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Microbial biofilms are surface attached colonies of microbes surrounded by self-produced 

extracellular matrix. These biofilm cause chronic infections which results in increased 

cost of treatment and prolonged hospitalization time. Biofilm architecture provides 

bacteria with enhanced antibiotic resistance, thus raising the need to search for alternative 

therapies that can inhibit the bacterial colonization. Nanotechnology based approaches are 

being employed for development of nanoparticles and nanocomposites which may be 

used to circumvent biofilm associated infections. The aim of our study was to synthesize 

and characterize different nanomaterials and to investigate their applicability in reduction 

of bacterial biofilms.  

We initiated this study with the formation of graphene/zinc oxide nanocomposite 

(GZNC). The synthesized GZNC was characterized by UV-visible absorption 

spectroscopy, X- ray diffraction analysis (XRD), Fourier transform infrared spectroscopy 

(FTIR), Thermo gravimetric analysis (TGA) and Transmission electron microscopy 

(TEM). The results revealed the formation of well dispersed zinc oxide nanoparticle onto 

the surface of graphene oxide nanosheets. Further, the prospective of GZNC against the 

cariogenic properties of Streptococcus mutans like adherence, exopolysaccharide 

formation, acid production, acid tolerance and obstinate biofilm formation was explored. 

The anti-biofilm behaviour of artificial acrylic tooth surfaces coated with GZNC was also 

examined. Acrylic teeth are good choice for implants as they are of low cost, have low 

density and can resist fracture. Microscopic studies and anti-biofilm assays illustrated a 

significant reduction in biofilm in the presence GZNC. It was also found to be nontoxic 

against HEK-293 (human embryonic kidney cell line). The results indicate the potential 

of GZNC as an effective coating agent for dental implants by efficiently inhibiting S. 

mutans biofilm. 

In second study, sub inhibitory concentrations of calcium fluoride nanoparticles (CaF2-

NPs) were assessed for their effect on biofilm forming ability of S. mutans in vivo and in 

vitro models. CaF2-NPs were characterized using various techniques (TEM, XRD, FTIR 

and UV-visible spectroscopy). The in vitro studies revealed 89% and 90% reduction in 

biofilm formation and EPS production respectively. Moreover, acid production and acid 

tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-

NPs. Confocal laser microscopy and transmission electron microscopy images were in 
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accordance with other results indicating inhibition of biofilm without affecting bacterial 

viability. The qRT-PCR gene expression analysis showed significant down regulation of 

various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. 

Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat 

groups as compared to untreated in in vivo studies. Scanning electron micrographs of rat’s 

teeth further validated our results. These findings suggest that CaF2-NPs can be used as 

an antibiofilm agent against S. mutans and may be applied as a topical agent to reduce 

dental caries. 

In our third study, we have reported a non-toxic and eco-friendly route for synthesis of 

graphene oxide-silver nanocomposite (GO-Ag) using a floral extract of Lagerstroemia 

speciosa (L.) Pers. plant. Nanocomposite was characterized using TEM, UV-visible 

spectroscopy, XRD and EDX (Energy-dispersive X-ray spectroscopy). Sub inhibitory 

concentrations of green synthesized GO-Ag reduced the biofilm formation in both gram-

negative (Enterobacter cloacae) and gram-positive (Streptococcus mutans) bacterial 

models. Growth curve assay, membrane integrity assay, scanning electron microscopy 

(SEM) and confocal scanning laser microscopy (CSLM) revealed different mechanisms 

of biofilm inhibition in E. cloacae and S. mutans.  Biofilm inhibition in E. cloacae was 

due loss of viability of planktonic cells while in S. mutans there was no loss of viability. 

Moreover, quantitative RT-PCR (qRT-PCR) showed significant down regulation of vicR, 

spaP and comDE genes which play crucial role in S. mutans biofilm formation, 

suggesting GO-Ag is acting on its biofilm formation cascade. Antibiofilm concentrations 

GO-Ag was also found to be non-toxic against HEK-293. The whole study highlights the 

therapeutic potential of GO-Ag to restrain the onset of biofilm formation of both gram-

negative and gram-positive bacteria although its mode of action is species specific. 
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1.1 Biofilms 

Conventionally bacteria were regarded as unicellular organisms growing in homogeneous 

planktonic free floating populations. But in their natural environment, bacteria can live in 

sessile surface adhered communities called biofilm [Costerton et al. 1999; Vlamakis et al. 

2013]. Biofilm is a structured association of bacteria embedded in the pool of self- 

produced polymeric matrix consisting of protein, polysaccharide and DNA [Høiby et al. 

2010]. Biofilms are formed to capitalize on energy, spatial arrangement, communication 

and  to maintain the community of microorganisms. Bacteria living within the biofilms 

are protected and hence this architecture prove to be superior over planktonic bacteria. 

Biofilms are enclosed in a slimy extracellular matrix which guard them from the 

surrounding environment as well as from attack of antibiotics and other chemotherapeutic 

agents (Figure 1.1). 

 

Figure 1.1 General architecture of mature biofilm. 

(Source:https://www.biofilm.montana.edu/files/CBE/images/BiofilmWbWithLabels.previ

ew.jpg) 

Biofilms are omnipresent; they develop on almost  all surfaces immersed in natural 

aqueous environments. A chief benefit of living in biofilm community is the shield that 

biofilm offers to the colonizing species from competing microbes, environmental factors 

and toxic substances like fatal chemicals or antibiotics. Furthermore, the void and water 

channels formed in biofilm help in the uptake and processing of nutrients, elimination of 
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metabolic by-products, resembling primitive circulatory system [Lang et al. 2008]. A 

noteworthy attribute of bacteria living in biofilm community is cell density mediated gene 

expression or quorum sensing [Rutherford & Bassler 2012]. The quorum sensing is 

triggering of intracellular response due to accumulation of signalling compounds which 

regulate the expression of specific genes, thus  providing biofilms distinct properties for 

their unhindered survival [Solano et al. 2014].  

1.2 Stages of biofilm formation 

The formation of biofilms involves a coordinated and sequential series of events. There 

are three main steps of biofim development. First initial contact to substratum is 

established followed by irreversible attachment. After attachment phase biofilm start to 

mature and finally disperse its cell in the environment which again initiate the biofilm of 

new surface (Figure 1.2).  

1.2.1 Initial contact and irreversible attachment 

The first step in biofilm formation is the introduction of bacteria to the surface; this 

process is driven by a balance of attractive and repulsive forces between the bacteria and 

the surface. These interactions are influenced by surrounding hydrodynamic forces 

[Beloin et al. 2008; Habimana et al. 2014]. These forces vary according to the changes in 

nutrient levels, pH, ionic force of medium and temperature [Pavlovsky et al. 2015]. 

Motile bacteria make use of flagella for initial attachment as flagella movement helps 

them to overcome hydrodynamic and repulsive forces. Pseudomonas aeruginosa and 

Vibrio cholera are some of the pathogens in which function of flagellar motility in 

primary attachment has been well documented [Toutain et al. 2007]. Initial attachment is 

reversible and dynamic during which bacteria can again rejoin the planktonic population 

depending on the hydrodynamic forces and nutrient availability [Characklis et al. 2012].  

Irreversible attachment is influenced by the presence of surface adhesions like capsular 

polysaccharide/adhesion (PS/A) [Veerachamy et al. 2014] and fimbrial adhesins [Beloin 

et al. 2008]. Also, other surface and extracellular proteins are involved in this process 

[Foster et al. 2014]. 
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Figure 1.2 Stages of biofilm formation. (Source: http://entkent.com/images/biofilm1.jpg) 

1.2.2 Maturation 

In maturation phase, attached bacteria undergo a series of changes that are due to the 

change in gene expression and are marked by the formation of three dimensional biofilm 

structures. During this stage bacterium continues to multiply and start producing 

extracellular polysaccharides [Kostakioti et al. 2013]. The bacterial adhesion and biofilm 

architecture in this phase is influenced by bacterium–bacterium interactions (quorum 

sensing) and extracellular matrix components. In addition to EPS, several studies have 

revealed that DNA is critical for stabilization of biofilms [Whitchurch et al. 2002]. 

1.2.3 Extracellular polymeric substances (EPS) 

The bacterial biofilm is held together and secure by a matrix of 

secreted polymeric compounds called extracellular polymeric substances or 

exopolysaccharide [Lembre et al. 2012]. Most of the exopolysaccharides present in 

biofilm matrix are of very long chains (MW. 500-2000 kDa). They may be composed of 

the same units (homo-polymers) or different units (heteropolymeric). Homo-polymeric 

EPS includes dextran, cellulose, curdlan and examples of hetero-polymeric EPS are 

alginate, xanthan [Wingender et al. 2012]. Exopolysaccharide can be of branched chain 

or linear. The main constituents of these chains are monosaccharides but there may be 

substituents other than carbohydrates such as pyruvate, acetate, phosphate, and succinate 

[Andersson 2009]. A large amount of the EPS is more or less intensely hydrated. The 
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microcolonies in biofilms are separated by interstitial voids and channels containing 

mainly water. This liquid phase form the viscous part of the biofilm [Flemming & 

Wingender 2010]. Hence, the EPS provides the biofilm with mechanical stability and also 

influence the structure of the biofilm. 

1.2.4 Quorum sensing 

There are frequent changes in cell population density in different stages of biofilm 

formation and these changes leads to variations in gene expressions [Rutherford 2012]. 

These changes in gene expression are coordinated by bacterial communication by 

utilizing quorum sensing (QS) systems [Solano et al. 2014]. Quorum sensing (QS) is a 

bacterial cell–cell communication process that involves the production, detection, and 

response to extracellular signaling molecules called autoinducers (AIs) [Novick & 

Geisinger 2008]. The increase in bacterial population density to threshold level leads to 

the accumulation of AIs in the environment and these signals are monitored by bacteria to 

collectively alter gene expression. Gram-negative bacteria generally use acylhomoserine 

lactones (AHLs) for communication, which are small autoinducer molecules [Wei et al. 

2011]. While gram-positive bacteria use autoinducing peptides (AIPs) as signalling 

molecules. Swarming mortality, rhamnolipids, and siderophores are some quorum sensing 

regulated processes in P. aeruginosa which contribute in its biofilm formation [Rahman 

et al. 2010]. Biofilm formation in V. cholera is also controlled by the quorum sensing 

system along with other factors [Zhao et al. 2013]. 

1.2.5 Dispersal 

Dispersal of biofilm is optional and depends on requirement according to environmental 

changes. Although, passive dispersal can occur due to shear stresses. Bacteria have 

developed ways to judge the environmental changes and decide whether it is still 

beneficial to reside within the biofilm or it is time to resume a planktonic lifestyle. 

Environmental changes which can induce dispersal of biofilm include oxygen fluctuation, 

alterations in nutrient availability, increase of toxic products, or other stress-inducing 

conditions [Hong et al. 2010; Rowe et al. 2010]. Studies in P. aeruginosa have shown 

that EPS-degrading enzymes like alginate lyase contribute to detachment of bacteria from 

the matrix and the dispersal of biofilm [Yang et al. 2012]. Cell death may also serve as an 

additional factor for dispersal mechanism as it creates voids in biofilm and free some 
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bacteria which have the capacity to initiate the biofilm formation in presence of suitable 

environment.  

1.3 Biofilm associated infectious disease 

Bacterial biofilms are the cause of chronic infections as the cells in biofilms becomes 10-

100 times more resistant to the effect of antimicrobial agents [Mah 2012]. The tolerance 

of biofilms to antibiotic is of major clinical relevance and studies are rapidly shedding 

light on bio-molecular pathways leading to sessile growth as well as on the mechanisms 

of biofilm resistance to antibiotics [Høiby et al. 2011; Nguyen et al. 2011]. Biofilms can 

grow on many medical implants such as sutures, contact lenses, catheters and cause 

infections, which can only be treated by removal of the implant. Thus, not only increasing 

the cost of treatment, but also becomes traumatic for patients having implants [Costerton 

et al. 2005]. Some of the major biofilm associated infections are listed in Table 1.1.  

Table 1.1 Biofilm associsted infection and diseases and their adherent surfaces 

Bacterial species Surface Infection/Diseases References 

Streptococcus sp. 
Tooth surface 

Vascular grafts 

Dental caries 

Endocarditis 

Necrotizing fasciitis 

Eshed et al. 2012; 

Selwitz et al. 2007 

Pseudomonas 

aeruginosa 

Contact lenses 

Lungs 

Middle Ear 

Central venous 

catheters 

Prostheses 

Cystic fibrosis 

Otitis media 

Nosocomial infection 

Huse et al. 2013; 

Wiley et al. 2012 

Staphylococcus sp. 

Middle ear 

Sutures 

Central venous 

catheters 

Bones 

Prosthetic heart 

valves 

Prostheses 

Surfaces/deep skin 

Arteriovenous 

shunts 

Otitis media 

Mucoloskeletal 

infections 

Nosocomial infections 

Chronic wounds 

Endocarditis 

Arciola et al. 2012 

Enterococcus 

faecalis 

 

Heart valves 

Urinary catheter 

 

Endocarditis Minardi et al. 2012 



                                                                                                   Chapter 1 

 
 

6 
 

Table 1.1 cont…. 

Mycobacterium 

tuberclosis 
Lungs Cystic fibrosis Qvist et al. 2014 

Burkholderia 

cepacia 

 

Lungs Cystic Fibrosis Zlosnik et al. 2012 

Escherichia coli 

Urinary catheter 

Urinary tract 

Middle ear 

Prostheses 

Bacterial prostatitis 

Urinary tract infection 

Otitis media 

Plotkin et al. 2014; 

Jackson et al. 2002 

Enterococcus 

faecalis 

 

Heart valves 

Urinary catheter 

 

Endocarditis Minardi et al. 2012 

Haemophilus 

influnzae 

Middle ear 

 
Otitis media Takei  et al. 2013 

                                                                     (Adapted from de la Fuente-Núñez et al. 2013) 

1.4 Gram-positive bacterial biofilms and clinical relevance 

Many chronic infections are related to biofilms of gram-positive bacteria. Gram-positive 

biofilm forming bacteria include microbe like Staphylococcus aureus, Streptococcus 

mutans, Enterococcus faecalis. The infections caused by these microbial biofilm are very 

difficult to treat by current antibiotic therapies. 

1.4.1 Streptococcus mutans 

Streptococcus mutans is a gram-positive anaerobic bacterium that inhabits mouth and can 

survive in temperature range of 18-40˚C. It is long chained coccobacillus with oval shape. 

Streptococcus mutans is one of the most persistently perceived microorganisms on the 

tooth surface and is a crucial etiological agent of human dental caries [Hasan et al. 2012]. 

It has various unique virulence factors which helps in the development of caries. It 

adheres to the dental surface by virtue of exopolysaccharide production (EPS). 

Furthermore, it can produce acid and can survive in acidic condition which makes S. 

mutans dominant bacterium in low pH conditions. In the presence of sucrose it forms a 

biofilm which is very difficult to eradicate and cause dental caries. 
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1.4.1.1 Virulence factors of S. mutans  

(A) Adherence 

The attachment of  S. mutans to the tooth surface occur via two modes sucrose dependent 

and sucrose independent. The initiation of adherence to the enamel pellicle is  sucrose 

independent while establishment and the colonization of S. mutans biofilm on dental 

enamel is mediated by sucrose dependent means.  

a) Sucrose-independent adherence  

Sucrose independent adherence of S. mutans is mainly influenced by surface protein Spa 

P, which is a protein of Antigen I/II family with molecular weight of 185 kDa. It has been 

assigned with various names like P1, Sr, Pac and antigen B [Hasan et al. 2014]. Its 

interaction with salivary components is known to eventualize by its alanine-rich and 

proline-rich domains [Sullan et al. 2015]. Heim et al. demonstrated that mutant lacking N 

and C termini of S. mutans P1 (antigen I/II) have lower binding abilities as compared to 

wild type  [Heim et al. 2013]. Thus, SpaP plays an important role in sucrose independent 

adherence. Process of initial adherence of S. mutans to pellicle surface is summarized in 

Figure 1.3. 

 

Figure 1.3  Process of initial adherence of S. mutans to the tooth pellicle surface: SpaP or 

Antigen I/II interact with the pellicle glycoprotein. 

(Source:http://www.nature.com/nri/journal/v6/n7/images/nri1857-f1.jpg, modified) 
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(b) Sucrose-dependent adherence 

Glucan synthesis by action of glucosyltransferases (GTFs) is the main mechanism behind 

sucrose-dependent adherence. Enzymatic activity of GTFs can cleave the sucrose into 

glucose and fructose  [Bowen et al.  2011]. The glucose is then utilized to form glucans 

(Figure 1.4). Three types of GTFs are identified in S. mutans encoded as GTF B, GTF C 

and GTF D. They collectively synthesize water soluble and water insoluble glucans. α-

1,3-linked glucan are synthesized by GTF B while GTF D produces α -1,6-linked glucan 

and GTF C synthesizes both the types of glucans. Hydrogen bonding of glucan to salivary 

pellicle and bacteria facilitate the process of adherence [Sharma et al. 2014]. Along with 

GTFs other non-enzymatic glucan binding proteins (GBPs) are also reported to be playing 

role in sucose-dependent adherence.  

 

Figure 1.4 Sucrose-dependent adherence of S. mutans: Formation of water soluble and 

water insoluble glucans. 

(Source:http://www.nature.com/nri/journal/v6/n7/images/nri1857-f1.jpg, modified) 

(B) Carbohydrate metabolism 

The metabolism of carbohydrates is  considered as major virulance facter of S. mutans. 

Along with GTFs other facters which help in metabolism of sucrose and glucans include 

fructosyltransferase (Ftf), an extracellular dextranase (DexA), a fructanase (FruA),  and 

proteins responsible for intracellular polysaccharide accumulation (Dlt1-4). 

Fructosyltransferase or Ftf catalyzes the synthesis of fructans and acts as an energy 

reservoir. Fructanase or FruA may break down fructans for energy use [Smith et al. 
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2012]. Extracellular dextranase or DexA possibly help in the glucan synthesis or may be 

in the breakdown of glucans [Kim et al. 2011] and Dlt1-4 helps in accumulation of 

intracellular polysaccharide and aids in energy reserve [Mazda et al. 2012]. 

(C) Acidogenecity and Acid tolerance 

S. mutans is an anaerobic bacteria and can produce acid by fermentation of glucose . The 

major product of its glycolytic pathway is lactic acid. The rate of acid production by S. 

mutans is mostly higher than other Streptococci [de Soet et al. 2000]. Figure 1.5 

reperesents the process of acid production and formation of dental cavities by S. mutans. 

 

Figure 1.5 Process of acid production by S. mutans leading to development of carious 

lesion on the tooth surface. 

(Source:http://www.nature.com/nri/journal/v6/n7/images/nri1857-f1.jpg, modified) 

By virtue of this property, S. mutans creates a change in ecology in the plaque flora which 

further increase the proportion of other acidogenic species and eventually considerably 

decrease the pH of the region, which results in demineralization of tooth and formation of 

dental cavities. Sustained pH value below 5 favors demineralization of tooth. Along with 

the property of acid production another factor unique to S. mutans is acid tolerance. It 

sustains its glycolytic strength at even very low pH levels (close to pH 4.4), that 

distinguishes S. mutans from other Streptococci [ Li et al. 2014]. There are evidences that 

acid-tolerance is enhanced by the synthesis of water-insoluble glucans and biofilm 
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formation. S. mutans cells within a biofilm have better capability to survive an acid 

challenge than  their planktonic counterpart [McNeill et al. 2003]. 

(D) Quorum sensing (QS) 

The quorum sensing is initiation of intercellular response due to accumulation of 

signalling compounds which regulate the expression of specific genes, thus  providing 

biofilms distinct properties for their unhindered survival [Solano et al. 2005]. The QS 

system contributes in the regulation of many physiological activities related to biofilm 

differentiation and stress management in S. mutans. There are two main QS system in S. 

mutans that coordinate to deal with the stresses and biofilm formation. The first one is 

competence regulon, that require signalling molecule (low molecular weight peptide) 

which is sensed by two component regulatory systems. Li et al. reported that inactivation 

of comD and comE  imparted acid sensitive phenotype to S. mutans and resulted in the  

reduced biofilm formation [Li et al. 2001; Li et al. 2002]. Another QS is widely 

distributed luxS system, which produces AI-2, a furanosyl borate diester [Goldstone et al. 

2012] that regulates a large panel of genes in a variety of microorganisms.  

1.4.1.2 Biofilm of S. mutans and dental caries.   

These virulance factors and stress responses aids in biofilm development and stress 

tolerance in S. mutans. These factors also facilitate S. mutans in  cariogenesis resulting in 

dental caries. Figure 1.6 shows the process of caries initiation and demineralization of 

tooth surface. Dental caries is also termed as tooth decay, is an infection of bacterial 

origin. The caries develope due to demineralization of dental enamel by acids produced 

by fermentation of sugars and other starchy material accumulated on tooth suface by 

microbes [Marsh 2010]. Process of tooth decay begins by formation of thin layer of  

bacterial biofilm on tooth surface called plaque which further produce acid by 

fermentation of sugars. These acids demineralise the upper layer of enamel, the 

progression of cavity occur by spread of the infection through the enamel and subsequent 

formation of caves in the tooth surface. If left untreated it may decay further and enter 

dentin followed by dentinal tubule until they reach pulp. After reaching pulp it can spread 

and form an apical abscess which can be extremely painful [Hasan et al. 2012; Filoche et 

al. 2010]. 
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Figure 1.6 Demineralization and initiation of carious lesions by bacterial biofilm. 

