

Kinetic Studies of the Oxidation of Fatty Acids

Thesis Submitted For the Degree of DOCTOR OF PHILOSOPHY In Chemistry

SHAKOOR MOHAMMAD KHAN

Department of Chemistry Aligarh Muslim University, Aligarh December 1968

7866

CIREN-2005,

Tin Lininit

1 2 FED 1970

T866

CHEC. 5D 1006.97

7 II B S I 3 Subditted in Aulfilment of the requirements for the degree of DOCNON OP P.HILOSCOPHY III CHFILISTRY

By

Shekoor Hohd. Khan

Chantical Ladoonatomies Addicarb Mundhin University Addicarb.

Decentera, 1968*

ABSTRACT

The oxidation of fatty acids is of fundamental importance in many processes such as the utilization of fats in the animal body; drying oil industry and in the investigation of structure of fatty acids. Besides, the outstanding difference between chemical and biochemical oxidation processes is best exemplified by reference to carboxylic acids which can easily be oxidized to carbon dioxide by living cells, but are inert to chemical oxidizing agents in neutral aqueous solution.

Chromic acid is an extremely important oxidant in both organic and inorganic chemistry. It has occupied an equally important position in the study of oxidation mechanisms. It reacts almost all types of oxidizable groups. The reactions often may be controlled to yield largely one product, and this makes chromic acid oxidation a useful synthetic tool. Although the knowledge of the mechanisms of chromic acid oxidation of organic compounds is fragmentary, yet as a result of pioneering work of Westheimer, Rocek, Wiberg and Waters, the mechanism of some of the reactions is fairly well understood. The present work was carried out to elucidate the mechanism of oxidation of lower fatty ecids by this oxidant.

The reaction rate was measured as a function of concentrations of chronic acid, substrates and hydrogen ions. In all the experiments the oxidant concentration was $\operatorname{kept}_{A}^{so}$ low relative to those of substrates and hydrogen ions that the latter remained essentially constant throughout any single run. Even under these conditions, the first order rate constants vary with changing chromic acid concentration.

The order of the reaction with respect to each fatty acid was determined by varying the fatty acid concentration and observing the effect on the rate keeping chromic acid and sulphuric acid concentrations constant. The plots of rate constants against substrate concentrations yielded straight lings passing through the origin. It indicates that the order of the reaction with reference to substrate is unity, and the self decomposition of chromic acid is negligible under our experimental conditions.

The dependence of rate constant on the hydrogen ion concentration was studied in the same way. The oxidant and substrate concentration were kept constant and concentration of hydrogen ions was varied maintaining the ionic strength constant by using sodium hydrogen sulphate.

The quotients obtained by dividing pseudo first order rate constants by hydrogen ion concentration varied from run to run. But the quotients obtained by dividing first order rate constants by the square of hydrogen ion concentration remained reasonably constant showing second order dependence on acidity.

The effect of ionic strength on the oxidation rate was observed by varying the ionic strength by using sodium perchlorate. An overall acceleration with increasing ionic strength was observed. Temperature dependence of the reaction rate was studied and thermodynamic paraaud meters were calculated. The effect of acetic, the final oxidation product, on the rate of oxidation was measured by adding various amounts of acetic acid, to the reaction mixture. The rate constants were found to increase with increasing acetic acid concentration.

Chromic acid oxidation of fatty acids was also studied in the presence of manganous and cercus ions. It was found that the amount of chromic acid consumed in the absence of Mn⁺⁺ or Ce⁺⁺⁺ was more than in the presence of these ions.

The influence of chain length on the oxidation rate of fatty acids was investigated. The observed order or reactivity followed the sequence propionic < butyric < valeric. The effect of branching was also studied and it

was found that isobutyric and isovaleric acids were more rapidly oxidized than propionic and butyric acids. Pivalic acid was unaffected. To determine the effect of phenyl group on the oxidation rate, benzoic and phenylacetic acids were studied. Benzoic acid was not oxidized but the rate of oxidation of phenylacetic acid was much higher than that of propionic acid.

On the basis of above results the following rate law was obtained.

$$-\frac{d(cr^{VI})}{dt} = k / Petty aoid / (cr^{VI} / H)^2.$$

The mechanism which is consistant with the above rate lew may be written as:

(1)
$$HCro_4^- + 2H^+ \xrightarrow{fast} Horo_3^+ + H_2^0$$

.....

-

(2)
$$R = 0 = H + 0 = Cr^{+} = 0 = H + H^{+}$$

 $CO_{2}H = 0 = Cr = 0 = Cr = 0 + H^{+}$

(4)
$$R = \frac{G^{+}}{C} = 0 = \frac{G^{+}}{Cr} = 0R \xrightarrow{\text{fast}} R = C = 0 = \frac{G^{+}}{Cr} = 0R + R^{+}$$

 $CO_{2}R = C = 0 = Cr = 0R + R^{+}$

(5)
$$R = C = O = Cr = OH \xrightarrow{fast} R = C = CO_2H + Cr = O + H^+ OH OH OH$$

(6)
$$H_2 CrO_3 + HCrO_3 + H^+ \qquad \underbrace{fast}_{2} 2 H_2 CrO_3$$

(7)
$$R = C = 0 = H + 0 = Cr^+ = 0H = \frac{0}{160} R = C^+ + C0_2 + H_3 Cr0_3$$

(8)
$$R - C^{+} \xrightarrow{H_2 0} R + C - 0H + H^{+}$$

This is to certify that the thesis entitled "Kinctic studies of the oxidation of fatty acids", is the original work of Mr. Shakoor Mohd. Khan and is suitable for submission for the degree of Ph.D.

A. Azzi Kl -- a

Dr. A. Azis Khan

ACKNOTLEDGELFIT

I wish to express my gratitude to Dr. A. Aziz Khan for his supervision and also to Dr. M.A. Beg for the valuable suggestions regarding the selection of the problem. I am thankful to Prof. A.R. Kidwai and Dr. S.M. Fazlur Rahman for providing necessary facilities. Thanks are also due to Dr. V. Rahman and Dr. M.S. Ahmad for their helpful suggestions during writing of the thesis. The help of Dr. Firoz Ahmad and other members of Physical Section is acknowledged gratefully.

> Shakoor Mohd Khan Shakoor Lohd. Khan

CONTENTS

CHAPTER I.	1
General Introduction	- -
CHAPTER II.	31
Kinetics of oxidation of normal chain fatty acids.	• 、
CHAPTER III.	120
Kinetics of oxidation of branched chain fatty acids.	
CHAPTER IV.	173
Kinetics of oxidation of phenylacetic acid.	
CHAPTER V.	203
Discussion.	

GENERAL INTRODUCTION

CHAPTER I

G. TRAAL INTHOUDDIN

The exidation of fatty acids is one of the important reactions in chemistry of fate and eils. This is of fundemental importance in many processes such as utilization of fate in the animal body; in the drying of films; in the manufacture of various products of drying eil industry and in the investigations of the structure of fatty acids and their derivatives.

As would be expected, the acturated fatty acids are most resistant to chemical oxidation. Only the oxidants which can attack saturated paraffins are able to oxidine fatty acids. The end products are numerous and diverse depending upon the oxidant and the conditions of oriention such as temperature, concentration, solvent, period of oxidation and cetalyst. The oxidation may mass through a sories of intermediates or may directly be converted to specific and products. In many instances the initial oxidation products are so transitory that their formation is only a matter of speculation. Similar other complications may arise and the investigation of oxidation mechanism is, therefore, frought with verious difficulties. Inspite of the above facts, some investigators have attempted to study the mechanism, the nature of the intermediates and the end products of exidation of fatty acids by different exiding agents.

*

Some oxidants are highly specific in their reactivity while others are quite general in both reactivity and application. Thus, potassium permanganate, ozoné, and organic peracids are widely used in investigating the structure of unsaturated fatty acids, whereas lead tetrancetate and periodic acid are restricted to the cleavage of polyhydroxylated or other partially oxidized fatty acids of certain structural types. A number of exidents do not possess any special merit in the investigation of fatty acids and consequently, they have not come into general use. A few exidents like culphuric and mitric acids which are of some value in certain industrial processes, are new largely of historical interest in the elucidation of the structure of fatty acids.

Chromic acid is one of the few strong oridants which has been widely used and reacts with almost all types of oxidizable groups. It has regularly been used for well over a century both in volumetric enclysic and in synthetic and degradative organic chemistry. Although the knowledge of mechanism of chromic acid oxidation of

organic compounds is only fragmentary, yet as a result of pioneoring work of Testheimer, Rocek and Etewart the mechanism of some of the reactions is fairly well understood. A review of the literature on the chromic acid exidation of various functional groups is given below.

The Chromic acid oxidation of alcohols has been studied extensively because of its major use in synthetic chemistry. Primary alcohols give aldenydes and acids in quantitative yields while ketones are obtained from secondary alcohols. The reaction is less satisfactory in presence of easily groups. oxidicable functional. The difficulty encountered is due to the possibility of the cleavage reaction. Phenyl tertbutyl carbinol, for example, gives benceldehyde and tertbutyl alcohol as cleavage products accompanied by a smaller quantity of the expected hetone.

$$c_{6}H_{5} - \begin{array}{c} 0H \\ C \\ C \\ H \\ H \end{array} \xrightarrow{(Cr^{VI})} c_{6}H_{5} - C - C (CH_{3})_{3} \xrightarrow{(Cr^{VI})} c_{6}H_{5} - C - C (CH_{3})_{3} \xrightarrow{(Cr^{VI})} c_{6}H_{5} - C - C (CH_{3})_{3} \xrightarrow{(Cr^{VI})} c_{6}H_{5} - C \xrightarrow{(Cr^{VI})} c_{6}H_{5$$

Phenylelkyl carbinols rive generally large abounts of cleavage products. Westheimer and co-workers^{1,2} obtained 6, cleavage with phenyl isopropyl carbinol and 60, cleavage with phenyl tert-butyl carbinol. Euch types of cleavage reactions are known to occur in many other carbinols^{3,4}.

The cleavage reaction can be eliminated by addition of manganous ions.

Bowden and co-workers⁵ found that the oxidation of necondary alcohols in acctone modium proceeded more rapidly then in acctic acid. One of the advantages was that because of the large excess of acetone in the former ease the ketone produced was protected against further oxidetion. Later on, Bowsan et al. found that potassium dichromate and chroniun trioxide in acetic acid were the effective reagents for the oxidation of secondary alcohols. Ficser oxidized cholestanol to cholestanono in good yield using dichronate in acotic acid. The difficulty encountered in the exidation of primary and becondary alcohols was overcone by Sarett⁸ who visualized that pyridine-chronium trioxide complex might not oxidize the other functional groups. The reagent has been used successfully in the oxidation of a group of steroidal alconols. Holus⁹ explored the utility of this reagent for the oxidation of a large number of alcohols.

Primary alcoholo are oxidized by chromic acid to aldehydes which are further oxidized to the corresponding carbox lic acids. The poor yield of aldehyde have been attributed to the side reaction between aldehyde and unreacted alcohol to give heriacetal which may further be oxidized to ester¹⁰.

Ester formation is diminished by sweeping off aldehyde out of the reaction mixture with a strain of carbon dioxide or nitrogen. Oppenduer and Oberrauch¹¹ reported for the first time that tert-butyl chromate in petroleum ether was a remarkable exident for the oxidation of primary alcohols to aldehydes in excellent yields. Hexadecenel, for example, was converted to hexadecenal in 80-85% yield; geraniel to geranial in 85% yield and beneyl alcohol to bencaldehyde in 94% yield¹¹. It was shown that this reagent reacted by a rapid trans-esterification with primary and secondary alcohols. This esterification and its reverse usually involved electronpair displacements at the chromium atom i.c. acyl-oxygen bend fication.

