.16 (Type Safety). A ΠIA program that is typable with an optimistically
compatible type never reduces to an error autonomously, i.e., by taking only output
transitions.

Proof. By Proposition 5.14, a typable program P : t reduces to err if and only if its type t
reduces to err. By optimistic compatibility of t, such errors are guarded by input actions.
Hence, P does not reduce to err autonomously.

A direct consequence of this proof is that closed systems are error-free, where we consider
a system as closed if all inputs are bound, i.e., only output actions remain:

Corollary 5.17. A closed program typable with an optimistically compatible type is error
free.

It is important to include optimistic compatibility in our understanding of type safety.
Omitting this requirement would adhere to pessimistic compatibility as is done in session
types, where it is sufficient because only closed systems are considered. In contrast,
our goal is to develop a behavioural type theory that—beyond ensuring type safety—is
also suitable as a compositional design tool. This goal is supported by employing a
compositional open systems view. In this view, optimistic compatibility allows one to
type intermediate results, i.e., subterms of a term, which may or may not result in an
error depending on the environment.
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5.1.5. Subtyping and Relation to Interface Automata

In general, subtyping on data types is not compositional for behavioural types. For
example, consider a data type Num that has subtypes Int and Float. If one regards

processes p0
a!Num−−−−→ p1 and q0

a?Num−−−−→ q1 compatible, their composition is p0 ∥ q0
a!Num−−−−→

p1 ∥ q1. However, the refinements p′0
a!Int−−−→ p′1 and q′0

a?Float−−−−→ q′1 of p0 and q0 cannot be
composed. An approach that is contravariant in either input or output does not solve
this problem neither, because it violates the basic idea of becoming more precise when
refining. Therefore, we only allow behavioural subtyping. Note, however, that one could
relax this restriction to certain kinds of quantitative data types, such as intervals, as
described in [Fah+15].

Definition 5.18 (Behavioural Subtyping). The subtype relation ⪯ between behavioural
types is defined by the following rules:

S1. if S ≡ T , then S ⪯ T ,
S2. S ⪯ S + n!T. T ′,
S3. S + n?T. T ′ ⪯ S,
S4. if S ⪯ S′ and T ⪯ T ′, then S ∥ T ⪯ S′ ∥ T ′,
S5. if S ⪯ T , then n†R.S ⪯ n†R. T , for † ∈ {?, !},
S6. if S ⪯ T , then µx. S ⪯ µx. T .

In case of contexts Γ = x1 :S1, . . . , xk :Sk and ∆ = x1 :T1, . . . , xk :Tk we write Γ ⪯ ∆ if
S1 ⪯ T1, . . . , Sk ⪯ Tk.

Example 5.19. We give an example of subtyping by means of a server S′ that, beyond the
service provided by the server S of type TS from Example 5.13, provides an additional ser-
vice s for sending an amount m of money to the account. The sequent ∆′ ⊢ S′ :T ′ derives
the typing of S′ with the context ∆′ := q : ?string. end, b : int, r : !int. end, s : ?string. ?int. end,
the implementation S′ := (q?j : string. r!b. end) + (s?j : string. s?m : int. end) and the type
T ′ := (q?string. r!int. end) + (s?string. s?int. end). Obviously, we have T ′ ⪯ TS by Rule S3.

Axiom S4 requires compositionality of subtyping with respect to parallel composition
directly because parallel composition is not defined operationally here. However, we
have to show that the syntactic definition of parallel composition corresponds to the
operational one:

Proposition 5.20. Parallel composition is homomorphic with respect to operational
semantics, i.e., [[S ∥ T ]] = [[S]]⊗ [[T ]].

Proof. A transition in [[S ∥ T ]] is due to one of the rules (5.3) or (5.4). The proofs
are similar in both cases, hence, we only show the case of rule (5.3). By assumption,
S = (n!R.S1) + S2 and T = (n?R. T1) + T2 and, by (5.1) and (5.2), there are transitions

S
n!R

S1 in [[S]] and T
n?R

T1 in [[T ]], respectively. Due to the definition of the IA parallel

product, there is a transition S ∥ T n!R
S1 ∥ T1 in [[S]]⊗ [[T ]].
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A transition in [[S]]⊗ [[T ]] is due to one of the composition rules of IA. Again, we discuss
only the most interesting case because the proofs of the other cases proceed analogously.

A transition S ∥ T n!R
S1 ∥ T1 is, without loss of generality, due to transitions S

n!R
S1

and T
n!R

T1. Depending on the structure of S and T , one of the rules (5.3) or (5.4)

applies to S ∥ T . Assuming it is rule (5.3), this yields a transition S ∥ T n!R
S1 ∥ T1 in

[[S ∥ T ]]. The other rule follows the same line of argument.

We may also compare ΠIA types with respect to IATA refinement: Propositions 5.21 and
5.22 relate structural equivalence and subtyping to refinement.

Proposition 5.21 (Structural Equivalence and Refinement). If S ≡ T , then [[S]] ≡ [[T ]].

Proof. By Definitions 5.5 and 5.6, S ≡ T implies [[S]] = [[T ]]. Thus, [[S]] ≡ [[T ]]

Hence, structural equivalence is finer than mutual refinement.

Proposition 5.22 (Subtyping and Refinement). If S and T are ΠIA types with opera-
tional semantics [[S]] and [[T ]], respectively, then S ⪯ T implies [[S]] ⊑ [[T ]].

Proof. Straightforward application of the rules of Definition 5.18.

The subtyping preorder is finer than the refinement preorder, e.g., subtyping distinguishes
the types µx. !a. x and µx. !a. !a. x, which are equivalent under refinement. That is,
subtyping yields a syntactic approximation of semantic equivalence. If one is willing to
sacrifice efficiency of the subtype check, subtyping can also be replaced by refinement.
As a consequence, our behavioural type theory inherits all refinement-related operations
of interface theories, such as conjunction and quotienting. Further, this result motivates
the following definition:

Definition 5.23 (Implementation Relation). A process P implements a type T , written
P ⊨ T , if and only if there are a context Γ and a type S such that Γ ⊢ P :S and S ⪯ T .

Obviously, if Γ ⊢ P :S, then P ⊨ S. Further, an implementation of a type S implements
any of S’s supertypes:

Proposition 5.24 (Safe Substitution). If P ⊨ S and S ⪯ T , then P ⊨ T .

Proof. By Definition 5.23, P ⊨ S implies a derivation Γ ⊢ P :S′ for a type S′ ⪯ S. By
transitivity of ⪯ and S ⪯ T , we have S′ ⪯ T . Hence, P ⊨ T .

For instance, the server implementation S′ :T ′ of example 5.19 implements the type TS
of the server S from example 5.13 because T ′ ⪯ TS . The additional service provided by
S′ is harmless, because any client that safely interoperates with S also does so with S′.
As a direct consequence of Propositions 5.22 and 5.24, we get a semantic version of

Proposition 5.24:

Corollary 5.25 (Design and Implementation). If P ⊨ S and [[S]] ⊑ [[T ]], then there is a
type SP ⪯ S such that P :SP and [[SP ]] ⊑ [[T ]].
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This is an important result relating design and implementation: One may consider [[T ]] as
a representation of a global requirement that has been refined to [[S]] during design. An
implementation P of [[S]] represented by its type SP ⪯ S also refines [[T ]] and, therefore,
satisfies the global requirement. In particular, Corollary 5.25 guarantees the following: if
[[S1 ∥ S2]] ⊑ [[T ]], P1 ⊨ S1 and P2 ⊨ S2, then there is a type SP1∥P2

with [[SP1∥P2
]] ⊑ [[T ]].

Note that the difference between : and ⊨ matters here, because P :SP may be derived
with typing rules, while deciding P ⊨ S is a more complex operation.

5.2. Discussion and Related Work

In this section we discuss progress, which is a central property of session types, in the
light of subtyping and refinement. We also revisit error abstraction in the context of
type safety and compare ΠIA with Go as implementation languages. Finally, we discuss
related work.

5.2.1. Progress: From Interface Automata to Modal Interface Automata

As a proof-of-concept, we restricted ourselves to Interface Automata instead of Modal
Interface Automata because we think that the many details of modal interface theories
would distract too much from our main concern of behavioural type theories. Due to the
lack of output must-transitions, ΠIA suffers the same weaknesses as IA with respect to
progress:

Proposition 5.26 (Progress). If Γ ⊢ P :S and S
n!T−→ S′, then there is a context Γ′, a

process P ′ and a variable x :T such that P
n!x−→ P ′ and Γ′ ⊢ P ′ :S′.

Proof sketch. Similar to the proof of Proposition 5.14, but in the reverse direction, i.e.,
from type-level transitions to implementation-level transitions.

Although one can prove Proposition 5.26, it does not generalise to subtyping, i.e., the
has-type relation : cannot be replaced by ⊨. This is because output transitions may
be removed when subtyping. Analogous to Interface Automata, every behavioural type
has a trivial black hole subtype where all outputs have been removed [AH01a]. An
implementation of such a subtype will never make any progress. This issue also affects
session types, which—to the best of our knowledge—is not discussed in the session type
literature.

Due to the distinction between may- and must-transitions, a behavioural type theory
based on Modal Interface Automata may guarantee progress with respect the must-
transitions of the behavioural type.

5.2.2. Error Abstraction

Applying our results of Section 3.2 on error abstraction, we may include the pruning
operation directly in our type system by propagating errors backwards. Hence, if S and
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T are incompatible, then S ∥ T = err. Type safety (see Proposition 5.16) then gets the
following appealing form:

Proposition 5.27 (Type Safety II). If P :T and T ̸= err, then P does not reduce to an
error.

Proof. Analogous to the proof of Proposition 5.16.

This version corresponds to the original way of defining parallel composition in IA.
However, the considerations with respect to redefining errors to non-erroneous behaviour
discussed in Section 3.2 also apply here.

5.2.3. Go as Implementation Language

We implemented MIA in the Go programming language [Go17]. The choice of Go was
due to its first order support of channels with synchronous communication similar to
that of MIA. However, when comparing Go and ΠIA as implementation languages, there
are still significant differences that are relevant to a formal type system.

