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PREFACE

The present. dissertation entitled *Category Theory and its Applications™ cou-
tains the work done by various researchers on category theory and some of its

applications inn computer science.

This exposition comprises six chapters. Each chapter contains a brief intro-
duction and is divided into various sections. The definitions, examples and resnlts
in the text have been specified with double decimal numbering. The first figure
indicates the chapter, the second denotes the section and the third mentions the
number of definition or example or proposition or theorem as the case may be
i1 a particular chapter. For example Theorem 4.3.2 refers to the second thicorem

appearing in the section 3 of chapter 4.

Chapter 0 is devoted to the historical development of category theory which
is introduced by Eilenberg and MacLane [17-18] in 1945. Chapter 1 contains
basic coneepts, definitions and some basic results which are useful to develop tlie

theory in the subsequent chapters.

In Chapter 2 the properties of special objects such as initial, terminal and
zero objects and special morphisms such as monomorphism, epimorphism «nid
isomorphism together with retraction and coretraction are discussed. It is ob-
tained that a morphism which is both monomorphism and epimorphism need
not be an isomorphism. [Further, some constructions in category theory such as

product, co-product, equalizers and kernels are discussed.

Chapter 3 deals with the study of some structural categories such as semi-
additive, additive, normal, exact, abelian etcetera. Further, it is shown that. every
normal (or an abelian) category is balanced. Chapter 4 has been devoted to the
study of some special types of functors. In fact the preservation properties of

functors have been studied and the notion of additive functors and exact funictors



are discussed.

Finally, in Chapter 5 some applications of category theory in computer sci-
ence have been given. Specially, the relation between category theory & computer
science, categories with products-circuits and categories with sums-flow charts are

discussed.

[ the end of the dissertation, a bibliography has been given which by no
means is comprehiensive but mentions only the papers and books referred to in

the main body of the dissertation.
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CHAPTER 0

HISTORICAL DEVELOPMENT OF CATEGORY
THEORY

§0.1 Introduction

Categories, functors and natural transformations were introduced by Samual
Eilenberg and Saunders MacLane in 1945. Initially, the notion were applied in
topology, especially algebraic topology, as an important part of the transition from
homology (an intutive and geometric concept) to homology theory, an axiomatic ap-
proach. It has been claimed on behalf of Ulam, that comparable ideas were current
in the later 1930s in the Polish school. Eilenberg/MacLane have said that their goal
was to understand natural transformations; in order to do that, functors had to be

defined; and to define functors one needed categories.
§0.2 Category Theory

Category theory now occupies a central position not only in contemporary math-
ematics, but also in theoretical computer science and even in mathematical physics.
It can roughly be described as a general mathematical theory of structures and sys-
tems of structures. It is at the very least a very powerful language or conceptual
framework which allows us to see, among other things, how structures of different
kinds are related to one another as well as the universal components of a family of
structures of a given kind. Beside its intrinsic mathematical interest and its role in
the development of contemporary mathematics, thus as an object of study for the
epistemology of mathematics itself, the theory is philosophically relevant in many
other ways. As a general formal tool, it can be used to study and clarify fundamental
concepts such as the concept of space, the concept of system or even the concept of
truth. It can also be applied for the study of logical systems, which in this context
are called “categorical doctrines”, both at the syntactic level, more generally the
proof-theoretical level and at the semantic level. As a framework, it is considered by

many as constituting an alternative to set theory as a foundation for mathematics.



As such, it raises many issues with respect to the nature of mathematical entities

and mathematical knowledge.
§0.3 Brief Historical Sketch

It is difficult to do justice to the short but intricate history of the field. in
particular it is not possible to mention all those who have contributed to its rapid
development. Here are some of the main threads that have to be mentioned. Cat-
egories, functors, natural transformations, limits and colimits appeared almost out
of nowhere in 1945 in Eilenberg & MacLane’s paper entitled “General Theory of
Natural Equivalences”. We said “almost”, because when one looks at their 1942 pa-
per “Group Extensions and Homology”, one discovers specific functors and natural
transformations at work, limited to groups. In fact, it was basically the need to clar-
ify and abstract from their 1942 results that Eilenberg & MacLane came up with the
notions of category theory. The central notion for them was the notion of natural
transformation. In order to give a general definition of the latter, they defined the
notion of functor, borrowing the terminology from Carnap, and in order to give a
general definition of functor, they defined the notion of category, borrowing this time
from Kant and Aristotle. After their 1945 paper, it was not clear that the concepts
of category theory would be more than a convenient language and so it remained
for approximately fifteen years. It was used as such by Eilenberg and Steenrod in
their influential book on the foundations of algebraic topology, published in 1952
and by Cartan and Eilenberg in their ground breaking book on homological algebra,
published in 1956. (It is interesting to note, however, that although categories are
defined in Eilenberg & Steenrod’s book, they are not in Cartan & Eilenberg’s work!
They are simply assumed in that latter). These books allowed new generations of
mathematicians to learn algebraic topology and homological algebra directly in the
categorical language and to master the method of diagrams. Indeed, many results
published in these two books seems to be inconceivable, or at the very least con-
siderably more intricate, without the method of diagram chasing. Then, in 1957
and in 1958, the situation radically changed. In 1957, Grothendieck published his
landmark “Sur quelques points d’algebre homologique” in which categories are used

intrinsically to define and construct more general theories which are then applied to



specific fields, in particular, in the following years, algebraic geometry, and in 1958
Kan published “Adjoint functors™ and showed that the latter concept subsumes the
important concepts of limits and colimits and could be used to capture fundamental
conceptual situations (which in his case were in homotopy theory). From then on,
category theory became more than a convenient language and this, for two reasons.
First, using the axiomatic method and the categorical language, Grothendieck de-
fined abstractly types of categories, e.g., additive and abelian categories, showed
how to perform various constructions in these categories and proved various results
for them. In a nutshell, Grothendieck showed how a part of homological algebra
could be developed in such an abstract setting. From then on, a specific category
of structures, e.g., a category of sheaves over a topological space X, could be seen
as being a token of an abstract category of a certain type, e.g., an abelian category,
and one could therefore immediately see how the methods of homological algebra for
instance could be applied in this case, e.g., in algebraic geometry. Furthermore, it
made sense to look for other types of abstract categories, types of abstract categories
which would encapsulate the fundamental and formal aspects of various mathemati-
cal fields in the same way that abelian categories encapsulated fundamental aspects
of homological algebra. Second, mostly under the influence of Freyd and Lawvere,
category theorists progressively saw how pervasive the concept of adjoint functors
is. Not only can the existence of adjoints to given functors be used to define abstract
categories, and presumably those which are defined by such means have a privileged
status, but as we have mentioned, many important theorems and even theories in
various fields can be seen as being equivalent to the existence of specific functors
between particular categories. By the early seventies, the concept of adjoint functors

was considered to be the central concept of category theory.

With these developments, category theory became an autonomous part of math-
ematics, and pure category theory could be developed. And indeed, it did grow
rapidly not only as a discipline but also in its applications, mainly in its original
context, namely algebraic topology and homological algebra, but also in algebraic
geometry and, after the appearance of Lawvere’s thesis in 1963, in universal algebra.
The latter work also constitutes a landmark in the history of this field. For it is in

his thesis that Lawvere proposed the idea of developing the category of categories



as a foundation for category theory, set theory and, thus, the whole of mathematics,
as well as using categories for the study of theories, that is the logical aspects of
mathematics. In the sixties, Lawvere outlined that basic framework for the develop-
ment of an entirelv original approach to logic and the foundations of mathematics:
he proposed an axiomatization of the category of categories (Lawvere 1966), an ax-
iomatization of the category of sets (Lawvere 1964), characterized Cartesian closed
categories and showed their connections to logical systems and various logical para-
doxes (Lawvere 1969), showed that the quantifiers and the comprehension schemes
could be captured as adjoint functors to given elementary operations (Lawvere 1969,
1970, 1971) and finally argued for the role of adjoint functors in foundations in gen-
eral, through the notion of “categorical doctrines” (Lawvere 1969). At the same
time, Lambek described categories in terms of deductive systems and used categori-
cal methods for proof theoretical purposes [30]. The 1970s saw the development and
application of the concept in many different directions. (For more on the history
of topos theory, see [40] ). The very first applications outside algebraic geometry
were in set theory where various independent results were given a topos theoretical

analysis.

Finally, from the 1980s to this day, category theory found new applications.
On the one hand, it now has many applications to theoretical computer science
where it has firm roots and contributes, among other things, to the development of
the semantics of programming and the development of new logical systems ( [45],
[46], [48] ). On the other hand, its applications to mathematics are becoming more
diversified and it even touches upon theoretical physics where higher-dimensional
category theory, which is to category theory what higher-dimensional geometry is
to plane geometry, is used in the study of the so-called “quantum groups”, or in

quantum field theory [5].
§0.4 Philosophical Significance
Category theory challenges philosophers in two non-exclusive ways. On the one

hand, it is certainly the task of philosophy to clarify the general epistemological

status of category theory and, in particular, its foundational status. On the other



hand, category theory can be used by philosophers in their exploration of philosoph-

ical and logical problems. These two aspects can be illustrated briefly in turn.

Category theory is now a cominon tool in the toolbox of mathematicians. It
unifies and provides a fruitful organization of mathematics. Arguments in favour
of category theory and arguments against category theory as a foundational frame-
work have been advanced (See {7] for a survey of the relationships between category
theory and set theory, [20], (6] for arguments against category theory and [38| for a
quick overview and a proposal). This is in itself a complicated issue which is ren-
dered even more difficult by the fact that the foundations of category theory itself
still have to be clarified. Given that most of philosophy of mathematics of the last
50 years or so has been done under the assumption that mathematics is more or less
set theory in disguise, the retreat of set theory in favour of category theory would

necessarily have an important impact on philosophical thinking.

The use of category theory for logical and philosophical studies is already well
underway. Indeed, categorical logic, the study of logic with the help of categorical
means, has been around for about 30 years now and is still vigorous. Category the-
ory also provides relevant information to more general philosophical questions. For
instance, Ellerman 1987 has tried to show that category theory constitutes a theory
of universals which has properties radically different from set theory considered as
a theory of universals [39]. If we move from universals to concepts in general, we
can see how category theory could be useful even in cognitive science. Indeed, Mac-
namara and Reyes have already tried to use categorical logic to provide a different
logic of reference [37]. Awodey, Landry, Makkai, Marquis and McLarty have tried
to show how it sheds an interesting light on structuralists approach to mathematical
knowledge ([2], [31], [32], [41]).

Thus, category theory is philosophically relevant in many ways which will un-

doubtedly have to be taken into account in the years to come.

O



CHAPTER 1

BASIC CONCEPTS

§1.1 Introduction

This chapter deals with the study of category theory, functors and natural trans-
formations which form the pillar of the category theory. This chapter is based on
the work of Blyth(8], Eilenberg[18], Freyd(22], MacLane[35], Mitchell[42] and Schu-
bert[47] etc.

