
Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

APPLICATION MIGRATION EFFORT IN THE CLOUD

Stefan Kolb, Jörg Lenhard, and Guido Wirtz
University of Bamberg

{stefan.kolb, joerg.lenhard, guido.wirtz}@uni-bamberg.de

Abstract
Over the last years, the utilization of cloud resources has been steadily rising and an increasing number of enterprises
are moving applications to the cloud. A leading trend is the adoption of Platform as a Service to support rapid
application deployment. By providing a managed environment, cloud platforms take away a lot of complex
configuration effort required to build scalable applications. However, application migrations to and between clouds
cost development effort and open up new risks of vendor lock-in. This is problematic because frequent migrations
may be necessary in the dynamic and fast changing cloud market. So far, the effort of application migration in PaaS
environments and typical issues experienced in this task are hardly understood. To improve this situation, we present
a cloud-to-cloud migration of a real-world application to seven representative cloud platforms. In this case study, we
analyze the feasibility of the migrations in terms of portability and the effort of the migrations. We present a Docker-
based deployment system that provides the ability of isolated and reproducible measurements of deployments to
platform vendors, thus enabling the comparison of platforms for a particular application. Using this system, the study
identifies key problems during migrations and quantifies these differences by distinctive metrics.

Keywords: Cloud Computing, Platform as a Service, Migration, Case Study, Portability, Metrics

 INTRODUCTION 1
Throughout the last years, cloud computing is

making its way to mainstream adoption. After the rise of
Infrastructure as a Service (IaaS), also the higher-level
cloud model Platform as a Service (PaaS) is finding its
way into enterprise systems (Biscotti, et al., 2014;
Carvalho, Fleming, Hilwa, Mahowald, & McGrath, 2014).
PaaS systems provide a managed application platform,
taking away most configuration effort required to build
scalable applications. Due to the dynamic and fast
changing market, new challenges of application
portability between cloud platforms emerge. This is
problematic because migrations to and between clouds
require development effort. The higher level of
abstraction in PaaS, including diverse software stacks,
services, and platform features, also opens up new risks
of vendor lock-in (Petcu & Vasilakos, 2014). Even with
the emergence of cloud platforms based on an
orchestration of open technologies, application
portability is still an issue that cannot be neglected and
remains a drawback often mentioned in literature
(Hogan, Liu, Sokol, & Tong, 2011; Badger, Grance, Patt-
Corner, & Voas, 2012; Petcu, Macariu, Panica, & Cracium,
2013; Di Martino, 2014; Silva, Rose, & Calinescu, 2013).

So far, the effort of application migration in PaaS
environments and typical issues experienced in this task
are hardly understood. Whereas the migration from on-
premises applications to the cloud is frequently
considered in current research, less work is available for
migrations between clouds. To improve this situation,
we present a cloud-to-cloud migration of a cloud-native

application between seven public cloud platforms. In
contrast to an on-premises application, this kind of
software is already built to run in the cloud1. Therefore,
we primarily investigate application portability between
cloud vendors, rather than changes that are caused by
adjusting an application to the cloud paradigm.
Considering the portability promises of open cloud
platforms, consequences of this migration type are less
obvious.

Application portability between clouds not only
includes the functional portability of applications, but
ideally also the usage of the same service management
interfaces among vendors (Hogan, Liu, Sokol, & Tong,
2011; Petcu, 2011). This means that migration effort is
not limited to code changes, which we also consider
here, but includes effort for performing application
deployment. Therefore, we put a special focus on effort
caused by the deployment of the application in this
study. We derive our main research questions from the
preliminary results of previous work (Kolb & Wirtz,
2014):

RQ 1: Is it possible to move a real-world application

between different cloud platforms?

RQ 2: What is the development effort involved in

porting a cloud-native application between cloud

platforms?

1 See the twelve-factor methodology at http://12factor.net.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS - Publikationsserver der Universität Bamberg

https://core.ac.uk/display/144544066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

The utilized application, Blinkist, is a Ruby on Rails
web application developed by Blinks Labs GmbH. The set
of selected PaaS vendors includes IBM Bluemix,
cloudControl, AWS Elastic Beanstalk, EngineYard,
Heroku, OpenShift Online, and Pivotal Web Services. We
analyze the feasibility of the migration in terms of
portability and the effort for this task. Besides, we
present a Docker-based deployment system that
provides the ability of isolated and reproducible
measurements of deployments to platform vendors, thus
enabling the comparison of platforms for a particular
application. Using this system, the study identifies key
problems during migrations and quantifies differences
between the platforms by distinctive metrics. In this
study, we target implementation portability (Kolb &
Wirtz, 2014; Petcu & Vasilakos, 2014) of the migration
execution, i.e., the application transformation and the
deployment. We focus on functional portability of the
application. Data portability must be investigated
separately, especially since popular database
technologies, e.g., NoSQL databases, impose substantial
lock-in problems. With our results, we are able to
compare migration effort between different cloud
platforms and to identify existing portability problems.

This article is an extended version of our earlier
work (Kolb, Lenhard, & Wirtz, 2015), in which we
introduced the case study and deployability framework.
We extend (Kolb, Lenhard, & Wirtz, 2015) in multiple
directions. Firstly, we provide a more detailed
description and illustration of the case study application,
the vendor selection process, and the deployment
tooling, as well as a more in-depth discussion of related
work. Secondly, we update the pricing data for the
platforms to contemporary levels and enhance the
presentation of the data with several figures. Third, we
perform a more sophisticated statistical analysis of the
data resulting from the case study, including significance
tests on the difference between container-based and
VM-based platforms. This analysis reinforces the results
from (Kolb, Lenhard, & Wirtz, 2015), hardens our
interpretation, and confirms significant differences
between container-based and VM-based platforms in
deployment times and reliability.

The remainder of the paper is structured as follows.
In Section 2, we describe our research methodology
including details of the application used, the process of
vendor selection, the automation of deployment, and the
measurement of deployment effort. Section 3 presents
the results of our measurements and describes problems
that occurred during the execution of the migrations. In
Section 4, we review related work. Section 5 discusses
limitations and future work that can be derived from the
results. Finally, Section 6 summarizes the contributions
of the paper.

Figure 1. Migration Evaluation Process (Jamshidi,
Ahmad, & Pahl, 2013)

 METHODOLOGY 2
The goal of this study is to analyze the task of

migrating a cloud-based application with respect to the
effort from the point of view of a developer/operator. To
achieve this, we follow the process defined in Figure 1.
The first step is migration planning, which includes the
analysis of application requirements and the selection of
cloud providers. Next comes the migration execution for
all providers, including code changes and application
deployment. After manually migrating the application to
the providers, these steps and modifications are
automated to enable a reproducible and comparable
deployment among them. To be able to compare the
main effort drivers of the execution phase, i.e., code
changes and application deployment, we define several
metrics that allow a measurement of the tasks
performed during the migration execution step. As
discussed before, application portability between clouds
not only includes the functional portability of
applications, but also the portability of service
management interfaces between vendors (Hogan, Liu,
Sokol, & Tong, 2011; Petcu, 2011). In our case, due to the
use of open technologies and a cloud-native application,
this effort is mainly associated with application
deployment. Hence, in this study, we put a special focus
on the effort caused by the deployment of the
application, next to application code changes. In times of
agile and iterative development paradigms, this implies
that also the effort of redeployment must be considered.
Therefore, our deployment workflow includes a
redeployment of a newer version of the study's
application. To validate that the application is operating
as expected in the platform environment, we can draw
on a large set of functional and integration tests. As
concluding step, we evaluate our findings in the
migration evaluation, including measured results and a
discussion about problems and differences between
providers.

