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PREFACE 

The presence or absence of a fixed point in respect of a mapping is an intrinsic 

property of the mapping. However, many necessary or sufficient conditions for the 

existence of fixed points involve a mixture of algebraic, order theoretic or topological 

properties of the mapping or its domain. The fixed point theory has so many 

applications in various fields within as well as outside the Mathematics namely: 

Approximation theory. Successive approximation. Integral equations. Game theory, 

Optimal control, Optimization, Economics and several others. 

The origin of the fixed point theory which dates to the later part of nineteenth 

century heavily rests on use of successive approximations to establish the existence 

and unicjueness of solutions, particularly to differential equations. This method is 

associated with many big names which include Cauchy, Liouville, Lipschitz, Peano, 

Fredholm and above all Picard. In Fact the precursors of a fixed point theoretic 

approach are explicite in the work of Picard. However, it is the Polish mathematician 

Stefann Banach who is credited for placing the underlying ideas into an abstract 

frame of work suitable for broad applications well beyond the scope of elementary 

differential and integral equations. The fixed point theory of nonexpansive mappings 

gained new impetvis largely as a result of the pioneering work of Felix Brow<lcr 

in the mid nineteen sixties and the evolution of nonlinear functional analysis as 

an active and vital branch of mathematics. Pivotal in this development were the 

1965 existence theorems of Browder, Gohde and Kirk and the early metric result of 

Edelstein. 

In 2007, Huang and Zhang [25] proposed a generalization of metric notion by 

replacing the set of real numbers by orderied Banach space and define a new space 

termed as cone metric space and gave the fixed point theorems on cone metric sjjace 

which is the generalization of some fixed point theorems on metric space. After 

this Rezapour and Hamlbarani [44], Vetro [38] and Jungck [12] also gave fixed point 

theorems on cone metric spaces. 

As usual, Chapter 1 of the dissertation is devoted to the background material 

wherein we collect the definitions; examples and basic results on cone metric spac(\ 

Section 1.4 deals with definitions and basic fixed point theorems. 

Chapter 2 deals with fixed point theorems on contractive mappings in cone 

metric space for single valuued maps. In Section 2.3 we present results on common 



fixed point theorems for a pair of maps whereas Section 2.4 contains some basic 

definitions and periodic point theorems employing property P and Q in respect 

of cone metric spaces. In the last section, we present fixed point theorems for a 

sequence of mappings. 

Chapter 3 is broadly devoted to some core fixed point theorems for multivahu^d 

mappings. In Section 3.2, we present the basic definitions and examples besides 

defining lower semicontinuity and upper semicontinuity with examples. The final 

section of thiis chapter is devoted to fixed point theorems for multivalued mappings. 

In Chapter 4, we present the topological properties of cone metric space in

cluding it;s equivalence with metric space. In Section 4.2, we deal with topological 

properties of cone metric space. In the remaining part of this chapter, we discuss 

metrizability and completion of cone metric space. 

In the end, a bibliography is given which by no means is an exhaustive one but 

lists only those books and papers which have been referred to in this exposition. 

m 



CHAPTER 1 
CONCEPTS AND CORE RESULTS ON CONE 

METRIC SPACE 

1.1 Introduction 

The concept of a metric space is essentially due to a French mathematician Maurice 

Frechet (1878 - 1973).Through the definition presently in use is the one fornmlated 

by German mathematician Flix Hausdorff (1868-1942) in 1914. Frechet introduced 

this notion in his doctoral thesis presented to the University of Paris in 1906 and 

for many years pioneered the study of such spaces and their application to other 

areas of mathematics. There are many generalizaions of metric space which include 

Topological spaces, Fuzzy metric spaces, Probablistic metric spaces, Intutionstiic 

metric spaces, b-metric spaces, Generalized metric spaces etc. 

In 2007 Huang and Zhang gave generelization of metric space by replacing the 

real numbers with an ordered Banach space and define a new space termed as cone 

metric space and gave fixed point theorems on cone metric space which is the gen

eralization of some fixed point theorems on metric space . After Huang and Zhang 

[25], Sh. Rezapour [44] , P. Vetro [38], G. Jungck [12] also gave fixed point theorems 

on cone metric space . In this chapter we discuss some basic properties, examples, 

and resuts of cone metric space . 

1.2 Some Basic Definitions 

In this section we give some basic definitions and examples of cone in metric setting . 

Definition 1.2.1 Let E be a real Banach space and P a subset of E. Then P is 

called a cone in E if it satisfies 

i) P is closed, non empty and P ^ {0}, 

ii) a. b G R, a, h>0 and x,y & P =^ ax + by e P, 

iii) X e P and -x e P ^ x = 0. 



Given a cone P C E, we define a partial ordering < with respect to P hy x < ij if 

and only if y — x € P . We shall write x < y to indicate that x < y but x ^ y while 

X -C y will stand for y — x € intP. 

We always suppose E is a Banach space, P is a cone in E with intP ^ (j) and < is 

partial ordering with respect to P. 

Definition 1.2.2 The cone P is called normal if there exists a constant M > 0 such 

that for all x,y € E, 

0 < X < y implies || 2: ||< M || y || 

or equivalently, a cone P C -B is a normal cone if 

infiW x + y\\: x^yeP \\ x \\ = \\ y \\= 1} > 0. (1.1) 

The least positive integer M satisfying above is called normal constant. Sh. Reza-

pour and R. Hamlbarani [44] proved that M > 1. 

It follows from (1,1) that P is non normal if and only if there exist sequences 

Xn,yn € P such that 

0 < x„ < x„ + y„, x„ + y„ ^ 0 but x„ 7^ 0 

Example 1.2.3 Let E = CR([0, 1]) with supremum norm and P = {/ e E : / > 0}. 

Then P is a cone with normal constant M = 1. 

Example 1.2.4 Let £• be a real vector space 

E= lax + b\a,beR;x e[-,l]\ 

with supremum norm and 

P ^ {ax + be E\a< 0, b > 0} 



then P is a normal cone in E with normal constant M > 1. 

Example 1.2.5 let E = l\ P = {{x„}„<i e E •.Xn>0, for all n}, {X,p) a metric 

space andd : X X X ^ E defined by d{x,y) = {^^}„>i - Then {X,d) is a cone 

metric space and the normal constant of P is equal to M = 1. 

Example 1.2.6 Let E = C5^([0,l]), with || x \\=\\ x \\^ + \\ x' \\^,P = {x e E : 

x{t) > 0}. This cone is non normal . Consider, Xn{t) = T / n and y„{t) = 1/n. 

Then 0 < J „ < y„ and lim y„ = 0, but || !„ ||= maxte[o,i\\t"'/n\ + maa:(g[o,i]|f'^^| = 

1/n + 1 > 1, hence x„ does not converge to zero. 

Example 1.2.7 Let E = C7^([0,l]) with the norm || / ||=|| / ||oc + || / ' i|oc and 

P - {/ e E : / > 0}. Put a;„ = i ^ ^ and y„ = '-^^. Then 0 < a;„ < .x„ - y,„ 

II ^n 11 = 11 Un 11= 1 and II Xn + Vn ||= -;^ -^ 0- Therefore the cone P is non normal. 

Lemma 1.2.8 There is not normal cone with normal constant M < 1. 

Proof. Let {X, d) be a cone metric space and P a normal cone with normal constant 

M < 1. Choose a non-zero element x € P and 0 < e < 1 such that M < l — e .Then, 

(1 — e)x < X, but (1 — e)||x|| > A/||x||. This is a contradiction. 

Proposition 1.2.9 For each A; > 1, there is a normal cone with normal constant 

M > k. 

Proof. Let k > 1 he given. Consider the real vector space 

E = {ax + b\a, beR:x e{l-j. 1]} 

with supremum norm and the cone 

P = {ax + b e E\a < 0,b > 0} 

in E. First, we show that P is regular (and so normal ). Let {a^x + 6„}„>i be 



an increasing sequence which is bounded from above, that is, there is an clement 

ex + d e E such that 

aix + bi < a2X + b2 < < o„x + bn < .••• < ex + d, 

for all X e [1 - i , 1]. Then, {a„}„>i and {6„}„>i are two sequences in R suc-h that 

bi < b2 < ••• < d, tti > a2 > ... > c. 

Thus, {a„}„>i and {6„}„>i are convergent. Let a„ —>• a and 6„ —> 6. Then. 

ax + b e P and a„a; + 6„ —)• ax + 6. Therefore P is regular. Hence by Lemma 1.2.8, 

there is M > 1 such that 0 < g < f implies || fif ||< M || / ||, for all gJeE. Now 

we show that M > k . First note that f{x) = —kx + k e P, g{x) = k e P and 

f - g eP. So, 0 < 5 < / . Therefore, k =|| g \\< M \\ f \\= M. On the other hand, 

if we consider f{x) = —{k + l)x + k and g{x) = k, then f £ P, g E P and f — g e P. 

Also , II o 11= A; and || / | h 1 - r + rr- Thus, /c =|| 5 ||> A; || / | h k + I ~ I. This 

shows that M > k. 

Definition 1.2.10 The cone P C E is called regular if every increasing sequence 

which is bounded from above is convergent. That is, if {x„} is a sequence such that 

3̂ 1 < 2:2 < X3 < ... < x„ < ... < y 

for some y G E, then there is x € E such that || x„ —x ||—>• 0 (n -> 00). Equivalently 

the cone P is regular if and only if every decreasing sequence which is bounded from 

below is convergent. 

Lemma 1.2.11 Every regular cone is normal. 

Proof. Let P a regular cone which is not normal. For each n > 1, choose i„, i„ G P 

such that t„ - Sn e P and n^ || t„ ||<1| §„ ||. For each n > 1, put y„ = ^ and 

Xn = ijf^. Then x„, j/„, Vn - Xn e P, II y„ ||= 1 and n^ <|| x„ ||, for all n > 1. 
00 

Since the series Y, ^ II Vn \\ is convergent and P is closed, there is an element y eP 
00 

such that Y, ^Vn = y- Now, note that 
n=l 



1 1 1 / / 
0 < Xi < Xi + —X2 <Xi + —X2 + ^ X 3 < ... < y-

Thus. X^ ^Xn is convergent because P is regular. Hence, 
n = l 

X J-

Urn 7— = 0, 

which is a contradiction. 

The converse of Lemma 1.2.11 is not true. 

Example 1.2.12 Let E = CH([0, 1]) with the supremum norm and P = {f E 

E : f > 0}. Then, P is a cone with normal constant M = 1. Now, consider the 

following sequence of elements of E which is decreasing and bounded from below 

but not convergent in E, 

x>x^>x^> ... > 0 . 

Therefore, the converse of above Lemma is not true. 

Definition 1.2.13 The cone P is called 

i) minihedral if sup{x,y} exists for all x,y € E. 

ii) strongly minihedral if every subset of E which is bounded from above has a 

supremum. 

iii) solid if intP ^ (f) 

Example 1.2.14 Let £; = M" with P = {(xi,a;2, ...x„) : x,>Q for alli = 1,2, ...n}. 

Then cone P is normal, minihedral, strongly minihedral and solid. 

Example 1.2.15 Let £: = E^ and P = {(xi,0) : Xj > 0}. Then P is strongly 

minihedral but not minihedral. 

Example 1.2.16 Let £> C R" be a compact set, E = C{D) and P = {f e E : 

/(x) > 0 jor all X € D}. The cone P is normal, sohd and minihedral but is not 



strongly minihedral, and regular. 

1.3 Cone Metric Space 

Definition 1.3.1 Let X be a non empty set. Suppose the mapping d : X x X -^ E 

satisfies 

i) d(x,y) > 0 for all x,y E X and d(x,y) = 0 if and only if x = y, 

ii) d{x, y) = d{y, x) for all x,y e X, 

iii) d{x, y) < d{x, z) + d{y, z) for all x,y,z e X. 

Then d is called a cone metric on X, and {X, d) is called a cone metric space. 

It is obvious that cone metric spaces generalize metric spaces. 

Example 1.3.2 Let E = R^ P = {(x,y) e £ |x,y > 0} C R ^ X = E and 

d : X X X -^ E such that d{x,y) = (|x — y|,Q;|x — y|), where Q > 0 is a constant. 

Then {X, d) is a cone metric space. 

Example 1.3.3 Let E = R", P = {(xi,X2, ...x„) 6 E\x, > 0}, X = R and 

d: X X X -^ E such that 

d{x,y) = (|x - y | ,ai |x - y|,a2|2: - y\, . . . ,a„-i |x - y\) 

where QJ > 0, for all 1 < i < n — I. Then {X, d) is a cone metric space. 

Example 1.3.4 Let E = CR([0, 1]) with the supremum norm and P ^ {f E E : f > 

0}. Then P is a cone with normal constant M = 1 and {X, p) a metric space. Define 

d : X X X ^ E hy d{x,y) = p{x,y)ip where (/? : [0,1] ^ R such that ip{t) = e'. 

Then (X, d) is a cone metric space. 

Example 1.3.5 Let E = (CK([0,OO)), || . | | ^ ) , P = {f e E : f{x) > 0},(X,p) a 

metric space and d: XxX -^ E defined by d{x, y) = p{x, y)ip where ^̂  : [0,1] ^ M+ 

is continuous. Then {X,d) is a normal cone metric space and the normal constant 

of P is equal to M = 1. 



Example 1.3.6 Lei q > 0, E = l", P = {{x„}„>i e E •.Xn>0, for all n}. (X.p) 

a metric space and defined by d{x, y) = { ( ^ ^ ) ' } n > i - Then, {X, d) is a cone metric 

space and the normal constant of P is equal to M = 1. 

Definition 1.3.7 Let (X, d) be a cone metric space. Let {x„} be a sequence in X 

and X 6 X, If for every c e E with o '^ c there is N such that for all n > N. 

d{x„,x) «; c, then {x„} is said to be convergent and {x„} converges to x, and x is 

the hmit of {x„}. We denote this by 

lim Xji = X or x„ ^ x (n —̂  oo) 
n—^oo 

Lemma 1.3.8 Let {X, d) be a cone metric space, P be a normal cone with normal 

constant M. Let {x„} be a sequence in X. Then {x„} converges to x if and only if 

d{xn, x) —> 0 (n —> oo). 