Section 1.2 deals with the basic definition of categories and relative examples
due to Blyth[8], MacLane[35] and Schubert[47] etc. Section 1.3 deals with the de-
finition of functors and some examples of functors which states that functors are
structure preserving maps between categories. In the last Section 1.4 the notion of
natural transformation is introduced which describes that a natural transformation

is a relation between two functors.
§1.2 Categories

First of all we shall give a brief idea about the concept of category theory.
The notion of function is one of the most fundamental concepts in mathematics and
science. Functions are used to model variation- for example, the motion of a particle
in space; the variation of a quantity like temperature over a space; the symmetries
of a geometric object, or of physical laws; the variation of the state of a system over
time.

A category is a abstract structure: a collection of objects, together with a col-
lection of morphisms between them. For example, the object could be geometric
ficures and the morphisms could be ways of transforming one into another; or the

objects might be data types and the morphisms programs.

Category theory is the algebra of functions; the principal operation on func-

tions is taken to be composition. Whenever we calculate by composing functions

6



(for example, in iteration a function) there is a category behind our calculations.
Now we define category as follows:

Definition 1.2.1 A category C, consists of the following data:
(1) a class |C] of objects A,B,C,.... called the class of objects of C

(¢4) for each ordered pair (A4, B) of C, a set (possibly empty) More(A, B) called
the set of morphisms from A to B (sometimes we denote Morc(A, B) by
Mor(A, B) )

(#it) for each ordered triplet (A,B,C) of objects of C we can define a map Mor(B, C) x
Mor(A, B) = Mor(A, C) called composition of morphisms. If § € Mor(B,C).
a € Mor(A, B) then the image of the pair (3,a) is designated by Sa (read as

3 following ), we can also write f o «.
The data are subjected to the following axioms:
Ci : The set Mor(A, B) is pairwise disjoint.

Cz : Associativity of composition: If v8 and Ba both are defined then (y3)a and
v(Ba) are defined and (yf8)a =v(Ba) holds.

Cs : FExistence of identity: For each object A there is an identity [4 € Mor(A, A)

for which 140 == @ and /4 = (8 hold whenever the left side is defined.

Notation: o € Mor(A, B) is usually denoted by o : A —» Bor A -= B. A'is

called the domain (source) and B is called the codomain (target) of .
Remark 1.2.1 The class of all morphisms of C is denoted by

MorC= )  Mor(4,B).
(A,B)e[Ccix[C]

Remark 1.2.2 The identity morphism [4 is uniquely determined by the object
A. For this, let 4 and [, be two identity morphisms for A. Then by axioms
Cs(Definition 1.2.1), I,14 = I4 therefore, I4=I). Conversely, A is determined



by [4 because the set of morphisms are pairwise disjoint as let A # A’, then we
have /4 € Mor(A'. A), but I, € Mor(A, A) which is contradiction of the fact that
Mor(A, A) and Mor(A', A"} are pairwise disjoint. Hence A is uniquely determined

Remark 1.2.3 By Remark 1.2.2 we obtain that there is one-one correspondence

between the objects and subclass of morphisms consisting identities.

This shows that objects play sccondary role in the definition of category. We

can define a category without objects [21].

Some standard categories with their notations

Ens

Ab

DivAb

Ord

the category of sets, whose class of objects is the class of all sets and the class

of morphisms is the class of all functions on sets.

the category of groups, whose class of objects is the class of all groups and the

class of morphisms is the class of all group homomorphisms between them.

the category of subgroups, whose class of objects is the class of all subgroups
and the class of morphisms is the class of all group homomorphisms between

them.

the category of abelian groups, whose class of objects is the class of all abelian
groups and the class of morphisms is the class of all group homomorphisms

which preserve the abelian structure of group.

the category of divisible abelian groups, whose class of objects is the class of
all divisible abelian groups and the class of morphisms is the class of all group

homomorphisms which preserve the abelian structure of group.

the category of ordered sets, whose class of objects is the class of all sets
on which there is defined an ordering < (i.e. a relation that is reflexive,

anti-symmetric and transitive) and the class of morphisms is the class of all



Top

Topy

RMOd

Mon

MetSp

Vectp

Ring

morphisms f : A — B that are isotone (or order-preserving) in the sense that
ifz <yin Athen f(v) < f(y) in B.

the category of topological spaces, whose class of objects is the class of all
topological spaces and the class of morphisms is the class of all continuous

maps between them.

the category of Hausdorff topological spaces, whose class of objects is the class
of all Hausdorff topological spaces and the class of morphisms is the class of

all continuous maps between them.

the category of modules over R, whose class of objects is the class of all R-
modules and the class of morphisms is the class of all module homomorphisms

between them.

the category of monoids, whose class of objects is the class of all monoids which
are groups and the class of morphisms is the class of all group homomorphisms

between them.

the category of metric spaces, whose class of objects is the class of all metric
spaces and the class of morphisms is the class of all continuous maps between

them.

the category of finite dimensional vector spaces, whose class of objects is the
class of all finite dimensional vector spaces and the class of morphisms is the

class of all linear transformations between them.

the category of rings, whose class of objects is the class of all rings and the

class of morphisms is the class of all ring homomorphisms between them.

Remark 1.2.4 Sometimes the morphisms in the category need not be actual func-

tions or mappings in the usual sense.

Definition 1.2.2 (Small and large categories) If the class of objects of a cat-

egory C is a set, the category is called small category otherwise it is called large

9



category.

Example 1.2.1 If we (ake all sets A0 B, C, ... to be objects and all functions
f+A—= B.g: B —= (... tobe morphisms, we get a category Ens called the

category of sets, Here we take the composition as composition of functions. defined

by the rule gof{(a)-g(fla)). This is a large category.
All the standard categories as delined above are the examples of large categories.
Examples of small categories:

Example 1.2.2 We can constiuct a category with one object A and one morphism.

which must therefore, be the identity morphismie. I4: A — A.

Example 1.2.3 Category with one object A and two morphisms [4 : A — A and
a: A— A To specify the category we have to observe all composites [40[4, 400,
w0l 4, cor and to check the identity and associative law.

Trivially, compositions [ 40/4. [400x and ol 4 are defined. Further, we shall check
the only composition coa. For this, there are two possible choicés, either awow==14

or o=,

'ase(1) suppose aoa=[4 i.c. the composition table is:

L P A x
1y | 1 «
r 14 1,4

In fact, this does give a category. All that needs to be checked is the associative
law. Here composition is the {ully defined operation.
we may recognize the composition table as

* addition modulo 2 or

10



* the cyclic group of order 2.

and there are the well known to be associative.

Suppose the aon o

This is also yviclds a category with the composition table as.

!

Y Qa
L 1o Q
o a

Irom this table it is clear that associative law holds and [4 is the identity of
A.
For this, take A to be the set {0,1}. Let 4 be the identity function A — A

and « is the function given by

:0—0
1—0

Clearly, cory —¥?:0 + 0+ 0,
1= 0= 0
Hence o= as required.
Here is another way of representing this example in terms of sets and functions.
Consider A be the Cartesian plane and 4 the identity function. Now take o

to be projection onto the z-awis ie.
o (z,y) = (r,0)

Then clearly o ~a(w,0)==(2,0) = a(x, )

i.e. a’=—« as required.

Example 1.2.4 Given any group (¢ = {1, f,g,....} we get a category with one ob-

ject as the set (¢ and morphims as the elements of . Composition is the product

of elements in the group which is, of course, associative.

I1



Definition 1.2.3 (Subcategory) Let C be a category then a category C’ is said to
be a subcategory of C if

(7) Each object of C" is also an object of C.
(¢1) For all objects 4 and B in C" we have that More/(A, B) is a subset of Mor¢(A, B).

(i11) The composition of any two morphisms in C’ is same as their composition in

C.

(7) For each object A in C' the subset More/(A, A) of Morc(A, A) contains the
element [4 of Morc(A, A).

Definition 1.2.4 For every category C we can form a subcategory containing all
the objects of C and the morphisms as the only identities morphisms, we call this

category as discrete subcategory.

Definition 1.2.5 (Full subcategory) A subcategory C' is called a full subcategory
of C if
/W()‘Fcf(A, B) = MOTc(A, B)

Example 1.2.5 The category of finite sets is the full subcategory of Ens whose
objects are the finite sets in Ens. Therefore, the category of finite sets has all
finite sets as objects, the set Mor(X.Y) of all morphisms from the finite set X
to the finite Y is just the set of all maps from X to Y. While the composition
Mor(X,Y) x Mor(Y,Z) — Mor(X,Z) for all triplet of finite sets X,Y,Z is given
by (f,9) — ¢f where gf is the usual composition of the map f : X — Y and
g:Y = Z.

Example 1.2.6 The category Grp is defined to be the full subcategory of the cat-
egory Mon whose class of objects are the monoids which are groups. Therefore,
the objects of Grp are all groups, Mor(X,Y) is the set of all morphisms of groups
from the group X to the group Y for all objects X and Y in Grp and the com-
position Mor(X,Y) x Mor(Y,Z) — Mor(X,Z) for all triplet of groups X,Y,7 is
given by (f,g) — gf where gf is the usual composition of the morphisms of groups

12
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f:X—=Yandg:Y - 7.

Example 1.2.7 The category Ring; is a subcategory of the category Ring. This
subcategory Is not full subcategory since for any pair of objects A,B € Ring,, the
Mor(A, B) has zero morphism when it is considered in the category Ring but it

1a8 no zero morphism when we consider it in Ring;.
has no ze hism when we consider it in Ring;

Observations:
In a category C, the following statements hold:
(1) C is a full subcategory of C.

(1) Two categories C and C' are the same if and only if C is a subcategory of C’

and C’ is a subcategory of C.

(#i1) IfC'is a subcategory of C and C" is a subcategory of C’, then C" is a subcategory
of C.

(w) If C' is a full subcategory of C and C” is a full subcategory of C’, then C” is a

full subcategory of C.

(v) If C' and C" are full subcategories of C, then C'=C" if and only if |C'|=|C"|.

Definition 1.2.6 (Dual category) For any category C, we can form a category

C*, known as the dual category of C if the following conditions hold:
(1) The class of objects of C* is similar that of the class of objects of C.

(77) For every pair of objects A,B € C* we have
More. (A, B) = Morc(B, A).
(vi2) If o*, 8% € C* and *of3* is defined in C* then

a*of* = (Boa)*.

13



Remark 1.2.5 If o : A — B be a morphism in C then o* € C* be a morphism

o B* —» A*,

Example 1.2.8 The dual of the category with one object A and three morphisms
I4. €, es satistying

Ci€; = €5 (’L,] = 1,2)
is the category with one object A* and three morphisms 14", e,*, £,* satisfying
ete zel (1,7 = 1,2)

Compare the composition tables of these two categories:

*
J 1/\ €) €2 ‘ ]_A e’;’ e’;
x *
La la €1 €3 14 14 e’; 6;
5] €1 €y €r er* ef 6‘1* 61*
€2 | e 2 €2 er” e e  eq

Now it is an amazing but not obvious fact that the dual of many well-known

categories are also well-known categories.

§1.3 Functors

Within a category C we have the morphism sets Mor(X,Y) which serve to es-
tablish connection between different objects of the category. Now the language of
categories has been developed to delineate the various areas of mathematical theory:
thus it is natural that we should wish to be able to describe connections between
different categories. We now f{ormulate the notion of a transformation from one cat-

egory to another. Such a transformation is called a functor, which can be defined as :

Definition 1.3.1 Let C and D be two categories. A pair of functions F' = (Fj,

Frnor), where

Fo o |C] = |D]

14



and
Fonor : More — Morp

is called a functor which assigns to each object of C an object of D and to morphisms

of C a morphism of D, satistying the following conditions:

Fy: Ua: X —Y is amorphism in C then F(a) : F(X) — F(Y)is a morphism in
D.