As a result of extensive studies on the chromic aci] oxidation of alcohols, Testheimer¹⁵ proposed a rate law . $v=k_{a}$ /HCrO₄/ \sum_{2} ClO₃/ \sum_{3} + k_{b} /HCrO₄/ \sum_{2} ClO₃/ \sum_{3} + $\frac{1}{2}$ which was found to be applicable to all the primary and secondary alcohols atudied¹⁵⁻²² so far. Wrauss²³ observed that it was possible to prepare esters of chronic acid with primary and secondary alcohols and these were decomposed by pyridine to give the corresponding carbonyl compounds according to the following scheme:

$$\begin{array}{ccccc} CH_{3} & 0 & CH_{3} \\ I & I & I \\ CH_{3} - C - 0 - Cr - 0 - C - CH_{3} \\ H & C & .H \\ Br & & \\ Br & & \\ \end{array}$$

 $CH_3 - C = 0 + (CH_3)_2 CHO Cro_2^{-} + HB^{+}$

On this basis Westheiser proposed that the exidation of primary and secondary alcohols proceeded via the acid chromato ester.

 $\begin{array}{rcl} R_{2}CHOH + HCrO_{4}^{-} + H^{+} & \longrightarrow & R_{2}CHO & CrO_{3}H + H_{2}O \\ R_{2}CHO & CrO_{3}H + H^{+} & \longrightarrow & R_{2}CHO & CrO_{3}H_{2}^{+} \\ R_{2}CHO & CrO_{3}H & & \stackrel{k_{1}}{\longrightarrow} & R_{2}C = O + Cr^{1V} \\ R_{2}CHO & CrO_{3}H_{2}^{+} & & \stackrel{k_{2}}{\longrightarrow} & R_{2}C = O + Cr^{1V} \end{array}$

The data on the kinetics and isotope effect for isopropyl alcohol oxidation could be explained satisfactorily by the above reaction sequence. Elaming²⁴ also demonstrated the formation of acid chromate ester in the reaction solution. Later on, the intermediacy of the chromic acid coter was confirmed by an invectigation of the oxidation of stericelly hindered alcohol 3β -29-discetoxy- 6β -hydroxy- 18β -12-oleanen²⁵. Although the formation of ester as an intermedicto has been confirmed but its conversion to products is still on unsettled problem. General base estalysis by pyridine, as supposed originally, was confuted later on²⁶, 27.

Rocek and Krupicks²⁶ showed that the legarithm of the rate constant is linearly dependent upon the Harmett's acidity function H₀. They suggested that the oxidation proceeded by a molecular cyclic electron switch, involvinmolecular H₂CrO₄ at low acidities, and a protoneted specice H₃CrO₄⁺ or HCrO₃⁺ at higher acidities.

Whis cyclic mechanism may provides a more satisfactory explanation of the relative rates of oridation of parasubstituted 1-phenylethanols; the order of reactivity being

Ne0 > NeC-> Me-> H-> C1-> NO_-.

Plectron-donating substituents favoured exidation²⁸. Graham and Westheimer²⁹ also concede that in very strong acid a cyclic mechanism such as above may operate.

Chronic acid oxidation of large number of organic compounds seems to proceed by the scheme,

$$cr^{(VI)} + s \longrightarrow cr(IV) + P$$

$$cr(IV) + cr(VI) \longrightarrow 2 cr(V)$$

$$2cr(V) + 2s \longrightarrow 2cr(III) + 2P.$$

Hence, the oxidation with chronic acid is in fact an oxidation by Cr(V). This was concluded from the fact that 67% of cleavage products (bencaldehyde and tertbutyl alcohol) were obtained from the chronic acid oxidation of phenyl-tert-butyl carbinol and the remainder was the expected ketone. The degree of cleavage was suppressed by addition of cerous and mangenous ions, indicating that cleavage was affected by Cr(IV) or Cr(V) and not by Cr(VI). The cleavage reaction does not involve the hydrogen attached to the reaction centre as is indicated by the lack of isotopic fractionation in the competitive exidation of lebelled and unlabelled alcohole. The data suggestive possible mechanisms³⁰.

1.
$$C_{6}H_{5} - CH - C(CH_{3})_{3} + Cr^{V} \longrightarrow C_{6}H_{5} - CH - C(CH_{3})_{3} \longrightarrow C_{6}H_{5} - CH - C(CH_{3})_{3} \longrightarrow C_{6}H_{5} - Cr^{V}$$

 $C_{6}H_{5} - C = OC(CH_{3})_{3} + Cr^{III}$
 $\downarrow H_{2}O$
 $C_{6}H_{5} - CHO + (CH_{3})_{3} COH.$

2.
$$C_{6}H_{5} - C_{H} - C(CH_{3})_{3} + Cr^{V} \rightarrow C_{6}H_{5} - C_{H} - C(CH_{3})_{3}$$

OH
 OH
 OH

Lack of oxygen-18 in the tert-butyl alcohol formed in the cleavage of the lebelled alcohol indicates the unlikelyhood of mechanism(1). Elechanism (2) was supported by the observation that phenyl aprocamphyl carbinol was oxidized without cleavage³¹.

Oxidation of tertiary alcohols is more difficult than that of primary or secondary alcohols, but can be affected in the presence of sulphuric acid. The studies of Sager³² and Pocek³³ on the mechanism of oxidation of tertiary alcohols showed that the reaction is first order with respect to alcohol but independent of the concentration of the oxidant. It indicated that an olefin was formed slowly which was then repidly oxidized to a ketone.

Slack and Vaters³⁴ for the first time investigated the chromic acid oxidation of diols. They observed that the cleavage of 2.3-butylene glycol (20-30%) was more than that of ethylene glycol (1.25). Chatterjee and l'ukherjee³⁵ carried out a dotailed investigation end postulated kinetic rate lews for different glycols, namely for othylene glycol and pinacol the rate laws were as under:

$v = k \left[\operatorname{diol} \left[\frac{1}{4} \operatorname{Cr}_{4} \right] \left[\frac{1}{4} \right]^{2} + k_{2} \left[\operatorname{diol} \left[\frac{1}{4} \operatorname{Cr}_{4} \right] \right]^{2} \right]$ $v = k \left[\operatorname{diol} \left[\frac{1}{4} \operatorname{Cr}_{4} \right] \left[\frac{1}{4} \right]^{2} \right]^{2}$

It seems that two reaction courses are possible. In the first case normal exidation occurs giving an \prec -hydroxycarbonyl compound, which may be further exidised. In the second, cleavage of carbon-carbon bond occurs.

Chang and Westheiner³⁶ also studied the chronic acid oxidation of pinacol and found a solvent isotope effect $k_{D_20} / k_{H_20} = 2.7$. They observed that monomethyl ether of pinacol was oxidized very slowly. It indicates that oxygen-hydrogen bond cleavage does not occur in the rate determining step and cyclic chromate ester is probably the intermediate. This ester is decomposed to the observed products in a manner similar to that suggested for lead $tetrancetate^{37}$ and periodic acid 38 .

$$\begin{array}{c} H_2 C = 0H \\ H_2 C = 0H \end{array} + H C r O_4^- + H^+ \longrightarrow \begin{array}{c} R_2 = C = 0 \\ I \\ R_2 - C = 0 \end{array} \\ H_2 = C = 0 \end{array} \xrightarrow{cr \neq 0} C r \approx 0 \\ H_2 = C = 0 \end{array}$$

Cyclic chromate formation mechanism was further supported by the observation that cis-1,2-dimethyl-1,2-cyclopontamedicl was oxidized 17,000 times faster than its trans isomer³⁹. The large difference in the rate of oxidation could not be explained by a non-cyclic mechanism. The rate of increase of cleavage with the methyl substitution was explained on the assumption that alkyl substitution stabilized the activated complex for the decomposition of the cyclic chromate ester.

Although considerable work has been done on the chromic acid oxidation of diols yet the reason for a change in mechanism with increasing methyl substitution is not $y \in \mathcal{I}$ clear. Also the ability of chromic acid to effect both normal oxidation and cleavage is not well understood.

Aldehydes are the intermediate products in chronic acid oridation of primary alcohols to the corresponding carboxylic acids. Lucchi⁴⁰, for the first time studied the oxidation of aromatic aldehydes in acetic acid-sulphuric acid medium. He showed that the reaction was first order in aldehyde and in Cr(VI) and that the electron withdrawing groups facilitated the reaction. He, however, did not study the effect of sulphuric acid on the rate of the reaction. Therg and $Eill^{41}$ carried out a detailed kinetic study of oxidation of benzaldehyde and formulated a rate law as

$$v = k_1 \sum_{n \in \mathbb{N}} \frac{1}{n} + \frac{1}{n} \sum_{n \in \mathbb{N}} \frac{1}{n}$$

and $v=k \sum RCH0 \sum HCr0_4 \sum H_0$ (in acetic acid). On the basis of the similarity in rate law and isotope offect in the oxidation of benzaldehyde by permangenate⁴² and by chromic acid, they suggested the following mechanisms

 $\begin{array}{c} HCrO_{4}^{-} + H^{+} \xrightarrow{H_{2}CrO_{4}} \\ O \\ H \\ C_{6}H_{5} - C - H + H_{2}CrO_{4} \xrightarrow{O} C_{6}H_{5} - C - O CrO_{3}H \\ H \\ H \end{array}$

 $C_{6}H_{5} \xrightarrow{0} C_{6}H_{5} \xrightarrow{0} C_{6}H_{5} \xrightarrow{0} C_{1} \xrightarrow{1} H$ B_{3}

The mechanism is similar to that proposed by Westheimer for the isopropyl alcohol¹⁵.

Oxidation of aliphatic aldehydes⁴³ has not received much attention. However, the rate laws found in some cases are quite similar to those obtained for the aromatic aldehydes. The rate law for formaldehyde^{44,45} has been shown to be

v=k [HCH0][HCr0] 7[H+] [+ 4[H+]]

Kemp and Vaters⁴ found that kinotic isotope effect and energy of activation decreased in the solutions of high acidity. They suggested that it was due to the effect of acid concentration on the reactions of Cr(IV) and Cr(V). At higher acidities the ratio Cr(IV)/Cr(VI) increased more rapidly, and the oxidation was effected mainly either by Cr(IV) or Cr(V). Chaterjee⁴⁹ determined the induction factor as 0.5 which indicated that Cr(IV) was the product in the oxidations by Cr(VI).

A number of stable hydrates of aldehydes are known⁴⁶⁻⁴⁸. It was reported by Vers and Taters⁴⁹ that in the oxidation of formaldehyde, the hydrated form of aldehyde was the reacting species. The value of ρ , for aromatic aldehydes is + 1.02⁴¹ and that for alighetic aldehyde is -1.2. The difference between the reaction constants for the two types of aldehydes is approximately the reaction constant for the hydration equilibrium for the aromatic aldehydes. Thus, if the aromatic aldehydes are assumed to react in the hydrated form, the β value for the reaction would be about -1, corresponding to the value obtained in the existation of alights aldehydes alcohols. The assumption that the reaction involves the hydrate of the aldehyde is in agreement with the result obtained by varying the water content of the acetic acid - water mixtures.