(Source:http://intranet.tdmu.edu.ua/data/kafedra/internal/chemistry/classes_stud/en/stoma

t/ptn/2/13.%20Biochemistry%20of%20connective%20tissue.files/image034.jpg) 

1.4.1.3 S. mutans and infective endocarditis: risk of mortality 

Infectious endocarditis is an infection of the cardiac tissue that initiate when several 

species of microorganisms attach to cardiac tissue. Endocarditis may cause morbidity and 

mortality [Hasan et al. 2012]. Certain oral streptococci have been proven to stimulate 

platelet aggregation, a trait that is thought to be important in the pathogenesis of 

streptococcal mediated infective endocarditis [Jung et al. 2012]. Development of the 

infective vegetation causes local myocardial abscess that inhibits the valvular function, 

and ultimately results in congestive heart failure [Biswas et al. 2010]. 
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1.4.2 Staphylococcus aureus 

Staphylococcus aureus is a gram-positive bacterial species which lives in human anterior 

nares as commensal [Ellis et al. 2014]. Due to its presence in nasal region there are 

increased risk of its dissemination to other areas and formation of biofilms which are 

major cause of nosocomial and other chronic infections [Wunderink et al. 2012]. S. 

aureus have abilities to produce multilayered biofilms enclosed within slimy glycocalyx 

with heterogeneous protein expression throughout. It has been reported that main 

components of its glycocalyx are techoic acid, staphylococcal and host proteins and 

polysaccharide intercellular antigen (PIA). Infections caused by S. aureus biofilm 

accounts for 25% of all mortalities in US [Archer et al. 2011]. Its biofilms are 

unmanageable by antimicrobial treatment and the host response, as a result are the 

etiological agent of many persistent infections. Diseases associated with S. aureus biofilm 

includes  

(A) Osteomyelitis 

S. aureus has been found to be one of the culprit behind osteomyelitis along with other 

bacteria. When bacteria invade the host it starts producing adhesins (e.g., fibrinogen, 

fibronectin, osteopontin, elastin, collagen etc.) in its planktonic mode and on adherence to 

localized area of trauma in  bone it start dividing to form early biofilm. Further, with the 

help of quorum sensing it forms mature biofilm [Hwang et al. 2015]. Figure 1.7 

summerizes the process of biofilm formation by S. aureus and its maturation and 

dispersal. 

(B) Implant based infections 

Orthopedic implants are prone to S. aureus biofilm infection. These include wires, 

screws, prosthetic joints, plates, external fixaters and mini large fragment implants. Apart 

from this other medical device on which its biofilm grows are ventilators, catheters, 

mechanical heart valve, pacemaker, penile implants and many more [Costerton et al. 

2005]. Its biofilm grows on the implant, producing an enormous amount of 

exopolysaccharide and can only be treated by removal of the implant. 
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(C) Chronic wound infection 

S. aureus is most commonly isolated bacteria from the chronic wound infection like, 

venous stasis ulcers, diabetic foot ulcers and pressure sores. Studies involving diabetic 

foot wound patients found that, the presence of S. aureus biofilm increase the healing 

time 2 fold [Bowling et al. 2009]. Likewise, it has been reported that re-epithelialization 

is delayed in presence of S. aureus biofilm and thus increasing the healing time [Schierle 

et al. 2009].  

 

Figure 1.7 (a) S. aureus invades the epithelial layer by damaged region (b) Binds to host 

matrix (c) Initial attachment produces an early S. aureus biofilm and avoids 

immunological destruction (d) The large biofilm aggregates detach releasing  planktonic 

bacterial cells which migrate into the circulatory system and adhere to  to distal tissues 

forming biofilm again. (Source: Archer et al. 2011; modified image) 

(D) Ocular infection 

Keratitis, conjunctivitis and endopthalmitis are some of the ocular infections associated 

with S. aureus biofilm [Murugan et al. 2010]. Methicillin resistant S. aureus cultures have 
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been commonly isolated from patients suffering from severe ocular infections. Moreover, 

S. aureus bacterial biofilm is the second most frequent reasons of post-operative 

endopthalmitis [Leid et al. 2002]. 

1.4.3 Enterococci spp. 

Enterococci are documented as opportunistic pathogens with their natural niche being 

normal intestinal flora, oral cavity and female genital tract. Enterococcus faecalis and 

Enterococcus faecium are most frequently detected enterococcal species. They are 

associated with prevalent hospital-acquired diseases that infect bloodstream, urinary tract, 

pelvic region and surgical sites [Paganelli et al. 2012].  Enterococcus faecalis accounts 

for 80-90% of human enterococcal infection [Jones et al. 2004]. Both these bacteria have 

been found to form biofilm on response to environmental and genetic factors. Its biofilm 

can adhere to various medical devices (silicone gastrostomy devices, biliary stents, 

intravenous catheters) and are cause of infection and implant removal. E. faecalis have 

been reported to form biofilm on ocular lense materials like silicon, acrylic and 

polymetmethacrylate [Miller et al. 2011].  

1.5 Gram-negative bacterial biofilms and clinical relevance 

The most common gram-negative biofilm forming bacteria are Pseudomonas 

aeruginosa, Escherichia coli  and Enterobacter cloaceae. They are generally found 

associated with device related infections like catheters and urinary tract infections. The 

fundamental steps of biofilm formations are similar to gram-positive bacteria i.e. 

adhesion, exopolysaccharide formation, maturation and dispersal.  

1.5.1 Pseudomonas aeruginosa 

Pseudomonas aeruginosa is opportunistic gram-negative bacterium and is common casue 

of nosocomial infections. It is most studied single-species biofilm forming microbe 

[O’Toole et al. 2000]. It predominantly lives in biofilm form and is responsible for many 

acute and chronic infections [Høiby et al. 2010]. The bioflm lifestyle is triggerred by 

presence of adhering surface and environmental stresses. The hardness of biofilm and 

antibiotic resistance make the clearance of these biofilm difficult, thus, becoming a 

prevalent problem in hospital settings [Peleg & Hooper 2010]. Infections caused by 

Pseudomonas aeruginosa include : 
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(A) Cystic Fibrosis 

Cystic fibrosis (CF) is autosomal recessive disorder and is caused by mutation in cystic 

fibrosis trans-membrane conductance regulator (CFTR). CF patients are prone to P. 

aeruginosa biofilm related respiratory tract infection [Rudkjøbing et al. 2012]. Figure 1.8 

gives a overview of P. aeruginosa biofilm development in cystic fibroses patients. 

 

Figure 1.8 (a) P. aeruginosa products cause neutrophil death (b) Proteases are released 

that may cause inflammation and tissue damage (c) They also cleave CXCR1 from the 

surface of any viable neutrophils (d) This cleavage reduces neutrophil induced killing and 

final dysregulation of  chronic inflammatory response in which the bacterium is able to 

persist (Source:http://www.nature.com/nm/journal/v13/n12/images/nm1207-1417-F1.jpg) 

P. aeruginosa initially colonize in paranasal sinuses and substequently infect the lower 

respiratory tract [Burns et al. 2001]. The presence of P. aeruginosa in lungs of CF 

patients initiate inflammatory response mainly polymorphonuclear leukocytes (PMNs). 

The released PMNs produce huge quantities of enzymes and free radicals, which results 

http://www.nature.com/nm/journal/v13/n12/images/nm1207-1417-F1.jpg
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in degradation of the matrix and elastic tissues of bronchi and bronchioles [Jensen et al. 

2007]. P. aeruginosa produce compounds which can lyse PMNs thus this property make 

bacteria resistant to attack of PMNs. During its activity in bronchiole PMNs release DNA 

in airway, which is used by bacteria as a component of biofilm matrix. This process 

increases the biofilm along with that, the reduction of the mucociliary clearance, elevate 

the microbial densities (~ 1011/ml of sputum) [Høiby et al. 2001]. This further leads to 

chronic bronchitis, mucopurulent plugging of bronchiole, fibrosis and eventually 

respiratory failure [Hassett et al. 2010]. 

(B) Chronic otitis media (COM) 

Otitis media is infection of the middle ear and is most prevalent childhood infection 

worldwide. In some cases this infection results in conductive hearing loss [Rovers et al. 

2004]. Acute otitis media is caused by several microbial species like Moraxella 

catrrhallis, Heamophilus influenza but chronic otitis media (COM) is predominantly 

caused by P. aeruginosa biofilm [Verhoeff et al. 2006].  

1.5.2 Escherichia coli  

Escherichia coli is a gram-negative, facultative anaerobe, it is ubiquitous microbe 

generally found in the lower intestine of warm blooded animal. E. coli has been used as a 

model organism for in-vitro investigation of biofilm on abiotic surfaces [Van Houdt et al. 

2005]. K-12 strain of E. coli possesses many cell surface components that assist in 

biofilm formation and adherence. These cell surface components include  flagella, colanic 

acid, outer membrane proteins, poly (β-1,6-GlcNAc) and type I fimbriae [Reisner et al. 

2003]. E. coli is associated with diarrheal diseases and various extraintestinal infections, 

which comes under many categories of  biofilm-associated infections [O'Toole et al. 

2000]. It is a frequent cause of recurrent urinary tract infections (RUTIs) [Ejrnæs 2011]. 

Figure 1.9 represents the process of invasion and spread of E. coli biofilm in urinary 

bladder cells, leading to recurrent urinary tract infection. Along with UTI its biofilm has 

been found associated with acute otitis media and surgical device related infections [Fux 

et al. 2005]. Antibiotic resistance in E. coli along with biofilm formation makes treatment 

of associated infection very difficult.  
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Figure 1.9 E. coli  invade the that line the bladder lumen, where they multiply to form a 

biofilm-like intracellular bacterial community (IBC), they thrive there for months and 

form complex biofilm, they spread in  nearby tissues by dispersal of biofilm. 

(Source:http://www.nature.com/nrmicro/journal/v6/n1/images/nrmicro1818-f1.jpg) 

1.5.3 Enterobacter spp. 

Enterobacter is a genus of family Enterobacteriaceae. They are gram-negative, facultative 

anaerobic bacteria. Sewage, soil and human gastrointestinal tract are their natural 

ecological niche. The group Enterobacter cloacae complex (ECC) has six species, 

namely, E. cloacae, E. asburiae , E. kobei, E. hormaechei, E. ludwiggii and E. 

nimipressuralis [Ahmed & Ceroni 2013] . They are associated with nosocomial infections 

and are chief cause of pneumonia, post surgical peritonitis and urinary tract infections. 

All these bacteria have the ability to produce biofilm and have antibiotic resistance [Kim 

et al. 2012]. Among the ECC group bacteria, E. cloacae is most commonly found from 

neonatal units of hospitals. E. cloacae is associated with contamination of various 

medical devices and its nosocomial outbreaks have been connected to its biofilm 

formation on surgical devices [Dalben et al. 2008]. One of the prominent reservoir of 

Enterobacter cloacae is a heparin solution used to irrigate certain intravascular devices 
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continually. This fluid had been indicted as a reservoir for device-associated infections 

[Musil et al. 2010]. 

1.6 Antibiotic resistance in biofilm  

The complexity and heterogeneous nature of biofilm suggest that there are likely to be 

numerous mechanisms of antibiotic resistance at work within a single community (Figure 

1.10). These mechanisms differ according to the bacteria forming the biofilm and the type 

of antibiotic. These mechanisms include diffusion barrier, slow growth rate, activation of 

stress response, heterogeneity, presence of ‘persisters’ and origin of biofilm specific 

phenotype. 

 

Figure 1.10 Mechanisms of antibiotic resistance in biofilm. 

(Source:http://aem.asm.org/content/72/3/2005/F1.large.jpg) 

1.6.1 Inefficacy of antibiotics to penetrate biofim 

Impenetrability of microbial biofilm during antimicrobial treatment is suggested the 

prime cause to sustenance of microbial infection. This retardation or imperviousness 

assumed to be caused by biofilm matrix. The matrix of biofilm is composed of 

exopolysaccharides called glycocalyx and it is reckoned to be preventing the approach of 

antibiotics to the bacterial cells embedded in biofilm [de la Fuente-Núñez et al. 2013]. 

This limited penetration may be either due to the reaction of antimicrobial agent to 

biofilm matrix component or adsorption of these compound to the matrix. In their study 
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Tseng et al. reported that rate of transport of tobramycin reduced in biofilm colonized 

surface as compared to sterile surface and they suggested that this hinderance is due to 

binding of tobramycin to the biofilm components [Tseng et al. 2013]. 

1.6.2 Slow growth and stress reponse  

The cells in deep layers of  mature biofilm  experience nutrients limitation and this 

nutrient starvation leads to slow growth rates. This  starvation induced stationary phase is 

generally connected with the resistance to antibiotics [Nguyen et al. 2011]. Studies have 

reported that growth rates of bacterial cells directly affect the sensitivity of antibiotics, 

with an increase in growth rates, sensitivity of antibiotics also increases [Lebeaux et al. 

2014; Olsen et al. 2015]. Slow growth rate transforms planktonic bacteria to less 

susceptible phenotype which account for biofilm resistance to antibiotics. Furthermore, 

metabolic inactivity force bacteria to actively adapt to stress. In presence of 

environmental stresses bacteria can turn on stress-response genes. Bacteria under stress 

condition encode various sigma factors like RpoS. These genes protect bacteria from 

killing by environmrntal toxins, antibiotics and  other adverse conditions. RpoS mRNA 

has been reported to be present in sputum of cystic fibrosis patient having chronic biofilm 

of P. aeruginosa [Wei & Ma 2013].  

1.6.3 Heterogeneity  

The bacterial cells within the biofilm experience a nutrient gradient due to which cells in 

each layer of biofilm have different physiology. The generation of secondary metabolites, 

waste products and signalling factors forms a chemical gradient which results in 

stratification in biofilm. Chemical gradients may  interact and overlap forming numerous 

microenvironments inside the biofilms. Due to this heterogeneity cells respond and adapt 

to their local environmental condition. Furthermore, mutations, recombination and other 

genetic alterations that produce sub populations which are different in phenotype and 

genotype [Xiao et al. 2012; Williamson et al. 2012]. Thus, the antibiotic susceptibility 

greatly differ, depending on the microenvironment of cell in biofilm. Gu et al. reported 

that biofilm cells show structural heterogeneity and the shape vary according to the 

location of cells in biofilm [Gu et al. 2013]. Figure 1.11 shows the different hypothesis 

proposed for antibiotic resistance in biofilm including heterogeneity. 
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Figure 1.11 Hypothesis for antibiotic resistance in biofilm. 

(Source:https://www.biofilm.montana.edu/files/CBE/images/CBE03_MultiDefens.preview.jpg) 

1.6.4 Persisters cells 

Bacterial cell microcolony which become tolerant to antibiotics behave like highly 

resistant cells in free floating cultures and these bacterial cells were termed as “persisters” 

[Lewis 2010]. Persisters population occupies <0.1% of total infectious bacterial 

population. The concept of persisters is based on the hypothesis that antibiotics cause 

damage that initiate programmed cell death in bacteria, but some subpopulation of 

bacteria come in non growing state and inhibit the programmed cell death thus, surviving 

in the presence of antibiotics. These cells display dormancy like situation and remain 

dormant at adverse environment conditions. Consequently, these cells maintain the 

contingency plans during adverse condition, and maintain the cells survival and their 

morphological stability. Hence, persisters increased the anti-biofilm compound tolerance 

level. It was reported that E. coli, S. aureus and P. aeruginosa in stationary phase have 

more persisters as compared with log phase bacterial cells [Percival et al. 2011]. Several 

studies have addressed the presence of persisters among bacterial population [Amato & 

Brynildsen 2014; La Fleur et al. 2006]. On the molecular level, it was suggested that the 

over expression of dormancy genes results the survival of persisters [Wu et al. 2012].  
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1.7 Nanoparticle based therapies 

Nanotechnology has emerged as a new frontier for development of novel therapeutic 

approaches. It is a multidisciplinary field which uses the principals of chemistry, biology 

and  physics to intend and form nanoscale devices [Farokhzad & Langer 2009]. In its 

rigid definition nanotechnology entails the synthesis and manipulation of structures in the 

size range of 1-100 nm in at least one dimension [McNeil 2011; Ochekpe 2009]. The 

particles in this size range have a unique capabilities based on their physicochemical 

properties, which are very different from particles of macroscopic, microscopic or atomic 

size. These physicochemical properties of nanoparticle influence their interaction when 

they come into contact with biological system. Furthermore, many biological phenomena 

such as immune recognition and passage across biological barrier are governed by size 

consideration [Parboosing et al. 2012; Armstead & Li 2011]. Conventionally used 

therapeutic treatments have limited cellular penetration and poor retention. At present 

there is need for the advanced treatment method. Drugs designed on nanoscale may 

confer all these pharmacological advantages as compared to conventional agent. The 

amalgamation of knowledge of nanoparticle with resent understanding of molecular and 

cellular function may let to the development of novel and superior ‘nanodrugs’. 

1.7.1  Nanoparticles to combat antimicrobial resistance 

Nanoparticles based therapeutics have potentials to replace antibiotics. They have 

properties to combat multidrug resistance and biofilm based resistance where, antibiotic 

treatments are unsuccessful [Pelgrift & Friedman 2013; Huang et al. 2010]. In present 

scenario, several nanoparticles are being used as antimicrobials like organic 

nanoparticles, metal nanoparticles, metal oxide nanoparticle and their various 

combinations. The antibacterial mode of action of these nanoparticle varies greatly 

(Figure 1.11)  [Baek & An 2011]. Factors which determine the mode of action of 

nanoparticles include diverse intrinsic and chemical properties, physicochemical 

properties of nanoparticles (shape, size, chemical modification), genetics, cell wall 

structure, metabolic pathways of target bacteria, physiological state of bacteria 

(planktonic cells, biofilm cells, stationary or starved cells), the ratio between bacteria and 

nanoparticle is critical for its toxicity and environmental factors like aeration, pH and 

temperature. 
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Figure 1.12 Antibacterial mechanism of nanoparticles. (Source: Hajipour et al. 2012, 

modified image) 

The factors affecting the antibacterial mode of activity of nanoparticles are complex, thus 

there are many contradictory reports about the suggested mode of action of nanoparticles 

[Hajipour et al. 2012]. Broadly, there are two major antibacterial pathways suggested for 

antibacterial activity of nanoparticles, which include  

1.7.1.1 Disruption of membrane integrity 

Nanoparticle can damage the bacterial membrane by binding with it electrostatically, this 

may lead to changes in membrane potential, depolarization of membrane and overall loss 

of membrane integrity. This may further result in impaired respiration, unbalanced 

translocation of materials, loss of energy transduction and finally cell death [Beyth et al. 

2015]. 

1.7.1.2 Reactive oxygen species formation (ROS) 

Various reports revealed that certain nanomaterials have property to exhibit spontaneous 

ROS production while other nanoparticles generate  ROS only in the presence of selected 

cell systems. This is based on material composition and surface features of nanoparticles 

[Xia et al. 2006]. Reactive oxygen species (ROS) production is one of the primary 
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mechanisms by virtue of which nanoparticle affects the bacterial cell functioning 

[Premanathan et al. 2011]. When the ROS production by nanoparticles exceeds the 

capacity of the cellular antioxidant defense system, it can cause oxidative stress which 

can further initiate lipid peroxidation, thus damaging the cell membranes and eventually 

leading to cell death [Lovrić et al. 2005]. 

1.7.2 Broad categories of antimicrobial nanoparticles 

Based on their composition there are mainly two types of nanoparticles used in 

antibacterial therapies organic and inorganic nanoparticles. 

1.7.2.1 Organic nanoparticles  

These nanoparticles are generally polymeric and lipid based (Figure 1.21) and show their 

antibacterial effect by release of entrapped or attached antibiotic, antibacterial peptides 

and other agents which can affect the bacterial viability [Beyth et al. 2015]. 

 

 

Figure1.13 Types of organic nanoparticles 
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Another way is by contact killing of bacteria due to cationic surfaces of nanoparticle like 

chitosan, quaternary ammonium compounds and many more. Various mechanisms have 

been proposed for antibacterial action of cationic groups present on nanoparticle surface. 

Which primarily include bursting and penetration of bacterial membrane by hydrophobic 

chains via ion exchange between bacterial membrane and charged surface [Licher & 

Rubner 2009].  

(A) Chitosan nanoparticles 

Chitosan is derivative of chitin, which is a long polymeric chain of N-acetyl-glucosamine 

residues. Deacetylation of chitin at random monomer residue results in formation of 

chitosan. The protonation of deacetylated amino groups of chitosan at pH lower than 6.5, 

provides it  a positive charge [Friedman 2013]. Persuing this positive charge chitosan has 

property to associate with negative charge surface of bacteria causing osmotic damage by 

increased permeability of bacterial membrane [Huang et al. 2011]. Chitosan can also bind 

to DNA and inhibit transcription and translation, it can chelate the metal ions and reduce 

the activity of metalloproteins [Huh & Kwon 2011]. The formulation of chitosan into 

nanoparticles increases its antibacterial activity. As compared to chitosan its nanoparticles 

have been reported to be having a good solubility in vivo, furthermore, high surface to 

volume ratio of nanoparticles increases the density of positive charge on its surface, hence 

elevating the frequency of microbial attachment to its surface [Blecher et al.  2011]. 

Chitosan nanoparticles have been reported to possess greater efficacy against S. aureus 

and E. coli  compared to chitosan alone [Freidman 2013]. Nanoparticles having high 

molecular weight chitosan have greater antibacterial activity against gram-positive 

bacteria while low molecular weight chitosan nanoparticles have higher antibacterial 

efficacy against gram-negative bacteria [Huh & Kwon 2011]. It has been suggested that 

chitosan nanoparticle might be more effective against gram-negative bacteria as it can 

displace calcium and magnesium ions which can destabilize the lipopolysaccharide 

membrane of gram-negative bacteria, thus increasing its permeability [Pelgrift & 

Friedman 2013] . 
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(B) Quaternary ammonium compounds (QACs) 

The disinfectant properties of QACs are well known [Buffet-Bataillon et al. 2012]. The 

antibacterial properties of these compounds are due to the presence of n-acetyl side chain. 