Fy: F(Ix) = Ipx) for every object X € C.

F3: If of is defined in C then F(a)F(0) is defined in D and F(af)=F(a)F(3)
or Flaf)=F(F)F(a)

In axiom F3 if F(af8)=F(«a)F () holds then F' is called covariant functor and
if F(aB)=F(B)F(a) holds then F' is called contravariant functor.

We shall make a connection that whenever we speak simply of a functor we

shall mean a covariant functor. A functor I from C to D is denoted by F': C — D.

Remark 1.3.1 Every functor F': C — D induces a function
Fap: Morc(A,B) = Morp(F(A), F(B))

For every pair of objects (A4, B) in C.

Definition 1.3.2 (Composition of two functors) Let F: A - Band G: B —~ C

be two functor then their composition GoF' : A — C be defined as,

GoF(X) = G(F(X)) for all objects X € A

and
GoF(a) = G(F(a)) for all morphisms a € A.

Remark 1.3.2 The composition functor GoF is a covariant functor if ¥ and G are

of the same variance, GoF is a contravariant functor if F' and G are of the opposite

15



variance.

Remark 1.3.3 Every homomorphism monoid to monoid (ring to ring or group to

group) can be regarded as a functor.
Now we consider some examples of functors.

Example 1.3.1 For any category C, assigning every object A to A and every mor-

phisms « to the same morphism « in C, we can define a functor
Ic:C—C

such that
Ie(A) = A and Ic(e) =a forall a € A.

This functor is known as identity functor.

Example 1.3.2 Let C’ be a subcategory of C then a covariant functor I: C' — C

can be defined as
I(A) = A for all objects A € ('

and
I(a) = a for all morphisms a € C'.

This functor is known as inclusion functor.
Example 1.3.3 Since every group is a set and every group homomorphism is a

function. A covariant functor F can be defined from the category Grp of groups to

the category Ens of sets by assigning
(i) To every group G in Grp, the underlying set F(G) in Ens.

(22) To every group homomorphism « : G — G’ in Grp, the underlying function
F(a): F(G) —» F(G") in Ens.

This function is known as forgetful functor because it forgets the group structure

in Ens.

16



[ connection of functors we have the following definitions:

Definition 1.3.3 (Cat) Since the composition of functors is also a functor and this
operation (composition) is also associative whenever it is defined. With the help of
these facts, we can construct a new category Cat by taking objects of category as

all small categories and morphisms as the functors between them.

Definition 1.3.4 (Full functor) A functor F': C — D is called full if the function
More(A, B) = Morp(F(A), F(B)) induced by F is surjective (onto).

Definition 1.3.5 (Faithful functor) A functor £ : C — D is said to be faithful if
the function Morc(A, B) = Morp(F(A), F(B)) induced by F is injective (onc-one).

Definition 1.3.6 (Representive functor) A functor I/ : C — D is said to be
representive if for every object B € D there exist an object A € C such that

Definition 1.3.7 (Imbedding) A faithful functor F': C — D which takes distinct

objects to distinct objects is said to be imbedding.
§1.4 Natural Transformations

In this section we introduce the concept of natural transformation which plays
a key role in the development of the language of categories and functors. Natural

transformation can be defined as follows:

Definition 1.4.1 Let S and T be two covariant functors from a category C to a

category D. A family of morphisms,

n = {nx|X € ObjC and nx : S(X) > T(X)} C D

17



is called the natural transformation from S to 7' if for every morphism f: X — Y

in C such that the diagram

rlx
S(X) >T(X)
S(f) TUf)
My
S(Y) =>T(Y)

COLIIItes.

The natural transformation n from S to 1" is denoted by n: S 41"

If § and T are contravariant then the above diagram is represented by the fol-
o R,

lowing commutative diagram

S (X) Ny > T (X)
S(f) T(f)
1
sy Y >T(¥)

If each 1y is an isomorphism then we say that 7 is a natural isomorphisin.

Definition 1.4.2 The functors S, : C — D are said to be naturally equivalent,

denoted by S = T'. if there is a natural isomorphism 7 : S — 1.

Theorem 1.4.1 A natural {ransformation n : S — T is a natural isomorphism i
and only if there is a natural transformation g : 1" — § such that

pon == Is and nop = Ir.
Proof If n: S — T is a natural isomorphism where S,7": C — D, assign to every

object A of C the morphism py = na~"' : T(A) = S(A). This clearly define a natural

I8



transformation p @ T"— S. Since

(pron)) 4 paony = 'r/‘,fl()r}‘,g sy,

T

(o) aops — yaona” T0A)

We deduce that oy 1s and nop -~ 7.

Conversely, il there exists a natural transformation g @ 77— 8 such that pon - [

and yoyp I then for every object 2t of € we have
paons  (pon) . sy,

naopa - (nop)a = Ipea)

whence cach 14 is an isomorphisim.

Proposition 1.4.1 Cowmposition of two natural transformations is also a natural
transformation.
Proof Tet np: S 471 and ¢ : T 4 U be two natural transformations, wherc
S1.07:C — D be covariant functors from category C to category D.
Now we take,

bx = Uxix
ie.

S(X) 25 U(X) S(X) S 1(X) 25 U(X) for all objects X €C

then for any morphism f: X — Y in C such that in the diagram

s — 1 rm B rw

Stf) T(4) Ulf)

1y Wy
S(Y) Ty uw

the left and right squares commute since n and v are natural. Hence the outside

rectangle commutes i.e. orn is natural.
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Example 1.4.1 Counsider the functor
[ Grp = Grp

which carries cacli group (7 € Grp to its inner automorphisms group [(() in Grp

and morphism o : GG — G’ to the corresponding homomorphism
I{a) - (G = (G since for each G € Grp, G~ Grp.
Then we define a natural transformation
nol — 1
from identity functor to I : Grp —= Grp, by taking

ne s GG for dll G e Grp.



CHAPTER 2

SPECIAL OBJECTS, MORPHISMS AND SOME
CONSTRUCTIONS IN CATEGORIES

§2.1 Introduction

This chapter has been devoted to the study of certain special types of morphismns
and objects. Most of the results of this chapter are based on the work of Blyth [%].
MacLane [36] and Mitchell [42] etc.

Section 2.2 deals with the notion of monomorphism, epimorphism and isomorphism
which states that a morphism which is both monomorphism and epimorphism need
not be an isomorphism. In the Section 2.3 the notion of initial object, terminal ob-
ject and zero object is introduced which states that an object in a category is called
zero object which is initial and terminal both but converse need not true. Section
2.4 deals with the categorical porduct and co-product. In the last Section 2.5 the

notion of equalizers and kernels are discussed.

§2.2 Special Morphisms

We have already discussed the examples of categories in which the objects are
sets endowed with some additional structure and the morphisms are structure-
preserving mappings. Such categories are called concrete. Omne of the main ob-
Jectives of the theory of categories is to obtain general theorems with applications
in concrete categories. To see how this can be achieved, we first show how notions
that arise in concrete categories can be generalized to arbitrary categories. For this
we have to find properties that are independent of ‘element-wise’ arguments. By
way of illustration, we observe that in the category Ens the following statements

concerning a mapping f : X — Y are equivalent:
(¢) [ is injective (in the sense that z £y == f(z) # f(¥))

(44) [ is left cancellable (in the sense that fog = foh == g = h)
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Thus the notion of injectivity, which is usually defined as in (%) using elements,

can be expressed as in (ii) in terms only of mappings.

Now the property of being left cancellable can clearly be considered in an arbi-

trary category, and leads to the following notion.

Definition 2.2.1 (Monomorphism) A morphism f: X = Y in a category C is

called a monomorphism if for every pair of morphisms g,h : A — X such that
AL x Ly=atxLy
ie.

fog = foh

— g=nh (i.e. f is left cancellable)

We have just seen that in Ens a morphism is monic if and only if it is injective.
This is also true, for example in Sgp, Grp, RMod. However in a concrete category
every injective morphism is monic. But the converse is not true, as the following

example illustrates.

Example 2.2.1 Consider the category DivAb of divisible abelian groups (it is
subcategory of Ab).
Now take two objects @) and Q/Z in DivAb, both are the abelian groups, this

follows from the observations:
p/q = n(p/nq)

and
p/q+Z =n(p/ng+ Z).

Consider the natural morphism
n:Q—>Q/Z

defined by
nlp/q) =p/e+Z ¥ p/geQ

22



then it is always onto (epimorphism). Trivially, this morphism 7 is not injective as
Kerp = Z # 0 in @, but it is left cancellable (monomorphism).
Now we will check that it is left cancellable.

For this, let f, ¢ A — @ are morphism in this category and f # g. there

exists ¢ € A such that

f(a) # g(a)

1.e.

fla) = g(@) #0 in Q
=r/s(s # £1).

Since A is divisible we can find b € A such that

a=r1b
Now,
"[f(b) - g(b)] = T‘f(b) — rg(b)
= f(rb) — g(rd)
= f(a) — g(a)
= r/s
rlf(b) = g(0)) =r/s
= f(b) = g(b) = 1/s
Since,
n(l/s) = 1/s + Z #0
- n(f(b) — g(b)) #0
:> n(f(®)) = n(g(®)) # 0
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= (nof)(b) = (nog)(b) #0

—~ (0] = m0g)(8) #0
= nof —nog 7 0

= nofl # noy

= 7 1s left cancellable

= 7 is monomorphism in DivAb but not injective.

Which completes our claim.

Definition 2.2.2 (Epimorphism) A morphism f : X — Y in a category C is

called a epimorphism if for every pair of morphisms g,k : Y — B such that
xLy Lp-xLy LB
lLe.
gof =hof

— =h (i.e. f is right cancellable).

Remark 2.2.1 A morphism f : X — Y which is epimorphism in a category C may

not be surjective, as the following example illustrates.

Example 2.2.2 Consider the category Ring (or Sgp) of rings (w.r.t. multipli-
cation). Now since Z, @ € Ring, we define an inclusion morphism 7 : Z —
which is injective but not surjective, but it is epimorphism (right cancellable) in the
category.

Now we will show that it is epimorphism (right cancellable) but not surjective.

For this, let g, h: () — A be a morphism in Ring (or Sgp) with.

7-5Q-5A=2-5Q54
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such that

got = hot
— (goi)(n) = (hoi)(n) ¥ ne€ Z
= g(i(n)) = h(i(n))
— gn)y="h{n) ¥V neZz

Now for any m/n € Q) we have
g(m/n) = g(mn="1)

= g(m)g(n=")g(1)
— h(m)g(n-M)A(1) | since g(1) = h(1) ]
— (gl Yhlrm)
= h(m)g(n~")h(m)h(n™")
= Wm)g(n)gmh(nY)  [since g(n) = h(n) ]
= h(m)g(n~"n)h(n"")
~ hm)g(D)h(n™")
= h(m)h(1)h(n"1)
= h(m.1n™Y)
= h{mn™)

= h(m/n)

— g(m/n) = him/n) ¥ m/n€ Q

—_ g=nh

= ¢ is right cancellable, but not surjective.