The primary focus of this study is on the migration
execution and evaluation, as the initial planning step can
be largely assisted by our cloud brokering tool from
(Kolb & Wirtz, 2014) that covers the details of provider
brokering and application requirements matching.

2.1 MIGRATED APPLICATION
The application Blinkist is built by a Berlin-based

mobile learning company launched in January 2013 and
distills key insights from nonfiction books into fifteen-
minute reads and audio casts. Currently, Blinkist

Migration Planning Migration Execution Migration Evaluation

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

includes summaries of over 1,300 books in its digital
library. Blinkist has a user count of more than 500,000
registered customers worldwide. The product is created
by a team of 21 full-time employees and is available for
Android, iPhone, iPad, and web. We target the web
application2, which is built in Ruby on Rails. The high-
level architecture relevant for this study can be seen in
Figure 2.

Figure 2. Web Application Architecture

The user facing front end is a Rails 4 application with
access to decoupled business logic written in Ruby. The
application uses a MongoDB database for persistence of
user data and book summaries. Moreover, page caching
and distribution of static application assets, e.g. images,
is implemented via Redis and Amazon's CloudFront
content delivery network (CDN). The web interface is
run with at least two application instances in parallel,
hosted by a Puma web server. The study uses Blinkist's
application version from May 2014 for the initial
deployment and a subsequent release after a major code
sprint for redeployment. The application part totals for
about 60,000 Lines of Code (LOC).

2.2 VENDOR SELECTION
As hosting environment for the application, we aim

for a production-ready, public PaaS that supports
horizontal application scalability. The application itself
depends on support for Ruby 2.0.0 and Rails 4. The
necessary services and data stores are provided by
independent external service vendors and are
configured via environment variables (see Fig. 2).

The decision on possible candidates for the application
can be assisted by the knowledge base and cloud
brokering tool3 presented in (Kolb & Wirtz, 2014). The
knowledge base is founded on a taxonomy describing
essential components and capabilities of PaaS vendors.
The classification was extracted from an extensive study
of the vendor landscape and literature reviews. To
enable matching and filtering of PaaS offerings, the
taxonomy is transformed into a standardized machine-

2 The recent application version can be accessed at
https://www.blinkist.com.
3 The project homepage is https://github.com/stefan-
kolb/paas-profiles. A hosted version of the web interface is
available at http://PaaSify.it.

readable profile. The underlying assumption of the
matching strategy is that an application can be ported
among vendors that support the same application
dependencies natively. Figure 3 exemplifies the
approach for a set of three requirements, including two
application dependencies and one platform capability.
The overlapping sections of the requirements include
sets of vendors that can be divided into partially
compatible, and compatible. Compatible vendors
support all listed demands. Therefore, the application is
portable to their system. Partially compatible vendors
support a subset of requirements and might only be
candidates if some of the application requirements can
be relaxed or manually upgraded by the customer. In
contrast, incompatible vendors (all vendors outside the
subsets) do not support any of the requested
requirements.

Figure 3. PaaS Ecosystem Portability

This approach compensates the lack of commonly
accepted portability standards in the cloud context. By
following the dimensions of our taxonomy, we are also
able to solve semantic conflicts between PaaS by
providing a restricted common set of capabilities. The
feasibility of the approach was validated in (Kolb &
Wirtz, 2014). To enhance the accuracy and up-to-
dateness of the knowledge base, all data is
collaboratively maintained by vendors and customers as
an open source project. To the best of our knowledge,
this is the most recent, comprehensive, and publicly
available collection of PaaS vendors. For more details on
the specification and taxonomy see (Kolb & Wirtz, 2014).
Listing 1 shows the desired PaaS profile, as defined in
(Kolb & Wirtz, 2014), for the application requirements of
the case study application.

The broker tool allows us to filter from the multitude
of available platform offerings based on the defined
ecosystem capabilities and requirements. The filtering
can either be done manually via a web interface or in an
automated fashion by querying the RESTful broker API
with the request from Listing 1. With the help of our tool,

Front end

Caching

Back end Database

CDN

ENV[REDIS_URL]

ENV[ASSET_URL]

ENV[MONGO_URL]

MongoDB

Redis

Webserver

Puma

CloudFront

Rails Ruby

Incompatible

Dependency A

Dependency B
Capabili

ty
 C

Compatible

Partial ly

Compatible

PaaS Vendors

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

we were able to filter from a total of 75 offerings to a
candidate set of 22 offerings, based on the chosen
platform capabilities and runtime support. This means
that 70 % of the vendors have already been excluded
due to ecosystem portability mismatches, i.e., failing
support for specific requirements. Thereafter, we also
filtered out vendors that are based on the same base
platform technology, e.g., Cloud Foundry, except for one
duplicate control pair (Pivotal and Bluemix). The final
selection of the seven vendors, presented in Table 1, was
based on a concluding relevance assessment of the
remaining offerings.

{

 "status": "production",

 "scaling": {

 "horizontal": true

 },

 "hosting": {

 "public": true
 },

 "runtimes": [

 {

 "language": "ruby",

 "versions": ["2.0.0"]

 }

],

 "frameworks": [

 {

 "name": "rails",

 "versions": ["4.*"]

 }

]

}
Listing 1. PaaS Profile for the Application

For reasons of comparability, we selected equal

instance configurations and geographical locations
among the different vendors, grouped by virtualization
technology. At the time when the case study was
executed, this was possible for all but two vendors, i.e.,
cloudControl and Bluemix, which only supported
application deployment in Dublin, IE, and respectively
Dallas, US.

As we can see in Table 1, there are substantial pricing
differences between the vendors. Pricing is based on
equivalent production grade configurations dependent
on the technology descriptions and specifications of the
vendors4. Nevertheless, first results reveal performance
differences, which are not included in this consideration.
Currently, a price-performance value can hardly be
investigated by a customer upfront. In general,
container-based PaaS are cheaper to start with than VM-

4
 Pricing is based on selected RAM usage, resp. instance type.

720 h/month estimate. No additional bandwidth and support
options included. Free quotas deducted. Dollar pricing of
cloudControl is taken from their US subsidiary dotCloud. Date:
11/11/2015.

based ones. Still, instance performance is lower with
respect to the technology setup. When looking at
instance prices of container-based PaaS per hour, the
most expensive vendor charges over two and a half
times more than the cheapest one. However, it is
common among PaaS vendors that there is a contingent
of free instance hours per month included. Therefore,
the total amount of savings is dependent on the number
of running container instances. For example, the
differences between Bluemix and cloudControl, caused
by a higher free hour quota of Bluemix, will level up with
increasing instance count. Pricing among VM-based
offerings is even more complex with dedicated pricing
for platform components like IP services, bandwidth, or
storage, which makes it difficult for customers to
compare the prices of different vendors.

2.3 DEPLOYMENT AUTOMATION
In this study, we want to measure the effort of a

customer migrating an application to specific platforms.
As discussed, in our case this effort is mainly associated
with application deployment. To be able to measure and
compare this effort, we automate the deployment
workflows by using the provider's client tools. This kind
of interaction is supported by the majority of providers
and therefore seems appropriate for a comparative
measurement in contrast to other mechanisms like APIs.
Although all selected providers offer client tools, not all
steps can be automated for every provider. The amount
of manual steps via other interfaces like a web UI will be
denoted explicitly. The automation of the workflows
helps to better understand, measure, and reproduce the
presented results. We implemented an automatic
deployment system, called Yard5, that works similar for
every provider and prevents errors due to repeatable
deployment workflows. This enables a direct
comparison of deployment among providers.