The length of its side chain determine the antibacterial activity, chain length having 12-14 

alkyls is sufficient to kill gram-positive bacteria while for gram-negative bacteria 

optimum length required is 14-16 carbon [Thorsteinsson et al. 2003]. They denature 

structural enzymes and protein by interacting with the bacterial membrane and integrating 

its hydrophobic tail in the bacterial hydrophobic membrane core. Beyth et al. have 

reported the antibacterial activity of dental composite containing quaternary ammonium 

polyethylenimine nanoparticles against dental pathogen S. mutans. The mechanical 

properties of these composite were comparible to the original composite and they showed 

remarkable and sustained antibacterial activity [Beyth et al. 2006]. 

(C) Liposomes 

Liposomes are molecule of ampiphilic lipids that assemble to form bilayered spherical 

vesicles. The common building blocks of liposome are phosphatidyl ethanolamine and 

phosphatidylcholine. Liposomal membrane may frequently incorporate cholesterol, which 

improves their stability and rigidity [Couvreur & Vauthier 2006]. The liposomal 

formulation is able to change surface charge properties by changes in pH of the solution. 

The charge switch at acidic pH results in  its fusion with the cell membrane during 

endocytosis uptake, allowing the escape of the nanocarriers into the cytoplasm to deliver 

the therapeutic load. Because of their distinctive structure, liposomes can be used to load 

hydrophilic drugs in their aqueous core and hydrophobic drugs in their lipid bilayered 

membrane simultaneously [Castor 2005]. By virtue of this property liposome may be 

used as a platform for combination drug delivery. Ampicillin loaded liposome have been 

acquainted to be more effective as compared to the free antibiotic in combating infection 

of Salmonella typhimurium and Listeria monocytogenes [Blecher et al. 2011]. Liposomal 

formulations having encapsulated penicillin were found to inhibit the growth of  various 

bacteria resistance strains (Bacillus licheniformis, Escherichia coli, Staphylococcus 

aureus) [Pinto-Alphandary et al. 2000]. Furthermore, piperacillin loaded liposomes have 

been shown to inhibit the antibiotic from hydrolysis by β-lactamases [Alipour & Suntres 

2014]. 
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(D) Polymeric nanoparticle  

Polymeric nanoparticles can be used to entrap drugs for antimicrobial treatments [Beyth 

et al. 2015]. These nanoparticles are composed of biocompatible and biodegradable 

materials like poly (lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) and 

several natural polymers [Kumari et al. 2010]. These nanoparticle possess all the 

properties which are necessary for an ideal drug delivery system like a sustained drug 

release, enhance stability, better stability, higher loading capacity, manageable 

physicochemical properties. These nanoparticles are also made of amphiphilic diblock 

copolymers that self assemble into nanoparticles in aqueous solutions [Kenawy et al. 

2007]. Mohammadi et al. prepared azithromycin encapsulated  PLGA nanoparticle by 

nanoprecipitation technique and the formulation was more effective aginst S. typhi as 

compared to free azithromycin [Mohammadi et al. 2010]. Cinnamaldehyde and eugenol 

loaded PLGA nanoparticles have been reported to show better antimicrobial activity 

against both gram-positive and gram-negative bacteria [Gomes et al. 2011]. There are 

various literature on increased efficiency of nanoparticle entrapped drugs as compared to 

free formulation [Soppimath et al. 2001]. 

Temperature instability is the major problem of organic nanomaterial. This instability 

leads to several difficulties in preparation of these nanoparticle furthermore, there ability 

to withstand harsh conditions is also less. Inorganic nanoparticle is comparatively more 

stable at higher temperature. Consequently, inorganic nanoparticles are more frequently 

used  as antimicrobials. 

1.7.2.2 Inorganic nano-materials 

There are several literatures on use of metal and metal oxides as antibacterial material [Li 

et al. 2008; Hajipour et al. 2010; Beyth et al. 2015] . There are various metal nanoparticle 

containing several metal elements like silver (Ag), copper (Cu), Zinc (Zn), Titanium (Ti), 

Magnesium (Mg) and Gold (Au). The mechanisms behind their antimicrobial activity 

highly depend on the type of metal ion present. They mainly kill or inhibit the growth of 

microbes by production of reactive oxygen species (ROS) and by membrane disruption 

[Pelgrift & Freidman 2013]. Some of the metal and metal oxide nanoparticles possessing 

antibacterial activity are discussed below 
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(A) Silver nanoparticles (Ag-NPs) 

Silver and its formulations have been identified to be having medical relevance from 

ancient times. They are being used in disinfectants, water purifiers and wound healing 

ointments from several decades [Silvestry-Rodriguez et al. 2007]. Nowadays its 

nanoparticles (Ag-NPs) are gaining much attention as they have broad spectrum 

antimicrobial activity and they do not promote drug resistance [Lara et al. 2010]. Several 

studies have suggested the antibacterial effect of Ag-NPs is due to release of silver ions 

(Ag+) from its surface [Hajipour et al. 2010; Beyth et al. 2015]. These Ag+ ions may 

interact with thiol groups of cell wall of bacteria and create holes in the membrane 

facilitating flow of cytoplasmic material out of the cell. This may cause cell death.  

 

Figure 1.14 Proposed antibacterial mechanisms of silver nanoparticles. 

(Source:http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.Ima

geService.svc/ImageService/Articleimage/2014/CC/c4cc03001j/c4cc03001j-f1_hi-res.gif) 

Moreover, these Ag+ ions may interact with DNA, inhibiting DNA replication and cell 

division [Knetsch & Koole 2011]. The antibacterial activity of silver nanoparticle is 
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dependent on its shape and size. It has been reported that silver nanoparticles having size 

< 10 nm show greater bactericidal activity as compared to bigger nanoparticles [Pal et al. 

2007]. Furthermore, the shapes of nanoparticle which may increase their surface area 

provide them with more antibacterial potency. Greater surface area results in higher 

release of metal ion and thus higher antibacterial activity. Ag-NPs have been shown to 

kill gram-negative bacteria by pit formation in there cell wall suggesting membrane 

disruption while the same is not true in gram-positive bacteria [Sondi & Salopek-Sondi 

2004]. ROS production has been proposed as another mechanism which impart 

antibacterial property to Ag-NPs [Carlson et al. 2008]. Although, Ag-NPs show 

remarkable antibacterial properties against wide range of microbes but the exact 

mechanism is not fully understood. There are lots of controversies and debate on the 

mode of action of these nanoparticles but they are perhaps the most promising 

antibacterial metal nanoparticles. Different mechanisms of antibacterial action of silver 

nanoparticles are summarized in Figure 1.14. 

(B) Zinc oxide nanoparticles 

Zinc oxide is used as food additive and has been approved by Food and Drug 

Administration as GRAS (Generally recognized as safe) [Espitia et al. 2012]. Zinc oxide 

in its nanoparticle form is believed to be antibacterial and relatively non toxic, safe and 

biocompatible as compared to other metal nanoparticles [Raghupati et al. 2011]. Zinc 

oxide nanoparticles are being widely used as drug carriers, preservatives, in cosmetics 

and filling in medical materials [Applerot et al. 2012]. Zinc oxide nanoparticles have 

been reported to inhibit the growth of methicilline resistant strains of S. aureus (MRSA) 

and S. epidermidis (MRSE) [Ansari et al. 2012]. There are numerous literature on 

antibacterial activity of these nanoparticle which include there effect on broad range of 

bacteria such as Escherichia coli, Streptococus mutans, Listeria monocytogenes, 

Staphylococcus aureus, Klebsiella pneumonia [Jin et al. 2009, Kasraei et al. 2014, Liu et 

al. 2009]. It has been proposed that in its aqueous suspension ZnO-NPs generate 

extensive amount of reactive oxygen species (ROS) which contribute to its antibacterial 

potential. Among all the ROS hydrogen peroxide (H2O2) interaction with bacterial 

membrane have been suggested as a dominant antibacterial mechanism of ZnO-NPs 

(Figure 1.15). Like other nanoparticle they also release a Zn2+ metal ion which helps in its 

antibacterial mode of action [ Shi et al. 2014]. 
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Figure 1.15 ROS mediated antibacterial activity of Zinc oxide nanoparticles. 

(Source:http://www.nanowerk.com/spotlight/id36012.jpg) 

(C) Copper oxide nanoparticles 

Copper oxide nanoparticles (CuO-NPs) show antibacterial activity against different 

microbes, but their antibacterial potency is much lower than silver and zinc oxide 

nanoparticles [Ren et al. 2009]. Thus, they are antibacterial at higher concentrations. Cu 

ions interact with the amine and carboxylic groups of bacterial membrane and disrupt it. 

Hence, bacteria which posses higher density of these groups on their surface (B. subtilis) 

are more prone to CuO-NPs attack [Ruparelia et al. 2008]. Therefore, in some bacteria, 

use of CuO-NPs is much beneficial than other nanoparticles. 

(D) Magnesium containing nanoparticles 

Magnesium has been utilized in formation of different nanoformulations which show 

antibacterial activity. Magnesium oxide nanoparticles are easy to synthesize and show 

antibacterial activity against both gram-negative and gram-positive bacteria, spores and 

viruses [Blecher et al. 2011]. Its mechanism is also dependent on ROS production like 

other nanoparticles. Magnesium fluoride nanoparticle have been reported to inhibit the 

biofilm formation in E. coli , S. aureus and S. mutans [Lellouche et al. 2009; Eshed et al. 

2013]. 

(E) Titanium dioxide-containing nanoparticles 

Titanium dioxide (TiO2) have been long reported as antibacterial material. In its 

nanoform it show antibacterial activity which enhances in the presence of visible and UV 

light. When exposed to light they show photocatalytic activity thus facilitating the 
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formation of enormous amount of ROS which damage the bacterial membrane and DNA 

of bacterial cell. Visible and UV light assisted photocatalytic activity of TiO2 

nanoparticles have been reported to kill various gram-negative and gram-positive bacteria 

[Liou & Chang 2012].  

(F) Gold containing nanoparticles 

Gold containing nanoparticles  lack antibacterial activity but they can be used as carriers 

of antibacterial drugs and peptides. Brown et al. have reported that gold nanoparticle 

functionalized ampicilline have potential of destroying many drug resistance bacterial 

strains such as Pseudomonas aeruginosa, Enterobacter aerogegenes and MRSA [Brown 

et al. 2012]. Gold nanoparticles have been suggested to enhance the photodynamic 

therapy based killing of microbes by ROS production [Khan et al. 2012]. 

(G) Graphene oxide (GO) 

Graphene oxide (GO) is one atom thick sp2 hybridized carbon atom layer bearing 

numerous  oxygen containing groups on its surface and edges. Its edges have carboxylic 

groups while there are epoxy and phenol hydroxide groups on its basal plane [Paredes et 

al. 2008]. GO is getting much attention as a nanomaterial and as a precursor of many 

graphene related materials [Novoselov & Geim 2007]. A number of reports have shown 

the antibacterial activity of graphene oxide, but its antibacterial potential is much less 

than other nanomaterial [Akhavan & Ghaderi 2010; Hu et al. 2010]. The lateral 

dimensions of graphene oxide has been found to affect its antibacterial ability [Liu et al. 

2012]. In other report  Liu et al. have suggested a three step antibacterial mechanism of 

Graphene oxide, which mainly relates to close contact of bacteria with GO surface, 

membrane puncture and oxidative stress [Liu et al. 2011]. These nanosheets possess 

many reducible groups which can be functionalized with any antimicrobial material 

[Ocsoy et al. 2013]. GO is being extensively used as supporting material for other 

nanoparticles as it provide a better platform for interaction of bacteria with the attached 

nanoparticles [Ma et al. 2011; de Fariaa et al. 2014; Tang et al. 2013; Xu et al. 2011]. It 

has been reported to have good biocompatibility to human noral cell at very high 

concentrations [Chang et al. 2011] thus making it a suitable material for fabrication of 

effiecient antibacterial composite. 
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1.7.3 Nanoparticle in prevention of biofilm formation  

Biofilms creates an environment that enhances microbial resistance. In addition to their 

direct bactericidal activity nanoparticle are known to inhibit the biofilms formation.  

Nanoparticle can be exploited to eliminate preformed biofilms [Iannitelli et al. 2011] or it 

can be exploited to restrict biofilm formation [Beyth et al. 2015].  

 

Figure 1.16 Biofilm cascade inhibition provide opportunitie for preparing more effective 

therapeutics. (Source:http://www.4inno.com/wp-content/uploads/2014/01/diagram.png) 

Figure 1.16 represent the possible targets in biofilm casade for designing more effective 

therapeutic stratagies. There are several independent studies going on the use of 

nanoparticle to  eliminate the preformend biofilms. Zerovalent bismuth nanoparticles has 

been shown to completely inhibit the biofilm of S. mutans [Hernandez-Delgadillo et al. 

2012]. The novel class of ultrathin (~1-2 nm) silver ring coated super paramagnetic iron 

oxide nanoparticles (SPIONs) with ligand gap exhibit antimicrobial characteristics 

against bacteria by maintaining remarkable compatibility with the cells  moreover 

SPIONS with double ligand gaps have been developed with that could be potentially used 

as multimodal antibacterial agents. Due to their magnetic core both nanoparticle are able 

to penetrate in bacterial biofilms when external magnetic field applied, SPIONs have 

shown high therapeutic index against Staphylococcus aureus and Staphylococcus 

epidermidis  infections [Mahmoudi & Serpooshan 2012].  Nanoparticles may also be used 

to enhance the photodynamic therapy which is a novel therapeutic approach to inhibit 

biofilms. Gold nanoparticle have been used to enhance the methylene blue induced 

photodynamic therapy to inhibit Candida albicans biofilm and it has been confirmed that 

gold nanoparticle-methylene blue conjugate work by Type I photo toxicity which 

hydroxyl free radical [Khan et al. 2012]. Another study revealed that there is significantly 
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higher inhibition of microbial biofilms by chitosan nanoparticle loaded erythrosine 

induced photodynamic treatment than erythrosine in free form [Chen et al. 2012].  

The more efficient way to deal with biofilm related infection is the prevention of biofilm 

formation at an early step of its development. Nanoparticles may be utilized to for 

functionalizing the surfaces of medical appliances by coating and impregnation. In an 

investigation the magnesium  fluoride nanoparticle coated catheters effectively restricted 

biofilms formation in both growth media and biologically relevant fluids [Lellouche et al. 

2012; Eshed et al. 2013]. ZnO nanoparticle-coated surfaces have been found to inhibit 

bacterial biofilm formation and increase antibiotic susceptibility [Applerot et al. 2012] 

Although there are several studies on the inhibition of bacterial biofilm with the help of 

nanoparticle but the exact mechanism and mode of inhibition of biofilm has not yet been 

identified. There is need for new nanoparticles based approaches which may be designed 

to inhibit the adherence and biofilm formation cascade of bacterial species. 
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1.8 Aims and Objectives of the study 

In the consideration of  present background, we initiated our study with the following 

objectives 

 To synthesize graphene /zinc oxide nanocomposite (GZNC) and to evaluate its 

effect on Streptococcus mutans biofilm and its cariogenic potentials. Also, to 

investigate its use as a coating material for dental implant surface to inhibit 

biofilm growth. 

 To synthesize Calcium fluoride nanoparticle (CaF2-NPs) and to accesses its in 

vitro and in vivo effect on Streptococcus mutans biofilm and its virulance factors 

associated with caries development. 

 To develop graphene oxide-silver nanocomposite by  an eco-friendly and less 

toxic route of green to reduce the agglomeration of  silver nanoparticle. Also, to 

analyse the  effectiveness  of  this nanocomposite  in prevention of biofilm of both  

gram-positive and gram-negative bacteria.  
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2.1    Materials  

Source Chemical/Reagents/Solvents  

Hi-Media Laboratories  

Pvt. Ltd, Mumbai, India 

Bacteriological Agar 

Brain Heart Infusion broth 

Dibasic sodium phosphate 

Ethidium bromide 

Glutaraldehyde-SEM grade     

Mitis Salivarius Agar 

Monobasic sodium phosphate 

Nutrient Broth 

Paraformaldehyde 

Phosphate buffer Saline 

Potassium chloride 

Sodium chloride 

Sodium hydroxide (NaOH)   

TE Buffer                                                                                         

Tris-HCl buffer    

 

Sigma- Aldrich 

St. Louis, USA 

Bovine Serum albumin 

Bradford reagent 

Congo red dye                                                                                                                               

DCFH-DA (2, 7-Dichlorofluorescin diacetate) 

Menadione 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) 

PI (Propidium iodide) 

XTT(2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-

([phenylamino]carbonyl)-2H-tetrazolium 

hydroxide)   

 

Qualigens Fine Chemicals 

Mumbai, India 

Ammonium fluoride 

Calcium chloride 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Crystal violet 

EDTA 

Formaldehyde 

Hydrogen per oxide (H2O2) 

Potassium per magnet (KMnO4) 

Silver nitrate 

Sodium carbonate 

Sulphuric acid 

Zinc acetate 

 

SRL Chemicals, 

Mumbai, India 

Agarose 

Chloroform 

Glycerol 

Hydrochloric acid (HCl) 

Isopropanol 

Magnesium chloride 

Sodium acetate 

Sucrose 

 

Merck (India) Ltd.  

Mumbai, India 

 

Ethanol  

Loba Chemie, Mumbai, India Graphite powder 

 

Axiva, Delhi, India 96-well microtiter plate 

12-well microtiter plate 

 

Genetix Biotech Asia Pvt. Ltd, New  

Delhi, India 

 

Sterile coverslips 

Adhesion type cover glass bottom disc                                                              

Invitrogen, India Syto®-9     
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Millipore, Billerica MA, USA 0.45 μm filter 

0.20 μm filter 

 

 

Applied Biosystems,  

California, USA 

SYBR Green 

PCR master mix 
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2.2 Methods 

2.2.1 Ethical consideration 

This research was conducted in agreement with institutional ethical standards. The study 

on animals was approved by “Interdisciplinary Biotechnology Unit, Institutional Ethical 

Committee.” 

2.2.2 Bacterial strains and culture conditions 

S. mutans (MTCC SM 497), an ATCC analogue of UA159 strain was purchased from 

IMTECH, Chandigarh, India. The clinical isolates of S. mutans (SM 497, SM 34 and SM 

06) [Islam et al. 2008] and biofilm forming Enterobacter cloacae  [Khan & Nordmann 

2012] used in this study were isolated and characterized earlier in our laboratory. CLSI 

guidelines were followed for the isolation and characterization of all strains. Strains were 

routinely grown in Brain Heart Infusion broth (BHI) at 37˚C. The cultures were stored at -

80ºC in BHI containing 25% glycerol. A final concentration of 5% (w/v) of sucrose was 

added to the liquid medium before sterilization for biofilm based experiments. Up to 2% 

agar was added to BHI prior to sterilization to obtain solid media for plating.  

2.2.3 Synthesis of nanoparticles and nanocomposites (Nanomaterials) 

2.2.3.1 Graphene oxide  

Graphene oxide (GO) was prepared according to the method described by Hummers and 

Offman (1958) with slight modification. H2SO4 (100 ml) was added to 2 g of graphite 

powder while stirring on an ice-water bath. KMnO4 (25 g) was slowly added to the 

solution. The mixture was kept on a stirrer at room temperature until it became pasty 

brown. It was then diluted with the slow addition of 200 ml of water. Finally, 10 ml of a 

30% aqueous solution of H2O2 was added. The impurities were removed from the 

graphene oxide (GO) using 3% HCl with repeated washing [Hummers & Offman 1958]. 

2.2.3.2 Graphene/zinc oxide nanocomposite  

For the synthesis of the GZNC, 100 mg of zinc acetate and 200 mg of GO were dispersed 

into 200 ml of absolute ethanol followed by sonication overnight. After that formed 

GZNC was harvested by centrifugation at 5,000 rpm for 5 min. It was then washed with 

80% ethanol. The pellet was vacuum dried and 100 mg of this dried sample was mixed 



                                                                                                   Chapter 2 

 
 

38 
 

with 100 ml of ethylene glycol using sonication for 10 min. The resulting mixture was 

heated to 140°C with vigorous stirring on a magnetic stirrer (REMI, Mumbai, India; 

Model: 1MLH) for 3 h. The synthesized GZNC suspension was centrifuged, washed with 

80% ethanol and dried in a vacuum oven at 60°C. 

2.2.3.3 Calcium fluoride nanoparticles  

Calcium fluoride nanoparticles (CaF2-NPs) were synthesized by simple co-precipitation 

method as described earlier with slight modification [Pandurangappa & 

Lakshminarasappa 2011]. In a typical procedure, Calcium chloride (CaCl2) and 

Ammonium fluoride (NH4F) were dissolved in 100 ml distilled water in a molar ratio of 

1:2 and the mixture was continuously stirred for 2 hours using a magnetic stirrer. The 

calcium fluoride nanoparticle formation was indicated by the gradual change of mixture 

from transparent to opaque white suspension. A few drops of ammonia were added into 

the mixture for precipitation. The stirred solution was centrifuged for 15 minutes at 8000 

rpm and a white residue was obtained. The residue was washed thoroughly with ethanol 

and water. The obtained product was put in a ceramic petridish and dried slowly  in the 

vacuum oven overnight at 60ºC and sintered at 300ºC for 3 hrs. 