Therefore, 7 is epimorphism, but not surjective in the category Ring of rings.

Which completes our claim.

Definition 2.2.3 (Bimorphism) A morphism which is monomorphism as well as

epimorphism both is called bimorphism.
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Definition 2.2.4 A morphism f: X — Y in a category C is called retraction if and

only if there exists a morphism ¢ : ¥ — X in C such that

fog = Iy

Dually,

Definition 2.2.5 A morphism f : X — Y in a category C is called coretraction if

and only if there exists a morphism g : Y — X in a category C such that

gof = Ix.

Remark 2.2.2 Every retraction is a epimorphism but converse need not be true.

Let us a consider a morphism f : A — B be a retraction in a category C then

there exists ¢ : B — A in C such that
fog = Ig.
Now consider two morphisms hy, hy : B — X such that

ALpty x4 lipteyx

Le.
hiof = hyof
(hiof)og = (hsof)og
hio(fog) = hao(fog)
/11()[3 = hQOIB
h] = hz
= f is right cancellable
= f is epimorphism.
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Conversely, it is not true, for this we construct a counter example as follows:

In zMod consider the object ), defined by
Qp={reQz=kp" ke Z &ne N}

where p is a prime. This collection forms a subgroup of @ and Z is a subgroup of

Qpie. Z CQ,.
Now we define a morphism

[:Qp/72 = Q,/Z

such that
fle +2)=pz+ Z.

Then it is readly seen that f is a Z-morphism.

Since
kp™ + Z = pkp™ ! + Z)

=plkp™™ ) + Z.

We see that f is surjective. Now we shall only to show that f has no right inverse.

On contrary, assume that f has a right inverse in zMod then there exists
h:QplZ = Qp)Z in Z —module such that
foh =1 (identity on Q,/7)

—=> (foh)(n) =n Y neQ,/Z.

Now in particular as £ = 1, » = 1 we have,
pt+Z = f(h(p7t+ 2)) [ since foh =1 |
= p(h(p™" + Z))
= h(p(p™ + 2))
= h(I+2)
= h(0+ 2)
= 0+ 7
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Thus we have p '+ Z=0+2.

Which is never possible since x4+ Z = 0+ Z if and only if € Z but here p is prime.

= h does not exist
= f has no right inverse
= f is not retraction.

Which completes our claim.

Remark 2.2.3 Bvery coretraction (section) is a monomorphism but converse need

not be true.

Let us a consider a morphism f : A — B be a coretraction (section) in a

category C then there exists ¢ : B — A in C such that
fog = 1Ig.
Now consider two morphisms h;, he : X = A in C such that

xtAatyp=x"'y 458

ie.
fohy = fohy
go(fol) = go(foh,)
(gof)ohs = (gof)ohy
[AOh,] = [AOhQ
hl = h12
= f is left cancellable
= f is monomorphism.

Conversely, it is not true i.e. every monomorphism need not be a coretraction

(section). For this we construct a counter example as follows:
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Consider a category zMod and a morphism

fiZ2-2

such that

fln)=2n V neZ.

Now we check for the left inverse.

Suppose there exist a Z-morphism g : Z — Z such that
gof = Iz

for any integer n € Z we have,

2.9(n) = g(2n) ( module homomorphism )

= g(f(n)) ( since f(n) =2n)

ie. 29(n)=nV neZz.

In particular, if we take n = 1 then
2.9(1) = 1.
For convenience we can consider this relation as an equation of the form
2r=1wm Z.

But there is no value of z in Z to solve the equation 2z = 1

— g can not be defined
= it is not left cancellable
= it is not a coretraction (section).

Which completes our claim.
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Definition 2.2.6 (Isomorphism) A morphism f : X — Y in a category C is called

isomorphism if there exist a morphism g:Y — X in C such that

XLy 2 x =1y

lLe. gof = Ix
and
y 4 x -y

ie. fog-:Iy.

This uniquely determined morphism g is also an isomorphism which is called

the inverse of f and is often denoted by f~'.

Observations:

Let f: X = Y and g: Y — Z be two morphisms in C then the following statements
hold:

(@) If f and g are both monomorphism (epimorphism), then the composition gf :

X — Z is an monomorphism (epimorphism).

(b) If gf : X — Z is an epimorphism, then so is g.

() If gf + X — Z is an monomorphism, then so is f.

(d) If f: X — Y is an isomorphism, then f is both a monomorphism and an
epimorphism.

In connection with the last of the above observations, it is worth observing that
a morphism in a category which is both a monomorphism and epimorphism (i.e.

bimorphism) need not be an isomorphism. It is clear from the following example.

Example 2.2.3 Consider the category DivAb of divisible abelian groups (it is
subcategory of Ab).
Now take two objects () and )/Z in DivAb, both are the abelian groups, this

follows from the observations:

p/q = n(p/ng)
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and
p/q+ Z =np/ng + Z).

Consider the natural morphism
n:Q—Q/Z

defined by

n(p/q) = plg+ 2 ¥ plqgeQ
then it is always onto (epimorphism). Trivially this morphism 7 is not injective as
Kern = Z # 0 in @, but it is left cancellable (monomorphism) as we discussed in

Example 2.2.1.
Therefore, 1 is bimorphism (monomorphism and epimorphism both) but not iso-
morphism (as it is not injective).

Which completes our claim.

Remarks 2.2.4 Two objects in a category are called isomorphic if there is an iso-

morphism between them.

Remarks 2.2.5 An isomorphism in a category C is a coretraction (section) and

retraction both.

By the Example 2.2.3 it is clear that every bimorphism in a category need not
be isomorphism in general, but there are certain categories in which these two con-
cepts are equivalent. To characterize this behavior of some categories we shall define

a special category, known as balanced category.

Definition 2.2.7 (Balanced category) A category C is called balanced if every

bimorphism in C is an isomorphism.

Example 2.2.4 The category Ens is balanced category, since every function which

is injection and surjection both is also a bijection.
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Example 2.2.5 The category Grp is balanced category, since every group homo-

morphism which is monomorphism and epimorphism both is also an isomorphism.
Example 2.2.6 The category zMod is balanced category.

The category DivAb, Ring. Sgp and Top, are not balanced. As we have
discussed in Remark 2.2.9 that in DivAb, bimorphism is not to be an isomorphism,

hence it is not balanced.

For concrete categories the following diagram (in which an increasing line seg-

ment is taken to mean ==) summarises the above discussion:

epic monic

surjective bimorphism injective
retraction bijective /<ection
isomorphism

§2.3 Special Objects
In Ens the empty set ¢ and the one point set {x} both have properties which
characterize them, and which can be formulated purely in terms of functions.

1. A characteristic property of the one point set {x}. Given any set X

there is exactly one function from X to {x}.

The function takes any © € X to ». Clearly this is a function and is the only possible

function from X to {x}.

2. A characteristic property of the empty set ¢. Given any set X there is

exactly one function from ¢ to X.
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For this, since a function from X to Y is a subset U of X x Y satisfying the property
that to each y € Y there is exactly one pair in / with first coordinate y. Hence a
function from ¢ to X is a subset of ® x X = ¢, and there is only one such subset .

namely ¢, and it satisfies the property vacuously.

Definition 2.3.1 (Initial object) An object I € C is called an initial object of the
category C if for every object X € C the set Morc(], X) is singleton.

Definition 2.3.2 (Terminal object) An object T' € C is called an terminal(co-
initial) object of the category C if for every object X € C the set Morc(X,T) is
singleton.

Remark 2.3.1 Any two terminal (initial) objects in a category are isomorphic i.e.

terminal and initial objects in a category are unique upto isomorphism.

Remark 2.3.2 If a category C has terminal (initial) object then the corresponding

dual category C* has initial (terminal) object.

Definition 2.3.3 (Zero object) An object Z € C is called a zero object of the

category C if it is initial and terminal both.

Remark 2.3.3 [8] A category that has initial and terminal objects both need not
has a zero object.

For example, in the category Ens every singleton set is terminal object and empty
set is the only initial object i.e. Mor¢(¢p, X)=singleton (there is only one function

with no assignment) but it has no zero object.

Example 2.3.1 In the category Grp of groups the trivial group {e} is initial and
terminal both hence zero object.
Example 2.3.2 For an ordered set considered as a category, terminal object is the

greatest element (if exists) and initial object is the least element.

Example 2.3.3 In the category Top, any space of one point is terminal object and

empty space is initial.
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Definition 2.3.4 (Zero morphism) Let C be a category with zero object. A
morphism A — B in C is called a zero morphism if and only if it factored through

a zero object i.e. A = B = A — O — B, where O denotes the zero object.

§2.4 Product and Co-product

Definition 2.4.1 (Product) Let {A }ie; be a family of objects in a category C.
An object I’ in C together with a family of morphisms {p; : P — A;}ies is called
the product of the family {A,};cs if for any object X € C and family of morphisms

{fi X = A.}ies. there exists a unique morphism 7 : X' — P such that the diagram

n .- Pi

X T >Ai

commutes.

Notation: The product of the family of objects {A;}ics is denoted by [] A,.
i€l

Dually,

Definition 2.4.2 Co-product (Sum) Let {A;}ic; be a family of objects in a
category C. An object S in C together with a family of morphisms {u; : A; = S}hier
is called the co-product (sum) of the family {A;}e; if for any object Y € C and
family of morphisms {y, : A; = Y},c;. there exists a unique morphism £ : § —» Y

such that the diagram

gl 125
Y - 91. Al

commules.
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Notation: The co-product (sum) of the family of objects {A;}ics is denoted by
S As

i€l

Remark 2.4.1 A category has product if it has product for every family of objects.

Remark 2.4.2 A category has finite product (co-product) if it has product (co-

product) for every finite family of objects.

Remark 2.4.3 The product of the empty family of objects is the terminal object of
the category and dually the co-product of the empty family of objects is the initial
object of the category.

Proposition 2.4.1 If P and P’ are products of the family of objects {A;}ic; in a

category then there exists an isomorphism between P and P’

Example 2.4.1 In the category Ens, cartesian product is the categorical product

and disjoint union is the co-product of the objects of the category.

Example 2.4.2 In the category Grp, the external direct product of the groups
is the categorical product and the free product of groups is the co-product of the

objects of the category.

Example 2.4.3 In the category Top, cartesian product is the categorical product

and disjoint union is the co-product of the objects of the category.
§2.5 Equalizers and Kernels
Definition 2.5.1 (Equalizer) Let oy, ap : A — B be two morphisms in a category

C. An object K together with morphism u : K — A is called equalizer of the pair

of morphisms ay, ay if

Ei: oqqu = ayu
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Fy o For every morphism f: X — A such that
Wl ouf

there exists a unique morphism 0 X = X sueh thas

un |

Le. the following diagram

=
b

> <-
fod
V
x
\
o

comimautes.
Dually.