Proof. Suppose that {x„} converges to x. For every real e > 0, choose c e E with 

0 <IC c and M || c ||< t. Then there is A', for all n > N, d{xn, x) <^ c. So that when 

n > A'', II d(x„,x) ||< M II c ||< e. This means (i(x„,x) —>• 0 (ri —> oo). 

Conversely, suppose that d(x„,x) —)• 0 (n —>• oo). For c & E with 0 <C c, there is 

6 > 0, such that || x ||< S implies c — x G intP. For this S there is A", such that 

for all n > A', II d{x„,x) \\< 5. So c — d(x„,x) G intP. This means d(x„,x) <C c 

Therefore {x„} converges to x. 

Remark 1.3.9 Converse part of above Lemma 1.3.8 is always true but if cone is 

non normal then direct is not true, we demonstrate this by an example. 

Let X = E ^ C|([0,1]) with the norm || / | h | | / |U + || / ' ||oo and P = {/ G 

E •• f > 0} that is not normal cone. Consider x„ = kz^imt g^d Vn = ^+'"""' so 
n+Z '^"- n+2 

0 < x„ < x„ + y„ -> 0, and || x„ || = || y„ ||= 1. Define cone metric d : X x X -> E 

with d{f,g) = / + 5, for / ^ gJifJ) - 0. Since 0 < x„ « c, namely 

d{xn, 0) < c but d(x„, 0) 7^ 0. Indeed x„ -> 0 in {X, d) but x„ 7^ 0 in E. Even for 



n > m, d{xn,Xm) = x„ + x„ < c and || d(x„, x^) || = || x„ + x„ ||= 2. In particular 

d{x„,Xn+l) < C b u t d{Xn,Xn+l) A 0. 

Lemma 1.3.10 Let {X, d) be a cone metric space, P be a normal cone with normal 

constant M. Let {!„} be a squence in X. If {a;„} converges to x and {Xn} converges 

to y, then x = y. That is, the hmit of {x„} is unique. 

Proof. For any c e E with 0 < c, there is iV such that for all n > iV, d(x„, x) <C c 

and d(x,i, y) <^ c. We have 

d{x, y) < d{xn, x) + d{xn, y) < 2c. 

Hence || d(x, y) \\< 2M \\c\\. Since c is arbitrary, hence d(x, y) = 0, therefore x = y. 

Definition 1.3.11 Let (X, d) be a cone metric space, {x„} be a sequence in X. If 

for any c e E with 0 <^ c, there is iV such that for all n,7n > N, d(x„,x,„) -C c, 

then {x„} is called a Cauchy sequence in X. 

Definition 1.3.12 Let {X,d) be a cone metric space, if every Cauchy sequence is 

convergent in X, then X is called a complete cone metric space. 

Lemma 1.3.13 Let {X, d) be a cone metric space, {x„} be a sequence in X. If {x„} 

converges to x, then {x„} is a Cauchy sequence in X. 

Proof. For any c e E with 0 <C c, there is A'' such that for all n,m > N, 

d{xn.x) «C c/2 and d(x„,x) < c/2. Hence d{xn,Xm) < d{x„,x) + d(xm,x) < c. 

Therefore {x„} is a Cauchy sequence. 

Lemma 1.3.14 Let {X, d) be a cone metric space, P be a normal cone with normal 

constant M. Let {x„} be a sequence in X. Then {x„} is a Cauchy sequence if and 

only if (i(x„, x^) ^ 0 {n,m -^ oo). 

Proof. Suppose that {x„} is a Cauchy sequence. For every £ > 0, choose c e E 

with 0 < c and M \\ c \\< e. Then there is Â , for all n,m > A^,d(x„,x„) < c. 



So that when n,m > N, \\ d(a;„,x„^) ||< M \\ c \\< £. This means (i(x„,T„) -^ 

0 (n.m —> oo). 

Conversely, suppose that d(x„,x„) -> 0 (n,m -^ oo). For ce E with 0 < c. there 

is (5 > 0, such that || x ||< 6 imphes c-x € intP. For this 8 there is iV, such that for 

a l l n , m > i V , || d(x„,x„) ||< ^. So c-d(x„, x„i) eintP. This means d(x„,x„j < c . 

Therefore {x„} is a Cauchy sequence. 

Lemma 1.3.15 Let {X, d) be a cone metric space, P be a normal cone with nonial 

constant M. Let {x„} and {?/„} be two sequence in X and x„ -> x, y„ -^ y (n -> oo). 

Then d(x„, x„,) -> d(x, y) (n ^ oo). 

Proof. For every e > 0, choose c e E with 0 < c and || c ||< j|\f:j:2- ^ '̂°™ ••''" "^ '̂ 

• and i/n -^ y, there is Â  such that for all n > N, d{x„,x) <S c and d{yn,y) -C f. We 

have 

d{xn,y„) < d{xn,x) + d{x,y) + d{y„,y) < d{x,y) + 2c, 

d{x, y) < d(x„, x) + d(x„, y„) + (i(y„, y) < d(x„, y„) + 2c. 

Hence 

0 < d{x, y) + 2c- d{xn, Un) < 4c 

and 

II d(x„,y„) - dix.y) \\<\\ d{x,y) + 2 c - d(x„,y„) || + || 2c ||< (4M + 2) || c ||< e. 

Therefore d(x„,y„) —̂  d{x,y) (n ^- oo). 

Definition 1.3.16 Let {X, d) be a cone metric space. If for any sequence {x^} in 

X, there is a subsequence {x„;} such that {x„,} is convergent in X. Then X is 

called a sequentially compact cone metric space. 

1.4 Some Basic Fixed Point Results 

In what follows, we collect some basic definitions needed throughout this exposition. 



Definition 1.4.1 Let X be a nonempty set and T : X -)• X he a self map. We say 

that X G X is a fixed point of T if Tx = x and denote by F{T) or Fix{T)., the set 

of all fixed points of T. In other words, a point which remains invariant under the 

transformation T is called a fixed point of T. 

Example 1.4.2 

(i) If X - R a.nd T(x) = x^ + 5x + 4, then F{T) = {-2}: 

(ii) If X = M and r (x ) = x^ - x, then F{T) - {0, 2}: 

(ill) If X = R and T{x) = x + 2, then F{T) = cp; 

(iv) If X = R and T{x) = x, then F{T) = R. 

Remark 1.4.3 For a given self map the following properties obviously hold; 

(1) F{T) C F ( r " ) , for each n € N; 

(2) FiT"") = {x}, for some n G N => F{T) = {x}. 

The converse of (1) is not true, in general, as demonstrated by the following example. 

Example 1.4.4 Let T : {1,2,3} ^ {1,2,3}, with T(l) = 3, T{2) = 2 and 7(3) = I. 

Then F{T^) = {1,2,3} but F{T) = {2}. 

In 1912, Brouwer proved the earliest fixed point theorem which runs as follows: 

Theorem 1.4.5. If 

(i) A' is a compact convex subset of a Euclidean space R" and 

(ii) T : K -^ K is a continuous function, 

then T has a fixed point in K. 

An immediate corollary of this theorem on the real line can be stated in the following 

way: 

Corollary 1.4.6 Every continuous self mapping of a closed interval has a fixed 

point. 

Alost of the problems in Functional Analysis arise in function as well as sequence 

spaces and therefore, it is natural to ask if Brouwer theorem can be extended to 

these spaces. Kakutani produced an example to show that Theorem 1.2.1 cannot 

be extended to infinite dimensional spaces. 

Example 1.4.7 Let C = {x e P : ||x|| < 1} be the unit ball in Hilbert 

space f. For each x = {xj, X2, X3,...} in C, define a map T : C ^ C hy Tx = 
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{yr^^7NJ2, xi,X2,...,2;„,...}. Since ||Tx|| = 1, T is continuous, but T does not 

admit any fixed point. 

Definition 1.4.8 Let {X, d) be a metric space. A mapping T : X -^ X is calletl 

(1) Lipschitzian (or L-Lipschitzian) if there exists L > 0 such that 

d{Tx,Ty)<Ld{x,y), iov a\\x,y eX; 

(2) strict contraction (or a-contraction) if T is a-Lipschitzian, with a € [0,1): 

(3) nonexpansive if T is l-Lipschitzian; 

(4) contractive if d{Tx,Ty) < d{x,y), for all x,y 6 X, x ^ y\ 

(5) isometry if d{Tx, Ty) = d(x, y). 

Example 1.4.9 

(i) T ; M -> R, with T(x) = f + 3, x € M, is a strict contraction and F[T) = {6}. 

(ii) If X = [xn] e /^ then the mapping T : P -> f defined by r (x ) = {^} is a 

contraction mapping on l^. 

(iii) The mapping T : [|,2] ^ [|,2], defined by T(x) = -̂ , is a 4-Lipschitzian with 

F{T) = {1}, while the functions T in Example 1.2.1 part (iii) and (iv) are all 

isometries. 

(iv) T : [1, oo) —> [1, oo), with T{x) = x + - , is contractive and F{T) = d). 

The following theorem is of fundamental importance in the metrical fixed point 

theory which is popularly referred as Banach contraction principle or contraction 

mapping principle. 

Theorem 1.4.10 If 

(i) {X. d) is a complete metric space and 

(ii) T : X —^ X is a contraction map, 

then T has a unique fixed point p and r"(x) —>• p (as n ^ oo), for each x G A'. 

Remark 1.4.11 While considering Lipschitzian mappings, a natural question arises 

whether it is possible to weaken contraction assumption a little bit in Banach con

traction principle and still obtain the existence of a fixed point. In general, the 

answer to this question is no. In this regard, the following interesting example is 

available in Khamsi and Kirk. 
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Example 1.4.12 Let C[0,1] be the complete metric space of real valued continuous 

functions defined on [0,1] with respect to supremum metric and consider the closed 

subspace Z of C[0,1] consisting of those functions / G C[0,1] satisfying / ( I ) = 1. 

Since Z is a closed subspace of C[0,1], therefore Z is also complete. Now. define 

T : Z ^ Z by Tj{t) = tf{t) for all t e [0,1]. Then we can say d{Tf,Tg) < d{j\g) 

whenever f y^ g but T has no fixed point as T / = / =» i / = / =4> /(f) = 0 for all 

t 6 [0,1). On the other hand, / ( I ) = 1 which contradicts the continuity of T and so 

T cannot have a fixed point in Z. 

In 1930, Schauder extended Brouwer's result to infinite dimensional spaces, which 

runs as follows: 

Theorem 1.4.13 If 

(i) A' is a compact convex subset of a Banach space E and 

(ii) T : K -^ K is a continuous function, 

then T has at least one fixed point. 

Schauder also proved a theorem for a compact map which is known as second form 

of Schauder fixed point theorem. For this we need the following definition. 

Definition 1.4.14 A self mapping T of a Banach space E is called completely 

continuous compact map if T is continuous and T maps bounded set to precompact 

set. 

Remark 1.4.15 A compact map is always continuous but converse need not be 

true. For example, an identity function defined on an infinite dimensional normed 

space is continuous but not compact. 

Here we represent the another form of Schauder fixed point theorem. 

Theorem 1.4.16 If 

(i) K is a bounded closed convex subset of a Banach space E and 

(ii) T : AT —> /iT is a compact map, 

then T has at least one fixed point. 
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CHAPTER 2 
FIXED POINT THEOREMS OF 

CONTRACTIVE MAPPINGS 

2.1 Introduction 

Fixed point theory is a rich, interesting and highly appUed l^ranch of mathemat

ics. The classical fixed point theorems are utilized very effectively in the existence 

theories of differential equations, integral equations, functional equations, partial 

differential equations, random diflFerential equations and other related areas. By a 

hxed point theorem, we shall understand a statement which asserts that under what 

conditions a mapping T of a set X admits one or more point x oi X such that 

Tx = X. Indeed, the most significant result of fixed point theory was given by the 

Polish mathematician Stefan Banach in 1922 which is popularly referred as classical 

Banach Contraction Principle. 

The fixed point theory has got its origin in Brouwer wherein he proved his pioneer 

theorem (to be stated later) which laid the foundation of Topological Fixed Point 

Theory. The fixed point theory for nonexpansive mappings defined on Banach spaces 

was initiated by Browder and Kirk. 

The study of fixed points of functions satisfying certain contractive conditions has 

been at the center of vigorous research activity and it has a wide range of applications 

in different areas such as nonlinear and adaptive control systems, fractal image 

decoding, and convergence of recurrent networks. 

In 2007 Huang and Zhang [25] generalized the classical notion of metric space by 

replacing the real numbers with an ordering Banach space and term the new no

tion as cone metric space. They proved some fixed point theorems of contractive 

mappings on cone metric spaces which form the subject material for this dissertation 

2.2 Fixed Point Theorems 

In this section we shall give some fixed point theorems of contractive mappings. 
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Theorem 2.2.1 Let {X,d) be a complete cone metric space, P be a normal cone 

with normal constant M. Suppose the mapping T : X ^ X satisfies the contractive 

condition 

d{Tx,Ty) < kd{x,y), for all x,y e X 

where k e [0,1) is a constant. Then T has a unique fixed point in X. And for any 

X e X iterative sequence {T'^x} converges to the fixed point. 

Proof. Choose XQ & X. Set 

X 1 = TXQ,X2 ^ Tx\ = T ^ X o , . . . , X , n . l = TXn = T""^^Xo. 

We have 
d(i„+i, i„) = d{Txn,Txn-\) <kd{;Xn,Xn-\) 

< fc^d(x„_i,x„_2) < ... < A;"(i(xi,Xo) 

So for n > m, 

d{Xn,Xm) < d{x„,Xn-i) + d{Xn--i,Xn-2) + ••• + d{x 

< (fc"-i + /c"-2 + ... + fc'")fi(xi,Xo) < ^a! (x i ,xo) 

We get II d(x„,Xm) ||< j ^ ^ II d(xi,Xo) ||. This implies (i(x„,Xm) -^ 0(n, m -^ oo). 

