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CHAPTER-1

INTRODUCTION

Indian mustard or Brassica juncea [L] Czern. & Coss. belongs to the
Brassicaceae (formerly Cruciferae) family of flowering plants, commonly known as
the mustard family. The name "mustard" is thought to have originated from the Latin
mustum-ardens (Weiss, 2002). The ground seed was often added to unfermented
grape juice, called “must”, and the second part of the word is derived from the Latin
ardere, meaning “to burn”, hence, “burning must”. The plant is erect green annual
herb of one to two meter height. Foliages are pale green with few hairs (pubescent) on
first leaves, leaf blades up to petioles. The lower leaves are deeply notched while
upper leaves are narrow and entire; flowers are small yellow with petals arranged
diagonally as Greek cross for which the family is named earlier as “Cruciferae”. The
inflorescence is raceme and flowers open progressively upwards down. The fruit
dehisces by two valves from the base known as siliqua. Seeds are medium sized,

round and dark brown in colour as compared to other species.

The mustard family is one of the largest dicot families of angiosperms
includes nearly 3500 species and 350 genera. It is amongst the ten most economically
important plant families with members used particularly for oil, vegetables,
condiments and fodder. The natural habitat of Brassica species encompasses
temperate to moderate subtropical zone which includes Northern India, Pakistan,
Myanmar and Nepal etc. The abundant occurrence of Brassica led scientists to incline
their research on brassica species after Arabidopsis, the model plant. Mustard is rabi
crop and is mainly cultivated on irrigated land of Indo-Gangetic plains in India. They
prefer moderate temperature of 24-28°C with an optimum of 20°C. Brassica grow
well in areas receiving 350-550 mm of rainfall. Plants are grown on wide range of
soils as alluvial, medium loam, sandy loam or heavy loam soils. Plant matures in 90-
100 days. The plant height approaches 90-200 ¢cm and flowers in the months of
November, December, January and February and the harvest season is in the months
of March, April and May. Of the Brassica family the seven important oilseed plants
are grown annually in India with the name rapeseed. These include Indiar mustard
(Brassica juncea [L.] Czern & Coss.), commonly called rai (raya or laha), the three

ecotypes of Indian rape, B. campestris L. ssp. oleifera viz., toria, brown sarson (lotni



and tora types) and yellow sarson, Swede rape or gobhi sarson (B. napus L.),
Ethiopian mustard or karan rai (B. carinata Braun.) and taramira or tara (Eruca sativa
Mill.). B. juncea is the dominating species and considered as of native origin along
with B. campestris L. and B. napus L. which are the important sources of edible oil in
India. The projected demand for oilseeds in India is around 34 million tonnes by
2020, of which about 14 million tonnes (41%) is to be met by rapeseed mustard.
Mustard seeds are sown after the harvest of kharif crop in the month of November

thorough out the India.

The heavy metals are toxic elements mostly having high atomic weight and
specific gravity greater than 5g/cm’ with respect to water (1g/cm®). However, there is
no correlation of either density or chemical property of these heavy metals with the
physio-toxicological effect in metabolism. There are 53 heavy metals in periodic table
(Weast, 1984). Duffus (2002) earlier reviewed different works cited the range of
‘heavy’ metals from 3.5-7 g/cm3 . Nevertheless, plants never show ability to detect
metals on the basis of their density. Some lighter metals and metalloids are also toxic
(marked with asterisk; *), therefore, incorporated under heavy metals (Table 1), while
some others (e.g. Aut) are not toxic, hence there is no standard definition of heavy
metals and they surpass metalloids, transition metals, basic metals, lanthanides and
actinides. Heavy metals, like any other metal, are known for their tendency to lose
electrons to form positive ions indicating their active participation in redox systems in
trace (<1000 mg Kg'). These include divalent and monovalent cations depending
upon their ability to accept free electron (Lewis acid). Biological redox systems
appropriately and finely utilized this property of heavy metals in certain very
important biochemical reactions in well regulated manner with protein moieties.
Based on the stability constants of the metal complexes, metal acceptors are suggested
to be classified as ‘hard’, ‘soft’ or ‘intermediate’. Nieboer and Richardson (1980),
depending upon ionic indices and covalent indices categorized metal acceptors
explain their ability to react with —SH and imidazole groups of proteins to impart
cellular toxicity.

Pesticide and heavy metal contamination of food stuffs is increasing problem

of the grains and vegetable production. Sulphur rich crops, for instance, brassicas

considerably accumulate toxic doses of heavy metals in their consumable tissues.



Table 1. Classification of heavy metals/semimetals (with density) based on their

roles in plant growth

S. Essential Density S. Beneficial Density S. Nonessential Density

No. metals (g[mg3) No. metals gg/ﬂgf) No. metals (g/mg’)

1. Zn 7.13 7. Na 0.97 13. *As 5.72

2. Mn 7.43 8. *B 234 14. *Cr 7.19

3. Fe 7.87 9. *Al 2.70 15. *Cd 8.65

4. *Ni 8.90 10. Si 2.65 16. *Pb 11.35

5. *Cu 8.96 11. 'V 6.11 17. Ag 10.50

6. Mo 10.22 12. Co 8.90 18. *Hg 13.55
19. TAu 19.32

These heavy metals, besides their toxic magnification in upper tropic level of food
chain, perturb the metabolic machinery of plants rendering their growth and yield
below potential level. Cd falls under the category of most abundant and easily
accessible heavy metal to plants. Mining, fossil fuel combustion, urban wastes,
industrial effluents, municipal solid waste and phosphate fertilizers are key
enrichment factors of different forms of Cd in soil (Angelone and Bini, 1992:
Kevresan et al,, 1998). Toxic level accumulation of Cd suppresses primary
metabolism through deactivating key enzymes and basic physiological plant
processes, théreby curtailing growth and dry weight of tissue. The growth phase of the
crop should synchronize with optimum environmental conditions for optimal
expression of housekeeping genes. It is a fact that specified genotypes does not
exhibit the same phenotypic characteristics in all environmental conditions. The
different genotypes, growth response varies to different environment and their relative

ranking usually differ (Eberhort and Russel, 1966).

Judicial application of plant hormones plays an important role to fully exploit
the genetic potentiality of a crop variety supporting optimum growth conditions such
as temperature, light, humidity and rainfall. Recently recognized group of steroidal
plant hormones well known as ‘Brassinosteroids’ (BRs) gained acceleration in
scientific research and field applications after potentiating their diverse role in
regulating key plant physiological processes under normal (Bajguz, 2007) and

stressed regimes (Bajguz and Hayat, 2009; Fariduddin et al., 201 3a).
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Brassinosterods is a new class of polyhydroxysteroids reported in plants which
play essential role in plant growth and development at very low concentrations.
Nearly 69 BRs have been identified from different groups of plant kingdom (Bajguz,
2010) and from different organs (Hayat et al., 2003b). Brassinosteroids have a
common Sa-cholestan skeleton, and their structural variations come from the kind and
orientation of oxygenated functions in rings A and B. Their roles have been
implicated in a range of physiological and biochemical responses from seed
germination stem elongation, leaf expansion, bending and epinastic movements,
vascular differentiation, regulation of flower development and pollen tube growth etc.
(Sasse, 2003). The identification of BRs biosynthetic and response deficient mutants
in Arabidopsis has elucidated its essential components of signaling and connections in

plant growth and development (Szekeres et al., 1996; Clouse, 1996).

Brassinosteroids potentially confer tolerance against osmotic stress (Sairam,
1994; Vardhini and Rao, 2003), temperature stress (Wilen et al., 1995; Fariduddin et
al., 2011), salinity (Hayat et al., 2010a; Ali et al., 2007b), pesticide stress (Xia et al.,
2009b) and various heavy metal stresses like, cadmium (Hayat et al., 2007a), nickel
(Alam et al., 2007; Yusuf et al., 2011), aluminium (Ali et al., 2008a) and copper
(Fariduddin et al., 2009b).

Nitric oxide (NO) is a well-established regulator of animal physiological
functions and a widespread pollutant (Stohr and Ullrich, 2002). This inorganic free
molecule has been described as gaseous phytohormone and inter- intracellular
messenger at a very low concentration, (Leshem, 2000; Beligni and Lamittina, 2000;
Stohr and Stremlau, 2006). Its production in plants is first reported in 1975 by
Klepper. Later both non-enzymatic and enzymatic pathways have been proposed. NO
exert growth promotion at very low concentrations (Leshem, 1996) and defense
responses at slight higher concentrations when produced endogenously or applied
exogenously. Therefore, NO characteristically manifests concentration dependent
dual responses based upon physiological state of plant against prevailing environment
and plant growth stage. Seed germination, root organogenesis, root hair induction,
hypocotyl growth and stomatal conductance are the growth responses assigned to NO.
It also acts against oxidative stress (Neill et al., 2003) promoting antioxidant

responses under abiotic stresses. The higher concentration of Nitric oxide, however,



inhibits plant growth and negatively effects growth responses. The role of NO has
also been implicated in biotic stress responses and program cell death. The processes
regulated by NO also include defense responses, stomatal closure, apoptosis,
hypersensitive response and phytoalexin production (Zhang et al., 2005; Besson-Bard
et al., 2008; Chaki et al., 2009).

Application of NO donor chemicals such as sodium nitroprusside (SNP), S-
nitroso-N-acetyl-penicillamine (SNAP), S-nitrosoglutathione (GSNO) has shown
countering  effects against diverse abiotic  stress  responses.  SNP
(Nay[Fe(CN)sNO]-2H,0) is the inorganic compound. SNP is used as the source of
NO. In the solution beside NO, it releases ferricyanide, and cyanide (CN’) molecules.
Potassium ferricyanide [K3Fe(CN)] is used as a control to test the effects of NO,
which does not releases NO in the solution. Nitric oxide countering effects have been
favorably studied in salinity and heavy metal stress, ultraviolet radiation, ozone and
mechanical wounding. The augmenting actions of NO against different abiotic
stresses in various cereal and vegetative crops are still left to be studied. Which
mechanism regulates it to commit positive and detrimental decisions and effects on

plant physiological functions need to be addressed in future researches.

Considering the Cd hazard to the important cash crop of India, B. juncea, and
potential roles assigned to BRs in overcoming toxic responses of Cd to two well-
grown varieties of Indian mustard in the subcontinent; Varuna and RH-30. The
selected physiological and biochemical marker assays have been taken into account

besides growth attributes to fulfill following objectives:

1. Comparative analysis of responses of two varieties of Indian mustard for
graded concentrations of Cd through soil.

2. To compare the excellence of EBL or HBL on test plants applied through
foliar application.

3. To screen the effective concentration of sodium nitroprusside solutions tor

optimum response on the selected varieties.

4. To compare the ameliorative effect of two BR analogues against soil applied
Cd toxicity doses.
5. To analyze the ameliorative effect of effective SNP concentration against soil

applied Cd toxicity doses.



6. To observe the responses of combination of effective BR and SNP
concentration against soil applied Cd toxicity doses.
The metabolic and growth parameters showing optimum response to the
treatments may be marked as a scale for forecasting further growth and productivity

in crops.
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CHAPTER -2

REVIEW OF LITERATURE

2.1 INDIAN MUSTARD (Brassica Juncea L. Czern & Coss.)

The mustard is the most important oilseed crops cultivated in 53 countries
spreading over the six continents across the globe under tropical as well as the
temperate zones. In response to the regular increase in demand for edible oils and its
products the world production of mustard has been increasing at a rapid rate in several
countries. India occupies the first position in area and second position in production of
rapeseed-mustard in the world (Kumar, 1999). It is cultivated on 6.86 million ha area
of the country, particularly in Northern plains. Haryana, Madhya Pradesh, Rajasthan
and Uttar Pradesh are the major states of India cultivating Brassica juncea
representing 81% of the total acreage and contributing 82.9 per cent to the national
rapeseed-mustard production. India recorded a spectacular production of oilseeds
(well known as Yellow Revolution) when country witnessed increased production of

mustard from 2.7 mt (1985-86) to 8.1 mt (2005-06) (Singh et al., 2008).

The integrated oilseeds policy of the Government of India lies in the adoption
of high yielding varieties, improved agro production and protection technologies and
price incentives that has opened up new vistas to earn valuable foreign exchange
through export of oil meal and value added productions. One of the new vistas in the
remunerative cultivation of oilseed brassicas in the non-traditional areas is to select
appropriate species and variety suited to particular agro climatic situations which can

yield more per unit of water and nutrients used.
2.2 HEAVY METALS IN BIOLOGICAL SYSTEMS

It is not well understood that why plants have selected only some of the
mono/-divalent cations to signal and shape up metabolism. However, relying on the
facts these were classified as “essential” or “non-essential”, the role of non-essential
with particular respect to heavy metals sought more attention when these were
perceived to accelerate mortality and reduce potential survival of the organism, out of
them cadmium (Cd) reaches into the soil through natural (lethogenic and pedogenic

factors) and anthropogenic processes (Table 2). Dose dependent data of several metal



cations suggest that heavy metals are stored/metabolized at low concentrations but are
toxic at higher concentrations, therefore following bell-shaped-relationship of toxicity
(Marshner, 2012). Soil contaminated with the heavy metals above the permissible
limit leads to a decline in agricultural yields (Nellessen and Fletcher, 1993; Salt and
Rauser, 1995; Akinola and Ekiyoyo, 2006). Alternatively, those of essential heavy
metals also proved to be toxic when readily acquired above a threshold limit. Plant
species have developed various avoiding and countering mechanisms to safeguard

themselves from the heavy metals.

Table 2. Sources of Cd contamination to different domains of environment

S.No. Sources Contaminated
horizons
1. Natural processes  a). Lethogenic Soil pollution
b). Pedogenic Soil pollution
2. Anthropogenic a). Industrial effluents Water pollution
processes b). Phosphate fertilizers Soil pollution
c). Pesticides Soil pollution
d). Vehicular traffic Air pollution
e). Municipal Sewage Waste Water pollution
D). Mining and fossil fuel Soil and water pollution

2.3 CADMIUM

Cadmium falls under the category of non-essential divalent cations, most
abundant and readily available to plant body eliciting toxic responses in aerial parts
(Kabata-Pendias, 2011). The nontoxic level of Cd in soil ranges from 0.04 mM to
0.32 mM. It antagonizes Zn (Lachman et al., 2004) and blocks the Ca-channels
(Swandulla and Armstorng, 1989) that share the chemical and electronic properties
with Cd. The uptake of different forms of Cd in Chinese cabbage follow the pattern
CdS0,>CdCl,>CdO>CdCO; while in rice as CdCLL,>CdSO4>CdO>CdS>CdCOs3 in
loamy-sand drab soil with pH 8.2 (Jikai et al., 1982). In leafy and fruity vegetables Cd
is reported at the level of 0.6 pg/g tissue fresh mass (Sharma et al., 2008). Cereals and
vegetables are most susceptible to increased contamination through raised levels of
Cd in the soil. Besides being very toxic to plant metabolism and growth, the

enrichment ratio of Cd is more comparing to other toxic heavy metals. This section of

8



the review preferably deals with responses of soil Cd uptake and its manifestation on

plant metabolism and growth.
2.3.1 Effect of Cd on plant growth attributes

Growth morphology provides primary scale and a very important parameter to
conclude the gross effect of toxicants. The parameters of fresh weight of shoot and
root with respect to their length and other visible appearances directly indicate the
efficiency of carbon fixation and water use efficiency. Being not an essential nutrient,
added in higher concentrations, Cd potentially inhibits plant growth (Aery and Rana,
2003), therefore, reports say that even at relatively low concentrations it alters plant
metabolism (Van Assche and Clijisters, 1990). Decline of plant dry weight suggests
the reduced carbon fixation and nutrient uptake efficiency. The damaging impact of
excessive uptake of Cd on plant growth was marked in various plant species. The
presence of Cd in the soil retarded the growth of soybean (Dewdy and Ham, 1997),
pea (Sandalio et al., 2001), Corchorus olitorius (Mazen, 2004), Medicago sativa
(Drazic et al., 2006), maize (Krantev et al., 2008) and chickpea plants (Hasan ¢t al.,
2008). Higher concentrations of Cd decreased the growth of the whole plant (Prasad,
1995). The interaction of Rhizobium in the nodules of chickpea was found to be very
sensitive to heavy metals resulting in a decrease in dry mass of chickpea and green
gram (Rana and Ahmad, 2002). An increase in Cd concentration decreased the fresh
mass in mung-bean (Wahid et al., 2007), Medicago sativa (Drazic et al., 2006) and
Zea mays (Ekmekci et al., 2008). Moreover, a marked decrease in root and shoot mass
was observed when treated with lower concentration of Cd in Vigna ambacensis (Al-

Yemeni, 2001) and wheat (Milone et al., 2003).
2.3.2 Effect of Cd on photosynthesis and associated attributes

Photosynthesis is the major drawing force of carbon fixation on earth
enriching the biomass at very primary level of the ecosystem. The efficiency of
producers (plants) to run the complex metabolism of this physiological process relies
on multiple factors viz. availability of water and mineral nutrients (as NPK); CO, and
solar radiation etc. Cd competes with soil nutrients availability, causes water stress;
checks stomatal conductance. Moreover, it inactivates membrane LHC (light
harvesting complex) proteins, H' pump, and photosynthetic enzymes to restrict

efficiency of photosynthesis. Cd preferentially accumulates in the chloroplasts and

9



disrupts chloroplast functions (Bi et al., 2009), therefore, it is an effective inhibitor of
photosynthesis (Vassilev et al., 2005). A linear relationship between photosynthesis
and inhibition of transpiration was observed in clover, lucerne, and soybean that
suggested Cd inhibits stomatal opening (Huang et al., 1974). Cd damages the
photosynthetic apparatus, in particular the light harvesting complexes of photosystems
I and II (Siedlecka and Baszynsky, 1993; Siedlecka and Krupa, 1996). The inhibition
of root Fe (III) reductase induced by Cd leads to Fe(I) deficiency which seriously
affects photosynthesis (Alcantara et al., 1994). Cd causes stomatal closure in higher
plants (Poschenreider et al., 1989) and an overall inhibition of photosynthesis in
pigeon pea (Sheoran et al., 1990), radish (Krupa et al., 1993), Pisum sativum (Chugh
and Sawhney, 1999), tomato (Dong et al., 2005), soybean (Shamsi et al., 2007),
Brassica juncea (Hayat et al., 2007a), maize (Ekmekci et al., 2008).

The presence of Cd decreased the contents of chlorophyll and carotenoids, and
increased non-photochemical quenching in Brassica napus (Larsen et al., 1998)
favoring excitation of chlorophyll to triplet state (*Chl") and generation of singlet
oxygen ('0,"). Similarly, a decreased in the rate of synthesis and level of chlorophyll
is reported in certain plant species under the influence of the Cd e.g. cress and lettuce
(Czuba and Ormond, 1973), barley (Stiborova et al., 1986), Hydrilla verticillata (Garg
et al., 1997), maize (Ferretti et al., 1993), Cupressus arizonica (Griffiths et al., 1995),
Salvinia cucullate (Phetsombat et al., 2006), Catharanthus roseus (Pandey et al.,

2007) and wheat (Bishnoi et al., 1993; Amani, 2008).
2.3.3 Effect of Cd on metabolic enzymes

Loss of plant growth, associated with Cd treatment was probably caused by
the inhibition of protein synthesis (Foy et al., 1978). Phyto-toxicity of the metal in
crop plants has been observed in the form of a decrease in protein level (Krantev et
al., 2008). Moreover, the grains developed on the plants grown under Cd stress had
lower protein content (Salgare and Acharekar, 1992; Hasan et al., 2008).

Higher Cd concentration inhibited the activity of carbonic anhydrase (CA) and
the rate of photosynthesis. The enzyme CA reversibly hydrates CO; to continuously
channelize it to RuBPCase in the grana of the chloroplast (Majeau and Coleman,
1994; Price et al., 1994; Stemler, 19982). Otherwise the declining concentration of

surrounding inorganic carbon would restrict the activity of RuBPCase (Majeau and
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Coleman, 1994). Low concentration of Cd stimulates the activity of CA; however, its
accumulations at higher concentration inhibit CA activity (Siedlecka and Krupa,
1996; Hasan et al., 2007). Therefore, Cd effect on CA seems to be dose dependent. Cd
induced changes in CA are also reflected at the level of photosynthesis (Khan et al.,
2008) probably because as CA is also hypothesized to be involved in photosynthetic
electron transport system (Stemler, 1997) and in maintaining chloroplast pH during
rapid changes in light intensity (Reed and Graham, 1981). Stemler (1986) showed the
association of CA with thylakoids and PSII in maize. Also the activity of PSII
depends upon the Ca** (Stemler, 1998b) where Cd competes with the uptake of

divalent cations, including Ca>* (Swandulla and Armstorns, 1989).

Nitrate reductase (NR), the primary enzyme in the nitrate assimilation
pathway, is the rate limiting step in determining plant growth and development
(Solomonson and Barber, 1990) and its cellular level is influenced by a variety of
environmental factors (Andrew, 1986; Murphy et al., 1997). Garg et al. (1997)
observed a decline in the activity of NR in Hydrilla verticillata with an increase of Cd
concentration. The presence of Cd in the soil retarded the assimilation of NO; in
Silene vulgaris (Mathys, 1975), maize (Nassbaum et al., 1988; Hernandez et al.,
1996), pea (Burzynski, 1988), tomato (Quariti et al., 1997), bean (Gouia et al., 2003)

and in Cicer arietinum (Hasan et al., 2008).
2.3.4 Effect of Cd on oxidative stress and anti-oxidation response

Plants possess a number of antioxidant molecules and proteins that protect
them from potential oxidative damage (Smeets et al., 2005; Pal et al., 2006) of which
superoxide dismutase (SOD) is the first enzyme in the detoxifying process that
converts O, radicals to H,O, at a very rapid rate (Polle and Rennenberg, 1994). Cd
results in oxidative stress (Hendy et al., 1992; Somashekaraiah et al., 1992) either by
inducing the production of free oxygen radicals (Balakhnina et al., 2005; Demirevska-
Kepova et al., 2006) or by decreasing the concentration of enzymatic or non-
enzymatic antioxidants (Somashekaraiah et al., 1992; Stohs and Bagchi, 1995; Shaw.
1995; Gallego et al., 1996; Sandalio et al., 2001; Balestrasse et al., 2001; Fornazier et
al., 2002; Cho and Seo, 2005; Mohan and Hosetti, 2006). This defense system against
the stress is composed of metabolites such as ascorbate, glutathione, tocopherol etc.,

and enzymatic scavengers of activated oxygen such as peroxidases (POX), catalases
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(CAT) and SOD (Noctor and Foyer, 1998; Asada, 1999; Sandalio et al., 2001; Khan
et al., 2002; Bor et al., 2003; Panda and Khan, 2003; Chaoui et al., 2004; Demiral and
Turkan, 2005; Mandhania et al., 2006).

Peroxidase induction is a general response of higher plants after the uptake
of toxic quantities of metals (Van Assche and Clijsters, 1990). In Halianthus annus
leaves, Cd enhanced lipid peroxidation, increased lipoxygenase activity and decreased
the activity of SOD (Sandalio et al., 2001; Khan et al., 2002; Panda and Khan, 2003),
glutathione reductase, catalase, ascorbate peroxidase, and dehydro-ascorbate
reductase (Gallego et al., 1996). Cd induced the activity of POX in soybean (Fuhrer,
1982), in roots and leaves of Oryza sativa (Reddy and Prasad, 1993), bean leaves (Lee
et al., 1996), Brassica juncea (Singh and Tiwari, 2003; Hayat et al., 2007a), Bacopa
monniera (Mishra et al., 2006) and in the leaves of Calamus tenuis (Khan and Patra,
2007), cucumber (Goncalves et al., 2007), Cicer arietinum (Hasan et al., 2008), maize
(Ekmekci et al., 2008). In Phaseolus aureus, Cd ions decreased CAT activity and
increased the activities of guaiacol peroxidase (GPX) and ascorbate peroxidase (APX)
(Shaw, 1995; John et al., 2007). However, an increase in CAT activity was observed
under Cd stress in wheat (Milone et al., 2003), Oryza sativa (Panda and Patra, 2007),
Cicer arietinum (Hasan et al., 2008). In maize plants CAT activity was not affected
by Cd treatment (Krantev et al., 2008). Superoxide dismutase is the first line of
defense against oxidative stress, Cd induced the activity of SOD in Brassica juncea
(Hayat et al., 2007a), cucumber (Goncalves et al., 2007) and maize (Ekmekci et al.,
2008).

Membrane damage due to lipid peroxidation caused by metals is mediated
by activated oxygen radicals (hydrogen peroxidase, hydroxyl and superoxide radicals)
but could be quenched by the induction of specific enzymes like POX, SOD and CAT
(De Vos and Schat, 1981). Phaseolus vulgaris roots exposed to S mM Cd had higher
activities of GPX and APX and elevated levels of lipid peroxidation (Chaomi et al.,
1997). Cd treatment also increased lipid peroxidation (Lazono-Rodriguez et al., 1997,
Sandalio et al., 2001; Astolfi et al., 2004; Chaoui et al., 2004; Srivastava et al., 2004)

whereas no impact on lipid peroxidation was noticed in the roots of Daucus carota

plants, exposed to Cd (Sanita di Toppi et al., 1998).
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In addition to these antioxidant molecules, thiols also possess strong
antioxidative properties and are able to counteract oxidative stress imposed by Cd
(Pichorner et al., 1993; Shanthala et al., 2006). Germinating pigeon pea seedlings
exposed to Cd** altered the enzyme activity and thus mobilization of food reserves

(Bishnoi et al., 1993).
2.3.5 Role of phytohormones under heavy metal stress

Phytohormones are biochemical signals produced to regulate plant growth
metabolism under prevailing external environmental conditions. These signals work
synchronously in a growing plant body to shape and regulate the metabolism.
However, in plants there exists no precise network of hormones like that of animal
endocrine system. The plant signals may be originated in response to edaphic
(nutritional, toxic level of elements/salts, depletion of key growth factor such as
water; oxygen, or presence of micro-organisms) or aerial (temperature, light,
pathogens) environmental cues. A consistent or flash of stress through either of the
media often supports the internal rise of specific plant hormones (abscisic acid,
salicylic acid, nitric acid, jasmonic acid etc.) while growth and maturation responses
may be favored by a different set of plant hormones (e.g. auxins, brassinosteroids,
gibberellins, cytokinins or ethylene). A phytohormone regulates the metabolism to
save or promote plant growth in coordination with other phytohormones. In case of
soil mediated heavy metal stress the plant defense strategy includes the avoidance of
heavy metals uptake and its further check to aerial transport (Irfan et al., 2012).
However, heavy metals escaped to aerial plant parts may damage the plant metabolic
and physiological responses which needs further defense and repair activation.
Phytohormones assist sequestration of heavy metals to metabolically less active parts
as well as the expression of defense genes. The role of ABA, nitric oxide and BRs has
recently been well studied in plant resistant against heavy metal resistance, suggesting
the existence of their cross talk to overcome stress at various levels discussed above
(DalCorso et al., 2010; Ergiin and Oncel, 2012). The formation of NO in various plant
tissues on exposure Cd has been a matter of conflict regarding the role of NO in stress
modulation (Arasimowicz-Jelonek et al., 2011). It was recently reported that NO
counteract Cd induced ROS cytotoxicity in mustard plants with the regulation of

antioxidant responses (Verma et al., 2013). Also the role of NO is reviewed as Cd
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stress modulator in plants in assistance with other plant hormones (Gill et al., 2013).
The positive interactive effect of NO with BRs is earlier studied by several workers

(Hayat et al., 2010b; Zhang et al., 2011; Villiers et al., 2012).
2.3.6 Function of nitric oxide under heavy metal stress

The exogenous application of NO has been documented to reduce the
destructive action of heavy metals on plants. Kopyra and Gwo6zdz (2003) reported that
sodium nitroprusside (SNP; the donor of NO in an aqueous solution) stimulates seed
germination and root growth of lupin (Lupinus luteus L. cv. Ventus). This promoting
effect of NO on seed germination persisted even in the presence of heavy metals (Pb,
Cd) and sodium chloride. However, inhibitory effect of heavy metals on root growth
was accompanied by increased activity of SOD that increased further significantly in
the roots which were pre-treated with SNP. Positive changes in the activity of other
antioxidant enzymes, POX and CAT, were also detected. Using the superoxide anion
(Oy) specific indicator, dihydroethidium (DHE), these authors reports intense DHE-
derived fluorescence in heavy metal-stressed roots, whereas in those pretreated with
SNP the fluorescence level was very low and was comparable to that of the unstressed
roots. On this basis they concluded that the protective effect of NO in stressed lupin
roots is partly due to the stimulation of SOD activity and/or direct scavenging of the
superoxide anion. Singh et al. (2008) investigated the ameliorative role of SNP
against Cd-induced oxidative damage in plant roots and thus a protective role against
Cd toxicity. Supplementation of Cd with SNP significantly reduced Cd-induced lipid
peroxidation, H,O, content and electrolyte leakage in wheat roots. The results
indicated the ROS scavenging activity of NO. Another study evaluated the protective
effect of NO against Cd-induced oxidative stress in sunflower leaves (Laspina et al.,
2005). Sunflower leaves were found to significantly attenuate Cd-induced oxidative
damage. This effect was mainly attributed to the prevention of growth inhibition and
chlorophyll degradation, recovery of CAT activity and GSH levels, and enhancement
of ascorbate content and APX activity, as components of the antioxidant machinery
that allowed the plants to cope better with metal stress. These studies indicate that NO
may effectively reduce the level of ROS generated during stress and, thus, limit the

oxidative damage in plant cells.
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The increase of proline content is positively correlated with plant resistance to
stress (Hayat et al., 2012a). At low Cd concentrations, a stimulatory effect on seedling
growth (Lin et al., 2007) and flowering was observed (Wang et al., 2012). However,
an increase in Cd concentrations and exposure duration to plant tissues showed a rise
in proline content (Zhao, 2011; Khatamipour et al., 2011) and antioxidant activity
(Dinkar et al., 2008; 2009). The higher Cd toxicity, overwhelms the proline and
antioxidant system mediated detoxification of ROS causing inhibitory effects, for
instance; decline in the activity of metabolic enzymes (Lin et al., 2007; Dinkar et al.,
2008, 2009) and reduced growth (Nikolic et al., 2008; Khatamipour et al., Z011).
Proline reduces the free metal ion toxicity due to the formation of metal-proline

complexes (Sharma et al., 1998).