The Go equivalent of a process is called a goroutine. Goroutines are a kind of lightweight
threads permitting the parallel execution of Go functions. Goroutines may communicate
via FIFO channels with a buffer size that is usually fixed at channel creation. If the
buffer size of a channel is zero, the channel is unbuffered. In contrast to a process in
interface theories, where the input and output alphabets are disjoint, a goroutine is not
required to use different channels for input and output. However, Go does not support
multicast or broadcast communication.

Synchronous communication between goroutines may be achieved by using unbuffered
channels. A goroutine that makes an output on an unbuffered channel blocks until some
other goroutine reads from the channel. Vice versa, if one goroutine tries to input from an
unbuffered channel, it blocks until a different goroutine makes an output to the channel.
It is possible to wait for input and output on several channels simultaneously by means
of the select statement. A communication mismatch in the sense of interface theories
corresponds to a blocked output process. However, because the environment may still
make progress, the blocked process may be unblocked if the environment reads from that
channel in some subsequent state, similar to weak compatibility in [Bau+10]. Hence,
incompatibilities in the sense of strong compatibility as employed in MIA may be used
to discover certain inefficiencies.
Another obvious difference is that Go channels are bound to a fixed message type.

That is, given a data type or a channel type T , a Go channel over T has type µx. (!T. x)+
(?T. x) + end. In practice, the strict binding to a message type may be bypassed by
employing a universal Go interface as message type. However, it is well-known in the Go
community that communication is then not typesafe anymore.

5.2.4. Related Work

Session types have been established since the original work of Honda [Hon93] as a typing
discipline for communication sessions based on the π-calculus. A good starting point in
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the large amount of session type literature is [HYC16], where the standard asynchronous
multiparty session types are presented.

Bejleri and Yoshida’s work on synchronous multiparty session types [BY09] is probably
the closest to our work due to their support of synchronous multicast communication.
The most notable differences to our theory are unsurprising for session types: they
support higher order communication and delegation, which we postponed to future work,
and, in particular, they employ a closed systems view with global types and pessimistic
compatibility. Also, subtyping and the refinement-based specification logic that is typical
for interface theories are not considered. However, there are several works that study
subtyping for session types, for instance [GH05; CDY14]. Their subtyping is in the spirit
of IA-refinement, but again in a pessimistic closed systems view.
Bauer et al. [BHW11] investigate a value-passing variant of MIO [Bau+10] called

MIOD, where transition labels include data constraints in form of pre- and postcondi-
tions. In the semantic model, guarded input/output transition systems are employed
as implementations. Simulation-based definitions of implementation and refinement are
provided together with notions of composition and compatibility. These result in a
compositional interface theory supporting data states in a global, possibly infinite value
domain.

A similar approach has been presented by Hoĺık et al. [HIJ15] for deterministic Interface
Automata. In this model, a state consists of a location and a valuation of variables,
and an action label is built out of a channel name and a value. In order to make
such potentially infinite models tractable in practice, a finitely representable abstraction
based on transition guards and variable assignments is defined. Refinement checking,
parallel composition and quotienting may be computed on the abstract representation.
While value-passing Interface Automata may represent the concrete value semantics,
the abstract representation models abstract values represented by variables. Due to the
usage of a single, global value domain, typed communication and type safety are not
considered.
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In this chapter we conclude with a summary of our findings and envision future research
directions based on problems that are still open.

6.1. Conclusions

Interface theories are an established family of specification theories for concurrent, reactive
systems. However, substantial practical aspects of software verification are not supported
by current interface theories due to several gaps in the mathematical robustness of their
semantics (Gaps 1–9 of Section 1.1). This impedes the practical utility of interface
theories as foundations of software engineering methods.

The goal of this thesis was to investigate the theoretical foundations of these issues in
order to make interface theories more practical by closing the above gaps. This thesis
contributes the interface theory Error-preserving Modal Interface Automata (EMIA),
and demonstrates its practical utility by providing software tools that are applied
in two case studies. EMIA closes Gaps 1–7 and integrates previous approaches to
software design such as MTS [LX90], interface theories [AH01a; AH05; Bau+10; Buj+15;
Buj+16; BV14; Che+12; LNW07; LVF15; Rac+11] and assembly theories [HK15]. As a
consequence, EMIA is a uniformly integrated specification framework that supports several
common needs of software engineering, e.g., reusing components, adapting components to
changed operational environments, reasoning about the compatibility of multi-component
assemblies, modelling software product lines, or tracking erroneous behaviour in safety-
critical systems.

EMIA extends the related interface theory Modal Interface Automata (MIA) [Buj+16]
that was co-developed by the author. In contrast to the error-abstraction employed
in established interface theories including MIA, EMIA is based on a concept of error-
preservation, whereby its refinement preorder reflects and preserves fatal error states.
While recent interface theories [Buj+16; Rac+11] considered the problem of how to
enforce required behaviour, our finer-grained error semantics also solves the dual and
previously open problem of how to forbid unwanted behaviour.

We proved that EMIA is related to IA-based interface theories via a Galois insertion
of MIA into EMIA, where the Galois abstraction corresponds to error-abstraction. The
Galois insertion relates error-preserving and error-abstracting interface theories at several
levels. First, it allows one to translate between error-preserving and error-abstracting
specifications. Second, it also relates the interface-theoretic operators of error-preserving
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and error-abstracting theories, e.g., parallel composition. Third, it relates these two
types of interface theories at the level of mathematical proofs, highlighting the role of
error-abstraction as a monotonic operator preserving many desired properties. Although
we proved this relationship explicitly for the concrete pair of theories MIA and EMIA,
the approach is of more principled nature: we may equip every other theory X shown in
Figure 2.4 with an error-preserving counterpart EX and a Galois insertion (γ, α) : X → EX.

EMIA’s error-preservation permits one to distinguish unspecified actions that may
exhibit arbitrary unknown behaviour from forbidden actions that represent unwanted
behaviour. This solves several practical issues related to error-abstraction. EMIA directly
supports reasoning about the compatibility of multi-component assemblies (Section 3.3.2).
In contrast, previous interface theories have to resort to separate assembly theories [HK15].
The more detailed semantics provided by EMIA’s error preservation is also useful when
modelling software product lines (Section 3.3.3), where one is interested in finding
compatible subfamilies of concrete products. Previous interface theories would consider
product lines incompatible as soon as they contain at least one incompatible pair of
products. The error-abstraction employed in other interface theories enables one to
redefine erroneous situations to be non-erroneous and, hence, to introduce unwanted
behaviour during refinement (Section 3.3.1). This is particularly undesired when specifying
safety-critical systems. In contrast, EMIA’s error-preservation permits one to track
erroneous behaviour of safety-critical systems and to reason about possible resolutions of
such errors. As a side benefit, one may employ several localised compatibility concepts
simultaneously, which bridges the gap between MTS’s unanimous composition and the
error-aware composition of interface theories (Section 3.3.4).

Component reuse is supported by a quotient operator (Section 3.1.7 and page 60) that
the author contributed to MIA and EMIA. It is the first quotient operator that permits
the decomposition of nondeterministic interfaces. In particular, the MIA quotient takes
error-abstraction in parallel composition into account (in contrast to [Rac+11]).

Alphabet extension operators (Section 3.1.9) allow one to adapt components to changed
operational environments. Beyond concrete operators, we contributed a general definition
of the concept of alphabet extension operators.

In Section 4.3 we demonstrated the practical utility of interface theories by employing
EMIA in a case study of a safety-critical railway control system and MIA for designing a
client-server application. To do so, we implemented MIA and EMIA as software tools
and contrasted our implementation to existing tools implementing similar theories. The
case studies also illustrate the component-based, incremental design approach supported
by interface theories.

To our knowledge, EMIA is the most general interface theory to date in that it is non-
deterministic rather than deterministic, supports internal behaviour, permits optimistic,
pessimistic and unanimous compatibility with a localised compatibility concept and
supports error-preservation and error-abstraction as well as heterogeneous specifications.
The particular challenge that was solved for reaching this goal is to address all the above
issues simultaneously within a single interface theory. In contrast, previous attempts to
solve such gaps sacrificed other desired properties of the theory.
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Further, we extended the interface theory IA to the behavioural type system ΠIA,
permitting one to express the internal structure of messages. We proved standard
theorems such as subject reduction and type safety. With ΠIA, we demonstrated the
feasibility of developing interface theories into behavioural type theories, whereby type
checking is a computationally efficient approximation of refinement checking. This is a
first step towards filling the gap between the more specification-oriented interface theories
and the more implementation oriented behavioural types.

6.2. Future Directions

This section summarises the author’s view on open questions and describes possible
future research directions. We first consider purely interface-theoretic issues and then
discuss aspects related to developing interface theories into behavioural type theories.
Building on more than 15 years of existing research on interface theories, we developed
EMIA into an interface theory that is both mathematically robust and practical. With
this result we have reached an important goal, and there are rather few purely interface-
theoretic questions left. Therefore, the author believes that the next urgent research
questions in this domain concern the transition from specification to implementation. As
a consequence and as a result of our first step towards interface-theoretic behavioural
type theories, we give more room to this second aspect.

6.2.1. Interface Theories

The quotient operator still has some restrictions with respect to internal behaviour
and with respect to nondeterminism of the divisor. To our knowledge, this question is
generally unsolved for interface theories. A partial solution may be found by adapting
the nondeterministic quotient operator of DMTS [Ben+13]. A different but related
question is how to choose the input alphabet IP//D of the quotient within the interval
IP \ ID ⊆ IP//D ⊆ IP ∪OD as explained in Section 3.4.2.

As pointed out in Section 3.4.4, it is desirable to extend EMIA’s support of heteroge-
neous specifications to include temporal logic operators as Lüttgen and Vogler do for
LTS and MTS in [LV11]. Their work has already been adapted to MIA by Bujtor and
Vogler in [BV16]; therefore, we consider a further adaptation to EMIA including the
consideration of the Galois insertion only a minor issue.

Another question concerns the investigation of other compatibility notions necessary
for modelling common communication mechanisms. When employing shared variable
communication as in [Alf+05], one would consider a state p ∥ q as illegal if both specify
an access to a shared resource and at least one of them as an output. Concerning
buffered communication, we may model buffers explicitly as EMIAs and employ EMIA’s
standard compatibility concept. However, when reasoning about such systems one would
like to abstract from communication buffers and to model a compatibility notion that
permits delaying outputs and considers components incompatible if the number of delayed
messages may exceed the buffer size.