2.2.3.4 Green synthesized graphene oxide-silver nanocomposite  

(a) Flower extract preparation of Lagerstroemia speciosa (L.) Pers   

Flowers of Lagerstroemia speciosa were collected from the young and healthy tree and 

washed several times with double distilled water to remove the dust particles and surface 

contaminants. They were then oven-dried (80°C) to remove the residual moisture. The 

dried (2g) inflorescence was powdered using mortar and pistil and boiled in presence of 

20 ml of sterile double distilled water for 5 min. The aqueous extract was separated by 

filtration with Whatman No. 1 filter paper (Maidstone, UK) and then centrifuged at 5,000 

rpm for 5 min to remove heavy biomaterials. The extract was stored at 4°C. 

(b) Synthesis reduced graphene oxide (RGO) 

For synthesis of reduced graphene, the GO solution was first sonicated and then plant 

extract was added in solution (10:1 ratio) and kept for 8 hours at room temperature for its 

reduction. Than reduced GO was centrifuged and washed with distilled water.  
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(c) Synthesis of Graphene oxide silver nanocomposite (GO-Ag) 

In a typical reaction procedure, 200 µL of the extract was assorted with 800 µL of 1×10−3 

M aqueous AgNO3 solution. This solution was immediately added into the reduce 

graphene oxide solution and kept on magnetic stirrer (REMI, Mumbai, India; Model: 

1MLH) at room temperature for 24 h. Further, the produced nanocomposite was 

centrifuged at 8000 rpm and supernatant was removed having excess silver ion, the 

nanocomposite was washed several times with deionised water using repeated 

centrifugation and supernatant removal. It was then lyophilized and stored in screw-

capped vials at room temperature. 

2.2.4 Characterization of nanoparticles and nanocomposites 

Characterization of nanoparticle and nanocomposites was performed using various 

techniques which include: 

2.2.4.1 UV-visible spectroscopy 

The synthesis of nanomaterial in solution was monitored by measuring absorbance using 

a UV-visible spectrophotometer (Perkin Elmer Life and Analytical Sciences, CT, USA) 

in the wavelength range of 200 nm to 800 nm.  

2.2.4.2 Transmission electron microscopy (TEM) 

TEM analysis of nanomaterial was performed using a JEM-2100F TEM (Jeol, Tokyo, 

Japan) operating at 120 kV and nanoparticle size was calculated by examining a TEM 

image by Image J software (Image J 1.46r; Java 1.6.0_20). 

2.2.4.3 Scanning electron microscopy (SEM)  

Scanning electron microscopy (SEM) was employed to study the surface topography of 

nanomaterial. The samples were coated with gold and observed by SEM (EVO 40; Zeiss, 

Jena, Germany) at 20 kV. 

2.2.4.4 Fourier transform infrared spectroscopy (FTIR)  

The nanomaterials were mixed with spectroscopic grade potassium bromide (KBr) in the 

ratio of 1:100 and spectra were recorded in the range 400 - 4000 wave number (cm−1) on 
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a Perkin Elmer FTIR Spectrum BX (PerkinElmer Life and Analytical Sciences) in the 

diffuse reflectance mode at a resolution of 4 cm−1 in KBr pellets. 

2.2.4.5 X-ray diffraction (XRD) 

The X-ray diffraction (XRD) patterns of the powdered samples of nanoparticles and 

nanocomposites were recorded on a MiniFlex™ II bench top XRD system (Rigaku 

Corporation, Tokyo, Japan) operating at 40 kV.  

2.2.4.6 Energy dispersive X-ray spectroscopy (EDX) 

Energy-dispersive X-ray spectroscopy (EDX) was employed to investigate the elemental 

composition of type of nanocomposite.  

2.2.4.7 Thermogravimetric analysis (TGA) 

The thermal stability of nanocomposite was investigated by thermogravimetric analysis 

(TGA) at a heating rate of 10°C min-1 under a nitrogen atmosphere. 

2.2.5 Determination of bacteriostatic (MIC) and bactericidal (MBC) concentrations 

Minimum inhibitory concentration (MIC) of nanomaterials against bacterial strains were 

determined by the micro dilution method. Overnight growth culture were diluted (105-106 

CFU ml-1) into fresh BHI (final concentration ~ 5×105 CFU ml-1 in each well) containing 

various concentrations of serially diluted nanoparticles and nanocomposites. The MIC 

was determined as the lowest concentration that totally inhibits visible bacterial growth. 

Minimum bactericidal concentration (MBC), on the other hand was determined by sub 

culturing the test dilutions on a BHI agar plates and incubating for 24 h at 37˚C. The 

concentration showing no growth on agar plates was taken as MBC. 

2.2.6 Effect on adherence  

The glass surface adherence assay was performed to evaluate the effect of sub inhibitory 

concentrations of nanoparticles and nanocomposites on adherence of S. mutans [Hamada 

et al. 1980]. The bacteria (~ 5×105 CFU ml-1) were grown for 6 h at 37ºC at an angle of 

30º in a glass tube containing BHI with 5% sucrose and various  sub inhibitory 

concentrations of  nanoparticles and nanocomposites. The solvent controls included BHI 

(with 5% sucrose) and equivalent amount of nanoparticles and nanocomposites. After 
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incubation, planktonic cells were decanted, and the attached cells were removed by 0.5 M 

of sodium hydroxide. Planktonic and adhered cells were quantified using UV- 

spectrometer by taking O.D. at 600 nm. Percent adherence was calculated using formula: 

  % Adherence = (O.D.600 of adhered cells / O.D.600 of total cells) ×100 

2.2.7 Effect on biofilm formation (Crystal violet assay) 

Biofilm formation was assessed by using crystal violet assay. The overnight growth 

culture of bacteria were diluted into fresh BHI with 5% sucrose (final concentration  

5×105 CFU ml-1 of cells  in each well) containing sub inhibitory concentrations of  

nanomaterials  with respective controls. After incubation for 24 h at 37˚C, the media 

having unattached cells was decanted from the microtiter plates and the wells were gently 

rinsed with sterile water. The adhered biofilms were stained with 200 µL of 0.1% crystal 

violet for 15 min at room temperature. The dye was removed and biofilms were washed 

with two rinses of distilled water. The bound dye was released from the cells with 100 µl 

of 95% alcohol. Plates were then set on a shaker for 5 min. Biofilm formation was 

quantified by measuring optical density at 630 nm by BIORAD iMark TM Microplate 

reader, India. 

2.2.8 Effect on exopolysaccharide production  

2.2.8.1 Congo red binding assay 

The Congo red (CR) binding assay which detects glucose containing polymers was used 

to evaluate exopolysaccharide (EPS) production, as previously reported [Friedman et al. 

2001; López-Moreno et al. 2014]. The experiment was performed in 96 well microtiter 

plate. The overnight growth culture of bacteria were diluted into fresh BHI with 5% 

sucrose (final concentration  5×104 CFU ml-1 of cells  in each well) containing sub 

inhibitory concentrations of  nanoparticles and nanocomposites. The wells devoid of 

nanoparticle treatment (media + diluted culture) were taken as controls. After incubation 

for 24 h at 37°C, the medium was removed and biofilms were washed with PBS and then 

fresh media (100 μl) was added to each well including the respective controls. Now, 50 μl 

of CR (0.5 mM) was added to each well. Media (100 μl) along with 50 μl CR were added 

to another well for blank measurements (Blank CR). Plates were incubated for 60 min at 

37˚C. The media in each well was transferred to 200 μl micro centrifuge tubes and 
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centrifuged at 10,000 × g for 5 min at 37˚C. The supernatant was transferred to empty 

wells of microtiter plates and absorbance was measured at 490 nm. The absorbance value 

of the supernatant was subtracted from the absorbance value of the ‘blank CR’. The 

resultant value represents the amount of bound CR or EPS produced. The experiment was 

conducted in triplicate. 

2.2.8.2 CR agar method 

Solid agar medium was prepared using BHI (37 g l−1), sucrose (5%), agar No. 1 (2%), and 

CR stain (0.8 g l−1). CR was prepared in the form of a concentrated aqueous solution and 

was autoclaved at 121°C for 15 min, separately. After autoclaving, CR was added to the 

agar which was cooled to 55°C. For treated samples, sub inhibitory concentrations 

nanocomposite was added to the medium. Plates were inoculated and incubated 

aerobically for 24 h at 37°C. EPS production was indicated by black colonies with a dry 

crystalline consistency. 

2.2.9 Effect on preformed biofilm 

Approximately 107 CFU ml-1 of S. mutans cells were added to each well of a sterile 96-

well microtiter plates. Plates were then incubated at 37°C for 24 h to form biofilm. Then, 

the supernatant containing planktonic cells were removed and washed three times using 

100 μL 0.9% (w/v) NaCl. The preformed biofilms were incubated at 37°C in the media 

(BHI+ 5% sucrose) containing different concentrations of nanoparticles for 24h. Biofilm 

mass was evaluated by crystal violet assay. 

2.2.10 Assessment of cellular viability 

XTT assay was performed as described previously with slight modifications [Islam et al. 

2008]. XTT (2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-([phenylamino]carbonyl)-2H-

tetrazolium hydroxide) was dissolved in phosphate buffer saline (PBS) at a final 

concentration of 250 mg l−1. The solution was filter sterilized using a 0.22-mm pore-size 

filter and stored at -80°C until required. Menadione (Sigma-Aldrich) solution (0.4 mM) 

was also prepared and filtered immediately before each assay. Adherent cells were 

washed with 200 μl of PBS, then 158 μl of PBS, and 40 μl of XTT, and 2 μl of 

menadione were added to each well. After incubation in the dark for 4 h at 37°C, 100 μl 

of the solution were transferred to a new well and a colorimetric change in the solution 
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was measured using a microtiter plate reader (BIORAD iMark TM Microplate reader) at 

490 nm. 

2.2.11 Bacterial growth curve  

Overnight growth cultures of bacteria were diluted to get ~106 CFU ml-1 of cells and 

inoculated in BHI tubes containing 5% sucrose and sub inhibitory concentration of 

nanomaterials. All cultures were incubated at 37ºC for 24 h. Growth was monitored every 

hour by taking the absorbance at 600 nm using UV mini 1240, UV-visible 

spectrophotometer (Shimadzu, New Delhi, India). Untreated samples were used as 

controls. 

2.2.12 Inhibition of water insoluble and water soluble glucan synthesis 

The crude glucosyltransferase (GTF) was prepared from cell-free supernatant of S. 

mutans culture and assayed to evaluate the effect of nanoparticles on glucan synthesis. 

Cell-free enzymes were precipitated from culture supernatant of S. mutans by adding 

solid ammonium sulphate to 70% saturation (an ammonium cut). The mixture was stirred 

at 4°C for 1 h and allowed to stand for another 1 h under cold conditions. The precipitate 

was collected by centrifugation at 12,000 g at 4°C for 20 min, dissolved in a minimum 

volume of 20 mM phosphate buffer (pH 6.8) and then dialysed against 2 mM phosphate 

buffer (pH 6.8) at 4°C for 24 h. The crude enzyme was stored at –80°C for further 

experiments. A reaction mixture consisting of 0.25 ml of crude enzyme, varying 

concentrations of nanoparticles and nanocomposites in 20 mM phosphate buffer (pH 6.8) 

and 0.25 ml of sodium acetate buffer (pH 5.7, having 0.4 M sucrose) was incubated at 

37°C for 2 h. The mixture was then centrifuged at 10,000 g for 5 min at 4˚C to separate 

water soluble and water insoluble glucans. Total amounts of water-soluble and insoluble 

glucan were measured by the phenol-sulfuric acid method [Dubois et al. 1956]. Three 

replicates were made for each concentration of the test compounds. 

2.2.13 Effect on acid production 

The effect of nanocomposite on the acidogenicity of S. mutans and its clinical isolates 

was assessed using a previously published protocol [Khan et al. 2010]. 5 ml of BHI broth 

containing 5% (w/v) of sucrose and sub inhibitory concentrations of nanomaterials were 

inoculated with S. mutans and incubated at 37°C for 24 h. The pH of the treated samples 
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and the controls was assessed at 0 h and after incubation for 24 h. All determinations 

were performed in triplicate. 

2.2.14 Glycolytic pH-drop assay and acid production 

Glycolytic pH drop of S. mutans was estimated as described elsewhere [Phan et al. 2004].  

Cells were harvested from suspension culture by centrifugation and washed with salt 

solution (50 mM KCl + 1 mM MgCl2). The cells were then resuspended in fresh salt 

solution containing various concentrations of nanoparticles. The pH was adjusted 

between 7.2–7.4 with 0.2 M KOH solution followed by the addition of glucose (1% w/v). 

The decrease in pH was assessed every 10 min over a period of 60 min using pH meter. 

The initial rate of the pH drop, which can give the best measure of the acid production 

capacity of the cells, was calculated using the pH values in the linear portion (0-10 min). 

2.2.15 Protein leakage assay 

To determine the membrane integrity of bacteria the proteins leakage assay was 

performed. The bacterial cells were inoculated in 10 ml media (BHI supplemented with 

5% Sucrose) having sub inhibitory concentrations of nanocomposites. The cultures were 

incubated at 37±2°C with shaking at 150 rpm for 1h and 4h. After treatment the sample 

was centrifuged at 12,000 rpm at 4˚C for 5 min, the supernatants were kept at −20°C 

immediately. The concentrations of proteins in the supernatant were determined using 

Bradford reagent [Li et al. 2010]. Control experiments were conducted without GO-Ag.  

2.2.16 Estimation of reactive oxygen species  

Generation of reactive oxygen species (ROS) in the presence of nanoparticles and 

nanocomposites was assayed using 2′, 7′- dichloro fluorescein diacetate (DCFDA).  S. 

mutans and E. cloacae cells (5×104 cfu ml-1) were incubated with 10µM DCFH-DA for 1 

h at 37ºC. After 1h, sub inhibitory concentrations of nanoparticles and nanocomposites 

were added in the media and further incubated at 37ºC for 1h and 12h. Untreated samples 

were used as control. The ROS production at 1h and 12h of incubation was detected at a 

fluorescence excitation wavelength of 485 nm and an emission wavelength of 528 nm. 
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2.2.17 Microscopic analysis of structural integrity of biofilm architecture 

2.2.17.1 Scanning electron microscopy (SEM) 

The effects of the nanoparticles and nanocomposites on biofilms were observed by 

scanning electron microscopy (SEM). The cells were grown in 12 well culture plates 

having sterile coverslips in each well. The media having sub inhibitory concentrations of 

nanoparticles were dispensed in each well. The coverslips dipped in media without 

nanoparticles were used as controls. Further, each well was inoculated with bacterial cells 

(~106cfu ml-1) and incubated at 37ºC for 24 h. After 24h of treatment coverslips were 

removed and washed two-three times with sterile PBS. The samples were then fixed with 

2% formaldehyde and 2.5% glutaraldehyde in PBS (pH 7.4) overnight at room 

temperature. After fixing samples were dehydrated in absolute ethanol (ethanolic 

dehydration) and eventually dried in desiccators. Then samples were coated with gold and 

observed by SEM (EVO 40; Zeiss, Jena, Germany) at 20 kV. 

2.2.17.2 Confocal laser scanning microscopy (CLSM) 

Bacterial biofilms were grown in the presence of nanomaterials at 37ºC in covered glass 

bottom confocal dishes (dish size of 35 mm, 22 mm cover glass, 9.4 cm2  growth area and 

a working volume of 3 ml). The dishes were washed with PBS and treated with 

fluorescent dye as molecular probe, Syto-9 (5µM; excitation and emission wavelength; 

488 nm, 498 nm) and PI (0.75 µM; excitation and emission wavelength; 536 nm, 617 

nm). The stained bacterial biofilm were observed with a FluoView FV1000 (Olympus, 

Tokyo, Japan) confocal laser scanning microscope equipped with argon and HeNe lasers. 

2.2.17.3 Transmission Electron Microscopy (TEM) 

Transmission Electron microscopy was used to investigate the intracellular changes in S. 

mutans. Control and nanoparticle treated cultures were suspended using a centrifuge and 

washed with PBS (pH 7.4).  Secondary fixation was done with 2.5% glutaraldehyde 

(HiMedia) and 1% osmium tetroxide (OsO4) for 2–3 hours at 4°C.  Samples were 

dehydrated by ethanol and embedded in araldite CY 212 (Taab, Aldermaston, UK) resin 

for making the cell-pellet blocks. Ultrathin sections of cells were stained with uranyl 

acetate and lead citrate and observed under the TEM (Jeol, Tokyo, Japan) microscope at 

120 kV. 
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2.2.18 RNA extraction, Reverse transcription and Quantitative RT-PCR  

2.2.18.1 Primer designing 

Primers were designed using the algorithms provided by Primer Express (Applied Bio 

systems) for uniformity in size (≤ 95 bp) and melting temperature. Primers pairs are listed 

in Table 2.1. RT- PCR products of each were run on an electrophoresis gel to ensure that 

only single product of correct size were amplified. 

Table 2.1 Nucleotide sequence of primer used in this study 

Genes Description Primer Sequence (5'- 3') 

16S 

rRNA 

Normalizing internal 

standard 

Fwd:CCTACGGGAGGCAGCAGTAG 

Rev:CAACAGAGCTTTACGATCCGAAA 

Vic R 
Two - component 

regulatory system 

Fwd:TGACACGATTACAGCCTTTGATG 

Rev:CGTCTAGTTCTGGTAACATTAAGTCCAATA 

gtf C 
Glucosyl transferase 

C (GTF C) 

Fwd:GGTTTAACGTCAAAATTAGCTGTATTAGC 

Rev:CTCAACCAACCGCCACTGTT 

ftf 
Fructosyl transferase 

(FTF) 

 

Fwd:AAATATGAAGGCGGCTACAACG 

Rev:CTTCACCAGTCTTAGCATCCTGAA 

 

spa P 
Cell surface antigen, 

SpaP (or Ag I/II) 

Fwd:GACTTTGGTAATGGTTATGCATCAA 

Rev:CTTCACCAGTCTTAGCATCCTGAA 

com DE 
Competence-

stimulating peptide 

Fwd:ACAATTCCTTGAGTTCCATCCAAG 

Rev:TGGTCTGCTGCCTGTTGC 

 

2.2.18.2 RNA extraction 

To analyze the effect of nanomaterials treatment on the expression of virulence gene of S. 

mutans, qRT-PCR was performed. The organism was cultured in BHI media 

supplemented with sub inhibitory concentrations of nanomaterial. Bacterial culture 



                                                                                                   Chapter 2 

 
 

47 
 

(O.D.600 = 1) was diluted (1:10) and inoculated into fresh BHI media, followed by 

overnight growth at 37ºC. RNA was isolated using TRIzol reagent (Invitrogen, Life 

Technologies). Purified RNA was dissolved in diethylpyrocarbonate-treated water and 

was stored at -80ºC until required for cDNA preparation.  

2.2.18.3 cDNA synthesis 

cDNA was prepared using High Capacity cDNA Reverse Transcription Kit (Applied Bio 

systems, Foster City, USA). The reverse transcription reaction mixture (20µl) contained 2 

µl 10X RT buffer, 0.8 µl 25X dNTP Mix (100 m M), 2 µl 10X RT Random Primers, 1 µl 

MultiScribeTM Reverse Transcriptase, 1µg of RNA and Nuclease-free H2O to make up 

the volume. It was incubated at 25ºC for 10 min, followed by incubation at 37ºC for 120 

min. Finally, the reaction was terminated by incubating the mixture at 85ºC for 5 min 

according to the manufacturer’s instructions. cDNA samples were stored at - 20ºC for 

further use.  

2.2.18.4 Quantitative real time PCR 

For qPCR primers were designed as described in section 2.2.18.2 to amplify the genes of 

interest (vicR, gtfC, spaP, comDE, ftf and 16S rRNA). qRT- PCR was done using the 

ABI-Prism 7000 sequence detection system (Applied Biosystems, Foster City, CA, USA) 

with an SYBR Green PCR master mix (Applied Biosystems) and carried out in Micro-

Amp® Fast Optical 96 well plates (Applied Biosystems, USA). The reaction mixture (20 

μl) contained 1X SYBR Green PCR master mix (Applied Biosystems), 1 μl of the cDNA 

samples and 0.5 μM of the appropriate forward and reverse primers. PCR conditions 

included an initial denaturation at 95°C for 10 min, followed by a 40 cycle amplification 

consisting of denaturation at 95°C for 15 sec and annealing and extension at 60°C for 1 

minute. 

Fluorescence was detected during the annealing and extension step of each cycle. The 

critical threshold cycle (Ct) was defined as the cycle in which fluorescence becomes 

detectable above the background fluorescence and is inversely proportional to the 

logarithm of the initial number of template molecules. After the last amplification cycle, a 

dissociation protocol was performed as follows: One cycle of 95°C for 15 sec, followed 

by 60°C for 1 min. This dissociation was done to ensure that only single products of the 
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correct size were being generated by the different primer pairs and that no products were 

produced in any template control samples. A standard curve was plotted for each primer 

set with Ct values obtained from the amplification of known quantities of S. mutans 

cDNA.  