Definition 2.5.2 (Co-equalizer) Let oy, a3 : A — B be two morphisms in a
category C. An object F together with morphism v : B — F'is called co-equalizer

of the pair of morphisms aq, «y if

f] vy vy

E% - For any morphism ¢ : B — Y such that
2 ) ¢

gy g

there exists a unique morphisin £ : I — Y such that

E/p Sy
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i.e. the following diagram

=
O

1[‘,»‘

F=— B = A

comunies,
Remark 2.5.1 Anyv two cqualizers of a pair of morphisms oy, a9+ A — B in a

calegory arc isomorphic.

Proposition 2.5.1 Equalizer morphisu is a monomorphism and dually co-equalizer

morphism is an epimorphism.
Example 2.5.1 The category Ens of sets has equalizers and co-equalizers.
Example 2.5.2 The category Grp of groups has equalizers and co-equalizers.

Example 2.5.3 [8] TLet [, g : A — B be two morphisms in Ens, Grp or pMod.
Let

I feeds flx) - g@)
he considered appopriately as a subset, a subgroup or a submodule. Then the canon-

ical inclusion 7: 7" — 1 is a cqualizer ol f. g .

Definition 2.5.3 (Kernel) Lt C be a category with a zero object. then the equal-
izer of the morphism o : A — B and O 1 A — B is called the kernel of the

morphism .

Notation: The kernel of the morphism « is denoted by Ker ().
Dually,

Definition 2.5.4 (Co-kernel) Let C be a category with a zero object, then the
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co-equalizer of the morphism a: A — B and O : A — B is called the co-kernel
of the morphism a.

Notation: The co-kernel of the morphism a is denoted by Coker(a).

Remark 2.5.2 If f : A — B is a zero morphism then
Ker(f) =14 and Coker(f) = Ip.

Remark 2.5.3If f: A — B be a monomorphism then Ker(f) = 0.

Dually,
Remark 2.5.4 If f : A — B be an epimorphism then Coker(f) = 0.

Proposition 2.5.2 The composition o (3 defined in C then the following statements
hold:
(z) If 8 is mono then Ker(af) = Kera.

(44) 1f « is epi then Coker(af) = Cokerp.

Example 2.5.4 The category Grp of groups and the category pRMod of modules

has kernel and co-kernel.

Example 2.5.5 In Grp and rRMod the usual notion of kernel yields the categor-
ical equivalent. Indeed, let f : A — B be a group homomorphism (or module

hmomorphism). Then the (algebraic) kernel of f is the subgroup (or submodule)
Kerf ={z € A: f(z) = Og}.

The canonical embedding 7 : Kerf — A is then a kernel of f in the categorical

sense (see Example 2.5.3). Thus Grp and pMod have kernels.
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CHAPTER 3

STRUCTURES ON CATEGORIES

§3.1 Introduction

This chapter has been devoted to the stiudy of structures on catesories diie o

Blvth|8]. MacLancl35). Mitchell[42] and Frevd]22: ete.

Section 3.2 deals with the notion of semi-additive and additive catecory due
to Blyth|8] and MacT.ane|35]. In Section 3.3 normal and co-normal categories are
discussed and it is obtained that everv normal category is balanced. Section 3.4
deals with the notion of exact sequence and exact categories. Finally, in the last
Section 3.5 the notion of abelian categories is introduced. Further, it is shown that

every abelian category is balanced.
To develope this chapter we need the following notion:

Definition 3.1.1 Let C be a category with zero object and let {A;}.e; be a family
of objects of C. An object B in C together with morphism A4, £5 B =5 A4, for all

1 € [ is called biproduct if
(1) (B, 7)ier is the product of {A;} <.
(i1) (B.pi)ier is the co-product of the family {4} in C.

(1) The diagram

18 commutative.
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where
id if =
b { 0 ifit]
Example 3.1.1 Il {4}, is a family of R-modules and [ - {1.2...... n} then we

Lhave that

li[1 z’l,‘ : @ :"1,'.

i=1

together with the canonical mjections and surjections, is a biproduet of 4, A, 4;.
§3.2 Semi-additive and Additive Categories

Definition 3.2.1 (Semi-additive category) A category C together with a zero
object 13 said 1o be semi-additive if for every pair of objects A. B of C there is a law

of composition x on More(A4, ) such that
(1) (More(A, B). %) is & commutative semi group with identity 0.
{(7/) o 13 bilinear, in the sense that the following identities hold:
ho(f » g) = (hof) = (hog)
([ = g)ok == (fok) = (gok).
Example 3.2.1 yMod is a scmi-additive category.
Example 3.2.2 Lot (¢ be an additive abelian gronp regarded as a category Grp.

Then G s semi-additive (the addition on the morphism sets being the gronp oper-

aliou).
Example 3.2.3 The additive monoid N considered as a category is semi-additive.
Example 3.2.4 Lt Latg be the subcategory of Lat cousisting of tlhose latiices

that liave a smallest element 0. the morplisms being the O-preserving lattice mor-

phisms. Then Latg 15 semi-additive.
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[u fact {0} is a zero object; and if f.g € Mor(L, M) then with f x g defined by

(f~g)(x) = [(r)xg(x) forall x € L.

It 15 clear that properties (i) and (ié) of Definition 3.2.1 are readily seen to hold.

Theorem 3.2.1 (8] In a category C. the following statements are equivalent:
(i) € has fiuite biprodnets

(i7) C 13 semi-additive and has finite products

(¢ii) € is semi-additive and has finite co-products.

Definition 3.2.2 (Additive category) A category C is said to be additive if it
is semi-additive aud (Mor(A4, B), 4) forms an additive abelian group for all objects
ABof C.

Example 3.2.5 The categories Ab and yMod are additive.

Example 3.2.6 A ring (always with 1) is to be regarded as an additive catesory

witli only one object [47].
Now we define the notion of additive category due to MacLane[36] as follows:

Definiton 3.2.3 Au additive category is a category C i which each set Mor(A. 13)
of morphisms las the structure of an abelian group, subject to the following three

axioms:

/

Ay There is a zero object.

Ay (Biproduct) To cachi pair of objects A} and A, there exists an object B with
s G mo PR " : )
four morphisms 4, — B = 4, and Ay =% B =% A, which satisfy the

identities pruy=1{4,. prrua=1I1.4, and pyuy + prus=1Ig.

Remark 3.2.1 In additive category piuy = 0 and pyuy =
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Proposition 3.2.1 A morphism o in an additive category is monomorphism if and
only if af = 0 alwavs implies [ - 0. Siwmilarly, f is epimorphism if and only if
g = 0 always implies ¢ - 0.

Proof Suppose a : .41 — 13 be a monomorphism then for any cquality

J2

LI LI Py NN LN

we have

Let af =0 for some f: N — A then
KLAB - K-L%B=K-5A20

L= S = 0 sinee ais mouo.
Again, let

Nloa w2

1.
afi = afs
= afi—afy =0
= al(fi = f2) = 0 (by distributive law)
= Si—fe=0
- Ji=Jz
= (v 13 H1OLo.

Hence a is mono if and only if af = 0 always implies f = 0.
Similarly, we can prove that 7 is epimorphism if and only if gff = 0 always implies

W7

g =0.

Proposition 3.2.2 The object B iu the axiom Ajg of Definition 3.2.2 together with

morphism B -5 A, | B 5 A, is the product of the objects A, and A,.

Proof Let f, : C — Ay aud fo : ¢ — Ay be any pair of morphisms with common

domain ¢
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Construct a morphism g : ¢! — B such that
g - ufytugfy

then we obtain.

pry - prlanfy A wefy)
P f1) A4 piuafs) [ By distributive law|
(pru) fr) 4 (poe)fe By associative law|
Ly, f1+0.fy |By Remark 3.2.1]
AR
= Ji

Similarly. pay = [ 1e. the following diagram

///:7 A

5
Pt

G- I . B

commutes,

The morphism ¢ @ ¢ — [3 1s unique by construction. Hence object B together withy

morphisms p; 1 B — Ay and py 0 B — A,y is a product of A; and A,.
Similarly, we can prove the following proposition.
Proposition 3.2.3 The object B in the axiom Aj in the Definition 3.2.2 together

with morphisms u; : A} — B and uy : Ay — B is a co-product (sum) of the objects

A; and As.
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§3.3 Normal and Co-normal Categories

In au arbitvary category with zero object, morphism need not have kernel and

co-kernel.

For example if I is a commntative ring with a 1 then R-algebra is a R-module
that is also a ring with a 1. For example. the set Mat,x,(Z) of n X n matrices ovey
Z s a Z-alychra. Now in category pAly of R-algebras the only condidiate for the
(algebraic) kernel of morplism is a submodule that is also an ideal. But this is i
seneral [ails to have an identity element. and therefore fails to have an object 1 the

category. Hence not every morphism i pAly has a kernel in the categorical seuse.

Likewise, ini the certain types of topological spaces the quotieut spaces (the can-
didiates for co-kernels) do not i1 general inlierit the properties of the parent spaces.
so [ail to be objects of the category nnder consideration. Consequently, not every

morphism has a co-keruel.

Althongh kernels and co-kernels need not exist in general. Now we define a

special type of category in which every morphism has kernel and co-kernel.
Definition 3.3.1 (Normal category) A category C with zero object is called
normal category if the following conditions hold:

(7) C has zero object

(11) every morphism in € has a kernel and co-kernel

(i11) every monic morphism i C is a kernel.

Example 3.3.1 The category pMod is normal. In fact axioms (i) and (i) are
clearly satisfied.  As for axioms (7if). [+ A — 3 is monic then [ is a kernel of
n: B —— B/Im(f). To sce this . observe by Example 2.5.4 that the embedding
i Imf — B is a keruel of 1. Siuce f is mouic, it is injective, so f : A — [mf

is given by f(a) = f(a) is au isomorphism. Then, using the fact that kernels are
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unique to with in composition by an isomorphism, we deduce from f = tof that f
1s a kernel of 7).

Whichi completes our result.

it a normal category every monie morphism f A — B3is a kernel. say a ker-
nel of o B — . Then from Nerh ~ Kercokerkerh, we obtain f ~ Kercokerf.
Thus we see that [ is mouic if aud only if f ~ Kercokerf.
Similarly. [ is epic il and only if f ~ Cokerkerf. We shall make use frequently of

these observations i establishing the {ollowing results concerning normal categories,
Theorem 3.3.1 [8] A\ normal category is balanced.

Corollary 3.3.1 [8] A normal category has fiuite products and cqualizers.

Dually, we define co-normal category.

Definition 3.3.2 (Co-normal category) A category C is said to be co-normal if
the following conditions hold:

(i) C has zero object

(2i) every morphism in € has a kernel and co-kernel

(cii) every epic morplism in C is a co-kernel.

Example 3.3.2 The category ;Mod is co-normal.

To see this, it is sufficient to prove that every epic morphism in pMod is a
co-kernel of any of its kernels. Now a kernel of [ @ A — B is the inclusion
i hkerf — A Ifuow g1 A — X is such that goi == 0 then clearly Kerf C Kery
such that f(a) = f(b) implies g(a) = ¢g(b). Since f is epic, hence surjective. We can

therefore, define a morphism

v 3 — X
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such that
l"(f((l)) (/<(l) f()]' crery a = /1

/
o

Ker f L > A =

clearly, vof = g aud so [ is a co-kevuel of .