Concerning tool support, it is desirable to investigate which techniques scale well in
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practice. For example, checking refinement in our Go implementation based on a trans-
formation into quantified boolean formulas as in [Ben+15] is significantly outperformed
by a transformation into boolean equation systems.

6.2.2. Behavioural Types

For simplicity, we restricted interface theories and session types to a reasonably common
core. In particular, we omitted the features hiding, name passing and replication, and
did not study standard interface-theoretical operations such as conjunction, disjunction
and quotient. Hence, it is desirable to extend ΠIA to include the full expressiveness
of EMIA. Investigating hiding should be feasible, as it is present in both session types
and interface theories. However, hiding has significant differences in session types and
EMIA. In session types, hiding moves channel names into a local scope but different
hidden channels are still distinguishable. In contrast, EMIA’s hiding operator makes
all hidden actions equal such that nondeterminism may be introduced, which affects
the proof of subject reduction (Proposition 5.14). Also, refinement/subtyping and the
related conjunction are significantly more involved in the presence of hiding because they
have to abstract from internal behaviour. To our knowledge, such an abstraction has
not been considered for session types. The same is true for quotienting. Further, the
strict separation of input and output alphabets common in interface theories implies
that a component cannot use a channel for both input and output. When considering
implementation languages such as Go, this restriction is undesired and may be removed
as is done for Sociable Interfaces [Alf+05]. Further, it would be interesting to relate our
behavioural type theory to value passing interface theories as presented in [BHW11] for
MIO and in [HIJ15] for IA.

Concerning higher-order communication, we envision to replace T̄ by T in Definition 5.3.
This would allow one to send arbitrary objects, including processes, such that Map-
Reduce-like [DG04] distributed systems could be specified. However, current interface
theories do not support name passing as known from the π-calculus and session types,
limiting their expressiveness to static communication networks. In order to model a train,
e.g., for our case study, it is required to include the complete track model in the train
model. Although possible, this approach is inconvenient because the same information
has to be repeated in every train. Beyond name passing, we anticipate that the flexibility
provided by the the distributed π-calculus [MPW92] or the ambient calculus [CG00] may
be a good foundation for specifying such models.
The derivations (5.7) and (5.8) on page 110 define a dataflow direction that is not

present in interface theories. In this regard, it would be interesting to separate the
concerns of action/reaction from input/output in interface theories. Such a separation
would require one to generalise interface theories beyond their traditional unique output
responsibility, such that a component is permitted to use the same channel for input and
output. In session types, this is mainly possible due to asynchronous communication and
a strict separation of active and reactive states. With synchronous communication and
mixed states, there are several possibilities of how to interpret a situation where several
processes try to output on the same channel, namely synchronisation, interleaving and
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incompatibility. The interleaving variant of this idea has been presented for Sociable
Interfaces [Alf+05].
Several researchers have established Curry-Howard correspondences between session

types and fragments of linear logic [CPT16; Car+16]. When investigating Curry-Howard
correspondences between interface-based behavioural type theories and appropriate logics,
these fragments will be insufficent. In particular, multicast synchronous communication is
beyond a purely linear fragment of logic, and the additional operations such as conjunction
and quotienting must also be considered.
Synchronous multicasting session types with unreliable communication and failure

recovery are presented in [KGG14]. To our knowledge, this interesting extension has
not been investigated for interface theories. We envision that failures due to unreliable
communication may be modelled with EMIA’s fatal error states where input transitions
labelled with recovery actions represent the possibility of failure recovery.

123





A. Mathematical Notation

This chapter briefly summarises the mathematical concepts employed by us, in order
to make this dissertation more self-contained. As these concepts can be found in many
standard text books, such as [Grä79; Grä96], we mostly do not provide citations.

A.1. General Mathematical Nomenclature

Given a set S, the powerset of S is denoted as P(S). The disjoint union of sets S and T
is defined as S ⊎ T := ({0} × S) ∪ ({1} × T ). However, we often implicitly assume that
S and T are disjoint and write s instead of (0, s) and t instead of (1, t) for elements of
S ⊎ T .

Let S be a set. A binary relation R ⊆ S × S is an equivalence relation if it is reflexive,
symmetric and transitive. Given an element s ∈ S, the equivalence class [s]R of s
with respect to R is defined as [s]R := {t ∈ S | sRt}. The set of equivalence classes
S/R := {[s]R | s ∈ S} is called the quotient set of S with respect to R.

A.2. Universal Algebra

A signature Σ is a pair (FΣ, arΣ) consisting of a finite set FΣ := {f1, . . . , fn} of function
symbols and a function arΣ : FΣ → N into the natural numbers that assigns each function
symbol its arity . Given a signature Σ, a partial Σ-algebra A is a tuple (|A|, fA1 , . . . , fAn ),
where |A| is a set called the carrier set of A and fAi : |A|ar fi ⇀ |A| for i = 1, . . . , n are
partial functions. A is total if all functions fAi are total.

The set of Σ-terms over a set X of variables is defined as the smallest set TΣ(X) such
that X ⊆ TΣ(X) and, if f ∈ FΣ, t1, . . . , tar f ∈ TΣ(X), then f(t1, . . . , tar f ) ∈ TΣ(X).
A term t ∈ TΣ(X) may be interpreted in a Σ-algebra A via a valuation ρ : X →→ |A| in
the obvious way, written [[t]]ρ. If any subterm of t is undefined due to the partiality of a
function, then [[t]]ρ is undefined, too. Given two Σ-terms s and t, a Σ-algebra A (totally)
satisfies an equation s ≡ t if, for all valuations ρ, we have [[s]]ρ = [[t]]ρ. An equation s ≡ t
is strongly satisfied if, for all valuations ρ, if one of [[s]]ρ or [[t]]ρ is defined, then both are
defined and equal. It is weakly satisfied if, for all valuations ρ, if [[s]]ρ and [[t]]ρ are defined,
then they are equal. For example, we distinguish (total) associativity, strong associativity
and weak associativity when considering the equation (x ◦ y) ◦ z ≡ x ◦ (y ◦ z).
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A.3. Order Theory

Let S be a set. A binary relation R ⊆ S × S is called a preorder if it is reflexive and
transitive, i.e., if, for all s ∈ S, sRs and, for all s, t, u ∈ S, sRt ∧ tRu =⇒ sRu,
respectively. If S is a set and R a preorder on S, then we call (S,R) a preordered set .
Any preorder R on a set S induces an equivalence relation ≡R on S defined by

s ≡R s′ ⇐⇒ sRs′ ∧ s′Rs. In case we consider several preorders Ri, for some indices
i ∈ I, we also write ≡i instead of ≡Ri .
Let (S,⊑) be a preordered set. A function f : S → S is called extensive if, for all

s ∈ S, s ⊑ f(s). Given a subset T ⊆ S, an element s ∈ S is called a lower (upper) bound
of T if, for all t ∈ T , we have s ⊑ t (t ⊑ s). We say that t ∈ T is a least (greatest)
element of T if, for all t′ ∈ T , we have t ⊑ t′ (t′ ⊑ t). In general, the least (greatest)
elements of a subset are not unique. However, they are equivalent with respect to ≡⊑.
A preordered set (S,⊑) is called a lattice if any finite subset of S has a least upper bound
and a greatest lower bound. A lattice that is closed under least upper and greatest lower
bounds of arbitrary subsets is called a complete lattice. A function f : S × S → S that
assigns any pair of elements a greatest lower (least upper) bound is called an infimum
(supremum) function. We often write s ⊓ s′ (s ⊔ s′) instead of f(s, s′).

Let (S,⊑) and (T,⪯) be preordered sets. A function f : S → T is monotonic if, for all
s, s′ ∈ S, s ⊑ s′ =⇒ f(s) ⪯ f(s′). A pair of monotonic functions f : S → T and g : T →
S is a Galois connection if, for all s ∈ S and t ∈ T , we have s ⊑ g(t) ⇐⇒ f(s) ⪯ t.
A Galois connection is called a Galois insertion if for all t ∈ T , (f ◦ g)(t) ≡⪯ t.

The following paragraph on formal concept analysis is based on [GW99]. A formal
context is a triple (O,A, I), where O is a set of objects, A is a set of attributes and
I ⊆ O × A is a binary relation called the incidence relation. Given a set of objects
(attributes) S ⊆ O (T ⊆ A), we define its derivation by S′ := {a ∈ A | ∀o∈S. oIa}
(T ′ := {o ∈ O | ∀a∈T. oIa}). A formal concept is a pair (S, T ) with S ⊆ O and T ⊆ A,
such that S′ = T and T ′ = S. The set of all formal concepts of a formal context (O,A, I)
forms a complete lattice B(O,A, I), called the concept lattice of (O,A, I).

A.4. Mathematical Symbols

N set of natural numbers

Set category of sets

P powerset operator

B concept lattice

⊎ disjoint union

∁ set-theoretic complement

ar arity of a function

bcl backward closure

fv free variables

id identity function or relation

ill illegal states

may set of may target states

must set of must target states

| · | cardinality of a set,
carrier set of a structure

[ · ] equivalence class,
alphabet extension

[[ · ]] semantics of a term
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∧ logical conjunction

∨ logical disjunction

=⇒ logical implication

⇐⇒ logical equivalence

¬ negation

⊓ specification-theoretic conjunction

⊔ specification-theoretic disjunction

→ specification-theoretic implication

/ hiding

\ restriction

⊗ parallel product

∥ parallel composition

| parallel composition with immediate
hiding

& conjunctive product

// quotient operator

⊘ pre-quotient operator
a

must-transition
a

may-transition

a
weak must-transition

a
weak may-transition

a
trailing-weak must-transition

a
trailing-weak may-transition

⊨ implementation relation,
satisfaction relation

≡ equivalence, mutual refinement

# complexity

⊑ refinement

⊑e error-preserving refinement

⊑m error-abstracting refinement

⊑mts modal refinement

⪯ subtype relation, assembly refine-
ment

⊤ universal state

⊢ entailment

: has-type relation

φ assembly encapsulation

[x/y] substitution of x for y
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This Chapter lists the source code of Gemia, which consists of three Haskell modules.
Module Gemia implements the core data structure for MIAs and the operations on MIAs.
Module Aux implements some general purpose data structures and auxiliary functions.
Module Graphviz provides an API for drawing transition systems with Graphviz.