In Arabidopsis, Cd suppressed NO accumulation in leaves and promoted
flowering. Supplementation with SNP delayed flowering while the application of
cPTIO; the scavenger of NO, further promoted the transition from vegetative to
reproductive stage, under Cd stress (Wang et al., 2012). Exogenous NO alleviated Cd
toxicity in rice by increasing pectin and hemicellulose contents in root cell walls,
increasing the Cd deposition in root cell walls and decreasing Cd accumulation in
soluble fractions of leaves (Xiong et al., 2009). Nitric oxide may participate in
maintaining the auxins equilibrium by reducing IAA oxidase activity in the roots of
Medicago truncatula when subjected to Cd stress, therefore, alleviating the inhibitory
effect of Cd on root growth (Xu et al., 2010). After a long-term treatment, NO levels
were inversely related to nitrite concentrations that originated from NR activity,

suggesting conversion of nitrite to NO by known enzymatic pathways.
2.4 BRASSINOSTEROIDS

Brassinosteroids (BRs) is a class of polyhydroxysteroids, recognized as sixth
group of plant hormone. Nearly 40 years back BRs were explored when Mitchell and
co-workers reported the organic extract of rapeseed (Brassica napus) pollen that
possessed stem elongation and cell division properties (Grove et al., 1979a). The first
isolated BR was ‘brassinolide’ in 1979 as a biologically active constituent of pollen
extract of rapeseed promoting cell divisions and stem elongation (Grove et al., 1979a;
Grove et al., 1979b). From 230 kg of Brassica napus pollen only 10 mg of BRs could
extracted in propanol by USDA scientists. Extracted BR was crystallized at NRRC

15



(Northern Regional Research Centre) and was subjected to x-ray analysis to establish
its structure. This biologically active plant growth promoter was found to be steroidal
lactone (C,3Ha30¢) and was named as “brassinolide” (BL) which was later renamed as
“brassinosteroid”. All natural BRs have a common 5-choleston skeleton but structural
variants come from the type and the orientation of functionalities on the skeleton.
Their low level in plants is not uniform throughout its body but young growing tissues
have comparatively a larger share than the mature tissues (Yokota and Takahashi,
1986). The richest sources are pollen and immature seeds where its concentration
ranges between 1-100 ng g'1 fresh mass, whereas, the shoot and leaves have about
0.01-0.1 ng g fresh mass (Takatsuto, 1994). Since the discovery nearly 69 BRs
structurally and functionally different form each other, have been characterized
(Hayat et al., 2003b; Bajguz, 2007). Three of them (BL, 24-EBL and 28-HBL) are
being largely applied to have an economic impact on plant metabolism, growth and

productivity.
2.4.1 Biosynthesis and regulation of brassinosteroids in plants

Brassinosteroids is a group of modified sterols belonging to tri-terpenoids. In
plants, the BRs are in vivo synthesized from campesterol. The pathway for BR
biosynthesis was elucidated by Japanese researchers and later confirmed through the
studies on mutants of Arabidopsis thaliana, Lycopersicon esculentum and Pisum
sativum (Fujioka and Sakurai, 1997). In plants, the site of BR biosynthesis has not
been experimentally demonstrated, however, it is hypothesized that all tissues produce
BRs, as a wide range of plant organs express BR biosynthetic and signal transduction
genes. This view is further strengthened by short distance activity of this class of
steroid (Clouse and Sasse, 1998; Li and Chory, 1997).

Brassinosteroids are the steroidal plant hormones which can easily be
transfuse through lipid bilayer. However, BRs bind to cell membrane receptors to
elicit signal cascade regulating the expression of genes through cytosolic and nuclear
transcription kinases and phosphatases. Contrarily, steroids hormones in animal
systems have direct nuclear receptors to alter gene expression. No nuclear receptors
yet have been reported in case of BRs signal transduction. A good population of
receptors (BRI1) on growing tissues determines the tissue sensitivity to BRs. BR

activity is down regulated through receptor endocytosis (Russinova et al., 2004)

16



coupled with modification/inactivation of BR molecule synthesized in vivo. The
endogenous pool of BRs is finely tuned with the expression level of BR receptors.
Endogenous BR level is negatively feedback by the population of BIN2 kinase with
the mediation of BZR1, which further determines the progression of BR signal
cascade after binding of BRs to its receptor (Plate 1, 2A).

Two major pathways of BL biosynthesis exist (Plate 2B); sterol specific (-
squalene to campesterol) and BR-specific (campesterol to BL). Mevalonic acid. the
precursor of terpenoid pathway, is condensed and cyclized to produce squalene 2,3-
oxide which is subsequently modified to sitosterol and campesterol. These parent
sterols serve as precursors of BL isologs such as homo- or nor-BL. Sterols. the
precursors are modified to possess following functional groups: 1) saturation of a
double bond at A% 2) formation of a 6-oxo-group; 3) addition of a-oriented vicinal
hydroxyl groups at C-22 and C-23; 4) epimerization of a 3a-hydroxyl group to the 3§-
configuration; 5) addition of a 2a hydroxyl group; and 6) a Baeyer-Villiger type
oxidation in B ring. The site of BR biosynthesis and the mode of its release is released

is still elusive.

The individual biosynthetic steps have been elucidated by using metabolic
tests using BR-overproducing cell lines of Catharanthus roseus (Reid et al., 1983).
These BL-overproducing lines were developed to overcome low biosynthetic
activities in regular plant tissues or cell lines, which technically limits extraction and
detection of BRs. BR biosynthesis proceeds through multiple branched pathways. The
first branch occurs at CR and the second at campestanol (CN). Campasterol can either
be C-22 hydroxylated or C-5 reduced in bifurcated pathways that are termed the early
and the late C-22 oxidation pathways, respectively (Clouse, 2001) (Plate 2B).

In addition, CN proceeds to one of the two alternative pathways, the early or
the late C-6 oxidation. The early C-6 oxidation pathway undergoes a two-step
oxidation of C-6 position at the CN stage (Ingram et al.,, 1984). In the late C-6
oxidation pathway, C-6 is oxidized at the second to last step. The order of chemical
substitutions other than the branching steps are conserved between the parallel
pathways in such a way these reactions are performed by single enzyme acting on
both the early and late intermediates (Ross et al., 2000; Brian and Hemming, 1955).
The BR biosynthetic pathway that was established in the periwinkle feeding
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experiments has served as a framework for further validation and modification by
using the results from dwarf mutants that are defective in BR biosynthesis and

signaling pathways.
2.4.2 Physiological role of brassinosteroids

Brassinosteroids are to be involved in numerous plant processes. They
promote cell expansion and cell elongation (Clouse and Sasse, 1998) and interplay
with auxins (Nemhauser et al., 2004). Though unclear, BRs are being suggested a role
in cell division and cell wall regeneration (Clouse and Sasse, 1998). BRs signal
promotes vascular differentiation (Cano-Delgado et al., 2004). BRs are also necessary
for pollen tube formation and elongation (Hewitt et al., 1985). Furthermore, BRs
delayed senescence in BRs deficient mutants, while accelerated senescence in dying
tissue cultured cells that signifies the biological relevance of BRs action (Clouse and
Sasse, 1998). BRs counteract abiotic stresses in plants (Clouse and Sasse, 1998,
Sharma and Bhardwaj, 2007; Sharma et al., 2008; Bajguz and Hayat, 2009;
Fariduddin et al., 2013a) while it inhibit pathogen-associated molecular pattern
(PAMP)-triggered immune signaling (Albrecht et al., 2012). The chromosomal
aberration assay has shown that 24-EBL treatment significantly declined maleic
hydrazide (0.01%) induced genotoxicity in Alleium cepa (Sondhi et al., 2008). A
series of experiments conducted by our group on seed pre-treatment and/or foliar
spray of BR analogues noted the induction of favorable morpho-physiological and
biochemical responses in crop plants that were concentration dependent, under

stressed and non-stressed conditions (Table 3).
2.4.3 Effect of brassinosteroids on seed germination

Endogenous BRs have been identified in the seeds of several species,
including pea (Yokota and Takahashi, 1986), Arabidopsis thaliana (Schmidt et al.,
1997) and Lychnis viscaria (Friebe et al., 1999). It is well documented that BRs
promote seed germination, like other hormones. The treatment of the seeds of
Lepidium sativus (Jones-Held et al., 1996) and Eucalyptus camaldulensis (Sasse et al.,
1995) with BL improved per cent germination. Similarly BRs promoted seed
germination in case of Brassica napus (Chang and Cai, 1998), wheat (Sairam et al.,
1996; Hayat et al., 2003a), tomato (Vardhini and Rao, 2000), tobacco (Leubner-
Metzger, 2001), barley (Kartal et al., 2009) and Brassica juncea (Sirhindi et al.,
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Plate 2A: Metabolism (-inactivation) of brassinosteroid molecule in different species
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2009). Moreover, BL, 24-EBL and 28-HBL promoted seed germination in groundnut
(Vardhini and Rao, 1997). BR application has been reported to enhance the
germination of the seeds of certain parasitic angiosperms (Takeuchi et al., 1991.
1995), cereals (Gregory, 1981; Yamaguchi et al., 1987), Arabidopsis (Steber and
McCourt, 2001). Pretreatment with BL stimulated the germination and seedling
emergence in aged rice grains (Yamaguchi et al., 1987) and seed treatment of barley
accelerated subsequent seedling growth (Gregory, 1981). It is, however, not clear
whether the promoting effect of BRs in cereal grains is actually manifested only at the

level of seedling growth and/or also at the level of germination per se.
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In A. thaliana, BR promotes the germination of pre-chilled (i.e. non-dormant)
seeds of BR-deficient biosynthesis mutant def2-/ and the BR-insensitive response
mutant bril-I imbibed in the light (Steber and McCourt, 2001; Zhang et al., 2009).
Seed germination of der2-1 and bril-1 is more strongly inhibited by ABA than in the
wild type; however, BR is able to partially overcome the inhibition of germination by
ABA (Finkelstein et al., 2008; Zhang et al., 2009; Xue et al., 2009). BR treatment
rescues the germination in phenotype of the severe GA-deficient biosynthesis mutant
gal-3, which normally requires GA treatment for dormancy release and germination.
BR treatment also partially rescues the germination phenotype of the severe GA-
insensitive response mutant sly! (sleepyl), which cannot be rescued by the treatment
with GA. Interestingly, a new allele for sly/ was identified in a screen for BR-
dependent germination and also proposed an interaction between BR and GA
signaling in seeds (Steber et al., 1998; Steber and McCourt, 2001). This is further
supported by the germination phenotype of the gpal mutant of Arabidopsis (Ullah et
al., 2002). BR promotes seedling elongation and germination of non-photodormant
tobacco seeds, but do not appreciably affect testa rupture and subsequent induction of
BGlu I in the micropylar endosperm (Leubner-Metzger, 2001; 2003). Treatment with
BR accelerates endosperm rupture of tobacco seeds imbibed in the light. Promotion of

endosperm rupture by BR is dose-dependent and 0.01 uM BL is most effective.
2.4.4 Effect of brassinosteroids on growth

Brassinosteroids application results into a broad range of plant morphological
responses, e.g. increased rate of stem elongation, xylem differentiation, growth of
pollen tube, epinastic bending and unrolling of grass leaves at sheath, increased fresh
and dry mass of root and shoot etc. Most of these changes are facilitated by BR
induced cell division, re-orientation of microfibrills, xylogenesis, proton pump
activation, regulation of antioxidant system and chlorophyll biosynthesis. BR
biosynthetic (e.g. cpd, det2, dwf4, dpy and lk) and perception (e.g. bril, besI, bsu and
bin2 etc.) Arabidopsis mutants have distinct phenotypes. For example det2 mutants
grown in light were dark green with reduced apical dominance (rosette), having small
compact cell arrangement and diminished male fertility. When grown in dark these
mutants shared some characteristics with light grown plants. BR application reversed

this dwarf phenotype (Hayat and Ahmad, 2010c).
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2.4.5 Effect of brassinosteroids on flowering

There has been limited use of these steroids in regulating flowering. In
strawberry the number of flowers increased by the application of BRs on the foliage
(Pipattanawong et al., 1996). However, in case of grapes, the application of BRs in
autumn improved the number of flowers but inhibited if the time of application was
delayed to late winter (Rao et al., 2002). BR also regulated flowering in Arabidopsis
(Clouse, 2008; Yu et al., 2008).

2.4.6 Effect of brassinosteroids on senescence

Senescence is the process, which refers to endogenously regulated
deteriorative changes that lead to the natural cause of death of cells, tissues, organs or
that of the whole organism (Arteca, 1997). Like other hormones (Rao et al., 2002),
BRs also play a crucial role in regulating the processes leading to senescence. The BL
promoted senescence in Xanthium and Rumex explants (Mandava et al., 1981). In
addition to it, BRs also accelerated senescence in the detached cotyledons of
cucumber seedlings (Zhao et al., 1990) and leaves of mung bean seedlings (He et al.,
1996). However, BR deficient Arabidopsis mutants exhibited delayed senescence of
chloroplast (Li et al., 1996). Similarly, the senescence of the leaves of mungbean and
mustard was delayed, if supplied with 28-HBL at early stage of growth (Fariduddin,
2002). During a search of senescence associated genes, He and Gan (2001) developed
a preliminary model for leaf senescence regulating network in Arabidopsis, where
signals such as ABA, jasmonic acid, ethylene, darkness, dehydration and aging
activated 147 senescence associated enhancer trap lines. 24-EBL could activate some

of these but associated genes have not yet been cloned.

2.4.7 Effect of brassinosteroids on photosynthesis

The rate of photosynthesis enhanced when the aqueous solution of 28-HBL
was applied to the foliage of wheat and mustard (Sairam, 1994; Hayat et al., 2000,
2001b), Geranium (Swamy and Rao, 2009), Cucumis sativus (Xia et al., 2009a),
mungbean (Ali et al., 2008a) or EBL was applied alone as seed soaking to mungbean
(Fariduddin et al., 2003; 2004), or in association with GA; to spinach (Guang-Jian et
al., 1998). An increased rate of CO, assimilation was noted in wheat and mustard

with foliar spray of BR (Braun and Wild, 1984), cucumber with EBL (Yu et al,,
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2004b), rice and Vicia faba with brasisnolide (Fujii et al., 1991; Pinol and Simon,
2009). Likewise, the foliar application of 24-EBL enhanced the light saturated net
CO, assimilation rate and carboxylation rate of rubisco, thereby increasing the
capacity of CO, assimilation in the Calvin cycle (Yu et al., 2004b; Xia et al.. 2009a).
However, the epicotyl of cucumber, did not respond to EBL but the transport of the
labeled ('*C) glucose towards the epicotyl was favoured (Nakajima and Toyama,
1995). Similarly, Hill activity in the foliage of Vigna radiata was favourably affected
on being supplemented with aqueous solution of 28-HBL (Bhatia and Kaur, 1997).

2.4.8 Effect of brassinosteroids on chlorophyll content

The role of BRs signaling in regulation of plant photo-morphogenesis through
the involvement of phytochrome A/B is well studied in BR biosynthetic mutants,
however, its direct impact on chlorophyll in photosynthesis is not yet worked out. The
chlorophyll content is an important factor and the currency of photosynthesis
regulated by the destructive enzyme, chlorophyllase (Reddy and Vora, 1986),
biosynthetic rate of 8-aminolevulenic acid and protochlorophyllide reductase complex
(Stobart et al., 1985). BRs are reported to increase chlorophyll breakdown (Vardhini
and Rao, 2002) and inhibit anthocyanin biosynthesis (Brosa, 1999).

The total chlorophyll content or its fractions increased in the leaves of Vigna
radiata (Bhatia and Kaur, 1997) and Brassica juncea (Hayat et al., 2001b) by 28-HBL
and in Cucumis sativus (Yu et al., 2004b) and Vicia faba (Pinol and Simon, 2009) by
EBL, applied directly to their foliage. Similarly, the values for the above parameters
increased in the leaves of rice (Wang, 1997), Cicer arietinum (Fariduddin et al.,
2000), Brassica juncea (Hayat et al., 2003b). Vigna radiata (Fariduddin et al.. 2003)
and Pelargonium graveolens (Swamy and Rao, 2009) raised from the seeds given pre-

sowing treatment with BRs.
2.4.9 Effect of brassinosteroids on metabolic enzymes

Carbonic anhydrase (CA) is the second most abundant soluble protein, other
than RuBPcase, in Cs-chloroplast (Reed and Graham, 1981; Okabe et al., 1980). It is a
zinc containing protein with a molecular weight of 180 KDa (Lawlor, 1987) and is
ubiquitous enzyme, among living organisms. It catalyzes the reversible inter
conversion of bicarbonates (HCO3") and CO, (Sultemeyer et al., 1993). The rate of

conversion of HCO3™ to CO; is normally slow in alkaline conditions. However, CA
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activates the use of HCOj3" in the production of CO, (Lawlor, 1987). In C; plants, CA
has a close association with RuBPCase where it elevates the level of CO, at its active
site (Badger and Price, 1994). An increase in the activity of CA in the leaves was
attained by the application of 28-HBL to the shoot of Brassica juncea (Hayat et al.,
2000, 2001b). Moreover, the seedlings of wheat and mungbean, raised from the grains
treated with 28-HBL, possessed high CA activity in their leaves (Hayat et al., 2001b;
Fariduddin et al., 2003). Seed application of EBL reduced the toxic effect of Cd on
CA activity (Anuradha and Rao, 2009).

The process of reduction of nitrate is catalyzed by the enzyme, NR, the level
of which increased in the plants of rice (Mai et al., 1989), maize (Shen et al., 1990),
water stressed wheat (Sairam, 1994), Lens culinaris (Hayat and Ahmad, 2003a, b),
Vigna radiata (Fariduddin et al., 2004) and wheat (Hayat et al., 2001a), and in the
seeds of wheat (Hayat and Ahmad, 2003c) by the application of BRs.

2.4.10 Effect of brassinosteroids on vascular tissue

Clouse and Zurek (1991) first reported the importance of BRs in the
differentiation of vascular tissues where the addition of nanomolar concentration of
BL caused manifold acceleration in xylem differentiation in the cells of Helianthus
tuberosus. Moreover, a significant increase in cell numbers was observed which
indicated the role for BRs in cell division and differentiation (Clouse and Zurek,
1991). Zinnia elegans has been used extensively to study the formation of
xylem/tracheary elements, a process that has three distinct stages; here BRs have been
implicated in the transition between Stage II and Stage IIl where secondary wall
formation and cell death occurs (Fukuda, 1997). Uniconazole (a putative BR
biosynthesis inhibitor) prevents the differentiation of Zinnia mesophyll cells into
tracheary elements but this inhibition was overcome by exogenous BR application
(Iwasaki and Shibaoka, 1991). Uniconazole appears to suppress the transcription of
genes involved in the final stages of differentiation but could be recovered by BL.
This clearly suggests that BRs are synthesized prior to secondary cell wall
development and cell death (Yamamoto et al., 1997).

2.4.11 Effect of brassinosteroids on crop yield

Once the presence of BRs in plants was established, the next phase was to

explore the possibilities of using these new chemicals in improving the yield of
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economically useful plants. Meudt et al. (1983, 1984) used BL to improve the yield of
lettuce, radish, bush bean and pepper. Likewise, foliar application of dilute aqueous
solution of BL improved the yield in wheat and mustard (Braun and Wild, 1984), rice,
corn and tobacco (Yokota and Takahashi, 1986). Brassinosteroids were also found to
increase the growth and yield of sugarbeet (Schilling et al., 1991), legumes (Kamuro
and Takatsuto, 1991) and rape seed (Takematsu and Takeuchi, 1989; Hayat et al,,
2000; 2001b). Application of 28-HBL and 24-EBL significantly increased the yield of
potato, mustard, rice and cotton (Ramraj et al., 1997), Lens culinaris (Hayat and
Ahmad, 2003a, b), Vigna radiata (Fariduddin et al., 2003) and that of corn, tobacco,
watermelon, cucumber and grape (Ikekawa and Zhao, 1991), respectively. Foliar
application of BL, 24-EBL (Vardhini and Rao, 1997) and 28-HBL (Vardhini and Rao,
1998) was highly effective in enhancing the yield of groundnut and tomato (Vardhini
and Rao, 2001). Moreover, in China, 28-HBL has been registered as a plant growth
regulator in case of tobacco, sugarcane, rapeseed and tea. In India also certain
products that have BRs, have been marketed by Godrej Industries to boost the growth

of specific plants.
2.4.12 Effect of brassinosteroids on stress, imparted by heavy metals in plants

Brassinosteroids stimulated the synthesis of phytochelatins (PCs) in Chlorella
vulgaris cells treated with lead. The stimulatory activity of various analogues of BRs
on PC synthesis was noted in the order: brassinolide (BL) > 24-EBL > 28-HBL >
castasterone (CS) > 24-ECS > 28-HCS (Bajguz, 2002). The cultures of Chlorella
vulgaris with BRs and heavy metals showed lesser bioaccumulation of heavv metals
than the cultures having metals alone. The inhibitory effect of BRs mixed with
different heavy metals on their accumulation was arranged in the following order:
zinc > cadmium > lead > copper. Moreover, a stimulatory effect of BRs. after
blocking the accumulation of heavy metals on the growth and development of
Chlorella vulgaris occurs. The BRs, therefore, reduced the impact of heavy metals
stress on growth, prevented the loss of chlorophyll, sugars and proteins and increased
PC synthesis. Concentration-dependent stimulation was observed with increasing
concentration of BR and decreasing concentration of heavy metals (Bajguz, 2000a.
2002). BRs also reduced the content of Cd in the seedlings of winter rape (Janeczko et
al., 2005) and copper in Indian mustard (Sharma and Bhardwaj, 2007). BR eliminates
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the toxic effect of Cd on photochemical pathways in rape cotyledons, mainly by
diminishing the damage in reaction centers and O, evolving complexes as well as
maintaining efficient photosynthetic electron transport (Janeczko et al., 2005). The
remedial impact of BRs on the accumulation of heavy metals (Cd, Cu, Pb and Zn)
under the influence of BR has been studied for different crop plants such as barley,
tomato, radish and sugar beet. It was found that the application of 24-EBL
significantly reduced the metal uptake by the roots; for example, in beet roots lead
content was reduced by more than 50% (Khripach et al., 1999). Moreover, Bilkisu et
al. (2003) reported that BL, during aluminium-related stress stimulated growth in
Phaseolus aureus. The application of BRs also improved the performance of mustard
(Hayat et al., 2007a), chickpea (Hasan et al., 2008) subjected to Cd stress and also of
mungbean (Ali et al., 2008a) and mustard (Alam et al., 2007) to aluminium and
nickel, respectively. Hasan et al. (2008) reported that BRs enhanced the activity of the
antioxidant enzymes (CAT, POX and SOD) and proline content. A significant
correlation of BRs concentration (0.01puM) with the degree of improvement, in terms
of nodulation, nitrogen fixation, pigment composition, CA and NR activities was
noted. A similar pattern of response together with an elevation in the photosynthesis
was noted in the plants of mustard, exposed to Cd fed through the nutrient solution
(Hayat et al., 2007a). The foliar spray of either 24-EBL or 28-HBL significantly
enhanced the growth, photosynthesis, antioxidant enzymes and proline content in
aluminium stressed mungbean plants (Ali et al., 2008a). The activities of the enzymes
CAT, POX, CA and NR also exhibited a significant enhancement in mustard plants,
grown under nickel stress (Alam et al., 2007). These plants also exhibited an elevation
in the relative water content and photosynthetic performance. Ali et al. (2008b) also
reported that 24-EBL improved the level of antioxidant system (SOD, CAT, POX,
glutathione reductase and proline), both under stress and stress-free conditions. The
influence of 24-EBL on the antioxidant system was more pronounced under stress,
suggesting that the elevated level of antioxidant system, at least in part, increased the
tolerance of mustard plants to saline and/or nickel stress, and thus protected the
photosynthetic machinery and the plant growth.

One of the mechanisms for the metal removal is biosorption. The mechanisms
of biosorption are generally based on physico-chemical interactions between metal

ions and the functional groups present on the cell surface, such as electrostatic
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interactions, ion exchange and metal ion chelation or complexation. The functional
groups most commonly implicated in such interactions include carboxylate, hydroxyl,
amine and phosphoryl groups present within cell wall components such as
polysaccharides, lipids and proteins. The binding process is largely independent on
the metabolism and hence, is of a physical nature, which is also usually rapid and
reversible. In addition, biosorption can be modified by pH and the presence of other
ions in the medium. This may cause precipitation of heavy metals as insoluble salts,
but remains unaffected by metabolic inhibitors or light/dark cycles (Vilchez et al.,
1997). Water pH is an important factor directly affecting the toxicity of metals in
algae, for example unicellular Chlorella sp. 1t is known that heavy metal toxicity
decreases with decreasing pH. The pH of the medium can, in turn, moderate the
toxicity of heavy metals; however, pH may increase the bioavailability of metal ions
resulting in increased toxicity. BR-induced Chlorella vulgaris growth stimulation
depends largely on acid-induced wall loosening as the apoplast pH decreases. The
effects of BRs on proton secretion are associated with an early hyperpolarization of
the transmembrane electrical potential which in further stimulated by the presence of

K" in the medium (Bajguz, 2000a).
2.5 NITRIC OXIDE

Koshland (1992) recognized the biological significance of NO and named this
free radical, as “Molecule of Year”. In 1998 the Nobal Prize in physiology and
medicine was awarded for the discovery of NO as a biological mediator produced by
mammalian cell. However, the role of NO is not confined only to the animal kingdom
but plants also have the ability to accumulate and metabolize atmospheric NO. Nitric
oxide regulates diverse physiological processes of seed germination, rhizogenesis,
stomatal closing, and adaptive responses to biotic and abiotic stress (Lamattina et al.,
2003; Desikan et al., 2004; Wendehenne et al., 2004; Delledonne, 2005). Klepper
(1975) was the first to observed the production of NO in soybean plants, treated with
photosynthetic inhibitor herbicides (Klepper, 1978, 1979) or other chemicals
(Klepper, 1991) and also under anaerobic conditions (Klepper, 1987). In plants NO
can be generated via enzymatic and non-enzymatic pathways. The enzymatic pathway
is catalyzed by cytosolic nitrate reductase (cNR), NO synthase (NOS) or NOS-like

enzymes and nitrite: NO reductase (Ni-NOR) respectively. Non-enzymatic pathway is
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the nitrite dismutation to NO and nitrate at acidic pH value (Neill et al., 2003;
Graziano and Lamattina, 2005). Besides, NO has been established as a novel
biological messenger in plants and animals, it has received special attention from
almost all the branches of science including medicine, bio-chemistry, physiology and
genetics.