Example 3.3.3 The category Grp is co-normal but not normal. In fact the same
argument used in lixample 2.4.2 shows that Grp is co-normal. IHowever, it is not
normal. For this, we kunow that a co-kernelof f: A — Bisn: B — B/N where N
is the smallest normal subgroup containing fm f, and a kernel of 7 is the imbedding
i N — B. If [ is monic then [ need not be a kernel of its co-kernel 7, for the

imbedding 7 : /mf — N need not be an isomorphism.

Definition 3.3.3 (Binormal category) A category C is said to be binormal if it

1s both normal and co-normal.
§3.4 Exact Sequence and Exact Categories

I this section the exact categories are defined in the terminology of Buchs-
bawmn(9] and Mitchell{12] aud their equivalence is proved. Most of the results in this
section are taken from Buchsbaum(9]. All the results as we discussed here are also

true 1 ordinary theory of groups and modules ete.
We shall often write Kercokerf as Imf and call this an image of f. Like wise.

we often write C'okerkerf as Coim [ and call this a coimage of f. The notion of

image and coimage give rise to the following important concept.
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Definition 3.4.1 (Exact sequence) If C is a binormal category then a sequence

. —_— 1’1;‘ | _/‘_l; Al' ._f"_) /’1)'“71_._.)....

of objects and morphism in C is said to be exact at A; if every image of fi | is a

kernel of [ and coexact at 4, il every coimage of [fi is a co-kernel of fiy. The

sequence 1s said 1o be exact (coexact) if it is exact (coexact) at every 4;.

Now we define exact category dne to Mitchell[42] as follows:

Definition 3.4.2 (Exact category) A category C is said to be exact 1f satislying

the following axioms:

.
1,21 .

E‘z'.

-

C has zero object.
Every morphism in category € has kernel and co-kernel.

Every monomorphism (epimorphism) in category € be a kernel (co-kernel) of

some morphism.
Every morphism a : A — B in category C can be decomposed as
rx q 5
A—B=A—0]—B

where ¢ 1s an epimorphism and 7 1s a monomorphism.

Example 3.4.1 The category Grp of groups is an exact category.

Example 3.4.2 The category gkMod of modules is an exact category.

Proposition 3.4.1 [42] In an exact, category C, the following statements hold:

(i) A= B L, s exact in C if and only if A* & B & 0 is exact in C*.

(i) O~ A — DBis exact in C il and only if a is a monomorphism.

. a . . .o . . . .
(iii) A —— B — O is exact in C if and ouly if a is a epimorphism.

. (04 - - . . - . . . . .
(iv) O — A — B — O is exact in C il and only if a is a isomorphism.
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Proof (i) Consider

AL Ly 5
where v is the image of a and 1w is the image of 5. Then » i3 the coimage of 5.
If A — BB — (' is cxact, then ¢ is the kernel of 8 and hence also the kernel
of . Therefore. r is the co-kernel of ¢ and hence also the co-kernel of a. 1u the
dual category, 1 then becomes the kernel of a as well as the image of £ and so

A* — B* «— (" is exact.

(ii) If e is a monomorphism then its kernel is O. and so clearly O — 4 — B
is exact. Consequently. if O — A — [ is exact then a has kernel O, Let
A 1 -5 B be a {actorization of a as an epimorphism followed by a monomor-
phism. Then g is the co-keruel of the kernel of a. Since the latter is O. ¢ must be

ant isomorphism. But a = vg must be monomorphism.

(7iz) Follows from (i) and (ii).

(iv) Since a normal category is balanced, (iv) follows from (4i) and (iii).
I'rom the above Proposition 3.4.1 we obtained the following remarks.

Remark 3.4.1 A morphism a i an exact category is monomorphism if and ouly if
KNer(a) = O.
Dually,

Remark 3.4.2 A morphism 7 in an exact category is epimorphism if and only if
Coker(a) = O.

Lemma 3.4.1 [22] For sequence A = B L, ¢ in an exact category, the following

conditions are equivalent:
(¢) Im(a) = Ker(f)
(ei) Coim(f) = Coker(a)
(i) Coim(f) = Coker(a)
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(i) A B-5C=0and K > B F=0

where v 0 W — I3 is a kernel of 7 and © @ B —— F is a co-keruel of

.

P « 3 - .
Lemma 3.4.2 [22] A sequence O — A4 — B — ' — O in an exact category

is exact if and oulyv if one of the following condition holds:
(1)« is monomorphism aud 515 a co-keruel of a
(¢4) 5 is epimorpliism and a is a kernel of f3.

Lemma 3.4.3 [9] let. a © A — 3 be a monomorphism in an cxact category C.
Then thiere is a morphism F and au object ' such that

S8, .
O— A% 13— — 0 is exact.

Phually,

Lemma 3.4.4 [9] let y : €' — D be an epimorphism in an exact category €. Then

there is a morphism 6 and an object [ such that
O— [J — C — D — 0 is cract.

Remark 3.4.3 lrom the Lemma 3.5.2 and Lemma 3.5.3 we obtained that every
monomorphism(epimorphism) in an exact category be a kernel(co-kernel) of some

morphism in the category.
§3.5 Abelian Categories

Certain of the categories we introduced in previous sections possess significant
additional structure. Thus in category Ab, pMod the morphism sets all have
abeliann group structire and we have the notion of exact sequences. We proceed in
this section to extract certain essential features of such categories and define the
important notion of au abelian category. Also this section consists of a study of
the formal properties of abelian categories. It is a very importaut, fact about such
categories that the axioms which characterize them are self dual, so that any the-

orem proved about abelian categories yields two dnal theorems when applied to a
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particular abelian category such as ;Mod.

We define abelian category die to Irevd [22]as follows:
Definition 3.5.1 (Abelian category) A category € is said to be abelian il satis-
(ving the following axioms:

Ay C has a zero object.

Ay o Tor every pair of object there is a product and
Aot a co-product (s ).

Ay Every morphism has a kernel and

A3t a co-kernel.

Ay Every monomorphism is a kernel of a morphism.
Ayt Bvery epimorphism is a co-kernel of a morphism.
Observations:

(¢) The axioms A, and ;" imply that abelian category is both normal and co-

normal.

(#i) The axioms A;, Az and A3" imply that every morphism « : A — B in an

abeliann category cair be factored as
. v ) ! g
A—DB= =18
Where [ is au epimorphism aud ¢ 13 monomorphism.

Remark 3.5.1 [From above observations (i) and (i), we obtain thiat every abelian

category 1S anl exact category.
Example 3.5.1 The category Ab of abelian groups is an abelian category.

Example 3.5.2 The category RMod over a ring R is an abelian category.



Example 3.5.3 The category Vect of vector spaces over a field F' is an abelian
category.,

Proposition 3.5.1 Every abelian category is balanced.

Proof lLet a ;.4 — 3 be a morphism in an abeliau category C. which 1s mouomor-
phism and epimorphism bothi. then we have
Coker(a) - 3 —= Q. since a is cponorphisim
- - 11 9 p DR
Nar (BB ——0) = B —= B (By Remark 2.5.2).

Siuce every monomorphism is the kernel of its own co-kernel.

= Ker(B — 0)= A -5 B
= tliere exist a morphism 7 : 3 — A such that
B A B=B25p (3.5.1)

Dually. we note that O —- 4 is the kernel of A = 3 and both 4 = B and
A5 A are cokernels of O — A.

Hence there is a morphism € 3 — A such that
4« < 14 N
A—B—=—4=A4-"5 A, (3.5.2)
Therefore, from equations (3.5.1) and (3.5.2) we have, a is an isomorphism.
Hence every bimorphism is an isomorphism in C i.e. C is balanced.

Now we define the notion of ablian category due to Blyth as follows:

Definition 3.5.2 (Abelian category) A binormal category C is said to be abelian

il 1t is additive.

Proposition 3.5.2 [22] In an abelian category kernel and co-kernel are inverse
morphisms.
Proposition 3.5.3 [8] A category C is abelian if aud only if il is binormal and has

finite biproduct.



CHAPTER 4

SOME SPECIAL FUNCTORS

§4.1 Introduction

This chiapter lias been devoted to the study of certain types of huetors. Most of
the results ol this cliapter are based on the work of Blvth|8], Mitchiellf42), MacLane|35).
1"11,‘_\'(1’22] ole.

Section 4.2 deals with the preservation properties of functors which states
that if 7 A — B aud .S - I3 — (" are covariant functors both having a certain
preservation property, then ST also hias that property. In Section 4.3 the notion
of additive functors are discussed. hu the last Section 4.4 some results have been
presented on exact functors and obtained that an exact covariant functor ‘preserves’
short, exact sequence and that an exact contravariant functor ‘reverses’ short exact

sequerices.
§4.2 Preservation Properties of Functors

Definition 4.2.1 (Monofunctor) A covariant functor F': C — D is called moro-

functor iff £{a) is monomorphism in D whenever a is monomorphism in C.

Definition 4.2.2 (Epifunctor) A covariant functor £ : C — D is called epifunc-

tov it F(a) is epimorphism it D whenever a is epimorphism in C.

Definition 4.2.3 (Zero preserving functor) If C and D be two categories with
zero objects then a covariant [nuctor F' 2 C — D is called a zero preserving functor

if £(0) is a zero object it D for 0 a zero object in C.

I this case F necessarily takes zero morphism into zero morphism. Conversely,
if F 1akes zero morphism into zero morplism, then using the fact that a zero object

is chiaracterized by its identity morphism being zero we see that Fmust be zero



preserving.

Definition 4.2.4 (Kernel preserving functor) A covariant fuuctor F is called
kernel preserviug il F{u) is the kernel of Fa) when w @ ' — A is the kernel of
a:A— B

Taking ' = A = I3 - 0. we sce that a keruel preserving functor is necessarily zero

preserving.

The properties of functors defined in this section are called preservation proper-
fies of functors e if T : A — B and S B — " are covariant functors both having

a certain preservation property, then ST also has that property [42].
84.3 Additive Functors

Definition 4.3.1 (Additive functor) Let € and D be additive category then a

functor F: € — D is called additive if for all morphisms o, f: A — B in C we have
Fla-+t 8) = F(a) + F(8).
Example 4.3.1 Let gkMod be a category of modules over a ring R then
Mor(A, =) : yMod — pMod

15 an additive functor for all A € ;Mod.
For this, let us consider

f\/()?'(/'l« —) . [;MOd — RMOd
delined by

Mor(A, )X == Mor(A, X) forall X € ;Mod.

Now for every morphism
f:X =Y in ykMod
l.e.

Mor(A,=)f = Mor(A, f) : Mor(A,X) = Mor(A.Y)

53



defined by
Mor(A (o) - Joa € Mor(AYY for any o € Mor(A, X).
Now if we take f.g € kMod then

f iy XY

Mor(A,=)() tg) - Mor(A [ 4 g): Mor(A, X) — Mor(A,Y)
such that
Mor(Af 1 g)a) - ([ +g)a
— fa tga foral ae Mor(A,X)

= Mor(A, fY(a)+ Mor(A4,g)(a)
= (Mor(A, Y+ Mor(A, g)) ()

1.¢
Mor(A, f 4 g) = Mor(A, [) 4 Mor(A, g)
1.¢
Mor(A, =) ([ 4 g) = Mor(A, =) f + Mor(A, =)y
== Mor(A,—) is a covariant additive functor.