B.1. Module Gemia

module Gemia where

import Data.List

import Data.Ord

import Data.Function

import Graphviz

import Aux

-- Status of a node (errors, inconsistencies)

data Status = Status { err::Bool, incons::Bool } deriving Show

normalStatus = Status False False

-- Tail of a transition (action and targets)

data Tail n a = Tail { action::a, targets::[n] } deriving Show

-- A node with its status all its tails

data TransitionSet n a =

TransitionSet { source::n, status::Status, actions::[Tail n a] } deriving Show

data TransitionSystem n a =

TransitionSystem { start::n, trans::[TransitionSet n a]} deriving Show

-- All nodes of a transition system

nodes :: Eq n => TransitionSystem n a -> [n]

nodes tsys = nub (start tsys : concatMap f (trans tsys))

where f tset = (source tset : concatMap targets (actions tset))

-- Remove nodes from a tail

rmNodesTail :: Eq n => [n] -> Tail n a -> Tail n a

rmNodesTail ns t = Tail (action t) ((targets t)\\ns)

-- Remove nodes from a transition set

rmNodesTransitionSet :: Eq n => [n] -> TransitionSet n a -> TransitionSet n a

rmNodesTransitionSet ns t = TransitionSet (source t) (status t) actions’

where actions’ = map (rmNodesTail ns) (actions t)
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B. Source Code of Gemia

-- Remove nodes from a transition system

rmNodesTransitionSystem :: Eq n =>

[n] -> TransitionSystem n a -> TransitionSystem n a

rmNodesTransitionSystem ns t = TransitionSystem (start t) trans’

where trans’ = map (rmNodesTransitionSet ns) trans’’

trans’’ = filter (flip notElem ns . source) (trans t)

-- Remove empty tails

rmEmptyTails :: TransitionSet n a -> TransitionSet n a

rmEmptyTails ts = TransitionSet (source ts) (status ts) actions’

where actions’ = filter (not . null . targets) (actions ts)

-- An action has a modality, an IO-type and a label

data Action m k l = Action { modality::m, ioType::k, label::l } deriving (Show)

-- Concrete instance for modalities

data Modality = Required | Optional deriving (Eq, Ord, Show)

-- Concrete instance for IO-types

data IOType = Input | Output deriving (Eq, Ord, Show)

-- Concrete instance for nodes

type Node n = BTree n

-- Product of nodes

nprod :: Node n -> Node n -> Node n

nprod = Branch

-- All pairs of nodes

npairs = makePairsBy nprod

setErrorStatus :: TransitionSet n a -> TransitionSet n a

setErrorStatus t = TransitionSet (source t) newStatus (actions t)

where newStatus = Status True (incons $ status t)

setErrorStates :: (Eq n) => TransitionSystem n a -> [n] -> TransitionSystem n a

setErrorStates t ns = TransitionSystem (start t) newTransitions

where

newTransitions = map changeStatus (trans t)

changeStatus tr = if (source tr) ‘elem‘ ns then setErrorStatus tr else tr

-- General type for modal input-output transition systems

type GemiaLabel = String

type GemiaAction = Action Modality IOType GemiaLabel

type GemiaTail n = Tail (Node n) GemiaAction

type GemiaTrans n = TransitionSet (Node n) GemiaAction

type Gemia n = TransitionSystem (Node n) GemiaAction

-- insert b at position a in [c] which is given by cmp with insert-function ins

insertByWith :: (a -> a -> Bool) -> (a -> a -> a) -> [a] -> a -> [a]

insertByWith _ ins [] a = [a]

insertByWith cmp ins (b:bs) a = if cmp a b then b’:bs else b:bs’
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B.1. Module Gemia

where b’ = ins a b

bs’ = insertByWith cmp ins bs a

-- Add a transition

addTrans :: Eq n => Gemia n -> GemiaTrans n -> Gemia n

addTrans g t = g { trans = trans’ }

where

trans’ = foldl addNode (insertByWith cmp ins (trans g) t) newnodes

newnodes = concatMap targets $ actions t

addNode ts n = insertByWith cmp ins ts (TransitionSet n normalStatus [])

cmp = (==) ‘on‘ source

ins x y = TransitionSet (source x) (status x) (((++) ‘on‘ actions) x y)

-- Make a gemia from initial state and list of transitions

makeGemia :: Eq n => Node n -> [GemiaTrans n] -> Gemia n

makeGemia i = foldl addTrans (TransitionSystem i [])

-- Make a gemia from initial state, list of transitions and list of error states

makeGemiaErr :: Eq n => Node n -> [GemiaTrans n] -> [Node n] -> Gemia n

makeGemiaErr i ts = setErrorStates (foldl addTrans (TransitionSystem i []) ts)

-- Make gemia tail

makeTail :: Modality -> IOType -> GemiaLabel -> [Node n] -> GemiaTail n

makeTail m k l ns = Tail (Action m k l) ns

-- Make gemia transition

makeTrans :: Modality -> Node n -> IOType -> GemiaLabel -> [Node n] ->

GemiaTrans n

makeTrans m n k l ns = TransitionSet n normalStatus [makeTail m k l ns]

-- Make gemia required transition

req :: n -> IOType -> GemiaLabel -> [n] -> GemiaTrans n

req n k l ns = makeTrans Required (Leaf n) k l (map Leaf ns)

-- Make gemia optional transition

opt :: n -> IOType -> GemiaLabel -> n -> GemiaTrans n

opt n k l t = makeTrans Optional (Leaf n) k l [Leaf t]

-- Transform Gemias to Dot-language

instance Dotable GemiaLabel where

toDot = id

instance Dotable IOType where

toDot Input = "?"

toDot Output = "!"

instance Dotable n => Dotable (GemiaTrans n) where

toDot ts = src ++ tls

where s = toDot (source ts)

src = if null srcOptions then "" else makeNode s srcOptions

srcOptions = incOpt ++ errOpt

incOpt = if (incons $ status ts)

then ["color=\"#888888\"","fontcolor=\"#888888\""]
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else []

errOpt = if (err $ status ts)

then ["shape=hexagon"]

else []

as = actions ts

tls = concatMap (arrow s) as

arrow s a = if length trgs == 1

then simpleArrow s l (head trgs) tlOptions

else multiArrow s l trgs tlOptions

where

trgs = map toDot (targets a)

l = (toDot $ label $ action a) ++ (toDot $ ioType $ action a)

modOpt = if (modality $ action a) == Optional

then ["style=dashed"]

else []

tlOptions = modOpt ++ incOpt

instance Dotable n => Dotable (Gemia n) where

toDot g = "digraph {\n" ++ startNode ++ transitions ++ "}\n"

where startNode = "\"" ++ toDot (start g) ++ "\"[shape=box,style=rounded]\n"

transitions = concatMap toDot (trans g)

-- All action labels of a Gemia

labels :: Gemia n -> [GemiaLabel]

labels = nub . (map (label . action)) . (concatMap actions) . trans

-- All actions of a Gemia by label

actionsByLabel :: Gemia n -> [GemiaAction]

actionsByLabel =

nubBy ((==) ‘on‘ label) . (map action) . (concatMap actions) . trans

-- All targets of a node reachable

reachableLocally :: Eq n => [GemiaTrans n] -> Node n -> [Node n]

reachableLocally ts n = nub ns

where as = concatMap actions [t|t<-ts, source t == n]

ns = concatMap targets as

-- All targets of a node reachable by actions with label l

reachableLocallyLabel :: Eq n => [GemiaTrans n] -> Node n -> GemiaLabel ->

[Node n]

reachableLocallyLabel ts n l = nub ns

where as = concatMap actions [t|t<-ts, source t == n]

ns = concatMap targets (filter ((==l) . label . action) as)

reachableAux :: Eq n => [GemiaTrans n] -> ([Node n],[Node n]) ->

([Node n],[Node n])

reachableAux _ (done, []) = (done, [])

reachableAux ts (done, t:todo) = reachableAux ts (done’, todo’)

where done’ = t:done

todo’ = todo ++ (((reachableLocally ts t)\\done’)\\todo)

reachable :: Eq n => [GemiaTrans n] -> Node n -> [Node n]

reachable ts n = fst (reachableAux ts ([],[n]))
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-- prune empty tails

pruneEmptyTails :: Gemia n -> Gemia n

pruneEmptyTails g = TransitionSystem (start g) trans’

where trans’ = map rmEmptyTails (trans g)

-- prune unreachable states

pruneUnreachable :: Eq n => Gemia n -> Gemia n

pruneUnreachable g = rmNodesTransitionSystem unreachable g

where unreachable = (nodes g)\\(reachable (trans g) (start g))

-- prune inconsistent states (initial state is not pruned!)

pruneIncons :: Eq n => Gemia n -> Gemia n

pruneIncons g = if null currentIncons then pruneEmptyTails g else pruneIncons g’

where currentIncons = map source $ filter f (trans g)

f = not . null . (filter incons) . actions

incons a = ((==Required) . modality $ action a) && (null $ targets a)

g’ = rmNodesTransitionSystem currentIncons g

-- Alphabet extension

addLoops :: Eq n => Gemia n -> [GemiaAction] -> Gemia n

addLoops g as = foldl addTrans g (concatMap makeloops (nodes g))

where makeloops n = map (\a->TransitionSet n normalStatus [Tail a [n]]) as

-- Extend gemias by their mutually foreign actions

extendMutually :: Eq n =>

(Modality -> Modality) -> (Modality -> Modality) ->

(IOType -> IOType) -> (IOType -> IOType) ->

Gemia n -> Gemia n -> (Gemia n, Gemia n)

extendMutually m1 m2 iot1 iot2 g1 g2 =

(addLoops g1 actions1, addLoops g2 actions2)

where native1 = actionsByLabel g1

native2 = actionsByLabel g2

foreign1 = deleteFirstsBy ((==) ‘on‘ label) native2 native1

foreign2 = deleteFirstsBy ((==) ‘on‘ label) native1 native2

actions1 = map (updateAction m1 iot1) foreign1

actions2 = map (updateAction m2 iot2) foreign2

updateAction m iot a = Action (m $ modality a) (iot $ ioType a) (label a)