The expression levels of all the tested genes were normalized using the 16S rRNA gene 

of S. mutans was used as an internal standard. No significant difference was observed in 

the expression of the 16S rRNA gene in the various test conditions. Each assay was 

performed with at least two independent RNA samples in duplicate, and the x-fold change 

of the transcription level was calculated by the following equations (ABI Prism 7000 SDS 

Software version 1.1 with RQ study 1.0, Applied Biosystems): 

i. Each cDNA: ΔCt = Ct (target gene) – Ct (16S rRNA) 

ii. ΔΔCt = ΔCt (reference cDNA) – ΔCt (test cDNA) 

iii. Ratio = 2-ΔΔCt 

2.2.19 Coating of acrylic tooth with nanocomposite and estimation of biofilm 

production  

Nanocomposite coating on the tooth surface was done using sonochemistry as previously 

described [Eshed et al. 2012].  The nanocomposite coating on artificial acryl tooth 

(obtained from Dr Ziauddin Dental College at the Aligarh Muslim University) was 

performed by placing the tooth in a nanoparticle suspension in a sonicator. The tooth was 

kept at a constant distance from the sonicator tip throughout the process. The nanoparticle 

surface coating was characterized by SEM (EVO 40; Zeiss, Jena, Germany). Artificial 

coated and uncoated teeth were assayed for estimating the amount of S. mutans biofilm 

formation on their surface. Teeth were placed in a 24-well plate. Each well contained 2 

ml of a suspension of S. mutans at a final concentration of ~ 1.5 × 108 CFU ml−1 in BHI 

medium. After incubation for 24 h at 37°C, biofilm formation was assayed using the CV 

assay as described in section 2.2.7. To examine biofilm morphology, teeth samples were 

further exposed after incubation in fixative (glutaraldehyde + paraformaldehyde) for 4 h. 

Finally, samples were dehydrated using increasing concentrations of ethanol. Samples 

were then air dried and imaged by SEM. 
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2.2.20 In vivo studies 

2.2.20.1 In vivo toxicity studies  

Acute oral toxicity of the nanoparticles was evaluated in accordance with the 

Organization for Economic and Cooperation Development (OECD) guidelines (1998) for 

testing chemicals. A limit test (2000 mg kg-1 body weight of the animal) was carried out 

using five male Wistar rats in each group (treated and control) ranging from 150-200g in 

weight. These animals were housed in standard hard bottom, polypropylene cages. They 

were fed with standard pelletized diet and sterile tap water ad libitum. All animals were 

observed for change in their weight, behaviour and mortality till 14th day post 

administration of dose. Efforts were made to minimize animal suffering and the number 

of animals for experimentation purpose. 

2.2.20.2 Caries induction in rats  

To determine the effects of nanoparticles on oral establishment and cariogenic potential 

of S. mutans, a total of 20 rats were purchased. These animals were divided into two 

groups; a control and a test group (n = 10 per group). All the animals were fed with 

erythromycin water (100 µg ml-1) and a regular diet for 3 days in order to reduce the 

microbial load. To confirm the absence of S. mutans colonization in the oral cavity, oral 

swabs was plated on MSB agar plates. The animals were offered 5% sucrose diet ad 

libitum throughout the experiment in order to enhance the infection by S. mutans. On 4th 

day, their molar tooth surfaces were inoculated with streptomycin resistant strain of S. 

mutans-MT8148R (1.4 × 1010 CFU). The inoculation was repeated once every day for 

five consecutive days.  After that nanoparticles were topically applied twice a day on the 

teeth of animals by means of camel’s hair brush for 2 weeks. Swab samples were then 

taken from the surfaces of animal molars on the first day of first, third, sixth, eighth and 

tenth week’s post-inoculation. The samples from control and treated group were pooled in 

2 ml of 10 mM potassium phosphate buffer, serially diluted and plated on MSB agar 

plates containing streptomycin for total cell counts. The plates were incubated at 37°C for 

2 days before enumeration of colonies of S. mutans. The percentages of the S. mutans 

cells were calculated to determine its oral colonization in the animals. At the end of the 

experimental period, all the animals were sacrificed. The jaws were then aseptically 

dissected and sonicated in 5 ml of 154 mM sterile NaCl in order to dislodge the dental 
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plaque. These samples of plaque were serially diluted and were streaked on mitis 

salivarius agar plates to estimate the S. mutans population. These plates were incubated at 

37 °C for 2 days before enumeration of colonies. All of the jaws were de-fleshed, and 

suspended in 3.7% formaldehyde until caries scoring. All molars of the animals were 

examined under a dissecting microscope and carious lesions were scored by a Larson’s 

modification of the Keyes system [Larson. 1981].  The results obtained were analyzed by 

Student’s t test, with p < 0.05 considered as statistically significant. 

2.2.20.3 Scanning electron microscopy of animal tooth's surface 

The effect of the nanoparticles on structural integrity of the biofilm and subsequent 

reduction in caries formation was also observed by scanning electron microscopy (SEM). 

The aseptically removed jaws of the animals (Wistar rats) were stored in normal saline 

and were directly visualized under SEM. The experiment was run in triplicates. Samples 

were analysed by SEM (Hitachi S-3000 N; High Technology Operation, Japan) at several 

magnifications. 

2.2.21 Cytotoxicity assay 

A human embryonic kidney cell line (HEK-293) obtained from National Centre for Cell 

Science (NCCS) Pune, was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

(Biological Industries, Beit HaEmek, Israel), supplemented with 10% heat inactivated 

foetal calf serum and IX Penstrep antibiotic solution, incubated at 37°C and 5% CO2. 

HEK-293 cell viability was measured using an MTT (3-(4,5-dimethythiazol-2-yl)-2,5-

diphenyl tetrazolium bromide) assay as described earlier [Denizot & Lang 1986]. 

Exponentially growing cells (~ 105cells well-1) were seeded into 96-well culture plates 

and incubated with various concentrations of nanomaterials for 24h and 48h. Four hours 

before termination, the supernatants were removed and 90 μl of fresh medium and 10 μl 

of MTT (1 mg ml-1) solution were added to each well. After further incubation for 4 h the 

formazan crystals formed by the cellular reduction of MTT were dissolved in 150 μl of 

DMSO and plates were read on an ELISA-reader using a 570 nm filter. All measurements 

were done in triplicate. The relative cell viability (%) related to control wells containing 

cells without nanomaterial was calculated as: 

[A] test / [A] control × 100 
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Where, [A]test is absorbance of the test sample and [A]control is the absorbance of the 

control sample.  

2.2.22 Intracellular uptake of nanocomposite in HEK- 293 and bio imagining 

HEK-293 cells were cultured in DMEM supplemented with 10% heat inactivated foetal 

calf serum (Biological Industries) and IX Penstrep antibiotic solution (Biological 

Industries) and then incubated in a fully humidified 5% CO2 incubator at 37°C. All cells 

were seeded in culture flasks and were divided into treatment group and control group. 

When ~ 70% of growth occurred, the cells were washed with 0.1 M PBS (phosphate 

buffer saline) and old medium was replaced with fresh medium. Culture plates were 

treated with various concentrations of nanocomposite and incubated at 37°C and 5% CO2 

for 24 h. All plates were washed with 0.1 M PBS and cells were collected by 

trypsinization (0.05% trypsinase). The cell pellets were dissolved in 1 ml of 0.1 M PBS 

and were imaged under bright field, UV-excitation and blue excitation with an Olympus 

Fluo ViewTM FV1000 laser scanning confocal microscope. 

2.2.23 Statistical analysis 

All experiments were performed in triplicates. For each outcome, data were summarized 

as mean ± standard deviation. The values obtained for different parameters (adherence, 

biofilm formation, synthesis of soluble and insoluble glucans, EPS production) were 

grouped into different classes on the basis of concentration of the compound added to the 

samples. Class I, was taken as control, where no compound was added. Values obtained 

for the control group were considered as maximal (100% for all variables). The values for 

the remaining classes were calculated relative to the control group. SD (standard 

deviation) was also calculated for all the observations. Differences between two mean 

values were calculated by Student’s t-test using Microsoft excel and p ≤ 0.05 considered 

as statistically significant. The one-way analysis of variance (ANOVA) was followed by 

a post hoc multiple comparisons (Tukey’s test) to compare the multiple means using R 

software (ver 3.2.0). Data with p-values < 0.05 were considered statistically significant. 

 For qRT-PCR, the data were generated from at least three independent sets of 

experiments. A one-way analysis of variance (ANOVA) was performed using 2-ΔΔCt 

values to compare all time points and treatment types P values were generated using the 
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Tukey’s multiple comparison test in order to establish whether pairs of 2-ΔΔCt
 values were 

statistically different or not. The ΔΔCt method was used to establish relative expression 

levels of the transcripts of interest. Based on the mathematics of real time PCR, the ΔΔCt 

method has been applied to calculate relative quantity of particular gene transcripts. A 

simple mathematical equation normalizes ΔCt values to reference gene ΔCt values, 

thereby accounting for variation in cDNA concentrations. Normalizing to an endogenous 

reference provides a method for correcting results for differing amounts of input RNA. 

The 2-ΔΔct method uses data generated as part of the real time PCR experiment to perform 

this normalization function. The formula then compares these normalized samples to an 

appropriate control to generate a fold change ratio. Baseline values for each amplification 

curve and the threshold value for each sets were set manually. The Ct values for each 

sample were exported to a Microsoft Excel spreadsheet. If the PCR efficiency of the 

sample is not 100% this may invalidate the results, as the ΔΔCt method assumes a PCR 

efficiency of 100%. To adjust for this, the individual amplification efficiencies of one 

particular primer pair for each set of primers on a plate were averaged to give a reliable 

amplification efficiency adjustment.  

The mean PCR efficiency was subsequently incorporated into the ΔΔCt equation for data 

analysis. The results were normalized between samples using the 16s rRNA expression 

level in order to generate ΔCt values. The ΔCt value describes the difference between the 

Ct value of the target gene and the Ct value of the corresponding endogenous reference 

housekeeping gene. 16S rRNA was chosen as the normalizing gene. The ΔΔCt method 

allows the comparison of the expression of each target transcript between the different 

treatment groups, and allows the calculation of the average fold change in the control 

group being 1 (i.e. no change) and the expression levels of the different 

treatment/outcome groups given as a fold change relative to the average of the control 

group.  

Statistical analysis of these results was performed by R software (ver 3.2.0) and using the 

ΔCt or ΔΔCt values rather than the fold-change values, due to the fact that fold-change 

values do not follow a normal distribution. ΔCt and ΔΔCt values are effectively log 

transformed values and did not deviate significantly from a normal distribution. The 

results from each experimental set for each treatment type and time point were analyzed 

using the one-way ANOVA with Tukey’s multiple comparison test as a post test. 
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Significance is expressed as p ≤ 0.05. For the caries studies, the results were analysed by 

Student’s t- test using Microsoft excel, with p ≤ 0.05 considered as statistically 

significant. 
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3.1 Introduction 

Oral biofilm are complex three dimensional structures with adherent multispecies 

bacterial communities contributing to dental caries and numerous periodontal diseases 

[Selwitz et al. 2007; Nance et al. 2013]. These are among the common infectious diseases 

which may lead to a major public health concerns [Falsetta et al. 2014]. Biofilms have 

greater tendency to resist antibiotics and create an environment that enhances microbial 

resistance with respect to their planktonic counterparts. Streptococcus mutans is one of 

the most frequently detected microorganism on the tooth surface and major etiological 

agent of human dental caries [Hasan et al. 2014]. This bacterium has also been 

recognized as a causative agent of endocarditis [Abranches et al. 2011]. By means of 

several unique mechanisms S. mutans manages its copious growth in oral cavity 

[Dmitriev et al. 2011]. Acidogenicity and aciduricity play a major role in the increase of 

severity of infection along with the ability to produce extracellular polysaccharide [Krol 

et al. 2014; Koo et al. 2003].  

In present scenario implant systems are abundantly being utilized to replace missing 

teeth. Oral biofilm consisting mainly of Streptococcus spp. accumulates on implants 

[Nakazato et al. 1989]. The formation of biofilm in these implants is one of the major 

causes of implant failure [Costerton et al. 2005]. The inflammatory changes in the soft 

tissues surrounding the implant induced by the infection give rise to progressive 

destruction of the supporting bone [Zitzmann & Berglundh 2008]. Nanoparticle-based 

implant coatings may well offer useful antimicrobial and antibiofilm functionalities to 

prevent dental implant failure. 

Nanoparticle based approaches are expected to open new horizon for preventing biofilm 

based infections by their unique mode of action [Ruparelia et al. 2008; Raghupati et al. 

2011]. Zinc oxide nanoparticles (ZnO NP) have already been found as antibacterial 

against wide range of microorganisms [Huang et al. 2008; Xie et al. 2011], but its 

aggregation is one of the drawbacks which make them toxic against mammalian cells 

[Yuan et al. 2010]. Graphene oxide (GO) has unique physical and chemical properties 

[Wu et al. 2013]. GO contains a single layer of sp2 carbon atom with hydroxyl and epoxy 

functional groups on surface and carboxyl groups at the edges [Dai et al. 2014]. These 

functional groups offer active sites for hybridization with metal and metal oxide, thus acts 

as a supporting surface for growing these nanoparticles [Ocsoy et al. 2013]. Graphene in 



                                                                                                   Chapter 3 

 
 

55 
 

its functionalized state has been used for biosensing, photothermal therapy as well as drug 

delivery [Wang et al. 2011]. Recently, graphene and graphene based nanocomposites 

have gained a substantial interest in the field of nanomedicine as an antimicrobial agent 

[Ma et al. 2011; Xu et al. 2011; Tang et al. 2013; Fariaa et al. 2014]. Moreover, graphene 

oxide has been reported to show good biocompatibility [Chang et al. 2011]. To the best of 

our knowledge no study has yet been carried out on antibiofilm action of graphene/zinc 

oxide nanocomposite and GZNC coated teeth surface on S. mutans.  

The objective of present study was to evaluate the antimicrobial, antibiofilm and anti-

adherence activity of GZNC against S. mutans which is major cause of caries infection 

and to access its applicability as coating for dental implants.   

3.2 Experimental overview 

The graphene/zinc oxide nanocomposite (GZNC) was synthesized using method given in 

section 2.2.3.1 and 2.2.3.2. The characterization was performed using TEM (2.2.4.2), 

UV-visible spectroscopy (2.2.4.1), FTIR (2.2.4.4), XRD (2.2.4.5) and TGA (2.2.4.7). The 

sub inhibitory concentrations of GZNC against S. mutans (SM 497) and its clinical 

isolates (SM 34 and SM 06) were evaluated using methodology described in section 

2.2.5. The method to investigate the effect of sub inhibitory concentrations of GZNC on 

virulence traits of S. mutans viz., adherence, biofilm formation, exopolysaccharide 

production, acidogenicity and glucan production is outlined in section 2.2.6, 2.2.7, 2.2.8, 

2.2.13 and 2.2.12 respectively. The effect on bacterial viability and growth pattern was 

studied using methodology given in section 2.2.10 and 2.2.11 respectively. Moreover, 

SEM and CLSM was utilized to analyse its effect on the biofilm architecture (2.2.17). 

Amount of ROS produced in the presence of sub inhibitory concentrations of GZNC was 

evaluated using method outlined in section (2.2.16). Procedure adapted for synthesis and 

characterization of GZNC coated teeth is described in method section 2.2.19 and its 

antibiofilm potentials were investigated (2.2.19). Furthermore, cytotoxicity assay on 

HEK-293 cell line and internalization of GZNC in HEK-293 was performed using 

method outlined in section 2.2.21 and 2.2.22 respectively.  
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3.3 Results 

3.3.1 Characterization of GZNC 

TEM images (Figure 3.1a) of GZNC showed ZnO nanocrystals dispersed on the surface 

of graphene sheets. The average size of ZnO nanoparticle in composite was found to be in 

range of 20 to 40 nm (Figure 3.1b). The UV visible spectra of graphene, ZnO and GZNC 

are shown in Figure 3.1c. FTIR analysis of GZNC is represented in Figure 1d. Figure 3.2a 

represent the powder X-ray diffraction (XRD) pattern of nanocomposite. The average 

crystallite size of ZnO NPs was calculated following the Debye-Scherrer formula [Cullity 

1978]. TG measurement was carried out in order to determine the mass ratios of ZnO to 

graphene in composite. TGA curve of GZNC is shown in Figure 3.2b.  

 

Figure 3.1 Characterization of graphene/zinc oxide nanocomposite: (a, b) TEM image 

and particle size analysis of GZNC, (c) UV visible spectra of graphene, zinc oxide and 

GZNC, (d) FTIR spectra of GZNC. 
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3.3.2 Enhanced antibacterial activity of GZNC 

The minimum inhibitory concentration (MIC) of GZNC against S. mutans and its clinical 

isolates was found to be 125 µg ml-1 whereas MBC was found to be 250 µg ml-1.  

 

Figure 3.2 (a) X ray diffraction pattern and (b) TG curve of GZNC. 

3.3.3 Effect on adherence  

The effect of sub inhibitory concentrations of GZNC on sucrose dependent adherence of 

all three strains is represented in Figure 3.3a. Sub inhibitory concentration (62.5 µg ml-1) 

GZNC reduced the adherence of SM 497, SM 34 and SM 06 by 46%, 68% and 69% 

respectively (Results were statistically significant with P- values ≤ 0.05). 

3.3.4 Concentration dependent inhibition of biofilm 

Inhibition of biofilm formation by GZNC was in a dose dependent manner. Figure 3.3b 

embodies the effect of composite on biofilm formation. It was shown that 62.5 µg ml-1 

concentration of composite reduced biofilm formation by 80%, 44% and 29% in SM 497, 

SM 34 and SM 06 respectively (Results were statistically significant with P- values ≤ 

0.05). 
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3.3.5 Effect on viability of bacterial cells 

XTT assay was performed to detect the amount of viable cells present after treatment with 

composite. There was almost similar decrease in viability as compared to control in SM 

497, SM 34 and SM 06 which was 37% , 31% and 38% respectively on treatment of  62.5 

µg ml-1 of GZNC. The reduction of viable cells was found to be concentration dependent 

on GZNC treatment (Figure 3.3c). 

 

Figure 3.3 inhibitory effects of sub-MIC concentrations of GZNC on: (a) sucrose 

dependent adherence, (b) biofilm formation, (c) viability (XTT assay), (d) Glucan 

formation. Each value is an average of triplicate and each bar indicate ± standard 

deviation (n =3). 

3.3.6. Effect on water insoluble glucan production  

The effect of different concentration of GZNC on synthesis of water insoluble glucans 

was evaluated (Figure 3.3d). There was 90%, 85% and 60% reduction in case of SM 497, 

SM 34 and SM 6 respectively (Results were statistically significant with P- values ≤ 

0.05).  
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3.3.7 Significant decrease in acid production 

Sub inhibitory concentration of GZNC was found to be efficient in reduction of 

acidogenicity of all three strains (Table 3.1). On treatment of GZNC, pH of media in SM 

497 changed from 4.87 to 5.27, in SM06 the change in pH was from 4.41 to 5.06 and in 

SM 34 it changed from 4.39 to 6.67.  

3.3.8 Effect on growth  

The effect of sub inhibitory concentration of GZNC on growth of S. mutans was studied. 

There was no significant difference in growth curves of all strains as compared to their 

respective controls (Figure 3.4). 

Table 3.1 Effect of graphene/zinc oxide nanocomposite (GZNC) on acid production of 

Streptococcus mutans and clinical isolates 

 
pH±S.D.  

(onset) 

pH±S.D.  

(control after 24 hrs)  

pH±S.D.  

(treated after 24 hrs) 

#SM 497a 7.37±0.09 4.87±1.14 5.27±0.06 

*SM 06b 7.38±1.03 4.41±0.07 5.06±1.27 

*SM 34c 7.37±0.08 4.39±1.23 6.67±0.09 

# a SM 497 (MTCC strain), *b SM 06, c SM 34 (clinical isolates) [Islam et al. 2008] 

 

Figure 3.4 The growth curves of treated and untreated SM 497, SM 06 and SM 34 cells 

over 24 hours. 
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3.3.9 Significant reduction in EPS production 

EPS production in presence and absence of GZNC was evaluated by using Congo red 

dye, which binds to glucose containing polymers. Biofilm formation by S. mutans was 

tested by growing the organism in Brain heart infusion agar supplemented with Congo 

red in presence and absence of GZNC. When the colonies were grown without GZNC in 

the medium, the organisms appeared as dry crystalline black colonies, indicating the 

production of exopolysaccharide (Figure 3.5a). Whereas when the organisms were grown 

in presence of sub inhibitory concentration of GZNC organisms continued to grow, but 

GZNC treatment has decreased the synthesis of exopolysaccharides, indicated by the 

decrease in dry crystalline black colonies. To further verify the reduction in EPS, amount 

of attached Congo red was calculated by Congo red binding assay which directly relates 

to amount of EPS formed. Results showed almost 51 % reductions in EPS production on 

treatment with sub inhibitory concentration of GZNC (Figure 3.5b).  

 

Figure 3.5 (a) Congo red agar method: control plate showing more black crystalline 

colonies as compared to treated (b) Congo red binding assay: showing considerable 

decrease in amount of exopolysaccharide. Each value is an average of triplicate and each 

bar indicate ± standard deviation (n =3). 
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3.3.10 Microscopic exploration of GZNC treated biofilm  

SEM and CLSM were performed to explore the architecture of cells in biofilm in 

presence of GZNC. In SEM image of control sample (Figure 3.6a) S. mutans cells can be 

seen embedded in the extracellular polysaccharides while in treated sample (Figure 3.6b). 

The cells were highly dispersed indicating reductions in extracellular polysaccharides. In 

CLSM analysis, majority of cells were live in non-treated samples and a green mat was 

visible with chains of Streptococcus interacting with each other (Figure 3.6c) while in 

treated cells were scattered all around with poor interaction representing reduction in 

biofilm (Figure 3.6d, e). 

 

Figure 3.6 Effect of GZNC on biofilm architecture: SEM image of S. mutans biofilm in 

(a) absence and (b) presence of GZNC, CLSM image of S. mutans: (c, f) Control biofilm, 

(d, g) 32.2 µg ml-1  GZNC treated biofilm, (e, f) 62.5µg ml-1 GZNC treated biofilm. 
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3.3.11 Production of reactive oxygen species (ROS) 

Figure 3.7 represent the production of cellular ROS. GZNC showed a noticeable increase 

of cellular ROS in four hours as compared to control. Moreover, after 12 h considerable 

increase in ROS was determined with respect to control. 