The main problem in the oxidation of eldehydes by chromic acid is to determine whether it is a one electron or a two electron process. Testheimer used induced oxidation as a diagnostic tool to solve the problem. Wiberg and Elechardson⁵⁰ reported a very interesting non-kinetic example to determine whether Cr(IV) or Cr(V) was the active intermediate. They observed that triphenylacetaldehyde was oxidized by chromic acid to give approximately one third triphenylacetic acid and two thirds triphenyloarbinol and carbon monoxide. The ester mechanism might be expected to give either triphenylacetic acid or triphenylcarbinol and formic acid.

$$(c_6H_5)_3 = (c_6H_5)_3 = (c_$$

$$(C_{6}H_{5})_{3} \xrightarrow[]{0}{} \xrightarrow{(1)}{} (C_{6}H_{5})_{3} \xrightarrow{(1)}{} C \xrightarrow{(1)}{} (C_{6}H_{5})_{3} \xrightarrow{(1)}{} C \xrightarrow{(1)}{}$$

•

0r

$$(c_{6}H_{5})_{3} c - c - c - cro_{3}H \longrightarrow (c_{6}H_{5})_{3} c + H - c - oH + cr(IV)$$

Hydride or hydrogen atom abstraction, however, might lead to triphenylcarbinol and carbon monoxide.

$$(c_6H_5)_3 c - c - H + cr^V \longrightarrow (c_6H_5)_3 c - c^+ + cr^{III}$$

$$(c_{6}H_{5})_{3} c - \overset{0}{c_{+}} \xrightarrow{+} (c_{6}H_{5})_{3} \overset{+}{c} + co$$

$$(c_{6}H_{5})_{3} \overset{+}{c} + H_{2}O \longrightarrow (c_{6}H_{5})_{3} cOH + H^{+}$$

$$(c_{6}H_{5})_{3} c - \overset{0}{c_{-}} H + cr^{\nabla} \longrightarrow (c_{6}H_{5})_{3} c - \overset{0}{c_{-}} C + cr^{I\nabla}$$

$$(c_{6}H_{5})_{3} c - \overset{0}{c_{-}} H + cr^{\nabla} \longrightarrow (c_{6}H_{5})_{3} \overset{+}{c} + co$$

$$(c_{6}H_{5})_{3} c - \overset{0}{c_{-}} H + cr^{\nabla}$$

$$(c_{6}H_{5})_{3} c - \overset{0}{c_{-}} H + cr^{\nabla}$$

The product study suggests that one third of the reaction proceeds via the ester mechanism and two thirds via either hydride abstraction or hydrogen atom abstraction mechanism This clearly indicates that Cr(V) is the main reacting opecies in the oxidation of aldehydes, but in part the reaction proceeds with Cr(IV).

The oxidation of Lotonge by chronic acid was first studied by Petit⁵¹. He found that the exidation rate increased with increasing chain length from acctone to heptyl methyl kotone, and the reaction took place through an enoligation mechanica. Uneda and Tarana⁵² carried out the exidation of cyclohexanone in presence of HCl, $H_p UO_4$ and SCIO, and cuggested a mechanism which involved the cnoligation of cycloheranone, addition of two molecules of NCrO4, the fission of the double bond and oxidation to adipic ecid of the resulting aldehyde. Littler and "aters⁵³ studied the kinetics of exidation of cyclohexenons by three electron, two electron and one electron oxidents and concluded that two electron oxidant attacked the enol form while one electron exident attacked the keto form of the substrate. But the attack of chronic acid (3 electron oxident) on the cyclohexenone remained undecided. The rate controlling step could be the attack of chronic acid on the double bond of enol form or it could be the decomposition

of the chromic acid ester of the enol form. But as the rate of oxidation of cyclohexanone was slower than its rate of enolization at the same acidity it could not be concluded whether the keto or enol form was attacked. It morely indicated that the transition state of the rate determining process involved a ketone polecule and a chromic acid polecule.

Wiborg and Gatake⁵⁴ suggested the possibility of the free radical mechanism for the oxidation of deoxybencoin by chromic acid on the basis of their observation that 8% bidesyl was obtained along with the expected benzil. Nocek⁵⁵ also visualized the formation of some free radicals in the oxidation of cyclohexanone.

The oxidation of aryl alkanco is particularly useful from synthetic point of view because of the formation of aryl carboxylic acids and aromatic aldehydes. It is also helpful in determining the orientation of alkyl groups attached to the aromatic nucleus. Bensene⁵⁶ is resistent to oxidation but aromatic polycyclic and heterocyclic hydrocarbons⁵⁷⁻⁵⁹ are easily oxidized to quinones. The order of the reactivity of these combounds depends upon their electron availability and is wholly consistant with the attack by a cation $BCrO_3$. Flectron donating groups have been found to assist the ring destruction.

The alkyl group of an alkyl bensone, regardless of its length, is finally oxidized to carbozyl group with the forcation of an aromatic carboxylic acid. Thuo. toluene gives benzoic acid and n & p-xyleneo give the corresponding dicarboxylic acids⁶¹. Vith longer chaine the initial attack is at the \propto -position to the arountic ring. Thus, from the producto obtained in the oxidation, the nature of the alkyl groups attached to the ring can be determined. Polynuclear hydrocarbons are oxidized in the same manner. Waters 62 obtained bencophenone in good yields from the chronic acid oxidation of diphonylnothane. The oxidation of anthracene end fluorene and their nitrohomologues was studied by Ogata and Akimoto⁶³ who found that electron withdrawing groups (nitro) retarded the reaction. It was noted that triaryl substituted methanes gave the corresponding tertiary elcohols which under vigorous conditions led to the breakdown of one aryl group with the formation of diaryl ketones.

Brandenberger and co-workers⁶⁴ reported that ring oxidation was competitive with the side chain oxidation in the chromic acid oxidation of alkyl benzones under Euhn-Roth conditions and that the emount of ring oxidetion increased with increasing acid concentration. In

order to suppress the stack on the aronatic nucleus and to effect the exidation of side chain only, the use of potassium dichromate in water at elevated temperature was noteworthy. Priedman et al.⁶⁵ used this reagent to obtain a number of aromatic mono and polycarboxylic acids from alkyl amine exidation.

The first dotailed study of the exidation of aryl alkenes with chronic acid was reported by Slack and Teters⁶². They studied the exidation of diphenylpethone and triphenylmethane in riacial acotic acid. It was observed that the order of the reaction with respect to chronium trioxide in the exidation of diphenyluothene and triphenyluothene was two and one respectively, while the order with respect to hydrocarbons was one in both the cases. They glos reported that chronium acctochromate $\sum cr^{111}(\Pi cro_A)(0.0001) = 7$ formed in the reaction retarded the rate. In the oxidation of toluenes and ring substituted toluenes 63, the order with respect to the substrate was one but two with respect to chromium trioxide. Later on, these studies were extended to naphthalene and fluorenes. The observed rates satisfied the previous rate coustion. It was, therefore, concluded that the same mechanism was operating in these oridations, i.e. the attack of two colecules of chromium trioxide on one colecule of the substrate.

Frans⁶⁶ studied the oxidation of diphonylnothano and other compounds in 95% acetic acid using minoral acid as.catalyst. Product analysis showed the presence of Ph_2CH_2 and Ph_2CO . The proposed rate equation was

$$v = k \int Ph_2 CH_2 \int CrO_3 \int h_0$$
.

where h_0 is the Harmett acidity function⁶⁷. The value of the kinetic isotope effect (${}^{\rm h}\Pi/{\rm k}_{\rm D}$) was found to be 6.4 at 30°C and it was noted that the electron releasing proups facilitated the reaction moderately. On the basis of these data it was concluded that the initial step was the abstraction of hydrogen atom with the formation of Ph₂Cl^{*} redical which was further oxidized to Ph CO Es.

Chrozic acid oxidation of alkenes leads to carboncarbon bond fission at the elefinic link with the formation of a variety of products. The reaction is employed in Barbier-Wieland degradation and in the oxidation of tetraphenylothylenes. Tetraphenylethylenes⁶⁰⁻⁷⁰ with smaller amounts of chromic acid give the corresponding epoxides while benzophenone is obtained with larger amounts.

The study of oxidation of many steroidal double bonds suggests that the initial compounds formed in the reaction with chronic acid (whatever its structure) decompose to give the epoxide and the ketol in the two separate reactions; and at least part of ketol is formed directly and not via the opoxide. Barbier-Vieland degradation^{71,72} is of great importance in the degradation and modification of steroids.

 $\begin{array}{c} \operatorname{RC'I}_{2} \operatorname{CO}_{2} \operatorname{CI}_{3} + \operatorname{C}_{6} \operatorname{H}_{5} \operatorname{M}_{7} \operatorname{Pr} \longrightarrow \operatorname{RC'I}_{2} - \operatorname{C} - (\operatorname{C}_{6} \operatorname{H}_{5})_{2} \longrightarrow \\ \operatorname{RC'I}_{2} \operatorname{CO}_{2} \operatorname{CI}_{3} + \operatorname{C}_{6} \operatorname{H}_{5} \operatorname{M}_{7} \operatorname{Pr} \longrightarrow \operatorname{RC'I}_{2} - \operatorname{C} - (\operatorname{C}_{6} \operatorname{H}_{5})_{2} \longrightarrow \\ \operatorname{RC'I}_{2} \operatorname{RC'I}_{2} - \operatorname{C} \operatorname{C} \operatorname{C}_{6} \operatorname{H}_{5} \operatorname{C}_{2} \longrightarrow \\ \operatorname{RC'I}_{2} \operatorname{RC'I}_{2} - \operatorname{C} \operatorname{C} \operatorname{C}_{6} \operatorname{H}_{5} \operatorname{C}_{2} \longrightarrow \\ \operatorname{RC'I}_{2} \operatorname{RC'I}_{2} \operatorname{RC'I}_{2} - \operatorname{C} \operatorname{C} \operatorname{RC'I}_{2} \operatorname{RC'I}_{2} \longrightarrow \\ \operatorname{RC'I}_{2} \operatorname{RC'I}_$

The oxidation of alkenes by chronic acid in

oulphuric acid is different from that in acetic acid nedium. The initial reaction may be the same in the two cases but the ultimate products are different. Rearrangement is possible in the former solvent⁷³. Hickinbottom and Wood^{74,75} suggested that an epoxide might be an intermediate in these reactions and the formation of the rearrangement products could be accounted for by assuring on acid catalyzed pinacole type rearrangements of the intermediate epoxide. Further, Hickinbotton and co-workers 76 suggested that the initial step involved an electrophilic addition of HoCrOA to the double bond forming an intermediate which might decompose to epoxide by loss of Cr(IV). or it night lead directly to the rearrangement products without involving the epoxide. The hypothesis was hovever, discarded by Jeiss and Ivenzie⁷⁷ who found that in the oxidation of 1-methyl fenchene with chronic acid the rearrangement product fonchene was obtained in very little acount (6%).

It appears from Hickinbottom's⁷⁸ studies that an electron pair is donated by the olefin to 0 = Cr bond producing an intermediate which rapidly reacts with water to yield the conjugated acid of an epoxide.

$$R_{2}C = CHR + 0. = Cr = 0 - R_{2}C - CHR - 0 - Cr = 0$$

$$|| = 0 - R_{2}C - CHR - 0 - Cr = 0$$

$$|| = 0 - R_{2}C - CHR - 0 - Cr = 0$$

$$|| = 0 - R_{2}C - CHR - 0 - Cr = 0$$

1:2 Diol formation is certainly a secondary reaction as epoxides can be isolated in high yields from olefins by use of chromium trioxide in acetic anhydride diluted with carbon disulphide. Seiss and Zwanzig⁷⁷ determined that the oxidation of olefins by chromic acid was of first order with respect to both olefin and chromic acid. They proposed that carbonium ion formation provided a more satisfactory explanation than the cyclic intermediate.

$$R_{2}C = CHR + 0 = Cr - 0H - R_{2}C - CHR - 0 - Cr = 0$$

$$R_{2}C - CHR$$

$$R_{2}C - CHR$$

$$R_{3}C - CHR$$

$$R_{4}C - CHR$$

$$R_{5}C - CHR$$

$$R_{5}C$$

The above mechanism can be epplied to the oxidation of conjugated dienes which easily yield ketols⁷⁹.

A detailed study of oxidation of hydrocarbons by
chronic acid has been carried out by Rocek and co-workers. They determined the relative rates of ovidation of primary, secondary and tertiary carbon-hydrogen bonds as 1:110:7000. It is seen that methyl group is beldom oxidised. The oxidation of secondary carbon-hydrogen bond yields ketones which are rapidly oxidized by chrozic acid. The yield of the hetone, therefore, depends upon the relative rates of oxidation of kotone and hydrocarbon and upon the ability of the worker to check the reaction at the point of maximum yield of ketone. In some cases g^{83} , 85 a reasonable yield of ketone is obtained where ito encligation becomes difficult. Tertiary carbon-hydrogen bond is oxidized to corresponding tertiary alcohol. 3-Ethyl-3-pentanol (50% yield) is 86.87 obtained from the chromic acid oxidation of 3-ethylpentane. Rocek⁸³ also showed that 1-methylcyclohexenol was a major interrediate in the oxidation of methylcyclohexane.