-- Auxiliary function for operations where systems should not be extended

noExtend x y = (x,y)

-- Meta product

metaprod :: Eq n => (GemiaTrans n -> GemiaTrans n -> GemiaTrans n) ->

(Gemia n -> Gemia n -> (Gemia n, Gemia n)) -> Gemia n -> Gemia n -> Gemia n

metaprod prodTS extend g1 g2 = TransitionSystem start12 trans12

where

start12 = nprod (start g1’) (start g2’)

trans12 = [prodTS n1 n2|n1<-trans g1’, n2<-trans g2’]

(g1’,g2’) = extend g1 g2

-- parallel product with alphabet extension
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pprod :: Eq n => Gemia n -> Gemia n -> Gemia n

pprod = metaprod pprodTS extend

where

extend = extendMutually cr cr id id

cr = const Required

-- local parallel product

pprodTS :: Eq n => GemiaTrans n -> GemiaTrans n -> GemiaTrans n

pprodTS ts1 ts2 = TransitionSet source12 status12 acts12

where

src1 = source ts1

src2 = source ts2

source12 = nprod src1 src2

status12 = Status error12 incons12

error12 = (err $ status ts1) || (err $ status ts2)

incons12 = (incons $ status ts1) || (incons $ status ts2)

acts12 = [comb tl1 tl2|tl1<-actions ts1, tl2<-actions ts2,

(label $ action tl1)==(label $ action tl2)]

comb tl1 tl2 = Tail (Action m k l) trgs

where m = max (modality $ action tl1) (modality $ action tl2)

k = max (ioType $ action tl1) (ioType $ action tl2)

l = label $ action tl1

trgs = makePairsBy nprod (targets tl1) (targets tl2)

-- pseudo quotient without compatibility

iquot :: Eq n => Gemia n -> Gemia n -> Gemia n

iquot = metaprod iquotTS extend

where

extend = extendMutually cr cr id (const Input)

cr = const Required

-- local pseudo quotient

iquotTS :: Eq n => GemiaTrans n -> GemiaTrans n -> GemiaTrans n

iquotTS ts1 ts2 = TransitionSet source12 status12 acts12

where

source12 = nprod (source ts1) (source ts2)

status12 = Status False False

acts12 = [comb tl1 tl2 | tl1<-actions ts1, tl2<-actions ts2,

(label $ action tl1) == (label $ action tl2)]

comb tl1 tl2 = Tail act trgs

where

act = Action (m m1 m2) (k k1 k2) (label $ action tl1)

m1 = modality $ action tl1

m2 = modality $ action tl2

m mA mB = if k2 == Output then Required else max mA mB

k1 = ioType $ action tl1

k2 = ioType $ action tl2

k kA kB = if kA == kB then Input else Output

trgs = makePairsBy nprod (targets tl1) (targets tl2)

-- Required and optional actions

reqOnly, optOnly :: [GemiaTail n] -> [GemiaTail n]

reqOnly = filter ((==Required) . modality . action)
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optOnly = filter ((==Optional) . modality . action)

-- conjunctive product with alphabet extension

cprod :: Eq n => Gemia n -> Gemia n -> Gemia n

cprod = metaprod cprodTS extend

where

extend = extendMutually co co id id

co = const Optional

-- local conjunctive product

cprodTS :: Eq n => GemiaTrans n -> GemiaTrans n -> GemiaTrans n

cprodTS tsA tsB = TransitionSet sourceAB statusAB actsAB

where

sourceAB = nprod (source tsA) (source tsB)

statusAB = Status errorAB inconsAB

errorAB = (err $ status tsA) && (err $ status tsB)

inconsAB = (incons $ status tsA) || (incons $ status tsB) || localIncons

localIncons = not $ null (filter (null . targets) reqs)

actsAB = reqs ++ opts

reqs = (map (f nprod tsB) reqsA) ++ (map (f (flip nprod) tsA) reqsB)

reqsA = reqOnly (actions tsA)

reqsB = reqOnly (actions tsB)

f comb ts2 tail1 = Tail (action tail1)

[comb trg1 trg2 | trg1<-targets tail1,

trg2<-reachableLocallyLabel [ts2] (source ts2) (label $ action tail1)]

optsA = optOnly (actions tsA)

optsB = optOnly (actions tsB)

opts = [Tail (action tailA)

(makePairsBy nprod (targets tailA) (targets tailB)) |

tailA<-optsA, tailB<-optsB,

(label $ action tailA) == (label $ action tailB)]

B.2. Module Aux

module Aux where

import Graphviz

-- Binary trees

data BTree a = Leaf a | Branch (BTree a) (BTree a) deriving (Eq,Show)

instance (Ord a) => Ord (BTree a) where

compare (Leaf a) (Leaf b) = compare a b

compare (Branch a1 a2) (Branch b1 b2)

| compare a1 b1 == LT = LT

| compare a1 b1 == EQ = compare a2 b2

| otherwise = GT

instance (Dotable n) => Dotable (BTree n) where

toDot (Leaf a) = toDot a

toDot (Branch a b) = "(" ++ (toDot a) ++ "," ++ (toDot b) ++ ")"
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-- List of pairs

makePairsBy :: (a -> b -> c) -> [a] -> [b] ->[c]

makePairsBy f as bs = [f a b|a<-as,b<-bs]

-- List of all possible choices of elements from a list of lists

choices :: [[a]] -> [[a]]

choices [] = [[]]

choices (x:xs) = concatMap (\y -> prependAll y (choices xs)) x

-- Prepend an element to each list in a list of list

prependAll :: a -> [[a]] -> [[a]]

prependAll x ys = map (x:) ys

B.3. Module Graphiz

module Graphviz where

import Data.List

class Dotable a where

toDot :: a -> String

instance Dotable Int where

toDot i = show i

-- make a node from name and options

makeNode :: String -> [String] -> String

makeNode name options =

"\"" ++ name ++ "\" [" ++ intercalate "," options ++ "]\n"

-- make an arrow from source, target and options

makeArrow :: String -> String -> [String] -> String

makeArrow source target options =

"\"" ++ source ++ "\"->\"" ++ target ++ "\" [" ++ intercalate "," options ++

"]\n"

-- make a labelled arrow

simpleArrow :: String -> String -> String -> [String] -> String

simpleArrow s l t opts =

makeArrow s t (("label=\""++ l ++ "\""):opts)

-- make a labelled multiarrow

multiArrow :: String -> String -> [String] -> [String] -> String

multiArrow s l ts opts = (makeNode dummy ["shape=point"])

++ (makeArrow s dummy ("arrowhead=none":("label=\"" ++ l ++ "\""):opts))

++ (concatMap (\t->makeArrow dummy t opts) ts)

where dummy = intercalate "-" (s:l:ts)
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This chapter lists the source code of the two case studies presented in Chapter 4.

C.1. Client-Server Case Study

We implemented the client-server case study in Gemia’s embedded DSL, i.e., the case-
study itself is a valid Haskell program.

import Gemia

import Data.List

import System.Environment

import System.IO

import Aux

import Graphviz

-- Global server specification.

global :: Gemia Int

global = makeGemia (Leaf 0)

[req 0 Input "rqst" [1],

opt 1 Output "fail" 0,

opt 1 Output "resp" 0]

-- back-end 1: local cache

cache :: Gemia Int

cache = makeGemia (Leaf 0)

[req 0 Input "rqst1" [1],

req 1 Output "resp1" [0],

opt 1 Output "miss" 0]

-- back-end 2: remote database

database :: Gemia Int

database = makeGemia (Leaf 0)

[req 0 Input "rqst2" [1],

req 1 Output "resp2" [0]]

-- R1: forward to one of the back-ends

r1 :: Gemia Int

r1 = makeGemia (Leaf 0)

[opt 0 Input "rqst" 1,

opt 2 Output "rqst1" 0,

opt 2 Output "rqst2" 0,

req 1 Output "sel" [2],

opt 0 Output "resp" 0,

opt 0 Output "rqst1" 0,

opt 0 Output "rqst2" 0]

-- R2: one back-end or both

r2 :: Gemia Int

r2 = makeGemia (Leaf 0)

[opt 0 Output "sel" 1,

opt 0 Output "sel" 2,

req 1 Output "rqst1" [0],

req 2 Output "rqst2" [0],

opt 0 Output "resp" 0,

opt 0 Output "rqst1" 0,

opt 0 Output "rqst2" 0]

-- R3: after rqst1, first wait for resp1,

-- then respond to client

r3 :: Gemia Int

r3 = makeGemia (Leaf 0)

[opt 0 Output "rqst1" 1,

req 1 Input "resp1" [2],

req 1 Input "miss" [0],

req 2 Output "resp" [0],

opt 0 Output "resp" 0]

-- R4: after rqst2, first wait for resp2,

-- then respond to client

r4 :: Gemia Int

r4 = makeGemia (Leaf 0)

[opt 0 Output "rqst2" 1,

req 1 Input "resp2" [2],

req 2 Output "resp" [0],

opt 0 Output "resp" 0]

-- R5: after a miss redirect to database

r5 :: Gemia Int

r5 = makeGemia (Leaf 0)
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[opt 0 Input "miss" 1,

opt 1 Output "fbck" 2,

opt 1 Output "fail" 0,

req 2 Output "rqst2" [0],

opt 0 Output "rqst2" 0,

opt 0 Output "resp" 0]

-- Closed system

one :: Gemia Int

one = makeGemia (Leaf 0)

(map (\x->opt 0 Output x 0)

["rqst","resp","fail"])

-- Conjunction of requirements,

-- unpruned and pruned.

ru, r :: Gemia Int

ru = foldl1 cprod [r1,r2,r3,r4,r5]

r = pruneUnreachable (pruneIncons ru)

-- Conjunction of R1 and R2.

r12 :: Gemia Int

r12 = cprod r1 r2

-- foreign actions

fa = map (Action Optional Output)

["rqst1", "rqst2", "resp1", "resp2",

"miss"]

-- extended global specification

global’ = addLoops global fa

-- upper bound for frontend

uf :: Gemia Int

uf = global’ ‘iquot‘

(cache ‘pprod‘ database)

-- final front-end specification

f :: Gemia Int

f = pruneUnreachable $ pruneIncons $

uf ‘cprod‘ r

-- server

s :: Gemia Int

s = pruneUnreachable $ f ‘pprod‘ cache

‘pprod‘ database

-- F’ hides back-end communication in F

f’ = makeGemia (Leaf 0)

[req 0 Input "rqst" [1],

req 1 Output "resp" [0],

opt 1 Output "fail" 0

]

-- Client

client :: Gemia Int

client = one ‘iquot‘ f’

-- Full system

sys :: Gemia Int

sys = pruneUnreachable $ client ‘pprod‘ s

C.2. Railway Case Study

We conducted the railway case study within our tool MiaGo. Due to the usage of an
external DSL we split up the presentation into the component specifications and the
system construction.