 

Figure 3.7 Formation of reactive oxygen species in presence of GZNC. 

3.3.12 Cytotoxicity assay and intracellular uptake of GZNC 

Figure 3.8 shows the effect of GZNC on viability of HEK 295 cells. The effect was in 

dose dependent manner. There was almost 80% viability on treatment of cells with 200 

µg/ml of GZNC which is 3 times higher concentration as used for antibiofilm experiment. 

Even at very high concentration of GZNC (up to 400µg ml-1), the viability of cell was 

above 50% in 24 h of incubation (Results were statistically significant with P- values ≤ 

0.05). Fluorescence of control sample and treated cells was observed by confocal laser 

scanning microscopy. Figure 3.9 shows the uptake of GZNC in HEK-293 cells. Enhanced 

fluorescence was seen in treated cells as compared to control. Cell membranes were seen 

to be damaged at higher dose of GZNC (400 µg ml-1). 
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Figure 3.8. In vitro cytotoxicity assay (MTT) on HEK-293 cell line. Each value is an 

average of triplicate and each bar indicate ± standard deviation (n =3). 

 

Figure 3.9 CLSM image showing internalization of nanoparticle and its effect on HEK-

293 cells (a, f) control, (b, g) 100µg ml-1, (c, h) 200µg ml-1, (d, i) 300µg ml-1, (e, j) 400µg 

ml-1. 

3.3.13 Characterization and antibiofilm properties GZNC coated teeth surface  

Figure 3.10a and 3.10c show the photograph of uncoated and coated teeth. The deposition 

GZNC was characterized by SEM, Figure 3.10b represent the uncoated acrylic tooth 
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surface while in figure 3.10d, a uniform coating was observed over the entire tooth 

surface. Further to quantify biofilm formed on surface of teeth, crystal violet assay was 

performed. GZNC-coated tooth reduced biofilm formation by 85% (Figure 3.10i), as 

compared to the uncoated tooth surface photographic images of crystal violet stained 

tooth surface clearly showed the inhibition of biofilm formation (Figure 3.10 j-m). These 

results were also supported by SEM imaging (Figure 3.10 e-f). Considerable reduction of 

S. mutans biofilm was observed on coated tooth (Figure 3.10e, f) as compared to the 

control tooth in which dense colonization was observed (Figure 3.10g, h). 

 

Figure 3.10 (a) Photograph of non-coated and (c) GZNC coated acrylic teeth; SEM 

images of surface of teeth (b) control and (d) coated; Region from where SEM analysis 

for biofilm formation was done (e) control and (g) treated; Magnified view of  selected 

regions: (f) In control showing well defined biofilm architecture and (h) almost negligible 

biofilm on treated; (i) Quantification of the biofilm biomass; Photograph of crystal violet 

stained (j, k) Control tooth and (l, m) treated tooth. 
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3.4 Discussion 

Oral biofilms play a crucial role in development of dental caries and other periodontal 

diseases. Streptococcus mutans is one of the primary etiological agents in dental caries 

[Kŕol et al. 2014].The pathogenesis of S. mutans depends on various virulence factors 

including adherence, biofilm formation acidogenicity, aciduracity, and synthesis of 

exopolysaccharide [Hasan et al. 2015]. Nanotechnology has opened new horizon for the 

development of novel nanomaterial to combat chronic infections caused by biofilms. In 

present report, we explored the potential of graphene/zinc oxide nanocomposite (GZNC) 

against cariogenic properties of Streptococcus mutans and examined the antibiofilm 

behaviour of artificial acrylic tooth surface coated with GZNC graphene/zinc oxide 

nanocomposite. The synthesis of GZNC was performed using chemical method and a 

schematic representation of nucleation of zinc oxide nanoparticle on functionalized 

graphene oxide is illustrated in Figure 3.11. 

 

Figure 3.11 Schematic representation of mechanism of nucleation of zinc oxide 

nanoparticle on surface of functionalized graphene sheet. 

The presence of sharp characteristic absorption peak in UV-visible spectrum of GZNC at 

~ 370 nm clearly indicated the formation of good crystalline ZnO nanostructures. In 

addition the red shift in GZNC curve as compared to pure ZnO shows increased π-

electron concentration and structural ordering and may be ascribed to the chemical 

bonding (Zn-O-C bond) of zinc oxide and graphene [Hu et al. 2010; Liu et al. 2012] . 

TEM results confirmed the attachment of zinc oxide with GO platelets and ZnO 
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nanoparticle. FTIR spectra of GZNC showed strong absorption bands around 3468.5 cm-

1, 2342.07 cm-1, 1547.47cm-1, 1059.65 cm-1, 648.9 cm-1 and 482.9 cm-1. The band at 

3468.5 cm-1 may be assigned to O-H bond stretching of adsorbed water molecule. The 

absorption band at 1547.47 cm-1 can be assigned to the stretching vibration of C=C of 

graphene and another at 1059.65 cm-1 can be assigned at the stretching vibration of C–O 

of graphene [Wu et al. 2013]. 

The presence of Zn-O bond is supported by peak ~482.9 cm-1 [Bora et al. 2013].  The 

Powder X-ray diffraction (XRD) pattern of nanocomposite is analysis confirmed that the 

GZNC consists of cubic ZnO. The average crystallite size of ZnO NPs was calculated 

following the Debye-Scherrer formula [Cullity 1978]. The calculated average particle size 

was found to be ~14.76 nm. In TGA curve the weight loss of 6.0 % occurring at about 

65 °C is associated to adsorbed water. Pyrolysis of the labile oxygen-containing 

functional groups at about 200 °C accounts for 13.77 % of weight loss. The thermal 

decomposition observed in the temperature range 200–500 °C with 60.07% of weight loss 

attributed to the pyrolysis of the carbon skeleton. 

The antibacterial effect of GZNC is much better than ZnO nanoparticle alone where MIC 

and MBC are reported to be 500 ± 306.18 µg ml-1 and 500µg ml-1 respectively 

[Hernández-Sierra et al. 2008]. Thus, reflecting that graphene is enhancing the 

antibacterial property of ZnO nanoparticles. It is also clear from our results that the 

killing of planktonic cells of S. mutans is irrespective of clinical and reference strain. In 

view of above results it is evident that the nanostructure formed by interaction of ZnO 

with graphene is providing a unique nano-interface for interacting with microbes as 

compared to ZnO alone. 

The focus of this study was to reduce biofilm rather suppressing the population of S. 

mutans in oral cavity; further studies were performed on sub inhibitory concentrations of 

composite. Adherence of bacteria to the tooth surface is an important step in biofilm 

formation and reduction in adherence could serve as preventive step in biofilm formation 

[Hasan et al. 2012]. There is considerable decrease in sucrose dependent adherence on 

treatment of sub inhibitory concentrations of GZNC in all three strains. S. mutans secrete 

exopolysaccharide (glucans) in presence of sucrose which help in clumping and 

adherence of cells. This implies that composite is reducing the polysaccharide mediated 

adherence of bacteria.  
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Biofilm formation on the tooth surface is the main reason behind the initiation of dental 

caries. The role of S. mutans biofilm in initiation of cariogenesis is well documented 

[Loesche 1989; Hasan et al. 2015]. In the presence of GZNC there was substantial 

decrease in biofilm forming abilities of S. mutans and its clinical isolates. XTT and 

growth curve results revealed nanocomposite is inhibiting the virulence trait without 

affecting the bacterial viability. 

Acid production and acid tolerance are considered to be the main physiological factors 

linked with cariogenic potential of Streptococcus mutans [Krol et al. 2014]. GZNC was 

found to be efficient in reducing the acid production in both reference and clinical strains. 

Reducing the acid production is one of the cariostatic effects and may also influence 

biofilm forming abilities of S. mutans [Welin-Neilands & Svensater 2007]. Water 

insoluble glucans play a significant role in adhesive interaction as compared to water 

soluble glucans. A considerable reduction in insoluble glucans was observed in presence 

of GZNC.  Lowering in amounts of insoluble glucans could influence the process of 

biofilm formation by disturbing physical integrity and stability, affecting the diffusion 

properties and reducing the binding sites for Streptococcus mutans. The malformed 

exopolysaccharide matrix containing less insoluble glucans may also be more susceptible 

to the influences of antimicrobials and other environmental attacks [Wang et al. 2013].  

The production of exopolysaccharide (EPS) is one of the key virulence factors of 

cariogenicity as it is produced by bacteria for the formation, spread and maintenance of 

biofilms. EPS mediate the adhesion of biofilms to surfaces, provide mechanical stability 

and transiently immobilize cells [Flemming & Wingender 2010]. The result of Congo red 

binding assay exhibited that nanocomposite is reducing the EPS production which is pre-

requisite for formation and maintenance of biofilm. SEM and CLSM images were in 

concordance with the above discussed results validating that GZNC is inhibiting the 

formation of S. mutans biofilm. 

The antibacterial properties of many nanoparticles have been attributed to the production 

of reactive oxygen species, such as TiO2 [Su et al. 2009], Ag NPs [Vecitis et al. 2010]. 

GZNC showed a noticeable increase of cellular ROS. The internalization of zinc oxide 

nanoparticles in bacteria is inducing the production of reactive oxygen species (ROS). 

The production of reactive oxygen species in bacteria can affect DNA may also affect the 

total cellular machinery of bacteria [Xie et al. 2011].  
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Our study confirms GZNC to be very effective against some of the main caries causing 

virulence factors of S. mutans. The antibiofilm property of GZNC may be attributed to 

wrapping of graphene sheets on bacterial surface which reduce the cell to cell interaction 

and further cause the deposition of ZnO nanoparticle on bacterial surface leading to high 

concentration of zinc ions in cell. Moreover, the leaching of Zn2+ ions from nanoparticles 

may inhibiting the active transport and metabolism of sugars. Zinc has also been reported 

to reduce acid production by S. mutans and has an ability to inhibit glucosyltransferase 

activity [Aydin Sevinc & Hanley 2010].  

 

Figure 3.12  Schematic representation of proposed mechanism of antibiofilm activity of 

GZNC: (a-d) Steps of biofilm formation in absence of any inhibitory agent ; (a) S. mutans 

cells, (b) Cells adhere to the surface, (c) Biofilm formation and production of 

exopolysaccharide (EPS), (d) Dispersal of biofilm, (a, b',c') GZNC inhibits the adherence 

of S. mutans consequently blocking all further steps of biofilm formation; (b') GZNC 

wrap around S. mutans surface making direct contact with Zinc oxide nanoparticle thus 

inhibiting cell to cell contact (c') Entry of Zinc oxide nanoparticle in cell leading to the 

production of reactive oxygen species, further leaching of Zn2+ ions from zinc oxide 

nanoparticle inhibiting virulence factors of S. mutans and also assisting in antibiofilm 

action. 

Based on above discussion we have proposed the mechanism of antibiofilm activity of 

GZNC against S. mutans as described in Figure 3.12. Biofilm formation in S. mutans is 
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complex process and more investigation is needed to further understand the mechanism of 

biofilm inhibition in presence of graphene/ zinc oxide nanocomposite. 

Despite potential antibacterial activity, the use of nanoparticle as therapeutic is limited 

because of their cytotoxicity against mammalian cells [Yen et al. 2009]. Graphene oxide   

has already been investigated to be non-toxic even at very higher concentrations [Chang 

et al. 2011]. On the other hand due to aggregation and other factors zinc oxide 

nanoparticles have been reported to be toxic to mammalian cells at even low 

concentration [Yuan et al. 2010]. Our results clearly indicate that graphene/zinc oxide 

nanocomposite show negligible toxicity against HEK-293 cell line at used concentration. 

These observations may confirm the promising antibacterial and antibiofilm activity of 

GZNC. 

Dental implants are widely accepted for replacing natural teeth. A considerable 

proportion of medical implants are cause of device related infection [Costerton et al. 

2005]. Moreover these infections are difficult to eradicate because bacteria that cause 

these infections live in well- developed biofilms. S. mutans biofilm is one of the causes of 

failure of dental implant [Busscher et al. 2010]. Oral implant related biofilms can cause 

inflammation of peri-implant tissues which may be a direct cause of periodontal disease 

[Heuer et al. 2007]. In general the most effective way to prevent biofilm formation on 

implants is to prohibit the initial bacterial adhesion as biofilm are relatively difficult to 

remove after formation. Therefore these infections may be greatly reduced through 

improving antimicrobial and antibiofilm properties of implant surface by means of 

surface modification [Zhao et al. 2009]. 

Acrylic teeth are choice of dental prosthesis. The basic ingredient of Acrylic teeth is poly-

methyl methacrylate (PMMA) resin. PMMA resins are resilient plastics formed by 

joining multiple methyl methacrylate molecules. A cross linking agent is added which 

serves as a bridge that unites two polymer chains [Stoia et al. 2011]. In this manner it 

yields a net like structure that provides increased resistance to deformation. So these teeth 

have greater fracture toughness, easier to adjust. Thus, our focus was to observe the 

ability of nanoparticle coated acrylic tooth to inhibit biofilm formation. Acrylic teeth 

were coated by GZNC using sonochemistry. Sonochemical irradiation has been 

demonstrated as a successful technique for the synthesis and deposition of nanoparticles 

on/into glass, polymer supports, and fabrics as well as tooth surface [Pol et al. 2005; 



                                                                                                   Chapter 3 

 
 

70 
 

Eshed et al. 2013].The results revealed a significant inhibition of biofilm formation on the 

surface of coated teeth as compared to non-coated suggesting GZNC as a potential 

coating material for dental implant. 

Our study concludes graphene/zinc oxide nanocomposite as effective antibacterial and 

antibiofilm agent against S. mutans. Moreover, it shows a significant reduction in biofilm 

and cariogenic properties of S. mutans in presence of sub inhibitory concentration of 

GZNC. This is the first study where GZNC has been investigated as a potential coating 

material for dental implants. GZNC coated acrylic tooth surface successfully inhibited the 

S. mutans biofilm (85%) formation. Furthermore, the lower toxicity of our nanocomposite 

makes it an effective coating agent for dental implants. However, future work on the 

stability and practical implication of this nanocomposite is clearly required before it can 

actually be implemented. 
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4.1 Introduction  

Dental caries are characterized by dissolution of tooth enamel and are cause of public 

health concern [Nakano et al. 2007; Falsetta et al. 2014]. Major factor influencing the 

dental decay is an assault of tooth surface by oral microbial biofilms [Selwitz et al. 2007; 

Nance et al. 2013]. S. mutans is considered to be one of the main etiological agents of 

dental caries and is best known biofilm forming oral bacterium [Loesche 1989; Hasan et 

al. 2015]. Acid production by fermentation of dietary carbohydrate (acidogenesis), 

formation of exopolysaccharide, biofilm formation along with its ability to survive in an 

acidic environment (aciduracity) are some of the prominent characteristics which help 

Streptococcus mutans in their cariogenic process [Koo et al. 2003; Krol et al. 2014]. 

Eradication of dental biofilm is very difficult and only mechanical cleaning like brushing 

or flossing the teeth is not sufficient. Thus, to improve the oral health it is important to 

formulate approaches that can inhibit or delay the biofilm formation.  

Fluorides and its various preparations are of great importance in dentistry [Marquis et al. 

2003]. In its ionic form fluoride prevents the demineralization and helps in 

remineralization of tooth enamel [Featherstone 1999]. Fluoride also exerts effects on 

biological activity of caries causing bacteria. They reduce the ability of plaque forming 

bacteria to produce acid and can impair glycolysis by inhibition of enolase activity 

[Hamilton 1977]. Furthermore, they work on membrane associated proton pump (H+- 

ATPase) by inhibiting it and in turn reducing the cellular level of ATP [Sutton et al. 

1987; Eshed et al. 2013]. 

It is believed that topical application of fluoride on tooth surface leads to the formation of 

calcium fluoride like material which act as the reservoir of fluoride ions and during caries 

challenge it releases fluoride at low pH in plaque and protects the tooth's surface from 

caries [Rošin-Grget & Lincir 2001; Rølla & Saxegaard 1990]. Nevertheless, the limited 

concentration of calcium ion in mouth results in the formation of only limited amount of 

calcium fluoride like deposits after topical application of conventional fluoride 

formulations [Saxegaard & Rolla 1989]. 

Nanoscale based approaches are being widely used and have been proven to be more 

effective in the elimination of biofilms and in inhibition of dental caries [Eshed et al. 

2013; Kulshrestha et al. 2014; Hernández-Sierra et al. 2008]. Their high surface to 
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volume ratio provides them with unique properties which can be exploited for the 

development of new therapies and drugs [Raghupati et al. 2011].  Sun and Chow have 

demonstrated that calcium fluoride nanoparticle (CaF2-NPs)  rinse can increase the level 

of fluoride ions in the oral fluid and in another study the strength and the fluoride release 

capacity of dental composite having CaF2-NPs have been shown [Sun and Chow 2008; 

Xu et al. 2008]. However, there are no studies focusing on the direct effect of CaF2-NPs 

on caries causing virulence factors like exopolysaccharide production, biofilm formation, 

aciduracity and acidogenesis of S. mutans as well as its effect on demineralization of 

dental enamel. 

The main objective of this study was to formulate calcium fluoride nanoparticles (CaF2-

NPs) and to evaluate its effect on some of the major virulence factors of S. mutans. 

Furthermore, we have investigated CaF2-NPs effect on caries development in in vivo 

model to evaluate its use as a topical applicant for prevention of dental caries. 

3.2 Experimental Overview 

Calcium fluoride nanoparticles (CaF2-NPs) were synthesized using methodology 

described in section 2.2.3.3. Characterization of nanoparticle was performed by UV- 

visible spectroscopy (2.2.4.1), TEM (2.2.4.2), SEM (2.2.4.3), XRD (2.2.4.6) and FTIR 

(2.2.4.4). The minimum inhibitory concentration and minimum bactericidal concentration 

of CaF2-NPs were evaluated method outlined in section 2.2.5. The effect of sub inhibitory 

concentrations of CaF2-NPs on virulence traits of S. mutans viz. adherence, biofilm 

formation, exopolysaccharide production, water soluble and insoluble glucans and 

glycolytic pH drop was investigated by methodology described in sections 2.2.5, 2.2.7, 

2.2.8.1, 2.2.12 and 2.2.14 respectively. The effect of sub inhibitory concentrations of 

CaF2-NPs on the dispersion of preformed biofilm was assessed using method given in 

section 2.2.9. The growth pattern of S. mutans in presence of sub inhibitory 

concentrations of CaF2-NPs was evaluated by method provided in section 2.2.11. TEM 

and CLSM analysis were performed to investigate the effect of CaF2-NPs on the cells and 

biofilm architecture of S. mutans respectively, methodology is described in section 2.2.17. 

Moreover, the effect of CaF2-NPs on expression of gene involved in S. mutans virulence 

pathway was also studied by quantitative RT-PCR as outline in section 2.2.18. The oral 

toxicity of these nanoparticles and their anti-cariogenic effect in vivo was evaluated by 
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method given in section 2.2.20. Cytotoxicity assay was also performed on HEK-293 cell 

line (section 2.2.21). 

4.3 Results 

4.3.1 Characterization of calcium fluoride nanoparticles 

TEM analysis of CaF2-NPs was performed to determine its morphology and size (Figure 

4.1a). The particles were found to be in the nanometre range with average particle size of 

15-25 nm (Figure 4.1b). SEM image (Figure 4.1d) of nanoparticle revealed the 

morphology of synthesized nanoparticle. UV-visible spectroscopy of the nanoparticle is 

represented in Figure 4.1c. FTIR  spectrum of CaF2-NPs showed a strong band at 

~3400cm-1, 1678cm-1, 430 cm-1 (Figure 4.1e). Furthermore, Figure 4.1f is a typical XRD 

pattern of CaF2-NPs.  

 

Figure 4.1 Characterization of CaF2-NPs: (a) Transmission electron microscopy image of 

CaF2-NPs, (b) Particle size  15-25 nm, (c) UV visible spectrum of CaF2-NPs, (d) 

Scanning electron microscopy image, (e) FTIR spectrum, and (e) XRD pattern of CaF2-

NPs. 
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4.3.2 Effect on bacterial viability  

The minimum inhibitory concentration of CaF2-NPs on S. mutans was found to be > 64 

mg/ml.  

4.3.3 Significant reduction in biofilm 

Biofilm formation ability of S. mutans in presence of different concentration (4, 2, 1 mg 

ml-1) of CaF2-NPs was evaluated using crystal violet assay (Figure 4.2a). There was 

almost 89%, 71% and 62%  reduction in biofilm forming ability of S. mutans as 

compared to control when treated with 4 mg ml-1, 2mg ml-1 and 1mg ml-1 concentration of 

nanoparticles respectively. With the decrease in nanoparticles concentrations there is 

gradual increase in its biofilm formation ability. This suggests a concentration dependent 

reduction in biofilm formation. 

4.3.4 Effect on EPS production 

A considerable decrease in EPS production in S. mutans in the presence of CaF2-NPs was 

observed and the reduction is in a concentration dependent manner (Figure 4.2b). A 90 %,  

65% and 64% decrease in EPS production by S. mutans was observed when treated with 4 

mg ml-1, 2mg ml-1 and 1mg ml-1 of CaF2-NPs respectively, as compared to untreated 

sample. The highest EPS production was seen in control when no nanoparticles were 

present. When nanoparticle concentration increased, the EPS production decreased.   