Yard consists of a set of modules which automate the
deployment for specific providers. To abstract from
differences between providers, we define a unified
interface paradigm that each module has to implement.
To conform to the interface, every module needs to
implement one init, deploy, update, and delete script that
encapsulates necessary substeps. This approach offers a
unified and provider-independent way to conduct
deployment. Accordingly, the init script must execute all
steps that are required to bootstrap the provider tools
for application deployment, e.g., install the client tools.
The deploy script contains the logic for creating a new
application, including application and platform
configuration. This typically involves authenticating with
the provider platform, creating a new application space,
setting necessary environment variables, deploying the

5 See https://github.com/stefan-kolb/paasyard.

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

application code, and finally verifying the availability of
the remote application. Updates to an existing
application are performed inside the update script.
Finally, the delete script is responsible for deleting any
previously created artifacts and authentication
information with the particular provider. Any necessary
provider-specific artifacts, like deployment manifests or
configuration files, must be kept in a subfolder adjacent
to the deployment scripts and will be merged into the
main application repository by Yard before any module
script execution. The deployments are automated via
Bash scripts. User input is inserted automatically via
Here Documents or Expect scripts. This guarantees that
user input is supplied consistently for every deployment.
As an example, Listing 2 shows the deploy script for
Heroku.

#!/bin/bash

echo "-----> Initializing application space..."

authentication

heroku login <<END

$HEROKU_USERNAME
$HEROKU_PASSWORD
END

create app space

heroku create $APPNAME

environment variables

heroku config:set MONGO_URL=$MONGO_URL

 REDIS_URL=$REDIS_URL

 ASSET_URL=$ASSET_URL

echo "-----> Deploying application..."

git push heroku master

echo "-----> Checking availability..."

./is_up https://$APPNAME.herokuapp.com

Listing 2. Deployment Script for Heroku

First, the script authenticates the CLI with the
platform. Any provider credentials and other variables,
e.g. $HEROKU_USERNAME, used inside the scripts must be
defined in a configuration file. After the login, a new
application space is created and necessary environment
variables to the external caching and database services
are set. Next, the application code is pushed to the
platform via a Git remote which automatically triggers
the build process inside the platform. Finally, a helper
script requests the remote URL until the application is
up and successfully responds to requests.

Since the system is intended to be used for
independent deployment measurements, we must make
sure that we achieve both local and remote isolation
between different deployment runs. Consequently, the
previously described set of scripts must allow an
application installation in a clean platform environment
and reset it to default settings by running the delete
script. The set of scripts must ensure that subsequent
deployments are not influenced by settings made to the
remote environment through previous runs. As the
different build steps and deployment tools will possibly
write configuration files, tokens, or host verifications to
the local file system, we need to enhance our approach
with extra local isolation. Thus, the deployments are run
inside Docker containers for maximum isolation
between different deployments. Docker provides
lightweight, isolated containers through an abstraction
layer of operating-system-level virtualization features6.

Figure 4. Yard - Isolated Deployment with Docker

A graphical overview of our deployment system Yard

can be seen in Figure 4. For each container, a base image
is used that only consists of a minimal Ubuntu
installation, including Python and Ruby runtimes. This
base image can be varied, if one does not want to have
specific libraries or runtimes pre-installed for the
measurements. From the base image, a deployment
image is created that bootstraps the necessary provider
tool dependencies. This is achieved by executing the init
script of each provider module inside the base image,
which results in a new container image. Additionally, the
application code and the deployment artifacts are

6 See https://www.docker.com/whatisdocker for more details.

Base image

Deployment artifacts Application code

Deployment image

init deploy

Deployment scripts

 Heroku cloudControl Pivotal Web Services Bluemix OpenShift Elastic Beanstalk EngineYard

Type Proprietary Proprietary Open Source Open Source Open Source Proprietary Proprietary

Isolation Container Container Container Container Container Virtual Machine Virtual Machine

RAM (instance) 512 MB 512 MB 512 MB 512 MB 512 MB 3.75 GB 3.75 GB

Geo location Virginia, US Dublin, IE Virginia, US Dallas, US Virginia, US Virginia, US Virginia, US

Pricing $ 0.035/h $ 0.04/h $ 0.015/h $ 0.035/h $ 0.025/h $ 0.067/h $ 0.12/h

∑(2 instances/month) $ 50 $ 50.10 $ 21.60 $ 24.15 $36 ∑(1 VM/month) $ 48.24 $ 86.40

Table 1. PaaS Vendors and Selected Configurations

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

directly merged into a common repository. This is done
to avoid additional bootstrapping before each
deployment, which could influence the timing results of
the deployment run. The resulting image can be used to
deploy the code to different providers from every
Docker-compatible environment via a console command.
For convenience, the tool additionally provides a CLI
script that handles the invocation of the different
deployment scripts.

2.4 MEASUREMENT OF DEPLOYMENT EFFORT
As discussed before, migration effort in our case

translates into effort for installing the application on a
new cloud platform, i.e., into effort for deploying the
application. Hence, we need metrics that enable us to
measure installability or deployability. In (Lenhard,
Harrer, & Wirtz, 2013), we proposed and validated a
measurement framework for evaluating these
characteristics for service orchestrations and
orchestration engines, based on the ISO/IEC SQuaRE
quality model (ISO/IEC, 2011). Despite the difference
between service orchestrations and cloud applications,
this framework can be adapted for evaluating the
deployability of applications in PaaS environments by
modifying existing metrics and defining new ones. A
major benefit of the chosen code-based metrics is their
reproducibility and objectiveness. Currently, we do not
consider human factors, e.g., effort in terms of man
hours. Such aspects are hardly quantifiable without a
larger empirical study and influenced by a lot of other
factors, like for instance the expertise of the workers
involved. However, it is possible to introduce such
factors by adding weighting factors to the metrics
computation, as for instance done in (Sun & Li, 2013).

Figure 5. Deployment Metrics Framework

As cloud platforms are preconfigured and managed
environments, there is no need to consider the
installability of the environment itself, as in (Lenhard,
Harrer, & Wirtz, 2013). Instead, the focus lies on the
deployability of an application to a cloud platform.
Figure 5 outlines the adapted framework for
deployability. We capture this quality attribute with the
direct metrics average deployment time (ADT),

deployment reliability (DR), deployment flexibility (DF),
number of deployment steps (NDS), number of

deployment step parameters (NDSP), number of

configuration & code changes (NCC), and the number of

build steps (NBS). The last four metrics are aggregated to
an overall effort of deployment steps (EDS) and
deployment effort (DE). All metrics but ADT, DR, and DF
are classic size metrics in the sense of (Briand, Morasca,
& Basily, 1996). This means, they are non-negative,
additive, and have a null value. They are internal metrics
that can be computed by statically analyzing code
artifacts and are defined on a ratio scale. ADT and DR are
external metrics, since they are computed by observing
execution times and reliability. ADT is defined on a ratio
scale and DR is defined on the interval scale of [0,1]. The
following paragraphs briefly introduce the metrics.

Average deployment time (ADT). This metric
describes the average duration between the initiation of
a deployment by the client and its completion, making
the application ready to serve user requests. This can be
computed by timing the duration of the deployment on
the client side and repeating this process a suitable
number of times. Here, we use the median as measure of
central tendency.

Deployment reliability (DR). Deployment
reliability captures the reliability of an application
deployment to a particular vendor. It is computed by
repeating the deployment a suitable amount of times
and dividing the number of successful deployments of an
application �(��	

�) with the total number of attempted
deployments (��
���

�): ����� = ��	

� /��
���

� . ����� will
be equal to one, if all deployments succeed.

Deployment flexibility (DF). (Lenhard, Harrer, &
Wirtz, 2013) defines deployment flexibility as the
amount of alternative ways that exist to achieve the
deployment of an application. In our case, available
deployment techniques are, e.g., CLI-based deployment,
web-based deployment or IDE plug-ins. The more of
these options a platform supports, the more flexible it is.
As we are concentrating on deployment via command
line tools in this study, hereafter, we omit a more
detailed consideration of this metric.