C.2.1. Component Specifications

The components of the railway case study are specified in an external DSL.

specification SignalUni {

states { u }

inis { u }

unis { u }

channels { }

u { }

};

specification SignalUniExt {

states { u }

inis { u }

unis { u }

channels { go, stop }

u { }

};

specification SignalRef1 {

states { s, g, u }

inis { s }

unis { u }
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channels { go, stop }

s {

go?? -> g

stop? -> u

}

g {

stop?? -> s

go? -> u

}

};

specification SignalRef2 {

states { s, g, e }

inis { s }

errs { e }

channels { go, stop }

s {

go?? -> g

stop?? -> { s, e }

}

g {

stop?? -> s

go?? -> { g, e }

}

};

specification SignalRef3A {

states { s, g }

inis { s }

channels { go, stop }

s {

go?? -> g

stop?? -> { s }

}

g {

stop?? -> s

go?? -> { g }

}

};

specification SignalRef3B {

states { s, g, e }

inis { s }

errs { e }

channels { go, stop }

s {

go?? -> g

stop?? -> { e }

}

g {

stop?? -> s

go?? -> { e }

}

};

specification SignalRef3A0 {

states { s0, g0 }

inis { s0 }

channels { go0, stop0 }

s0 {

go0?? -> g0

stop0?? -> { s0 }

}

g0 {

stop0?? -> s0

go0?? -> { g0 }

}

};

specification SignalRef3A1 {

states { s1, g1 }

inis { s1 }

channels { go1, stop1 }

s1 {

go1?? -> g1

stop1?? -> { s1 }

}

g1 {

stop1?? -> s1

go1?? -> { g1 }

}

};

specification SignalRef3B0 {

states { s0, g0, e0 }

inis { s0 }

errs { e0 }

channels { go0, stop0 }

s0 {

go0?? -> g0

stop0?? -> { e0 }

}

g0 {

stop0?? -> s0

go0?? -> { e0 }

}

};

specification SignalRef3B1 {

states { s1, g1, e1 }

inis { s1 }

errs { e1 }

channels { go1, stop1 }

s1 {

go1?? -> g1

stop1?? -> { e1 }
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}

g1 {

stop1?? -> s1

go1?? -> { e1 }

}

};

specification Signal3 {

states { s3, g3, sl3 }

inis { s3 }

channels { go3, stop3, slow3 }

s3 {

go3?? -> g3

stop3?? -> s3

slow3?? -> sl3

}

g3 {

stop3?? -> s3

go3?? -> g3

slow3?? -> sl3

}

sl3 {

stop3?? -> s3

go3?? -> g3

slow3?? -> sl3

}

};

specification Global1 {

states { u }

inis { u }

channels { go0, go1, stop0, stop1 }

u {

go0! -> u

go1! -> u

stop0! -> u

stop1! -> u

}

};

specification Global2 {

states { u }

inis { u }

channels { go0, go1, stop0, stop1,

norm, alt }

u {

go0! -> u

go1! -> u

stop0! -> u

stop1! -> u

norm! -> u

alt! -> u

}

};

specification GlobalL {

states { u }

inis { u }

channels { go0, stop0, go1, stop1, go3,

stop3, slow3, block0, free0, block1,

free1, block2, free2, block3, free3,

norm2, alt2 }

u {

go0! -> u

stop0! -> u

go1! -> u

stop1! -> u

go3! -> u

stop3! -> u

slow3! -> u

block0! -> u

free0! -> u

block1! -> u

free1! -> u

block2! -> u

free2! -> u

block3! -> u

free3! -> u

norm2! -> u

alt2! -> u

}

};

specification RqContr {

states { s, g0, g1, e }

inis { s }

errs { e }

channels { go0, go1, stop0, stop1 }

s {

go0! -> g0

go1! -> g1

stop0! -> s

stop1! -> s

}

g0 {

go0! -> g0

go1! -> e

stop0! -> s

stop1! -> g0

}

g1 {

go0! -> e

go1! -> g1

stop0! -> g1

stop1! -> s

}

};
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specification RqS0S1 {

states { s0s1, s0g1, g0s1, g0g1 }

inis { s0s1 }

errs { g0g1 }

channels { go0, go1, stop0, stop1 }

s0s1 {

go0?? -> { g0s1 }

go1?? -> { s0g1 }

stop0?? -> { s0s1 }

stop1?? -> { s0s1 }

}

g0s1 {

go0?? -> { g0s1 }

go1?? -> { g0g1 }

stop0?? -> { s0s1 }

stop1?? -> { g0s1 }

}

s0g1 {

go0?? -> { g0g1 }

go1?? -> { s0g1 }

stop0?? -> { s0g1 }

stop1?? -> { s0s1 }

}

g0g1 {

}

};

specification RqS0YExt {

states { s0n, g0n, s0a, g0a }

inis { s0n }

errs { g0n }

channels { go0, stop0, norm, alt,

go1, stop1 }

s0n {

go0?? -> g0n

stop0?? -> { s0n, g0n }

norm?? -> { s0n, g0n }

alt?? -> { s0a, g0n }

go1?? -> { s0n, g0n }

stop1?? -> { s0n, g0n }

}

g0n { }

s0a {

go0?? -> g0a

stop0?? -> { s0a, g0n }

norm?? -> { s0n, g0n }

alt?? -> { s0a, g0n }

go1?? -> { s0a, g0n }

stop1?? -> { s0a, g0n }

}

g0a {

go0?? -> { g0a, g0n }

stop0?? -> { s0a, g0n }

norm?? -> g0n

alt?? -> { g0a, g0n }

go1?? -> { g0a, g0n }

stop1?? -> { g0a, g0n }

}

};

specification RqS1YExt {

states { s1n, g1n, s1a, g1a }

inis { s1n }

errs { g1a }

channels { go1, stop1, norm, alt,

go0, stop0 }

s1n {

go1?? -> { g1n, g1a }

stop1?? -> { s1n, g1a }

norm?? -> { s1n, g1a }

alt?? -> { s1a, g1a }

go0?? -> { s1n, g1a }

stop0?? -> { s1n, g1a }

}

g1n {

go1?? -> { g1n, g1a }

stop1?? -> { s1n, g1a }

norm?? -> { g1n, g1a }

alt?? -> g1a

go0?? -> { g1n, g1a }

stop0?? -> { g1n, g1a }

}

s1a {

go1?? -> g1a

stop1?? -> { s1a, g1a }

norm?? -> { s1n, g1a }

alt?? -> { s1a, g1a }

go0?? -> { s1a, g1a }

stop0?? -> { s1a, g1a }

}

g1a { }

};

specification RqSignalsL {

states { s, g0, g1, g3, sl3, e }

inis { s }

errs { e }

channels { go0, go1, go3, stop0,

stop1, stop3, slow3 }

s {

go0! -> g0

go1! -> g1

go3! -> g3

stop0! -> s

stop1! -> s

stop3! -> s
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slow3! -> sl3

}

g0 {

go0! -> g0

go1! -> e

go3! -> e

slow3! -> e

stop0! -> s

stop1! -> g0

stop3! -> g0

}

g1 {

go0! -> e

go1! -> g1

go3! -> e

slow3! -> e

stop0! -> g1

stop1! -> s

stop3! -> g1

}

g3 {

go0! -> e

go1! -> e

go3! -> g3

slow3! -> sl3

stop0! -> g3

stop1! -> g3

stop3! -> s

}

sl3 {

go0! -> e

go1! -> e

go3! -> g3

slow3! -> sl3

stop0! -> sl3

stop1! -> sl3

stop3! -> s

}

};

specification RqS3B0Y2L {

states { s3f0n2, s3b0n2, s3f0a2, s3b0a2,

g3f0n2, g3b0n2, g3f0a2, g3b0a2 }

inis { s3f0n2 }

errs { g3b0a2 }

channels { free0, block0, norm2, alt2,

go3, stop3, slow3 }

s3f0n2 {

free0! -> s3f0n2

block0! -> s3b0n2

norm2! -> s3f0n2

alt2! -> s3f0a2

go3! -> g3f0n2

slow3! -> g3f0n2

stop3! -> s3f0n2

}

s3b0n2 {

free0! -> s3f0n2

block0! -> s3b0n2

norm2! -> s3b0n2

alt2! -> s3b0a2

go3! -> g3b0n2

slow3! -> g3b0n2

stop3! -> s3b0n2

}

s3f0a2 {

free0! -> s3f0a2

block0! -> s3b0a2

norm2! -> s3f0n2

alt2! -> s3f0a2

go3! -> g3f0a2

slow3! -> g3f0a2

stop3! -> s3f0a2

}

s3b0a2 {

free0! -> s3f0a2

block0! -> s3b0a2

norm2! -> s3b0n2

alt2! -> s3b0a2

go3! -> g3b0a2

slow3! -> g3b0a2

stop3! -> s3b0a2

}

g3f0n2 {

free0! -> g3f0n2

block0! -> g3b0n2

norm2! -> g3f0n2

alt2! -> g3f0a2

go3! -> g3f0n2

slow3! -> g3f0n2

stop3! -> s3f0n2

}

g3b0n2 {

free0! -> g3f0n2

block0! -> g3b0n2

norm2! -> g3b0n2

alt2! -> g3b0a2

go3! -> g3b0n2

slow3! -> g3b0n2

stop3! -> s3b0n2

}

g3f0a2 {

free0! -> g3f0a2

block0! -> g3b0a2

norm2! -> g3f0n2

alt2! -> g3f0a2
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go3! -> g3f0a2