Hence {x„} is a Cauchy sequence. By the completeness of X, there is x* € A' such 

that x„ -> x*(n —)• oo). Since 

d{Tx*,x*) < d{Txn,Tx,) + d[Txn,x*) < kd{xn-,x*) + (i(x„+i,x*), 

II d{Tx\x') ||< M{k II d(x„,x*) II + II d(xn+i,x*) II) ->0. 

Hence || d{Tx*,x*) ||= 0. This impUes Tx* = x*. So x* is a fixed point of T. Now 

if y* is another fixed point of T, then 

d{x*,y*) = d{Tx\Ty')<kd{x*,y*). 

Hence || d{x\ y*) ||= 0 and x* = y*. Therefore the fixed point of T is unique. 

Corollary 2.2.2 Let {X,d) be a complete cone metric space, P a normal cone with 

normal constant M. For c G £ with 0 <C c and XQ G X, set B(XO, C) = {X G X | 

d{xo,x) < c}. Suppose the mapping T : X ^ X satisfies the contractive condition 

d{Tx,Ty) < kd{x,y), for all x,y G B(xo,c), 
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where k G jO, 1) is a constant and d{Txo, XQ) < (1 - h)c. Then T has a unique fixed 

point in B{xo, c). 

Corollary 2.2.3 Let (X,d) be a complete cone metric space, P a normal cone with 

normal constant M. Suppose a mapping T : X -^ X satisfies for some positive 

integer n, 

d{T^x, T^y) < kd{x, y), for all x, yeX 

where k G [0,1) is a constant. Then T has a unique fixed point in X. 

Theorem 2.2.4 Let {X,d) be a sequentially compact cone metric space, P be a 

regular cone. Suppose the mapping T : X ^ X satisfies the contractive condition 

d{Tx,Ty) < d{x,y), for all x,y e X,x j^ y. 

Then T has a unique fixed point in X. 

Theorem 2.2.5 Let {X, d) be a complete cone metric space, P a normal cone with 

normal constant M. Suppose the mapping T : X -^ X satisfies the contractive 

condition 

d{Tx,Ty) < k{d{Tx,x) + d{Ty,y)), for all x,y £ X 

where k G [0, | ) is a constant. Then T has a unique fixed point in X and for any 

x G X, iterative sequence {T^x} converges to the fixed point. 

Theorem 2.2.6 Let {X,d) be a complete metric space, P be a normal cone with 

normal constant M. Suppose the mapping T : X -^ X satisfies the contractive 

condition 

d{Tx,Ty) < k{d{Tx,y) + d{Ty,i)), for all x,yeX, 

where A; G [0, -1) is a constant. Then T has a unique fixed point in X. And for any 

X G X, iterative sequence {r"x} converges to the fixed point. 

Remark 2.2.7 Theorems 2.2.1-2.2.6 generalize the fixed point theorems of contrac

tive mappings in metric space to cone metric space. 

We conclude with an example. 
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Let E = i?^ the Euclidean plane, and P = {(x,y) G R'^ \ x.y > 0} be a normal 

cone in E. Let X = {{x,0) e R^ \ 0 < x < 1} U {(0,x) e R' \ Q < x < Ij.Tlie 

mapping d : X x X ^ E is defined by 

d((x,0),(y,0)) = ( - | x - y | , | x - y | ) 

d{iO,x),{0,y)) = {\ x - y \,-\ X - y \) 

d((x, 0), (0, y)) - d((0, y), (x, 0)) = (^x + y, X + ^y). 

Then {X, d) is a complete cone metric space. Let the mapping T : X ^ X with 

r((x,0)) = (0,x) and T ( (0 , .T) ) = (^x,0). 

Then T satisfies the contractive condition 

d(r((xi,X2)),r((yi,y2))) < fcd((xi,X2),(yi,y2)), for all (xi,X2), (yi,y2) eX, 

with constant A; = | 6 [0,1). It is obvious that T has a unique fixed point (0, 0) G X. 

On the other hand, we see that T is not a contractive mapping in the Euclidean 

metric on X. 

In 2008 Sh. Rezapour and R. Hamlbarani [44] proved that there are no normal 

cones with normal constant M < I and for each fc > 1 there are cones with normal 

constant M > k. Also by providing non-normal cones and omitting the assumption 

of normality in some results of [25], we obtain generalizations of the results. 

Lemma 2.2.8 There is not normal cone with normal constant M < L 

Proof. Let {X, d) be a cone metric space and P be a normal cone with normal con

stant M < 1. Choose a non-zero element x ^ P and 0 < e: < 1 such that M <1-E . 

Then, (1 - £)x < x, but (1 - e)||x]| > A/||x||. This is a contradiction. 

Proposition 2.2.9 For each A: > 1, there is a normal cone with normal constant 

M > k. 
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Proof. Let fc > 1 be given. Consider the real vector space 

1 

it E = {ax + b\a,beR]xe [ I - T - I ] } 

with supremum norm and the cone 

P = {ax + beE\a<Q,b>Q} 

in E. First, we show that P is regular (and so normal). Let {a„a; + 6„},i>i be 

an increasing sequence which is bounded from above, that is, there is an element 

ex + d £ E such that 

aix + bi < a2X + 62 < < a„x + 6,, < .... < ex + d, 

for all X e [1 - ^, 1]. Then, {a„}„>i and {6„}„>i are two sequences in M such that 

i>\ <b2 < ••• < d, fli > a2 > ... > c. 

Thus, {a„}„>i and {6n}n>i are convergent. Let a„ -^ a and 6„ —>• b. Then, ax+b € P 

and a„x + 6„ —> ax + i). Therefore P is regular. Hence by Lemma 2.2.8, there is 

M > 1 such that 0 < g < f impUes || 5 ||< M || / ||, for all g,feE. Now we show-

that M > k . First note that /(x) = -kx + k G P, g(x) = k e P and f-geP. So, 

^ ^ g ^ f- Therefore, /c =|| 5 ||< ilf || / ||=^ Af. On the other hand, if we consider 

/(x) = -{k + l)x + k and ^(x) = k, then f G P,g e P and f-geP. Also, || 5 ||= '̂ 

and II / 11= 1 - i + i . Thus, fc =|| 5 ||> /c || / ||= A- + i - L This shows that M > k. 

Theorem 2.2.10 Let {X,d) be a complete cone metric space and the mapping 

T : X -^ X satisfy the contractive condition 

d{Tx,Ty) < kd{x,y) for all x,y e X 

where A- G [0,1) is a constant. Then, T has a unique fixed point in X. For each 

X G A'', the iterative sequence{T"x}„>i converges to the fixed point. 

Corollary 2.2.11 Let {X,d) be a complete cone metric space. Suppose a mapping 

T : X -^ X satisfies for some positive integer n, 

d(T"x,r"y)<fcd(x,y), 
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for all X, y e X, where k € [0,1) is a constant. Then T has a unique fixed point in X. 

Theorem 2.2.12 Let (X.d) be a complete cone metric space and the mapping 

T : X ^ X satisfy the contractive condition 

d{Tx,Ty)<k{d{Tx,x) + d{Ty,^j)), 

for all x,y e X, where k G [0, | ) is a constant. Then, T has a unique fixed point in 

X. For each x e X, the iterative sequence {T"x}n>i converges to the fixed ponit. 

Theorem 2.2.13 Let {X,d) be a complete cone metric space and the mapping 

T : X ^ X satisfy the contractive condition 

d{Tx, Ty) < k{d{Tx, y) + d{x, Ty)), 

for all x,y e X, where k E [0, | ) is a constant. Then, T has a unique fixed point in 

X, the iterative sequence {T"x}„>i converges to the fixed point. 

Theorem 2.2.14 Let {X,d) be a complete cone metric space and the mapping 

T : X ^^ X satisfy the contractive condition 

d{Tx, Ty) < kd{x, y) + ld{y, Tx), 

for all x,y 6 X, where k,l G [0,1) are constants. Then, T has a unique fixed point 

in X. Also the fixed point of T is unique whenever fc + I < 1. 

P. Vetro [38] gave the fixed point results by using the notion of g-weak con

traction mapping in the setting of cone metric space. These results generahze some 

common fixed points results in metric space and some of results of Huang and Zhang 

[25] are in cone metric space. 

Definition 2.2.15 Let {X.d) be a cone metric space, P be a normal cone with 

normal constant M. Let / , g : X -> X be mappings, / is a 5-weak contraction if 

d{f{x)J{y)) < a d{f{x),g{x)) + P d{fiy)^giy)) + j d{g{x),giy)), 

for all X, y G X, where a, P, 7, G [0,1) and a + /3 + 7 < 1. 

Suppose f{X) C g{X) and for every XQ G X, we consider the sequence {x„} C X 
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defined by g{xn) = / (x„- i ) for all n 6 TV, we say that (/(x„)) is a f-g-sequence of 

initial point XQ. 

Theorem 2.2.16 Let {X,d) be a cone metric space, P be a normal cone with 

normal constant M and let f,g : X -^ X he such that f{X) C g{X). Suppose that 

f is a weak g-contraction such that 

f{g{x))^g{gix))tf f{x) = g{x). 

If f{X) or g{X) is a complete subspace of X, then the mappings / and g have 

a unique common fixed point in X. Moreover for any XQ e X, the /-^-sequence 

(/(xn)) of initial point XQ converges to the fixed point. 

From above theorem if we choose g — 1% the identity mapping on X, we obtain 

the following corollary: 

Corollary 2.2.17 Let {X,d) be a complete cone metric space, F be a normal cone 

with normal constant M and let / : JY" —)• X. Suppose that / satisfies the contractive 

condition 

d{f{x)J{y)) < a d{f{x),x) + (5 d{f{y),y) + 7 d{x,y), for all x,y e X. 

Then the mapping / has a unique fixed point in X. Moreover for any XQ £ X. the 

sequence (/"(3:o)) converges to the fixed point. 

Remark 2.2.18 We obtain Theorem 2.2.1 respectively Theorem 2.2.4 of [24] from 

Corollary if we choose a = /3 = 0, respectively a = P and 7 = 0. 

Corollary 2.2.19 Let {X,d) be a cone metric space, P be a normal cone with 

normal constant M and let / , 5 : X —> X be such that f{X) C g{X). Suppose that 

/ is a ^-weak contraction and that the condition 

dif{g{x)),g{gix))) < Kd{f{x),g{x)) 

hold for each x e X, where K is a positive constant. If f{X) or g{X) is a com})lete 

subspace of X, then the mappings / and g have a \mique common fixed point in X. 
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Moreover for XQ € X, the /-^-sequence (/(x„)) of initial point XQ converges to the 

fixed point. 

2.3 Common Fixed Point Theorems for Two Maps 

Definition 2.3.1 Let / and g be self mappings on a set X. If w = fx = gx for 

some x in X, then x is called a coincidence point of / and g, and w is called a point 

of coincidence of / and g. 

Definition 2.3.2 A pair of self-mappings (/, g) on a cone metric space {X,d) is 

said to be compatible if for arbitrary sequence x„ in X such that liningocfi-i'n) = 

lim„^oog{xn) = t e X, and for arbitrary c e P with c GintP, there exists 7io G N 

such that d{fgXn,gfXn) < c whenever n > no. 

Definition 2.3.3 Two self mappings / and g of a set X are said to be weakly 

compatible if they commute at their coincidence points; that is, if fu = gu for some 

u & X, then fgu = gfu. 

Proposition 2.3.4 Let / and g be weakly compatible self maps of a set X. li f and 

g have a unique point of coincidence w — fx = gx, then w is the imique common 

fixed point of / and g. 

Proof. Since w = fx = gx and / and g are weakly compatible, we have fw = 

fgx == gfx — gw, i.e., fw = gu; is a point of coincidence of / and g. But w is the 

only point of coincidence / and g, so to = fw — gw. Moreover \i z = fz = gz, then 

z is a point of coincidence of / and g, and therefore 2 = u; by uniqueness. Thus tv 

is a unique common fixed point of / and g. 

Theorem 2.3.5 Let {X, d) be a cone metric space, and P a normal cone witli 

normal constant M. Suppose mappings f,g:X-^X satisfy 

d{fx,fy) < kd{gx,gy), for all x,y e X. 

where k G [0,1) is a constant. If the range of g contains the range of / and g{X) is 
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a complete subspace of X, then / and g have a unique point of coincidence in X. 

Moreover if / and g are weakly compatible, / and g have a unique common fixed 

point. 

Example 2.3.6 Let E = R^, P = {(x,y) e E : x,y > 0} C R\ d : R x R ^ E 

such that 

d{x,y) = {\x-y\,a\x-y\). 

where a > 0 is a constant. Define 

j ^x, x^O 

and 

f ax, X ^ 0 

where /3 > 1, and 7 7̂  0. It may be verified that 

d{fx, fy) < kd(gx,gy), for all x,y eX, 

where /c = 4 6 (0,1]. Moreover / and g have a coincidence point X. 

In above example / and g do not commute at the coincidence point 0, and 

therefore are not weakly compatible. And / and g do not have common fixed point. 

Thus, this example demonstrates the crucial role of weak compatibility in our results. 

Theorem 2.3.7 Let {X, d) be a cone metric space and P a normal cone with normal 

constant M. Suppose that the mappings J,g : X ^ X satisfy the contractive 

condition 

difxjy) < k{d{fx,gx) + d{fy,gy)), for all x,y e X, 

where k G [0, | ) is a constant. If the range of g contains the range of / and g{X) 

is a complete subspace of X, then / and g have a unique coincidence point in X. 

Moreover if / and g are weakly compatible, / and g have a unique common fixed 
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point. 

Theorem 2.3.8 Let [X, d) be a cone metric space, and P a normal cone with normal 

constant M. Suppose that the mappings f,g : X ^>- X satisfy the contractive 

condition 

d(f^' fy) < k(d(fx. gy) + d{fy, gx)), for all x, y e X. 

where k G [0, | ) is a constant. If the range of g contains the range of / and g{X) 

is a complete subspace of X, then / and g have a unicjue coincidence point in X. 