Number of deployment steps (NDS). The effort of
deploying an application is related to the amount of
operations, or steps, that have to be performed for a
deployment. In our case, deployment is automated, so
this effort is encoded in the deployment scripts (see
Sect. 2.3). A deployment step refers to a number of
related programmatic operations, excluding comments
or logging. The larger the amount of such steps, the
higher is the effort. Usually, there are different ways to
deploy an application. Here, we tried to find the most
concise way in terms of step count, while favoring

Deployability

Deployment effort (DE)

Number of build steps (NBS)

Number of deployment steps (NDS)

Number of deployment step parameters (NDSP)

+

+

Effort of deployment steps (EDS)

Average deployment time (ADT)

Deployment reliability (DR)

Deployment flexibility (DF) Number of configuration & code changes (NCC)

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

command options over nonportable deployment
artifacts that may silently break the deployment on
different vendors. As an example, the value of ��� for
the deployment script in Listing 2 sums up to
����������� = 4.

1) Authentication: heroku login
2) Create application space: heroku create
3) Set environment variables: heroku config:set
4) Deploy code: git push heroku master

Number of deployment step parameters (NDSP).

The number of steps for a deployment are only one side
of the coin. Deployment steps often require user input
(variables in scripts) or custom parameter configuration
that need to be set, thereby causing effort. We consider
this effort with the metric deployment step parameters,
which counts all user input and command parameters
that are necessary for deployment. The deployment
script in Listing 2 uses six different variables and
requires no additional command line parameters,
resulting in ������������ = 6.

Effort of deployment steps (EDS). The two direct
metrics NDS and NDSP count the effort for achieving a
deployment. Since they are closely related, we aggregate
the two to the indirect metric EDS by summing them up.
Given an application �: ������ = ������ �������.
For our example, this amounts to ����������� = 10.

Number of configuration & code changes (NCC).

The deployment of an application to a particular vendor
may require the construction of different vendor-specific
configuration artifacts. This includes platform
configuration files and files that adjust the execution of
the application, e.g., a Procfile7. Again, the construction of
these files results in effort related to their size (Lenhard,
Harrer, & Wirtz, 2013). For all configuration files, every
nonempty and noncomment line is typically a key-value
pair with a configuration setting, such as an option name
and value, needed for deployment. We consider each
such line using a LOC function. Furthermore, it might be
necessary to modify source files to mitigate
incompatibilities between different platforms. This can
be due to unsupported dependencies that must be
adjusted, e.g., native libraries or middleware versions.
Any of those changes will be measured via a LOC
difference function. The sum of the size of all
configuration files and the amount of code changes
corresponds to the configuration & code changes metric.
For an application � that consists of the configuration
files !"#�$, … , !"#�&'()* and the code files

!"#�+, … , !"#�&'(,- , along with their platform-adjusted

versions !"#�+., … , !"#�&.

/0 , NCC can be computed as:

7 See https://devcenter.heroku.com/articles/procfile.

�11��� � 2 341�!"#�$� 2 341/$55�!"#�+, !"#�.+�
&'(,-

+67

&'()*

$67

Number of build steps (NBS). Another effort driver
in traditional application deployment is the number of
build steps, i.e., source compilation and the packaging of
artifacts into an archive (Lenhard, Harrer, & Wirtz,
2013). This is less of an issue for cloud platforms, where
most of this work can be bypassed with the help of
platform automation, e.g., buildpacks8. At best, a direct
deployment of the application artifacts is possible
(�8���� � 0), shifting the responsibility of package
construction to the platform. For some platforms it is
still necessary, which is why we capture it in the same
fashion as the number of deployment steps.

Deployment effort (DE). To provide a
comprehensive indicator for effort associated with
deployment, we provide an aggregated deployment
effort, computed as the sum of the previous metrics:
����� � ������ �1��� �8����. It is arguable to
weight the severity of different deployment efforts by
introducing a weighting factor in this equation. As we
cannot determine a reasonable factor without a larger
study, they are considered as coequal here.

 RESULTS 3
In this section, we first describe the execution of the

measurements, followed by a presentation, discussion,
and interpretation of the results in Section 3.2 and a
summary in Section 3.3.

3.1 EXECUTION OF MEASUREMENTS
As part of our migration experiment, we need to

compute values for the deployment metrics from the
preceding Section 2.4. The timing for the ADT of an
individual deployment run can be calculated by prefixing
the script invocation with the Unix time command9,
which returns the elapsed real time between the
invocation and termination of the command. One
distinct test is the execution of a sequence of an initial
deployment, followed by an application redeployment,
and concluded by the deletion of the application. Each
provider was evaluated via 100 runs of this test. Every
successful run was included in the ADT calculation and
the amount of successful and failed runs were used to
compute deployment reliability. Runs with deployment
failures that could not be attributed to the respective
platforms, e.g. temporary unavailability of external
resources, where excluded from the calculation.
EngineYard forms an exception in the measurement

8 See https://devcenter.heroku.com/articles/buildpacks.
9 See http://linux.die.net/man/1/time.

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

setting, with a total of 50 runs. The reason for this is that
the deployment could not be fully automated and each
run involved manual steps. The measurements were
conducted at varying times during workdays, to simulate
a normal deployment cycle inside a company. To
minimize effects of external load-induced influences (e.g.
RubyGems mirror) on the measurement, the
deployments were run in parallel. The significance of
potential problems can be further attenuated as we are
not primarily looking for exact times, but magnitudes
that can show differences between vendors. Such
differences will be separately identified with the help of
significance tests. All deployments were measured with
a single instance deployment at first, i.e., no scaling
included. The values for each metric were evaluated and
validated by an in-group peer review. The gathered
metrics can be seen in Tables 2 and 3.

Even though we could successfully migrate the
application to all but one vendor, a substantial amount of
work was required. Besides the captured effort values,
additional important obstacles are incomplete
documentation of the vendors and missing direct
instance access for debugging, especially with container-
based PaaS. Even with this common kind of application,
getting the application to run was difficult and
compromises with certain technology setups, e.g., web
servers, were needed. Whereas some of these problems
are to be expected and can only be prevented by unified
container environments, major parts of the interaction
with the system should be homogenized by, e.g., unified
management interfaces.

During the case study, a number of bugs had to be
fixed inside the cloud platforms. In total, we discovered
four confirmed bugs on different platforms that
prevented the application from running correctly. The
majority was related to the bootstrapping of the
platform environment, e.g., server startup and
environment variable scopes, and could be resolved by
the vendors in a timely manner. As a downside, one
vendor supported a successful deployment, but did not
allow us to run the application correctly, due to an
internal security convention that prevented the database
library from connecting to the database. These issues
show that even with common application setups, cloud
platforms cannot yet be considered fully mature.

3.2 EFFORT ANALYSIS
The following section describes the results of our

case study in detail. We discuss the metric values and
their implications and give insights into the problems
that did occur during the migrations.