The influence of structure on the rate of oxidation of hydrocarbons was also studied by Rocek and co-workers.⁸⁰⁻⁸² They showed that an increase in the chain length caused a small increase in the oxidation rate. Steric hindrance was found to effect the reaction rate in hirhly branched chain hydrocarbons. Phenyl substitution at the reaction eite augmented the oxidation rate.

24

A considerable number of data on the mechanism of oxidation of alkanes by chromic acid in aqueous acetic acid and reasonably large kinetic isotope effect indicate that the rate determining step is the cleavage of carbonhydrogen bond. The kinetic rate law has been shown⁸⁰⁻⁸³ to be $v = k \int alkane \int \int CrO_3 \int h_0$, and the hydride abstraction mechanism,

 $R_3 - C - H + 0 = CrO_3H_2 \longrightarrow R_3C HOCrO_3H_2 \xrightarrow{H_2O} B_3COH,$ has been postulated. But Tiberg and Eisenthal⁸⁹ put forward arguments against the above mechanism and suggested the possibility of hydrogen atom abstraction-mechanism.

$$\begin{array}{l} H_{3}C - H + H_{2}CrO_{4} \longrightarrow \left[H_{3}C'H_{3}CrO_{4} \right] \\ \hline H_{3}C'H_{3}CrO_{4} \end{array} \xrightarrow{} R_{3} - C - O - Cr(IV) \\ \hline H_{3} - C - O - Cr(IV) \xrightarrow{} H_{2}O \\ \hline H_{3}COH + Cr(IV). \end{array}$$

In order to explain the rearrangement in the oxidation of nechemone, the formation of organic acide in the presence of nuide ion and enormous reactivity of the tertiary hydrogens, Bocek⁹⁰ suggested that the solventcage trapped-radical formed in the initial step should be written as resonance hybrid of the structures

 $\Box_{\mathrm{B_3C'Cr}^{\mathrm{V}}} \mathcal{I} \longleftrightarrow \Box_{\mathrm{B_3C'Cr}^{\mathrm{IV}}} \mathcal{I}$

The resonance hybrid could either decompose to the carbonium ion or undergo combination to give the Cr(IV) ester which is now generally regarded as the reaction intermediate leading to alcohol formation. The carbonium ion may be formed by the electron transfer process or by a cleavage reaction of Cr(IV) ester with carbon exygen bond. It is difficult to decide between the two possibilities.

Chromic acid has been used in the oxidation of caturated, uncaturated, hydroxy, heto and other types of acide to produce a variety of exidation products depending upon the reaction conditions and the nature of substrates. Nost of the published work describes the use of this oxident for enalytical purposes in the cleavage of fatty acid chain. It has also been applied to the disruptive oxidation of uncaturated acido and to the further oxidation of partially oxidized products such as hydroxy and keto acids. However, little work has been done on the controlled and steprise oxidation of uncaturated fatty acids with chronic acid. The difficulties encountered in this kind of study are that the large number of competitive reactions take place and the intermediate oxidation producto are more readily oxidized then the starting meterial. The cajor reaction of saturated fatty acids is an oxidative

26

degradation. The oxidation takes place initially at \propto -carbon atom. This is evidenced by the large amount of shorter chain acids which have been found among the oxidation products.

Snethlage⁹¹ studied the exidation of exalic acid by chromic acid in concentrated sulphuric acid medium. He observed that the order of the reaction with respect to chronic acid varied between 1 - 1.5 while that of oxalic acid between 1-2. Daxinum rate was found at 70% sulphuric acid concentration. Later on, Asnarce and Baga⁹² found that only 50% of oxalic acid was oxidized in all onses. Some chronic coid remained unchanged when the reaction stopped even at the boiling point. They postulated that a heat stable complex $\sum Cr(C_2O_4)(H_2O)_4$ was formed as an intermediate which was converted to $\sum Cr(C_0O_A)_0(H_0O)_0$. A series of dicarboxylic acids were studied by Rocek and Cares⁹³ who calculated the retardetion factor of carboxyl group. The exidation rate constant per methylene group has been determined to be 5.2 x 10^{-3} mole⁻¹ sec⁻¹ which agrees well with the value 5.73 x 10^{-3} 1-mole⁻¹ sec⁻¹ established in the series of n-paraffine.

A detailed study of the oxidation of formic acid

in sulphuric gold medium has been carried out by soveral investigators⁹⁴⁻⁹⁸. The reaction is found to be approximately first order with respect to formic acid and Cr(VI). But it depends upon the square of the acid concentration at low acidity, and follows h_0 , the Hanmett acidity function at higher concentrations. Waters⁹⁸ determined the isotope effect ($k_{II}/k_D = 7.2$) and solvent isotope effect ($k_{D20}/k_{H_20} = 5.7$) which indicated that the reaction involved two protons in the rate determining step. On the basis of above results two mechanisms were proposed.

(A)
$$\dot{H} + H - \dot{C} - 0.1 + H_2 Cr 0_4^7 \implies HC - 0 - Cr - 0.1 + H_2 0$$

(A) $\dot{H} + H - \dot{C} - 0.1 + H_2 Cr 0_4^7 \implies HC - 0 - Cr - 0.1 + H_2 0$

(B)
$$H = O = C = U = H$$
, $O = CrO_3R \longrightarrow II + CO_2 + Cr^{IV}$

Testheiner⁹⁹ pointed out that the chromic acid oxidation of hydroxy acids was extremely complex on account of the wide differences in reaction products. For example lastic acid was exidized not at the hydroxyl but at the carboxyl group¹⁰⁰.

$$8H + 2HCro_{4}^{-} + 3CH_{3}CHOR COCH \longrightarrow 3CH_{3}CHO + 3CO_{2} + 2Cr^{III} + 8H_{2}O$$

The above reaction does not involve an oxidation of lactic acid to pyruvic acid as an intermediate pyruvic acid, under the experimental conditions in question, undergoes further oxidation¹⁰¹ much more rapidly than it undergoes decarboxylation¹⁰². Babore and Shyan Warain¹⁰³ also studied the oxidation of lactic, malie and mendelic acids by chromic acid in perchloric acid medium. They suggested that the mechanism

$$R_{2}C \xrightarrow{0}_{\substack{ cro_{2}n_{2}^{*} \\ n \\ 0 \\ \end{array}} \xrightarrow{0}_{\substack{ cro_{2}n_{2}^{*} \\ n \\ 0 \\ \end{array}} R_{2}CO + R_{2}Cro_{3} + R_{3}O^{+}$$

proposed by Evart and Francis¹⁰⁴ for the oxidation of cyclic secondary alcohols was also applicable to this reaction.

From the above review of the literature regarding the oxidation of organic compounds by chromic acid, it may be concluded that although large amount of work has been done on the use of this oxident but only scent references are available on the oxidation of saturated fatty acids. The few references¹⁰⁵⁻¹⁰⁷ which are reported are only of qualitative nature and no systematic work has been done on the kinetics and mechanism of oxidation of saturated fatty acids by chromic acid. The work described in this thesis has been carried out with a view to study the kinetics under various experimental conditions and to threw light on the mechanism of oxidation of fatty acids. CHAPTER II

•

KINETICS OF OXIDATION OF HORMAL CHAIN FATTY ACIDS

.

INTRODUCTION

Saturated fatty acids are quite resistant to chemical oxidation. They are oxidized only by those Dakin^{107,108} reported oxidents which attack paraffins. a series of pioncering studies of oxidation of fatty acide by a mild oridizing agent, hydrogen peroxide. Later on, he repeated experiments with a view to determine the nature of ketonic oxidation products¹⁰⁹. He showed that there was a close resemblance between the oxidative processes in organisms and the oxidation reactions affected by hydrogen peroxide. It was shown that each acid from butyric to stearic yielded a methyl--ketone (R.CO.CHg), having one carbon atom less than the parent acid. The first step presumed by him was the formation of a ketonic acid which undervent decerboxylation according to the following scheme,

 $\mathbf{R} \operatorname{Cl}_2 \operatorname{Cll}_2 \operatorname{COOH} \longrightarrow \mathbf{R} \operatorname{COOH} \longrightarrow \mathbf{R} \operatorname{COOH}_3 + \operatorname{CO}_2.$

Chutterbuck and Naver¹¹⁰ carried out the oxidation of arronium salts of higher fatty acids by hydrogen peroxide and arrived at the same conclusion that the

31

first stop in the oxidation of seturated fatty acids was the production of a series of keto rather than the hydroxy acids.

Allen and Vitcemenn¹¹¹ found that certain buffered oxidation systems were useful for the oxidation of saturated fatty acids by hydrogen peroxide. They used three different catalytic systems $(Na_2HPO_4 - H_2O_2)$ system, $IIH_3 - H_2O_2$ system and $(IIH_4)_2 HPO_4 - H_2O_2$ system), and obtained carbon dioxide as the major product (59-80%). Acetic acid and acetone were also obtained in significant yields. The authors interpreted the catalytic effect of the buffers as the intensification of the feeble oxidising power of hydrogen peroxide by these substances. It was assumed that they promoted the reduction of hydrogen peroxide by supplying hydrogen from the organic acid used. The final oxidation of the substrate to cerbon dioxide was a secondary reaction depending on the addition of water and was not due primarily to the peroxide itself.

The acid catalyzed formation of peracids from aliphatic acids and hydrogen peroxide has been studied kinetically by Ogata and Sawaki¹¹². They observed that the rate of peracid formation together with equilibrium constants increased with increasing concentrations of sulphuric acid and was correlated with the acidity of medium.

Some further work on the oxidation of cerboxylic acids by hydrogen peroxide is reported in the literature. Natcher¹¹³ studied the oxidation of propionic, normal and isobutyric acids and suggested that they reacted in the molecular form, giving peracide as intermediates. After the formation of peracide, hydroxylation occurred at the ≪-carbon atom and heto acids were formed.

Berezin¹¹⁴ made a kinetic study of reactions of hydrogon peroxide with carboxylic acids. It was shown that the decomposition of hydrogon peroxide in presence of propionic acid was a first order reaction with the rate constant equal to that of the decomposition of aqueous hydrogon peroxide. They also observed that the evolution of carbon dioxide was a first order reaction. The amount of carbon dioxide formed at 110-150°C was a linear function of the degree of hydrogen peroxide decomposition. The results were interpreted by an ionradical mechanism.

Oscium tetroxide¹¹⁵ is a remarkable catalyst for the oxidation processes because of its stability in acid, basic and neutral media. $H_2O_2 - Os O_4$ system oxidizes acetic and propionic acids to carbon dioxide quantitatively. Foster and Pyne¹¹⁶ found a relation between the oxidizing action and catalytic decomposition of concentrated hydrogen peroxide by osnium tetroxide. Their method made possible the simultaneous determination of the extent of oxidation, (indicated by the amount of carbon dioxide formed) and the extent of decomposition of peroxide (indicated by the evolution of oxygen). β -oxidation of propionic acid by hydrogen peroxide has been reported on the basis of product study¹¹⁷.

Other oxidants have also been used for the oxidation of fatty acids. Dimitrov and Natan¹¹⁸ studied the oxidation of fatty monocarboxylic acids by potassium permanganate in various media. Prper chromatographic analysis of the products indicated that β -oxidation occurred in alkaline and acid media while both \ll - and β -oxidations took place simultaneously in neutral solutions. The occurrence of β -oxidation of fatty acids by potas iun permanganate in basic medium was also shown by Teunhoeffer and Eaths¹¹⁹.

Deupre¹²⁰ obtained pyruvic acid on oxidizing propionic acid by selenium dioxide. Periodic acid¹²¹ was however, shown to be incapable of oxidizing propionic acid even at 100°C in a sealed tube. The oxidizing action of quinquevalent vanadium on some oxygenated compounds of acylic series was determined by Eorette and Gaudefroy¹²². At high concentration of vanadium in 9N sulphuric acid, acetic, propionic, valeric, palmitic and stearic acids were unattacked at temperatures upto 100°C, but isobutyric and oleic acids reacted slowly.