slow3! -> g3f0a2

stop3! -> s3f0a2

}

g3b0a2 {

}

};

specification RqS3B1Y2L {

states { s3f1n2, s3b1n2, s3f1a2, s3b1a2,

g3f1n2, g3b1n2, g3f1a2, g3b1a2 }

inis { s3f1n2 }

errs { g3b1n2 }

channels { free1, block1, norm2, alt2,

go3, stop3, slow3 }

s3f1n2 {

free1! -> s3f1n2

block1! -> s3b1n2

norm2! -> s3f1n2

alt2! -> s3f1a2

go3! -> g3f1n2

slow3! -> g3f1n2

stop3! -> s3f1n2

}

s3b1n2 {

free1! -> s3f1n2

block1! -> s3b1n2

norm2! -> s3b1n2

alt2! -> s3b1a2

go3! -> g3b1n2

slow3! -> g3b1n2

stop3! -> s3b1n2

}

s3f1a2 {

free1! -> s3f1a2

block1! -> s3b1a2

norm2! -> s3f1n2

alt2! -> s3f1a2

go3! -> g3f1a2

slow3! -> g3f1a2

stop3! -> s3f1a2

}

s3b1a2 {

free1! -> s3f1a2

block1! -> s3b1a2

norm2! -> s3b1n2

alt2! -> s3b1a2

go3! -> g3b1a2

slow3! -> g3b1a2

stop3! -> s3b1a2

}

g3f1n2 {

free1! -> g3f1n2

block1! -> g3b1n2

norm2! -> g3f1n2

alt2! -> g3f1a2

go3! -> g3f1n2

slow3! -> g3f1n2

stop3! -> s3f1n2

}

g3b1n2 { }

g3f1a2 {

free1! -> g3f1a2

block1! -> g3b1a2

norm2! -> g3f1n2

alt2! -> g3f1a2

go3! -> g3f1a2

slow3! -> g3f1a2

stop3! -> s3f1a2

}

g3b1a2 {

free1! -> g3f1a2

block1! -> g3b1a2

norm2! -> g3b1n2

alt2! -> g3b1a2

go3! -> g3b1a2

slow3! -> g3b1a2

stop3! -> s3b1a2

}

};

specification RqB2S0L {

states { f2s0, f2g0, b2s0, b2g0 }

inis { f2s0 }

errs { b2g0 }

channels { block2, free2, stop0, go0 }

f2s0 {

block2! -> b2s0

free2! -> f2s0

stop0! -> f2s0

go0! -> f2g0

}

f2g0 {

block2! -> b2g0

free2! -> f2g0

stop0! -> f2s0

go0! -> f2g0

}

b2s0 {

block2! -> b2s0

free2! -> f2s0

stop0! -> b2s0

go0! -> b2g0

}

b2g0 { }

};
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specification RqB2S1L {

states { f2s1, f2g1, b2s1, b2g1 }

inis { f2s1 }

errs { b2g1 }

channels { block2, free2, stop1, go1 }

f2s1 {

block2! -> b2s1

free2! -> f2s1

stop1! -> f2s1

go1! -> f2g1

}

f2g1 {

block2! -> b2g1

free2! -> f2g1

stop1! -> f2s1

go1! -> f2g1

}

b2s1 {

block2! -> b2s1

free2! -> f2s1

stop1! -> b2s1

go1! -> b2g1

}

b2g1 { }

};

specification RqB2S3L {

states { f2s3, f2g3, b2s3, b2g3 }

inis { f2s3 }

errs { b2g3 }

channels { block2, free2, stop3,

go3, slow3 }

f2s3 {

block2! -> b2s3

free2! -> f2s3

stop3! -> f2s3

go3! -> f2g3

slow3! -> f2g3

}

f2g3 {

block2! -> b2g3

free2! -> f2g3

stop3! -> f2s3

go3! -> f2g3

slow3! -> f2g3

}

b2s3 {

block2! -> b2s3

free2! -> f2s3

stop3! -> b2s3

go3! -> b2g3

slow3! -> b2g3

}

b2g3 { }

};

specification RqB2Y2L {

states { f2n2, f2a2, b2n2, b2a2, e }

inis { f2n2 }

errs { e }

channels { block2, free2, norm2, alt2 }

f2n2 {

block2! -> b2n2

free2! -> f2n2

norm2! -> f2n2

alt2! -> f2a2

}

f2a2 {

block2! -> b2a2

free2! -> f2a2

norm2! -> f2n2

alt2! -> f2a2

}

b2n2 {

block2! -> b2n2

free2! -> f2n2

norm2! -> b2n2

alt2! -> e

}

b2a2 {

block2! -> b2a2

free2! -> f2a2

norm2! -> e

alt2! -> b2a2

}

};

specification RqB3S0L {

states { f3s0, f3g0, b3s0, b3g0 }

inis { f3s0 }

errs { b3g0 }

channels { block3, free3, stop0, go0 }

f3s0 {

block3! -> b3s0

free3! -> f3s0

stop0! -> f3s0

go0! -> f3g0

}

f3g0 {

block3! -> b3g0

free3! -> f3g0

stop0! -> f3s0

go0! -> f3g0

}

b3s0 {
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block3! -> b3s0

free3! -> f3s0

stop0! -> b3s0

go0! -> b3g0

}

b3g0 { }

};

specification RqB3S1L {

states { f3s1, f3g1, b3s1, b3g1 }

inis { f3s1 }

errs { b3g1 }

channels { block3, free3, stop1, go1 }

f3s1 {

block3! -> b3s1

free3! -> f3s1

stop1! -> f3s1

go1! -> f3g1

}

f3g1 {

block3! -> b3g1

free3! -> f3g1

stop1! -> f3s1

go1! -> f3g1

}

b3s1 {

block3! -> b3s1

free3! -> f3s1

stop1! -> b3s1

go1! -> b3g1

}

b3g1 { }

};

specification RqS0Y2L {

states { s0n2, g0n2, s0a2, g0a2 }

inis { s0n2 }

errs { g0n2 }

channels { stop0, go0, norm2, alt2 }

s0n2 {

stop0! -> s0n2

go0! -> g0n2

norm2! -> s0n2

alt2! -> s0a2

}

g0n2 { }

s0a2 {

stop0! -> s0a2

go0! -> g0a2

norm2! -> s0n2

alt2! -> s0a2

}

g0a2 {

stop0! -> s0a2

go0! -> g0a2

norm2! -> g0n2

alt2! -> g0a2

}

};

specification RqS1Y2L {

states { s1n2, g1n2, s1a2, g1a2 }

inis { s1n2 }

errs { g1a2 }

channels { stop1, go1, norm2, alt2 }

s1n2 {

stop1! -> s1n2

go1! -> g1n2

norm2! -> s1n2

alt2! -> s1a2

}

g1n2 {

stop1! -> s1n2

go1! -> g1n2

norm2! -> g1n2

alt2! -> g1a2

}

s1a2 {

stop1! -> s1a2

go1! -> g1a2

norm2! -> s1n2

alt2! -> s1a2

}

g1a2 {

}

};

specification RqS3Y2L {

states { s3n2, g3n2, s3a2, g3a2 }

inis { s3n2 }

errs { g3a2 }

channels { stop3, go3, slow3,

norm2, alt2 }

s3n2 {

stop3! -> s3n2

go3! -> g3n2

slow3! -> s3n2

norm2! -> s3n2

alt2! -> s3a2

}

g3n2 {

stop3! -> s3n2

go3! -> g3n2

slow3! -> s3n2

norm2! -> g3n2
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alt2! -> g3a2

}

s3a2 {

stop3! -> s3a2

go3! -> g3a2

slow3! -> s3a2

norm2! -> s3n2

alt2! -> s3a2

}

g3a2 { }

};

specification Switch {

states { n, a }

inis { n }

channels { norm, alt }

n {

norm?? -> { n }

alt?? -> { a }

}

a {

norm?? -> { n }

alt?? -> { a }

}

};

specification Block0 {

states { f0, b0, e0 }

inis { f0 }

errs { e0 }

channels { free0, block0 }

f0 {

free0?? -> f0

block0?? -> b0

}

b0 {

free0?? -> f0

block0?? -> e0

}

e0 { }

};

specification Block1 {

states { f1, b1, e1 }

inis { f1 }

errs { e1 }

channels { free1, block1 }

f1 {

free1?? -> f1

block1?? -> b1

}

b1 {

free1?? -> f1

block1?? -> e1

}

e1 { }

};

specification Block2 {

states { f2, b2, e2 }

inis { f2 }

errs { e2 }

channels { free2, block2 }

f2 {

free2?? -> f2

block2?? -> b2

}

b2 {

free2?? -> f2

block2?? -> e2

}

e2 { }

};

specification Block3 {

states { f3, b3, e3 }

inis { f3 }

errs { e3 }

channels { free3, block3 }

f3 {

free3?? -> f3

block3?? -> b3

}

b3 {

free3?? -> f3

block3?? -> e3

}

e3 { }

};

C.2.2. Composition of the System

The composition of the railway system is realised as a Go program that reads the
component specifications and applies the composition operations parallel composition,
conjunction and quotienting.

package main
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import (

"os"

specParse "swt-bamberg.de/mia/specParser"

mia "swt-bamberg.de/mia/miaDS"

"log"

)

func main () {

// Specifications

s := make(map[string]mia.MiaAutomaton)

p := specParse.NewParser()

err := p.ParseFile(os.Stdin)

if err != nil {

panic ("parse error")

}

mc := p.GetResultMias()

// Construct components

for name, automaton := range mc {

s[name] = automaton.Mia

}

// --- Small Example ----------------------------------------------

log.Println("Computing small example ...")

s["pS0S1A"] = mia.ParallelProductEmia(s["SignalRef3A0"], s["SignalRef3A1"])

s["pS0S1B"] = mia.ParallelProductEmia(s["SignalRef3B0"], s["SignalRef3B1"])

s["qGR"] = mia.Quotient(s["Global1"], s["RqS0S1"])

s["qGSA"] = mia.Quotient(s["Global1"], s["pS0S1A"])

s["qGSB"] = mia.Quotient(s["Global1"], s["pS0S1B"])

s["ContrA"] = mia.ConjunctionEmia(s["RqContr"], s["qGSA"])

s["ContrB"] = mia.ConjunctionEmia(s["qGR"], s["qGSB"])

s["ContrObs"] = mia.ConjunctionEmia(s["qGR"], s["qGSA"])

// --- Larger Example ---------------------------------------------

log.Println("Computing large example ...")