Moreover if / and g are weakly compatible , / and g have a unique common fixtd 

point. 

G. Jungck, M. Abbas [26] estabhsh the existence of coincidence points and 

common fixed point for pair of mappings satisfying certain contractive conditions in 

cone metric space. After this M. Abbas and B.E. Rhoades obtained [13] fixed point 

theorems for mappings without appeaUng to commutativity conditions, defined in 

a cone metric space. 

Theorem 2.3.9 Let {X, d) be a complete cone metric space, and P a normal cone 

with normal constant M. Suppose that the mappings / and g are two self maps of 

X satisfying 

d{fx. gx) < a d{x, y) + p [d(x, fx) + d[y, gy)] + 7 [d(x, gy) + d{y. fx)] (2.1) 

for all x,y e X, where a, /?,7 > 0 and a + 2p + 2j <1. Then / and g have a unique 

common fixed point in X. Moreover, any fixed point of / is a fixed point of 9, and 

conversely. 

Corollary 2.3.10 Let [X, d) be a complete cone metric space, and P a normal cone 

with normal constant M. Suppose that a self map f oi X satisfies 

d{rx, Py) < a d{x, y) + p [d{x, f^x) + dig, fy)] + 7 [d{x, fy) + d{y, fx)] (2.2) 

for all x,y e X, where a,/?,7 > 0, a + 2/3 + 27 < 1, and p and q are fixed positive 

integers. Then / has a unique fixed point in X. 
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Corollary 2.3.11 Let {X, d) be a complete cone metric space, and P a normal cone 

with normal constant M. Suppose the mapping f : X ^ X satisfies 

d{fx, fy) < a d{x, y) + (3 [d{x, fx) + d{y, fy)] + 7 [d{x, fy) + (y, fx)] 

for Ailx.y e X a,(3,y>0 and a+2p+2j < 1. Then / has a unique fixed point m X. 

Corollary 2.3.12 Let (X,d) be a complete cone metric space, and P be a normal 

cone with normal constant M. Suppose that mapping f : X ^ X satisfies 

d{fx, fy) < aid{x, y) + a2d[x, fx) + a^diy, jy) + a4d(x, fij) + a^d[y, fx) 

5 

for all x,y G X, where â  > 0 for each z € {1,2...5} and ^^a, < 1. Then / has a 

unique fixed point in X. 
i=l 

Corollary 2.3.13: Let {X, d) be a complete cone metric space, and P be a normal 

cone with normal constant M. Suppose the mapping / : X —> A' satisfies 

d{fx, fy) < a d{x, y) + (3 [d{x, fx) + d{y, fy)] 

for all x,y € X, where a, /?, > 0 and a + 2/? < 1. Then / has a unicjue fixed point 

in X. 

2.4 On Periodic Point Theorems 

It is obvious that if / is a map which has a fixed point p, then p is also a fixed 

point of / " for every natural number n. However the converse is false. For example, 

consider X — [0,1], and / defined by / x = 1 — x. Then / has a unique fixed point 

at i , but every even iterate of / is the identity map, which has every point of [0,1] 

as a fixed point. On the other hand, ii X = [Q,TT], fx = cos x, then every iterate of 

/ has the same fixed point as / . If a map satisfies F{f) = F{f") for each n G N, 

where F{f) denotes a set of all fixed points of / , then it is said to have property P 

[17]. We shall say that / and g have property Q if F ( / ) n F{g) = F( / ' ' ) n F{g"). 

Theorem 2.4.1 Let / be a self-map of a cone metric space {X, d), and P a normal 

cone with normal constant M, satisfying 
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i)(i(/x-, px) < Xd{x, fx), for all x G X, where 0 < A < 1 

or (ii) with strict inequahty, A = 1 and for all x G X, x ^ fx. If F{f) f (j), then / 

has property P. 

Proof. We shall always assume that n > 1, since the statement for n = 1 is trivial. 

Let u e Fif^). Suppose that / satisfies (i). Then 

d{uju) = d{f{r-'u)j\r-'u))<xd{r-'u.ru) 
< A2d(/»-2u, f"-^u) < . . . . < A"d(u, fu) 

Then by normality of cone metric space 

II d{u,fu) ||< A"A/ II d(ujii) II . 

Now the right hand side of the above inequality approaches zero as n. —5> cx). Hence 

II d{u, fu) 11= 0, and u = fu. Suppose that / satisfies (ii). If f^l = n, then there is 

nothing to prove. Suppose, fu ^ u. Then a repetition of the argument for case (i) 

leads to 

d{u, fu) < d{u, fu) 

a contradiction. Therefore, in all cases, u = fu and F^f^) = F{f). 

Theorem 2.4.2 Let (X,d) be a complete cone metric space, and P be a normal 

cone with normal constant M. Suppose the mappings f,g : X ^ X satisfy (2.1). 

Then / and g have property Q. 

Proof. From Theorem 2.3.9 / and g have a common fixed point in X. Let u G 

^ ( / " ) n F ( 5 " ) . Now, 

d(«,(/ii) = d(/(/"-in),5(5"n)) 
< adif^-'u, f^u)+mr-'u, ru) + d(r«, g^+'u)] 

+ ^[d{f"-\g^+'u) + d{g^u,f-u)] 
< ad{f^-'u, IL) + p[d{f^~'u, u) + d{u, gu)] + l[d{f"-\ u) + d{u, gu)], 

which further implies that 

d{u,gu) < 6d{f"--\,u) 

where S = jzjz^ < 1, and we have 

d{u,gu) = dif^'u^g'^+hi) <Sd{f"~'u.u) 
< ... <5"d(u , /u ) . 
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Then by normality of cone metric space 

II d{u,gu) \\<6''M II d{uju) \\ . 

Now the right hand side of the above inequality approaches zero as n -^ oo. Hence 

II d[u,gu) 11= 0 and u = gu, which, from Theorem 2.3.9 imphes that u = fu. 

Theorem 2.4.3 Let {X, d) be a complete cone metric space, and P a normal cone 

with normal constant M. Suppose that the mapping f : X -^ X satisfies (2.2). 

Then / has property P. 

Proof. From Corollary 2.3.11, / has a unique fixed point. Let u E Fif). Now, 

d{ii.fu) = d{f{r-'u)j{ru)) 
u < ad{r-'u, ru)+p[dir-'u, ru) + d{ru, / 

< ad{f"-'u, u) + P[d{r-'u, u) + diu, fu)] + j[d{r-\ u) + d{u, fu)], 

which further implies that 

d{uju)<5dir-'u,u), 

where 6 = °"'"'!,̂ ^ < 1, and we have 
1-/3-7 

. d{u,fu) = d{f^u,f^+'u)<6d{f^-'u,f^u) 
< <6''diuju). 

From (1.1), 

II d{uju) | | < ^ " M | | diuju) II . 

Now the right hand side of the above inequality approaches to zero as n —>• CXD. 

Hence || d{u, fu) ||= 0 and u = fu. 

In 2009 K. Jha [24] proved a common fixed point theorem for a pair of weakly 

compatible mappings in a cone metric space, without exploiting the notion of the 

continuity which can be stated as follows. 

Theorem 2.4.4 Let (X, d) be a cone metric space, and P be a normal cone with 

normal constant M. Suppose the mappings f,g : X ^ X satisfy the contractive 
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condition 

d{fx, fy) < r[difx, gy) + d{fy, gx) + d{fy, gy)] 

where r 6 [0, i) is a constant. If the range of g contains the range of / and g{X) 

is complete subspace of X, then / and g have a unique coincidence point in X. 

Moreover, if / and g are weakly compatible, then / and g have a unique common 

fixed point. 

Now we give an example to illustrate the above Theorem. 

Example 2.4.5 Let E - P, for / = [0,1], P = {(x,y) e E : x.y > 0} C P, 

d : I X I -^ E such that d{x,y) — {\x — y\,a\x — y\), where a > 0 is a constant. 

Define fx = TT^-, for all x G / and qx = ax for all x E I. Then, for a = 1 both the 

mappings / and g are weakly compatible and satisfy all the conditions of the above 

theorem with x = 0 as a unique common fixed point. 

Remark 2.4.6 The above theorem extends the results of Abbas and Jungck [37]. 

Also it improves the results of Huang and Zhang [24]. 

Theorem 2.4.7 Let (X, d) be a cone metric space and let â  > 0 (z = 1, 2, 3,4,5) be 

constants with 01+02 + 03 + 04 + 05 < 1. Suppose that the mappings f,g:X^X 

satisfy the condition 

d{fxjy) < aid{gx,gy) + a2d{fx,gx) + a^^dify^gy) + aid{gxjy) + a^d{fx,gy) 

for all x,y e X. If the range of g contains the range of / and g{X) is a complete 

subspace, then / and g have a unique point of coincidence in X. Moreover if / and 

g are weakly compatible then / and g have a unique fixed point. 

Remark 2.4.8 Obviously, Theorem 2.3.5 in [37] is a special case of Theorem 2.4.7 

with 02 = 0.3 = 04 = 05 = 0, Oi = A;, and P is a normal cone. 

Theorem 2.3.7 in [37] is a special case of Theorem 2.4.7 with Oi = 04 = 05 = 0, 02 = 

03 = A", and P a normal cone. 
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In Theorem 2.4.7, ii g = Ix is the identity map on X, and X is a complete 

cone metric space, then, as an immediate consequence of Theorem 2.4.7 we obtain 

the following result. 

Corollary 2.4.9 Let {X,d) be a complete cone metric space and let a, > 0 {i = 

1, 2,3,4, 5) be constants with 01 + 02 + 03 + 04+05 < 1 . Suppose that the mapping 

f : X ^ X satisfies the condition 

d{fxjy) < aid{x,y)+a2d{x,fx)+a3d{yjy)+a4d{x,fy)+a5d{yjx), forallx.y € X 

Then / has a unique fixed point x* in X, and for any XQ E X, the successive iterates 

x„ = /x„_i, (n = 1,2,3....) 

converges to x*. 

Remark 2.4.10 Obviously, Theorem 2.2.1 in [24] is a special case of Corollary 

2.4.9 with 02 = 03 = 04 = 05 = O,0i = k, and P is a normal cone. 

Theorem 2.2.4 in [24] is a special case of Corollary 2.4.9 with Oi = 04 = 05 = 0, (I2 = 

03 = k, and P is a normal cone. 

Theorem 2.2.5 in [24] is a special case of Corollary 2.4.9 with 01 = 02 = 03 = 0, 04 = 

05 = k, and P is a normal cone. 

Therefore, our Corollary 2.4.9 has generalized and unified the mains results of Huang 

and Zhang in [24]. 

2.5 Fixed Point Theorems for Sequence of Mappings 

In 2010 Xianjiu Huang et. al. [56] proved common fixed point theorems for a se

quence of mappings in cone metric spaces. These theorems generalize the results of 

Huang and Zhang [25]. 

Theorem 2.5.1 Let {X,d) be a complete cone metric space. P be a normal cone 

with normal constant M. Suppose the sequence of mappings {T„} : X ^ X satisfy 

for some positive integer m 

d{Trx^T^y) < a,,,d{x,y) for all i,j ^ 1,2, ...,x,y € X, 
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where a,:,j and k are constants with 0 < aij < k < I. Then the sequence {T„}„ has 

a unique common fixed point in X. 

Proof. Let XQ be an arbitrary point in X and Xi = T^XQ, X2 = T^'^Xi..... Then for 

all p > 0 

d{xi,X2) = d{Tl^Xo,T^Xi) < ai,2d(io,a:i) 

d(x2,X3) = d{T^xi,T^X2) < a2,3d(xi,X2) < 01,202,3(^(3:0,xi) 

and so on. By induction we have 
n 

d{xn,Xn+i) < Y[ai,i+id{xo,Xi). 

So for n > 771 we have 
d[X„^Xm} < d[Xn,Xn+l) ~'l~ •••• -'f d[Xm + l,Xrn) 

< n r = / ai,i+id{xo, Xi) + + lYiLi ai,t+id{xo, xi) 
< (fc"-i + . . .+ fc"')d(xo,Xi)<r^d(xo,Xi). 

We get II d{xn, Xm) \\< iZi^ II " (̂̂ o, Xi) \\. This imphes that (i(x„, Xm) —>• 0 ('n, m —>• 

00). Hence x„ is a Cauchy sequence by Lemma LI. By the completeness of X, there 

is X* G X such that x„ —> x*(n —> 00). Now, we prove that x* is a periodic point of 

Ti. 

Thus for some m G N, we have 

d{x*,TrX*) < d{x\Xn) + d{Xn,TrX*) 

= d(x*,x„) + d(T;:'x„_i,7^"'x*) 
< d(x*,x„)+ a„,id(x„_i) 
< d(x*,x„) + /cd(x„_i,x*). 

Thus, II d{x\Trx*) \\< M{\\ d{x*,x„) II +k II d(x„_i,x*) ||) ^ 0. 

Hence || d{x*,T^x*) \\= 0. This implies x* = T^x\ So, x* is a periodic point of 7̂ ;. 

Now, if y* is another periodic point of T ,̂ then 

d{x\y') = d{Tnx*lTJ^[y*)) < a,,,d{x%yn < kd{x\y*). 

Hence || d{x*,y*) ||= 0 and x* = y*, that is, x* is a unique periochc point of T,. 

Also, 

Tix* = T,(I™x*) = i;™(TiX*), 
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that is, T^x* is also a periodic point of T;. Therefore, x* = TiX*, that is, x* is a 

unique common fixed point of the sequence {Tn}n-

Example 2.5.2 Let E = R^ the EucUdean plane, and P = {(x,y) e M^|x,y > 0} 

be a normal cone in E. Let X = {{x,0) e R''\x > 0}[j{{0,x) e R^\x > 0}. The 

mapping d : X x X -^ E is defined by 

d{{x,0),{y,0))= (^\x-yl\x-y\j 

d{{0,x),{0,y)) = \\x-y\,-\x-y\ 

d{{x, 0), (0, y)) = d((0, y), (x, 0)) := Q x + y, x + ^y 

Then (X, d) is a complete cone metric space. 