Taters¹²³ presented the evidence to prove that the exidation of carboxylic acids by Co(III) took place by inner sphere mechanism. It involved the rapid reversible formation of a cobaltic complex breaking down slowly with liberation of free alkyl radicals which underwent further reaction. The following mechanism was proposed for the reaction.

1. $R \cdot CO_2H + CO(H_2O)_6^{3+} \xrightarrow{k_1} (R \cdot CO_2CO(H_2O)_5 - 7^{2+} + H^{+} + H_2O \cdot 2)_{2} (R \cdot CO_2CO(H_2O)_7 - 7^{2+} - \frac{k_2}{2} R^{+} + CO_2 + CO^{2+} + 5H_2O \cdot 2)_{3} R^{+} + Co^{3+} \xrightarrow{R^+} R^{+} + Co^{2+} + Co^{2+}$

4.
$$R^+ + H_0 0 \longrightarrow PO'! + \Pi^+$$

Chromic acid oxidation of carboxylic acids has been reported by several authors, but none of them has carried out the systematic kinetic investigation of these reactions. Michael Polonovski¹²⁴ reported that a strong sulfochromic mixture rapidly oxidized the lower fatty acids, but with weak mixture no reaction was found to take place. These^{105,106} acids are oxidized to acetic acid which remains unattacked under the experimental conditions. Petit⁵¹ studied the oxidizability of a number of organic compounds resistant to oxidation. In the oxidation of alighetic acids he showed that oxidimental ty increase' with increasing chain length.

EXPTERIMENTAL

Materials.

Sulphuric acid: Sulphuric acid A.R. (B.D.H.) was diluted with double distilled water A standardized with 12 sodium hydroxide.

Chromic acid: Stock solutions of chromic acid were prepared by dissolving weighed amount of AnalaR (B.D.H) potassium dichromate in definite volumes of double distilled water. Chromium trioxide solutions decomposed slowly because of the slight amount of the acid present and hence were abandoned in favour of dichromate.

Acetic acid: Acetic acid (V. Nerck) was used. The solutions were prepared by dissolving measured volumes of the acid in conductivity water.

Sodium thiosulphate: Thiosulphate solutions were made up by dissolving the requisite amounts of the solid reagent followed by standardization with potassium dichromate. The solution was always freshly prepared and its concentration checked before use. Sodium perchlorate: Sodium hydrogen sulphate and all other reagents used were either of B.D.H. AnalaR or E.Ferck. G.R. quality. The solutions were made up by dissolving weighed amounts of the reagents in double distilled water.

Organic acids: Propionic and butyric (E. Herck) valeric acids (Light), isobutyric and isovaleric, (Riedel) wore used as supplied. Phenylacetic acid (Bush) was used after recrystallication.

<u>Peacurements</u>

Experiments were conducted in oil thermostat held to within 0.1°C of the indicated temperature. Solutions of the desired concentrations for any particular experiment were made up from stock solutions. The following sequence was adopted for combining the reactants: water (to make up the volume 125 ml), sulphuric acid, substrate and chromic acid. The reaction vessel containing water, sulphuric acid and substrate and a flask containing dichromate solution of required concentration were immersed in the thermostat for 15-20 minutes to attain the steady temperature. The oxidation was commenced by adding the dichromate solution to the reaction vessel. The time of half addition of the oxidant solution was taken as the zero time of the reaction, The reaction vessel was vigorously shaken to ensure the thorough mixing of the reactants. The progress of the reaction was followed iodometrically. 10 ml aliquots of the reaction mixture were withdrawn at suitable intervals of tite usually 10 minutes. This aliquot was then discharged into 100 ml conical flask containing 10 ml of boiled and cooled double distilled water, 10 ml of 5% potassium iodide and a catalyst for dichromate-iodide reaction.

The flask was covered with paper and kept in the dark for 10 minutes. It was diluted with 20 ml of water and titrated with standard sodium thiosulphate solution using freshly prepared starch as indicator. The thiosulphate solution was restandardized frequently during the analysis due to the instability of the dilute solutions (0.010). Every run was followed till at least 50% of the reaction was complete.

^{*} B.D. Sully¹²⁶ has reported that copper is a very powerful catalyst for the reaction between potassium dichromate and potassium iodide. He showed that 1 ml of 17/1000 copper sulphate liberated 90% of iodide in 4 minutes and 10 ml of the same solution afforded 90% of the iodine in 45 seconds without a catalyst this degree of reaction requires 30 minutes.

The error introduced by air oxidation of iodide ion under these experimental conditions was negligible. The concentration of dichromate solution did not change appreciably in 511 sulphuric acid at the reaction temperature. Hence, no corrections due to these factors were applied. Several identical sets were run simultaneously in different vessels to check the reproducibility of the results. It was observed that readings were accurate to 0.5%.

Vaters has reported the uptake of atmospheric oxygen during chronic acid oxidations of organic compounds. In order to study the effect of atmospheric oxygen, three identical reaction mixtures were taken and oxygen, carbon dioxide and nitrogen gapes were bubbled through them. Rate constants were found to approximate to the same value in all these cases. The oridation, therefore, was studied in open vessels.

The concentrations of unreacted Cr(VI) in noles per litre were calculated from the volume of thiosulphate used for each fitration and have been reported in the tables. Determination of the specific rate constant (k) was accomplished by plotting log $[Cr^{VI}]$ vs. time which in each case yielded very good straight lines, whose slopes measured the first order rate constants.

Identification of oxidation products.

Acetic acid and carbon dioxide were the main products of oxidation of the fatty acids studied. They were confirmed in the following menner.

The organic acids, sulphuric acid and an excess of potassium dichromate were taken in the reaction vessel.

After the completion of oxidation (24 hrs.), the reaction mixture was transferred to a 200 ml distillation flask with a side arm for the introduction of steam. The flask was heated on a mantle. The temperature of the distillation flask and the rate of steam input were regulated so that a reasonable rate of distillation was obtained with a constant liquid lovel in the distillation flask. The efficiency of the method was demonstrated by distillation of a sample of acetic acid from an aqueous sulphuric acid - chromic acid mixture without entrainment of sulphuric acid. All distillates were tested with barium chloride to establish the absence of sulphuric acid.

The identification of acetic acid was accomplished by the lanthanun isdine test¹²⁷. A drop of the test solution was mixed on a spot plate with a drop of 5% solution of lanthenum mitrate and a drop of 0.01N iodine solution. A drop of armonia (1D) was added and in few minutes (in the presence of acetate) a blue ring developed around the drop of armonia.

Benzoic acid was obtained in the exidation of phenylacetic acid. It was detected by its usual test 127 .

The line water test gave positive indication of carbon dioxide formation.

STUDIES CITH PROPIONIC ACID

,

Order in Chromie neid

The rate of oxidation of propionic acid by chronic acid was determined by following the progress of the reaction iodometrically. It was found that first order equation with respect to chronic acid fits well in the data. A slight increase in the rate constent was observed when chronic acid concentration was decreased. Observations showing the influence of chronic acid concentration on the rate constant are recorded in the following tables. FIG. 1 DEPENDENCE OF RATE CONSTANT ON CHROMIC ACID CONCENTRATION

.

Chronic 7 acid	166.55 x 10 ⁻⁶ 17		83.32 x 10 ⁻⁴ I	
Time(mins.)	10 ⁴ /cr ^{VI} 7(11)	4+10g/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} /(1)	4+log/Cr ^{VI} 7
0	166.65	2.221	83.32	1.920
30	163,92	2.214	79.43	1.899
60	157.30	2.196	78.35	1.877
90	150.25	2.176	74.12	1.869
120	143.20	2.155	69.50	1.841
150	138.68	2.141	68,23	1.833
180	132.62	2.122	65.94	1.819
210	127.53	2.105	65.05	1.812
240	122.43	2.087	62.76	1.797
Tate constant (min. ⁻¹)	: 1.38	x 10 ⁻³	1.30	x 10 ⁻³
rig. 1.	Cu	rve 1.	Cu	rve 2.

2able - I.

Dependence of rate constant on chronic acid concentration. Secp.75⁺.1^oC; $\square_{9}SO_{4}$ 7= 5.01; [Propionic acid 7= 2.01].

Table -	· II.
---------	-------

Dependence of rate constant on chronic acid concentration. Temp.75⁺.1^oC; $(\Pi_2SO_4/2 - 5.0U; (Propionic acid/2 = 2.0U).$

Chronic_7 acid	55.53 x 1	55.55 x 10 ⁻⁶ H-		0 ⁻⁴ E
Tipe(pins.)	10 ⁴ /Cr ^{VI} /(1)	4+108/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} /(1:)	4+log/Cr ^{VI} /
0	55.65	1.744	41.66	1.619
30	52.01	1.716	36.07	1.557
60	49.32	1.693	34.81	1.541
90	46.87	1.670	33.54	1.625
120	45.25	1.655	30.70	1.487
150	43.00	1.633	30.20	1.480
160	40.75	1.610	28.57	1.455
210	39.74	1.599	26.80	1.428
240	38.40	1.594	23.00	1.361
Eate constar (min. ⁻¹)	nt 1.50	x 10 ⁻³ .	1.52 :	x 10 ⁻³
Fig. 1.	Cu	rve 3.	Cu	rve 4.

71me(mins.)	10 ⁴ /8r ^{VI} 7(11)	4+10E/Er ^{VI} 7-	10 ⁴ /cr ^{VI} /(E)	4+10g/Cr
0	33, 33	1.582	27.77	1.443
30	27.90	1.445	21.75	1.337
60	27.22	1.435	19.95	1.301
90	25.87	1.412	19.43	1.288
120	25.08	1.399	18.86	1.275
150	23,38	1.509	17.96	1,254
180	22.76	1.387	17.17	1.234
210	22.20	1.346	16.32	1.212
240	20.40	1.309	15.48	1.189
late constant (min. ⁻¹)	t 1.47 :	r 10 ⁻³	1.56 :	x 10 ⁻³
Flg. 1.	Cu	eve S.	Cu	rvo 6.

Table - III.

Dependence of rate constant on chronic acid concentration. Temp.75⁺.1^oC; _R₂SO₄ **7**= 5.01; _Propionic acid **7**= 2.01.

Order in Propionic acid

The order of beaction with respect to propionic acid was determined by varying the propionic acid concentration, keeping chronic acid and sulphuric acid concentrations constant. The rate constants thus obtained at different propionic acid concentrations were plotted against propionic acid concentration. A straight line passing through the origin was obtained which indicated that the order of the reaction with respect to substrate is unity. The plot of rate constant Ys concentration is shown in fig. 3. DEPENDENCE OF RATE CONSTANT ON PROPIONIC ACID CONCENTRATION

FIG. 2

2 a b 1 e - IV.

Dependence of rate constant on the concentration of propionic acid.

Temp.75[±],1^o0; [H₂S0₄]= 5.01; [Cr^{VI}]= 33.33 x 10⁻⁴1.

[Propionic]	7 0.	0.20		0.5!!	
Time(mins.)	10 ⁴ /cr ^{VI} /(11)	4+10g/Cr VI7	10 ⁴ /0r ^{VI} 7(11)	4+108/Cr VI7	
0	33,33	1,522	33, 33	1.522	
30	32,36	1.516	31.98	1.505	
60	32.06	1.510	31.18	1.494	
90	31.98	1.005	29.78	1.474	
120	81.00	1.497	28.84	1.460	
150	31.04	1.492	28.24	1.456	
160	30,62	1.486	26.92	1.430	
210	30,20	1.480	26 * 18	1.418	
240	29.78	1.474	25.11	1.400	
Rate constan (min. ⁻¹)	t 0.47 x	10-3	1.15 x	10 ⁻³	
F1g. 2.	Cu	rve 1.	Cur	ve 2.	