With the above background the matter was raised regarding whether or not
NO could be placed in the category of phytohormones. The classical concept for the
categorization of the hormone includes three norms (Devies et al., 1995) (i) localized
site of biosynthesis (ii) transport to target cells specially separated from the place of
synthesis (iii) control of responses through changes in endogenous levels. The activity
of NO is restricted had been found mainly in the actively growing tissues viz.
embryonic axes and cotyledons, and the contents decreased in mature and senescing
organs (Leshem et al., 1998; Caro and Puntarulo, 1999). Secondly, its small size, the
hydrophobic nature and active diffusibility through biological membranes evidenced
that NO is easily transportable. Regarding the third criteria, it is the sensitivity of the
target cells, rather than the concentration of the plant hormone, that defines the
magnitude of a response (Trewaras and Malho, 1997), because of this concept some
scientists decided to substitute the term hormone with a wider term ‘plant growth
regulator’. Finally, NO was described as a non-traditional regulator of plant growth
(Belligni and Lamattina, 2001).

Further investigations lead to the conformation that NO is soluble in water and
lipids. It can exist in three interchangeable forms: the radical (NO’), nitrosonium
cation (NO™); and nitroxyl anion (NO'). Due to its lipophilic nature, NO may diffuses
through the membranes (Leshem, 1996) and acts as inter- and intracellular messenger
in many physiological functions. It plays a significant role in plant growth and
development, seed germination, flowering, ripening of fruit and senescence of the
plant organs (Arasimowicz and Wiczorek, 2007). Moreover like other
phytohormones, NO acts in a concentration dependent manner (Hayat et al., 2010b).

Considerable number of evidences in recent years has been obtained to assign
important roles to NO in plants. Therefore, in this review an effort has been made to
cover the recent advances in its chemical properties, mechanism of its bio-synthesis

with special emphasis on the role of endogenous and exogenous NO on the
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physiological and biochemical operations that occur in the plants along with the cross-

talk between NO and other phytohormones.
2.5.1 Biosynthesis of nitric oxide in plants

In plants there could be four possible routs of NO production (Plate 3).

2.5.1.1 Through Nitric oxide synthase

There have been a number of reports on the presence of nitric oxide synthase
(NOS) like activity in bacteria (Sudhamsu and Crane, 2009), unicellular eukaryotes
(Ninnemann and Maier, 1996; Messner et al., 2009) and plants (Besson-Bard et al.,
2008). Corpas et al. (2006) in pea seedlings using the chemi-luminescence assay
showed arginine-dependent NOS activity, which was constitutive, sensitive to an
irreversible inhibitor of animal NOS and dependent on the plant organ and its
developmental stage. Tossi et al. (2009) showed that apocyanin induces the
accumulation of NO in the leaves of maize seedling through a NOS-like activity.
Gene encoding NOS-like proteins AtNOS1 was isolated from the Arabidopsis
genome. It was involved in the process of growth and hormonal signaling (Ciuo et al.,
2003), in defense response induced by a lipopolysaccharide (Zeidler et al., 2004) and

was expected to control flowering (He et al., 2004).
2.5.1.2 Through plasma membrane-bound nitrate reductase

Another enzyme that can generate NO from nitrite, is a plasma membrane-
bound enzyme in tobacco roots (Ni-NOR) (Stohr et al., 2001). This enzyme has a
higher molecular weight than that of NR but still has to be characterized. The major
origin of NO production in plants is probably through the action of NAD(P)H-
dependent nitrate or nitrite reductases (NR and NiR) (Yamasaki et al., 1999). Nitrate
reductase provided the first known mechanism to generate NO in plants. This enzyme
normally reduces nitrate to nitrite, but it can also further reduce nitrite to NO
(Crawford, 2006). Nitrate reductase is the only enzyme whose NO-producing activity
has been rigorously confirmed both in vivo and in-vitro (Courtois et al., 2008; Kaiser
et al., 2002). Transformation of NO*™ to NO occurs most probably on a molybdenum
cofactor, similar to other NO-generating enzyme with a Molybdenum-Cobalt (MoCo)

centre, xanthine oxidoreductase (Harrison, 2002). Xnthene oxidoreductase (XOR)
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occurs in two interconvertible forms: the superoxide producing xanthine oxidase and
xanthine dehydrogenase (Palma et al., 2002).

Other reasonable candidates for enzymatic generation of NO include:
horseradish peroxidase (Huang et al., 2002), cytochrome P450 (Boucher et al.,
1992a), CAT and hemoglobin (Boucher et al., 1992b). The production of NO and
citrulline by horseradish peroxidase from N-hydroxy-arginine NOHA) and H,0, was
reported a decade ago (Boucher et al., 1992a). More recently, horseradish peroxidase
was also demonstrated to generate NO from hydroxyurea and H,O, (Huang et al.,
2002). This source of NO should be carefully considered, taking into account that
peroxidases are widespread enzymes involved in important physiological processes of

plant cells (Veitch, 2004).
2.5.1.3 Through mitochondrial electron transport chain

Heme proteins that have been proposed as good candidates for the enzymatic
generation of NO are cytochrome P450. These plant have been shown to catalyze the
oxidation of NOHA by NADPH and O, with the generation of NO (Boucher et al.,
1992b; Mansuy and Boucher, 2002; Igamberdiev and Hill, 2009). Hemoglobin and
CAT are also reported to produce NO and other nitrogen oxides by catalyzing the
oxidation of NOHA by cumyl hydroperoxide (Boucher et al., 1992a).

2.5.1.4 Through nonenzymatic reactions

In plants, NO can also be generated by non-enzymatic mechanisms.
Nitrification/de-nitrification cycles provide NO as a by-product of N,O oxidation into
the atmosphere (Wojtaszek, 2000). It is known that the non-eniymatic reduction of
nitrite can lead to the formation of NO, and this reaction is favoured at acidic pH
when nitrite can dismutate the NO and nitrate (Stohr and Ullrich, 2002). Nitrite can
also be chemically reduced by ascorbic acid at pH 3-6 to yield NO and
dehydroascorbic acid (Henry et al., 1997). This reaction could occur at microlocalized
pH conditions in the chloroplast and apoplastic space where ascorbic acid is known to
be present (Horemans et al., 2000). In barley aleurone cells, NO can also be
synthesized by the reduction of nitrite by ascorbate at acidic pH (Beligni and
Lamattina, 2002). Another non-enzymatic mechanism proposed for NO formation is

the light mediated reduction of NO; by carotenoids (Cooney et al., 1994).
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2.5.2 Physiological roles of nitric oxide

Nitric oxide has emerged as an important signaling molecule associated with
many biochemical and physiological processes of plants (Pagnussat et al.. 2002;
Lamattina et al., 2003; Stohr and Stremlau, 2006). Nitric oxide may be considered as
a phytohormone which might function as a gaseous endogenous plant growth
regulator (Leshem, 2000) and also as a non-traditional regulator of plant growth
(Beligni and Lamattina, 2001). It has a capability to regulate diverse physiological
processes, in a concentration dependent manner (Anderson and Mansfield. 1979;
Gouvea et al., 1997) such as root organogenesis, hypocotyl growth, defense
responses, stomatal movement, apoptosis, hypersensitive responses growth and
development, and phytoalaxin production etc. (Noritake et al., 1996; Delledonne et
al., 1998; Durner et al., 1998; Kim et al., 1998; Durner and Klessig, 1999; Magalhaes
et al., 2000; Belgini and Lamatinna, 2000; Wendehenne et al., 2001; Pagnussat et al.,
2002; Neill et al., 2003; Chaki et al., 2009) under different environmental conditions.
Therefore, in the recent years, the role of NO in regulating various physiological and
biochemical activities in plants has become an important area of research. In this
section we discussed the role of NO on different processes of plants under normal
(stress-free) condition because so many articles regarding the role of NO in plant

under abiotic and biotic stresses are already available.
2.5.3 Effect of nitric oxide on seed germination

The seed germination is sometimes prevented by the dormancy under the
influence of certain hormones that check metabolic activity. Several endogenous
substances have been reported to break seed dormancy, including nitrogen-containing
compounds. For instance; nitrate, nitrite, hydroxylamine, azide and NO releasing
compounds e.g. sodium nitroprusside (SNP). Besides curtailing the prolonged seed
dormancy in Arabidopsis (Batak et al., 2002; Bethke et al., 2004; Bethke et al., 2006),
barley (Bethke et al., 2004), and lettuce (Beligni and Lamattina, 2000), NO (as SNP)
stimulates seed germination in crop plants (Zhang et al., 2004). In Paulonica
tomentosa NO speeded up seed germination under normal conditions (Giba et al.,
1998) while in Suaeda salsa, under salt stress (Li et al., 2005). SNP application
facilitated seed germination in lupin during early hours up to a concentration of 0.8

mM (Kopyra and Gwozdz, 2003) and 0.05-0.5 mM concentration in canola, whereas,
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at higher concentrations (1-2 mM) it was inhibited in canola (Zanardo et al., 2005).
The seed germination in maize was also promoted with the application of NO
analogue (Zhang et al., 2004). SNP (the donor of NO) at 0.1 mM concentration
inhibited the hypocotyl growth in potato, lettuce and Arabidopsis (Beligni and
Lamattina, 2000), whereas, in cucumber it induced the root development (Pagnussat
et al, 2002).

2.5.4 Effect of nitric oxide on growth morphology

Growth of pea seedlings expressed dual behavior where an increased rate of
leaf expansion was recorded at lower (um) concentration of NO but not at higher
concentration (Leshem and Haramaty, 1996). Similarly the growth of tomato, lettuce
and pea inhibited at high concentrations of NO (40-80 ppm) while the low
concentrations (0-20 ppm) stimulated (Hufton et al., 1996; Leshem and Haramaty,
1996). In maize root segments NO activated the growth comparable to that of IAA
(Gouvea et al., 1997), while supplementing NO to maize seedlings it inhibited the
mesocotyl elongation (Zhang et al., 2003). Interestingly leaf biomass of maize
seedlings increased by the exogenous application of NO or due to its endogenous
production (An et al., 2005). The concentration dependent responses of NO have been
seen on plant growth (Anderson and Mansfield, 1979; Gouvea et al., 1997). At low
concentration NO promotes plant growth while at higher concentrations it has
negative or no impact on plant growth. This duality in NO behavior reported in
several plants; for example in wheat, tomato and canola seedlings (Tian and Lei,
2006; Correa-Aragunde et al., 2006; Zanardo et al., 2005), maize and cucumber root
growth (Gouvéa et al., 1997; Pagnussat et al., 2002) and hypocotyl growth of potato,
lettuce and Arabidopsis (Beligni and Lamattina, 2000).

2.5.5 Effect of nitric oxide on flowering

NO donor compounds (sodium nitroprusside, S-nitroso-N-acetyl penicillamine
and 3-morpholinosydnonimine) induce flowering in Lemna aequinoctialis and L.
aequinoctialis under non-inductive conditions (Khurana et al., 2011). With HO, NO
promote the reproductive growth (Zhou et al., 2010) as well as the expression of
flower related gene LFY (Blazquez et al., 1997; Zhou et al., 2010). In a genetic screen
of A. thaliana Wang et al. (2010) identified a mutant defective in H>O;-induced NO

accumulation. In 4. thaliana floral transition and the emission of NO is regulated by
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the activity of NR (Seligman et al., 2008) suggesting direct role of NR (and NO) in
anthesis. NO is expected to generate signals for the regulation of the initiation of
floral primordial like that of cytokinins (Corbesier et al., 2003; Eckardt, 2003) and
polyamines (Galston et al., 1997; Kakkar and Sawhney, 2002; Martin-Tanguy et al.,

1990) whose endogenous level is correlated with this phenomenon.
2.5.6 Effect of nitric oxide on senescence

Senescence is a process characterized by the programmed desiccation and
drying up of plant tissues. Reports suggested that NO has anti-senescence properties.
Application of NO to senescing pea leaves promoted conditions that decrease
ethylene synthesis (Leshem and Haramaty, 1996; Leshem et al., 1998; Leshem 2000).
However, in Arabidopsis the level of ethylene enhanced significantly after exposure
to NO gas (Magalhaes et al., 2000). Moreover, NO emission decreased as the e¢thylene
level increased from anthesis to senescence (Kopyra and Gwozdz, 2004). Nitric oxide
donors exert a protective effect against ABA-induced senescence of rice leaves by
diminishing ABA-dependent effects such as leaf senescence, enhanced H,O, and
melondialdehyde (MDA) content, reduction in GSH, ascorbic acid level and
antioxidant enzymes activity (Hung and Kao, 2003). The protective effect was
reversed by NO-scavenger (cPTIO) suggesting that the observed phenomenon may be
attributed to that of NO. Exogenous NO can protect naturally senescing soybean
cotyledons (Jasid et al., 2009).

2.5.7 Effect of nitric oxide on photosynthesis

Photosynthesis is one of the most important physiological processes in plants,
whole metabolism of plants directly or indirectly depends on this process, therefore,
any change in photosynthetic rate automatically affects the rest of the processes in
plants. The role of NO in photosynthesis is poorly understood by the available modest
number of in-vivo and in vitro studies in this area expresses mixed results (Takahashi
and Yamasaki, 2002; Yang et al., 2004). Nitric oxide and its donors such as SNP, S-
nitroso-N-acetylpenicillinamine, (SNAP), S-nitrosoglutathione (GSNO) regulate
photosynthetic rate differentially (Hayat et al., 2010b). Nitric oxide gas decreases net
photosynthetic rate in Avena sativa and Medicago sativa (Hill-Bennet, 1970) whereas,

NO donor SNP decrease the level of the enzymes involved in photosynthesis in wheat
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(Tu et al., 2003), Phaseolus aureus (Lum et al., 2005) and Pisum sativum (Wodala et
al., 2005; 2008).

Nitric oxide is able to influence the photosynthetic electron transport chain
directly. PS II is an important site of NO action (Wodala et al., 2008). Within PS 1I
complex, important binding sites for NO are the non-heme iron between Q, and Qp
binding sites (Petrouleas and Diner, 1990), the Yp Tyr residue of D2 protein (Sanakis
et al., 1997) and the manganese (Mn) cluster of the water-oxidizing complex

(Schansker et al., 2002).

Nitric oxide donor SNAP does not modify the maximal quantum efficiency
(Fv/Fm) but inhibits the linear electron transport rate, light induced pH formation
(ApH) across the thylakoid membrane, and decreases the rate of ATP synthesis
(Takahashi and Yamasaki, 2002). Another NO donor SNP reduces Fv/Fm in the intact
potato leaves but causes no difference in ApH dependent non-photochemical
quenching (NPQ) (Yang et al., 2004). A moderate decrease in Fv/Fm was also
observed by SNP treatment in pea leaves (Wodala et al., 2008). Moreover, NO donor
slows down the electron transfer between the primary and secondary quinone electron
acceptor in-vivo, in a concentration dependent manner (Petrouleas and Diner, 1990;
Wodala et al., 2008). NO slows down the electron transfer from Q4 to Qg (Wodala et
al., 2005). It was also shown that NO inhibits steady state photochemical and non-
photochemical quenching modulating reaction center associated with non-
photochemical quenching. This leads to significant decrease in the values of
maximum quantum efficiency of PSII (i.e. Fv/Fm) in intact pea leaves (Wodala et al.,

2008).
2.5.8 Effect of nitric oxide on chlorophyll content

NO donor (SNP) enhances chlorophyll content in potato, lettuce, maize and
Arabidopsis (Beligni and Lamattina, 2000). Leshem et al. (1998) observed an increase
in chlorophyll content in pea and potato and also proposed a role to NO in its
protective effect on chlorophyll retention by having an impact on the availability of
iron. Strong evidence supporting a role of NO in plant iron nutrition were presented

by Graziano et al. (2002).
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2.5.9 Effect of nitric oxide on stomatal mevement

Nitric oxide plays a role in stomatal movement being, together with H;O,, an
indispensable component of ABA-induced stomatal closure (Leckie et al.. 1998;
Garcia-Mata and Lamattina, 2002; Garcia-Mata et al., 2003; Desikan et al.. 2002;
2004). The exogenous application of NO to both monocot- and dicotyledonous
epidermis strips induced stomatal closure, through a Ca®* dependent process (Gracia-
Matta and Lamattina, 2001). In Pisum sativum and Vicia faba plants, ABA induced an
increase in endogenous NO production that was suggested as a reason for ABA-
induction stomatal closure (Neill et al., 2002). There are also some convergent
evidences that support the involvement of nitrate reductase through the production of
NO in guard cell metabolism and stomatal movement (Gracia-Mata and Lamattina,
2002) leading to their closure (Neill et al., 2002; Gracia-Mata and Lamattina. 2002;
Neill et al., 2008; Wilson et al., 2009).

2.5.10 Effect of nitric oxide on metabolic enzymes

Nitrate reductase activity is one of the NO sources in plant roots. Exogenous
application of SNP significantly enhanced the activity of NR in the leaves of maize
(Zhang et al., 2004) and tomato plants (Jin et al., 2009). However, in case of pea and
wheat roots SNP did not influence NR activity (Kolbert et al., 2005). GSNO and SNP
at the concentrations of 10-50 puM strongly inhibited NR activity in wheat leaf
segments (Rosales et al., 2011). Jin et al. (2009) suggested NO regulates NR activity
differently depending upon different levels of nitrate availability. He has
demonstrated that NO stimulated the NR activity in plant roots supplied with a low
level of nitrate, while at higher concentration of nitrate inhibitory effect appeared.
Zhang and Shangguan (2007) also showed increased NR activity with the increasing
nitrogen application in winter wheat leaves. Also and there was a significant linear
correlation between NR activity and NO content at tillering and jointing stages. NO
given as SNP (10° M) to tomato plants completely recovered the NR activity under
salinity stress given as 50-100 mM NaCl solution seed soaking (Hayat et al., 2010b).

Seeds of tomato soaked in 10° M SNP had shown increased activity of CA at
45 and 60 DAS (Hayat et al., 2011). However, in-vitro and in-vivo study by Puscas
and Coltau (1995) regarding the effect of NO on CA suggested that NO reversibly
effects CA activity. L-arginine (-source of NO) activated CA in vitro, while N-G-
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monomethyl-L-arginine (-an inhibitor of NO synthesis) did not modify its activity. In

vivo, L-arginine and N-G-monomethyl-L-arginine increased CA activity.
2.5.11 Effect of nitric oxide on antioxidant system

It is now commonly accepted that NO acts as a second messenger in plants.
Now one of the most intriguing issues in NO biology is its dual function of this
molecule as a potent oxidant and an effective antioxidant (Beligni and Lamattina,
1999b). This dual role of NO might depend on its concentration as well as on the
environment. Oxidative stress, is the common result of the action of many
environmental stressing factors, which manifest in the cell by an increased level of
ROS (Mittler, 2002). The cytoprotective role of NO is mainly based on its ability to
maintain the cellular redox homeostasis and to regulate the concentration and toxicity

status of ROS.

The ability of NO to exert a protective function against oxidative stress caused
by factors such as; a) reaction with lipid radicals, which stops the propagation of lipid
oxidation, b) scavenging the superoxide anion and formation of peroxynitrite (ONOO"
) which is toxic to plants but can be neutralized by ascorbate and glutathione, and c)

activation of antioxidant enzymes (SOD, CAT and POX).

One of the fastest reaction of NO within a biological system is its
combination with superoxide anion (O;") that leads to the formation of strong oxidant
peroxinitrile (ONOO") (Wendehenne et al., 2001; Neill et al., 2003), the major toxic
reactive nitrogen species (Stamler et al., 1992). It exerts deleterious effects on DNA,
lipids and proteins (Stamler et al., 1992; Pryor and Squardrito, 1995; Yamasaki et al.,
1999). The exogenous application of NO stimulated the super-oxide dismutase (SOD)
activity and/or diverts the scavenging of the superoxide anion (Kopyra and Gwowdz,

2003).

The studies on the effect of NO on peroxidase are still scarce and somewhat
controversial, depending on its concentration. The lower concentration of NO donor
increase the peroxidase activity in Brassica, however, higher concentration proved
inhibitory (Zanardo et al., 2005). Similarly, it was shown earlier that ascorbate
peroxidase activity was inhibited by higher SNP concentration in tobacco and canola

(Clark et al., 2000). Moreover, higher concentration of SNP is also reported to inhibit
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coniferyl alcohol peroxidase activity in Zinnia elegans (Ferrer and Ros-Barcelo,
1999).

High reactivity of NO allows it to scavenge reactive intermediates and end
chain-propagated reactions (Kopyra and Gwo6zdz, 2003). The interaction of NO to
lipid peroxyl radicals breaks the self-perpetuating chain propagation during lipid
peroxidation (Beligni and Lamattina, 1999a; Van Breusegem et al., 2001). Nitric
oxide decreased Thiobarbituric acid reactive substances (TBARS) content in wheat
seedlings (Tian and Lei, 2006). The NO counteraction with diquat or paraquat
induced generated ROS was shown by Beligni and Lamattina (1999¢) in potato and
by Hung et al. (2002) in rice. Also NO checks jasmonic acid induced H,O; production
in tomato leaves (Orozco-Cardenas and Ryan, 2002). Treatment of wheat plants with
lower concentration of SNP decreased H,O, content but antioxidant activity was
enhanced (Tian and Lei, 2006; Hayat et al., 2010b). Nitric oxide production confers

antioxidant protection in maize leaves (Tossi et al., 2009).

2.5.12 Nitric oxide signal interactions with other signaling molecules under

abiotic stress

The generation of NO and ROS, such as superoxide and H,O,, is a regular
phenomenon in response to a similar stimuli and with a similar kinetics where they
interact in various ways. In several situations, such as during pathogen challenge and
ABA induced stomatal closure, both H;O; and NO appear to be generated and
function concurrently (Desikan et al., 2004). Moreover, all these signals can induce
the generation of antioxidant activity that amelioration of oxidative stress (Neill,
2007). Water stress or, strictly speaking, water deficit stress, which is often referred to
as drought stress, is a major abiotic condition that dramatically affects plant growth
and yield. Water stress occurs in plants growing in drying soil as the water lost from
the leaves exceeds that taken up by the roots and results in cellular dehydration,
damage, and ultimately death. Cellular dehydration can also occur during exposure of
plants to other abiotic stresses that restrict water availability, such as cold and salt
stress or during anaerobic conditions resulting from root flooding. Several defense
responses are activated by water stress. One of the most important of these is stomatal

closure induced by ABA redistribution and synthesis.
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H,0; induces NO generation by NR and NOS-like enzyme(s) via as yet to
be fully characterized signaling pathway that may include OXI1 protein kinase and
may also involve Ca®*. Nitric oxide induces stomatal closure through the steps that
require MAPKs, cGMP, and Ca®*. It is also likely that NO-independent signaling
from ABA and H,0; also occur to cause stomatal closure during certain conditions.
Nitric oxide also enhances antioxidant genes and enzyme activity via MAPK and
other unidentified signaling pathways. For example, SOD activity may increase along
with that of CAT and APX to combat the increase in ROS and proteins such as the
dehydrins that may be produced to ameliorate the effects of cell dehydration. Other
abiotic stresses induce oxidative stress, the generation of H,O, and NO, and also
activate enhanced antioxidant defenses. The signals of NO may also induce
conformational changes in proteins as a result of S-nitrosylation or nitration.
However, the exact role of these processes in stomatal closure and stress amelioration

awaits clarification.

Zhang et al. (2008) provided the link between ABA, H,0, and NO by
showing that in maize (Zea mays) leaves, endogenous ABA, synthesized in response
to dehydration induces H,O; production that in turn synthesizes NO and a subsequent
increase in the activity of antioxidant enzymes. Moreover, the effects on antioxidant
enzyme gene expression and activity require the activation of MAPK signaling
enzyme. ABA synthesis and action are essential for plant survival during water stress.
ABA is an endogenous anti-transpirant signal that induces stomatal closure and is an
activator of various processes that enhance the cell survival against in cellular
dehydration (Zhu, 2002). ABA signaling in guard cells is especially complex, with
H,0,, NO and MAPKs all playing significant roles (Neill et al., 2008). ABA-induced
NO production in guard cells depends on H,O, generation (Bright et al., 2006). In
their previous work, Zhang et al. (2006) demonstrated that in maize leaves water
stress-induced ABA activates H,O, generation via the activation of an NADPH
oxidase-like enzyme, similar to that generated by H,O, in response to ABA in
Arabidopsis guard cells. In another study, NO was found to be an essential
intermediate in ABA-regulated processes during water stress in leaf mesophyll cells
as well as in guard cells of plant. Zhang et al. (2007) used the fluorescent dye DAF-
2DA to show that both ABA and H,0, induce NO generation in maize mesophyll
cells. The NO scavenger ¢cPTIO and the non-NO reactive 4AF-DA were used to
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demonstrate that fluorescence increases were indeed attributable to NO. ABA- and
H,0,-induced increases in fluorescence were rapid and dose-dependent and the
induction by ABA was prevented by DPI, a known inhibitor of NADPH oxidase.
Rapid removal of any ABA-induced H,0, by pretreatment with H,O, scavengers also
prevented NO increase, demonstrating that H,O, generation and action require NO
production. Furthermore, osmotic stress (induced by the incubation in polyethylene
glycol) similarly induced NO generation that was also prevented by pretreatment with
H,0; scavengers. Nitric oxide generation was not induced in the ABA-deficient vpJ3
mutant by osmotic stress but could be activated by ABA, thereby confirming that
endogenous ABA required for H,O,-mediated NO production.

ABA also modulates the expression of gene networks that control other
ameliorative responses. These include the maintenance of root water uptake, synthesis
of osmoprotective proteins such as dehydrins, and various metabolic changes (Neill et
al., 2008). Oxidative stress is a common feature of several abiotic stresses including
water stress (Bailey-Serres and Mittler, 2006). During oxidative stress, the redox
balance of cells is disturbed by increases in the rate of generation of reactive oxygen
species (ROS) such as superoxide anion (O,) and hydrogen peroxide (H>C,) above
that of their removal by antioxidant enzymes or by reaction with antioxidant
molecules. Cell functions are altered during oxidative stress not only because of
oxidative damage per se but also because of ROS themselves that are centrally
important signaling molecules. Thus, excessive quantities of ROS result in aberrant
cell signaling (Bailey-Serres and Mittler, 2006). The activation of cellular antioxidant
systems is a common feature of oxidative stress, and there is increasing evidence

indicating that NO is a critical factor in such responses.

Zhang et al. (2006) reported that osmotic stress, ABA, and H,O, enhance the
expression of several antioxidant genes such as CATI, cytosolic ascorbate peroxidase
(cAPX) and plastidial glutathione reductase (GRI), and the total enzyme activities of
CAT, APX, GR, and SOD. In another study (Zhang et al., 2007), they demonstrated
that NO is an essential intermediate in the enhancement of ABA and H,O,.
Pretreatment with NO-scavenger c-PTIO substantially prevented an increase in gene
expression and enzyme activity. Moreover, treatment with NO donor, sodium

nitroprusside essentially reproduced the effects of ABA or H,O,. Importantly, the
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removal of NO released from SNP with ¢c-PTIO prevented the increase, but treatment
with sodium ferricyanide (a molecule similar to SNP which does not release NO) had
no effect. A number of studies have already shown that exogenously applied NO can
impart protective antioxidant properties. Recent work has indicated that endogenous
NO induces antioxidant defenses, potentially via ABA signaling (Song et al., 2006,
Zhou et al., 2005).