 

Figure 4.2   Inhibitory effect of sub-MIC concentration of CaF2-NPs (a) Biofilm 

formation (b) EPS production. Data are mean ± S.D. (n=3), statistical significance as 

compared with the untreated control (p< 0.05) denoted by an asterisk (*). 
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4.3.5 Growth curve pattern 

Growth curve was used to investigate the effect of CaF2-NPs on S. mutans growth. The 

results displayed a typical sigmoidal pattern and there was no significant variation 

between control and treated samples (Figure 4.3). The results clearly indicated that 

bacterial growth is not hindered at concentration of nanoparticle used in the study. 

 

Figure 4.3 Growth curves of CaF2-NPs treated and untreated S. mutans (O.D values, 1:10 

times diluted). The data represent mean ± S.D.  

4.3.6 Effect on adherence  

The inhibitory effect of different concentration of CaF2-NPs on initial adherence of S. 

mutans is shown in Figure 4.4 (a). There was 70%, 57% and 44% inhibition of attachment 

of S. mutans to the glass surface in presence of 4mg ml-1, 2mg ml-1 and 1 mg ml-1 

concentrations of CaF2-NPs respectively. 

4.3.7 Dispersion of preformed biofilm 

Different concentrations of CaF2-NPs  were used to evaluate their effect on treatment of  

preformed biofilm of S. mutans (Figure 4.4b).There was 11% , 7% and 5% reduction of 

preformed biofilm on treatment with 4mg ml-1, 2mg ml-1 and 1 mg ml-1 concentrations of 

CaF2-NPs  respectively. 

 



                                                                                                   Chapter 4 

 
 

76 
 

  

Figure 4.4 Inhibitory effect of sub-MIC concentration of CaF2-NPs (a) Adherence assay 

(b) Preformed biofilm reduction. Data are mean ± S.D. (n=3), statistical significance as 

compared with the untreated control (p< 0.05) denoted by an asterisk (*). 

4.3.8 Reduction in glucan production 

A significant reduction in both insoluble glucan and soluble glucan production was 

observed in S. mutans when treated with CaF2-NPs (Figure 4.5). Almost 90% reduction 

was observed in treated sample as compared to control. Soluble and insoluble glucans 

both were reduced to the same extent in the present experiment. 

 

Figure 4.5 Inhibitory effect of CaF2-NPs on synthesis of water soluble polysaccharide 

and water insoluble polysaccharide (Glucans). Data are mean ± S.D. (n=3), statistical 

significance as compared with the untreated control (p< 0.05) denoted by an asterisk (*). 
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4.3.9 Decrease in rate of acid production and stress tolerance  

As shown in Figure 4.6, the acid tolerance ability of S. mutans was inhibited appreciably 

in the presence of CaF2-NPs. The onset pH of 7.2 dropped to 4.5 in control while in 

treated samples (4 mg ml-1) final pH was 5.2. Furthermore, the rate of initial pH drop in 

10 min was calculated to be 0.14 min-1 to 0.09 min-1 in case of control and treated 

samples respectively, demonstrating pronounced reduction in the acid production ability 

of S. mutans. 

 

Figure 4.6 Effect on sub-MIC levels of CaF2-NPs on glycolytic pH-drop (the values 

enclosed in box corresponds to the initial rate of pH drop). Data are mean ± S.D. (n=3), 

statistical significance as compared with the untreated control (p< 0.05) denoted by an 

asterisk (*). 

4.3.10 Expression profile of virulence gene 

Quantitative RT-PCR was performed to gain insight into the effect of CaF2-NPs treatment 

on the expression of virulence genes (gtfC, vicR, ftf, comDE, spaP) in S. mutans. An 

entire set of genes was down regulated after treatment with nanoparticles (Figure 4.7). 

The expression spaP decreased by 80% ant that of vicR and comDE genes by > 50%.  The 

decrease in expression of gtfC gene was 32% and a suppression of 14% was observed in 

the expression of ftf gene.   
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Figure 4.7 Expression profile of various genes of S. mutans in response to treatment of 

sub-MIC concentration of CaF2-NPs. The data presented were generated from at least 

three independent sets of experiments (Data is mean ± Standard deviation) Statistical 

significance as compared with the untreated control (p< 0.05) denoted by an asterisk (*). 

4.3.11 Impairment of biofilm architecture visualized through confocal microscopy 

Confocal laser scanning microscopy (CLSM) images of S. mutans illustrate an apparent 

obliteration of biofilm architecture in the presence of CaF2-NPs without affecting its 

growth (Figure 4.8). The upper panel shows the control sample images while lower three 

panel represent images of biofilms when treated with various concentrations of CaF2-NPs. 

In control images (Figure 4.8a-d) majority of cells shows green fluorescence with a mat 

of S. mutans cells showing rich biofilm architecture while in treated samples (Figure 4.8e-

h) cells were highly dispersed and alive, which depicted inhibition of biofilm formation 

and not the viability.    



                                                                                                   Chapter 4 

 
 

79 
 

 

Figure 4.8 Effect of CaF2-NPs on biofilm architecture: Confocal laser scanning 

micrographs of control biofilm (a, b, c, d), micrographs of treated biofilm 4mg/ml (e, f, g, 

h), 2mg/ml (i, j, k, l), 1 mg/ml (m, n, o, p).  

4.3.12 Insignificant effect on cell wall  

TEM analysis was performed to visualize the effect of nanoparticle on the cell wall of S. 

mutans (Figure 4.9). In control, the cell wall is intact with the healthy intracellular content 

of bacterium (Figure 4.9a) on the contrary in image of treated samples (Figure 4.9b) little 

damage was observed (indicated by red arrows) but the damage was not prominent and 

majority of cells were having intact membrane. The results suggest that there was 

insignificant damage to cell walls in the presence of CaF2-NPs.  
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Figure 4.9 Transmission electron microscopy images of Streptococcus mutans: (a) 

control (b) treated with sub-MIC concentration of CaF2-NPs (Magnification of 4000X). 

4.3.13 Cytotoxicity  

Relative cell viability of HEK-293 cell line in presence of CaF2-NPs is shown in Figure 

4.10. Almost 100% viability was observed at all concentration (4 mg ml-1, 2 mg ml-1 and 

1 mg ml-1). Thus test concentration of CaF2-NPs are nontoxic to HEK-293 cell line. 

 

Figure 4.10 In vitro cytotoxicity assay (MTT) on HEK-293 cell line. 
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4.3.14 Oral toxicity profile 

No mortality was observed after oral toxicity assay and animals did not exhibit any 

behavioural or weight changes. Thus, indicating that nanoparticles were absolutely non- 

toxic to the animals used in this study. 

4.3.15 In vivo Caries reduction  

The weekly recovery of S. mutans cells over 5 weeks post treatment is presented in Table 

4.1. There was a substantial decrease in the recovery of S. mutans cells from rats treated 

with nanoparticles as compared to the untreated group (control). It was also found that 

there was significant reduction of caries score in rats treated with CaF2-NPs as compared 

to the control. Figure 4.11 shows the reduction in smooth as well as sulcal surface caries 

after treatment. The overall reduction in smooth surface caries was comparable to sulcal 

surface caries post treatment. The severity of smooth surface caries was reduced to 52.6 

% (slight), 72.1% (moderate) and 70.7% (extensive) as compared to sulcal surface caries 

where they were reduced by 50.8% (slight), 65.6% (moderate) and 69.5% (extensive). 

However, the reduction in the extensive caries was found to be pronounced over slight 

and moderate caries. 

Table 4.1 Recovery of S. mutans on the following weeks after inoculation (×104 CFU) 

Weeks Control Treated 

1 110.77± 5.06 127.56 ± 4.44 

3 127.67 ± 2.12 110.83 ± 6.01 

6 148.06 ± 6.73 95.77 ± 2.82 

8 166.35 ± 7.04 88.89 ± 4.56 

10 188.08 ± 7.02 74.08 ± 3.87 
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Figure 4.11 Effect of sub- MIC level of CaF2-NPs on dental caries development in rats; 

Data represents mean± S.D. of Keyes’ score. 

4.3.16 Scanning electron micrograph of untreated and treated rats teeth  

The SEM analysis of the rats teeth clearly depicted the demineralization of the dental 

margins in untreated group Figure 4.12a while the groups treated with CaF2-NPs showed 

smooth dental margins as clearly shown in Figure 4.12a'. Furthermore, the Figure 4.12b, c 

and Figure 4.12b', c' show the dental surface of untreated and treated tooth respectively. It 

was observed that in untreated samples the surface of the tooth has an evident biofilm 

embedded in the glucan pool, whereas in the treated groups the dental surface was found 

clear from any such exopolysaccharide projections as previously detectible in control. 
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Figure 4.12 SEM analysis of rats’ teeth to evaluate the effect of CaF2-NPs on caries 

development and extent of demineralization in treated (lower panel) and untreated groups 

(upper panel): (a) Untreated rat tooth showing caries (magnification 200X), (b, c) 

magnified view of marked region showing biofilm of S. mutans on untreated tooth 

(magnification 10X), (a') CaF2-NPs treated tooth (magnification 200X), (b', c') magnified 

view of marked region of a treated tooth (magnification 10X). 

4.4 Discussion 

S. mutans is the key organism of dental caries and its cariogenic potentials are well 

documented [Islam et al. 2008; Dmitriev et al. 2011]. Control of its virulence factors like 

exopolysaccharide production, biofilm formation, aciduracity and acidogenesis and 

enhancement of remineralization of tooth enamel are major approaches which can be used 

for combating dental caries. In the present study, we have reported CaF2-NPs to be very 

effective in suppressing S. mutans biofilm and other virulence factor (exopolysaccharide 

formation, acidogenesis, aciduracity).  

CaF2-NPs were prepared using a co-precipitation method a type of liquid- phase methods. 

The main advantages of using liquid phase methods are simple methodology and high 

surface activity of produced nano-materials [Omolfajr 2011]. Transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) results revealed the shape 

and size of nanoparticles. The particles are not fully dispersed but are agglomerated. The 

larger particles in SEM image exhibit several spherical purtubances on their surface 
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implying that these larger particles are formed by fusion of smaller particle during their 

preparation process [Pandurangappa & Lakshminarasappa 2011]. CaF2-NPs show 

characteristic absorption peaks in UV range. The origin of these bands is due to the 

nanosize of particle. It has been suggested that large surface to volume ratio of 

nanoparticle results in the development of voids on the surface and inside the 

agglomerated nanoparticles. These voids lead to fundamental adsorption in UV range 

[Kumar et al. 2007]. Furthermore, it is well established that surfaces of nanoparticle 

comprise of numerous defects like Schottky or Frenkel resulting in absorption of light by 

nanocrystal [Zang et al. 2008]. Thus, absorption band at 202 nm in the present study 

confirms formation of CaF2- NPs. FTIR spectrum was measured to analyze the structural 

properties and bonds of CaF2- NPs. Two strong peaks at ~3400 cm-1 and ~1678 cm-1 in 

FTIR spectrum are due to H-O-H bending of water molecule. Band at ~ 430 cm-1 arise 

due to hindered rotation of hydroxyl ion [Khan et al.  2013]. The XRD pattern of CaF2- 

NPs matched well with the standard JCPDS card NO 87-0971 which reveals a cubic 

phase fluorite type structure [Fujihara et al. 2002]. The broad peaks in XRD pattern 

suggest small crystalline size [Pandurangappa & Lakshminarasappa 2011]. The crystaline 

size was calculated to be ~ 6.8 nm by using scherer`s formula. Moreover, from XRD 

spectra it can be estimated that the particles are in single phase and pure sample has been 

synthesised as there is no extra peaks found. 

Formation of biofilm is the crucial virulence factor of S. mutans by virtue of which it 

causes dental caries [Hamada & Slade 1980; Nance et al. 2013]. Biofilm are adherent 

bacterial communities embedded in the hydrated matrix of exopolysaccharide and 

exhibiting a complex three dimensional structure [Costerton et al. 1999; Selwitz 2007]. 

The cells in biofilms behave differently in their functionalities as compared to their 

planktonic counterparts [Fux et al. 2003]. Biofilm architecture imparts bacteria with the 

ability to resist antibiotic and lead to persistent bacterial infection [Mah & O’Toole 2001]. 

CaF2-NPs were found to substantially decrease the biofilm formation after 24 hours of 

incubation. EPS (Exopolysaccharide) is essential for the formation, maintenance and 

spread of biofilm and it is one of the key virulence factors of S. mutans [Flemming & 

Wingender 2010]. A considerable reduction in EPS production in the presence of CaF2-

NPs may be associated with the diminution of biofilm forming ability of S. mutans. 
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Moreover, the similarity in the growth curve of treated and control samples indicated that 

CaF2-NPs reduced biofilm formation without affecting bacterial viability. 

Attachment of S. mutans cells to the adhering surface is significant steps in the process of 

caries formation and its deterrence could be a prophylaxis against its virulence [Islam et 

al. 2008]. Adherence occurs mainly by virtue of the hydrophobic interactions between the 

cells and the adhering surface. The marked inhibition in adherence after short term 

exposure of sub inhibitory concentrations of CaF2-NPs shows that nanoparticles are 

modifying the physical properties of cell surface which intern reducing the hydrophobic 

interactions between S. mutans and adhering surface. Moreover, very less reduction in 

preformed biofilm on treatment with CaF2-NPs suggest that these nanoparticle are best 

suited in prophylactic treatment of dental caries. Glucan is the main exopolysaccharide 

produced by S. mutans and are integral components in the sucrose dependent colonization 

of S. mutans biofilm on the tooth surface. It is elicited from the data that there is a 

phenomenal reduction in glucan synthesis. Almost equal reduction was observed in both 

water soluble and water insoluble glucans. This indicates that CaF2-NPs are acting on the 

GTFs and impairing their enzymatic activity, thus the reduction in EPS production was 

due to malfunctioning of GTFs. 

Acid production and acid tolerance are cardinal virulence factors which attributes to the 

cariogenic ability of S. mutans [Kuramitsu 1993]. Pursuing these abilities S. mutans easily 

survives in stress condition and impose stress on other species of cariogenic plaque 

eventually evolves out as dominant species. Furthermore, the sustained pH values below 

pH 5.4 aids in the demineralization of enamel and development of dental caries [Banas 

2004].  

The rate of pH drop reflects acidogenic capacities of the cells, while final pH values of 

the suspensions represent acid tolerance [Gregoire et al. 2010]. In the present study the 

results show a significant drop in the final pH of the suspension in the presence of CaF2-

NPs suggesting deterioration in the acid tolerance capacity of S. mutans. Along with this 

the rate of pH drop was decreased in the presence of CaF2-NPs as compared to control 

which implies the impairment of acid production capacity. 

It is evident that CaF2-NPs are acting against some of the major virulence factors of S. 

mutans. One of the reasons behind this anti biofilm property of CaF2-NPs may be the 
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release of fluoride ions. Fluoride ions have been reported to act directly or in the form of 

metal complexes to inhibit many enzymes [Li 2003]. In S. mutans, fluoride ions combine 

with H ions forming HF molecule, which can eventually inhibit the glycolytic enzymes 

like Enolases [Sutton et al. 1987; Eshed et al. 2013]. In addition, a fluoride ion hinders 

the proton extrusion by F-ATPases through lending a proton back into the cell [Li 2003; 

Svensäter et al. 2000]. Thus, it is possible that suppression of the acid and glucan 

production ability in the presence of CaF2-NPs is due to release of fluoride ions from the 

nanoparticles.  

Gene expression profile of selected genes of S. mutans revealed a considerable reduction 

in gene expression in the presence of CaF2-NPs. spaP (Ag I/II or P1) is a protein of the 

antigen I/II family is crucial in S. mutans for initial adhesion to tooth surface [Khan et al. 

2010]. Down regulation of this gene in S. mutans probably results in poor adhesion and 

reduced ability to form biofilm on smooth surfaces. Gene vic R is a two component 

regulatory system and is known to regulate a set of gene encoding for important surface 

proteins which are critical for sucrose dependent adherence to a smooth tooth surface 

[Hasan et al. 2012]. Thus suppression of these two genes may further lead to inhibition of 

adhesion and may be a cause of anticariogenic action. In addition, gtf C and ftf which 

encode GTFC and FTF enzyme that catalyse the cleavage of sucrose to synthesize 

extracellular glucan and fructan polysaccharides [He et al. 2012], were also down-

regulated. The reduction in aforesaid genes will thereby suppress the exopolysaccharide 

synthesis pathway eventually inhibiting the biofilm formation. Furthermore, com DE 

which is a part of the quorum sensing cascade of S. mutans was also suppressed 

considerably. It has been shown to regulate genetic competence, acid tolerance, and 

biofilm formation [Yung-Hua et al. 2002]. Hence, down regulation of this gene will not 

only attenuate internal communication system, but also adversely affect the acid tolerance 

potential of S. mutans. As the gene examined are only selected set of genes of S. mutans 

genome, additional assessment of other virulence gene is further required to get a broader 

spectrum of effect of CaF2-NPs on cariogenic potentials of S. mutans. 

The findings of the present study indicated that anti biofilm effect of CaF2-NPs against S. 

mutans is a combination of both the suppression in enzymatic activity associated with 

glucan synthesis and of gene involved in adhesion, acid production, acid tolerance and 

quorum sensing. Interaction of CaF2-NPs with enzymes and suppression of genes are 
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interlinked to each other at different steps of regulatory network. This may lead to 

impairment of the whole metabolic network, eventually forbidding bacterial pathogenesis. 

Confocal laser scanning microscopy results were in consistence with the above discussed 

results. A disruption of biofilm architecture was observed by CLSM in the presence of 

sub-MIC concentrations of CaF2-NPs. In control sample a green mat is clearly visible 

which shows that the cells are interacting with each other and forming a healthy biofilm 

while in treated samples there were more live cells as compared to dead cells, but less 

biofilm was formed suggesting that at tested concentrations there was a tremendous 

decrease in biofilm formation ability of S. mutans. Moreover, TEM images of S. mutans 

are exhibiting insignificant destruction of peptidoglycan layer and there is no damage to 

the cells which validate that CaF2-NPs is not affecting bacterial viability. 

Further, the use of animal models to study the S. mutans-host interactions under 

controlled conditions demonstrated that the daily topical exposure CaF2-NPs dramatically 

affected the ability of S. mutans to colonize the tooth surfaces, consequently inhibiting the 

development of smooth surface caries and sulcal surface carious lesions.  

These nanoparticles were able to lodge themselves deep in the cavity and could release 

calcium fluoride in a sustained manner to mineralize the cavity. However, the depth of 

slight caries was not deep enough to lodge the nanoparticles within them. This is the 

probable reason for the reduction of extensive caries over the slight and moderate caries. 

The in vivo effect of CaF2-NPs was also confirmed by the scanning electron micrographs 

demonstrating a reduced demineralization and biofilm formation on tooth surfaces treated 

with CaF2-NPs. It has been reported that topical application of fluoride on tooth surface 

results in the formation of calcium fluoride like material which act as the reservoir of 

fluoride ions that when released, protect the tooth's surface and help in remineralisation 

[Rošin-Grget & Linčir 2001; Rølla & Saxegaard 1990]. Hence, the reduction in caries 

may be due to attachment of nanoparticle on the tooth surface and sustained release of 

fluoride ions [Sun & Chow  2008; Xu et al. 2008] from CaF2-NPs, which not only helps 

in the suppression of virulence traits of S. mutans but also promote remineralisation.  

Despite the potential benefits of using nanoparticle it is necessary to be concerned about 

their probable harmful effects to human health. In present study the most likely harmful 

effect may be the entry of nanoparticles in the human gastrointestinal tract. CaF2-NPs 
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were found to be non-cytotoxic to human normal cell line (HEK-293) and there was no 

oral toxicity. Thus, substantiating no detrimental effect to human normal cells. Apart 

from that there is diverse microbial ecosystem in human intestine and metabolic activities 

of these microbes directly actuate human health [Rajilić-Stojanović et al. 2007]. Hence, it 

is important to address the interaction of gut microbes with CaF2-NPs and whether these 

interactions are deleterious, positive, or insignificant. Consequently, further research is 

required in this aspect before using CaF2-NPs in therapeutics. 

In conclusion, the present study validates the anti-cariogenic potential of CaF2-NPs 

against S. mutans. These nanoparticles appears to be ideal for prevention of dental caries 

with no oral toxicity. Moreover, they are non-cytotoxic to normal human cell line (HEK-

293). Thus, CaF2-NPs could possibly be used as topical applicant on tooth surface and as 

a potential therapeutic agent against S. mutans to inhibit caries related problems.  
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5.1 Introduction 

Bacterial biofilm are posing a global health concern as they are highly resistant to 

antibiotics and are cause of several chronic infections [Costerton et al. 1999; de la 

Fuente-Núnez et al. 2013]. Biofilms are a well-organized association of bacteria 

embedded in the pool of self- produced polymeric matrix [Høiby et al. 2010]. They have 

tendency to grow on surfaces of medical implants such as sutures, catheters, dental 

implants and cause infections which can only be treated by their removal. Thus, not only 

increasing the cost of treatment, but also imposing mental stress to patients [Costerton et 

al. 2005; Høiby et al. 2011]. Alternate strategies for inhibition of biofilm and its control 

are urgently needed. Nanoparticle based antimicrobials have been widely studied in 

recent years [Hernández-Sierra et al. 2008; Eshed et al. 2012]. In particular, silver 

nanoparticles (Ag-NPs) and their composites have gained major attentions as they possess 

exceptional antibacterial properties, broad antimicrobial spectrum and negligible 

tendency to induce bacterial resistance [Radziga et al. 2013; Gupta et al. 2014; Rai et al. 

2014]. The suggested mechanisms behind the antibacterial activity of Ag-NPs are slow 

and sustained release of Ag+ ions, direct damage to cell wall and production of reactive 

oxygen species (ROS) [Prabhu & Poulose 2012]. 