$2able - V_*$

,

Dependence of rate constant on the concentration of propionic acid.

Yomp.75[±].1^oC; [H₂SO₄]= 5.00; [Cr^{VI}]- 33.33 x 10⁻⁴0.

Propionic_7	1.01		1.69	
fine(mins.)	10 ⁴ /Cr ^{VI} /(11)	4+10c/Cr ^{VI} 7	10 ⁴ (II)	4+log/Cr
0	33.33	1.522	33.38	1.522
30	30.06	1.478	29.86	1.475
60	27.80	1.444	26.70	1.426
90	26.42	1.422	24.58	1.390
120	24.15	1.383	22.58	1.353
150	23.28	1,367	21.17	1,325
180	21.62	1.335	19.60	1.292
210	20.32	1.308	17.51	1.243
240	18.83	1.275	16.65	1.221
Bate constant (min1)	2.30 x	10 ⁻³	3.22 x	10 ⁻³
F1.C. 2.	Cur	vo 3.	Curv	e 4.

FIRST ORDER DEPENDENCE OF RATE CONSTANT ON PROPIONIC ACID CONCENTRATION

FIG. 3

Propionic_7 acid	2.01		2.51	
Tice(cine.)	10 ⁴ /cr ^{VI} /(II)	4+10g/CrVI7	10 ⁴ /0r ^{VI} /(II)	4+100/Cr ^{VI} 7
0	33,33	1.522	33.33	1.522
30	29.82	1.474	28.53	1.465
60	25.41	1.405	24.96	1.397
90	22.30	1.331	18.78	1.273
120	19.67	1.293	17.22	1.236
150	17.77	1,250	16.65	1.221
180	15.88	1.201	14.54	1.162
210	14.34	1.156	12.96	1.112
240	13.14	1.118	11.68	1.067
Rate constant (min1)	4.37	x 10 ⁻³	5 .37 x	10 ⁻³
Fig. 2.	Cu	rve 5.	Curv	e 6.

Pable - VI.

-

Dependence of rate constant on the concentration of Propionic acid.

Hydrogen ion concentration variation

The influence of hydrogen ion on the rate constant was determined at constant chromic and propionic acid concentration. Sulphuric acid concentration was varied constant maintaining the ionic strength by using sodium hydrogen sulphate. It was observed that the quotients obtained by dividing pseudo first order rate constants by corresponding hydrogen ion concentration vary from run to run. However, when the first order rate constants were divided by square of hydrogen ion concentration, the values so obtained were reasonably constant, showing second order dependence on acidity. The data are presented in the following tables.

.

Table -	- VII.					
Acidity dependence of the exidation rate.						
Sepp.75-,1°	H2SO4J	$H_2SO_4 7 + (HallSO_4 7 = 6.01);$				
	[Propionic	c acid]= 2.0	=; <u>(</u> Er ^{VI} 7= 33)	.33 x 10 ⁻⁴ N.		
_n2804_7	3.5 13	3.513				
Tine(mins.)	10 ⁴ /Cr ^{VI} 7(11)	4+log/cr ^{VI} 7	10 ⁴ /cr ^{VI} /(11)	4+10@/Or VI7		
0	33.33	1.622	33, 33	1.522		
30	29.43	1.468	29.31	1.481		
60	27.24	1.435	27.60	1.441		
90	26.35	1.420	26.28	1.419		
120	25.66	1.409	24.96	1.397		
160	25.18	1.401	23.78	1.376		
180	23.40	1.369	28.05	1.362		
210	21.90	1.340	21.58	1.334		
240	21.42	1.330	20.11	1.303		
270	20.80	1.318	18.96	1.275		
Rate constan (min. ⁻¹)	nt 1.66 :	к 10 ⁻³	1.98 x	10 ⁻³		
Fig. 4.	Cur	ve 1.	Cur	ve 2.		

.

[n2604]	4.50		5.01	
Tine(mins.)	10 ⁴ /cr ^{VI} 7(E)	4+100/Cr VI7	10 ⁴ /cr ^{VI} /(1)	4+10g/CrV
0	33, 33	1.522	33.33	1.522
30	29.14	1.464	28,25	1.451
60	26.70	1.426	25.18	1.401
90	24.82	1.394	22,90	1.360
120	23.56	1.372	20.44	1.310
150	22.24	1.347	18.70	1.271
180	20.65	1.319	17.23	1,236
210	19.10	1.291	16.22	1.210
240	17.84	1.251	15.63	1.194
270	16.60	1.220	18.23	1.182
300	-		-	-

.

Table - VIII.
Table	- IX.		
Acidity dep	endence of the	oxidation rate.	
Temp. 754.10	C: (H-SO. 7 +	/ HeHSO, $7 = 6.01$	
	/Propionic	acid 7=2.011 /Cr VI7= 35.33	t 10 ⁻⁴ 11.
<u> </u>	5.	.50	
Tine(mins.)	10 ⁴ /Er ^{VI} 7(11)	4+106/Cr ^{VI} 7	
0	33.33	1.622	
30	27.18	1.434	
60	22.90	1.360	
90	20.50	1.310	
120	18.14	1.258	
150	16.42	1.215	
180	14.70	1,167	
210	11.45	1.060	
240	9.17	0.962	
270	8.28	0.918	
300	••		
Rate consta (min. ⁻¹)	nt 4.61 :	x 10 ⁻³	
Fig. 4.	Cu:	rve 5.	

2 6	b	1	Ø	-	R.
-----	---	---	---	---	----

Acidity dependence of the oxidation rate. Temp.75⁺.1^oC; $[H_2SO_4_7 + [NaIISO_4_7 = 6.01];$ [Propionic acid_7= 2.01]; $[Cr^{VI}7= 53.33 \times 10^{-4}]].$

	6.0M	
Tine(mins.)	10 ⁴ /cr ^{VI} /(E)	4+100/CrVI7
0	33.33	1.522
20	28.00	1.447
40	24.20	1.383
60	20.93	1.320
80	18,67	1.267
100	17.00	1.230
120	16.13	1.207
140	14.26	1.154
160	12.06	1.081
180	11.20	1.049
Rate constant (min. ⁻¹)	: 5.37 x	10 ⁻³
F17. 4.	Cur	ve 6.

Ť	8	Ð	1			XI.
---	---	---	---	--	--	-----

.

Effect of acidity on the rate constant.

<u></u> (M)	<u>_</u> **_7 ^e	k x 10 ³ (min, ⁻¹)	$\frac{k}{(1mole min^{2})} \times 10^{4}$	$\frac{k}{(1^{2},mole^{-2}min.^{-1})}$
3.5	12.25	1.66	4.74	1.36
4.0	16.00	1,98	4.95	1,24
4.8	20.25	2.56	5.60	1.26
5.0	25.00	3.65	7.80	1.45
5.5	80,25	4.61	8.58	1.82
6.0	86.0	5.37	8.59	1.49

Tomperature dependence

The variation of reaction rate with temperature was utilized to obtain the energy of activation and other thermodynamic parameters. The reaction under consideration was, therefore, studied at five different temperatures at constant concentrations of the reactants. The plot of log E Vs $\frac{1}{T}$ gave a straight line from the slope of which the energy of activation was calculated and found to be 17.0 Real. The heat of activation (ΔH^{\dagger}) and entropy of activation (ΔS^{\dagger}) were calculated by making use of the following equations.

$$k = \frac{RT}{h} = \frac{-\Delta F^{\dagger}/RT}{e} \quad (Eyring Equation)$$
$$\Delta H^{\dagger} = E - RT$$
$$\Delta S^{\dagger} = \frac{\Delta H^{\dagger} - \Delta F^{\dagger}}{T}$$

There the symbols have their usual meaning. The values are $\triangle R^{\pm} = 16.3$ Heal

△5⁺= -30.8: eu.

FIG. 5 TEMPERATURE DEPENDENCE OF THE RATE CONSTANT

Table - XII

Temperature dependence of the reaction rate.

 $[H_2S0_4_7 = 5.0E; [Propionic acid_7 = 2.2H; [Cr^{VI}7 = 33.33 x 10⁻⁴U.]$

Temperature	34	3°R	349 ⁰ K	
fine(mins.)	10 ⁴ /Cr ^{VI} 7(1)	4+10g/CrVI7	10 ⁴ /cr ^{VI} 7(1)	4+106/Or ^{VI} /
0	33.33	1.522	33.38	1.522
20	30.20	1.480	30.06	1.478
40	28.37	1.453	28.80	1.428
60	26.66	1.426	23.70	1,375
80	24.94	1.397	21.62	1.335
100	23.72	1.375	19.05	1.280
120	22.50	1.352	17.70	1.248
150	20.04	1.302	16.60	1.220
180	18.75	1.273	16.03	1,188
210	17.30	1.238	15.20	1.148
Rate constant (min1)	t 3.10 x	10 ⁻³	4.62	x 10 ⁻³
Fig. 5.	Cur	ve 1.	Cu	rve 2.

Table - XII	1	٠
-------------	---	---

Temperature dependence of the reaction rate.

 $[H_2S0_4]$ = 5.0%; [Propionic acid] = 2.2%; [Cr^{VI}] = 33.33 x 10⁻⁴M.

Tepperature	353 ⁰ K		358 ⁰ E	
fine(nina.)	10 ⁴ /Cr ^{VI} /(1)	4+log/GrVI7	10 ⁴ /6r ^{VI} /(15)	4+10g/0r ^{VI} 7
0	33.33	1.522	83.33	1,522
10	29.78	1.474	29.37	1.468
20	27.92	1.446	26.92	1.430
30	25.82	1.412	24.10	1,382
40	23.87	1.378	22.18	1,346
50	21.92	1.341	20.80	1.318
60	20.55	1.313	19,10	1.281
80	18.32	1.263	16.82	1,226
100	16.52	1.218	14.38	1.158
120	14.96	1.175	12.82	1.108
Rate constan (min. ⁻¹)	t 6.70 x	10 ⁻³	9.23	x 10 ⁻³
Fig. 5.	Cu	rve 3.	Cu	rve 4.

FIG.6

Pable - XIV.

Respondence of the reaction rate.

 $[H_250_4]$ = 5.00; [Propionic coid] = 2.20; [Cr^{VI}] = 33.33 x 10⁻⁴M.

Tenporati	ire 3	63 ⁰ n	
Fine(nins.)	10 ⁴ /cr ^{VI} /(1)	4+10c/Cr ^{VI} 7	
0	33.33	1.522	
10	28.84	1.460	
20	25.40	1.405	
30	22.70	1.356	
40	20.74	1.317	
50	19.10	1.281	
60	17.37	1.240	
70	14.90	1.173	
80	13.18	1.120	
90	12.13	1.084	
100	10.86	1.036	
Rate cons (min.	tant 11.98 1)	x 10 ⁻³	
Pig. 5.	C	urve 5.	

•

Influence of ionic strength

The effect of ionic strength on the rate constant was examined by adding varying amounts of sodium perchlorate. The other factors such as the concentrations of the reactants and temperature were kept identical. A plot of $/a^{1/2}$ Vs log K does not give any significant information because the ionic otrengths are not in the range in which Debyo-Huchel theory is applicable. The results showing the influence of ionic strength on the rate constant are tabled below.

Trac1047	1711		0.5M	
ionic strength	4.5	4.513		
Tine(nine.)	10 ⁴ /cr ^{VI} /(E)	4+10g/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} 7(1:)	4+log/CrVI
0	41.66	1.619	41.66	1.619
30	83.55	1.586	38.30	1.583
60	37.08	1.569	37.35	1.572
90	35.86	1.554	37.10	1.569
120	34.80	1.541	35.88	1.554
150	33.66	1.527	34,85	1.542
180	32.66	1.516	34.46	1.524
210	32.03	1.505	32.68	1.614
240	31.62	1.500	31.31	1.495
Eate constan (min. ⁻¹)	nt 0.96 x	10 ⁻³	1.00 :	x 10 ⁺³
Fic. 7.	Cu	rve 1.	Cu	rve 2.