The results of Zhang et al. (2007) showed that MAPK activation is targeted
both by H,0, and NO in mesophyll cells and that this MAPK activation is required
for downstream signaling to enhance antioxidant gene expression and enzyme
activity. Both ABA and H,O, activate an MAPK enzyme in maize leaves (or at least
an enzyme with properties characteristic of MAPKs), but this activation is largely
prevented by the removal of NO, through the NO scavenger ¢cPTIO. Moreover, as
with the enhancement of antioxidant activity, the MAPK is activated by treatment
with NO (supplied via SNP). Finally, inhibition of MAPK activation by treatment
with PD98059 (an inhibitor of mitogen-activated protein kinase kinase, MAPKK) and
U0126, a compound that inhibits MAPK kinases and upstream activators of MAPKs,
inhibits increase in antioxidant gene expression. She et al. (2004) indicated that both
20-amino-30-methoxyflavone (PD98059) and trifluoperazine (TFP) (a specific
inhibitor of CDPK) reduced the level of NO in guard cells and significantly reversed
darkness-induced stomatal closure, implying that MAPKK/CDPK mediates darkness-
induced stomatal closure by enhancing NO levels in guard cells. In addition, as with
NO scavenger ¢PTIO, but not with L-NAME, PD98059 and TFP reduced, NO level in
guard cells was not only induced by SNP in light but also increased during the dark
period. They were able to also reverse the stomatal closure by using SNP and
darkness, suggesting that MAPKK and CDPK are probably involved in restraining the
NO-scavenging to elevate NO levels in guard cells during darkness-induced stomatal
closure. The results also showed that both PD98059 and TFP restricted stomatal
closure through SNP, implying that the possibility of MAPKK and CDPK acting as
the target downstream of NO. There may be a causal and interdependent relationship
between MAPKK/CDPK and NO in darkness-induced stomatal closure, and in the

process a cross talk may lead to the formation of a self-amplification loop about them.
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The available data indicate a key ABA-H,O0,-NO-MAPK-antioxidant
survival cycle. It suggests that during water stress ABA has several ameliorative
functions that involve NO as a key signaling intermediate and which include the rapid
induction of stomatal closure to reduce transpirational water loss and the activation of

antioxidant defense to combat oxidative damage.

Desikan et al. (2004) suspected the interaction of NO and H,O; in the regulation of
stomatal closure in response to ABA signaling with the mediation of NADPH-oxidase
and nitrate reductase, respectively. NO may function in the downstream of HyO; in
ABA-induced stomatal closure in Vicia faba (Zhang et al., 2005). In Arubidopsis
ABA-induced NO generation and stomatal closure are dependent on H,O, synthesis
(Bright et al., 2006). Ye et al. (2011) suggested that water stress-induced ABA
prevents the excessive accumulation of H,O,, through the induction of the expression
of catalase (CATB gene) in rice. This was further confirmed by Jannat et al. (2011) in
Arabidopsis guard cells where ABA-inducible cytosolic H,O, elevation functions in
ABA-induced stomatal closure. Functions of many other possible components of
ABA- H,0,-NO—cellular response signal transduction chain still require clanfication.
These include the protein kinases OST1 (Mustilli et al., 2002) and OXI1 (Rentel et al.,

2004) and many others as-yet-unknown proteins and signaling molecules.
2.6 Future prospects of brassinosteroids and nitric oxide based researches

Forty years of research on BRs has brought into light several vital functions of
this class of phytohormones in the regulation of plant growth, development and
productivity. Further progress in the investigation of mechanism of BRs action in
plants, on one hand, and elaboration of economically feasible schemes of the
synthesis of natural BRs and their analogs, on the other hand, will surely make a basis
for the inclusion of this new class of plant hormones in the regular package of
chemicals used for optimizing agricultural production. Hopefully, as the research will
progress, much more knowledge will be added to the present literature. It has been
stated earlier that the application of these steroids to plants generates varied physio-
morphological changes by involving the genome and also do not initiate co-evolution
of pests, enriching our arsenal of plant protection strategies, in the twenty first
century. Moreover, the knowledge of the physical and chemical properties of these

steroids is tempting us to consider them highly promising, environment friendly and
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promoter of agricultural productivity. One of the major constraints, to employ BRs at
larger scale, in the field conditions is their high cost. However, recent progress, in
chemical synthesis of BRs and their analogues has led us to economically feasible
approaches that may bring large scale application very near to the reach of the

farmers.

The mechanisms by which NO is generated are still largely unresolved.
Elucidation of how NO is generated by different plant cells, in different situations, is
clearly a research priority. The mechanism(s) by which NO is perceived by plant cells
is another question, to be resolved. Transient elevation of the second messenger cyclic
GMP via activation of a guanylyl cyclase enzyme is a possibility, as is directs the
activation by reversible S-nitrosylation of cysteine residues; however, there could be
specific receptors for this molecule. Functions of many other components of the
ABA-H,0,-NO-—cellular response signal transduction chain also require clarification.
The research regarding the network, regulation, metabolism and biosynthesis of NO is

still elusive and need substantial work.
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CHAPTER-3

MATERIALS AND METHODS

Six pot experiments were conducted on Indian mustard (Brassica juncea L.,
Czermn & Coss.) crop, during the years 2009-12 to attain the objectives mentioned in
Chapter-1. The seeds of two varieties of B. juncea viz. Varuna and RH-30 were sown in
the winter season to observe the effects of foliage application of aqueous solution of
selected concentration (10 M) of brassinosteroids (BRs; 28-HBL and 24-EBL) and/or
that of sodium nitroprussside (SNP; 10°® M), as a donor of nitric oxide (NO). on Cd
stressed and non-stressed mustard plants at 30 and 60 day after sowing (DAS). The
comprehensive details of the material used and the methodologies adopted, during the

course of the present investigation are presented in this chapter.
3.1 Seeds

The authentic seeds of two varieties of Indian mustard, Varuna and RH-30 were
procured from National Seed Corporation Ltd. New Delhi, India. Uniform sized, healthy
seeds were tested for their per cent viability before the start of each experiment. Mercuric
chloride solution (0.01%) was used for the seeds disinfection. Seeds were rinsed thrice
with double distilled water (DDW) following the disinfection; to remove the toxic

mercuric chloride adhered to the seed coat.
3.2 Preparation of pots

Earthen pots were filled with sandy loam soil mixed with farmyard manure in a
ratio of 9:1. Each pot was amended with a recommended dose of fertilizers (urea, single
superphosphate and muriate of potash, at the rate of 40 mg, 138 mg and 26 mg,
respectively). The pots were arranged in a simple randomized block design and the plants

were raised under the natural environmental conditions in the net house.
3.3 Hormones and their preparation

28-homobrassinolide (HBL) and 24-epibrassinolide (EBL) were obtained from
Sigma-Aldrich India Ltd. Chemicals, USA. Stock solution (10 M) was prepared by



dissolving the required quantity of the hormone in 5 cm® of ethanol, in a 100 cm’
volumetric flask and final volume was made up to the mark, using DDW. The desired
concentration of HBL or EBL was prepared by diluting the above stock solution using
DDW. Surfactant “Tween-20" (0.5%) was added to each flask prior to the foliar

application.

Sodium nitroprusside (SNP) was used as the source of NO. SNP in aqueous
solution also releases Fe and cyanide (CN’) therefore potassium ferricyanide [K3Fe(CN)g]
solution was used as a donor of equimolar molecules of ferricyanide and (CN) only, to
see that effects of SNP are mediated by NO and not Fe or (CN’). The required
concentrations (10, 10°, 10° M) of each of the SNP and potassium ferricyanide (10 M)

were prepared by dissolving their requisite quantities in DDW.
3.4 Experiment 1

The first experiment was laid down according to a simple randomized block
design in the pots (25 x 25 cm) during the winter season (September-February) of year
2009-10. The surface sterilized seeds of Indian mustard cv. Varuna and RH-30 were
sown at the rate of 8 seeds per pot amended with graded concentrations of CdCl, (0, 25,
50 or 100 mg Kg!' of soil), so that each pot received 0, 15.33 mg, 30.66 mg or 61.32 mg

Cd Kg"' of soil, respectively. After a week plants were thinned to three plants per pot.

Each treatment had five pots as replicate where three plants per pot were
maintained. Irrigation was done with tap water as and when required. The plants were
sampled at 30 and 60 DAS to study the vegetative characteristics of the plants and at 120

DAS to assess yield parameters listed below:
Length of root and shoot per plant

Fresh and dry mass of root and shoot per plant
Leaf area

Chlorophyl! level (SPAD value)

Net photosynthetic rate (Py)

Stomatal conductance (g;)
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Internal CO; concentration (Ci)
Transpiration rate (E)

Maximum quantum yield of photosystem II (Fv/Fm)
Leaf water potential (LWP)

Leaf nitrate reductase (NR) activity

Leaf carbonic anhydrase (CA) activity
Leaf peroxidase (POX) activity

Leaf catalase (CAT) activity

Leaf superoxide dismutase (SOD) activity
Leaf proline content

Cadmium accumulation in root and shoot
Number of pods per plant

Number of seeds per pod

Seed yield per plant

100 seed mass
3.5 Experiment 2

This experiment was set up in a simple randomized design, during the winter season
of 2009-10, side by side the Experiment 1. The surface sterilized seeds of Indian mustard
cv. Varuna and RH-30 were sown in Cd non-treated soil. The foliage of 29 day old plants
was sprayed with DDW, tween-20 (0.5%), ethanol (5%), 28-HBL (10" M) or 24-EBL
(10® M). Each plant was sprayed thrice at an interval of 2 min so that foliage would get
sufficient time to adsorb solution. The nozzle of the sprayer was adjusted to pump ~1 ml
solution in one sprinkle. Therefore, each plant received 3 ml (15 ul, 150 pl, 0.0148 pg or
0.0144 ug, respectively) of each solution.

Each treatment had five replicates. Irrigation was done with tap water as and
when required. Five plants per treatment were sampled at 30 and 60 DAS to assess the
selected parameters (Experiment 1) and the remaining plants were allowed to grow up to

maturity (120 DAS) to study yield characteristics (Experiment 1).
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3.6 Experiment 3

This experiment was laid simultaneously along with Experiments 1 and 2, in a net
house under the same environmental conditions of the winter season of year 2009-10 as
per simple randomized block design. The healthy disinfected seeds of B. juncea cv.
Varuna and RH-30 were sown in Cd non-treated soil. The foliage of 29 day old plants
was sprayed thrice with ~1 ml DDW, potassium ferricyanide (10* M) or three
concentrations of SNP (10, 10 or 10 M) at an interval of 10 min so that each plant
would have sufficient time to receive 3 ml (111.00 pg of potassium ferricyanide or 78.57
ug, 7.86 ug or 0.79 ug of SNP, respectively) of each solution.

Each treatment had five replicates. Plants were irrigated with tap water as and
when required. Sampling was done at 30 and 60 DAS to assess vegetative characteristics
and at 120 DAS for yield attributes, as mentioned in experiment 1.

3.7 Experiment 4

This experiment was performed according to simple randomized block design in
the winter season of the year (2010-11) under the similar environmental conditions as in
previous experiments, in a net house. The healthy and disinfected dry seeds of B. juncea

cv. Varuna and RH-30 were sown in Cd amended soil and sprayed (3.00 ml) at 29 DAS.

Treatments Cadmium added (CdCl,) to the soil Solution applied to the foliage
(mg/Kg) 1o’

A 0.00 DDW

B 25.00 DDW

C 50.00 DDW

D 100.00 DDW

A 0.00 28-homobrassinolide

B, 25.00 28-homobrassinolide

C, 50.00 28-homobrassinolide

D, 100.00 28-homobrassinolide

A, 0.00 24-epibrassinolide

B, 25.00 24-epibrassinolide

C, 50.00 24-epibrassinolide

D, 100.00 24-epibrassinolide
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Each treatment had five replicates. Irrigation was done with tap water as and
when required. The plants were sampled at 30 and 60 DAS to study vegetative
characteristics and at 120 DAS to compute the yield parameters as in Experiment 1.

3.8 Experiment 5

This experiment was laid down according to simple randomized block design
during the winter season of the year 2010-11 under similar environmental conditions as
in previous experiments. The healthy and disinfected seeds of mustard, varieties Varuna
and RH-30 were sown in Cd amended soil and foliage was sprayed (3.00 ml) with SNP
(10 M) at 29 DAS, under the following scheme:

Treatments Cadmium (CdCl,) added in the soil Solution applied to the foliage
(mg/Kg) 10°M)

A 0.00 DDW

B 25.00 DDW

C 50.00 DDW

D 100.00 DDW

Ay 0.00 Sodium nitroprusside

B 25.00 Sodium nitroprusside

C 50.00 Sodium nitroprusside

D, 100.00 Sodium nitroprusside

Each treatment had five replicates. Irrigation was done with tap water as and
when required. The plants were sampled at 30 and 60 DAS to assess the characteristics of
vegetative phase and at 120 DAS for yield characteristics, as listed in Experiment !.

3.9 Experiment 6

This experiment was conducted in a simple randomized block design during the
winter season of the year 2011-12 in a net house. The SNP and EBL and their
concentrations were selected on the basis of the observations made in Experiments 3 and
4, respectively to study their interactive effects. The healthy disinfected seeds of mustard
varieties Varuna and RH-30 were grown in Cd amended soil and sprayed (3.00 ml each)

with 10°° M of SNP (28 DAS) and 10°® M of EBL (29 DAS).
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Treatments Cadmium (CdCly) added in the soil Solution applied to the foliage (10~ M)

(mg/Kg) of EBL and (10° M) of SNP
A 0.00 DDW
B 25.00 DDW
C 50.00 DDW
D 100.00 DDW
A 0.00 SNP + EBL
B, 25.00 SNP + EBL
C, 50.00 SNP + EBL
D, 100.00 SNP + EBL

Each treatment had five replicates. Irrigation was done with tap water as and
when required. The plants were sampled at 30 and 60 DAS to asses various vegetative
characteristics and at maturity (120 DAS) for yield characteristics as listed in Experiment
1.

3.10 Parameters

The methods executed to assess each parameter are described in details below:
3.10.1 Growth parameters

3.10.1.1 Shoot and root length per plant

The plants with intact roots were dig out of the pots carefully with the adhering
soil which was removed with gentle shake in the bucket, filled with water. The roots were
then gently stirred to remove the rest of the adhering soil particles followed by washing
under running tap water. The shoot and root length (cm) were measured using a meter

scale.
3.10.1.2 Fresh and dry mass of shoot and root

The plants were wrapped in blotting sheets to soak the water. Shoot and root of
each plant were separated and weighed individually using electronic balance to record
their fresh mass separately. The samples were then subsequently transferred in an oven

set at 70°C for 72 h. The dry mass of shoots and roots were recorded.
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3.10.1.3 Leaf area

Leaf area was ascertained with the help of millimeter graph sheet. The fully
expanded third upper leaf was taken from each replicate to trace its outline on the graph
sheet. The squares falling within outline were counted. The average leaf area was

expressed as cm’.
3.10.2 Physiological characteristics
3.10.2.1 Chlorophyll content (SPAD value)

The leaf chlorophyll level at each sampling stage was measured in fully expanded
leaves of the plants by using Minolta chlorophyll meter (SPAD-502; Konica Minolta

Sensing Inc. Japan).
3.10.2.2 Photosynthesis and related attributes

Net photosynthetic rate (Py), stomatal conductance (g;), transpiration rate ( £), and
internal CO; concentration (C;) at two growth stages (30 DAS and 60 DAS) were
measured in fully expanded leaves of the plants by using portable photosynthesis system
(LI-COR 6400, LI-COR, Lincoln, NE, USA). The air temperature, relative humidity, CO,
concentration and photosynthetic photon flux density (PPFD) were maintained at 25 C,
85%, 600 pumol mol™ and 800 pmol mol™ s™, respectively. All the measurements were

made between 11:00 and 12:00 h, under clear sun light.
3.10.2.3 Maximum quantum yield of Photosystem II

Maximum quantum yield of Photosystem II (Fv/Fm) was measured by using Leaf
Chamber Fluorometer (LI-COR 6400-40, Portable photosynthesis system, LI-COR,
Lincoln, NE, USA). All the measurements were carried out at a PPFD of 1500 pmol m*

s”', with a constant airflow rate of 500 pmol s™'. The sampled leaves were dark adapted

for 30 min, prior to measurements.
3.10.2.4 Leaf water potential

Leaf water potential, at each selected stage, was measured in fresh, detached

leaves by using PSYPRO water potential system (WESCOR Inc. Longman, USA).
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3.10.3 Biochemical analyses
3.10.3.1 Nitrate reductase (NR) activity

The nitrate reductase (E.C. 1.6.6.1) activity in fresh leaves was measured
following the method of Jaworski (1971). The leaves were cut into small pieces (~1 cm?).
These samples were weighed (200 mg) and transferred to plastic vials. To each vial 2.5
cm’ of phosphate buffer (Appendix 1.1) and 0.5 cm® of potassium nitrate solution
(Appendix 1.2) was added followed by the addition of 2.5 ¢cm’® of 5% isopropanol
(Appendix 1.3). These vials were incubated in a BOD incubator for 2 h at 30£2°C, in
dark. Incubated mixture (0.4 ml) was taken in a test tube to which 0.3 cm’ each of
sulphanilamide solution (Appendix 1.4) and NED-HCI (Appendix 1.5) were added and
left for 20 minutes to attain maximum colour development. The mixture was diluted to 5
cm® with DDW. The absorbance was read at 540 nm on spectrophotometer (Milton &
Roy, USA). A blank was run simultaneously with each sample. Standard curve was
plotted by using known graded concentrations of sodium nitrite solution. The absorbance
of each sample was compared with the calibration curve to record NR activity [n mol

NO, g h™!] on fresh mass basis.
3.10.3.2 Leaf carbonic anhydrase (CA) activity

The carbonic anhydrase (E.C. 4.2.1.1) activity in fresh leaves was measured by
following the method of Dwivedi and Randhawa (1974). Fresh mustard leaves were cut
into small pieces and weighed to 200 mg at a temperature below 25 C. These samples
were transferred to petri plates and further cut into fine pieces in 10 cm® of 0.2 M cystein
hydrochloride (Appendix 2.1) and were left at 4'C for 20 min. The leaf pieces were
blotted and transferred to a test tube containing 4 cm® of phosphate buffer of pH 6.8
(Appendix 2.2). To the test tube, 4 cm® of 0.2 M sodium bicarbonate (Appendix 2.3)
solution and 0.2 cm’® of 0.002% bromothymol blue (Appendix 2.4) were added. The test
tube was shaken gently and left at 4°C for 20 min. CO; liberated by the catalytic action of
CA on NaHCO; was estimated by titrating the reaction mixture against 0.05 N HCI
(Appendix 2.5) using methyl red as an indicator (Appendix 2.6). The volume of HCl used

to develop light purple colour, persisting for at least five seconds was noted. A blank
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consisting of all the above components of the reaction mixture, except the leaf sample,
was run simultaneously with each set of the samples. The activity of enzyme was

calculated by putting the values in the formula:

Vx22xN
Carbonic anhydrase activity = [mol (COy) Kg'1 FMs']
W
Where,
V = Difference in volume (cm’ of HCl used, in control and test sample
titrations)

22 = Equivalent weight of CO;
N = Normality of HCI

W = Fresh mass of tissue used
3.10.3.3 Estimation of antioxidative enzymes activity

Leaf tissue (500 mg) was homogenized in 5 cm® of 50 mM phosphate buffer
(pH 7.0) containing 1% polyvinyl pyrrolidone. The homogenate was centrifuged at
15,000 rpm for 10 minutes at 5°C and the supernatant was used for the estimation of

peroxidase, catalase and superoxide dismutase activities.
3.10.3.3.1 Leaf peroxidase (POX) activity

The POX activity was measured following the method of Chance and Maehley
(1956) in fresh leaf samples. Three cm® of pyrogallol phosphate buffer (Appendix 3.1),
0.1 cm’® of enzyme extract and 0.5 cm’ of 1% H,0, were mixed in a cuvette. Change in
the absorbance, at 20 s interval for a period of 3 minutes was recorded at 420 nm on a

spectrophotometer. The control set was prepared by boiling the enzyme extract.
3.10.3.3.2 Leaf catalase (CAT) activity

The activity of CAT was estimated by permanganate titration method (Chance
and Maehly, 1956). Five cm® of phosphate buffer (Appendix 4.1), 1 em® of 0.1 M H,0,
(Appendix 4.2) and 1 cm® of enzyme extract were mixed and incubated at 25°C for 1
minute. Then 10 cm® of 2% H,SO; (Appendix 4.3) was added. The mixture was titrated
against 0.1 N potassium permanganate (Appendix 4.4) to find the residual H,0, until a
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purple colour persists for at least 15 s. Similarly, a control set was maintained in which
the enzyme activity was stopped by the addition of H,SOs, prior to the addition of the

enzyme extract.
3.10.3.3.3 Leaf superoxide dismutase (SOD) activity

The activity of SOD was measured by the method of Beauchamp and vFridovich
(1971); Reaction mixture contained 1 ¢cm® of 50 mM phosphate buffer (Appendix 5.1),
0.5 cm® of 13 mM methionine (Appendix 5.2), 0.5 cm® of 75 mM NBT (Appendix 5.3),
0.5 cm’ of 0.1 mM EDTA (Appendix 5.5) and 0.1 cm® of the enzyme extract and’at last
0.5 cm® of 2 pM riboflavin (Appendix 5.4) was added. The absorbance of the reaction

mixture was read at 560 nm on a spectrophotometer.
3.10.3.4 Leaf proline content

The proline content in fresh leaves was estimated following the procedure used
by Bates et al. (1973). Fresh sample (0.5 g) was homogenized in a mortar with 5 cm’ of
3% sulphosalicylic ac1d (Appendix 6.1). The homogenate was filtered thrdug_h Whattman
filter paper No. 2 and collected in a test tube with two washings. Five cm® of
sulphosalicyclic acid, 2 cm® each of glacial acetic acid and acid ninhydrin (Appendix 6.2)
were added to 2 cm® of the above extract. This mixture was heated in boiling water bath
for 1 hour. The reaction was terminated by transferring the test tubes to ice box. Four cm’
of toluene was mixed to the reaction mixture with vigorous shaking for 20-30 s. The
chromophore (toluene) layer was aspirated and warmed to room temperé{tlfré'. The
absorbance of red colour was read at 520 nm against a reagent blank. The amount of
proline in the sample ‘was calculated by using a standard curve prepared from pure

proline (range, 0.1-36 pmol) and expressed on fresh mass basis of the sample. -

pg proline cm x cm™ toluene . 5
p moles of proline g’ tissue = X
115.5 g (sample)

Where, 115.5 is the molecular mass of proline
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3.10.3.5 Cadmium accumulation in root and shoot

For Cd determination, the root and shoot samples were immersed for 10 min in
ice cold 5 mM CaCl, solution (Appendix 7.1) to displace extracellular Cd, rinsed with
distilled water. Tissue is oven dricd (Meuwly and Rauser, 1992). Cd conceniration in
shoots and roots was estimated after digesting the samples in ritric acid:perchloric acid
(3:1, v/v). Cd concentration was determined by atomic absorption spectrophotometer

(Perkin-Elmer A, Analyst, 300).
3.12 Yield parameters
3.12.1 Number of pods per plant

At harvest (120 DAS), 5 plants from each treatment (representing five

replicates) were randomly sampled and counted tor the number of pods per plant.
3.12.2 Number of seeds per pod

From each treatment, 25 pods were randomly selected and computed te get

rumber of seeds per pod.

3.12.3 Seed yield per plant and 100 seed mass

The pods from each repiicate were cleaned, crushed, and computed tc assess
seed yield per plant. 100 seeds were subsequently randomly picked and weighed to
record 100 sced mass in mg.
3.13 Statistica! analysis

The experiments wete conducted according to simple randomized design. Each

treatment was represented by five pois where each pot was considered as a replicate.
Tiiree plants were maintained per pot. The treatment means were compared by analysis of
variance using SPSS ver. 17 Inc., Chicago, USA. Least significant difference (LSD) was

calculated at 5% level of probability.
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CHAPTER-4
RESULTS

4.1 EXPERIMENT 1

This experiment was conducted to study the comparative response of the two
varieties of Brassica juncea (L.) Czern & Coss (Varuna and RH-30) to soil applied CdCl,
(now Cd onwards) (0, 25, 50 or 100 mg Cd Kg"). The experiment was laid under simple
randomized block design during the winter season of 2009-10 in earthen pots (25
x 25 cm). Soil was amended with uniform basal dose of N, P and K. Ten seeds per pot
were sown, the seedlings were thinned to 3 plants per pot after a week (Chapter 3.2).
Each treatment was represented by 5 pots. Plants were irrigated with tap water as and
when required. Samples were randomly collected at 30 and 60 days after sowing (DAS).
The crop was harvested finally at 120 DAS. The growth and yield characteristics are
explained below:
4.1.1 Root and shoot length

The data in table 1 indicates that Cd at all its levels, in a concentration dependent
manner (25, 50 or 100 mg Cd Kg') significantly reduced the root and shoot length in
both the varieties i.e. Varuna and RH-30. The reduction was more prominent in RH-30
than Varuna at the two growth stages. At the highest concentration (100 mg Cd Kg'') the
per cent loss was 65% and 39% (RH-30) and 57% and 35% (Varuna) for root and shoot
length, respectively, at 30 day stage of growth, compared with the control plants (0 mg
Cd Kg"). However, a slight recovery was noted at day 60.
4.1.2 Fresh and dry mass of root

With the growth advancement from 30 to 60 DAS, the fresh and dry mass of root
increased (Table 2). The plants raised in the soil with different doses of Cd exhibited a
concentration dependent inhibition of root fresh and dry mass. The minimum decline was
noted against the lowest concentration (25 mg Cd Kg™' soil) where root fresh mass
decreased by 34% and 40% at 30 DAS and by 25% and 35% at 60 DAS, in Varuna and
RH-30 respectively, as compared to the controls (0 mg Cd Kg). Similarly, the decline of

root dry mass at the same concentration of Cd was 18% and 23% and 13% and 26% in



Varuna and RH-30 respectively, compared with their controls, at the two growth stages

(30 and 60 DAS). The losses in RH-30 were more prominent than Varuna.
4.1.3 Fresh and dry mass of shoot

It is evident from table 3 that the fresh and dry mass of shoot was significantly
reduced by Cd at the two growth stages (30 and 60 DAS) in both the mustard varieties.
This loss was in proportion to the Cd concentration. The lowest level (25 mg Cd Kg™' of
soil) of Cd decreased the shoot fresh and dry mass by 36% and 49%, whereas it was 55%
and 65% against the highest level of (100 mg Cd Kg' of soil) in RH-30 at 30 DAS.
However, in Varuna, the loss of fresh and dry mass was comparatively less than RH-30
both at 30 and 60 DAS. Moreover, as the growth progressed (60 DAS) the per cent loss
in fresh and dry mass of shoot decreased. RH-30 was more sensitive to Cd as reflected by

greater loss in root fresh and dry mass.

4.1.4 Leaf area

The leaf area increased as the growth progressed from 30 to 60 days (Table 4).
However, the values decreased with the amendment of Cd, in a concentration dependent
manner in both the varieties. The loss was more significant in RH-30 than Varuna. The
decrease was more prominent at early stage (30 DAS) of growth than at the latter stage
(60 DAS) which was 54% and 48% in RH-30 and Varuna respectively, compared with
their controls against the highest level of Cd (100 mg Kg™' of soil).