Effort of deployment steps (EDS). As a first result, we
can state that although deployment steps are
semantically similar among vendors, they are all carried
out by proprietary CLI tools in no standardized way.
This results in recurring effort for learning to use new
tooling for every vendor and to adapt existing
automation. Figure 6 depicts the effort of deployment
steps of all vendors. On average, deployment takes 17
steps with a maximum spread of 14 and a standard
deviation of 5. Some vendors require more steps,
whereas others require less steps but more parameters.
Heroku, cloudControl, Pivotal, and Bluemix are driven by

 Heroku cloudControl OpenShift Pivotal Bluemix Elastic Beanstalk EngineYard

Effort of deployment steps (EDS) 10 15 24 17 17 12 23

Number of deployment steps (NDS) 4 5 6 6 6 2 8

Automated 4 5 6 6 6 2 4

Manual 0 0 0 0 0 0 4

Number of deployment step parameters (NDSP) 6 10 18 11 11 10 15

Number of configuration & code changes (NCC) 1 1 0 1 1 40 7

Deployment artifacts 1 1 0 1 1 40 7

Application code 0 0 0 0 0 0 0

Number of build steps (NBS) 3 3 3 0 0 3 4

Deployment reliability (DR) 0.96 0.72 0.78 1 0.89 0.99 1

Average deployment time (ADT) 9̃ 6.75 min 9.13 min 8.42 min 5.83 min 7.03 min 15.94 min 28.44 min

Deployment effort (DE) 14 19 27 18 18 55 34

Table 2. Deployment Efforts

 Heroku cloudControl OpenShift Pivotal Bluemix Elastic Beanstalk EngineYard

Effort of deployment steps (EDS) 1 2 1 2 2 1 2

Number of deployment steps (NDS) 1 1 1 1 1 1 1

Number of deployment step parameters (NDSP) 0 1 0 1 1 0 1

Deployment reliability (DR) 0.96 1 0.97 1 0.93 0.98 0.96

Average deployment time (ADT) 9̃ 6.69 min 5.71 min 7.41 min 5.73 min 6.61 min 8.71 min 8.25 min

Table 3. Redeployment Efforts

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

a similar concise deployment workflow. In contrast,
OpenShift requires a cumbersome configuration of the
initial code repository. Only the deployment for
EngineYard could not be automated entirely. The
creation of VM instances must be initiated via a web
interface, whereas the application deployment can be
triggered by the client tools. As instance setup is
normally performed once and not repetitively, this has
less negative influence in practice than other steps
would have. In the case of Elastic Beanstalk, the low EDS
value of 12 is contrasted by a large configuration file.
The majority of modern container-based PaaS reduce
effort with respect to the EDS through an intelligent
application type detection. In comparison, this must be
explicitly configured up-front with the VM-based
offerings. The EDS for a redeployment are roughly the
same between vendors and only involve pushing the
new code to the platform.

Figure 6. Effort of Deployment Steps

Number of configuration & code changes (NCC).

Particularly the container-based platforms can be used
with only few deployment artifacts (see Figure 7). Four
out of five vendors support a Procfile-based deployment
for specifying application startup commands (�11 = 1).
Whereas this compatibility helps to reproduce the
application and server startup between those vendors, it
is a major problem with the others. Especially custom
server configuration inside the Procfile, i.e., the Puma
web server, is a source of portability problems among
platforms. Two platforms only support a preconfigured
native system installation of Puma and one does not
support the web server in conjunction with the
necessary Ruby version at all. Moreover, the native
installations can lead to dependency conflicts, if the
provider uses another version than specified in the
application's dependencies, resulting in compulsory
code modifications. The only two vendors for which
more configuration is needed are both VM-based
offerings. In the case of EngineYard, the deployment
descriptor can be kept small in a minimal configuration.
Additionally, in contrast to other vendors, a custom

recipe repository must be cloned to use environment
variables and these variables have to be configured
inside a script file. The recipes can be uploaded and
applied to the server environment afterwards. Elastic
Beanstalk proved to be more problematic to achieve a
working platform configuration. We needed a rather
large configuration file that modifies required Linux
packages, platform configuration values, and
environment variables. Apart from that, we even had to
override a set of server-side scripts, to modify the
Bundler dependency scopes and enable dependency
caching.

Figure 7. Configuration and Code Changes

In general, we tried to avoid the use of configuration

files or proprietary manifests. If options were
mandatory to be configured for a vendor, where
possible, this was done using CLI commands and
parameters instead of proprietary manifests. In either
case, the value of EDS and the size of configuration files
is in a close relation with each other.

For the case study's application, we could achieve
portability without changing application code, solely by
adapting the runtime environment, i.e., deployment
configuration, application and server startup. This is the
effect of having a cloud-native application based on open
technologies. Furthermore, all vendors that did not
support required technologies were excluded in the
initial migration planning step. If the application made
use of proprietary APIs or unavailable services, this
would have caused a large amount of application
changes. Apart from that, further tests showed that
especially native Gems (code packages) cause portability
problems between PaaS offerings. These Gems may
depend on special system libraries that are not available
in every PaaS offering and cannot always be installed
afterwards. Buildpacks can help to prevent such
problems by unifying the environment bootstrapping,
making it easier to support special dependencies that
would otherwise be hard to maintain.

10

12

15

17 17

23
24

0

5

10

15

20

25

30

Heroku Beanstalk cloudControl Pivotal Bluemix EngineYard OpenShift

Steps Parameters

1 1 1 1
0

7

40

0

5

10

15

20

25

30

35

40

45

Heroku Pivotal Bluemix cloudControl OpenShift EngineYard Beanstalk

L
in

e
s

o
f

C
o

d
e

Container-based VM-based

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

Number of build steps (NBS). The NBS for deployment
is similar between vendors. As sole packaging
requirement, most vendors mandate that the source
code is organized in a Git repository, either locally or
remotely (�8� = {3,4}). This is often naturally the case
but must be counted as build effort.

Deployment reliability (DR). For some vendors, we
experienced rather frequent deployment failures,
resulting in lower DR values, especially during the initial
creation of applications. Often, these failures were
provoked by recurring problems, e.g., permission
problems with uploaded SSH keys or other platform
configuration problems. From the descriptive data in
Table 2, it seems that container-based systems
experience more frequent failures than VM-based
systems. To examine this assumption, we used a test to
check if the amount of deployment successes for
container-based systems is significantly lower10. Since
deployment success is coded in a binary fashion, i.e.,
either success or failure, it is possible to apply a binomial
test. We aggregated the amount of successes and failures
for all container- and VM-based systems, respectively.
Thereafter, we computed the binomial test, comparing
the amount of successful runs for container-based
systems (433) and the total amount of runs for
container-based systems (497) to the success
probability for VM-based systems (0.99). The null
hypothesis is that both system types have an equal
success probability. The alternative hypothesis is that
the success probability of container-based systems is
lower. In this case, the null hypothesis can be safely
rejected with a p-value of 2.2�@7A . As a result, it can be
said that VM-based systems are more reliable in intial
application deployment.

In the case of redeploying existing applications, on
average, we experienced less failures, resulting in higher
DR values. We used a binomial test in the same fashion
as in the previous paragraph to check if VM-based
systems are still more reliable. This time, there were 423
redeployment runs for container-based systems in total,
of which 411 were successful. At the same time the
success probability for VM-based systems is 0.96. The p-
value of 0.78 resulting from the binomial test does not
reach a significant level and we cannot diagnose
significant differences in the success probability for
container- and VM-based systems. Also the reverse test,
checking if the success probability of VM-based systems
is lower, did not reach a significant level.

To sum up this section, VM-based systems are
significantly more reliable on initial deployment than
container-based systems, but this difference vanishes
after the initial deployment phase. This can be explained

10 All statistical tests in this paper were executed using the R
software (R Core Team, 2015).

by the anomalies associated with the platform
configuration we mentioned at the beginning of this
section and shows room for improving the maturity of
the platforms.