Example 4.3.2 If C is an abelian category and A is an object of C we have the
associated ‘set valued’ functors More (AL, —) and More(—, M). We can also consider

the associated ‘group valned’ functors defined by
hy :C— Ab

suclt that

har X = ;\/()7‘0(/\"[, -Y)I
harf = More(Iy, [) i v — fou

and

MM C — Ab
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such that

MM X More(M, X):
WM More(f. Ir) v — vof.

({7 Ab — Ens is the foreetfnl fiuictor then clearly we have

U()h” - :7\/())'(7(;\[, —)

and
M 0o
Uoh™ = More(—. M),
The group valued functors hy; and " are additive.

For example, hia (o + ) sends

v (a + B)ov = aov + Bov

and so is the same as hypa -+ hagfS e hy(a 4 B) = haga + hag3.
Theorem 4.3.1 [8] Additive functors preserve zero objects.
§4.4 Exact Functors

Definition 4.4.1 (Left exact functor) Let C and D be binormal categories. A
functor F' : ¢ — D is called left exact functor if for every left exact sequence,
O — A — Ay — Ay in C its image wnder F'ie. O — F(A)) — F(As) — F(A3) is

also left exact in D.

Definition 4.4.2 (Right exact functor) Let C and D be binormal categories. A
faictor £ C — D is called right exact functor if {or every right exact sequence,
Ay — Ay — Az — O in C its image wnder Fie. F(A)) — F(Ay) — F(A3) — O s

also right exact in D.

Definition 4.4.3 (Exact functor) A functor £ : C — D is called exact functor if
it is left as well as right exact functor.
/“:’Azad Liy
“p /‘*M /\ '31}
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Theorem 4.4.1 Let € be an abelian category. For every object 4 of C the covariant
fuctor hy - € — Ab is left exact aud the contravariant fauctor h?* : ¢ — Ab is
also left exact.

Proof Suppose that we have an exact C-sequence
O—B—C-—D
aud consider the associated Ab-scqucnce
O —> h B —— hyC — hyD

i which we recall, hqa is simply composition on the left by a.

I [ e Nerhqa then aof = 0 and so. a being monic, f = 0.

Tl ha(a) is injective, henee mouie, in Ab.

If now g € Kerh 8 then Sog = 0 and so, a being a kernel of . there exist k such
that aok = g. Le. (k) = g.

Thus we have

Kerh f C Imhya.

But foa = 0 so, by Theorem 4.3.1. hyfohsa =0
and consequently,

Imhia C Kerhaf.

Hence

Kerhqjo = Kerhyfs.

Which shows that the associated Ab-sequence is exact.

Therefore, fiy is left exact.
A similar proof shows that the contravariant functor A4 is also left exact.

li1 general, the functors iy and 7 fail to be exact, as following example shows
Example 4.4.1 lu zMod consider the short exact sequence

O—2Z-Q-%Q/z—0
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let A=7/2Z and consider the functor

Iy yMod — Ab.

This is left exact (by Theorem 4.4.1). but not right exact since the induced morphism

Mory(Z2]27.Q) — Morg(%)27,Q/7)

caiu 1ot be epie (surjective). In fact. the gronp on the left collapses to {0} whereas
tliat on the right does not.

1o sce this.
let.
v 227 — Q be a group morphism

aud let
 =v(l+ 27).

We Lave
20 = 2u(l+427)
= (2 +22)
= p(0+22)

Q.
Whence © = 0 and consequently, v == 0.

On the other hand,
0+27 — 0+ Z,
1
1 + :ZZ —— é + Z,
describes a nonzero element of Morz(Z/27,Q/7)

- Mory(£)22,Q/7) # {0}.



So 1o epimorphism is possible.
Whichi completes onr elanm.
Example 4.4.2 u ;Mod consider the short exact sequence

O—7-5Q-5Q/—0

and the left exact contravariant functor

h? . ,Mod — Ab.

This fnunector is not right exact since the induced morphism

Moy (Q. Z) — Morz(Z. Z)

can not be epic (surjective). In fact, the group on the left collapses to {0} whereas
that on the right does not.

70 see this,

Let

v QQ — Z be a group morphism

and suppose that

v(1) #0.
Then for every non-zero integer 1 we have v(1) = re(1/r), whence r divides ©(1).
But, by the fundamental theorem of arithmetic, ©(1) has only finitely many divisors.
Hence we must have ¢(1) = 0.

For all non-zero integers p. ¢ we then have

0 = po(1)
pv(q/q)
= pqu(l/q)

~ qulp/q).
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Whence v(p/q) =0

I

v 0 (asp, qare non zero).

On the other hand, [ is clearly a non-zero element of Mor,(Z, 7).

Therefore. no epimorphism is possible.

Which completes our clain.

In view of these observations. it is natural to investigate those objects A of an

abelian category C for which the functors by and h* are exact. We can in fact do

this at a more general level [8].



CHAPTER 5

APPLICATIONS IN COMPUTER SCIENCE

§5.1 Introduction

This chapter has been devoted to the study of the applications of category the-
ory in the computer science whicli is based on the work of Barr M. [4] and Walters

([49)-[51)) ete.

Section 5.2 deals with the study of the relation between category theory and
computer science.  Section 5.3 deals with the study of categories with product-
circuits and categories with sums-flow charts which states that a circuit diagram is
just a representation of the decomponent of a function using products of categories
and a flow chart is a representation of the decomponent of a function using sums of
categories. Further. we observe that products and sums are key notions in analyzing

computatiorn.

In this chapter thronghout the discussion for the convenience we call function

in place of morphism.

§5.2 Relation between Category Theory and Computer
Science

[t 15 alwavs exciting and fruitful when two disparate scientific fields are found
to have much in common. Ilach field is enriched by the different perspective and
insights of the other. This has happened recently with category theory and theoret-

ical computer science.

The relation between category theory and computer science constitute an ex-
tremely active area of the research at the moment. Among the many places where the
research is being done are: Aarhus, Pennsylvania, Pisa, Stanford and Sydney. Top-

ics of current interest include the connection between category theory and functional
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programming, abstract data strmctures, object-oriented programming and hardware

desiz,

This dissertation is an introduction to category theory in whicli several of the
connection with compnter science are discussed in suflicient. detail and a feeling for

the rich possibilities arising from the happy conmection between these two subjects.

I brief we see that Liow is category theory related to the computer science as

follows:

» An important aspect of computer science is the construction of function out
of a given set of simple functions, using various operatious on functions like
composition, and repeated composition. Category theory is exactly the ap-

propriate algebra for such counstructions.

x Computing is concerned with machines-that is, dynamical svstems, which have
sets of states which vary over time. They are built up ont of functions or
elementary machines by an essentially algebraic process. Again underlying

this is the theory of functions and composition.

* Since category theory is an algebra of functions we can consider categories
which are purely formal. and which don’t really consist of functions. This is
the syntactical side of computer science. Programs and languages are formal
things which arc .intended to describe or specify actual functions. Category

theory is well adapted to deal with the relation syntax and semantics.

* A category is a mixture of graphical information and algebraic operations.

Computer science is similarly a mixture of graphs and algebra.

Some computer science topics we will deal with in this chapter are boolean algebra,

circuit theory and flow charts.
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§5.3 Categories with Products-Circuits and Categories with
Sums-Flow Charts

Now recall the definition of product and sum as we disenssed in Chapter 2. Contin-

uing with the definition of product we have the following notions:

Definition 5.3.1 Let X be a set then a function defined by
X =X xX
such that
Ny = (2, 7)

is called the diagonal function. 1t is sometimes called the copy function since it
produces two copies of 2. In an arbitrary category with products the diagonal
finction is defined as the function with component 1y, 1y. That is. A, is the

unique function making the following diagram

X

commutes.

Definition 5.3.2 In Ens. given (wo functions f: X; — Y}, ¢ : Xy — Y, there is
a function denoted by
fxg:XixXy—-Y xY)
(x1,y2) ¥— (f(x1), 9(22)).
This function f x g may be thought of as the two functions f and ¢ in parallel.
I an arbitrary category with products we define this operation as follows:
Given functions f: Xy — ¥}, g : Xy — Y5 in a category with products. the function

[ x g is defined to be the unique function from X; x X, to ¥ x Y, such that

S X g) = [y,
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Ml X g) = gpx,,

where the p's are projections. That 150 f X g is the wigue fnetion sueh that the

following diagram

- HAY . Px

A e ] x X, “\;’--\'—2
' |

’ |

' ',

- R IR R —— T

1))‘i ])YQ

conmmtes.

Definition 5.3.3 I Ens. given two sets X, Y there is a function

sty c X XY =¥ x X

(x,y) — (y, 7).
lu an arbitrary category with produets, twistyy @ X XY — ¥V x X 15 defined as
follows:
et py. p2 be the projections of X x Y and ¢qp, g2 the projections of ¥ x X. Then

fwist vy is the unique netion such that the following diagram
N { b2 &

X xY

X.

commutes.
Categories with products-circuits

Let us consider B=-{0.1}. The following is a category, whicl we shall call Circ:

e Objects: B, B!, B%. B*.....
where BY={x}, B! =B. and B"=={(2. @2...... 2,,): x; € B} for m > 1.
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o Morphisms: all functions between these sets.

There are 2 fuietions from BY 1o B!, namely

fruc. - B — B!
* — |

and

false : B® — B!
* — ().

Now we define some interesting functions in this category as follows:

(a) A function define by

-:B' - B!

0—1

1s knows as not.

(b) A function define by
&:B? - B!

(0,0) — 0
(0,1) — 0
(1,0) — 0
(1,1) — 1

1s kunows as and.
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(¢) A function define by

15 kuows as or.

Now we claim that this category has product. In fact, the prodnct of B™ and B"
is B with the following projections:

Bm pl ‘ B1n+n p2 . Bn

(:171,...,1',,,) < (.'lf].{.TQ,...,.'l',“,...,l'yn-{-n,) F— (.L?,,,.*_l,. o ,.’1',,,+,,).

Now we check the property of products. Consider the following diagram

X
! . g

Bm P1 Bm-{-n p2 Bn.
Suppose

f(ﬁl) = (fl(',l“')vf‘Z(:r)’f3(:l7)v """ 7f771(I))
and

(J(I> = (91(117)7‘92(:5)’.‘;3(1")7 ---- agn(fr))-
Then

a(w) = (S1(@), fo(2), 5()s s (@), 1(2), 92(), g3(E)s onnns g (2)),

and clearly pya = f, poa = ¢g. Further, pya is the only function with this property.



Further we will show that what kind of functions can be constructed using prod-

uets. Let us cousider the following remark.

Remark 5.3.1 All functions can be coustructive in Cire. starting with (rue, false.
- &L orsidentity functions and projeclions wsing ouly composition and the prop-

erty of products.

We will not. give a formal prool of this result, but instead we will give anu exam-
ple which makes the general case clear.

Cousider the following function

[:B*—B
(0,0,0) — 1
(0,0,1) — 0
(0,1,0) — 0
(0,1,1) — 0
(1,0,0) — 0
(1,0,1) — 1
(1,1,0) — 0
(1,1,1) — 0.

We claim that

[y, z) = (Ce&w&-z) or (a&-ykz).

To see this, notice that f(x,y, z) is 1 if either of the two parts (nz&~y&—z) or (r&-y&z)

15 1.