Let sequence of mappings T„ : X —̂  X with 

r„((x,0)) = (0,2"x) and r„((0,x)) = ( ^ x , 0 

For m = 2, â ^ == | , then T satisfies the contractive condition 

diT^{{xi,X2)), Tj{{yi,y2))) < aijd{{xuX2),{yuy2)) 

for all (xi,X2), (yi,y2) £ X, i , j = 1,2,... with constant a^j = f G (0,1). 

Thus all conditions of the theorem are satisfied and (0,0) is a unique common fixed 

point of the sequence {r„}„. 

Corollary 2.5.3 Let (X, d) be a complete cone metric space. P be a normal cone 

with normal constant M. Suppose the mappings T : X —>• X satisfies the contractive 

condition 

d{Tx,Ty) < kd{x,y) for all x,y £ X, 

where fc € (0,1) is a constant. Then T has a unique fixed point in X. 

Proof. In the above theorem take T^ = T for all n = 1,2, ...;m = 1 and a,j = k 

then the proof follows. 
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Corollary 2.5.4 Let {X, d) be a complete cone metric space. P be a normal cone 

with normal constant M. Suppose a mappings T : X ^ X satisfies for some positive 

integer m 

d{T"x,T^y) < kd{x,y) for all x,y eX, 

where A; G (0,1) is a constant. Then T has a unique fixed point in X. 
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CHAPTER 3 

FIXED POINTS OF MULTIVALUED 
MAPPINGS 

3.1 Introduction 

The first natural instance when set-vahied maps occur is the inverse of a single-

valued map. Kuratowski realized the importance of set-valued maps (also referrtid 

as multivalued maps or point-to-set maps or multifunctions) and devoted consider

able space in his famous book on topology. Fixed point theory has a basic role in 

applications of many branches of mathematics, and finding the fixed point of mul

tifunctions is a generalization of fixed point theory in a sense for usual mappings. 

There are many works about fixed point of contractive maps. In some works about 

non-convex analysis, specially in ordered normed spaces, the authors define an or

dered by using a cone in a vector space (for example [29]). In this chapter we give 

some definitions, examples and some fixed point theorems which are taken mainly 

by Sh. Rezapour, R.H. Haghi [43], M. Asadi [30] and D. Wardoski [9]. 

3.2 Basic Definitions 

Definition 3.2.1 Let X and Y be two nonempty sets. A set-valued map or nnil-

tivalued map or point-to-set map or multifunction T : X -^ Y from X to Y is a 

map that associates every x € X to a subset T{x) of Y, the set T{x) is called the 

image of x under T. T is called proper if there exists at least an element x e X 

such that T{x) 7̂  0. In this case the set Dom{T) ^ {x G X : T{x) ^ 0} is called 

the domain of T. Actually, a set-valued map T is characterized by its graph, the 

subset of X X y defined by 

Graph{T) = {{x,y):yeT{x)}. 

Indeed, if >! is a nonempty subset of the product space X xY. then the graph of a 

set valued map T is defined by 

y e T[x) if and only if (x, y) € A. 
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Example 3.2.2 Let X = [0,1] and Y = [0,1]. Define a map T:X-^Yhy 

_ f { i x | , for a;G[0,l) 
Tx 

il for X = 1. 

There are two distinct ways to extend the concept of continuity to the set-valued 

map. The concept of two kinds of semicontinuity of a set-valued map was introduced 

by G. Bouhgand and K. Kuratowski. 

Definition 3.2.3 Let X and Y be two topological spaces. Then a set-valued function 

T : X ^ Y is said to be upper(lower) semicontinuous if the inverse image of a 

closed(open) set is closed(open). A multivalued function is continuous if it is both 

upper and lower semicontinuous. 

Or, 

T is said to be lower semicontinuous (l.s.c) at x G X if 

x„ —> x =^ T{x) < liminf T(x„). 

And upper semicontinuous (u.s.c) at x G X if 

x„ -> X =^ T(x) > limsupT(x„). 
n—>oo 

Example 3.2.4 Let X — R he & metric space with usual metric. Then the map 

T:X ^2^ defined by 

f | - l , l | , f . = 0 

\{0} if I 7^0, 

is upper semicontinuous at zero but not lower semicontinuous at zero. 

Example 3.2.5 Let X = R he a metric space with usual metric. Then the map 

T:X -^2^ defined by 
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is lower semicontinuous at zero but not upper semicontinuous at zero. 

Definition 3.2.6 An element x 6 X is said to be an end point of a set valued map 

T -.X ^ N{X),iiTx^{x}. We denote the set of all end points of T by End{T). 

Definition 3.2.7 An element x G X is said to be a fixed point of a set valued map 

T:X^ N{X), if X e Tx. Denote Fix{T) = {x e X\x G Tx}. 

3.3 Results on Set-valued Contraction in Cone Metric Space 

In this section we give some fixed point theorems on multifunctions for this we need 

the following definitions and lemmas. 

Definition 3.3.1 Let {X,d) be a cone metric space and B C X. 

{\) b £ B is called an interior point of B whenever there is 0 <C p such that 

N{b,p) C B 

where N{b, p) = {y E X : d{y, b) <^p}. 

(ii) A subset A C X is called open if each element of A is an interior point of A. 

The family /? — {N{x,e) : x 6 JiT, 0 -C e} is a sub-basis for a topology on X. We 

denote this cone topology by TC-

Lemma 3.3.2 Let {X, d) be a cone metric space, P be a normal cone with normal 

constant i\/ = 1 and Ahe & compact set in (X, TC). Then for every x e X there 

exists ao £ A such that 

II d(x, OQ) \\— inf II d{x,a) \\ . 

Proof. Let x e X be given. Define f^ : X -^ [0, oo) by f^{y) ^\\ d{x,y) ||. Let 

y e X and e > 0. Choose 0 < c such that || c ||< e and suppose that z G N{y,c). 

Note that, by using the normality and the relations 

d{y, x) < d{y, z) + d{z, x), d{z, x) < d(z, y) + d{y, x), 
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we have 

\\d{y,x)\\-\\d{z,x)\\<\\d{y,z)\\<£, 

\\ diz,x) \\ - \\ d{y,x) \\<\\ d[z,y) \\< e. 

Thus, \fx{y) - fx{z)\ < f- Hence, f^ is contmuous on X. Because A is compact. 

fx{A) is a compact subset of [0, oo) and so there exists ao e A such that 

II d{x,ao) 11= inf || d{x,a) \\ . 
aGA 

Lemma 3.3.3 Let {X, d) be a cone metric space, P be a normal cone with normal 

constants M = 1, and A, B be two compact sets in {X,TC). Then, 

supd'(x, A) < oo, 
x&B 

where d'(x,A) = inf || d{x,a) ||. 
aeA 

Proof. Define (74 : X -> [0,00) hy gA{x) = infaeA \\ d{x,a) ||. Let x £ X and 

e > 0. Choose 0 <C c such that || c ||< e and suppose that y G A''(a;, c). By using the 

normality of cone metric space and the relation d{x, a) < d[x, y) + d{y, a) we have 

gA{x) - gA{y) <\\ d{x,y) \\ . 

Thus, 15.4(2;) — 5.4(y)| < £. Hence, g^ is continuous on X. Because B is compact, 

gA[B) is compact subset of [0,oo). This completes the proof. 

Definition 3.3.4 Let {X, d) be a cone metric space, P be a normal cone with normal 

constants M = 1, Hc{X) be the set of all compact subsets of {X. r^) and A G HdX). 

By using Lemma 3-3.2, we can define 

hA : ndX) -^ [0, 00) and dn : HdX) x K ( X ) ^ [0, 00) 

by 

/ IA(B) = supd'(x,B) and dH{A,B) = m&x{hA{B),hB{A)} 
x6-4 

respectively. 

Remark 3.3.5 Let {X,d) be a cone metric space with normal constant I\I = 1. 

Define p : X x X ^ [0, 00) by p{x,y) =\\ d(x,y) \\. Then, (X,p) is a metric space. 
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This implies that for each A,B e Hc(^) and x,y € X, we have the following 

relations: 

{',) d'{x,A]<\\d{x,y)\\+d'{y,A), 

{li) d'{x, A) < d'{x, B) + hB{A), 

[ill) d!{x,A) <|| d(x,y) II +d!{y,B) + hB[A). 

Theorem 3.3.6 Let (X, d) be a complete cone metric space with normal constant 

M = 1, and the multifunction T : X ^ 'Hc{X) satisfies the relation 

dH{Tx, Ty) < cid'iTx, x) + d!{Ty., y)) 

for all x,y € X, where c € (0, \) is a constant. Then T has a fixed point. 

Proof. Let XQ € X be given. By Lemma 3.3.2, there is x^ e TXQ such that 

d'(xo,Txo) =11 d{xQ,xi) II . 

If x„ has been given, then choose x„^.i € Tx„ such that ii'(x„, Txn) =\\ d{xn, x„+i) ||. 

Thus, we have 

II d(x„,x„+i) II = d'(x„,Tx„) < hTx„^i{Txn) < d//(Tx„_i,rx„) 
< C ( d ' ( r x „ _ i , X „ _ i ) + d'(TXn, Xn)) 

= c{\\ d{xn,x„-i) II + II d(x„,x„+i) II), 

for all n> I. Hence 

II d(x„,x„+i) ||< —— II fi(x„,x„-i) II 

for all n > 1. Put s = jr^. Then, for n > m we have 

n 

II d{Xn,X,n) \\< Yl II d{Xi,X,^i) \\ 

<(s"-i + ... + ON(xo , .X i ) | | 
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This implies that 

Hm II d{xn,x,n) 11= 0. 

Then {.T„}„>I is a Cauchy sequence in X. Thus, there exists x* e X such that 

Xn —>• X*. Now by using Remark 3.3.5, we have 

d'{x\Tx*) < d'{x\Txn) + hT^STx*) < d\x*,Txn) + dniTxr^Tx*) 

< | | d{x*,Xn+l) II +c{d'{TXn,Xn)+d'{Tx\x*)) 

for all n > 1. Hence 

d'{x*, TX*) < ^ d ' ( r x „ , Xn) + -^—^ II d(x*, X-„+i) II 

c 1 
= a(x„_|_i,Xn) + - I dyx .Xn^\) ||, 

1 — c 1 — c 
for all n > 1. Therefore, d'{x%Tx*) = 0. By Lemma 3.3.2, x* G Tx*. 

Example 3.3.7 Let X — {ai,a2,ai,...} be a countable set, E = {f,\\ . II2) and 

P = {{xn}n>i € P : Xn > 0 {y-n > 1)}. Put Xi = { f }„>! for all i > 1 and note that 

Xi e I- {i> 1). Define the map d : X x X ^ P hy 

3 ' - 3 ^ I 
d{ai, aj) = \Xi - Xj\ = < > 

I n ) n>i 

It is easy to see that {X, d) is a cone metric space, the normal constant of P is 

M = 1, and there is no Cauchy sequence in {X, d). Hence, {X, d) is a complete cone 

metric space. Now, define the multifunction 

T-.X-^ Hc[X) 

by Tai = {a^} and Tai = {ai,a2, ...ai_i} for all i > L Then, we have Tax = Ta2 

and for each i>2> 

df{iTai,Ta,) = max{d'{ai,Tai)}, sup {d'{Tai,b)} ==|| d(oi,a,_i) ||2 
beTai 

^ °° I o q i - l ,2^ i °° 1 

J! = l n = l 
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Also, we have d'{ai, Tui) = 0 and 

d'{a„Ta,)^\\d{ai,a,)\\2 =|| x, - Xi II2 = ( 3 ' - 3 ) 5 ^ -
n = l 

n^ 

Thus duiTai.Tai) < \{d'[ai,Tai) + d'{ai,Tai)). Now, suppose that j > i > I. 

Then, Ta^ C Taj and so sup d'{b,Taj) = 0. Hence, 
b€Tai 

d}j{Tai,Taj) = sup d'{b,Tai) =|| (i(aj-i,a,_i) II2 
beTaj 

0 0 

1 

Also, we have d!{a^,Ta^) = 0 and 

n = l 

of Theorem 3.3.6 and Ci is the unique fixed point of T 

Thus dniTai, Taj) < \{d'{ai, Taj) + d'{aj,Ta,)). Therefore, T satisfies assumptions 

In 2009 D. Wardowski [9] gave endpoint and fixed point theorems for contractive 

set-valued maps in cone metric spaces inspired by the idea of contraction for set-

valued maps in metric spaces which was initiated by Feng and Liu. 

Let X be a non empty set. Denote N[X) a collection of all non empty subsets 

of X, C{X) a collection of all nonempty closed subset of X and K{X) a collection 

of all nonempty sequentially compact subsets of X. 

Let {X. d) be a cone metric space. Let T : X —> C{X). For x € X, we denote 

D{x,Tx) = {d{x,z) -.zeTx}, 

S{x,Tx) = {ue D{x,Tx) -.11 u 11= infill ^ \\: v G D{x,Tx)}}. 

Theorem 3.3.8 Let (X, d) be a complete cone metric space, P be a normal cone 

with normal constant M, and let T : X -^ C{X). Assume that a function I : X -^R 
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defined by i(x) = miy^Tx II d{x,y) ||,x e X is lower semicontinuous. If there exist 

A e [0,1), b e (A, 1] such that \fxeX 3y eTx, 

veD{y,Ty)yueD{x,Tx), bd{x,y) < u and v < Xd{x,y) (3.1) 

then Fix{T) ^ (p. 

Proof. Let XQ & X he arbitrary and fixed. Take any UQ G D{XO,TXO). From (3.1) 

there exist Xi € Txc, Ui G D{xi,Txi) such that 

bd{xo,Xi) < UQ and Ui < Xd{xo,Xi). 