Average deployment time (ADT). Figure 8 visualizes
the observed average deployment times. The mean of
the deployment time is 11.65 min, but it deviates by 7.52
min. Differences between container-based offerings are
small, only ranging within a deviation of 71 seconds.
Container-based deployments are on average almost 3
times faster than VM-based platforms. The authors
of (Mao & Humphrey, 2012) measured an average
startup time for Amazon's EC2 VM instances of 96.9
seconds. Tests with the case study's instance
configurations confirm this magnitude. This amount of
time is contrasted with a duration of only a few seconds
for creating a new container. Even when deducting this
overhead from the measurements, the creation of the
VM-based environments takes considerably longer than
the one of container-based PaaS environments. A
majority of the deployment time (≈ 46 %) is spent for
installing necessary application dependencies with
Bundler. Another considerably large part is the asset
precompilation11 of CSS files, JavaScript files, and static
assets (≈ 18 %). The remaining time (≈ 35 %) is
consumed by other tasks of the build process and the
platform configuration.

Figure 8. Average Deployment Times

As before, we used statistical tests to confirm if the
differences in deployment times between the two types
of environments are significant. To begin with, we used
the Shapiro-Wilk test (Shapiro & Wilk, 1965) to check if
deployment times follow a normal distribution. This can
be safely rejected for both, container-based and VM-
based environments. As a result, we applied a non-
parametric test, the Mann-Whitney U test (Mann &
Whitney, 1947) for comparing deployment times. Our
null hypothesis is that there are no significant

11 See http://guides.rubyonrails.org/asset_pipeline.html.

5.83
6.75 7.03

8.42
9.13

15.94

28.44

0

5

10

15

20

25

30

Pivotal Heroku Bluemix OpenShift cloudControl Beanstalk EngineYard

M
in

u
te

s

Container-based VM-based

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

differences in the deployment times of VM-based and
container-based environments. The alternative
hypothesis is that deployment times for VM-based
environments are greater. The p-value resulting from
the test (�BC: 150, �

F��$F0G: 497, J: 64513) is 2.2�@7A.
Thus, the null hypothesis can be clearly rejected.
Container-based environments deploy significantly
faster than VM-based environments.

Measured time values are also interesting for the
case of redeployment. To that end, we take a newer
version from a typical code sprint of Blinkist's release
cycle. Besides code changes, it includes new and updated
versions of dependencies as well as asset changes. In
general, the redeployment times are less than for the
initial deployment, which can be mainly attributed to
dependency caching. In total, the installation of updated
or new dependencies takes ≈ 50 % less time than on the
initial deployment. In our redeployment, there are more
assets to process, resulting in a slightly longer
precompilation time than for the initial deployment. For
redeployment, all timings of the vendors are in a close
range. Here, VM-based offerings catch up with container-
based PaaS due to the absence of environmental
changes. The average redeployment time for all offerings
is 7.02 min and only deviates by 65 seconds. Some
vendors still benefit from a better deployment
configuration, e.g., parallelized Bundler runs. Vendors
that were fast during the initial deployment confirm this
tendency in the redeployment measurements. Based on
these observations, it is interesting to check if there still
are significant differences between VM-based and
container-based environments when it comes to
redeployment. We used the Shapiro-Wilk and Mann-
Whitney U tests in the same fashion as above to confirm
this. As before, the distribution of redeployment times is
clearly non-normal. The resulting Mann-Whitney U test
(�BC: 146, �

F��$F0G : 423, J: 53089.5) again allows to
reject the null hypothesis with a p-value of 2.2�@7A in
favor of the alternative: Container-based environments
also redeploy significantly faster than VM-based
environments.

In a final step, we compared the deployment and
redeployment times of all pairs of vendors with each
other using the Mann-Whitney U test as above. The aim
of this comparison is to investigate if there is a
performance gain in choosing a particular vendor, or if it
is sufficient to decide between VM-based and container-
based vendors. Put differently, we checked if there are
significant differences among the container-based
vendors as well. We omit a detailed presentation of the
results here due to the amount of comparisons
necessary (each pair of vendors needs to be tested for
deployment and redeployment times, i.e., 42
combinations), but the results are unambiguous: There
are significant differences in the deployment times of all

vendors, except for one combination of two container-
based environments. Almost the same holds for
redeployment times, where significant differences can
be diagnosed for all but two pairs of container-based
environments. This observation also holds for our
control pair Bluemix and Pivotal which both use Cloud
Foundry as base platform. This indicates that platform
and infrastructure configuration can also make a
difference for customers even when just switching the
hosting provider of the same PaaS system. To sum up
this paragraph, even container-based environments
differ significantly in their deployment performance and,
thus, a performance gain can be obtained by using the
fastest vendor. Whereas this observation was only
validated for application deployment in this study, it can
be expected that this also holds for application response
times, which should be investigated separately.

Deployment effort (DE). The values for total
deployment effort are substantially different between
the platforms, with a maximum spread of 41 and a
standard deviation of 13. Most container-based
platforms are within a close range to each other, only
deviating by a value of 4, whereas VM-based platforms
generally require more effort. When comparing both
platform types, the additional effort for VM-based PaaS
buys a higher degree of flexibility with the platform
configuration if desired.

Figure 9. Overall Deployment Effort

3.3 SUMMARY
With the help of this study, we could answer both of

our initial research questions. To begin with, it is
possible to migrate a real-world application to the
majority, although not to all, of the vendors (RQ 1). Only
one vendor could not run our application due to a
security restriction caused by a software fault, which
cannot be seen as general restriction that prevents the
portability of the application. However, we could not
reproduce the exact application setup on all vendors. We
had to make trade-offs and changes to the technology
setup, especially the server startup. With the automation

14

18 18 19

27

34

55

0

10

20

30

40

50

60

Heroku Pivotal Bluemix cloudControl OpenShift EngineYard Beanstalk

Steps & Parameters (EDS) Code Changes (NCC) Build (NBS)

Container-based VM-based

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

of the migration, together with the presented toolkit and
deployment metrics, we could quantify the effort of the
migration (RQ 2). Our results show that there are
considerable differences between the vendors, especially
between VM-based and container-based offerings. Our
measurements provide insights into migration effort,
both quantifying the developer effort caused by
deployment steps and code changes, as well as effort
created by deployment and redeployment times of the
application.

 RELATED WORK 4
Jamshidi et al. (2013) identified that cloud migration

research is still in its early stages and further structured
work is required, especially on cloud migration
evaluation with real-world case studies. Whereas this
structured literature review focuses on legacy-to-cloud
migration, our own investigations reveal even more gaps
in the cloud-to-cloud migration field. Most of the existing
work is published on migrations between on-premises
solutions and the cloud, primarily IaaS. Few papers focus
on PaaS and even less on cloud-to-cloud migrations,
despite the fact that portability issues between clouds
are often addressed in literature (Hogan, Liu, Sokol, &
Tong, 2011; Petcu, Macariu, Panica, & Cracium, 2013; Di
Martino, 2014; Silva, Rose, & Calinescu, 2013; Badger,
Grance, Patt-Corner, & Voas, 2012). This study is a first
step towards filling the identified gaps.

In (Kolb & Wirtz, 2014), we already ported a small
application between five PaaS vendors in an
unstructured way and gathered first insights into
portability problems and migration efforts. These initial
results revealed that more research has to be carried out
in a larger context. Likewise, a large proportion of
existing cloud migration studies are confined to
feasibility and experience reports, e.g., (Chauhan &
Babar, 2011; Chauhan & Babar, 2012; Vu & Asal, 2012).
These studies typically describe a migration case study
including basic considerations of provider selection and
application requirements and afterwards present a
compilation of occurred problem points and necessary
implementation changes during the application
migration. Nevertheless, all of them omit a quantification
or a more detailed comparison of migration effort.