The major drawback of nanoparticles is colloidal instability and tendency to aggregate 

which reduce their antibacterial efficacy. Loading of nanoparticle on the supporting 

matrix is one of the strategies to avoid this problem [Zhou et al. 2013]. Graphene oxide 

(GO) has emerged as an excellent supporting material for nanoparticles. GO contain a 

single atomic sp2 hybridized carbon layer with various functional groups like hydroxyl, 

epoxy, carbonyl, carboxyl on both accessible sides which are reducible [Zhang et al. 

2012]. Furthermore, it is highly hydrophilic and readily forms stable colloidal dispersions. 

Hence, it acts as a good matrix for growing and stabilizing nanoparticles [Ocsoy et al. 

2013; Kulshrestha et al. 2014]. However, widely used reducing agents like Sodium 

borohydride (NaBH4), hydrazine are highly toxic and poisonous. They have both 

biological and environmental hazard [Wang et al. 2011]. Moreover, these processes are 

time consuming and cost ineffective as handling of hazardous waste generated may 

significantly increase the production cost on an industrial scale. Green synthesis of 

nanoparticles is an eco-friendly method and has potentials to replace chemical and 

physical methods [Mohanpuria et al. 2008]. Plant extracts offer a superior platform for 
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the formation of nanoparticle because along with being non-toxic they also act as natural 

capping agents. They are cheap and easily available. Furthermore, they contain large 

quantities of secondary metabolite which can be used as reducing and stabilizing agent 

[Kharissova et al. 2013; Philip et al. 2011; Patra et al. 2015]. Lagerstroemia speciosa (L.) 

Pers. (LS) plant belongs to the family Lythraceae and has been known to possess 

medicinal properties [Chan et al. 2014; Park et al. 2014]. Its leaf extract has been widely 

studied for its therapeutic properties and have recently been used in formation of silver 

nanoparticles [Sundararajan et al. 2014]. Although antioxidant and antibacterial properties 

of floral extract of LS have been reported, but there are no studies on its use in nano-

material formation.  

It is the first report where we have bio-fabricated silver nanoparticle onto the surface of 

graphene oxide using a floral extract of Lagerstroemia speciosa (L.) plant and have 

obtained a highly dispersed and stable graphene oxide-silver nanocomposite (GO-Ag). 

The method is simple and have no environmental and biological hazards. Recently, many 

stable silver nanocomposites have been developed by researchers with GO sheets 

utilizing both chemical and biological synthesis [Upadhyay et al. 2014; Tang et al. 2013; 

Shao et al. 2015]. But there are scarce reports on the antibiofilm efficacy of these 

composites. In view of this fact, our study highlight the potentials of GO-Ag as an 

antibiofilm agent on both gram-negative (Enterobacter cloacae) and gram-positive 

(Streptococcus mutans) bacteria and provide an in-depth analysis on its mode of action in 

both the bacteria. 

5.2 Experimental Overview 

The synthesis of GO and green synthesis of graphene oxide silver nanocomposite was 

performed using methodology described in section 2.2.3.1 and section 2.2.3.4 

respectively. The characterization of GO and GO-Ag was done by UV-visible 

spectroscopy (2.2.4.1), TEM (2.2.4.2), XRD (2.2.4.5) and EDX (2.2.4.6). The sub-MIC 

concentrations of GO and GO-Ag against S. mutans and E. cloacae were estimated by 

method outlined in section 2.2.5. The effect of sub-MIC concentration of GO and GO-AG 

on biofilm forming abilities of both the strains were evaluated by crystal violet assay 

described in section 2.2.7. Growth curve pattern of S. mutans and E. cloacae was 

investigated in presence of sub-MIC concentrations of GO and GO-Ag by method 
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provided in section 2.2.11. Furthermore, effect of sub inhibitory concentration of GO-Ag 

on cell membrane integrity of both the strains was evaluated (Section 2.2.15). Amount of 

ROS produced in the presence of sub-MIC concentration of GO-Ag in both the strains 

was also estimated (section 2.2.16). SEM and CLSM analysis of GO-Ag treated biofilms 

was performed using methodology outlined in section 2.2.17. Moreover, the effect of GO-

Ag on expression of gene involved in S. mutans virulence pathway was studied by 

quantitative RT-PCR as outline in section 2.2.18. Cytotoxicity assay was also performed 

on HEK-293 cell line (section 2.2.21). 

5.3 Results  

5.3.1 Characterization of GO-Ag 

 

Figure 5.1 Characterization of GO-Ag (a) TEM image of GO (b) TEM image of GO-Ag 

(c) Particle size distribution of silver nanoparticles (d) UV-vis spectra of GO and GO-Ag. 

The TEM micrograph of GO (Figure 5.1a) displayed a single layer of graphene oxide 

sheet. While image of GO-Ag (Figure 5.1b) revealed well dispersed silver nanoparticle 

embellished on the surface of GO nanosheets. The average size of silver nanoparticle was 

in range of 60-100 nm (Figure 5.1c). Formation silver nanoparticle on the surface of GO 
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was monitored using UV- visible spectroscopy (Figure 5.1d). Figure 5.2a depicts the X-

Ray diffraction pattern of GO. The sharp diffraction peak of GO was observed at 9.8º. 

While in XRD pattern of GO-Ag (Figure 5.2b) along with peak at 9.8º a broad peak 

appeared at 24.26º. Energy-dispersive X-ray spectroscopy (EDX) was used to analyse the 

chemical composition of GO and GO-Ag. Peaks corresponding to C and O were observed 

in spectrum of GO (Figure 5.3a) while spectrum of GO-Ag shows peaks corresponding to 

C, O and Ag (Figure 5.3b).The inset tables give the weight percent and atomic percent of 

elements present in both the compound. 

 

Figure 5.2 XRD pattern of (a) GO and (b) GO-Ag. 

5.3.2 Antibacterial concentrations of GO-Ag nanocomposite 

The MIC values of GO-Ag were much lower in E. cloacae as compared to S. mutans 

although the MIC value of GO was same for both the strains (Table 5.1). The MBC of 

GO-Ag for E. cloacae and S. mutans were 94 µg ml-1 and 188 µg ml-1 respectively 

(Figure 5.4). As the antibacterial concentrations were different for both the categories of 

bacteria so we used different sub inhibitory concentrations of GO-Ag in E. cloacae (24 

µg ml-1  and 12 µg ml-1) and S. mutans (47 µg ml-1 and 24 µg ml-1) for further 

experiments. 
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Figure 5.3 EDX spectra of (a) GO and (b) GO-Ag. 

Table 5.1 MIC values of GO and GO-Ag 

S. No. Nanoparticle S.  mutans E. cloacae 

1) Graphene oxide >1500 µg/ml >1500 µg/ml 

2) Graphene oxide - silver nanocomposite 94 µg/ml 47 µg/ml 

 

 

Figure 5.4 MBC of GO and GO-Ag against S. mutans and E. cloacae 
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5.3.3 Inhibitory effect on biofilm forming abilities Streptococcus mutans and 

Enterobacter  cloacae 

There were 90% and 49% reduction in the presence of 24 µg ml-1 and 12 µg ml-1 of GO-

Ag respectively in E. cloacae, while, at the same concentrations GO reduced the biofilm 

to 35% and 20% (Figure 5.5b). Similarly, 89% and 34% reduction was observed in S. 

mutans biofilm when treated with 47 µg ml-1 and 24 µg ml-1 of GO-Ag respectively, 

however, in the presence of same concentrations of GO there was only 18% and 15% 

reduction in S. mutans biofilm (Figure 5.5a). 

 

Figure 5.5 (a) Effect of sub inhibitory concentrations of GO and GO-Ag on S. mutans 

biofilm formation, where T1 is 47 µg ml-1 and T2 is 24 µg ml-1 (b) Effect of sub 

inhibitory concentrations of GO and GO-Ag on E. cloacae biofilm formation ,where T1 is 

24 µgml-1 and T2 is12 µg ml-1 (c) Effect of GO and GO-Ag on growth curve pattern of S. 

mutans (d) Effect of GO and GO-Ag on growth curve pattern of E. cloacae (* means p 

value <0.05). 
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5.3.4 Effect on growth curve  

Growth curve assay was performed in the presence of sub inhibitory concentrations of 

GO and GO-Ag.  There was no change in pattern of growth curve in S. mutans (Figure 

5.5c), while in E. cloacae the growth pattern of GO-Ag treated bacteria was altered 

considerably, a delay in exponential phase was observed (Figure 5.5d).  

5.3.5 Protein leakage assay 

Further, the effect of GO-Ag on cell membrane integrity was evaluated by protein leakage 

assay. Figure 5.6a revealed that in E. cloacae after 4h of treatment amount of protein 

released was 0.13 mg ml-1 while in S. mutans it was only 0.03 mg ml-1 which is 

negligible.  

5.3.6 Reactive oxygen species production 

Reactive oxygen species detection assay revealed the amount of reactive oxygen species 

(ROS) generated in E. cloacae was much higher than S. mutans after 12 h of incubation 

(Figure 5.6b).  

 

Figure 5.6 (a) Effect of GO-Ag on cell membrane integrity of S. mutans and E. cloacae 

(b) Amount of reactive oxygen species generation by GO-Ag in S. mutans and E. cloacae 

(Data is mean ± Standard deviation, * represent p value < 0.05). 

5.3.7 Microscopic analysis of biofilms    

The scanning electron micrographs of S. mutans and E. cloacae are shown in Figure 5.7. 

Upper panel represents the effect of GO and GO-Ag (47 µg ml-1) on S. mutans biofilm 

(Figure 5.7a, b) while the lower panel displays the effect of GO and GO-Ag (24 µg ml-1) 
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on E. cloacae biofilm (Figure 5.7e, f). The results depict a substantial decrease in biofilm 

architecture on treatment of GO-Ag in both the cases. Furthermore, the magnified view of 

cells of biofilm show no changes in cell morphology of S. mutans in the presence of GO-

Ag (Figure 5.7c, d). However, GO-Ag treated E. cloacae displayed a damage in cell wall 

and decreased intracellular density (Figure 5.7g, h). Confocal microscopy analysis was 

performed on both the bacterial biofilms by using SYTO 9 (green fluorescence, live) and 

PI (Red fluorescence, dead). Images of SYTO9/PI stained biofilms of and EC15 in shown 

in Figure 5.8.  

 

Figure 5.7 Scanning electron microscopy images of biofilm treated with sub inhibitory 

concentration of GO-Ag: (a, b) inhibition of S. mutans biofilm, (e, f)  inhibition of E. 

cloacae biofilm, (c) magnified view of S. mutans in control biofilm, (d) magnified view 

of S. mutans in treated biofilm showing no change in cell wall integrity, (g) magnified 

view of E. cloacae in control biofilm, (h) magnified view of E. cloacae in treated biofilm, 

red arrow depicting  loss of intracellular component. 
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Figure 5.8 Confocal laser scanning microscopy images stained with SYTO9 (green, live) 

and PI (red, dead): (a, c) control biofilm of S. mutans, (b, d) treated biofilms of S. mutans, 

(e, g) control biofilms of E. cloacae, (f, h) treated biofilms of E. cloacae, Scale bar = 

5µm. 

5.3.8 Quantitative RT- PCR analysis  

Figure 5.9 shows the gene expression profile of three important genes of S. mutans (com 

DE, spa P and vic R) which play major role in process of biofilm formation. There was 

downregulation in gene expression of all these genes. 
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Figure 5.9 Gene expression profile of specific genes involved in the formation of S. 

mutans biofilm. Quantitative RT-PCR was carried out in triplicate. Data presented were 

generated from at least four independent sets of experiments (Data is mean ± Standard 

deviation, * represent p value < 0.05). 

5.3.9 Cytotoxicity on HEK -293 cell line 

MTT assay was performed to assess the effect of GO-Ag on HEK-293 cell line (Figure 

5.10). The IC50 value of GO-Ag was 750µg ml-1 while it was 1500µg ml-1 for GO. This 

value was much higher than the concentrations used in present study suggesting that these 

nanoparticle are non-toxic to human normal cell line at antibacterial concentrations of 

these nanoparticles (94 µg ml-1 in S. mutans and 47 µg ml-1 in E. cloacae). 

 

Figure 5.10 Effect of GO and GO-Ag on viability of HEK-293 cell line. 
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5.4 Discussion 

Plant extracts have been known to possess large amount of secondary metabolites which 

can act as reducing and capping agents for nanoparticles [Kharissova et al. 2013; Philip et 

al. 2011; Patra et al. 2015]. The green synthesis of nanoparticle is environment friendly 

mode and is less hazardous [Mohanpuria et al. 2008]. In the present study graphene 

oxide-silver nanocomposite (GO-Ag) was synthesized by simultaneous reduction and 

stabilization of silver nanoparticle on to the surface of graphene oxide using 

Lagerstroemia speciosa floral extract. The schematic representation of the process of GO-

Ag preparation is shown in Figure 5.11. 

 

Figure 5.11 Schematic representation of green synthesis of GO-Ag: (a) Graphene oxide 

was prepared by Hummers method, (b) plant extract was used to reduce GO to RGO, (c) 

silver nanoparticle was reduced and stabilized onto the surface of GO with help of plant 

extract. 

Morphological aspects of GO and GO-Ag were analysed using Transmission electron 

microscopy (TEM). The average size of silver nanoparticle was in range of 60-100 nm. 

The results validate that graphene oxide is acting as a supporting agent for silver 

nanoparticle and also reducing the agglomeration of nanoparticles [Zhou et al. 2013]. 

Formation silver nanoparticle on the surface of GO was monitored using UV- visible 

spectroscopy. A peak was observed at 230 nm in UV-visible spectrum of GO which is 

characteristic peak of GO due to π−π* transitions of the aromatic C−C bonds [Shao et al. 

2015]. The UV-visible spectrum of GO-Ag showed an additional peak at 420 nm along 

with peak at 230 nm. The peak at 420 nm corresponds to surface plasmon resonance peak 
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of silver nanoparticle [Chevirona et al. 2014], suggesting the formation of silver 

nanoparticles onto the surface of graphene oxide. Broadening and shifting of the XRD 

peak of GO to around 24º suggest the formation of reduced graphene oxide [Seema et al. 

2012]. Furthermore, sharp peaks at 38.1º, 44.3º, 64.4º and 77.4º in XRD pattern of GO-

Ag can be assigned to the (111), (200), (220), and (311) diffraction cubic crystal planes of 

Ag (JCPDS No. 04-0783), demonstrating the formation of metallic silver nanoparticles 

[Ma et al. 2011]. The strong signal of silver in the EDX analysis of GO-Ag along with 

carbon and oxygen confirms the formation of silver nanoparticle on graphene oxide 

sheets. 

The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations 

(MBC) were estimated for gram-positive and gram-negative bacterial species by taking 

Streptococcus mutans and Enterobacter cloacae as model organisms.  It has been 

demonstrated that enhanced antibacterial activity of graphene nanocomposites are due to 

nonspecific binding abilities of GO sheets to microbes [Park et al. 2010]. Thus, 

stabilization of silver nanoparticle onto the GO sheets provide better platform for 

interaction of nanoparticle with microbes [Xu et al. 2011]. Silver nanoparticles are well 

known for their antibacterial properties although exact mechanism has not yet been 

reported. It has been suggested that production of reactive oxygen species (ROS) and 

release of silver ions are the main antibacterial properties of silver nanoparticles which 

may lead to oxidative stress and cellular damage [Shao et al. 2015]. Furthermore, the 

difference in antibacterial concentrations of GO-Ag for gram-negative and gram-positive 

bacteria may be attributed to the difference in cell wall composition with gram-positive 

bacteria having multi-layered peptidoglycan on their surface [Tang et al. 2013]. Thus, 

higher concentration of GO-Ag was required to kill S. mutans as compared to E. cloacae.  

The best way of to deal with the biofilm related infections is the prophylaxis treatment of 

biofilm [Lynch et al. 2008; Anghel et al. 2012]. Keeping this in view the biofilm forming 

abilities of both the bacteria were assessed in the presence of GO-Ag. It is apparent from 

the results that GO is acting as an inimitable nano-interface for interaction of microbe 

with silver nanoparticles and thus, considerably inhibiting the biofilm formation 

[Kulshrestha et al. 2014; Tang et al. 2013]. 

It is important to investigate whether the effect on biofilm is due to inhibition of biofilm 

forming pathway or because of the killing of planktonic cells. From the growth curve data 
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it may be elucidated that the reduction in biofilm in E. cloacae is due to killing of its 

planktonic cells. These results of cell membrane integrity assay were in accordance with 

the growth curve assay suggesting that GO-Ag is affecting the planktonic cells of E. 

cloacae by cell mebrane disruption which may be the reason of decreased biofilm 

formation. On contrary, S. mutans possess multilayer peptidoglycan which renders GO-

Ag unable to damage its, thus, the inhibition in its biofilm formation is due to some other 

factors.  

Reactive oxygen species (ROS) production is one of the primary mechanisms by virtue of 

which nanoparticle effects the bacterial cell functioning [Premanathan et al. 2011]. When 

the ROS production by nanoparticles exceeds the capacity of cellular antioxidant defence 

system, it can cause oxidative stress which can further initiate lipid per oxidation, thus 

damaging the cell membrane and eventually leading to cell death [Lovrić et al. 2005; 

Khan et al. 2012]. Hence, it can be elucidated from present results that amount of ROS 

produced by GO-Ag in S. mutans is not exceeding its antioxidant system subsequently not 

affecting its membrane integrity but in E. cloacae there is higher amount of ROS which is 

causing oxidative stress and cell death.  It is apparent from SEM results that E. cloacae 

cells are killed by pit formation in their cell wall while S. mutans are not directly 

damaged by GO-Ag and there is only reduction in biofilm. A considerable reduction of 

biofilm architecture was visualized by CLSM in S. mutans but there was no effect on 

viability of cells as indicated by green fluorescence of Syto-9. In E. cloacae there was a 

decrease in biofilm but the cell viability was affected as yellow fluorescence was visible 

due to entry of both the dyes. The microscopic analysis results were in accordance with 

the previous results validating that inhibition of biofilm in E. cloacae in presence of GO-

Ag is because of loss of viability of planktonic cells while in S. mutans the cells are viable 

after treatment with sub inhibitory concentrations of GO-Ag and the biofilm inhibition 

may be due the release of silver ions which can affect the biofilm cascade on genetic 

level. 

In the presence of GO-Ag there was downregulation of expression of important genes 

associated with process of biofilm formation of S. mutans. Gene spaP (Ag I/II) helps in 

sucrose independent initial adherence of S. mutans while vicR is a two component 

regulatory system and have been reported to regulate genes which are necessary for 

sucrose dependent adherence of S. mutans [Hasan et al. 2012; Khan et al. 2010]. Thus, 
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down regulation of these genes will affect the adherence of S. mutans to the surface which 

is first step of biofilm formation. comDE plays a crucial role in quorum sensing cascade 

of S. mutans [Hasan et al. 2014; Li et al. 2002]. Its downregulation will suppress the 

regulation of genetic tolerance, acid production and biofilm formation. From the results it 

became apparent that in S. mutans the inhibition in biofilm in presence of GO-Ag is due 

to effect on biofilm associated genes cascade.  

In conclusion, we demonstrate a simple and environment friendly approach for synthesis 

of well dispersed silver nanoparticle onto the surface of graphene oxide by using flower 

extract of Lagerstroemia speciosa (L.) Pers. The sub inhibitory concentrations of 

nanocomposite were found to inhibit biofilm formation of both gram-negative and gram-

positive bacteria but the mechanism of inhibition of biofilm is different in both the 

microbes. Moreover, nanocomposite was found to be non-toxic against HEK-293 cell line 

at used concentrations. Hence, GO-Ag may be assigned as potential prophylaxis for 

biofilm based infections although further research is required to elucidate specific biofilm 

inhibition pathway by proteomics and metabolomics approaches. 
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In present study we have developed nanoparticles and nanomaterials which efficiently 

inhibited the bacterial biofilm formation. The graphene/ zinc oxide nanocomposite 

(GZNC) was found to substantially impede biofilm and other cariogenic properties of S. 

mutans. Also the concentrations of GZNC used in the study were non-toxic to HEK-293 

cell line. Moreover, there was remarkable reduction in biofilm on GZNC coated acrylic 

tooth surface. Thus, GZNC emerged out as an alternate therapeutic agent against S. 

mutans biofilm based infections and may be used as a potential coating agent for dental 

implants. Although further research is required for its stability and toxicity before 

industrial implication. 

The in vitro studies showed that in the presence of sub inhibitory concentrations of 

calcium fluoride nanoparticles (CaF2-NPs) S. mutans displayed a considerable reduction 

in its cariogenic properties (adherence, biofilm formation, exopolysaccharide production, 

acid production and acid tolerance properties). Furthermore, in vivo experiments revealed 

a significant reduction in dental caries. Hence, CaF2-NPs have its perspectives as a 

promising topical applicant on tooth surface to curtail dental caries. 

The synthesis of silver nanoparticle onto the surface of graphene oxide was performed by 

environment friendly approach using floral extract of Lagerstroemia speciosa (L.) Pers. 

The sub inhibitory concentrations of graphene oxide silver nanocomposite (GO-Ag) were 

found to inhibit the formation of biofilm in both gram-positive and gram-negative 

bacteria. There was loss of viability in gram-negative bacteria while in gram-positive 

bacteria the inhibition of biofilm was due to its effect on the biofilm formation cascade. 

Thus, GO-Ag may have its application as a potential prophylaxis for biofilm associated 

infections although further studies are required to elucidate the specific biofilm inhibition 

pathway. 
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