4.1.5 SPAD chlorophyll value

The chlorophyll content increased with plant age (Table 4). However, the plants
grown under stress, generated by Cd (0, 25, 50 or 100 mg Kg'') possessed significantly
lower values of SPAD chlorophyll than the unstressed control plants (0 mg Cd Kg"). The
loss was in proportion to the Cd concentration. The Cd (100 mg Kg'') generated a loss of
51% and 72% at 30 DAS and 35% and 55% at 60 DAS in Varuna and RH-30,
respectively, as compared to the controls (0 mg Cd Kg™). Therefore, RH-30 exhibited

greater loss than Varuna at the two growth stages.
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4.1.6 Photosynthetic parameters

The photosynthetic parameters improved as the growth progressed from day 30 to
60. However, the soil contaminated with Cd (25, 50 or 100 mg Kg™' of soil) significantly
decreased the net photosynthetic rate (Py) and its related parameters (stomatal
conductance; g, internal CO, concentration; C;, transpiration rate; E, and maximum
quantum yield of PSII; Fv/Fm) in the leaves of mustard plants, compared to the control (0
mg Cd Kg™), in a manner dependent on its concentration. Even at the lowest level (25 Cd
mg Kg" of soil) the per cent decrease in Py; g, Ci; E and Fv/Fm at 30 and 60 DAS was
12% and 22%; 41% and 17%; 10% and 8%; 1% and 5%, 6% and 4% for Varuna as
compared to its stress free control (Tables 5-7). Moreover, this loss was of a higher order
in all the parameters in the other cultivar (RH-30), which looked like to be less resistant

to Cd-stress.
4.1.7 Leaf water potential (LWP)

The increase in plant age (30 to 60 DAS) expressed an increase in per cent LWP
(Table 7). However, the stress, induced by Cd significantly reduced the LWP in a
concentration dependent manner. Therefore, maximum loss was recorded in the plants
cultured with highest concentration of Cd (100 mg Kg"'). The values were lesser in
variety RH-30, compared to Varuna. At early growth stage (30 DAS), against the
minimum concentration of Cd (25 mg Kg™' of soil) the decline in LWP in Varuna was

16% while in RH-30 it was 19%, compared to their non-stressed plants (0% Cd).
4.1.8 Nitrate reductase (NR) and carbonic anhydrase (CA) activity

The activity of NR and CA (Table 8) increased with plant age (30 to 60 DAS) but
exhibited a significant decrease under Cd-stress (25, 50 or 100 mg Kg™' of soil). Out of
the concentrations used, 25 mg Kg' was least toxic and induced a loss in NR and CA
activity by 14% and 24% (Varuna) and 29% and 27% (RH-30), respectively, when
compared to their respective controls (0 mg Cd Kg™'), at 30 DAS. The activity of both the
enzymes decreased further as the concentration of Cd was increased. The loss of enzymes

activity was more in RH-30 than Varuna.
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4.1.9 Activity of antioxidant system

The activity of antioxidant enzyme system i.e. CAT, POX and SOD (Tables 9)
increased with the increasing level of Cd in the soil (0, 25, 50 or 100 mg Kg''). Against
the different concentrations of the metal (25, 50 or 100 mg Cd Kg") at 30 day stage, the
increase in the activity of POX was 30%, 42% and 57%, of CAT it was 22%, 28% and
36% and that of SOD it was 41%, 55% and 81% in Varuna, compared to the control (0
mg Cd Kg™'). Higher level of these enzymes was maintained even at the latter stage of
growth (60 DAS) in stressed plants. The per cent activity of all the three enzymes was
lower in RH-30 than Varuna, at both the stages of growth (30 and 60 DAS).

The leaf proline level also showed an increasing trend with increasing level of the
metal (Table 10). The highest concentration of Cd (100 mg Kg') induced maximum
proline accumulation which was 82% and 75% at 30 DAS and 66% and 63% at 60 DAS
in Varuna and RH-30, respectively, compared with their controls (0 mg Cd Kg™'). The

Varuna therefore accumulated higher proline level as compared to RH-30.

4.1.10 Cd accumulation in root and shoot

The data presented in table 11 revealed that increase in Cd (0, 25, 50 or 100 mg
Kg' of soil) led to the accumulation of more and more metal both in root and shoot
where former tissue had more than the latter, irrespective of the variety. At the highest Cd
concentration (100 mg Cd Kg™), the roots of RH-30 possessed 170ug and 221pg Cd g
dry mass compared with dry mass of the control (0 mg Cd Kg') plants. Against the same
level of Cd, shoot accumulated only 83ug and 106ug metal g of dry mass as compared
with control plants whose shoot accumulated Cd 0.50pg and 0.54ug g dry mass, at 30
and 60 DAS, respectively. The accumulation of Cd in Varuna was significantly lower

than RH-30.
4.1.11 Yield characteristics

It is evident from the data presented in table 12 that the exposure of the plants to
the metal-stress (0, 25, 50 or 100 mg Cd Kg" of soil) reduced all the yield characteristics
significantly. The per cent loss in RH-30, against all the three concentrations of Cd (25,
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50 or 100 mg Kg) was significantly higher than in Varuna. The maximum loss, as
compared to the control (0 mg Cd Kg'), was noticed in RH-30 at the highest
concentration of Cd (100 mg Kg™* of soil) which was 30%, 17%, 16% and 51% for the
number of pods per plant, number of seed per pod, mass of 100 seeds and seed vield per

plant, at harvest, respectively.

4.2 EXPERIMENT 2

To study the impact of BR analogues (HBL/EBL; 10 M) on two varieties of
B. juncea L., Czern & Coss; Varuna and RH-30, this experiment was laid in a simple
randomized block design during the winter season of 2009-10. All the agricultural
practices to raise the plants were kept the same as in Experiment 1. The foliage of 29
days old plants was sprayed with double distilled water (control), tween-20 (0.05%).
ethanol (5%), HBL (108 M) or EBL (10°M) solutions. Samples were collected randomly
at 30 and 60 DAS to study the growth parameters and at 120 DAS for yield parameters as

in Experiment 1. The growth and yield characteristics are explained below:
4.2.1 Root and shoot length

The length of root and shoot increased with the advancement of plant age (Table
13). Both the varieties of mustard that received BR application showed significant
increase, at latter stage (60 DAS) of growth in their root and shoot length which was 39%
and 41%, and 34% and 33% by HBL and 54% and 49%, and 36% and 37% by EBL in
Varuna and RH-30, respectively, compared to the water sprayed control plants. At 30
DAS, BRs generated the values comparable with water sprayed control. However, foliar
spray of tween-20 or ethanol had no effect on the length of root or shoot, both at 30 and
60 DAS, compared to control plants, treated with water only. Out of the two BRs, EBL
excelled in its effect over HBL. Varuna exhibited higher values both for root and shoot,

compared to RH-30.
4.2.2 Fresh and dry mass of root

With age of the plants, the values for fresh and dry mass of root and shoot (Table
14) improved. Moreover, the application of BRs (10® M HBL/EBL) significantly
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increased these values further, noted at 60 DAS, whereas, tween-20 and ethanol had the
impact comparable with water-sprayed controls. Plants that received 10® M of HBL or
EBL showed 33% and 40% (Varuna) and 31% and 38% (RH-30) increase in root fresh
mass, whereas the root dry mass increased by 38% and 46% (Varuna) and 29% and 39%
(RH-30) at 60 DAS, compared to water sprayed plants. EBL, therefore, proved better
than HBL. Varuna was more responsive to the foliar spray of BRs than RH-30.

4.2.3 Fresh and dry mass of shoot

Fresh and dry mass of shoot (Table 15) followed a similar pattern to that of the
root (Section 4.2.2). Plant foliage that received 10 M solution of HBL or EBL possessed
significantly higher fresh and dry mass, at 60 DAS. EBL improved the fresh and dry
mass of shoot more than HBL where the per cent increase in shoot fresh mass was 39%
and 36% and dry mass was 45% and 44% in Varuna and RH-30, as compared to control

(sprayed with DDW). The increase was more prominent in Varuna than RH-30.

4.2.4 Leaf area

Leaf area increased with the advancement of age from 30 to 60 days, in both the
varieties (Table 16). The impact of tween-20 and ethanol was comparable with that of the
water sprayed control plants. The treatment with HBL/EBL (10° M) significantly
increased the leaf area at 60 DAS. The per cent increase of leaf area for Varuna and
RH-30 was 22% and 19% with HBL and was 26% and 25% with EBL, at 60 DAS,
compared to the water-sprayed control. EBL excelled in promoting leaf area over HBL.

Moreover, Varuna was more responsive than RH-30 and possessed larger leaf area.

4.2.5 SPAD chlorophyll value

The SPAD values of chlorophyll significantly increased with the plant age (Table
16) and had comparable values with water, tween-20 or ethanol. Foliar spray of 10° M
solution of HBL or EBL elevated the level at both the stages of growth (30 and 60 DAS).
The per cent increase of leaf chlorophyll content by brassinosteroid was more at 30 DAS
as compared to 60 DAS. Application of HBL improved the chlorophyll level by 19% and
15%, whereas, EBL by 23% and 21% in Varuna and RH-30 at 30 DAS, respectively,

compared to their controls (sprayed with water). EBL generated more promising response
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than HBL. Varuna exhibited higher chlorophyll content than RH-30 at the two stages of
growth.

4.2.6 Photosynthetic parameters

It is evident from tables 17-19 that the foliage of plants, that received
brassinosteroid analogues (10° M, HBL/EBL) had significant increase in net
photosynthetic rate (Py) and the associated parameters (stomatal conductance, g; internal
CO; concentration, C;; transpiration rate, E and maximum quantum yield of PSII. Fv/Fm)
at both the growth stages (30 and 60 days). However, application of tween-20 or ethanol
generated values comparable with that of the water sprayed control. Out of two
brassinosteroid analogues EBL excelled in its effect over HBL both at 30 and 60 day
stages. At 30 DAS, the leaves of Varuna and RH-30 sprayed with EBL exhibited
maximum increase in Py (10% and 9%), g, (54% and 44%), Ci (20% and 21%), E (34%
and 23%) and Fv/Fm (5% and 4%) with respect to water sprayed control plants, however.
the iﬁpact declined at 60 DAS. Varuna was more responsive to brassinosteroid spray

than RH-30.
4.2.7 Leaf water potential (LWP)

Table 19 indicates that the LWP as the growth progressed from 30 to 60 days.
Lower values of LWP were recorded in RH-30 as compared to Varuna at the two growth
stages. Treatment with tween-20/ethanol had no effect on LWP as the values were
comparable with the water sprayed, control. However, plants that received the foliar
spray of HBL/EBL (10 M) had significantly higher LWP, compared with the control.
Out of the two BRs, EBL was more promising and it increased the LWP by 56% and
47% (Varuna) and 44% and 38% (RH-30) at 30 and 60 DAS.

4.2.8 Nitrate reductase (NR) and carbonic anhydrase (CA) activity

It is evident from table 20 that the activity of NR and CA enzymes increased with
plant age (30 to 60 day stage) and foliar spray of HBL/EBL (10*M) further increased
these values. Out of the two brassinosteroid analogues, EBL was better as compared to

HBL which induced the NR activity 22% and 15% and CA activity 28% and 21% more
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than control in Varuna and RH-30, respectively, at 30 DAS which are higher than at day
60. However, plants sprayed with solutions of tween-20 or ethanol had no impact. Varuna

possessed higher enzymes activity than RH-30.
4.2.9 Activity of antioxidant system

The data presented in tables 21 and 22 revealed the increasing trend of antioxidant
enzymes activity (CAT, POX and SOD) with the growth progression from 30 to 60 days.
Moreover, application of 10® M HBL or EBL further increased the activity of these
enzymes and also the level of proline at both the stages of growth. The per cent increase
in the activity of enzymes and proline level was more at 30 DAS than at 60 DAS. Out of
the two brassinosteroid analogues EBL was more effective than HBL. It promoted the
activity of POX by 42% and 30%, CAT 32% and 21%, SOD by 37% and 20%, and leaf
proline level by 32% and 21% in Varuna that generated better response than RH-30, at 30

and 60 DAS, respectively, as compared to control plants.
4.2.10 Cd accumulation in root and shoot

Mustard plants accumulated more Cd with the increase of plant age (Table 23). A:
30 DAS, no significant effect of brassinosteroids appeared on the root or shoot Cd
content but the level decreased at the latter stage (60 DAS). Moreover, roots accumulatec
higher level of Cd as compared to shoot. EBL was more effective that decreased Cd leve!
in Varuna and RH-30 by 17% and 11% in roots and by 14% and 13% in shoot.
respectively, at 60 DAS, compared to control plants. RH-30 accumulated more Cd than

Varuna.
4.2.11 Yield characteristics

The data in table 24 revealed that foliar application of either of the brassinosteroid
analogues (HBL/EBL; 10 M) significantly increased the number of pods per plant and
seed yield per plant with EBL excelling in its effects than HBL in both the varieties. The
EBL spray increased the number of pods per plant by 32% and 26% and seed yield per
plant by 38% and 32% in Varuna and RH-30 respectively, compared to their water
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sprayed control plants. Moreover, the yield improvement in Varuna was better as

compared to RH-30, against the foliar spray of brassinosteroid analogues.
4.3 EXPERIMENT 3

This experiment was conducted with the objective to study the effect of sodium
nitroprusside (10*,10° or 10® M; the donor of NO) or potassium ferricyanide ( 10 M;
non-NO donor) in the two mustard varieties. The agricultural practices and the
parameters were same as in Experiment 1. Plants were sprayed either with distilled water
(control), K3[Fe(CN)g] (10™ M) or SNP (10, 107 or 10° M) at 29 day stage of growth
(DAS). Samples were collected at 30 and 60 DAS to analyze various parameters. Plants
were harvested at maturity (120 DAS) to study the .yield attributes. The growth and yield

characteristics are explained below:
4.3.1 Root and shoot length

The length of root and shoot increased with the advancement of plant age from 30
to 60 day stage (Table 25). All the concentrations of SNP (10, 107 or 10° M) improved
the root and shoot length, noted at 60 DAS. Moreover, application of 10> M SNP proved
best that increased the root length by 29% and 24% and shoot length by 34% and 31% in
Varuna and RH-30 respectively, compared to control plants. However, application of

potassium ferricyanide had no impact. Varuna excelled in its responses over RH-30.
4.3.2 Fresh and dry mass of root

As evident from table 26, the fresh and dry mass of root increased from 30 day
stage to 60 day stage. Moreover, the application of SNP further increased the values of
fresh and dry mass of root at 60 DAS in both the varieties. Out of the three concentration
(10™, 107 or 10° M) of SNP, 10° M proved best which increased the fresh mass by 32%
and 29% and dry mass by 40% and 38% in Varuna and RH-30 respectively, compared to
the control plants at 60 DAS. Varuna was more responsive to SNP treatment than RH-30

but did not show any impact to potassium ferricyanide.
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4.3.3 Fresh and dry mass of shoot

Fresh and dry mass of shoot exhibited an increasing trend as that of root (Section
4.3.2) from 30 to 60 DAS. The foliar spray of potassium ferricyanide (10 M) induced no
change in the fresh and dry mass of shoot and the values were comparable with the
controls (Table 27). However, foliar spray of SNP improved the shoot fresh and dry mass
significantly at 60 DAS, where, out of three concentrations of SNP (104, 10 or 10°® M);
10° M proved best and increased the shoot fresh mass by 36% and 33% and shoot dry
mass by 38% and 35% in Varuna and RH-30 respectively compared to water sprayed
control plants. The per cent SNP-induced increase of fresh and dry mass of shoot in

Varuna was more than RH-30.

4.3.4 Leaf area

As evident from table 28, the leaf area of the plants increased from 30 to 60 DAS
in both the varieties. SNP significantly promoted the leaf area at 60 day stage. However,
potassium ferricyanide was ineffective in either of the variety. Spray with 10°M SNP
solution induced maximum leaf area which was 18% more in Varuna and 16% in RH-30

over water sprayed control plants at 60 DAS.

4.3.5 SPAD chlorophyll value

The leaf chlorophyll content (SPAD value) increased with the advancement of
plant age from 30 to 60 day stage of growth in both the varieties (Table 28). The foliar
spray of SNP (10, 10™ or 10°® M) significantly increased the SPAD value as compared
to plants treated with water (control) or potassium ferricyanide (10 M) at 30 and 60
DAS. The three concentrations of SNP (10, 10°° or 10° M) increased the SPAD value of
chlorophyll in Varuna, by"ll%, 16% or 6% while in RH-30 by 9%, 14% or 5%,
respectively, over the water sprayed controls at 30 DAS. However, as the growth
progressed the differences became less sharp. Varuna possessed higher values of

chlorophyll level than RH-30.
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4.3.6 Photosynthetic parameters

A progressive increase in photosynthetic parameters (net photosynthetic rate; Py,
stomatal conductance; g internal CO, concentration; C;, transpiration rate; E and
maximum quantum yield of PSII; Fv/Fm) was obéerved with the increase of plant age
from 30 to 60 DAS (Tables 29-31). The foliar spray of three concentrations (10, 10” or
10°M) of SNP increased the values of photosynthetic parameters in both the vareties, the
per cent increase being more at 30 DAS than at 60 DAS, compared to water or potassium
ferricyanide sprayed plants which had similar values. The medium concentration 10° M
SNP generated maximum responses that increased Py, gs, Ci, E and Fv/Fm by £%, 35%,
16%, 23% and 3% in Varuna and 4%, 51%,14 %, 29% and 2% in RH-30, compared to

the control plants at 30 DAS. Varuna was more responsive than RH-30.
4.3.7 Leaf water potential (LWP)

With the plant age, the LWP increased in both the varieties (Table 31). The foliar
spray of water or potassium ferricyanide generated comparable values of LWP. However,
application of SNP to the plant foliage increased LWP values both at 30 and 60 DAS.
Out of the three concentration (10'4, 10° or 10° M) of SNP, 10° M proved best and
increased the LWP values by 27% and 24% in Varuna and by 25% and 18% in RH-30 at
30 and 60 DAS, respectively, compared to their control plants. Varuna exhibited higher
values than RH-30.

4.3.8 Nitrate reductase (NR) and carbonic anhydrase (CA) activity

As the plant age progressed from 30 to 60 DAS, the activity of NR and CA
increased in both the varieties (Table 32). There was no shift in the activity of these
enzymes in the plants, sprayed with potassium ferricyanide, and the values were
comparable with that of the controls. However, the application of SNP (107, 10” or 10
M) increased the activity of NR and CA both at 30 and 60 DAS. The medium
concentration (10> M) of SNP proved the best, in terms of per cent; it increased NR
activity by 12% and 13% in Varuna and by 9% and 11% in RH-30 at 30 and 6(C DAS,
respectively, compared with water sprayed controls. Similarly for CA, the per cent
increase was 22% and 24% in Varuna and 21% and 12% in RH-30 at 30 and 60 DAS,

respectively. Varuna was more responsive to SNP than RH-30.
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4.3.9 Activity of antioxidant system

The activity of peroxidase (POX), superoxide dismutase (SOD) and catalase
(CAT) and the proline level increased as the growth progressed (Table 33 and 34).
Moreover, the application of SNP (10*, 10° or 10® M) to foliage had an additive effect
but potassium ferricyanide generated values comparable with the controls. Out of the
three concentrations (10, 10 or 10 M) of SNP, 10 M proved best in increasing the
activity of antioxidant enzymes and the proline level. In terms of per cent, the increase
was 27% and 25% (POX), 19% and 16% (CAT), 11% and 9% (SOD) and 23% and 21%
(proline level) in Varuna and RH-30 respectively, compared to water sprayed plants at 30
DAS. However, at 60 DAS, the per cent increase by SNP treatment was less sharp than at
30 DAS. Varuna possessed higher values for antioxidant system than RH-30.

4.3.10 Cd accumulation in root and shoot

Data in table 35 indicates that Cd level increased with the age of plant (30 to 60
DAS). Plants, in general accumulated more Cd in roots than in shoot. Application of SNP
(10“‘, 107, or 107 M) decreased Cd level significantly in both the tissues only at 60 DAS,
compared to their respective controls (sprayed with water). However, no effect of
potassium ferricyanide (10® M) was evident in either of the variety. Plants that received
SNP treatment (10, 10” or 10 M) recorded significantly lower level of Cd in their
tissues in the order of 10> 10™ > 10®. The root and shoot of the plants treated with 10-5
M of SNP exhibited a decline of 3% and 12% in Varuna and 9% and 8% in RH-30,
compared to the respective controls at 60 day stage. RH-30 accumulated higher levels of

Cd, irrespective of the treatment.

4.3.11 Yield characteristics

The foliage of the plants that received SNP (107, 10” or 10° M) treatments
produced more pods and seeds per plant (Table 36). 10° M, of all the concentrations, of
SNP proved most effective which significantly enhanced the number of pods by 22% and
20% and seed yield by 26% and 24% in Varuna and RH-30, respectively, over the water

sprayed controls. The yield responses of Varuna were, therefore, better than RH-30.
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4.4 EXPERIMENT 4

This experiment was conducted to explore the effect of BR analogues (10® M;
HBL/EBL) application on the foliage of two varieties of B. juncea (L.) Czern & Coss
(Varuna and RH-30) against the soil applied Cd (0, 25, 50 or 100 mg Cd Kg™). The
agricultural practices remained the same as in Experiment 1. The Cd was to the through
soil at the time of sowing. The foliage of 29 day old plants was sprayed with distilled
water/HBL/EBL in the presence (stressed) or absence (stress free) of Cd. Selected
number of samples were randomly collected at 30 and 60 DAS and rest of the plants were
harvested at 120 DAS to study the yield parameters. The results are briefly explained
below:
4.4.1 Root and shoot length

Application of BR analogues (HBL/EBL; 10 M) to the plant foliage at day 29,
significantly increased root and shoot length in both the varieties (Varuna and RH-30) at
60 day stage (Table 37). However, the presence of Cd (25, 50 or 100 mg Keg")
significantly reduced the length of root and shoot at both the stages of growth (30 and 60
DAS) in a manner determined by its concentration. The inhibitory action of the metal was
more prominent at early stage (30 DAS) but had slight recovery at 60 DAS. Against
different concentrations of Cd (25, 50 or 100 mg Kg™), in Varuna the per cent decrease
of root and shoot length was 29%, 43% and 57% and 13%, 25% and 36% at 30 DAS,
compared to the control plants (Cd, 0 mg Kg'). However, BRs (10°® M) completely
neutralized the damages caused by the two lower concentrations of the metal (25 and 50
mg Kg'), observed 60 DAS. Out of them EBL was more effective than HBL. The
response of Varuna was better than RH-30.

4.4.2 Fresh and dry mass of root

The data presented in table 38 indicates thaf fresh and dry mass of root increased
from 30 to 60 day, after sowing (DAS). Presence of Cd (25, 50 or 100 mg Kg' of soil)
significantly decreased the fresh and dry mass of root at both the stages of growth.
However, foliar spray of HBL or EBL (10® M) to the stress free plants significantly
improved the growth of plants at 60 DAS, where EBL was much better than HBL. The

application BRs to the stress free plants increased the fresh and dry mass of root in
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Varuna by 40% and 47% whereas HBL increased it by 37% and 39%, with respect to the
control plants (water sprayed), at 60 DAS. BRs (HBL or EBL, 10® M), given as a follow
up treatment, completely neutralized the Cd (25 or 50 mg Kg') mediated loss of fresh
and dry mass of root in the two varieties, at the 60 day stage Moreover, Varuna

performed better than RH-30.
4.4.3 Fresh and dry mass of shoot

It is evident from table 39 that shoot fresh and dry mass followed a trend similar
to that of root fresh and dry mass (Section 4.4.2). Here again the two BRs (HBL/EBL)
induced a complete recovery in the plants, exposed to Cd stress (25 or 50 mg Kg™' of soil)
at 60 DAS, where the values were at par to the controls. EBL, out of the two analogues of

BRs, excelled over HBL. Varuna performed better than RH-30.
4.4.4 Leaf area

The leaf area increased with the plant age from 30 to 60 DAS (Table 40).
However, with the increase of Cd level (0, 25, 50 or 100 mg Kg™) the values decreased
proportionately in both the varieties (i.e. Varuna and RH-30) at the two stages of growth.
BR analogues (10®* M; EBL/HBL), significantly increased the leaf area in stress free
plants but also completely ameliorated the loss against Cd (25 or 50 mg Kg™), at 60 DAS.
Moreover, a partial recovery was also recorded against the highest concentration (100 mg
Kg™). EBL performed better than HBL. Varuna under all circumstances provided higher

values of leaf area than RH-30.
4.4.5 SPAD chlorophyll value

The leaf chlorophyll content (SPAD value) of plants increased with the progress
of growth from 30 to 60 DAS (Table 40). The presence of Cd in the soil had a negative
impact on the chlorophyll values at the early stage (30 DAS) of growth and that persisted
up to 60 DAS where the per cent loss corresponding to 25, 50 or 100 mg Kg' of Cd was
14%, 25% and 35%, in Varuna at 60 DAS, compared with the control. However, this
metal induced ill effect was neutralized by the follow up treatment with HBL/EBL. It was
complete against 25 or 50 mg Kg' and partial against 100 mg Kg"' of soil. Varuna had
higher values than RH-30.
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4.4.6 Photosynthetic parameters

All the photosynthetic parameters (viz. net photosynthetic rate; Py, stomatal
conductance; gs; internal CO, concentration; C;; transpiration rate; E and maximum
quantum yield of PSII; Fv/Fm) improved as the growth advanced from 30 to 60 day stage
(Tables 41-43). Treatment with either of the BR analogues, HBL or EBL (lO'SM)
increased the values for the aforesaid parameters. However, highest concentration (100
mg Kg') of Cd significantly decreased the photosynthesis and values related to its
attributes by 44%, 55%, 14%, 18% and 18% (Varuna), 64%, 67%, 31%, 31% and 20%
(RH-30) at the 60 day stage of growth. The spray of EBL to the stress free plants
increased Py, g5, Ci E and Fv/Fm by 10% 36%, 21%, 34% and 5%, whereas, HBL by
8%, 13%; 16%, 28% and 3%, respectively, at 30 DAS in Varuna that performed better
than RH-30, compared to control plants (Cd, 0 mg Kg™', water sprayed). EBL excelled in
its response over HBL. Moreover, follow up application of HBL to the metal stressed
plants or EBL completely neutralized the decline of photosynthetic traits by 25 or 50 mg
Cd Kg" of soil but the response was partial against 100 mg Cd Kg' of soil. Out of the

two varieties, Varuna was more resistant than RH-30, against Cd concentrations.
4.4.7 Leaf water potential (LWP)

The tabulated data (Table 43) shows that both HBL and EBL increased the LWP
both in stress free and stressed plants. On the other hand, presence of Cd in soil (25, 50 or
100 mg Kg' of soil) lowered the leaf water potential in a concentration dependent
manner. However, BRs (10® M) completely recovered the loss of leaf water potential
caused by 25 and 50 mg Cd Kg' of soil in both the varieties at the two stages of growth
whereas, this recovery was more prominent at 30 DAS than at 60 DAS. EBL proved to be

more effective than HBL. The response of Varuna was more promising than RH-30.
4.4.8 Nitrate reductase (NR) and carbonic anhydrase (CA) activity

The activity of both the enzymes, NR and CA progressed as the growth advanced
from 30 to 60 day stage (Table 44). The presence of the Cd decreased the values.
However, both HBL and EBL (10°°M), significantly ameliorated Cd (0, 25, 50 or 100 mg

Kg') mediated decline of enzymes activity. Complete recovery was noted in the plants
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grown with 25 or 50 mg Cd Kg™ of soil and the values were comparable with control.
However, values were only partially recovered by BRs in plants fed with 100 mg Cd Kg™!
of soil. EBL was a better performer than HBL. The values were higher for Varuna as

compared to RH-30.
4.4.9 Activity of antioxidant system

The activity of antioxidant enzymes [peroxidase (POX), catalase (CAT)] and the
proline level increased from 30 to 60 DAS (Tables 45-46). These values increased further
because of the presence of Cd (0, 25, 50 or 100 mg Kg™' soil) in the proportion of its
concentration and/or treatment with HBL or EBL (10®M). Varuna possessed higher
activity of antioxidant enzymes and proline level at both the stages of growth. Against
lowest Cd level (25 mg Kg'') in Varuna, the increase in the activity of POX, CAT, SOD
and of proline level was 30%, 22%, 41% and 42%, whereas, EBL enhanced it in stress
free plants by 37%, 25%, 32% and 35%, respectively, at 30 DAS as compared to
respective controls (Cd, 0 mg Kg'', water sprayed). The maximum enzymes activity and
proline accumulation was recorded in Varuna grown with Cd 100 mg Kg' and also
sprayed with BRs (10®M) which increased POX, CAT, SOD activity and proline level by
110%, 63%, 95% and 101% with HBL, whereas, EBL increased it by 120%, 76%, 113%
and122% at 30 DAS.