A large part of more structured research on cloud
migration prioritizes migration planning over the actual
migration execution and observation. These studies
focus on abstracting and supporting the migration
process with decision frameworks rather than
quantifying and examining actual migrations with
metrics. Pahl and Xiong (2013) introduce a generic PaaS
migration process for on-premises applications. Their
framework is mainly motivated by a view on different
organizational and technological changes between the
systems, but not focused on a detailed case study or

measurement. Others, like Hajjat et al. (2010) and
Bessera et al. (2012), focus on minimizing cost aspects in
their migration decision processes. A broader set of
target variables is presented by Menzel and Ranjan
(2012) who propose an approach for cloud migration
based on multi-criteria decision making, specifically for
use with web server migration.

In contrast to these abstract migration processes,
also several studies exist to assist automatic application
inspection and transformation for migration execution.
Sharma et al. (2013) utilize a set of repositories
containing patterns of technical capabilities and services
for on-premises applications and PaaS offerings. By
analyzing the source code as well as the configuration
files, they try to extract application requirements and
map them with the capabilities of target cloud platforms.
The approach results in a report that describes which
parts of the system can be migrated as-is, which parts
require changes, as well as a listing of those that cannot
be migrated due to the limitations of the target platform.
Beslic et al. (2013) discuss an approach for an
application migration among PaaS vendors related to
our study. Their scenario includes vendor discovery,
application transformation, and deployment. In this
regard, they propose to use pattern recognition via static
source code analysis and automatic transformations
between different vendor-specific APIs. Nonetheless,
besides outlining their migration processes, none of the
referenced papers quantify the effort of the described
translations.

When it comes to the measurement of the migration
effort, most existing research is focused on estimating
expected costs in an early phase of the development
cycle, whereas we are evaluating factual changes after
the implementation phase. Popular examples for generic
algorithmic model estimation approaches are
COCOMO (Boehm, et al., 2000) or Putnam (Putnam,
1978). However, such traditional algorithmic models
were developed in the context of software development
projects, not for on-premises or cloud migration (Sun &
Li, 2013). Based on the accepted estimation model
function points (Albrecht & Gaffney, 1983), Tran et
al. (2011) define a metric, called cloud migration point
(CMP), for effort estimation of cloud migrations. Another
study by Sun and Li (2013) estimates expected effort in
terms of man hours for an infrastructure-level
migration. Similar, Miranda et al. (2013) conduct a
cloud-to-cloud migration between two IaaS offerings
that uses software metrics to calculate the estimated
migration costs in man hours rather than making
migration efforts explicit. When unveiling occurred
effort, the focus is often on operational cost
comparisons (Khajeh-Hosseini, Greenwood, &
Sommerville, 2010; Khajeh-Hosseini, Sommerville,
Bogaerts, & Teregowda, 2011; Tak, Urgaonkar, &

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

Sivasubramaniam, 2011; Andrikopoulos, Song, &
Leymann, 2013), e.g., infrastructure costs, support, and
maintenance or migration effort in man hours (Tran,
Keung, Liu, & Fekete, 2011; Maenhaut, Moens, Ongenae,
& De Turck, 2015). Solely, Ward et al. (2010) mention
migration metrics related to the effort to create build
automation or the server provisioning time comparable
to our deployment metrics.

 LIMITATIONS AND FUTURE WORK 5
As common for a case study, several limitations exist,

which also provide potential areas of future work. First
of all, the presented study was conducted with a
particular Ruby on Rails application. In future work, we
want to investigate the generalizability of the
conclusions drawn, i.e., if they also apply for applications
built with other runtime languages. Initial experiments
back up the presented results and indicate that other
languages potentially require an even higher migration
effort. Due to their general applicability, our
methodology and provided tools can be used to obtain
results for other migration scenarios as well. Another
main topic for further research, indicated by this paper,
is the unification of management interfaces for
application deployment and management of cloud
platforms. Despite semantically equivalent workflows,
the current solutions are invariably proprietary at the
expense of recurring developer effort when moving
between vendors. To overcome this issue, we are
currently developing Nucleus12, a RESTful abstraction
layer and Ruby gem that unifies core management
functions of PaaS systems. It forms a next step in our
ongoing efforts towards a unified management interface
for Platform as a Service. As revealed by our study,
further work is needed regarding the unification of
runtime environments between cloud vendors and also
on-premises platforms for improved portability of
applications. Buildpacks are a promising step in that
direction. Another need for research is the performance
evaluation of cloud platforms. During our tests, we
observed performance differences between the vendors
that are hard to quantify from the viewpoint of a
customer at this time. However, this is vital for a well-
founded cost assessment and, hence, should be
investigated further.

 CONCLUSION 6
In this paper, we carried out and evaluated the

migration process for a real-world application among
seven cloud platforms. As a first step, we examined the
feasibility of the application migration by manually

12 See https://github.com/stefan-kolb/nucleus.

porting the application between the platforms. We were
able to move the application to a majority of vendors,
but were forced to make trade-offs and changes to the
technology setup. During this process, we discovered
existing problems regarding the unification of
management interfaces and platform environments. To
allow for a comparable measurement of the effort
involved in the migration process, we presented Yard, a
Docker-based deployment system that is able to deploy
source code to different platform vendors via isolated
containers. Yard also includes a small abstraction layer
for unified creation, deployment, and deletion of
applications throughout the vendors. With the help of
the tool, we evaluated the deployment effort in terms of
duration and amount of necessary steps. This includes a
comparison of deployment operations and artifacts
between the vendors, aggregated to different formal
effort metrics. The results show that there are major
differences between the vendors and the associated
effort of the migration. In general, VM-based platforms
require more effort than container-based platforms,
which is caused to some extent by the flexibility of the
environment configuration. As part of the study, we
identified problems that prevented the portability of the
application among vendors and gave suggestions how
they can be avoided or solved. The results show that
despite trying to design applications as vendor-neutral
as possible, the unification of runtime environments and
management interfaces between cloud vendors is an
important topic.

 ACKNOWLEDGMENT 7
We would like to thank the people at Blinks Labs

GmbH for their generosity by providing their assets for
carrying out this research. Special thanks go to Sebastian
Schleicher as primary contact for fruitful discussions and
assistance. We also appreciate the support given by the
selected vendors.

 REFERENCES 8
Albrecht, A., & Gaffney, J. E. (1983). Software Function,

Source Lines of Code, and Development Effort
Prediction: A Software Science Validation. IEEE

Transactions on Software Engineering, SE-9(6).

Andrikopoulos, V., Song, Z., & Leymann, F. (2013).
Supporting the Migration of Applications to the
Cloud through a Decision Support System. Proc.

6th Conf. Cloud Computing.

Badger, L., Grance, T., Patt-Corner, R., & Voas, J. (2012).
Cloud Computing Synopsis and
Recommendations. NIST Special Publication

800-146.

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

Beserra, P., Camara, A., Ximenes, R., Albuquerque, A., &
Mendonca, N. (2012). Cloudstep: A Step-by-Step
Decision Process to Support Legacy Application
Migration to the Cloud. Proc. 6th Workshop

Maintenance and Evolution of Service-Oriented

and Cloud-Based Systems.

Beslic, A., Bendraou, R., Sopena, J., & Rigolet, J.-Y. (2013).
Towards a solution avoiding Vendor Lock-in to
enable Migration Between Cloud Platforms.
Proc. 2nd Workshop Model-Driven Engineering

for High Performance and Cloud computing.

Biscotti, F., Natis, Y. V., Pezzini, M., Malinverno, P.,
Thompson, J., Cantara, M., & Murphy, J. (2014).
Market Trends: Platform as a Service, Worldwide,

2013-2018, 2Q14 Update. Tech. rep., Gartner.

Boehm, B. W., Clark, B. K., Horowitz, E., Brown, A. W.,
Reifer, D., Chulani, S., . . . Steece, B. (2000).
Software Cost Estimation with Cocomo II.
Prentice Hall.