2able - XV.

•

or of tasis strength on the pote constant. ----

62

[naclo ₄]	1.013		1.51	
Íonic_ etrength	5.51		6.011	
Time(nine.)	10 ⁴ /cr ^{VI} 7(11)	4+100/0r ^{VI} 7	10 ⁴ /cr ^{VI} /(1:)	4+log/Cr ^{VI}
0	41.66	1.619	41.66	1.619
30	29.24	1.593	39.93	1.601
60	38.38	1.584	37.37	1.572
90	37.18	1.570	36.00	1.557
120	36.57	1.563	34+25	1.536
150	35.79	1.553	33.83	1.529
180	34.76	1.541	32.35	1.510
210	32.51	1.512	31.04	1.491
240	30.81	1.439	29.30	1.467
Sate constan (min. ⁻¹)	t 1.10 x	10 ⁻³	1.42 x	10 ⁻³
F1g. 7.	Cur	ve 3.	Cur	ve 4.

-

Sable - XVL.

Effect of ionic strength on the rate constant. + .0. . . ---

Effect of ion	uic strength	on the rate cor	istent.
Temp. 80±. 1°C	$\frac{1}{\sqrt{c_r}} \frac{1}{\sqrt{c_r}} \frac{1}{\sqrt{c_r}} = 41$	511; / Propior 1.66 x 10 ⁻⁴ 11.	nic acid 7=2.00;
[bec104]	2.0		
Lonic Strength	6.8	513	
Tine(nine.)	10 ⁴ /Cr ^{VI} 7(1)	4+log/ErVI7	
0	41.66	1.619	
30	39.08	1.592	
60	37.41	1.573	
90	35.07	1.545	
120	31.98	1.505	
150	31.11	1.493	
180	28.24	1.451	
210	26.73	1.427	
240	25.46	1.406	
Rate constant (min. ⁻¹)	t 1.53 1	10 ⁻³	
Fig. 7.	Cur	wc 5.	

fable - XVII

64

•

Fifect of Acetic acid

Rate constants with reference to chronic acid were determined for the reaction in absonce and in the presence of various amounts of acotic acid. It was found that the rate constants increased with the increasing emounts of acotic acid. The data are presented below.

[Acetic_7 acid	NIL		0.21		
Pine(mins.)	10 ⁴ /cr ^{VI} /(11)	4+10g/CrVI7	10 ⁴ /cr ^{VI} /(11)	4+log/Cr ^{VI}	
0	26.66	1.425	26.66	1.425	
20	23.92	1.378	24.14	1.382	
40	20.17	1.304	18.48	1.266	
60	16.31	1.212	16.24	1.210	
80	14.18	1.151	13.00	1.114	
100	11.15	1.047	10.04	1.011	
120	9.21	0.964	8.63	0.936	
140	8.18	0.912	6.75	0.829	
160	7.60	0.881	5.30	0.724	
180	-	-	3.80	0.579	

Seble - XVIII.

[Acetic_] acid	0.513		1.011		
Tine(mins.)	10 ⁴ /Cr ^{VI} /(11)	4+105[Cr ^{VI}]	10 ⁴ /Cr ^{VI} /(11)) 4+10[[[[]	
0	26.66	1.425	26.66	1.425	
20	23.70	1.374	23.63	1.373	
40	19.20	1.283	17.57	1.244	
60	14,76	1.163	13.25	1.122	
80	12.36	1.092	10.13	1.005	
100	9.66	0.980	7.69	0.886	
120	8.34	0.921	5.80	0.763	
140	7.18	0.856	5.00	0.699	
160	5.36	0.729	3.62	0.559	
180	3.16	0.500		-	
Bate constan (min1)	nt 11.50	x 10 ⁻³	14.04 x 10 ⁻³		
F16. 8.	Cu	rve 3.	Cı	arve 4.	

-

Table - XIX.

.

[Acetio_] acid	1.	511	2.011	
fine(mine.)	10 ⁴ /cr ^{VI} /(11)	6+log/CrVI7	10 ⁴ /cr ^{VI} /(1:)	4+log/Cr ^V
0	26.66	1.425	26.66	1.425
20	22.62	1.354	19.00	1.278
40	19.90	1.199	15.21	1.182
60	12.52	0.976	9.95	0.998
80	8.70	0.939	5.23	0.718
100	6.17	0.790	3.85	0.585
120	5.04	0.702	2.71	0.433
140	3.90	0.590	2.40	0.380
160	3.30	0.518	1.37	0.198
180	-	-114	-	-

Table - XX.

STUDIES WITH BUTYRIC ACID

Order in Chromic acid

The rate of disappearance of Cr(VI) was a first order reaction in the presence of butyric acid. However, as the concentration of Cr(VI) was decreased, the magnitude of first order rate constants increased, but not to an extent such that a higher order term in $\langle Cr^{VI} \rangle$ may be defined. The data representing the variation in rate constants with varying concentrations of $(\forall r^{VI})^{-1}$ are shown in the following tables.

FIG.9 DEPENDENCE OF RATE CONSTANT ON CHROMIC ACID CONCENTRATION

T	8	ъ	1	e		XXI.
---	---	---	---	---	--	------

Dependence of rate constant on chronic acid concentration. $\text{Semp.80^{\pm}.1^{\circ}C; } \square_{2}SO_{4} = 5.011; } Dutyric acid <math>2 = 0.511.$

Chronic_7 seid	93.33 x 10 ⁻⁴ 11		55.55 x 10-4	
Time(mins.)	10 ⁴ /Cr ^{VI} /(13)	4+100/Cr VI7	10 ⁴ /Cr ^{VI} /(E)	4+108/0r VI7
0	83.33	1.920	55.55	1.744
20	71.04	1.850	47.86	1.630
40	61.77	1.790	41.69	1.620
60	53.02	1.724	36.02	1.556
80	47.18	1.673	34.26	1,534
100	42,36	1+627	30.98	1.491
120	36.40	1.561	27.33	1.436
140	31.71	1.501	22.17	1.345
160	26.26	1.419	17.38	1.240
180	22.08	1.343	***	-
Rrte constant (min1)	: 6.90 x	6.90 x 10 ⁻³		10 ⁻³
F1c. 9.	Cur	Curve 1.		ve 2.

2 able - XXII.

Dependence of rate constant on shromic acid concentration. $\text{Remp.80^+,1^{\circ}C}$; $\sum H_2SO_4$ 7= 5.00; $\sum Butyric acid_7= 0.52$.

[Chromic] acid	41.66 x 10	-4 ₁₁	33.33 x 10 ⁻⁴		
Time(mins.)	10 ⁴ /cr ^{VI} 7(1)	4+100/0r VI7	10 ⁴ /Gr ^{VI} 7(II)	4+100/Cr VI7	
0	41.66	1.619	33.33	1.522	
20	34.11	1.533	27.23	1.436	
40	28.92	1.461	22.75	1.357	
60	25.39	1.404	19.32	1.286	
80	22.38	1.349	16.98	1.230	
100	20.45	1.310	14.26	1.154	
120	17.86	1.252	12.01	1.079	
140	15.27	1.184	10.00	1.000	
160	13.42	1.129	8.373	0.922	
180	4 *	-	-	-	
Rate constan (min1)	t 7.60 x	7.60 x 10 ⁻³		x 10 ⁻³	
11 ₇ . 9.	Cu	rve 3.	Cu	rve 4.	

Toble - XXIII.

.

Dependence of rate constant on chronic acid concentration. Temp.80⁴.1^oC; \square_2 SO₄ = 5.0S; \square Butyric acid = 0.5D.

[Chronic_] 27.77 x 10 ⁻⁴ U acid			23.80 x 10 ⁻⁴ 11		
Tine(mine)	10 ⁴ /cr ^{VI} /(1)	4+10c/Cr ^{VI} 7	10 ⁴ /cr ^{VI} 7(1)	4+10[[Cr ^{VI}]	
0	27.77	1.443	23.80	1.376	
20	20.79	1.317	16.80	1.225	
40	16.50	1.217	13.60	1.133	
60	13,18	1.120	10.97	1.040	
80	11.89	1.075	9.04	0.956	
100	9.51	0.978	8,20	0.913	
120	8.27	0.917	6.70	0.826	
140	7.49	0.875	5.61	0.749	
160	6.67	0.824	4.38	0.642	
180	-	-	-	-	
Rate const. (min. ⁻¹)	ent 8.23 :	x 10 ⁻³	8.75 x	10-3	
F15. 9.	C	urve 5.	Cu	rve 6.	

C	a	b	1	e	-	XXI	¥,	•
----------	---	---	---	---	---	-----	----	---

Dependence of rate constant on chronic acid concentration. Temp.80⁺.1^oC; \Box H₂SO₄7= 5.0U; \Box Butyric acid 7 = 0.5U.

Chronic_7 acid	20.83 x 1	0 ⁻⁴ 17	18.51 x 10 ⁻⁴ 11		
fine(mine.)	10 ⁴ /Cr ^{VI} 7(11)	4+100/CrVI7	10 ⁴ /Er ^{VI} 7(1)	4+100/CrVI7	
0	20.83	1.318	18.51	1,267	
10	18.50	1.267	14.10	1.149	
20	16.53	1.218	12.06	1.081	
30	14.83	1.171	10.95	1.039	
40	13.40	1.127	10.10	1.004	
50	12.05	1.080	9.27	0.967	
60	11.02	1.041	8.48	0.928	
70	10.24	1.010	7.87	0.895	
80	9.56	0.971	7.45	0.872	
90	8.92	0.950	7.06	0.848	
100	8.33	0.920	6.32	0.800	
Sate constan (uin1)	ate constant 8.23×10^{-3} (min. ⁻¹)		8,23 :	x 10 ⁻³	

T15. 9.

Curve 7.

Order in Butyric acid

The order of the reaction with respect to butyric acid was determined in the same fachion as in the case of propionic acid. Chromic acid and sulphuric acid concentrations were kept constant and butyric acid concentration was varied stepwise. The plot of rate constant Vs concentration gave a straight line indicating first order dependence on butyric acid. The typical plot is shown in figure 11.

FIG.10 DEPENDENCE OF RATE CONSTANT ON BUTYRIC ACID CONCENTRATION

[Butyric] noid	50.0 x	10 ⁻² 11	33.0 x 1	0 ⁻² 13
Time(mino.)	10 ⁴ /Cr ^{VI} /(1)) 4+10c/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+10g/Cr
0	33,33	1.522	33.33	1.522
30	25.31	1.403	27.40	1.437
60	16.80	1.225	23.86	1.377
90	11.77	1.071	21.11	1.324
120	9.14	9.960	18.28	1.262
150	7.78	0.690	16.10	1.206
180	5.37	0.730	14.33	1.156
210		45	12.35	1.091
240	MAR T	4888 -	10.80	1.033
270	-	1867	9.74	0.988
300	-	-	-	dip.
Pete constan (min. ⁻¹)	'etc constant 8.44 x 10 ⁻³ (min. ⁻¹)		4.60 x	10 ⁻³
Fig. 10.	Cu	rve 1.	Cur	vo 2.

Tablo - XXV.

Table -	- XXVI.			
Dependence d butyric acid	of rate const. 1.	nnt on the co	ncentration o	ſ
?enp.80 ¹ .1 ⁰	: [B2504.7=	5.013 (Cr VI7	= 33.33 x 10	-4 _{II.}
[Butyric] acid	25.0 x 10	-2 ₁₇	20.0 x 10	-2 ₁₁
fise(sine.)	10 ⁴ /Cr ^{VI} /(11)	4+10g/CrVI7	10 ⁴ /0r ^{VI} 7(E)	4+10c/Cr V17
0	53,35	1.522	33.33	1.622
30	28.60	1.456	29.51	1.671
60	24.94	1,397	27.05	1.432
90	21.83	1.339	24.74	1.393
120	19.47	1.239	21.94	1,341
150	17.30	1.238	20.89	1.320
180	15.41	1.187	19,42	1.288
210	13.71	1.137	17.72	1.248
240	12+03	1.080	16.76	1.224
270	10.68	1.029	•••	•
300	-	-	-	rializat
Rate constar (min1)	at 4.03 :	x 10 ⁻³	2.88 x 10 ⁻³	
F1.3. 10.	Cu	rve 3.	Cur	vo 4.