4.4.10 Cd accumulation in root and shoot

Table 47 expresses an increase in Cd in a progressive manner both in root and
shoot with its level (0, 25, 50 or 100 mg Kg' soil) amended in the soil. Roots
accumulated more Cd than shoot. However, follow up treatment of Cd-stressed plants
with BRs had a remedial effect on the metal accumulation. Out of the two cultivars,
RH-30 accumulated more Cd than Varuna. Among the BRs, EBL more effectively
retarded the Cd concentration both in root and shoot tissues, as compared to HBL at 60
DAS. Against the Cd (25 mg Kg' of soil), Varuna accumulated 67pg metal; however, on
being sprayed with EBL its level decreased to 62ug Cd, g! of root dry mass.
Alternatively, RH-30 accumulated 74pg Cd similar conditions and on being sprayed with

EBL, it reached to 68ug Cd, g of root dry mass. Likewise, in shoot, the accumulation of
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the metal, under 25 mg Kg' Cd in Varuna and RH-30 was 12pug and 20ug, whereas,
when sprayed with EBL, the values came down to 10ug and 12pg Cd g of shoot dry
mass, at 60 DAS, respectively. RH-30 accumulated higher level of Cd, whereas; shoot

accumulated lower level of Cd than root, in both the varieties.
4.4.11 Yield characteristics

All the yield characteristics (number of pods per plant, number of seeds per pod,
mass of 100 seeds and seed yield per plant) reduced significantly with Cd (25, 50 or 100
mg Kg™' of soil) in the two cultivars of brassica; Varuna and RH-30 (Table 48). The two
BR analogues (HBL or EBL; 10 M) significantly increased the values of number of
seeds per plant and seed yield per plant in non-stressed plants fed with different levels of
Cd. Against the lowest Cd concentration (25 mg Kg™"), the loss of seed yield per plant
was completely neutralized with the application of 10 M HBL/EBL, whereas, above this
concentration (Cd 50 or 100 mg Kg™') BRs generated only partial recovery in Varuna and
RH-30. The yield loss was more prominent in RH-30 than Varuna. Out of the two BR
analogues the response of EBL was greater than HBL.

4.5 EXPERIMENT 5

This experiment was laid down to explore the response of exogenous application
of SNP (10°M) against different levels of Cd (0, 25, 50 or 100 mg Kg') in the two
varieties of Brassica juncea (L.) Czern & Coss; Varuna and RH-30. All the agricultural
practices, sampling and parameters studied were same as in other experiments. Cadmium
was added into the soil at the time of sowing, whereas, aqueous solution of SNP (10°M)
was applied to the foliage of 29 day old plants.

4.5.1 Root and shoot length

The data presented in tables 49 revealed that root and shoot length increased with
the progress of plant age from 30 to 60 DAS. On the other hand, presence of Cd (25, 50
or 100 mg Kg™) in the soil significantly reduced the length of both root and shoot at the
two stages of growth. At 60 DAS, the reduction of root and shoot length against Cd 25,
50 or 100 mg Kg' of soil in Varuna was 25% and 18%, 35% and 24% or 45% and 30%
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and in RH-30 it was 17% and 20%, 13% and 30% or 11% and 38%. The foliar spray of
SNP (10°M), significantly increased the values of both the parameters at 60 day stage.
Moreover, the follow-up treatment of SNP to the plants fed with 25 or 50 mg Cd Kg' of
soil completely neutralized the damages caused by the metal at 60 DAS and also partially
improved the values because of the impact of 100 mg Cd Kg-' of soil. Varuna recorded
higher values of root and shoot length than RH-30.
4.5.2 Fresh and dry mass of root

The values for fresh and dry mass of root increased with plant age in both the
varieties (Table 50). Presence of Cd (0, 25, 50 or 100 mg Kg™) in the soil significantly
decreased the root fresh and dry mass in a dose dependent manner at the two stages of
growth (30 and 60 DAS). The reduction of fresh and dry mass of root was more
prominent in RH-30 than in Varuna. Moreover, root fresh and dry mass recorded
decrease of 34% and 27%, 41% and 39% and 53% and 50% in RH-30, and 24% and
13%, 35% and 21%, 43% and 29% in Varuna, respectively, against 25, 50 or 100 mg Cd
Kg', at 60 DAS. Application of SNP (10~ M) improved the values for root fresh and dry
mass at 60 DAS by 31% and 27% over the control. Moreover, as a follow up treatment to
the stressed plants it completely augmented the loss of root fresh and dry mass by 25 or
50 mg Cd Kg!' at 60 day stage of growth and partially that of 100 mg Kg™' of soil.
4.5.3 Fresh and dry mass of shoot

Foliar application of SNP (10° M) significantly increased the fresh and dry mass
of shoot in the two varieties (Varuna and RH-30). However, the presence of Cd (0, 25, 50
or 100 mg Kg™' of soil) decreased the values in a concentration dependent manner (Table
51) which were regained by the follow up application of 10°M SNP at 60 day stage. The
plants grown with 25 or 50 mg Cd Kg'' of soil and supplemented with SNP had shoot
fresh and dry mass comparable with that of the control. Moreover, the damage caused by
100 mg Cd Kg' of soil was also partially overcome by SNP. Varuna excelled in its
response to SNP than RH-30.
4.5.4 Leaf area

As evident from table 52; the leaf area increased with plant age (30 to 60 days)
and the application of SNP. However, Cd (0, 25, 50 or 100 mg Kg™ of soil) caused a

decrease in leaf area of the two varieties in a manner dependent on its concentration.
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Varuna and RH-30 raised in soil even with the lowest Cd i.e. 25 mg Kg™ of soil lost the
leaf area by 15% and 27% at 60 DAS, as compared to the control plants (Cd 0 mg Kg'',
water sprayed). Foliar spray of SNP (10°M) improved the leaf area in the presence of Cd
and could induce complete recovery of the loss against 25 or 50 mg Cd Kg™' but partially
that of 100 mg Kg, at 60 DAS. The response was more prominent in Varuna than RH-
30.
4.5.5 SPAD chlorophyll value

The leaf chlorophyll content (SPAD value) increased as the growth progressed
from 30 to 60 DAS (Table 52). The values increased significantly by the application of
SNP which were 16% and 14% at 30 DAS and 17% and 15%, at 60 DAS in Varuna and
RH-30, respectively, as compared to control plants (water sprayed only). The plants
exposed to Cd significantly lost chlorophyll but the application of SNP to the stressed
plants completely neutralized the toxic effect of 25 or 50 mg Cd Kg™' and partially that of
100 mg Kg' of Cd, at the both stages of plant growth. Higher SPAD values were
recorded in Varuna than RH-30.

4.5.6 Photosynthetic parameters

Net photosynthesis (Pn) and its associated attributes (stomatal conductance; g,
internal CO, concentration; C;, transpiration rate; E, maximum quantum yield ot PSIL:
Fv/Fm) increased with plant age from 30 to 60 DAS (Tables 53-55) but the values
decreased in the presence of Cd (0, 25, 50 or 100 mg Kg™') in a concentration dependent
manner. However, the foliar application of SNP (10° M) on the foliage of stress free and
stressed plants improved the values to a significant level. Moreover, the toxic effect
developed by 25 or 50 mg Cd Kg' of soil was completely neutralized by SNP (3¢ and 60
DAS) both in Varuna and RH-30. The values are therefore at par with the water sprayed
control plants. The impact of 100 mg Cd Kg' was also overcome by SNP but tc a non-

significant level. The values for all these characteristics were higher in Varuna than
RH-30.
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4.5.7 Leaf water potential (LWP)

It was observed (Table S55) that LWP of the plants increased with the
advancement of age or foliar application of SNP (10 M) at the two growth stages i.e. 30
and 60 DAS. The plants grown in the soil supplemented with Cd (0, 25, 50 or 100 mg
Kg' of soil) possessed significantly lower LWP, depending on the metal concentration.
At 30 DAS, the three levels of Cd (25, 50 or 100 mg Kg™') decreased LWP in Varuna by
17%, 27% or 38%, whereas, in RH-30 by 18%, 31% or 43% in comparison to their
respective controls (Cd 0 mg Kg' and sprayed with water). The loss of LWP was higher
in RH-30 as compared to Varuna. However, the metal stressed plants on being sprayed
with SNP lost the damage caused to its LWP by 25 or 50 mg Cd Kg™ and the values were
comparable with the stress free plants. Moreover, SNP also overcome the LWP of the
plants exposed to 100 mg Cd Kg™' of soil, partially. Leaves of Varuna had higher leaf

water potential and responded more positively than EH-30.
4.5.8 Nitrate reductase (NR) and carbonic anhydrase (CA) activity

With the progress of plant growth, the activity of these enzymes increased (Table
56). However, the metal stressed plants possessed lower level of their activity, compared
with the control, in a manner determined by Cd concentration. The plants that received
SNP to their foliage exhibited 15% and 29% increase in Varuna whereas; in RH-30 it was
11% and 23%, compared to their respective water sprayed control plants at 60 DAS.
Moreover, the loss in the activity of NR and CA, in the two cultivars, by 25 or 50 mg Cd
Kg"' of soil was completely regained on being supplied with SNP to their foliage both at
30 and 60 DAS. In addition to this SNP also partially overcome the impact of 100 mg Cd

Kg' of soil. Varuna recorded higher level of enzyfne activity as compared to RH-30.
4.5.9 Activity of antioxidant system

The activity of antioxidant enzymes i.e. peroxidase (POX), catalase (CAT),
superoxide dismutase (SOD) and the level of proline in;:reased as growth progressed
from 30 to 60 DAS (Tables 57 and 58). Availability of Cd (0, 25, 50 or 100 mg Kg')in
soil, in a concentration dependent manner, has an additive effect on the antioxidant

enzymes activity and proline level. Moreover, the application of 10° M SNP with
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different levels of Cd further promoted their level in both the cultivars. Out of the two
varieties, the higher values were recorded in Varuna as compared to RH-30 at both the
stages of growth. The per cent increase was more prominent at 30 DAS than that 60
DAS. Out of the two cultivars, Varuna grown with 100 mg Cd Kg' of soil and followed
with the application of 10°M SNP solution generated maximum increase in antioxidant
enzymes activity which at 30 DAS was 91% (POX), 62% (CAT), 94% (SOD) and 95%
(proline) higher, compared to that of control (Cd 0 mg Kg'!, water sprayed).

4.5.10 Cd accumulation in root and shoot

The data presented in table 59 revealed that increasing Cd level (0, 25, 50 or 100
mg Kg') led to higher level of metal accumulation in root and shoot tissues. Root
accumulated more Cd than that of shoot in dose dependent manner. Cd accumulation
increased with the plant age. SNP (10”° M) significantly inhibited the Cd accumulation in
root and shoot tissue at 60 day stage of growth. Varuna accumulated lesser Cd in both the
tissues as compared to RH-30. The root and shoot accumulation of Cd in Varuna was
0.80ug and 0.48ug (0 mg Kg'l), 70ug and 13pg (25 mg Kg™), 139ug and 31pg (50 mg
Kg'l), 198pg and 68ug (100 mg Kg'l) of Cd g'1 of tissue dry mass, respectively, at 60
DAS.

4.5.11 Yield characteristics

The data presented in table 60 revealed that 10° M SNP, applied to the plant foliage,
significantly increased the number of pods per plant and seed yield per plant in Varuna
and RH-30 compared to the control, sprayed with water. However, the presence of Cd in
the soil reduced all the yield characteristics (number of pods per plant, seeds per pod,
mass of 100 seeds and seed yield) in the two varieties, more being in RH-30. The loss of
number of pods and seed yield per plant generated by lowest concentration of Cd (25 mg
Kg'') was completely neutralized by 10° M SNP in both the varieties and the values were
comparable with that of the control. Moreover, the losses induced by 50 or 100 mg Cd

Kg™' of soil were partially overcome by SNP treatment.
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4.6 EXPERIMENT 6

This experiment was designed to study the combined effect of foliar application
of EBL (10 M) and SNP (10° M) in countering the Cd toxicity, taking the two same
varieties of B. juncea (L.) Czern & Coss; Varuna and RH-30. All the agricultural
practices, sampling and other parameters studied were same as in the previous
experiments. Different levels of Cd (0, 25, 50 or 100 mg Kg™') were applied to the soil, at
the time of sowing while foliar spray of distilled water or SNP and/or EBL was given at
28 and 29 DAS, respectively.

4.6.1 Root and shoot length

Table 61 revealed that the shoot and root length increased from day 30 to 60.
Cadmium in different levels (0, 25, 50 or 100 mg Kg™') significantly decreased the root
and shoot length in Varuna and RH-30 at both the stages of growth (30 to 60 DAS), in a
concentration dependent manner. Whereas, foliar spray of SNP (10”° M) and/or EBL (108
M) significantly increased the root and shoot length in stressfree plants, at 60 DAS in
both the varieties. The response of Varuna was better, compared to RH-30. The
combination of SNP and EBL, increased the length of root and shoot in Varuna by 57%
and 47% while in RH-30 by 47% and 41% over that of the respective control (with Cd 0
mg Kg', water sprayed) at 60 DAS and also recovered completely the damage caused by
25 or 50 mg Cd Kg™' but partially that of 100 mg Cd Kg'', at 60 DAS.

4.6.2 Fresh and dry mass of root

With the growth progression from 30 to 60 days the fresh and dry mass of plant
root increased (Table 62). Root fresh and dry mass was significantly reduced with the
increasing concentration of Cd (0, 25, 50 or 100 mg Kg™"), whereas; significantly
increased with the foliar spray of SNP (10° M) and/or EBL (10" M). The increase of root
fresh and dry mass brought about by SNP plus EBL treatment in Varuna was 42% and
51%, whereas, in RH-30 it was 38% and 44%. Moreover, the combination of SNP and
EBL generated complete recovery in the root fresh and dry mass of Varuna and RH-30,
against two lower concentrations of Cd whereas, partially that of 100 mg Kg-1 of soil at

60 DAS The values after the complete recovery in the metal stressed plants were more
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than that of the control plants. Out of the two varieties, Varuna was more responsive to

the treatments than RH-30.

4.6.3 Fresh and dry mass of shoot

Shoot fresh and dry mass of the plants followed a pattern similar to that of the
root (Table 63). Increasing level of Cd (0, 25, 50 or 100 mg Kg') progressively
decreased the fresh and dry mass of shoot in the two mustard varieties (Varuna and RH-
30). SNP and EBL increased fresh and dry mass of shoot of non-stressed plants which
was 46% and 49% in Varuna and 42% and 46% in RH-30, as compared to control (Cd 0
mg Kg', water sprayed) at 60 day stage. Moreover, the treatment with the combination of
EBL (10 M) and SNP (10”° M) to the stressed plants (25 or 50 mg Cd Kg' of soil)
completely neutralized the impact of the meal and the values were more than that of the
control and was partially overcome that of 100 mg Cd Kg' of soil, at 60 DAS. The
variety Varuna gained higher values of shoot fresh and dry mass than RH-30.
4.6.4 Leaf area

Table 64 denotes that the leaf area increased with the advancement of plant age
(30 to 60 DAS) whereas the presence Cd decreased its values in dose dependent manner
(0, 25, 50 or 100 mg Kg™). Foliar spray of EBL (10° M) and SNP (10~ M) significantly
increased the leaf area, preferably in stress free Varuna followed by RH-30, at 60 day
stage. On the other hand, at 60 DAS, Cd at the concentration of 25 or 50 mg Kg''
decreased the values of leaf area in Varuna by 15% and 27% whereas in RH-30 by 27%
and 34%, than that of non-stressed control (Cd; 0 mg Kg™' of soil and foliar spray of
water) but this damage was completely overcome by EBL+SNP, as a follow up treatment
to the stressed plants. Moreover, the treatment also induced partial recovery in the plants
exposed to 100 mg Cd Kg™' of soil.
4.6.5 SPAD value of chlorophyll

The leaf chlorophyll content (SPAD value) increased with plant age from 30 to 60
days (Table 64). The foliar application of SNP (10° M) alone or in combination with
EBL (10® M) significantly increased the leaf chlorophyll content both in Varuna and RH-
30. Combination of SNP and EBL improved the values by 29% (Varuna) and 24% (RH-

30) at 30 DAS, and at 60 DAS the increase over the respective stress free control was
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23% and 20% at the two growth stages. In contrary to the above, soil fed with Cd (25, 50
or 100 mg Cd Kg™) significantly reduced the of chlorophyll level at both the stages of
growth. However, the plants raised with 25 or 50 mg Cd Kg' and supplemented with
SNP and EBL exhibited the SPAD values above the non-stressed control plants at 30 and
60 DAS, in Varuna and RH-30. Moreover, the treatment was more effective with Varuna

than RH-30.
4.6.6 Photosynthetic parameters

Photosynthetic characteristics (net photosynthetic rate; Py, stomatal conductance;
g, internal CO; concentration; C;, transpiration rate; E and maximum quantum yield of
PSII; Fv/Fm) of the two varieties increased as the growth progressed from 30 to 60 day
stage (Tables 65-67). The foliage of the plants that received the treatment of SNP (107
M) alone or in combination with EBL (10® M) exhibited significant improvement in all
the aforesaid traits, compared with the control. The per cent increase of Pn, g;, C;, E and
Fv/Fm was more in SNP plus EBL treated plants which at 30 day stage in Varuna was
13%, 36%, 23%, 34% and 6%, whereas, in RH-30 was12%, 32%, 20%, 27% and 5%
higher as compared to control (Cd; 0 mg Kg'' of soil, sprayed with water). The plants
raised in the presence of Cd exhibited a loss in the values of all the above parameters.
However, the foliar spray of stressed plants with SNP and EBL completely regained the
normal rate (that of control) of photosynthetic and associated attributes in the two
varieties against 25 and 50 mg Cd Kg'!, whereas, it was partial against 100 mg Cd Kg' of
soil, at the two stages of growth. Varuna showed better photosynthetic responses than

RH-30.
4.6.7 Leaf water potential (LWP)

Table 67 revealed that the LWP was relatively higher at 60 DAS than at 30 DAS
in both the varieties. The soil amended with Cd (0, 25, 50 or 100 mg Kg'') led to a
significant loss of LWP in concentration dependent manner at the two stages of growth.
However, the LWP values improved as the foliage of the stressed plants was sprayed
with SNP and/or EBL. At 60 DAS, the per cent increase of LWP under SNP and EBL

treatment was 49% in Varuna and 44% in RH-30, respectively, as compared to control
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plants (Cd; 0 mg Kg" of soil, water sprayed). Moreover, the values of LWP lowered by
25 and 50 mg Cd Kg™' of soil was completely recovered through foliar treatment of SNP
and EBL combination, whereas, that of 100 mg Cd Kg' of soil was only partially
neutralized at 60 DAS, in the two cultivars. Out of the two varieties, Varuna exhibited
higher values of LWP than RH-30.

4.6.8 Nitrate reductase (NR) and carbonic anhydrase (CA) activity

The activity of NR and CA was more at 60 DAS than at 30 DAS i.e. increased
with plant age (Table 68). In Varuna and RH-30, Cd (0, 25, 50 or 100 mg Kg ' of soil)
decreased the activity of both the enzymes in a manner dependent on Cd concentration.
Against lowest concentration (25 mg Cd Kg"' of soil), the recorded decline of NR and CA
activity in the leaves of Varuna and RH-30 was 14% and 29% (NR) and 24% and 27%
(CA), at 30 DAS. On the other hand, the treatment with SNP (10° M) and/or EBL (10’
M) to the non-stressed plants significantly increased the NR and CA activity over the
control. Moreover the combination of SNP plus EBL applied to the stressed (25 or 50 mg
Cd Kg'of soil) plants improved the values of NR and CA which were comparable with
those of the control (Cd; 0 mg Kg™' of soil, water sprayed). However, the recovery was
partial in plants growth with 100 mg Cd kg™ of soil. The activity of the two enzymes was

higher in Varuna over RH-30, irrespective of the treatments.
4.6.9 Activity of antioxidant system

The data depicted in tables 69 and 70 showed that the activity of antioxidant
enzymes (peroxidase; POX, catalase; CAT, superoxide dismutase; SOD) and leaf proline
content increased as the growth progressed from 30 to 60 DAS. Moreover, the soil
amendment with Cd (0, 25, 50 or 100 mg Kg™' of soil) and/or the foliage applied with
SNP and/or EBL further increased the antioxidant enzymes activity and proline level in
the two varieties (Varuna and RH-30) at both the growth stages. The values were higher
at 60 DAS than that of 30 DAS. Maximum increase in enzymes activity was recorded in
plants that received the foliar spray of SNP with EBL in concentration with 100 mg Cd
Kg' of soil. The increase in the activity of POX, CAT, SOD and proline level in RH-30
was 77%, 37% 86% and 109%, whereas, in Varuna it was 102%, 52% 106% and 113%,
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with respect to respective control plants (Cd, 0 mg Kg™' of soil, water sprayed) at 60

DAS. RH-30 recorded lower values as compared to Varuna.
4.6.10 Cd accumulation in root and shoot

Table 71 indicates that Cd progressively accumulated in the root and shoot of two
varieties (Varuna and RH-30) with the plant growth (30 to 60 DAS). Cd is preferably
accumulated in root than shoot with the increasing soil Cd level (i.e. 25 < 50 < 100 mg
Kg™' of soil). Combination of SNP (10°° M) and EBL (10 M) significantly suppressed
the Cd accumulation in both the tissues at 60 DAS. RH-30 accumulated higher Cd as
compared to Varuna at the two stages of growth. Cd accumulation in root and shoot of
RH-30 treated with 25 mg Cd Kg™' of soil and SNP (10°° M) plus EBL (10" M) was 63ug
and 11pg Cd g of tissue dry mass at 60 DAS. At the same stage of growth the control
plants (received Cd 0 mg Kg'' and foliar spray of water) accumulated 0.86pg and 0.54pg
Cd g of tissue dry mass, at 30 and 60 DAS, respectively.

4.6.11 Yield characteristics

The data presented in table 72 represents that Cd (0, 25, 50 or 100 mg Kg™' of
soil) induced stress significantly reduced the yield characteristics (number of pods per
plant, seeds per pod, mass of 100 seeds and seed yield per plant). In contrary to this, SNP
(10 M) and/or EBL (10® M) as foliar application, significantly increased the number of
pods per plant and seed yield per plant in two varieties, with stress free conditions. The
loss of seed yield per plant under 25 mg Cd Kg'! of soil, was completely neutralized by
the foliar treatment of stressed plants with SNP and EBL in both the varieties whereas;
the recovery was partial with 50 or 100 mg Cd Kg' of soil. The foliar spray of SNP plus
EBL alone or in combination had a positive impact on the number of pods per plant.

Varuna clearly excelled the yield performance over RH-30.
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Chapter 5




CHAPTER -5

DISCUSSION

Plants face various abiotic stress signals that normally restrict their growth and
productivity. One of the most important is the soil heavy metal stress caused by various
anthropogenic activities. Among these metals, cadmium (Cd) is the most abundant soil
contaminant with high enrichment factor in plants that generates an oxidative stress,
inactivates metabolic enzymes directly or indirectly and alters membrane potential and its
permeability. Various strategies are adopted to minimize/neutralize the toxic effects,
generated by heavy metals in plants. Phytohormones are the natural protectors and plant
growth regulator to enable them to withstand heavy metal stress and other unfavourable
conditions. Here a new class of recognized hormones, the brassinosteroids (BRs) plays a
pivotal role in cell division, cell elongation and expansion, seedling growth, xylem
differentiation, pollen fertility, fruit setting and finally yield output (Fariduddin et al.,
2013b). Out of the various analogues of BRs, 28-homobrassinolide (HBL) and 24-
epibrassinolide (EBL) are very active, under field conditions (Khripach et al., 2003).
Nitric oxide (NO), on the other hand is gaseous plant growth regulator plays an essential
role in seed germination, hypocotyl growth, root organogenesis and stomatal closure
(Beligni and Lamittina, 2000; Hayat et al., 20103b; Chaki et al., 2009). It also modulates
redox signals, under normal and abiotic stress conditions in a dose dependent manner
(Steber and McCourt, 2001; Neill et al., 2003; Divi et al., 2010). Therefore, an attempt
has been made to investigate the efficacy of the two analogues of BRs in association with
NO to improve plant growth under Cd stress. Two mustard varieties viz. Varuna and RH-

30 have been selected for the study, based on our earlier experience.

An increase in soil Cd level additively favors its accumulation in the plants of
Brassica (heavy metal accumulator; Szczyglowska et al., 2011). Present study also
indicated that the Cd content increased in the root and shoot tissues with increasing soil
Cd concentration (0-100 mg Cd Kg™' of soil) in both the varieties i.e. Varuna and RH-30
(Table 11). However, RH-30 accumulated more Cd than Varuna this could be due to

increased rate of root detoxification in Varuna which checked the excess Cd uptake



(Dong et al., 2007). Such varietal differences have also been reported by Song et al.
(2003), Metwally et al. (2005), Sharma et al. (2010) and Akhtar (2012). Moreover, plant
roots of both the varieties accumulated more Cd than the aerial parts. The main factors
determining the Cd accumulation in root and shoot include Cd binding to extracellular
matrix, cellular detoxification and complexation and Cd transport efficiency (Horst,
1995, Marchiol et al., 1996, Cobbett et al., 1998; Zhu et al., 1999). The retention of Cd at
the root level is regarded as an important preventive mechanism of several plants (Rauser
and Meuwly, 1995; Akhtar, 2012) which sometimes may reach above 75% of total metal
uptake of the plant (Wojcik and Tukiendorf, 2005). Comparable observations regarding
the increased tissue Cd level have already been noticed in Brassica juncea in response to

Cd feeding (Mobin and Khan, 2007; Gill et al., 2011).

Metal toxicity is known to induce high permeability of the membrane to organic
acids in young root cells and activation of anion channels, located in the cell membrane
which are proposed to mediate the transport of organic acids to outside the cell (Mariano
et al., 2005; Yang et al., 2013). This detoxifies the metal in the soil, by slowing down its
further import. In the present experiment, Varuna has shown a lower level of Cd and
better defense as compared to RH-30 possibly due to aforesaid reasons. Application of
10® M BRs (HBL/EBL) further reduced the accumulation of Cd in root and shoot of both
the varieties (Table 47). BRs, possibly improved the membrane stability of root hairs that
could have restricted the redial uptake of Cd. Moreover, NO (as SNP) also lowered the
heavy metal uptake in the two varieties of mustard (Table 59). A combined application of
10® M of EBL and 10° M of SNP generated the best response in preventing the Cd
uptake at all its levels (25, 50 or 100 mg Kg" soil) (Table 71). This observation indicated
that BR and/or NO might have caused the exudation of organic acids to detoxify Cd in
the soil. BRs have been implicated to be involved in the regulation of the level of sulfur-
rich molecules (Mussig et al., 2002; Ahammed et al., 2013) and the activity of
antioxidant enzymes (Cao et al., 2005). Up-regulation of ATP sulfurylase and increased
level of cysteine rich pool viz. glutathione, ascorbate and phytochelatins (Anjum et al,,
2007; Khan et al., 2009; Hossain et al., 2012; Mohamed et al., 2012; Manara, 2012)

under the regulation of BRs could have possibly checked the uptake and accumulation of
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metal in the aerial biomass of the plants (Khripach et al., 1999; Bajguz, 2000a; Kroutil et
al., 2010). Moreover, NO is known to positively regulate the development of lateral roots
and root hairs in plants (Correa-Aragunde et al., 2004; Lombardo et al., 2006), and hence
the root absorption of soil metals. Consistent with the current study, the protective role of
SNP (NO) was reported by Jhanji et al. (2012) in B. napus under Cd stress. Recently,
beneficial interaction of BRs and NO is also suggeSted by Hayat et al. (2010b) in tomato
plants. Root signals are diversely modulated by the interactions of BRs and NO with
auxins (Nemhauser et al., 2004; Mouchel et al., 2006; Chen et al., 2010; Lanza et ai.,
2012) and ABA (Zhang et al., 2009, 2011) to regulate the mineral absorption, root
elongation, root hairs induction, transport and exudation of organic acids (Lombardo et
al., 2006; Rubio et al., 2009; Yi-Kai et al., 2010; Yang et al., 2012). In mustard varieties,
BRs and NO induced protective role could have been exerted due to a reduction in Cd

uptake and its further transport to the shoot tissues (Hayat et al., 2010b).