Further, for xi there exist X2 € Tx\, U2 S D{x2,Tx2) satisfying 

M(xi,X2) < Ui and U2 < Xd{xi,X2)-

Inductively, for x„ there exist x„+i G rx„,u„+i € D(x„+i,Tx„+i) such that 

bd{Xn,Xn+l < Un) (3.2) 

and 

ii„+i < Ad(x„,x„+i). (3.3) 

By (3.2) and (3.3) we get, for any n G N the following inequalities: 

A Â  A"+^ /A\"+i 
Un+l < A d ( x „ , X „ + i ) < -Un < — c / ( x „ _ i , X „ ) < ... < — - d ( x o , X i ) < ( - 1 UQ. 

From the above and from the fact the cone P is normal we obtain, 

ll̂ ^n+i ||< M I ' - V | | « O | | , f o r a l l nGN. (3.4) 

From (3.4), we get || Un ||-> 0, where n -> oo. This gives the result that {u„} is 

convergent to 0. Furthermore, from (3.2) and (3.3), for any n G N we have 

{b- A)d(x„,x„+i) = bd{Xn,x„+i) - Arf(x„,x„+i) < u„ -u„+v (3.5) 

Now let m, n G N be such that n < m. By (3.5) we get the inequalities 

m — l TTi —1 

d{Xr,„ Xn) < Y^ d{Xj, Xj + i) < -^—j J ] ] ( u , - U, + i ) = ^ ^ ^ ^ ( " n " i^m), 
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which gives 
M 

II (i{Xtm ̂ n) II— 1 \ II ' ' " ^ ' » II • 

From the above and from a convergence of the sequence {u„} to 0, we get that {x,J 

is a Cauchy sequence. From the completeness of X there exists x* e X, such that 

Xn —>• X*, n —>• oo. We observe from the fact that n„ € D{xn.Txn) there exists a 

sequence {zn] such that for any n € N, 2„ e Txn and u„ = d(x„,2„). From the 

convergence of the sequence {«„} and from lower semicontinuity of the function / 

we obtain 

inf II d(x*,y) ||< liminf inf l| d(x„,y) ||< liminf || d(x„, 2,1) ||= 0. 

Thus 

inf \\d{x\y) 11=0. (3.6) 

y&Tx' 

Suppose that x* ^ Tx*. From (3.6) there exists a sequence {y„} C Tx* such that 

Imin^oo II d{x*,yn) 11= 0. For any m, n > 0 we have 

d{ym,yn) < d{ym,x*) + d{x*,yn) 

so, 
d{y,n,yn) \\< M II d(y,„,x*) II +M II (i(x*,y„) 

Thus we get the result that {y„} is a Cauchy sequence. From the completeness of 

{X,d) there exists y* E X such that {y„} is convergent to y*. Since Tx* is closed, 

we get y* 6 Tx*. Now for any n G N we obtain 

d{x*,y*) < d{x*,yn) + d{yr„y*), 

and consequently 

II dix^y*) \\< M II d(x*,y„) || +A/ || %„ ,x*) || . 

That gives x* — y*, which is a contradiction. Therefore x* e Tx*. 

Theorem 3.3.9 Let {X, d) be a complete cone metric space , P be a normal cone 

with normal constant M, and letT : X -^ K{X). Assume that a function I : X -^R 

of the form J(x) = infy^Tx \\ d{x, y) ||, x G X is lower semicontinuous. The following 
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hold; 

(i) If there exist A e [0,1), & G (A, 1] such that 

yxeX3yeTx, v e 5(y, Ty) \/u £ S{x, Tx) bd{x, y) < u and v < Xd{x, y) 

then Fix[T) ^ cf). 

(ii) If there exists A € [0,1),6 G (A, 1] such that 

Vx e X, y eTx3v e S{ySy) Vu G S{x,Tx) hd{x,y) < u and v < Xd{x.y), 

(3.7) 

then Fix{T) = End{T) ^ (p. 

Proof, (i) From Theorem 3.3.8 and due to the fact S{x,Tx) C D{x,Tx) for all 

X G X, we only need to prove that S{x,Tx) ^ (\) for all x G X. 

Let X G X be arbitrary and fixed. Denote c — inf,^T^ \\ d{x, z) j| and suppose that 

there is not any z E Tx such that || d{x,z) ||= c. Let {zn} C Tx be a sequence 

such that a sequence c„ =|| d{x,Zn) || is convergent to c. Since Tx is sequentially 

compact, there exists a subsequence {zn^} of {z„} such that 2„̂  —>• ZQ G Tx, A; —>• oo. 

Furthermore, we obtain for all fe G N the following inequalities: 

c <|| d{x,Zo) \\<\\ d{x,zo) - d{x,ZnJ II + II d(x,2„J II , 

From the above, we obtain c <|| d(x, ZQ) | | < C, which is a contradiction. So, 

S{x,Tx) y^cp. 

(ii) In order to show that End{T) ^ (f), let us first observe that from Theorem 3.3.9 

(i) we get the existence of x* such that x* G Tx*. Taking any y G Tx*, we get 

that for all u G S{x*,Tx*),bd{x*,y) < u. Since x* G Tx* we get 0 G Six*,Tx*) and 

hence bd{x*,y) < 0, which gives x* = y. Thus we get Tx* = {x*}. 

Theorem 3.3.8 for single-valued maps reduces to the following: 

Theorem 3.3.10 Let {X,d) be a complete cone metric space, P be a normal cone 

with normal constant M, and let T : X ^ X. Assume that a function I : X ^ R 

such that 7(x) =|| d{x,Tx) ||,x G X is lower semicontinuous. If there exists A G 

[0,1) such that 

Vx G X d{Tx,T^x) < Ad(x,Tx), 
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then Fix{T) ^ cp. 

Firstly, we illustrate Theorem 3.3.8 

Example 3.3.11 Let X = [0,1]. E = R^ be a Banach space with the maximum 

norm, P = {{x,y) £ E : x,y > 0} he a normal cone and let d : X x X ^^ E be of 

the form d{x, y) = (\x - y\,B\x - y\), /3 G (0,1). Then the pair (X, d) is a complete 

cone metric space. 

Define the map T : X -> C{X) by 

\ [ i , l j , for X - 1. 

Since 

the map / is lower semicontinuous. Moreover, for any x € [0,1) and ?/ = ^ , we have 

D(x, Tx) = {d{x, l/2x)} = {(l/2x, pl/2x)} 

and 

D{y,Ty) = {d(l/2x, l/4x)} = {l/4x,/?l/4x}. 

Now, taking A = 1/2 and 6 = 1 we get 

bd{x, y) <u for each u G Z)(x, Tx) 

and 

v<Ad(x,y) , for z; = (l/4x,/?l/4x). 

In the case x = 1, condition (3.1) is satisfied as well. Indeed, putting y = 1 we get 

hd{x, y) ^ 0 <u for any u G D{x, Tx) and 

v<Xd{x,y), ioxv = OeD{y,Ty). 

Therefore all the assumptions of Theorem 3.3.8 are satisfied and also 

Fzx(r) = {O,l}^0. 
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In 2009 M. Asadi et. al. [30] introduced a new order on the subsets of cone metric 

spaces and gave some fixed point tfieorems for contractive set-valued maps, omit 

tlie assumption of normality. 

Definition 3.3.12 Let A and B are subsets of E, we write A < B if and only if 

there exist x e A such that for all y 6 B , x < y . Also for x £ E, we write x < B 

if and only if {x} < B and similarly A < x ii and only ii A < {x}. 

Firstly we prove the closedness of Fix{T) without the assumption of normality. 

Lemma 3.3.13 Let {X,d) be a complete cone metric space and T : X ^- C{X). 

If the function f{x) — infy^Tx \\ d{x,y) \\ ior x e X is lower semicontinuous, then 

Fix{T) is closed. 

Proof. Let x„ € Tx„ and x„ -^ x. We show that x G Tx. Since 

f{x) < liminf/(x„) = hminf inf || d(x„,y) ||. 
n—>oo n—>oo y£Txn 

< liminf || d(x„,x„) ||= 0. 

So /(x) = 0 which implies d{yn,x) -^ 0 for some y„ £ Tx. Let c G E with c ;» 0. 

Then there exists N such that for n > N, d(y„,x) <?C (l/2)c. Now, for n > m, we 

have, 

diVn, Vm) < divn, x) + d{x, y„,) <c - c + - c = c. 

So {y„} is a Cauchy sequence in complete metric space, hence there exists y* £ X 

such that y„ -^ y* • Since Tx is closed, thus y* G Tx. Now by uniqueness of limit 

we conclude that x = y* G Tx. 

Theorem 3.3.14 Let (X, d) be a complete cone metric space, T : X -> C{X). a set 

valued map and the function f : X -^ P defined by /(x) = d{x, Tx),x G X with Isc 

property. If there exist real numbers a,b,c,e>0 and g > 1 with k = aq + b+ccq < 1 

such that for all x G X there exists y eTx, 

d{x,y)<qD{x,Tx), 
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D{y,Tx)<ed{x,y), 

D{y, Ty) < ad{x, y) + bD{x, Tx) + cD{y, Tx), 

then Fix{T) ^ (p. 

Example 3.3.15 Let X = E = C^i[0,1], 1) with norm || / || = || / |U + || / ' loo and 

P = {f E E : f > 0} that is not normal cone. Define cone metric d : X x X -^ E 

with d{f,g) = P + g^, for / ^ g,d{f,f) = 0 and the set vahied mapping T : 

X —>• C{X) by Tf = {—/, 0 , / } . In this space every Cauchy sequence converges to 

zero. The function F ( / ) = d{f,Tf) = mf.^TfdU.g) = ^ / { O , / ^ 2p] = 0 have he 

property. Also we have D{f,Tf) = {0, f, 2p} and D{f, Tg) = {/I p + g^). Now 

for g > 1, e > 1, a, 6, c > 0, A; = aqi + 6 + ceq < 1 and for all f & X take g — Q £ Tf. 

Therefore, it satisfies all of the hypothesis of Theorem 3.3.14. So T has a fixed point 

/ e Tf. For sample take a = b = c = 1/6, e — I, and q = 2. 

Theorem 3.3.16 Let {X,d) be a complete cone metric space, T : X -^ K{X), a 

set-valued map, and a function f : X ^ P defined by f{x) = d{x, Tx), x e X with 

Isc property. The following conditions hold: 

(i) If there exist real numbers a, 5, c, e > 0 and q > 1 with k = aq + b + ceq < 1 such 

that for all x € X, there exists y G Tx, 

d{x,y) < qS{x,Tx), 

S{y,Tx) < ed{x,y), 

Siy,Ty) < ad{x,y) + bS{x, Tx) + c5(y, Tx), 

then Fix{T) ^ cj). 

(ii) If there exist real numbers a,b,c,e > 0 and q > 1 with k = aq + b + ceq < I 

such that for all i 6 X and y ETX, 

d{x,y) < qS{x,Tx), 

S[ySx) < ed{x,y), 

Siy, Ty) < ad{x, y) + bS{x, Tx) + cS{y, Tx), 
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then Fix{T) - End{T) + (p. 

Lemma 3.3.17 Let {X, d) be a cone metric space, P be a normal cone with constant 

one and T : X -^ C{X), a set valued map, then 

d{x.Tx) 11 = 11 inf d{x,y) ||= inf || d{x,y) \\ 
y&Tx ySiTx 

Proof. Put a = infy^Tx \\ d{x,y) \\ and j3 = injy^Txd{x,y). We show that 

Q =11 /'i ||. Let y e Tx then /? < d{x,y) and so || (5 \\<\\ d{x,y) ||, which implies 

II /̂  II< a- For the inverse, let for all 0 < r < a. Then r <|| d{x, y) \\ for all y 6 Tx. 

Since (i = infy^Txd{x, y), for every c that c » 0 there exists y e Tx such that 

d(.T,y) < /? + c, so r <|| d{x,y) \\<\\ P + c ||<|| /9 || + || c ||, for all c » 0. Thus 

r<\\P II-

Remzirk 3.3.18 Let {X, d) be a cone metric space, P be a normal cone with con

stant one and T : X -^ C{X) be a set-valued map. Then the function f : X -^ P 

defined by f{x) = d(x,Tx),x € X with Isc property, and g : i? —̂  R+ with 

g{x) =11 x \\. Then gof{x) = infy^Tx \\ d{x,y) ||, is lower semi-continuous. 

Now the Theorems 3.3.8 and 3.3.9 are stated as the following corollaries without 

the assumption of normality, and by Lemma 3.3.17 and Remark 3.3.18 we have the 

same theorems. 

Corollary 3.3.19 Let {X,d) be a complete cone metric space, T : X -^ C{X) be 

a set-valued map and the function f : X ^ P defined by f{x) = d{x,Tx),x G X 

with Isc property. If there exists real numbers 0 < A < 1 , A < 6 < 1 such that for 

all X e X there exists y G Tx one has D{y,Ty) < Xd{x,y) and bd{x,y) < D{x,Tx) 

then Fix{T) 7̂  </>. 

Corollary 3.3.20 Let {X, d) be a complete metric space, T : X -> K{X) be a set 

valued map and the function f : X -^ P defined by /(x) = d{x.Tx),x e X with 

Isc property. The following hold: 
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(i) If there exist real numbers 0 < A < 1 , A < 6 < 1 such that for all x £ X there ex

ists y eTx one has S{y,Ty) < Xd{x,y) and bd{x,y) < S{x,Tx), then Fix{T) ^ (p. 

(ii) If there exist real numbers 0 < A < 1 , A < 6 < 1 such that for all x e X 

and every y 6 Tx one has S{y,Ty) < Xd{x,y) and bd{x,y) < S{x,Tx), then 

Fix{T) = End{T) y^ 0. 
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CHAPTER 4 

TOPOLOGICAL PROPERTIES OF CONE 
METRIC SPACE 

4.1 Introduction 

In this chapter we discuss some topological concepts and definitions are generalized 

to cone metric spaces given by D. Turkoglu and M. Abuloha [11] in 2010. It is 

proved that every cone metric space is first countable topological space and that 

sequentially compact subsets are compact. Also, we define diametrically contractive 

mappings and asymptotically diametrically contractive mappings on cone metric 

spaces to obtain some fixed point theorems by assuming that our cone is strongly 

minihedral. 

The main question is "Are cone metric spaces a real generalization of metric spaces". 