Briand, L., Morasca, S., & Basily, V. (1996). Property-
based software engineering measurement. IEEE

Transactions on Software Engineering, 22(1).

Carvalho, L., Fleming, M., Hilwa, A., Mahowald, R. P., &
McGrath, B. (2014). Worldwide Competitive

Public Cloud Platform as a Service 2014-2018

Forecast and 2013 Vendor Shares. Tech. rep.,
IDC.

Chauhan, M. A., & Babar, M. A. (2011). Migrating Service-
Oriented System to Cloud Computing: An
Experience Report. Proc. 4th Conf. Cloud

Computing.

Chauhan, M. A., & Babar, M. A. (2012). Towards Process
Support for Migrating Applications to Cloud
Computing. Proc. Conf. Cloud and Service

Computing.

Di Martino, B. (2014). Applications Portability and
Services Interoperability among Multiple
Clouds. IEEE Cloud Computing, 1(1).

Hajjat, M., Sun, X., Sung, Y.-W. E., Maltz, D., & Rao, S.
(2010). Cloudward Bound: Planning for
Beneficial Migration of Enterprise Applications
to the Cloud. Computer Communication Review,

40(4).

Hogan, M., Liu, F., Sokol, A., & Tong, J. (2011). NIST Cloud
Computing Standards Roadmap. NIST Special

Publication 500-291.

ISO/IEC. (2011). Systems and software engineering -
System and software Quality Requirements and

Evaluation (SQuaRE) - System and software
quality models. (25010).

Jamshidi, P., Ahmad, A., & Pahl, C. (2013). Cloud
Migration Research: A Systematic Review. IEEE

Transactions on Cloud Computing, 1(2).

Khajeh-Hosseini, A., Greenwood, D., & Sommerville, I.
(2010). Cloud Migration: A Case Study of
Migrating an Enterprise IT System to IaaS. Proc.

3rd Conf. Cloud Computing.

Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., &
Teregowda, P. (2011). Decision Support Tools
for Cloud Migration in the Enterprise. Proc. 4th

Conf. Cloud Computing.

Kolb, S., & Wirtz, G. (2014). Towards Application
Portability in Platform as a Service. Proc. 8th

Symp. Service-Oriented System Engineering.

Kolb, S., Lenhard, J., & Wirtz, G. (2015). Application
Migration Effort in the Cloud - The Case of Cloud
Platforms. Proc. 8th Conf. Cloud Computing.

Lenhard, J., Harrer, S., & Wirtz, G. (2013). Measuring the
Installability of Service Orchestrations Using the
SQuaRE Method. Proc. 6th Conf. Service-Oriented

Computing and Applications.

Maenhaut, P.-J., Moens, H., Ongenae, V., & De Turck, F.
(2015). Migrating legacy software to the cloud:
approach and verification by means of two
medical software use cases. Software: Practice

and Experience.

Mann, H. B., & Whitney, D. R. (1947). On a Test of
Whether one of Two Random Variables is
Stochastically Larger than the Other. Annals of

Mathematical Statistics, 18(1), 50-60.

Mao, M., & Humphrey, M. (2012). A Performance Study
on the VM Startup Time in the Cloud. Proc. 5th

Conf. Cloud Computing.

Menzel, M., & Ranjan, R. (2012). CloudGenius: Decision
Support for Web Server Cloud Migration. Proc.

21st Conf. World Wide Web.

Miranda, J., Guillén, J., Murillo, J. M., & Canal, C. (2013).
Assisting Cloud Service Migration Using
Software Adaptation Techniques. Proc. 6th Conf.

Cloud Computing.

Pahl, C., & Xiong, H. (2013). Migration to PaaS Clouds -
Migration Process and Architectural Concerns.
Proc. 7th Symp. Maintenance and Evolution of

Service-Oriented and Cloud-Based Systems.

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 4, October-December 2015

Petcu, D. (2011). Portability and Interoperability
between Clouds: Challenges and Case Study. In
Towards a Service-Based Internet. Springer.

Petcu, D., & Vasilakos, A. (2014). Portability in Clouds:
Approaches and Research Opportunities.
Scalable Computing: Practice and Experience,

15(3).

Petcu, D., Macariu, G., Panica, S., & Cracium, C. (2013).
Portable Cloud applications - From theory to
practice. Future Generation Computer Systems,

29(6).

Putnam, L. (1978). A General Empirical Solution to the
Macro Software Sizing and Estimating Problem.
IEEE Transactions on Software Engineering, SE-

4(4).

R Core Team. (2015). R: A Language and Environment for

Statistical Computing. Vienna, Austria. Retrieved
from https://www.R-project.org

Shapiro, S., & Wilk, M. B. (1965). An analysis of variance
test for normality (complete samples).
Biometrika, 52(3-4).

Sharma, V. S., Sengupta, S., & Nagasamudram, S. (2013).
MAT: A Migration Assessment Toolkit for PaaS
Clouds. Proc. 6th Conf. Cloud Computing.

Silva, G. C., Rose, L. M., & Calinescu, R. (2013). A
Systematic Review of Cloud Lock-In Solutions.
Proc. Conf. Cloud Computing Technology and

Science.

Sun, K., & Li, Y. (2013). Effort Estimation in Cloud
Migration Process. Proc. 7th Symp. Service

Oriented System Engineering.

Tak, B. C., Urgaonkar, B., & Sivasubramaniam, A. (2011).
To Move or Not to Move: The Economics of
Cloud Computing. Proc. 3rd Conf. Hot Topics in

Cloud Computing.

Tran, V. T., Keung, J., Liu, A., & Fekete, A. (2011).
Application Migration to Cloud: A Taxonomy of
Critical Factors. Proc. 2nd Workshop Software

Engineering for Cloud Computing.

Tran, V. T., Lee, K., Fekete, A., Liu, A., & Keung, J. (2011).
Size Estimation of Cloud Migration Projects with
Cloud Migration Point (CMP). Proc. Symp.

Empirical Software Engineering and

Measurement.

Vu, Q. H., & Asal, R. (2012). Legacy Application Migration
to the Cloud: Practicability and Methodology.
Proc. 8th World Congress Services.

Ward, C., Aravamudan, N., Bhattacharya, K., Cheng, K.,
Filepp, R., Kearney, R., . . . Young, C. (2010).
Workload Migration into Clouds Challenges,
Experiences, Opportunities. Proc. 3rd Conf. Cloud

Computing.

Authors

Stefan Kolb, M.Sc., is a PhD student at
the Distributed Systems Group of the
University of Bamberg. In his research,
he focuses on Cloud Computing,
especially on application migration in
Platform-as-a-Service environments. He
is the author of http://www.paasify.it

and several other open source tools that help in cloud
application migration.

Jörg Lenhard, M.Sc., is a PhD student at
the Distributed Systems Group of the
University of Bamberg. His research
interests include portability assessment
of service-oriented software, process
engine benchmarking, software metrics
definition and evaluation, and the

quality comparison of open source and proprietary
software. He is a regular contributor to several open
source projects.

Prof. Dr. Guido Wirtz is a full professor
of computer science, heads the
Distributed Systems Group of the
University of Bamberg and is Vice
President of Technology and Innovation
of the University of Bamberg. He
received his PhD from the University of

Bonn and his habilitation from the University of Siegen.
His research interests are in the field of software
development for complex, esp. distributed, systems on
all levels. This includes design methods, visual languages
and tools for distributed systems development as well as
middleware, SOA and cloud computing. Current interests
are on the seamless transition from business processes
to their implementation in a SOA and cloud context as
well as in correctness, conformance, compatibility and
portability issues of process languages like BPMN.