Carbonic anhydrase (CA) is a ubiquitous Zn metallo-enzyme which in green
plants reversibly catalyzes the conversion of HCO; and CO; in plants (Xin Bin et al.
2001; Khan, 2004) and participates in a range of biological functions viz. carboxylation,
acid-base buffering, ion exchange and also participates in respiration and photosynthesis
(Tashian, 1992). The activity of CA is determined by the availability of Zn, CO,, light
intensity, hormonal signaling and regulation of genetic expression of the transcripts
(Reed and Graham, 1981, Barcelo and Poschenrieder, 1990, Kim et al., 1994, Tiwari et
al., 2005). Mustard plants grown in the soil, fed with Cd, exhibited a lower level of CA
activity in a concentration dependent manner (Tables 8, 44, 56 and 68). This loss in the
activity of CA, under Cd stress is also reported by Hayat et al. (2007a) and Hasan et al.
(2008) which could be due to metal-induced degradation of mRNA associated with CA
(Park et al., 2012), Cd-binding to -SH group of CA, restricted stomatal gaseous (CO,)
exchange (Barcelo et al., 1986a, b) or an impact on Zn availability (Aravind and Prasad,
2005). BRs, on the other hand, stabilize the mémbrane potential; increase stomatal
conductance (Hasan et al., 2011; Hayat et al., 2012b) and CO, availability (Yu et al.,
2004b), the substrate for the activity of CA (Okabe et al., 1980). BRs mediated increase
in CA activity was reported in L. esculentum under Cd (Hayat et al., 2012b) and Co stress
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(Hasan et al., 2011) and under Ni stress in the cultivars of Triticum aestivum and Vigna
radiata (Yusuf et al., 2011; 2012). These earlier findings are in amenity with the present
report on B. juncea, under Cd stress (Tables 20 and 44). Nitric oxide also regulates the
stomatal movement by modulating the activity of ion channels and Ca’* level in stomatal
guard cells (Lamattina et al., 2003, Neill et al., 2008), whi;:h in turn determines the level
of CA activity through the internal concentration of CO,. The activity of CA is improved
with the application of SNP both in (Cd) stressed as well as in (stressfree) control plants
(Tables 32 and 56). Similar observations have also been reported Hayat et al. (2010b) in
tomato cultivars, Khan et al. (2012) in mustard plants and Singh et al. (2008) in wheat
roots. Therefore, the cumulative effect of BR and NO is suggested to regulate stomatal
conductance in a concentration dependent manner by interacting with Ca®* to regulate the
substrate (CO,) availability for CA, and hence, its activity (Garcia-Mata and Lamattina,
2001; Hayat et al., 2010b; Hayat and Ahmad, 2003b). In the present studies, a follow-up
spray of SNP (10° M) and EBL (10® M) had an additive effect in promoting the CA

activity, under Cd stressed and non-stressed plants (Table 68).

The other enzyme, nitrate reductase (NR) catalyzes the conversion of nitrate to
nitrite (Larcher, 1995) to ensure the adequate supply of nitrogen to plants for proper
growth and productivity (Srivastava, 1995). This process of nitrate reduction depends on
three main factors (a) substrate (NO3>) level in the cytoplasm (b) the level of functional
NR and/or (c) the activity level of functional NR. In a cell, each of these processes is,
directly or indirectly dependent on the metabolic sensors and/or signal transducers
(Campbell, 1999) and transporters (Loque et al, 2003). However, the major rate limiting
step in this process of nitrate reduction is the conversion of nitrate to nitrite (Salisbury
and Ross, 1992) which is inhibited by the presence of the Cd in the soil (Tables 8, 44, 56
and 68 and Rai et al., 1998; Chaffei et al., 2004; Siddhu and Khan, 2012). This loss in NR
activity could partially be due to the Cd mediated effect on plasma membrane fluidity
(Meharg, 1993); activity of plasma membrane proton pump (Obata et al., 1996) and/or
uptake of nitrate, the substrate (Hernandez et al., 1996; Campbell, 1999, Rhizzardo et al.
2012). However, BRs had a positive effect on the activity of NR both in the stressed and
non-stressed plants (Tables 20 and 44) that could be due to its impact on the integrity of
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cell membranes (Dalio et al., 2013), partially overcoming the Cd-induced damage of cell
membranes (Hayat et al., 2007a) and/or favoring the transcription and/or translation
(Khripach et al., 2003). Similar observations have also been reported in maize (Shen et
al., 1990), rice (Mai et al., 1989) and wheat (Sairam, 1994) when treated with BRs.
Moreover, NO alternatively, regulates the redox status of the root cells with the
mediation of hemoglobin-NO cycle maintaining oxygen tension at very low level (Stohr
and Stremlau, 2006). Nitric oxide also regulates the stability of root plasma membrane
and induction of root hairs (Lombardo et al., 2006, Clark et al., 2010) which could have
facilitated the uptake of a larger quantity of NO; (inducer of NR). Besides increased
substrate (NOj3") availability, NR activity could have also been stimulated by NO through
post translational regulatory pathway (Kaiser and Huber, 2001; Jin et al., 2009). BRs, on
the other hand mediate plasma membrane transport of ions that may have favored the
uptake of substrate through root hair formation and regulated activity of transporters in
association with auxins (Zhang and Forde, 2000; Stohr and Stremlau, 2006; Chen and
Kao, 2012). Increased NR activity could also be due to phosphorylation and de-
phosphorylation mediated post-translational regulation (Beevers et al., 1965; Sawhney
and Naik, 1990), de novo synthesis of mRNA and enzymes induced through the
interaction of BRs regulated NO (Zhang et al., 2011) which seems to be the another
possible explanation of increased NR activity through BR and NO treatment (Table 68).

The presence of Cd in the soil led to the loss of leaf chlorophyll in the two
mustard varieties in a concentration dependent manner (Tables 4, 40, 52 and 64). This
observation seems to be due to Cd-mediated inactivation of chlorophyll molecules and of
biosynthetic enzymes (Jain et al., 2007). Besides mimicking the divalent cations
(Chmielowska-Bak et al., 2013), Cd potentially substitutes the central metal of
chlorophyll molecule to inactivate its function (Kupper et al., 1996). Cadmwum also
checks the biosynthesis of chlorophyll molecules by interfering with the functional
sulfhydryl-group of several enzymes such as ALA synthetase, ALA dehydratase and
protochlorophyllide reductase, responsible for its synthesis (Mysliwa-Kurdziel et al.,
2004; Stobart et al., 1985). Cadmium stress enhanced the activity of enzyme,
chlorophyllase which could have led to the degradation of chlorophyll molecules (Abdel
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Basset et al., 1995) or related regulatory proteins e.g. Cabl (Chlorophyll a/b-Binding
Proteinl) to repress chlorophyll content (Jhanji et al., 2012; Park et al., 2012). Cadmium
is known to induce lipoxygenase activity that may have also contributed to the
chlorophyll oxidation (Klein et al., 1984; Somashekaraiah et al., 1992). Cadmium
challenges the uptake of several essential nutrients e.g. Mg, Fe, Ca, K (Greger and Ogrer,
1991, Ouzounidou et al., 1997) that could have adversely affected the level of cellular
Mg and Fe, required for chlorophyll biosynthesis. Therefore, all the above factors might
have contributed to the decrease in the values of leaf chlorophyll content which is in
conformity with Usha and Mukherji (1992) and Gadallah (1995). On the other hand, the
application of BRs partially relieved the plants from Cd toxicity that is expressed as an
improvement in the leaf chlorophyll level (Table 47). This impact of BRs is possibly
mediated by the increased activity of enzymes of pigments biosynthesis (Bajguz and
Asami, 2005) and suppressed activity of chlorophyll catabolic enzymes. An increase in
the pigment contents, under the impact of BRs has been reported earlier by Hayat et al.
(2000; 2001b), Fariduddin et al. (2003), Yu et al. (2004b), Ali et al. (2006, 2007) and
Bajguz and Hayat (2009). Application of BRs induces a recovery in photosynthesis under
stress (Hola, 2011) which could be due a shift in the oxidative state and chlorophyll
metabolism (Deitz et al., 2011). In addition to this, BRs are known to regulate oxidative
stress through regulating enzymes and molecules of antioxidant system (Goda et al.,
2002; Ahammed et al., 2013). This study and that of Qayyum et al. (2007), Anuradha and
Rao (2009), Hola (2011) indicated that BRs nullified the damaging effect of metal on
chlorophyll in a manner dependent upon the structure/activity of BR analogue and its

concentration or plant genotype.

The increase in chlorophyil content (Tables 28 and 52), under the impact of NO
may be due to the uptake of iron, in additional quantities and detoxification of Cd
mediated generation of ROS. Since deficiency of iron also impairs the chlorophyll
biosynthesis and chloroplast development (Zhang et al., 2012). Similarly, NO declined
iron stress-induced chlorosis symptoms by increasing chlorophyll a and b concentration
in wheat cultivars (Graziano et al.,, 2002) by activating the conversion of Mg-

protoporphyrin to protochlorophyllide and subsequently to chlorophyll (El-Abdin Abdel-
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Kader, 2007). Nitric oxide mediated increase of chlorophyll level has also been reported
by Fan et al. (2007) in cucumber and recently by Tewari et al. (2013) in Arabidopsis.
Moreover, BRs have positive impact on core transcription module to regulate the
biosynthesis of chlorophyll and chloroplast development (Cheminant et al., 2011; Bai et
al., 2012) and BRs interaction with endogenous NO could have up-regulated the
absorption of nitrate and Mg-Fe ions to favour chlorophyll biosynthesis. The metal
stressed plants applied with BRs and NO showed higher chlorophyll value over the metal
stressed plants alone (Table 64) might be due to the prevention of chlorophyll
degradation under metal stress (Dietz et al., 1999).

Multiple factors regulate the net photosynthetic rate (Pn) of plants which includes
stomatal conductance (gs), intercellular CO; concentration (Ci), transpiration rate (E),
maximum quantum yield of PSII (Fv/fm), CA activity and leaf chlorophyil level. The
plants raised in Cd fed soil exhibited loss in photosynthetic attributes (Tables 5-7).
Cadmium brings about the closure of stomata by decreasing partial pressure of CO, in the
stroma (Barcelo and Poschenrieder, 1990) and affects the activity of Rubisco (Siedlecka
et al., 1997) which would naturally have a negative impact on CO; reduction. Cadmium
induced decrease in Py might also be due to its impact on the enzymes of Calvin cycle,
glycolysis and Krebs cycle (Van Assche and Clijsters, 1990) as Cd is known to interact
with the active site -SH groups of different enzymes. The lower level of chlorophyll and
Cd-interference in electron transport chain at thylakoid membrane could have also
affected chlorophyll fluorescence or Fv/Fm (Krupa and Baszynski, 1995; Lopez-Millan
et al., 2009; Vanova et al., 2009). Cadmium induced alteration in one or more of the
above mentioned processes seemingly led to decline in the rate of photosynthesis
(Figures 1-6). These results are also in conformity_ with Lopez-Millan et al. (2009) and
Hasan et al. (2011). However, in several crop plants, BRs have been reported to improve
P and related attributes, under different abiotic stresses (Ali et al., 2008a, b; Fariduddin
et al., 2009a, b; 2013a, b) as they protect photosynthetic apparatus (Yu et al., 2004b;
Hasan et al., 2011), regulate membrane anion channels (Zhang et al., 2005), facilitate
stomatal conductance (Gudesblat et al., 2012), CO, assimilation (Jiang et al., 2012) and
also improve the activity of Rubisco (Braun and Wild, 1984; Yu et al., 2004b). In the
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present study also BRs improved photosynthetic parameters, under Cd stress (Tables 41-
43). A positive correlation of Py with CA activity (Figures 1-3) and chlorophyll level
(Figures 4-6) further proved the regulation of photosynthesis by multiple factors. The
application of SNP (10° M) to Cd-stressed and non-stressed plants of Brassica juncea
improved the values of photosynthetic attributes (Tables 28-31 and 53-55). SNP
generated nitric oxide should have the control on stomatal opening (Garcia-Mata and
Lamattina, 2001), promotes ROS scavenging, balances mineral nutrition, counteracts the
Cd-induced damage of photosynthetic apparatus (Wenhai et al., 2006) and also maintains
the photosynthetic efficiency (Jhanji et al., 2012). It is suggested that higher level of NO
along with EBL regulates the Cd-induced inhibition of photosynthetic electron transport
chain (Takahashi and Yamasaki, 2001; Wodala et al., 2008; Thapar et al., 2008). The
response of BRs and NO interaction seems to be the result of independent actions in root
and shoot domains to favor photosynthetic attributes in response to ABA signals (Zhang
et al., 2009; 2011). Therefore, the interactive effect of NO and EBL provided best
photosynthetic values as compared to their individual application, against Cd toxicity
(Tables 64-67). These findings are in conformity with Hayat et al. (2011) who reported

positive effects of BR and NO combination on photosynthesis of tomato plants.

Abiotic stresses generate a large quantity of reactive intermediates in plants that
oxidize cellular components that results into cellular abnormality (Gill and Tuteja, 2010).
However, plants are endowed with antioxidant metabolites (ascorbate, glutathione,
tocopherol and proline) and enzymes (superoxide dismutase, catalase, peroxidase and
glutathione reductase) that could counter these noxious species, depending on the dose
and length of stress regime, and plant genotype (Schutzendubel and Polle, 2002; Gill and
Tuteja, 2010). Here also the plants fed with increasing concentrations of Cd, exhibited
more and more activity of antioxidant enzymes (Tables 9-10, 45-46, 57-58 and 69-70).
Similar findings were also reported in chickpea 2001; Wodala et al., 2008; Thapar et al.,
2008). Moreover, BRs and NO additive effects appeats due to their individual actions
favoring photosynthetic attributes, signaled through ABA (Yu et al., 2004; Garcia-Mata
and Lamattina, 2007; Hayat et al., 2010b; Zhang et al., 2011), tomato (Hayat et al. 2010b;
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Figure 1 Correlation coefficient values between net photosynthetic rate (Py) and CA

activity in (A) Varuna (B) RH-30 (Experiment 4).
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Figure 2 Correlation coefficient values between net photosynthetic rate (Py) and CA

activity in (A) Varuna (B) RH-30 (Experiment 5).
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2011; 2012b, Hasan et al. 2009; 2011), mustard (Hayat et al., 2007a; Markovska et al,,
2009) and pea plants (Metwally et al., 2005). However, phytohormones not only help to
detoxify the active free radicals but also regulate the antioxidant system activity. BRs
regulate this cellular redox status through several ways, like change in transcription and
translation machinery (Khripach et al., 2003; Choudhary et al., 2012). BRs modified
antioxidant enzyme activities in Cicer arietinum (Hasan et al., 2008) and Vigna radiata
(Ali et al.,, 2008a) under heavy metal stress. It has been suggested that Cd and BRs
induced signaling share the pathways that alter final gene responses in sensitive and
tolerant varieties which not only protected plants from metal-induced oxidatior but also
optimized antioxidant system activity (Villiers et al., 2012 and Table 45). BRs, in
association with lower concentration of NO also enhanced the antioxidant enzymes
activity in metal-stressed plants (Tables 33-34 and 57-58). NO mediates, BR-induced
ABA biosynthesis involved in oxidative stress tolerance is reported in maize leaves
(Zhang et al., 2010; 2011) and a combination of BRs and SNP, under Cd stress activated
SOD, POX and CAT thereby counteracting ROS (Tables 69-70). These findings are in
conformity with Hayat et al, (2010b) and Verma et al. (2013).

Stress induced consequences in plants undergo protection by multifunctional
metabolite, the proline (Szabados and Savoure, 2010) which is also recognized as the
regulator of important enzymes (Shah and Dubey, 1998). Its level in our study, under Cd
stress, increased and improved further, if the plants were given a follow up treatment with
BRs (Tables 10, 46, 58 and 70). Here, specific genes are said to be involved in the
regulation of proline level, under stress in Arabidopsis (Rentsch et al., 1996) and tomato
(Schwacke et al., 1999). Recently, Hayat et al. (2013) reported positive impact of proline
on the antioxidant system and photosynthesis to secure plant growth, under stressed
conditions. This proline aided insurgence, at the cellular level, caused the loss of leaf
water potential (Tables 7, 43, 55 and 67). Therefore, proline level was found to be
negatively correlated with LWP (Venekamp et al., 1987; Jianchang et al., 1995). Similar
observations have also reported in cucumber (Fariduddin et al, 2013b), tomato (Hasan et
al., 2011; Hayat et al., 2012b), mung bean (Yusuf et al., 2012), and wheat (Yusuf et al.,

2011). Moreover, root hairs may have lost water/capability to uptake water, under the
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impact of the metal as it causes the damage to the cellular membrane (Hall, 2002). The
knowledge of the direct mechanism of BR and/or osmolyte induced metal stress
alleviation and its homeostasis in plant is scare. However, BRs in combination with
polyamine (another compatible osmolyte) enhanced the Cu stress tolerance in Raphanus
sativus (Choudhary et al., 2012). The level of proline, induced by BRs could have
checked the cellular uptake of metal ions in the cytoplasm thereby working as compatible
osmolyte (Sharma and Bhardwaj, 2007; Bhardwaj et al. 2011).

The exogenously applied SNP along with BRs enhanced the proline content in
non-stressed and Cd-stressed plants (Tables 34 and 58). Similarly, SNP applied under
osmotic stress favored proline accumulation and higher relative water content (RWC)
with lower loss of leaf water (Tan et al., 2008). It has therefore been suggested that SNP
(-the NO donor) regulates the polyamine and proline metabolism in the leaves (Filippou
et al., 2013) and NO mediates the BR induced ABA signals under oxidative stress (Zhang
et al., 2010; 2011). It may be proposed that the application of BRs alone or with SNP
under stressed/non-stressed conditions could have enabled plants to sustain its higher leaf

water content (Tables 19, 43 and 67), by further improving the proline level.

Heavy metals presence induces the loss of cellular turgor, inhibition of cellular
division and cell enlargement (Gabbrielli et al., 1990, Gajewska et al., 2006). In
particular, Cd causes nutrient deficiency, competes .with the uptake of other
micronutrients (e.g. Ca, Zn, Mg, Mn, Fe, S and P) and disrupts the physiological
functions (Marshner, 1995; Irfan et al., 2012). Cadmium may even change the
concentration of basic macronutrients such as that of nitrogen and phosphorous in plant
tissues (Siedlecka, 1995; Chen et al., 2009). Moreover, Cd-induced retardation of
photosynthetic efficiency limits the dry mass accumulation (Vassilev et al., 2004). These
damaging factors in a cumulative action had a negative impact on the growth of plants in
terms of their length, fresh and dry mass and leaf area (Tables 1-4, 37-40). These
observations are in conformity with the earlier observations of Hayat and Hayat (2011)
and Hasan et al. (2008) in chickpea, and Hayat et al. (2007a) in mustard. However,
application of BRs to Cd-stressed or non-stressed plants improved all the growth

characteristics (Tables 13-16 and 37-40) as it is involvement in cell elongation (Azpiroz
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et al., 1998, Catterou et al., 2001), via regulation of correlated genes i.e. XETH
(xyloglucan endotransglucosylase/hydrolase), expansins, cellulose synthase anc¢ sucrose
synthase (Cosgrove, 1997; Ashraf et al., 2010; Xie et al., 2011), that regulates membrane
permeability and proton pump activity, under stress conditions (Hamada. 1986).
Moreover, enhanced expression and activity of XETH caused cell wall loosening and
growth in Azuki bean epicotyls (Kaku et al., 2004) and Arabidopsis and tomato
hypocotyls (Miedes et al., 2011; 2013) where ATPase regulated localized changes in
apoplastic and cytoplasmic pH are associated with growth initiation as shown in
Arabidopsis thaliana root hair development (Bibikova et al., 1998). In addition to this,
EBL is also involved in the improvement of transcript level of cyclin-D3 proteins, a key
regulator of cell cycle in Arabidopsis (Ashraf et al., 2010), which could be assigned as
the direct role in BR activated cell division and cellular enlargement (Clouse and Sasse,
1998; Bajguz and Tretyn, 2003). These findings are further corroborated by other studies
where BR improved the leaf area in Vigna radiata under Al stress (Ali et al. 2008a),
Brassica juncea (Alam et al., 2007; Fariduddin et al., 2009b) under Ni/Cu stress and in
tomato under Cd stress (Hayat et al., 2012b). The increased growth of mustard plants
under Cd-stressed conditions as in our results also gets support from the findings of Zeng
et al. (2010), Hasan et al. (2011), Rady and Osman (2012) and Hayat et al. (2012b).

Application of SNP (the source of NO) improved the growth characteristics
(length, fresh and dry mass of root and shoot, and leaf area) of metal-stressed and non-
stressed plants of mustard (Tables 25-28 and 49-52). Similarly, NO-induced
improvement in plant growth, under stress has been reported earlier (Hayat et al., 2009:
Chaki et al, 2009; Jhanji et al., 2012; Irfan et al., 2013). The stimulative effect of NO
(released from SNP) on growth in Lonicera japonica is assigned to its favourable action
on the activity of exo- and endo-B-D-glucanase in the cell wall (Terasaki et al.. 2001).
The same has been verified by using NO deficient mutants, where the decreased activity
of this enzyme led to restricted plant growth (Guo et al., 2003). The glycosidic linkages
of cell wall on being broken by these enzymes facilitate wall loosening and extension
(Zhang et al., 2003) to drive plant growth, under internal turgor pressure. The increase of

leaf water potential with NO (Table 31) gets support from the study of Hayat et al.
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(2010b) in tomato. NO also controlled root organogenesis in cucumber (Pagnussat et al.,
2002) and indeterminate nodule formation in Mililotus truncatula (Pii et al., 2007). In
Arabidopsis, NO promoted root sequestration of essential micronutrients (e.g. iron), up-
regulated the associated genes (Besson-Bard et al., 2009) and modulated Cd influx (Ma et
al., 2010). However, combined application of BR and NO, against the Cd stress resulted
in a much better growth performance (Tables 61-64). BR and NO together have improved
the growth of tomato plant under normal conditions (Hayat et al., 2010b). Nitric oxide
mediated promotion of root hairs and BRs mediated selective absorption of mineral
acquisition (Nafie and El-Khallal, 2000) seems to be the one of the reason for better plant
growth in a combined application (Lombardo et al., 2006; Ali et al., 2006).

A decrease in the number of seeds per pods and seed yield per plant in metal
stressed plants is possibly due to their slower rate of photosynthesis and subsequent
restriction on growth and leaf area (Tables 12, 48, 60 and 72). It is further strengthened
by the establishment of a significantly positive correlation between net photosynthetic
rate and seed yield, at harvest (Figures 7, 8 and 9). However, the Cd-stressed and stress-
free plants supplemented with BRs exhibited healthy growth (Tables 37-40) with an
improvement in the characteristics of seed yield (Table 48). In a natural course, the fruit
bearing capacity of the plants is primarily determined by the density of the flowers
retained to set fruits and the metabolic state of the plants (Carrari and Fernie, 2006;
Yong-Ling et al., 2012). BRs are characterized to slow down the process of senescence of
the flowers before and/or after pollination (Zhao et al., 1987, Sugiyama and Kuraishi,
1989, Iwahori et al., 1990). Similarly, the fruit setting in tomato was improved by a
synthetic brassinolide analogue; TS-303 (Kamuro and Takatsuto, 1999). Moreover, the
delayed rate of senescence allowed the attachment of leaves to the mother body for a
longer duration with improved rate of photosynthesis (Hayat et al., 2000, 2001b, Yu et
al., 2004a; Liu and Guo, 2013) and speeded up translocation of photosynthates to the sink
(Fujii et al., 1991, Petzold et al., 1992, Fujii and Saka, 2001) that enhanced the seed
bearing capacity of the plants (Table 24 and 48). Ali et al. (2006) have also pointed out

the similar reasons in tomato for an increase in yield under the treatment of BRs.
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Leaf applied SNP also improved the yield parameters both in metal-stressed
and non-stressed mustard plants (Tables 60 and 72). However, there is no direct
evidence of the role of NO in seed production but it is often elucidated to be involved
in flowering. NO application induced flowering in duckweed, Lemna aequinoctialis
Welw. under non-inductive conditions (Khurana et al., 2011). The findings of
Seligman et al. (2008) revealed that synthesis of NO occurs only in differentiated
stigmatic papillae of the floral bud, and in the stamen, only anthers that are producing
pollen grains synthesize NO. In addition to this, NR-deficient plants emits less NO
that results into mature blossom when compared with wild-type plants which reflects
its importance in flowering and ultimately result into the yield enhancement. Nitric
oxide with BRs, rather than alone, generated better yield output both in non-stressed
and Cd-stressed mustard plants (Table 72) possibly because of BR mediated induction
of ABA synthesis (Zhang et al., 2011) which has key role during plant maturation and
seed production. BRs signals are also involved in the floral-induction of Arabidopsis
(Li et al., 2010; Kutschera and Wang, 2012) and sex detérmination in maize (Hartwig
et al., 2011) which might be directed by NO to regulate plant yield attributes.

Comparing the response of selected concentrations/analogues of plant
hormones, the foliar spray of 10°M SNP, as compared to its other doses (10 and 10
M SNP), outperformed against Cd-induced toxicity in mustard plants. However,
higher dose of SNP/NO (107 M) possibly generated reactive radicles which resulted
into a lower state of growth. Among the two BR analogues, EBL more effectively
improved most of the physiological and biochemical characteristics in the presence as
well as in the absence of Cd. This functional superiority of EBL over HBL may be
corroborated to differences in their structure and stability (Khripach et al., 2003).
Most of the BRs carry an S-oriented alkyl (methyl or ethyl) group at C-24 of side
chain, EBL is among the exceptions, along-with castesterone (another analogue of
BR) which carry R-oriented alkyl group on the side chain of the steroid nucleus. It is
speculated that the conformational difference of BR-receptor (BRI-1) binding at the
plasma membrane could be the factor for the varied responses of HBL and EBL.
EBL-receptor complex might have more active conformation in triggering favorable
signaling cascades than HBL. However, further studies regarding the role of structure-

function of BR-receptor complex in signaling by taking different analogues would
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possibly disclose the differences in BRs activity. However, the activated transcription
factors regulate BKI-1 after dissociation with- BAK-1 facilitates the BR-BRI-1
binding at membrane. A series of reactions are also elicited for the
internalization/inactivation of BRI-1 to switch-off the BR response once it has been
achieved (Russinova et al., 2004; Swaczynova et al., 2007; Hategan et al.. 2010,
Codreanu and Russinova, 2010). The applied steroids are more effectively absorbed at
the young rapidly growing leaves surface and could be transported through phloem to
other actively growing tissues or synthesized in-vivo. The optimal sensitivity and
biosynthesis of BRs is reported in rapidly growing meristems (apical meristems,
axillary buds, differentiating vasculature, flower buds their pollens, and root apical
meristem etc.). Furthermore, BR sensitivity is directly correlated with the density of
BR-receptors, expressed on the plasma membrane of meristematic cells. After BR-
BRI1 binding, the receptors are hetero-dimerized to transduce downstream signals

and carry on its effects (Plate 1 and 2A).

Metabolically, a significant difference in proline level was recorded in the two
tested varieties of mustard (RH-30 and Varuna) which could be one of the important
determinants to express sensitive or resistant responses. Higher proline contents in
BRs and/or SNP sprayed plants (Table 46, 58 and 70) is in coherence with favorable
growth characteristics further support the above hypothesis.