Firstly M. A. Khamsi [32] gave remark on cone metric spaces and obtained equiva

lent metric from cone metric. In 2011 M. Asadi, S. M. Vaezpour and H. Soleimani 

[31] proved that every cone metric space is metrizable and the equivalent metric 

satisfies the same contractive conditions as the cone metric. So most of the fixed 

point theorems which have been proved are straightforward results from the metric 

case. But if cone is non normal same are not true. 

4.2 Topological Cone Metric Spaces 

In this section we introduce some basic topological concepts and definitions in cone 

metric space and prove that every cone metric space is a topological space. The 

following lemmas will be used extensively throughout this chapter. 

Lemma 4.2.1 Let {X, d) be a cone metric space. Then for each c » 0, c G £ , there 

exists '̂ > 0 such that (c - x) 6 intP {i.e. x <C c) whenever || x ||< S, x G E. 

Proof. Since c » 0, then c G intP. Hence, find 6 > 0 such that {x e E -.W x-c \\< 

6} C mtP. Now if |] X II< (5 then || {c - x) - c \\=^\\ -x \\ = \\ x \\< 6, and hence 
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{c — x) £ intP. 

Lemma 4.2.2 Let {X,d) be a cone metric space. Then, for each ci > 0 and 

C2 > 0, ci, C2 e E, there exists c » 0, c e £• such that c < ci and c < C2. 

Proof. Since C2 > 0 then by Lemma 4.2.1, find 8 > Q such that J] x |1< <5 imphes 

X « C2. Choose no such that ^ < ^ . Let c = ^ then || c \\ = \\ ̂  ||= ^ < S and 

hence, c <C C2. But also it is clear that c 2> 0 and c <C ci. 

Proposition 4.2.3 Every cone metric space {X,d) is a topological space. 

Proof. For c > 0,c G -B, let B{x,c) = {y e X : d{x,y) < c} and /? = {B(T .C) : 

X G X, c > 0}. Then, r, = {{7 C X : V x G [/, 3 B e p. x e B C U} is a topology 

on X. Indeed, 

Ti) 0 ,X e r , . 

r2) Let U,V ETC and let x G C/nV. Then x G {/ and x G V, find Cj » 0, C2 > 0 such 

that X G B{x, ci) C [/ and x G B(x, C2) C V. Then by Lemma 4.2.2 hnd c 3> 0 such 

that c -C ci and c <g; C2. Then, clearly x G B{x,c) C B{x,Ci) n B[x,C2) CU r\V. 

Hence, t/ n K G TC. 

73) Let C/a G Tc for each a G A, and let x G UaeA ^"- Then 3 ao G A such that 

X G Uaa- Hence, find c » 0 such that x G B{x,c) C (/„ C UaeA^a- That is, 

UaeA^a e r , . 

It is important to note that any cone metric space {X, d) is a Hausdorff space. In

deed, if X 7̂  y are two point in X, then d{x, y) = c > 0 so that [B{X, | )nB(y, |)] G T,. 

and B{x, | ) H B(y, | ) = </>. Hence, we gaurantee that the limits are unique. 

Definition 4.2.4 Let {X, d) be a cone metric space. A subset A C {X, d) is called 

sequentially closed if whenever x„ G ̂  with x„ —> x then x G >1. 

Proposition 4.2.5 Let iX,d) be a cone metric space. The baU B{x,c) = {y e X 

dix, y) < c}, c » 0, c G £' is sequentially closed. 
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Proof. Let y^ G B{x,c) be a sequence such that y„ -^ y. Then d{yn-x) < c and 

d{tjn,x) -> 0 as n -> CX3. Then y e JB(2:,C) if and only if d{x,y) < c if and only 

if c - d{x,y) e P. But then by continuity of cone metric space d{yr,,x) —> d(x,y). 

Since P is closed, then /zm„_>oo(c - (i(y„,a;)) = c - d{x,y) G P. 

Definition 4.2.6 Let (X, d) be a cone metric space. Then A C X is called bounded 

above if there exists c 6 £J, c > 0 such that d{x,y) < c, for aU x,y G ^, and is 

called bounded if 6{A) = sup{d{x, y) : x,y e A} exists in E. If the supremum does 

not exist, we say that A is unbounded. 

Proposition 4.2.7 Let P be a strongly minihedral cone with normal constant M 

and A C E. Then A is bounded if and only if 5'(A) = sup^ yg 4 || d{x, y) ||< 00. 

Proof. Assume A is bounded. Then there exists c € E, c 2> 0 such that 

d{x,y) < c, \/ x,y e A, then || d{x.y) ||< M || c ||< 00, y x,y e A. Hence, 

sup II d{x,y) II < 00. 
x,y£A 

Conversely, assume that 5'{A) — sup^y^^ \\ d{x,y) \\— K < 00, and fix some 

ci 3> 0. Then by Lemma 4.2.1, find 5 > 0 such that || z \\< S imphes ci » z. 

For each x,y e A let c^^y = ^^^y Then || c,.,y ||= | < 6. Hence, ci > 2jj|ffn 

and so ci - ^ | § ^ G iniP. Therefore, 2 M M c i - .^f'^l 'll''<"''̂ '̂l G mtP, then 

» ^ c i - d{x,y) G intP, that is, d(:E,y) < » M l c , < 2MC^ = ^ G zniP, from 

which it follows that d{x,y) < c. Since P is strongly minihedral then A is bounded. 

Definition 4.2.8 Let {X,d) be a cone metric space and c 2> 0, c € E. A finite 

subset N = {61,62,63, ...,6„} of X is called a c-net for A if for each p G A, there 

exist Cig G Â  such that d{p, Ci^) -C c. 

Definition 4.2.9 Let (X,d) be a cone metric space. A subset A of (X, d) is called 

totally bounded if for each c » 0,c G £̂ , A can be composed into union of sets 

A„ z = 1, 2, 3..., n (A C U Ni) where 6{N,) < c. 
i= l 

Proposition 4.2.10 Let {X,d) be a cone metric space, and A C X. Then A is 
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totally bounded if and only if for each c:^ 0,c e E, A possesses a c-net. 

Proof. Assume A is totally bounded and let c » 0, c G E. Then find A î, Â 2, ••, Ân 

such that A C U"=i-'^i' K^i) '^ c. FVom each Ni choose an element e,,i = 

l,2,3...,n. Let Â  = {ei,e2, ...,e„}. We show that iV is a c-net for A. Let p G A. 

Then there exists Si^, io = {1, 2, ..,n} such that p G Ni^. Using that both P and et^ 

are in Â ,(, and that 6{Ni^) <C c, we conclude that d{p, e^J < c. 

Conversely, let c » 0, c G -E. Then find a finite set A'' = {ej, e2,..., e„} such that for 

each p e A there exists Ci^ G iV with d{p,eig) < c. Let Ni = B(ei,c) = {x G X •. 

d{x,ei) < c } ; z = 1,2, ..,n. Then clearly A C Ur=i ^ i and (5(A ,̂) <C c. 

Definition 4.2.11 Let {X, d) be a cone metric space. A subset A of {X, d) is called 

compact if each cover of A by subsets from T^ can be reduced to finite subcover. 

Proposition 4.2.12 Let {X, d) be a cone metric space and A C X. If yl is sequen

tially compact, then it is totally bounded. 

Proof. Assume that there exists c ;» 0,c G -E such that A can not have a c-

net. Hence, for fixed x\ ^ A there exists X2 £ A such that c — d{xi,X2) ^ intP, 

then also {X1.X2} can not be a c-net for A, hence there exists X3 G A such that 

c — d(.ri,X3) 0 intP, and c — d{x3,X2) ^ intP. Like this we construct a sequence 

Xn & A such that c — d(x„,Xm) ^ mtP, \/ n,m E N. That is, any subsequence of 

{x„} cannot be Cauchy and {x„} cannot have convergent subsequence. Therefore 

A is not sequentially compact. 

Proposition 4.2.13 Every cone metric space {X, d) is first countable. 

Proof. Let p e X. Fix c » 0,c G E. We show that /3p = {B{p, ^) • n e N] is a 

local base at P. Let u be open with p e u. Find cj > 0 such that p G B{p, ci) C u. 

Also by Lemma 4.2.1, find no such that f- < ci. Hence, B{p, -^) C P(p,Ci) C u. 

Lemma 4.2.14 Let P be a cone in E and {x„},{y„} be two sequence in E. If 
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y„ —> y, x„ -^ X as n —̂  oo in (£•, II . II) and a;„ < y„ for all n, then x < y. 

Proof. Xn < Vn implies y„ - a;„ G P. Since P is closed and (y„ - x„) -> (y - .x), 

then {y — x) e P. Hence, x < y. 

Definition 4.2.15 A map T : {X, d) -^ {X, d) is called continuous at x e X. if for 

each V e Tc containing Tx, there exists U e TC containing x such that T{U) C V. 

If T is continuous at each x e X then it is called continuous. 

Definition 4.2.16 Let {X,d) be a cone metric space. A map T : (X.d) —> {X,d) 

is called sequentially continuous if x„ G X, a;„ —>• x implies Tx„ —>• Tx. 

Proposition 4.2.17 Let {X, d) be a cone metric space, and T : {X, d) —>• {X, d) be 

any map. Then, T is continuous if and only if T is sequentially continuous. 

Proof. Assume Xn -^ x and let c 3> 0. Since T is continuous at x E X, then find 

ci S> 0 such that T{B{x,ci)) C B{Tx,c). By convergence of x„, find no such that 

d(x„,x) <C Cj, \/ n> UQ. But then d{Txn,Tx) <S c, ^ n> UQ. Since (X, d) is a first 

countable topological space, then the converse holds. 

Lemma 4.2.18 Let {X, d) be a cone metric space and A be a sequentially compact 

subset of {X,d). Then, there exist Xo,yo G vl such that S{A) = 5up{J(a;,y) : x.y G 

A} = d{xo,yo). 

Proof. For fix c > 0, c G £̂ , we have S{A) - ^ < S{A). By the definition of suprev 

mmri, for each n £ N find y„,a;„ G A such that 6{A) — - < d[xn,yn) < 8[A). 

By sequential compactness of A, we may assume, for the sake of simplicity, that 

Xn —> XQ G yl and yn ^ yo & A. By Lemma 4.2.14, /zm„-4oo(^(^) - - ) < 

d{x„,yn) < 6{A) and hence, ^(^) < limn-^ood{xmyn) < ^{A). That is, 

((̂ (yl) - limn-^ood{x„,yn)) G P and lim„-,^{d{xn,yn) - S{A)) G P. By Proposition 

4.2.7. S{A) = hmn^^d{xn, yn) = d{xo,yo). 

Definition 4.2.19 A mapping T : X ^ X on a complete cone metric space {X.d] 
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is said to be diametrically contractive if d{TA) < S{A) for all closed bounded subset 

A C X, such that 6{A) exists and S{A) > 0. 

It is clear that each diametrically contractive map is contractive. 

Theorem 4.2.20 Let {X, d) be sequentially compact cone metric space with 

strongly minihedral cone and T : X -^ X he diametrically contractive mapping. 

Then T has a fixed point. 

Definition 4.2.21 A mapping T : X ^^ X on a complete cone metric space {X. d) 

is said to be asymptotically diametrically contractive if 

6ai{TA„}) < 6,{{An}) 

for all nonincreasing sequence {A„} of closed bounded subset of X with da{{A„}) > 

0, where 

6a{{Ar,}) = lim 5{Ar.) 
n—+00 

is called the asymptotic diameter of the sequence {An}. 

It is clear that every asymptotically diametrically contractive is diametri(;ally 

contractive. However, if {X, d) is sequentially compact then the converse is also 

true. Indeed, we have 

Proposition 4.2.22 Let {X, d) be a sequentially compact cone metric space and 

T : X —>• X be a contracting mapping. Then, T is asymptotically diametrically 

contractive mapping. 

Lemma 4.2.23 Let {X,d) be a cone metric space, P be strongly minihedral and 

let ^ C X be bounded. Then S{A) = 6(A). 

Theorem 4.2.24 Let {X, d) be a complete cone metric space, P strongly mini

hedral and T : X —>• X be an asymptotically diametrically contractive mappmg. 

51 



Assume T has a bounded orbit {T"xo}^^o for some XQ E X. Then T has a unique 

fixed point z e X, and for each x e X, {T"a;}^^o converges to z. 

4.3 Equivalence of Cone Metric Spaces And Metric Spaces 

In this section we have to show that cone metric spaces have a metric type structure 

which is proved by M. A. Khamsi [31]. 

Definition 4.3.1 Let {X,d) be a cone metric space. A mapping T : X ^ X is 

called Lipschitzian if there exists A; £ R such that 

d{Tx,Ty)<kd{x,y), 

for all X, y G X. The smallest constant k which satisfies the above inequality is called 

the Lipschitzian constant of T, denoted Lip{T). In particular T is a contraction if 

Lip{T) 6 [0,1). Indeed we have the following result. 

Theorem 4.3.2 Let (X, d) be a metric cone over the Banach space E with the cone 

P which is normal with the normal constant M. The mapping D : X x X —> [0, oo) 

defined by D{x,y) =|| d{x,y) \\ satisfies the following properties: 

(?•) D{x, y) = 0 if and only ii x = y; 

[li) D{x,y) ^ D{y,x),ior any x,y e X; 

{Hi) D{x,y < M{D{x,Zi) + D{zi,Z2) + ... + D{zn,y)), for any points x,y,Zi e X.i = 

1,2,...,n. 

Proof. The proofs of (i) and (ii) are trivial. In order to prove (iii), let x,y, z^, Z2. •., z„ 

be any points in X. Using triangle inequality satisfied by d, we get 

d{x, y) < d{x, zi) + d{x, 22) + ... + d{x, Zn). 

Since P is normal with constant M we get 

II d(x,y) \\< M II d{x,zi) + d{x,Z2) + ... + d{x,Zn) jj, 
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which imphes 

II d{x,y) \\< M{\\ d{x,z,) II + II d{x,Z2) II +...+ II d{x.Zn) II). 