// Track

log.Println("* Track ...")

s["Signals"] = mia.ParallelProductEmia(s["pS0S1A"], s["Signal3"])

s["Blocks01"] = mia.ParallelProductEmia(s["Block0"], s["Block1"])

s["Blocks23"] = mia.ParallelProductEmia(s["Block2"], s["Block3"])

s["Blocks"] = mia.ParallelProductEmia(s["Blocks01"], s["Blocks23"])

s["SB"] = mia.ParallelProductEmia(s["Signals"], s["Blocks"])

s["Track"] = mia.RemoveUnreachable(

mia.ParallelProductEmia(s["SB"], s["Switch"]))

// Conjunction of R1, R2, R3

log.Println("* Requirements R1-R3 ...")

a1 := []string{"norm2", "alt2", "free0", "block0", "free1", "block1"}

s["RqSignalsExt"] = mia.AlphabetExtensionEmia(s["RqSignalsL"], a1, mia.Output)

a2 := []string{"stop0", "go0", "stop1", "go1", "free1", "block1"}

s["RqS3Y2Ext"] = mia.AlphabetExtensionEmia(s["RqS3Y2L"], a2, mia.Output)
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a3 := []string{"stop0", "go0", "stop1", "go1"}

s["RqS3B1Y2Ext"] = mia.AlphabetExtensionEmia(s["RqS3B1Y2L"], a3, mia.Output)

s["cR1R2R3"] = mia.RemoveUnreachable(mia.ConjunctionEmia(

mia.ConjunctionEmia(s["RqSignalsExt"], s["RqS3Y2Ext"]), s["RqS3B1Y2Ext"]))

// Conjunction of R4, R5

log.Println("* Requirements R4-R5 ...")

a4_0 := []string{"stop1", "go1", "stop3", "go3", "slow3", "norm2", "alt2"}

s["RqB2S0Ext"] = mia.AlphabetExtensionEmia(s["RqB2S0L"], a4_0, mia.Output)

a4_1 := []string{"stop0", "go0", "stop3", "go3", "slow3", "norm2", "alt2"}

s["RqB2S1Ext"] = mia.AlphabetExtensionEmia(s["RqB2S1L"], a4_1, mia.Output)

a4_3 := []string{"stop1", "go1", "stop0", "go0", "norm2", "alt2"}

s["RqB2S3Ext"] = mia.AlphabetExtensionEmia(s["RqB2S3L"], a4_3, mia.Output)

a5 := []string{"stop0", "go0", "stop1", "go1", "stop3", "go3", "slow3"}

s["RqB2Y2Ext"] = mia.AlphabetExtensionEmia(s["RqB2Y2L"], a5, mia.Output)

s["cR4R5"] = mia.RemoveUnreachable(mia.ConjunctionEmia(

mia.ConjunctionEmia(s["RqB2S0Ext"], s["RqB2S1Ext"]),

mia.ConjunctionEmia(s["RqB2S3Ext"], s["RqB2Y2Ext"])))

// Requirement R6

log.Println("* Requirement R6 ...")

a6_0 := []string{"stop1", "go1"}

s["RqB3S0Ext"] = mia.AlphabetExtensionEmia(s["RqB3S0L"], a6_0, mia.Output)

a6_1 := []string{"stop0", "go0"}

s["RqB3S1Ext"] = mia.AlphabetExtensionEmia(s["RqB3S1L"], a6_1, mia.Output)

s["Rq6"] = mia.RemoveUnreachable(mia.ConjunctionEmia(s["RqB3S0Ext"],

s["RqB3S1Ext"]))

// Conjunction of R7, R8, R9

log.Println("* Requirements R7-R9 ...")

a7 := []string{"stop1", "go1", "stop3", "go3", "slow3"}

s["RqS0Y2Ext"] = mia.AlphabetExtensionEmia(s["RqS0Y2L"], a7, mia.Output)

a8 := []string{"stop0", "go0", "stop3", "go3", "slow3"}

s["RqS1Y2Ext"] = mia.AlphabetExtensionEmia(s["RqS1Y2L"], a8, mia.Output)

a9 := []string{"stop1", "go1", "stop0", "go0"}

s["RqS3Y2Ext"] = mia.AlphabetExtensionEmia(s["RqS3Y2L"], a9, mia.Output)

s["cR7R8R9"] = mia.RemoveUnreachable(mia.ConjunctionEmia(

mia.ConjunctionEmia(s["RqS0Y2Ext"], s["RqS1Y2Ext"]), s["RqS3Y2Ext"]))

// Conjunction of all requirements

log.Println("* Conjunction of all requirements ...")

acR1R2R3 := []string{"free2", "block2", "free3", "block3"}

s["cR1R2R3Ext"] = mia.AlphabetExtensionEmia(s["cR1R2R3"],acR1R2R3,mia.Output)

acR4R5 := []string{"free0", "block0", "free1", "block1", "free3", "block3"}

s["cR4R5Ext"] = mia.AlphabetExtensionEmia(s["cR4R5"], acR4R5, mia.Output)

aRq6 := []string{"stop3", "go3", "slow3","free0", "block0", "free1", "block1",

"free2", "block2", "norm2", "alt2"}

s["Rq6Ext"] = mia.AlphabetExtensionEmia(s["Rq6"], aRq6, mia.Output)

acR7R8R9 := []string{"free0", "block0", "free1", "block1", "free2", "block2",

"free3", "block3"}

s["cR7R8R9Ext"] = mia.AlphabetExtensionEmia(s["cR7R8R9"],acR7R8R9,mia.Output)

s["cR1-9"] = mia.RemoveUnreachable(mia.ConjunctionEmia(

mia.ConjunctionEmia(s["cR1R2R3Ext"], s["cR4R5Ext"]),
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mia.ConjunctionEmia(s["Rq6Ext"], s["cR7R8R9Ext"])))

// Global track requirement

log.Println("* Quotient global/track ...")

s["qGTrack"] = mia.Quotient(s["GlobalL"], s["Track"])

// Overall controller requirement

log.Println("* Overall controller requirement ...")

s["ContrL"] = mia.RemoveUnreachable(

mia.ConjunctionEmia(s["cR1-9"], s["qGTrack"]))

// Output

log.Println("Exporting to Graphviz ...")

for name, automaton := range s {

f, err := os.Create (name + ".dot")

if err != nil {

// TODO: error handling

} else {

f.WriteString(automaton.MiaAutomatonToDotString())

f.Close()

}

}

log.Println("Done.")

}
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[Cai11] Benôıt Caillaud. Mica: A Modal Interface Compositional Analysis Library.
2011. url: http://www.irisa.fr/s4/tools/mica/ (visited on 02/14/2017).

[Car+16] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and
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[LVF15] Gerald Lüttgen, Walter Vogler, and Sascha Fendrich. “Richer Interface Au-
tomata with Optimistic and Pessimistic Compatibility”. In: Acta Informatica
52.4–5 (2015), pp. 305–336. doi: 10.1007/s00236-014-0211-0.

[LX90] Kim G. Larsen and Li Xinxin. “Equation Solving Using Modal Transition
Systems”. In: Logic in Computer Science (LICS). IEEE, 1990, pp. 108–117.
doi: 10.1109/LICS.1990.113738.

[Mac71] Saunders MacLane. Categories for the Working Mathematician. Springer,
1971.

[Maz88] Antoni W. Mazurkiewicz. “Basic Notions of Trace Theory”. In: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency.
Vol. 354. LNCS. Springer, 1988, pp. 285–363. doi: 10.1007/BFb0013025.

[mCRL17] micro Common Representation Language 2. 2017. url: https://www.mcrl2.
org (visited on 04/19/2017).

[Mil71] Robin Milner. “An Algebraic Definition of Simulation Between Programs”.
In: International Joint Conference on Artificial Intelligence. IJCAI. Morgan
Kaufmann, 1971, pp. 481–489.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Vol. 92. LNCS.
Springer, 1980. doi: 10.1007/3-540-10235-3.

[Mil89] Robin Milner. Communication and concurrency. Prentice Hall, 1989.

[MK99] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs.
Wiley, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile
Processes, Parts I and II”. In: Information and Computation 100.1 (1992),
pp. 1–77. doi: 10.1016/0890-5401(92)90008-4.

[NB17] The NetBeans Platform. 2017. url: https://www.netbeans.org (visited
on 03/03/2017).

159

http://dx.doi.org/10.1016/j.tcs.2011.03.015
http://dx.doi.org/10.1016/j.tcs.2011.03.015
http://dx.doi.org/10.1007/978-3-642-33475-7_19
http://dx.doi.org/10.2168/LMCS-9(3:4)2013
http://dx.doi.org/10.2168/LMCS-9(3:4)2013
http://dx.doi.org/10.1007/s00236-014-0211-0
http://dx.doi.org/10.1109/LICS.1990.113738
http://dx.doi.org/10.1007/BFb0013025
https://www.mcrl2.org
https://www.mcrl2.org
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/0890-5401(92)90008-4
https://www.netbeans.org


Bibliography

[Par81] David Park. “Concurrency and Automata on Infinite Sequences”. In: Theo-
retical Computer Science GI-Conference. Vol. 104. LNCS. Springer, 1981,
pp. 167–183. doi: 10.1007/BFb0017309.

[Pet62] Carl Adam Petri. “Kommunikation mit Automaten”. PhD thesis. Universität
Hamburg, Germany, 1962.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of
concurrent systems in CESAR”. In: International Symposium on Program-
ming. Vol. 137. LNCS. Springer, 1982, pp. 337–351. doi: 10.1007/3-540-
11494-7_22.

[Rac+11] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud, Axel
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