The first part is 1 precisely when 2 = 0 and y = 0 and z = 0; the second part

66



is 1 precisely when 2= 1 and y = 0 and z == 1. Hence the result.

Using this expression for [ we can decompose [ into =, &, o, using prodnets

and composition as follows:

Ap:
B’ il +B®x B* = B
(7,y,2) —— (z,y,2.2.y.2)
Bo _ A X xnxlpX-xlp . B
(g, 2,7,y.2) — (ma,~y, -~z oy 2)
B & x1lg x & x1g B
(-z,~y, -z, 1,0y, 2) b (—z&~y, -z, 28y, )
& x &

B* B’
(nz&~y, —z &y, 2) b (~z&y&—z, r&~y&z)
B? or B

(~z&—y&—z, 2&-ydez) b > f{z,y.2).

Notle: We have used the following casily checked facts about this category
(Bm % Bn) % Bp — Bm+n+p — Bm % (Bn % Bp)
and the same is true for the huctions. namely,
(f xg)xh=[x(gxh).
It is because of these facts that we have omitted brackets above.
This decomposition corresponds to the way such a function might be imple-

mented using boolean gates; that is. nsing a circuits (without feedback) consisting

of wires and compounent:
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[le set B is the set of possible states (the state space) of each wire- eacl wire can

be at zevo volt and one volt. sav.

Mhie fnuetion =@ B — B is implemented by the compouent

*)

The fimetion & 0 B? — B is implemented by the compouent

The function or : B2 — B is implemented by the component

Observations:

We can spilt up wires. This corresponds to the diagonal fuuction.

A B — B2

We can put two components side by side. This corresponds to the function.

fxg:BxB— BxB.

We cau put two components in series. This corresponds to the composition.

gof : B — B.

We can twist two of the wires. This corresponds to the fuuction,

twist : BxB — B x B.


file:///-olt

Now we will draw a circuit which implements the function f : B® — B
i the above example and notice that how the cirenit corresponds exactly to the

decomposition given above.

TR

fixy,z)

Going from left to right in this cirenit corresponds exactly to the siccessive hetions

in the composite:

. A B6—.x_jx—_‘X1x—1X1~B6&X1X&XI~B4&X&*B2 or o

(Y



Observations:
(i) Ushyg wires. we can implement prodnets.

(¢4) Every lunction B™ — B® can be implemented nsing =, &. o, (rue. falsc.

using products and composition.

(éit) A decomposition of function [ into =, &, or, wsing products and composition

to an implementation of f by a clrendt.,

Now we construct. a new category as follows:
e Objccts: R°, R', R?. R3....
o Morphisms: all functions between these sets.
Here are some particular functions in this category:
(i) To each real mmber 7 there is a function
(1] : R® — R ( called the name of 1)
which takes the single poiut of R" to r € R.
(17) add : R*> — R whichi takes (r,y) to z + y.

(1ii) multiply : R®* — R which takes (z,y) to xy.

The polynomial functions can be constructed from these particular functious

using only composition and the properties of product.

We will not. give a formal proof of this result but iustead we will give an example

as an illastration.



Example 5.3.1 f(x,y) = 322 4+ 2ry + 1 R? — R can be constructed as the

composite of the following fuctions:

A x lm .

IR? ~IR®
(I,y)} (I,I,y),
Ax1
R? n - IR?
(z,2,y)¢ (z,2,2,¥),

IRY % IR? x IR® x IR? x IR® (31> Lin2 > 21 * Lin2 X [1] IR
(1?,1'»37,!/) - (371‘1'7:12"7:)!/)1)1

mult X Lip x mult X 12
|R7 R IR IR5

(3,z,2,2,z,y,1) (3z,z,2z,y,1),

mult x mult x 1|

IR® IR®
(3z,2,2z,y,1) (322, 2zy,1),
le add x llR |R2
(322, 22y, 1) + (3z% + 22y,1),
R? add R
(3x% 4+ 22y,1) 4 (322 + 22y + 1).
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Note:
(1) We have nsed the following casily checked facts abont this catesory
(R™ x R") x RP - R™P . R™ » (R™ « RP)
and the same is e for the hmetions, namely,
() xhe [ x (g xh).
It 1s hecanse of these facts that we have omitted brackets above.
(i) [l x [ RO % R — R* x R takes @ to (1, f(x)).
Now further we will discuss the some special functions using the property of

co-products(sums)as continuing with the definition of sums we have the [ollowig

notions:
Definition 5.3.4 Let X be a set then a function defined by

V:X+X — X
(2,0) — @
(w0, 1) — @

called the codiagonal funclion.

L.e. the diagram

comimutes.

~J
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Definition 5.3.5 Given [ : X; — Y. ¢ : Xy — Y5, there is a fanction

Fa X0 Xs — Y1,

defined to be the unigue function the following diagram

3¢ _i” X+ X, 2 X5
| 5

f{ lf +- q !(/
} ! !
Vo Y o Y ey,

J1 J2
comuumtes.

Definition 5.3.6 Iu Ens, given two sets X, Y there is a function

fwistvy - X +Y =Y 4+ X
(,0) — (x, 1)
(v, 1) — (. 0).
In an arbitrary category with sums, twistyy : X +Y — ¥+ X is defined as follows:
Let ¢,, 5 be the injections of X +Y aud j;. j» the injections of Y + X . Then fwisl y y

is the unique function such that the following diagram

i ;
X — x4y 2 ¥
S \lwist _
]2 J1
»
Y+ X

conmutes.

Categories with sums-flow charts

The following is a category, which we shall call Flow:



e Objccts: OOR=-¢. 1.R==R. 2R. 3R ... where
mR = {0y reRIU{(r. ) e R}ULLU{z.m—1):reR}

(m > 1)
o Morphisms: all lnctions between these sets.

The category Flow lias siuns whicli are strictly associative. I fact,

m.R | nR = (m+n)R.
The injections are:
m.IR 2 (m 4+ n).R SR
(z, k) ———> (2, k)
(v, 1 4+mn) «<— (£,1).

[t is casy to sce that the property of a sum holds. Given [ :m.R — Z

and g - n.R — Z then

(g)(x’i):{f(z,i) if0<i<m-—1;

g(z,o—m) ifm<i<m4n-—1.

As before, here also we will take a special class of functions and see what fiunction
can be generated out of them using sums and composition.
Here we will take the following as the special functions:
o all continnous functions from R to R
o the [unction whicli tests whether « is positive or not:
test.wp : R—- 2R =R +R

x— (z,0) (if « <0)

z— (v, 1) (if > 0).
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Remark 5.3.2 Out of these special functions using composition and the property

of siums we can coustruct a mmber of fuetions as clear from the following examples.

Example 5.3.2 The discontiimons lnction.

/T R—R
_ sor i <0
T e if o >0

can be coustructed as the composite of the following functions:

test,
R c3le>0 R + IR
. (£,0) fz<0
T (z,1) ifz>0,
sinz] + [e*
IR + IR [sin 2] ] R + IR

(£,0)if 2 <0+

(sinz,0) if 2 <0

(r,1)if 2 >0

R + IR

(e*, 1) if £ > 0,

(sinz,0) if 2 <0+

R

(" 1)if 2> 0+

sinzif 2 <0

Example 5.3.3 The test fhiuiction.

{(’-SIT'}I .

et if x> 0.

if =<1
if x> 1

=1

[\l



can be constructed as the composite of the following functions:

11—z
IR J ] IR
Tk (1-2x),
test,
IR 20 IR + IR

(1-2,0) ifl—2<0

(l—r)l————>{(1_m,1) ifl1—2>0,

twest

R + IR R+ IR

(1-r.0)ifr>1y l-z,)ifz2>21

(l-2z.Difzg!t e (1 -2,0)if z < 1,

(1=} +[1-2]

R+ R R+ R
(1 -z,0)if r <1y (z,0)if z <1
(1—-x,1)ifr>14 > (z,1)if z > 1.

Example 5.3.4 The piccewise-continmous fnetion,

J R-—R
SEN if <0
e { F if 0<
COST if 1<,

€< ]



can be constructed as the composite of the following functions:

testrso

IR + 1R

1”( + fC'o‘tzZ]

R + IR

_[(=,0) ifz<o0
(z,1) ifz >0,

R+IR+1R

(r,0)if 2 <0 +—

(z,0)if z <0

(:r,l)ifr>0)—————————>{

(z,1) f0<z <1
(z,2) 1<z,

[sinz] + [e*] + [cosz]

R+IR+IR

R+IR+1R

(,0) if <0 —
(r,1)if 0 <z <1}

(sinz,0)if z <0

(2,2)if 1<z r

(e*,1)if0<z <1

(cosz,2)if 1 <z,

R+R+IR

(sinz,0)if r <0+

(. 1)if 0 <1y

{(cosr,2)if 1 <x¢

R+ IR

(sinz,0)if z <01
(" Hif0<r <1

(cosa,1)if 1 <zt

it ¥ R+ IR
> (sinz,0) if 2 €0
(eF,1}if0<z <1
(cosz,1)if 1 < =z,
v IR
f(z)if 2 <0

f(z)if0<z <1

f@)if 1< 7.

|
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[t is more or less clear that any piecewise continuous function with a finite
munber of discoutimitios can be construeted in this way, Some fanetions witle an

nfinite munber of discontinmities like,

R—R
0 i costx < (

)5
T il cos?r > 0.5

can also be constiaeted.

Notice that correspouding to such decompositions there is a flow chart (without
feedback) whicli implements the function. A flow chart may be built np ont. of

components like functious and tests:

The way a flow chart cair be built up is analogous, but. dual. to the way circuits

test(z) false .

T
test(z)true

are built up. Components may be joined in series (which corresponds to composi-
tion) or side by side (which corresponds to the sum of functions).T'wo edges may be
joined. which corresponds to the codiagonal function. Each edge of the flow chart
lias state space Ri that is, when following through a flow chart we carry with us
one real nmmber. Below we give the flow charts corresponding to the last Iixamples
5.3.2, 5.3.3 and 5.3.4. A study of these flow charts will show that a flow chart 1s just

a graphical representation of the decomposition of a funection using sums.

.
fity)
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Example 5.3.2*

/'R —R
Sl i <0
o
¢ i >0
RN
Salse r ) sin r{r<u)
1[——‘—--——' e B L

J(z)

T {r>0)

Going from left to right in this flow chart corresponds exactly to the successive
[unctions 1 the following composite:

: test, sinz| + [e*
R oSt o g 52 []V|R+|RL|R.

Example 5.3.3*
fest,»;  R— R +R

T — { (‘7:70) if <t

-z (z21) 1—zr

z (z<1)

z (£21)

l—z (z<1)

Going from lelt to right in this flow chart corresponds exactly to the successive

functions in the following composite:

(1-z] test, " -2 1--a
IR LR > Ry RIS o g MLl iIR+IR.




Example 5.3.4*

/"R—R
sinT if <90
e R if 0< <]
COST if 1<
f(z)

Going from left to right in this flow chart corresponds exactly to the successive
fnctions in the following composite:

1 +testy>) R [sinz] + [e*] + [cosz]

> .

testI>0
— L

~ 3.IR

1n +V
i 2R v R,

30
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