This completes the proof of the theorem. 

Note that the property (iii) is discouraging since it does not give the classical triangle 

inequality satisfied by a distance. But there are many examples where triangle 

inequality fails 

The above result suggests the following definition. 

Definition 4.3.3 Let X be a set. Let D : X x X —)• [0, cxi) be a function which 

satisfies 

[i) D{x, y) = 0 if and only if x = y; 

(M) D{x,y) = D{y,x), for any x,y G X\ 

{in) D[x,y) < K{D{x,Zi) + D{zi,Z2) + •.- + D{zn,y)), for any points x.y.Zi € 

X,i = 1, 2, ...,n, for some constant K > 0; 

(m)' Dix,y)<K{Dix,z) + D{z,y)). 

The pair {X, D) is called a metric type space. 

Similarly we define convergence and completeness in metric type space. 

Definition 4.3.4 Let {X,D) be a metric type space. 

(7) The sequence {x„} converges to x 6 X if and only if lim„_+oo D[xn, x) = 0. 

(ii) The sequence {x„} is Cauchy if and only if hm„,,„^oo D{Xn, Xm) = 0. 

(X, D) is complete if and only if any Cauchy sequence in X is convergent. 

Definition 4.3.5 Let T : X —> X be a map. T is called Lipschitzian if there exists 

a constant A > 0 such that 

D{TxSy)<XD{x,y] 
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for any x,y G X. The smallest constant A will be denoted Lip(T). 

Theorem 4.3.6 Let {X,D) be a complete metric type space. Let T : X —> X be 
oo 

a map such that T" is Lipschitzian for all n > 0 and YJ Lip{T") < oo. Then T has 
n=0 

a unique fixed point u> E X. Moreover for any x e X, the orbit {T"x} converges to 

uJ. 

Example 4.3.7 Let X be the set Lebesgue measurable functions on [0,1] such that 

f |/(x)|^dx < oo. 
Jo 

Define D : X x X ^ [0,oo) by 

D{f,g)^ f\fix)-g{x)\'dx 
Jo 

Then D satisfies the following properties: 

(z) D(/ ,g) = 0 i f a n d o n l y i f / = 5; 

ill) D{f,g) = D{gJ), for any f,geX; 

{tri') Dif, g) < 2(D(/, h) + D[h, g)), for any points f,g,h€ X. 

In the next result we consider the case of metric type spaces {X, D) when D satisfies 

[in'). Recall that a subset y of X is said to be bounded whenever sup{L'(x, y); x. y 6 

Y] <oo . 

Theorem 4.3.8 Let [X, D) be a complete metric type space, where D satisfies (iii') 

instead of (iii). Let T : X —> X be a map such that T" is Lipschitzian for all n > 0 

and lim„_+oo Lip{T"') = 0. Then T has a unique fixed point if and only if there exists 

a bounded orbit. Moreover if T has a fixed point LV, then for any x e X, the orbit 

{T"x} converges to u. 

Corollary 4.3.9 Let {X,D) be a complete metric cone over the Banach space E 

with the cone P which is normal with the normal constant M. Consider 
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D : X X X —^ [0,oo) defined by D{x,y) =|| d{x,y) \\ . Let T : X ^ X be a 

contraction with constant k <\. Then 

D(r"a:,T'"y)<MA;"D(x,y) 

for any x,y E X and n > 0. Hence Lip{T") < Mk'^, for any n > 0. Therefore 

Yln>o •^^P^'^^) is convergent, which impUes T has a unique fixed point w, and any 

orbit converges to LO. 

4.4 Metrizability of Cone Metric Space 

M. Asadi,e<.a/ [30] proved that the cone metric spaces are metrizable an(i d(^ 

fined the equivalent metric in different approaches. However there is main question 

" Will the equivalent metric satisfy the same contractive conditions which the cone 

one does?." M. Asadi,et unanswered affirmatively for a few contractive conditions 

but it is impossible to answer the question in general. 

By renorming the Banach spaces which have been partially ordered by a cone, we 

can obtain a new norm which converts it to normal cone, so every cone metric spa(-e 

is metrizable. 

Theorem 4.4.1 For every cone metric D : X x X ^ E there exists metric 

,d : X X X -^R'^ which is equivalent to D on X. 

Proof. Define d{x,y) = inf{|| u ||: D{x,y) < u}. We shall prove that d is an 

equivalent metric to D. If d(x, y) = 0 then there exists Un such that || Un \\^ 0 and 

D{x,y) < n„. So u„ -> 0 and consequently for all c » 0 there exists A' G N such 

that u„ < c for all n>N. Thus for all c > 0, 0 < D{x, y) <C c. Namely x = y. 

li X = y then D{x, y) = 0 which implies that d{x, y) <\\ u \\ for all 0 < u. Put u^O 

it implies d{x,y) <|| 0 ||= 0, on other hand 0 < d{x,y). Therefore d(.r,y) = 0. It is 

clear that d{x, y) = d{y, x). To prove triangle inequality, for x, y, 2 G X we have, 

Ve > 0 3 1*1, II ui ||< d(x,z) + e, D{x,z) < u i , 

V £ > 0 3 n2, II U2 ||< d{z,y) + e, D{z,y) < u^. 



But D{x,y) < D{x,z) + D{z,y) < ui +U2, therefore 

d{x,y) <\\ U1+U2 \\<\\ui II + II U2 \\<d{x,z) + d{z,y) + 2e. 

Since e > 0 is arbitrary so d{x, y) < d{x, z) + d{z, y). 

Now we shall prove that, for all {x„} C X and x G X, x„ -> a; in {X, d) if and only 

if x„ —> 2; in {X, D). We have 

V n, m G N 3 Un„i such that \\ u„,„ ||< d{x„, x) -\ , D{x 
m 

Put Vn = 'Unm then II Vn \\< d{Xn, x) + y^ and D{xn, x) < Vn- Now if x„ -^ X in (X, d) 

then d(x„, x) -> 0 and so Vn -> 0 too. Therefore for all c > 0 there exists Â  G N 

such that Vn -C c for all n > N. This implies that L>(x„,x) < c for all n > N. 

Namely x„ —> x in {X, D). 

Conversely, for every real e > 0, choose c € E with c » 0 and || c ||< e. Then 

there exists W G N such that £)(x„,x) <C c for all n > N. This means that for all 

e > 0 there exists N e N such that d(x„,x) <|| c ||< £ for all n > N. Therefore 

d(x„, x) —>• 0 as n —>• 00 so x„ —>• X in (X, d). 

Example 4.4.2 Let 0 7̂  a G P C K" with || a ||= 1 and for every x,y G W dehne 

a, Xy^y 
D(x,y) = . „ 

^ '^' ^ 0 , x = y. 

Then D is a cone metric on E" and its equivalent metric d is 

d{x,y)=ll'''^y 

which is discrete metric. 

Example 4.4.3 Let a,b > 0 and consider the cone metric D : R x R ^ M̂  with 

D{x,y) = {adi{x,y),bd2{x,y)) where di,d2 are metrices on R. Then its equivalent 

metric is d{x,y) = \/a? + 6̂  || {di{x, y), d2{x, y)) \\. In particular if di{x,y) = \x -y\ 

and d2{x,y) — a\x — y\, where a >0 then D is the same famous cone metric which 

has been introduced in [24] and its equivalent metric is d{x,y) = \ / l + a'^\x — y\. 
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Example 4.4.4 For q > 0,b > 1,E = /«,P = {{x„}„>i : x„ > 0,/or all n} and 

(X, p) a metric space, define D : X x X ^ E which is the same cone metric as 

[41,Example 3] 

Then its equivalent metric on X is, 

'p{x,y)\^\ II _ fY^ p{x,y)\-, _ fpix,y)\ij 

n = l 

Lemma 4.4.5 Let D,D* : X x X -^ E he cone metrices, d,d* : X x X —* R'^ 

their equivalent metrices respectively and T : X —> X a self map. If D{Tx,Ty) < 

D*{x.y), then d{Tx,Ty) < d*{x,y). 

Proof. By the definition of d*, 

y £ > 0 3 V such that || u ||< d*(x,y) + e, D*{x,y)<v. 

Therefore if D[Tx,Ty) < D*{x,y) < v, then we have 

d{Tx,Ty)<\\v\\<d*ix,y) + e. 

Since e > 0 is arbitrary so d{Tx,Ty) < d*{x,y). 

Example 4.4.6 Let E = M, P = R+ and D : X x X -> £; be a cont> met

ric, rf : X X X —> E+ its equivalent metric, T : X —)• X be a self map and 

(/p : R+ -)• E+ defined by if{x) = -^. li D* = ip{D), then its equivalent metric 

is d' = ip{d), and if D{Tx,Ty) < ^{D{x,y)) = y^gf^, then by Lemma 4.4.5, 
d{Tx^Ty)<^{d^x,y)) = ^gL., 

Definition 4.4.7 A self map ip on normed space X is bounded if 

II II II ^(^) II 
II if 11= sup ^ --^ < oo. 

0:^xex II X II 
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Theorem 4.4.8 Let D : X x X ^ E he a cone metric, d : X x X -^ R+ its 

equivalent metric, T : X ^ X a self map and if : P ^ P he a. bounded map. Then 

there exists -ip : 1S.+ ^ E+ such that D{Tx,Ty) < ip{D{x,y)) for every x,y e X 

implies d{Tx,Ty) < ip{\\ D{x,y) ||) for all x,y e X. Moreover if V' is decreasing 

map or Lp is linear and increasing map then, d{x,y) < ip{d{x,y)) for all x,y E X, 

Corollary 4.4.9 Let D, D* be cone metrices, d, d* their equivalent metrices, 

T : X ^X he a map, A e [0, | ) and a, (3 e [0,1). For x,y G X, 

i) D{Tx,Ty) < aD{x,y) => d{Tx,Ty) < ad{x,y). 

ii) D[Tx,Ty) < X{D{Tx,x) + D{Ty,y)) =^ d{Tx,Ty) < X{d{Tx,x) + d{Ty.y)). 

iii) D{Tx, Ty) < X{D{Tx,y) + D[Ty,x)) ^ d{Tx, Ty) < X{d{Tx, y) + d{Ty, x)). 

iv) D{Tx,Ty) < AD(x,y) + (3D{Tx,y) ^ d{Tx,Ty) < ad{x,y) + (3d{Tx,y). 

v)There exists u G {D{x,y),D{x,Tx),D{y,Ty),\[D{x,Ty)+D{y,Tx)\] sndi that 

D{Tx, Ty) < au where a € (0,1) then 

d{Tx, Ty) < a max{d{x,y); d{x,Tx)\d{y, Ty); \[d{x, Ty) + d(y, Tx)\]. 

Theorem 4.4.10 Let {E, \\ . ||) a real Banach space with a positive cone P. There 

exists an equivalent norm on E such that P is a normal cone with constant il/ = 1, 

with respect to this norm. 

Corollary 4.4.11 Every cone metric space {X, D) is metrizable. 

4.5 Completion of Cone Metric Space 

Definition 4.5.1 A cone normed space is an ordered pair (X, || • ||c), where A' is a 

vector space over R and || • Ĥ : X —)• [E, \\ • \\) is a function satisfying: 

(i) 0 <|| I lie, for all x £ X. 

(ii) II X ||c= 0 if and only if x = 0. 

(ni) II ax ||c=| a III X ||c, for each x e X and a € R. 
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{iv)\\x + y\\c < II X lie + II y lie for all x,y G X. 

It is clear that each cone normed space is a cone metric space. In fact, the cone 

metric is given by d{x,y) =| | x — y \\c. Complete cone normed spaces are called cone 

Banach spaces. 

According to the definition of convergence in cone metric spaces, we see that x,i —>• x 

in {X, II • lie) if and only if for all c 3> 0 in JS there exists UQ such that || x„ — x ||(.<C c 

for all n > UQ and, if the cone is normal, if and only if hm„^oo |||| -̂ n — ^ ||c|i= 0-

Also, x„ e {X, II • lie) will be Cauchy if and only if for all c :» 0 in £• there exists no 

such that II x„ — Xm | | c ^ c for all m,n > no and the cone is normal, if and only if 

l im„,„_>oo nil Xn - Xm \\c\\= 0 . 

Before proceeding to prove a scalar norm completion theorem, we first give the 

meaning of isometries of cone metric spaces. 

Definition 4.5.2 Let {X,d) and {Y,p) be cone metric spaces. A mapping T of 

X into Y is said to be an isometry if it preserves cone distances, that is for all 

Xi,X2 € X, 

p{Txi,Tx2) = d{xi,X2). 

It is clear that if T is bijective and an isometry, then it is together with its inverse, 

(sequentially) continuous and hence {X, d) and {¥, p) become topological isomorphic. 

Throughout, we shall say that cone metric space X is isometric with the cone metric 

space Y if there exists a bijective isometry of X onto Y. In the sequel, one has to 

note that every cone isometry is one to one. 

Proposition 4.5.3 Let {x„} and {y„} be two Cauchy sequences in a cone me t̂ric 

space (X, d) over a normal cone with constant M. Then lim„_>oc d(x„,y„) exists in 

(^ ,11- ID-

Theorem 4.5.4 For a cone metric space {X,d) over a normal cone there exists a 

complete cone metric space {X^, 4 ) which has a subspace W that is isometric with 

X and dense in X^. The space {X^, ds) is unique upto isometry, that is, if Z is any 
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complete cone metric space having a dense subspace U isometric witii X, then Z 

and X** are isometric. 

As every cone normed space is a cone metric space, we define the meaning of isometry 

of cone normed spaces. 

Definition 4.5.5 Two cone normed spaces {X, \\ • | |cj and (Y, \\ • Wc^) are said to 

be isometric if there exists a bijective linear operator T : X —> Y such that 

II Tx \\c2 = \\ X llci, for all x e X. 

Theorem 4.5.6 Let {X, \\ • ||c) be a cone normed space over a normal cone. Then 

there is a cone Banach space (X*, || • ||j,.) and an isometry T from X onto a subspace 

W of X^, which is dense in X^. The space X^ is unique upto isometry. 
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