Conclusions
The present study revealed that:

1. A significant decline in morphological, physiological and biochemical

parameters was noted within the plants increasing level of Cd the in soil.

2. The soil amended with Cd (25, 50 or 100 mg Kg™) generated toxicity in the

mustard plants, in a concentration dependent manner, where, 100 mg Cd Kg™

soil developed maximum toxicity and damage to the plants.
3. Out of the two varieties (RH-30 and Varuna) the later was more tolerant to Cd.

4. Out of the two BR analogues (HBL or EBL), the performance of EBL excelled

over HBL in terms of favourable responses both under Cd stress and stress-free

conditions.
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. Out of the various concentrations of NO (10 M, 10° M or 10 M) of SNP, 107

M generated most favorable response.

. The combination of SNP (10‘5 M) and EBL (10'8 M) was most effective in

overcoming the toxicity generated by Cd.
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Chapter 6




SUMMARY

This thesis comprises of the following five chapters.

Chapter 1 introduces the significance of the problem entitled, “Effects of

brassinosteroids and nitric oxide against cadmium stress in Brassica juncea’.

Chapter 2 reviews the available literature related with the above problem, in terms of

growth, metabolism, and yield characteristics of the plants.

Chapter 3 elaborates the details of the materials and methods employed in conducting

the experiments and chemical analysis of the biological material.

Chapter 4 comprises of tabulated data, recorded during the aforesaid study, and a brief

description of the results.

Chapter 5 deals with the possible explanations for the observations, in the light of the

earlier findings.

The summary of the observations, recorded in each of the five experiments is

given below:
Experiment 1

This experiment was carried out to compare the effect of different
concentrations of Cd on two varieties of Brassica juncea L. Czern & Coss, Varuna
and RH-30. The soil of each set of pots was supplemented with different doses of Cd
(0, 25, 50 or 100 mg Kg' of soil) in the form of CdCl, at the time of seed sowing.
Surface sterilized seeds of two varieties were sown in earthen pots (25 x 25 ¢m) filled
with sandy loam soil and farmyard manure, in a ratio of 6:1. Thinning was done 7
days after sowing (DAS); leaving three plants per pot and five pots were maintained
per treatment, as replicates. The pots were arranged in a completely randomized block
design, in the net house of Department of Botany, Aligarh Muslim University,
Aligarh. The plant samples were collected at 30 and 60 DAS to assess various growth
characteristics, enzymes activitiy (NR, CA, CAT, POX and SOD), photosynthetic
attributes, leaf water potential, contents of proline and Cd. Rests of the plants were
allowed to grow up to maturity and were harvested to study the yield characteristics,
at harvest. All the above parameters except antioxidant enzymes, proline content and

Cd content, showed a significant decrease in response to Cd treatment where



maximum damage was caused at a Cd concentration of 100 mg Kg'of soil, more
prominently in RH-30 as compared to Varuna. However, Cd treatment resulted in a
significant increase in the activity of antioxidant enzymes (CAT, POX and SOD) and
content of proline along with the accumulation of Cd in root and shoot tissues. The
activity of antioxidant enzymes and proline level was higher in Varuna which
accumulated a lower level of Cd in its root and shoot tissues and was found to be

more tolerant to the metal, compared to RH-30.
Experiment 2

This experiment was set up with an aim to study the effect of two analogues of
brassinosteroid (BRs; EBL or HBL), administered at the concentration of 10 M.
Surfactant tween-20 was mixed with hormone solution just before the spray on the
foliage of 29 days old plants. Control plants were sprayed with distilled water,
0.5% solution of tween-20 or 5% ethanol. All the agricultural practices remained
the same as in Experiment 1. Plant samples were collected at 60 and 90 DAS to
assess various growth characteristics, enzymes activity (NR, CA, CAT, POX and
SOD), photosynthetic attributes, leaf water potential, contents of proline and Cd and
the yield characteristics, at harvest. The values for the aforesaid parameters increased
significantly, except Cd accumulation, at 60 DAS. Moreover, pod number and seed
yield also increased by hormone application. No significant effect of tween-20 or
ethanol appeared as compared to water treated, control. EBL excelled over HBL and

generated more favorable effect in Varuna than RH-30.

Experiment 3

This experiment was laid with an objective to study the effect of different
concentrations of sodium nitroprusside (10'4, 10° or 10° M SNP, the donor of nitric
oxide) on two varieties of Brassica juncea; Varuna and RH-30. All the agricultural
practices were same as in Experiment 1. The plants were sprayed with DDW
(control), tween-20 (0.5%), potassium ferricyanide (10* M) and 104,107 or 10°®
M of SNP. The plant samples were collected at 30 and 60 DAS to assess various
growth characteristics, enzymes activity (NR, CA, CAT, POX and SOD),
photosynthetic attributes, leaf water potential, contents of proline and Cd and yield
characteristics, at harvest. Out of the various concentrations of SNP, 10° M proved

best and generated a significant increase in the values of the aforesaid parameters,
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except Cd level in root and shoot. Potassium ferricyanide (10*M) did not induce a
significant impact on the plants. Varuna responded more favorably to NO than

RH-30.
Experiment 4

This experiment was performed with an objective to elucidate the effect of
exogenous BRs (IO'SM; HBL/EBL) on Cd-induced changes in two mustard cultivars
(Varuna and RH-30). All the agricultural practices were same as in Experiment 1. The
different doses of Cd (0, 25, 50 or 100 mg Kg™' of soil) were supplemented in the
form of CdC}; to the soil, at the time of seed sowing. The foliage of 29 day old plants
was sprayed with DDW/10® M aqueous solution of BR (HBL or EBL). The plant
samples were collected at 30 and 60 DAS to assess various growth characteristics,
enzymes activity (NR, CA, CAT, POX and SOD), photosynthetic attributes, leaf
water potential, contents of proline and Cd. The plants raised in Cd fed soil had lower
values for all the aforesaid parameters, except Cd level, proline content and
antioxidant enzymes activity. The exogenous application of BRs (HBL<EBL)
alleviated the adverse effects generated by Cd therefore improved the values of the
aforesaid parameters, and of yield charactersitics except the Cd level in root and shoot
tissues. BR (HBL/EBL) completely restored the values of the above parameters,
against Cd stress more promisingly against its lower concentrations (25 or 50 mg Kg
soil) than the higher concentration (100 mg Kg'1 soil). EBL proved more effective
than HBL and Varuna responded better to BRs than RH-30.

Experiment 5

This experiment was conducted with an objective to elucidate the effect of
exogenous SNP on the Cd-induced changes in two mustard varieties (Varuna and RH-
30). Cadmium (0, 25, 50 or 100 mg Kg™' of soil) was administered to the soil at the
time of seed sowing in the form of CdCl,. All the agricultural practices were same
as in Experiment 1. At the stage 29 DAS, the plants were sprayed with DDW
(control) or 10° M SNP. The plant samples were collected at 30 and 60 DAS to
assess various growth characteristics, enzymes activity (NR, CA, CAT, POX and
SOD), photosynthetic attributes, leaf water potential, contents of proline and Cd. The
presence of Cd decreased the values for most of the parameters in a concentration

dependent manner, except tissue Cd level, proline content and antioxidant enzymes
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activity. The exogenous application of 10° M SNP alleviated the adverse effects
generated by Cd and improved the aforesaid parameters, except the Cd level in root
and shoot tissues. The SNP treatment significantly improved the yield characteristics,
against Cd stress of 25 mg Kg' soil. Varuna possessed higher values in most of the

above parameters than RH-30 and showed better response to 10 M SNP.
Experiment 6

This experiment was laid with an objective to elucidate the interactive effect of
exogenous application of EBL (10°® M) and SNP (10”° M) on the Cd-induced changes
in two mustard varieties i.e. Varuna and RH-30. Cadmium (0, 25, 50 or 100 mg Kg'1
soil) was administered to the soil at the time of seed sowing in the form of CdCl,. All
the agricultural practices were same as in Experiment 1. Plants were sprayed with
DDW (control), 10° M SNP (28 DAS) and 10® M EBL (29 DAS), as follow up
spray. The plant samples were collected at 30 and 60 DAS to assess various growth
characteristics, enzymes activity (NR, CA, CAT, POX and SOD), photosynthetic
attributes, leaf water potential, contents of proline and cadmium. The presence of Cd
decreased the values for most of the parameters in a concentration dependent manner,
except tissue Cd level, proline content and antioxidant enzymes activity. The
combined application of 10° M SNP and 10® M HBL completely alleviated the
adverse effects generated by Cd; 25 or 50 mg Kg'lof soil but partially against 100 mg
Kg' of soil. The treatment also proved beneficial in improving the yield
characteristics of the plants, exposed to Cd stress (25 or 50 mg Kg! soil). Varuna
possessed higher values than RH-30, expressing better response to the application of

SNP and BRs.
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APPENDIX

Preparation of reagents for nitrate reductase activity
0.1M Phosphate buffer (pH 7.4)

27.2 g of KH,PO,4 and 45.63 g of K;HPO,4.7H,0 was dissolved, separately in
1000 cm’ of DDW. The above solutions of KH,PO, and K,HPO4.7H,0 were

mixed in the ratio of 16:84.
0.2M KNO;

20.2 g of KNO; was dissolved in sufficient DDW and final volume was made
up to 1000 cm®, using DDW.

5% Isopropanol

5 cm® of isopropanol was pipetted into sufficient DDW and final volume was

made up to 100 cm®, using DDW.
1% Sulphanilamide

1 g of sulphanilamide was dissolved in 100 cm® of 3N HCI which was
prepared by dissolving 25.86 cm’® of HCI in sufficient DDW and final volume

was maintained to 100 cm’, by using DDW.
0.02% N-1-Naphthyl-ethylenediamine dihydrochloride (NED-HCI)

20 mg of NED-HCI was dissolved in sufficient DDW and final volume was
made up to 100 cm®, by using DDW.

Preparation of reagents for the estimation of carbonic anhydrase activity
Cystein hydrochloride solution (0.2M)

48 g cystein hydrochloride was dissolved in sufficient DDW and final volume

was made up to 1000 cm’, by using DDW.
Sodium Phosphate buffer (pH 6.8)

27.8 g NaH,PO4 and 53.65 g Na,HPO,4 was dissolved, separately in sufficient
DDW and final volume was made up to 1000 cm®. 51 ¢cm® of NaH,PO, and 49

cm’ of Na;HPO, were then mixed to get the required solution.
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Alkaline sodium bicarbonate solution

16.8 g sodium bicarbonate (NaHCO3) was dissolved in aqueous 0.2M NaOH
solution [0.8 g NaOH (1000 cm3)'1] and final volume was made up to 1000
cm’, by using DDW.

0.002% bromothymol blue

0.002 g of bromothymol blue was dissolved in sufficient DDW and final

volume was made up to 1000 cm’, by using DDW.
0.5N HCI

43 cm’ of pure HCI was pipetted in sufficient DDW and final volume was

made up to 1000 cm?, by using DDW.

Methyl red indicator

5 mg of methyl red was dissolved in sufficient ethanol and final volume was

made up to 100 cm’, by using ethanol.

Reagent for peroxidase estimation

Pyrogallol phosphate buffer

It was prepared by mixing 25 cm’® of pyrogallol in 75 ¢cm® phosphate buffer
(pH 6).

Reagents for catalase estimation

Phosphate buffer (0.1M) for pH 6.8

3.54 g of Na,HPO, was dissolved in 100 cm® of DDW and 3.72 g of NaH,POy,
was dissolved to 100 cm® of DDW separately. 12.3 cm® of Na,HPO, was then
added to 87.7 cm® of NaH,PO, to get the buffer.

H,0; (0.1M)
0.34 cm’ of H,0, was added to 100 cm® of distilled water.
Sulphuric acid (2%)

2 cm® of H,SO4 was added to 98 cm® of DDW.
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5.3
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5.5

6.1
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0.1N Potassium permanganate

This was made by dissolving 0.162 g of KMnOj4 in 500 cm’® of DDW.
Reagents for superoxide dismutase

Phosphate buffer (50mM) for pH 7.8

It was prepared by dissolving 1.78 g Na,HPOy4 and 1.56 g of NaH,PO, in 100
cm’® of DDW separately. 91.5 cm® of Na;HPO, was mixed with 8.5 cm’ of
NaH,PO, to get pH 7.8.

Methionine (13mM)

It was prepared by dissolving 0.193 g of methionine in 100 cm® of DDW.
Nitrobluetetrazolium (NBT) (75uM)

6.13 mg of NBT was dissolved in 100 cm® of DDW,

Riboflavin (2mM)

0.732 mg of riboflavin was dissolved in 100 cm® of DDW.

EDTA (0.1M)

2.92 g EDTA was dissolved in 100 cm® of DDW.

Preparation of reagents for proline estimation

Sulphosalicylic acid (3%)

3 g of sulphosalicylic acid was dissolved in sufficient DDW and final volume

was maintained to100 cm?®, by using DDW.
Acid ninhydrin solution

1.25 g of ninhydrin was dissolved in a mixture of warm, 30 cm’ of glacial
acetic acid and 6 M phosphoric acid (pH 1.0) with agitation till it got
dissolved. It was stored at 4 C and used within 24 h.

The 6M phosphoric acid was prepared by mixing 11.8 cm® of phosphoric acid
with 8.2 cm® of DDW.



7.1

Preparation of reagents for cadmium accumulation

Calcium chloride (S5SmM)

0.06 g of CaCl, (anhydrous) is dissolved in sufficient DDW and final volume

was maintained to 100 cm?.
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Varietal difference decreased the values of growth characteristics, activity of nitrate reductase and leafl water potential

whereas activities of antioxidant enzymes and proline content increased with the increasing concen-
tration of Cd, observed at 30 and 60 day stages of growth, in both the varieties. Moreover, Cd
uptake by the roots was higher in RH-30 than Varuna. Also the activity of antioxidant enzvmes
and proline accumulation were higher in Varuna with increasing soil level of Cd. Out of the twi
varieties, Varuna was more tolerant than RH-30 to Cd stress.
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accumulator crop species take up and store Cd in their tissues environment it binds with membranes and enzymes interfering
with their functions and stability (Karcz and Kuriyvka. 2007)
Plant species generate a range of defense mechanisms to resist
Cd induced toxicity and to recover the subsequent damages
(Meharg, 1993; Mohamed et al., 2012) eliciting their genotype
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of physiological disturbances (Meharg, 1993: Akhtar and
Macfie, 2012).

To counter this oxidative stress plants have an efficient sys-
tem of stress enzymes and antioxidant non-enzyme molecules,
that is termed as antioxidant system. Among these enzymes,
superoxide dismutase (SOD) is the first line of defense against
ROS, dismutating O; to oxygen molecule and H,0,. Another
enzyme is catalase (CAT), that breaks H,O, to water and oxy-
gen while peroxidase (POX) scavenges H,O, in chloroplast
and cytosol of plant cells (Gill and Tuteja, 2010; Gill et al.,
2011). The metabolite proline serves multiple functions in
plant stress adaptions. It works as protein-compatible hydro-
tope, osmo-protectant, ROS scavenger and regulator of cellu-
lar redox status. Proline regulates the redox signal governing
the metabolite pool and expression of several genes that affect
plant growth and development (Kavi Kishor et al., 2005; Sza-
bados and Savoure, 2010; Hayat et al., 2012).

Species of mustard are good accumulators of sufficient
quantities of Cd in their tissues. The brown mustard or Bras-
sica juncea [L] Czern and Coss is economically very important
crop, primarily used to harvest edible oil and also as a vegeta-
ble. However, Cd toxicity responses of different varieties vary
greatly and are dependent on the interaction of the genotype
with the type of metal and its concentration. The varieties of
B. juncea could be classified as sensitive or resistant based on
their responses to Cd toxicity. The objective of the study is
to assess the level of oxidative stress, internal Cd level and
the efficiency of antioxidant enzymes which might play a reg-
ulatory role against Cd induced metabolic shift.

2. Materials and methods

Seeds of B. juncea; Varuna and RH-30, procured from the Na-
tional Seed Corporation, New Delhi, India, were surface ster-
ilized (with 0.01% HgCl,) followed by repeated washings with
double distilled water (DDW). A completely randomized block
design experiment was arranged in the net house of Depart-
ment of Botany of Aligarh Muslim University, Aligarh, India
during September-February 2009-2010 under the ambient
environmental conditions with optimum temperature that var-
ied from 10 to 30 °C.

Seeds were sown in earthen pots (25x 25 cm) filled with
5 kg of soil containing sandy loam soil and farmyard manure
(6:1 v/v), urea, single superphosphate and muriate of potash
were added at 40, 138 and 26 mg kg~ of soil, respectively. Soil
in the selected pots was mixed with Cd (0, 25, 50 or 100 mg
CdCl, kg™" of soil) and watered on alternate days. Both the
varieties were sampled at two growth stages (30 and 60
DAS). The plants were removed from the pots along with
the soil and were dipped in a bucket filled with tap water.
The plants were gently moved to remove the adhering soil
particles.

2.1. Growth analysis

The length and fresh mass of roots and shoots were measured
using a meter scale and an electronic balance, respectively. The
leaf area was measured manually using a graph sheet, where
the squares covered by the leaf were counted. The plants were
then placed in an oven at 80 °C for 72 h. The dried plants were
then weighed to record plant dry mass.

2.2. Nitrate reductase activity

Nitrate reductase (NR) activity was measured by the method
of Jaworski (1971) in fresh leaf samples that were cut nto
small pieces. The absorbance was read at 540 nm and the activ-
ity of NR [ mole NO, g~' (FM) s~ '] was calculated

2.3. Antioxidant enzyme activities

The activity of peroxidase (POX) and catalase (CAT) were as-
sayed following the procedure described by Chance and Mae
hly (1955). The activity of superoxide dismutase (SOD) was
assayed by measuring its ability to inhibit the photochemical
reduction of nitroblue tetrazolium (NBT) using the method
of Beauchamp and Fridovich (1971}, The amount of enzyme
which causes 50% inhibition in photochemica!l reduction of
NBT was considered as one enzyme unit.

2.4. Leaf water potential and proline content

Leaf water potential, was measured in fresh, detiched leaves of
the sampled plants by using PSYPRO, leaf water potential sys-
tem (WESCOR, Inc. Longman, USA). The proline content in
fresh leaf samples was determined by the method of Bates et al
(1973). The absorbance of the toluene layer was read at
528 nm, on a spectrophotometer (Milton & Roy, USA).

2.5. Cd accumulation in root and shoot

The root and shoot samples were placed for 10 min in ice cold
5 mM CacCl; solution to displace extracellular Cd. rinsed with
DDW and then oven dried (Meuwly and Rauser, 1992) Cd
concentration in tissues was estimated after digesting the sam-
ples in nitric acid:perchloric acid (3:1, v/v). Cd concentration
was determined by an atomic absorption spectrophotometer
(Perkin-Elmer A, Analyst, 300).

2.6. Statistical analysis

The experiment was conducted according to simple random-
ized block design. Each treatment was replicated five times
and three plants were maintained in each pot, representing
replicate. Treatment means were compared by the analysis of
variance (ANOVA) using SPSS 17.0 for Windows (SPSS, Chi-
cago, IL, USA). Least Significant Difference (LSD) between
treatment means was calculated at the 5% level of probability

3. Results

3.1. Growth parameters

Cd (0, 25, 50 or 100 mg kg™') administered through the soil
significantly declined the growth (length, fresh mass, dry mass
of root and shoot and leaf area) parameters in both the varie-
ties in a concentration dependent manner both at 30 and 60
DAS (Fig. 1A-G). The highest concentration of Cd
(100 mg kg™!) caused maximum damage and decreased the
root and shoot length by 65% and 39%, fresh mass 67%
and 55%, dry mass 69% and 65%, and leaf area 54%, respec-
tively, as compared to control plants of RH-30, at 30 DAS.

s (2013), http://dx.doi.org/10.1016/).5jbs.2013.08.001
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The reduction was higher in RH-30 than Varuna at both the
growth stages (30 and 60 DAS). However, per cent loss was
more at 30 DAS.

3.2. Nitrate reductase activity

As depicted in Fig. 1H, nitrate reductase (NR) activity de-
creased significantly as the concentration of soil Cd increased
in both the varieties at 30 and 60 DAS. The maximum decline
was observed at a concentration of 100 mg kg™ of Cd which
reduced the activity by 32% and 22% in Varuna and 53%
and 51% in RH-30 at 30 and 60 DAS, respectively, as com-
pared to their control plants. The loss in the activity was more
prominent in RH-30 than Varuna. The per cent activity in-
creased with the age of plants from 30 to 60 DAS.

3.3. Antioxidant enzyme activity

The activity of antioxidant enzymes; [peroxidase (POX), cata-
lase (CAT) and superoxide dismutase (SOD)] in the leaves of
plants increased significantly in response to Cd in a concentra-
tion dependent manner at both the growth stages (Fig. 2A-C).
The highest Cd level (100 mg kg™") caused maximum increase
in enzyme activity that was 57% and 55% (POX), 36% and
23% (CAT) and 81% and 71% (SOD) in Varuna and RH-
30, respectively, as compared to the control, at 30 DAS. Per
cent enzyme activity decreased with the growth advancement
from 30 to 60 DAS. Varuna possessed more enzyme activity
than RH-30 at both the growth stages.

3.4. Proline content

It is evident from Fig. 2D that soil amended with Cd caused a
significant increase in the proline content in a concentration (0,
25, 50 or 100 mg CdCl, kg™ ") dependent manner in Varuna
and RH-30 at both the growth stages. The highest concentra-
tion (100 mg kg™") of Cd caused maximum accumulation of
proline that was 82% and 66% in Varuna and 75% and
63% in RH-30, as compared to their control plants at 30
and 60 DAS, respectively. Varuna accumulated more proline
as compared to RH-30 in response to all the treatments.

3.5. Leaf water potential ()

The leaf water potential (LWP) decreased with an increase in
the Cd level in the soil in both the varieties at 30 and 60
DAS (Fig. 2E). The highest level of Cd caused maximum
reduction that was 37% and 43% in Varuna and RH-30 at
60 DAS, respectively, compared to the control plants. RH-30
was more vulnerable to Cd stress than Varuna at both the
growth stages. The degree of Cd toxicity was more at early
stage (30 DAS) of the growth than at latter stage (60 DAS).

3.6. Cd accumulation in root and shoot

An increasing trend of Cd accumulation was recorded both in
root and shoot tissues with the increase of CdCl, in the soil
(Fig. 2F and G). Shoot comparatively accumulated lesser
quantities of Cd than root in both the mustard varieties. The
percent increase in the Cd accumulation was higher in

RH-30 than Varuna at 30 DAS. At the highest concentration
of Cd (100 mg kg™") Varuna accumulated 148 pz and 60 pg Cd
and RH-30 170 ug and 83 ug Cd g ' of root and shoot dry
mass, respectively, at 30 DAS.

4. Discussion

Plant genotypes differ in their ability to take up and translo-
cate soil-amended Cd from roots to shoots (Metwally «
2005). The ability to check root uptake and aenal dlsmbutmn
of Cd depends on its binding to extracellular matrix, root ef
flux, intracellular detoxification and its transport efficiency
(Marchiol et al, 1996; Akhtar and Macfie. 2012 Meng
et al., 2012). In this study Varuna, compared with RH-30,
accumulated lesser quantity of Cd both in root and shoot tis-
sues (Fig. 2F and G) because of the reasons mentioned earler
The absorbed Cd accumulates preferably in plant roots fol-
lowed by shoots, which often restricts the uptake and distribu-
tion of other nutrients (Gomes et al.. 2013 and Fig 2F and G)
This study indicates, the level of the metal increased with
progressive increase in the soil Cd content (0. 25, 50 or
100 mg kg~") both in root and shoot.

Cadmium uptake at toxic level causes mineral deficiency.
desiccation and cellular metabolic disturbances (Muarshner
2012; Gomes et al., 2013) in plants. Cadmium alters the mem-
brane permeability and hence cellular LWP (Fie. 2D). Cd af-
fected membrane potential and proton pump activity could
restrict the growth of maize plants (Karcz and Kurtvka,
2007). Moreover, Cd brought about aquaporin mediated
reduction in maize root hydraulic conductivity that reduced
the cellular turgor and leaf elongation even without changing
transpiration (Ehlert et al., 2009). Therefore, an increase in
Cd concentration both in root and shoot (Fig. 2F and G} par-
tially damaged the membrane which resulted in decreased
LWP (Fig. 2D). However, proline accumulation 's an adaptive
mechanism to counter osmotic stress caused by decreased
LWP; therefore, it reestablishes the LWP and augments the
loss of cellular osmoticum (Alia and Saradhi, 1991: Albert
et al., 2012). Varuna accumulated more proline than RH-30
which could have favored the maintenance of LWP in this cul-
tivar (Fig. 2D and E).

The Cd binding to root epidermal membrane affects the
functioning of transporter proteins either through direct bind-
ing to the ion transporters or via membrane assisied ROS pro
duction. The competitive exclusion of the substrate (NO: )
potentially impeded the NR activity (Hernandes et al.. 1996
Campbell: 1999; Fig. 1H) or, alternatively, the metal could
have bound with the —-SH group, directly affecting the enzyme
structure and its functions (Choudhary and Singh. 2000). Cad-
mium induced supra-optimal generation of ROS could inter-
fere with the active state of NR rendering it inactive. The
NR activity exhibited a progressive decline in response 10
increasing dose of Cd (Fig. 1H). However, proline protects
membranes and subcellular structures, hydrates the enzymes
to restore their activity and neutralizes reactive oxygen/nitro-
gen species (Hare and Cress, 1997; Kavi Kishor et al.. 2005),
its increased detoxification capacity (Fig. 2A-C) may have
potentially protected the NR activity more effectively in Var-
una as compared to RH-30.

Besides proline, antioxidant enzymes are also the key play-
ers in maintaining cellular redox status and stress induced

: f cadmxum on the growth and antioxidant enzymes in two vanetncs of|
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plant tolerance (Kavi Kishor et al.. 2005; Gill and Tuteju,
2010; Gill et al., 2011; Hayat et al.. 2012). The higher activity
of antioxidant enzymes (i.e. POX, CAT and SOD) was in pro-
portion to the progressive increase in the concentration of Cd
(CdCly; 0, 25, 50 or 100 mg Kg™' of soil; Fig. 2A-C). More-
over, the per cent increase in antioxidant enzymes was more
in Varuna as compared to RH-30 (Figs. 2A-C). Mohamed
et al. (2012) has shown in B. juncea that the higher activity
of antioxidative enzymes offers a greater detoxification effi-
ciency which provides better resistance to a plant variety
against heavy metal induced oxidative stress.

The increased uptake and accumulation of heavy metal in
plants cause osmotic shift, metabolic alterations and also
ROS induced damages (Gill and Tuteja, 2010; Gill et al.
2011) while Cd induced mineral stress could reduce plant dry
weight accumulation (Marshner, 2012). Cadmium induced re-
stricted water uptake hampers turgor mediated wall extensibil-
ity (Marchiol et al., 1996) which could decrease cell division
(Marshner, 2012). Cadmium mediated cumulative effect of
these factors caused a decrease in leaf area, fresh and dry mass,
and length of root and shoot (Fig. 1A-G). The values for all
these growth characteristics decreased in a dose dependent
manner of Cd level in the two mustard varieties (Varuna and
RH-30). However, the increased activity of antioxidant en-
zymes and that of proline level presumably protected the
metabolic machinery, stabilized the membranes to prevent
water loss and supported nutrient uptake to augment growth
performance more in Varuna than RH-30. The present find-
ings get additional support from the work of Sharma et al.
(2010) and Hasan et al. (2011) in tomato and Hayat et al.
(2011) in brassica, respectively, under heavy metal stress.

5. Conclusion

The two mustard varieties (Varuna and RH-30) responded dif-
ferentially against Cd induced oxidative stress. Varuna was
more resistant than RH-30. The increased activity of antioxi-
dant enzymes and leaf proline level protected the plant growth
in a genotype dependent manner besides the restricted uptake
and transport of Cd.
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