Dependence of	rate const	ant on the co	ncentration o	ſ
Temp.80 [±] .1 ^o C;	(H2804_7=	5.011 [Cr ^{VI}	7= 33.33 x 10	-4 _{11.}
Butyric_7 acid	13.3 x 10 ⁻	2 ₁₃	10.0 x	10 ⁺² ⊔
Time(mino.) 1	0 ⁴ /cr ^{VI} 7(11)	4+10g/0r VI7	10 ⁴ /cr ^{VI} /(1)	4+108/0r VI7
o	33.33	1.522	33. 33	1.522
30	30.60	1.485	32.31	1.509
60	28,00	1.667	30.90	1,490
90	26.94	1.430	30.30	1.481
120	25.05	1.398	29.34	1.467
150	23.55	1.372	28,26	1.451
180	21.85	1.339	26.71	1.426
210	20.16	1.304	25.56	1.407
240	19.24	1.284	24.42	1,387
270	17.85	1.251	-	*
300	-	-	-	-
Rate constant (min1)	2,30 :	x 10 ⁻³	1.38 :	r 10 ⁻³
F13. 10.	Cu	rve 5.	Cur	7e 6.
	366			

Table - XXVII.

FIRST ORDER DEPENDENCE OF RATE CONSTANT ON BUTYRIC ACID CONCENTRATION

FIG, 11

[Butyric_7 acid	utyric_7 6.6 x 10 ⁻² 11 acid		4.0 x 10 ⁻² 11	
fine(mine.)	10 ⁴ /cr ^{VI} /(E)	4+103/CrVI7	10 ⁴ /Cr ^{VI} 7(11)	4+10c/CrVI
0	33 . 33	1.522	33.33	1.522
30	31.10	1.492	31.65	1.500
60	29.82	1.474	30.64	1.486
90	29.44	1.469	29.88	1,475
120	28.30	1.451	29.51	1.471
150	27.92	1.445	29.01	1.462
180	26.82	1.428	28.51	1.485
210	26.32	1.420	28.13	1.449
240	25.55	1.407	27.82	1.444
270	24.85	1.395	27.51	1.439
300	•	-	-	***

lydrogen ion concentration variation

For studying the offect of hydrogen ion on the rate, experiments were performed with different concentrations of sulphuric acid. Ionic strength and sulphate content of the reaction mixture was maintained constant by adding requisite amounts of sodium hydrogen sulphate. The concentration of hydrogen ion was calculated on the assumption that first dispociation of sulphuric coid

is complete and the second dissociation is negligible.

Observations at various hydrogen ion concentrations are tabled below.

FIG-12 ACIDITY DEPENDENCE OF THE RATE CONSTANT

a b	Sable - XXIX.											
Acidity dependence of the oxidation rate. Temp.70 [±] .1 ^o C; $[H_2SO_4] > [HaHSO_4] = 6.0H;$ [Butyric acid] = 0.5L; $[Cr^{VI}] = 26.66 \times 10^{-4} H$												
								(H2504.7	3 .0 1	3.55		
								Time(mins.)	10 ⁴ /Cr ^{VI} 7(1)	4+10g/CrVI7	10 ⁴ /Cr ^{VI} /(II)	4+log/ErV17
0	26.66	1.425	26.66	1.425								
20	28.32	1.403	24.98	1.397								
40	24.18	1.383	23.76	1.376								
60	22.67	1.355	22.87	1.359								
80	21.70	1.336	21.81	1.338								
100	21.43	1.331	20.76	1.317								
120	20.90	1.320	19.13	1.281								
140	20.34	1.308	18.23	1.260								
160	19.88	1.298	17.60	1.245								
180	18,90	1.276	16.18	1.209								
200	10.22	1.260	15.28	1.184								
Rate consta (min. ⁻¹)	nt 2.92 x	2.92 x 10 ⁻³		10-3								
F1g. 12.	Cur	Curve 1.		76 2.								
19	[Tr VI7 =	26.66 x 10 ⁻⁴ II.		an a								
---------------------------------------	---------------------------------------	------------------------------	--	--								
/H2504-7	4.013		4.50									
fine(nine.)	10 ⁴ /or ^{V1} /(1) 4+106/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+lon (Cr VI7								
0	26.66	1.425	26.66	1.425								
20	22.51	1.352	21.42	1.330								
40	20.24	1.306	19.24	1.284								
60	18.30	1.262	17.01	1.230								
80	17.22	1.236	14.62	1.165								
100	15.11	1.179	13.64	1.135								
150	14.35	1.157	11.63	1.065								
140	13,50	1.130	10.00	1,000								
L60	13.06	1.116	8.15	0.911								
180	11.82	1.072	7.28	0.862								
200			-	-								
Pate constar (min. ⁻¹)	at 4.90	x 10 ⁻³	6.83 x	10 ⁻³								
F1g. 12.	CI	arve 3.	Cu	rve 4.								

Table -	- XXXI.			
Acidity dop	endence of th	ne oxidation r	ato.	
Temp.7010	C; [12504]	+ [Talls04]-	6.0II;	
	_Butyric	acid 7= 0.50;	[Cr ^{VI} 7= 26.6	6 x 10 ⁻⁴ N.
[H2804]	5.00		5.511	
Tine(cinc.)	10 ⁴ /cr ^{VI} /(1)	4+100[0r ^{V1} 7	10 ⁴ /cr ^{VI} /(=)	4+10@[Cr ^{VI}]
0	26.66	1.425	26.66	1.425
20	19.94	1.299	18.80	1.274
40	17.00	1.230	17.37	1.240
60	14.56	1.163	14.81	1.170
80	12.35	1.091	9.12	0.960
100	11.50	1.060	6.37	0.604
120	7.92	0.898	5.11	0.708
140	6.88	0.837	3.30	0.518
160	6.02	0.779	2.74	0.439
180	5.20	0.716	1.92	0.284
200	-		-	-
Rate consta (min. ⁻¹)	nt 8.64 1	r 10 ⁻³	11.06 x	10 ⁻³
Fig. 12.	Cu	trve 5.	Cur	ve 6.

Table - XXXII.

· · ·

.

Effect of acidity on the rate constant

<u>(п)</u>	<u> </u>	k x 10 ³ (min. ⁻¹)	$\frac{k}{\sqrt{1}^{+}7} \times 10$ $1.mote = mim.)$	$\frac{3 \frac{k}{\sqrt{H^{+}}}}{7^{2} \times 10^{4}}$ (1 ² .molc ⁻² min. ⁻¹)
3.0	9.00	2.92	0.97	3.26
3.5	12.25	3.70	1.05	3.02
4.0	16.00	4.90	1.22	3.06
4.5	20.25	6.83	1.51	3.37
5.0	25.00	8.64	1.72	3.44
5.5	30.25	11.06	2.01	3.65

Temperature dependence

Under identical conditions of reactants concentrations and at constant ionic strength, the reaction has been studied at five different temperatures. The reaction could not be studied at lower temperature because the rate is too slow to be kinetically studied. However, the activation energy and other thermodyname functions of the process were calculated from three equations given sarlier. The energy of activation was found to be 18.4. Keal and the values of ΔH^{\pm} and ΔS^{\pm} are 17.7. Keal and -26.1 ou respectively.

FIG.13 TEMPERATURE DEPENDENCE OF THE OXIDATION RATE

- ~ °2~~,	ζ°	* ^{VI} 7 = 33.35	× 10 ⁻⁴	
lepperature	343 ⁰ U		340 ⁰ r	
Tipe(mine.)	10 ⁴ /0r ^{VI} 7(E)	4+10c/Cr VI7	10 ⁴ /cr ^{VI} 7(1)	4+10[[[Cr ^{V1}]]
0	33.33	1.522	33.33	1.522
10	32.61	1.516	30.11	1.478
20	31.40	1.497	28.01	1.447
30	30.31	1.481	25.98	1.414
40	29.41	1.469	25.19	1.401
50	28.44	1.454	23.03	1.362
60	27.54	1.441	21.92	1.340
70	25.00	1.617	20.60	1.314
80	24,28	1.387	19.91	1.301
90	21,23	1.327	19.28	1,285
100	-	•	18,50	1.267
Eate constan (min. ⁻¹)	nt 3.60 x	10 ⁻³	6.08 x	10-3
Fig. 13.	Cu	rve 1.	Cu	FV0 2.

-

2 a b) 1 e -	XXXIV.			
Tompe	ature	depondonce o	f the reactio	n rate.	
CH2s	60 4-7= 5	.OU; [Butyr	ic acid 7= 0.	50,	
	-	[Cr ^{VI} 7 =	33,33 x 10 ⁻⁴	Π.	
Penpo	rature	363 ⁰ k		358	°K.
Tide((mina.)	10 ⁴ /cr ^{VI} /(11)	4+10 [Cr ^{V17}]	10 ⁴ /Cr ^{VI} 7(II)	4+log/Cr ^{VI} 7
0		33.33	1.522	33.33	1.522
10		30.06	1.478	28.01	1.647
20		27.24	1.435	23.50	1.371
30		24.80	1.394	20.64	1.314
40		22.62	1.354	17.26	1.237
50		20.51	1,312	14.20	1.152
60		18.67	1.271	12.94	1.112
70		17.40	1.240	11.22	1.050
80		16.28	1.211	9.16	0.962
90		15.20	1.181	8.23	0.915
100		18+97	1.145	7.50	0.875
Eate (r	constan nin. ⁻¹)	t 9.00 x	10 ⁻³	13.88 :	x 10 ⁻³
Mg.	13.	Cur	ve 3.	Cu	cvo 4.

86

-

FIG. 14 ACTIVATION ENERGY

Tepperature	363 ⁰ K		368 ⁰ K	
fice(cine.) 1	10 ⁴ /Cr ^{VI} /(1)	6+10g/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+10g/Cr ^V
0	33.33	1.522	33.33	1.522
10	26.75	1.427	26.32	1.420
20	22.13	1.345	23.71	1.374
30	17.70	1.248	16.15	1.208
40	14.97	1.175	13.60	1.133
50	12.10	1.083	11.53	1.061
60	10.63	1.018	10.72	1.030
70	8.98	0.953	8.07	0+907
80	7.80	0.892	6.78	0.831
90	6.51	0.813	5.42	0.734
100	5.72	0.758	4.06	0.608

Rffect of ionic strength

By varying the concentration of modium perchlorate, the ionic strength of the reaction mixture was regulated. The other reaction conditions were maintained identical. A slight increase in the rate constant with increasing ionic strength was observed and is shown below.

	∠ ^c r ^{v1} .	7 = 26.66 x 1	0 ⁻⁴ 1.	
[]Jac104_7	0.0E		0,5	13
Tonic strength	4.511		5.01	
Sine(nins.)	10 ⁴ /0r ^{V1} /(11)	4+10@/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+10g/C
0	26. 6G	1.425	26.66	1.425
10	25.48	1.406	25.23	1.402
20	24.36	1,386	23.72	1.375
30	23.62	1.371	22.80	1.358
40	22.64	1.354	21.28	1.328
50	21,36	1.329	19.77	1.296
60	20.06	1.302	18.83	1.276
70	18.76	1.273	18.23	1.263
80	17.78	1.250	17.70	1.248
90	17.38	1.240	16.06	1.206
100	16.60	1,220	15.41	1.188

Rep.75 [±] .1 ⁰	$C_{i} = \frac{H_2 SO_4}{Cr^{VI}} = 2$	on the Pate 4.511; _ But 6.66 x 10 ⁻⁴ 11.	pric acid_7 =	0.52;
[NaC104_7	1.01		1.53	
lonic strength	5.50		6.011	
Tine(mins.)	10 ⁴ /0r ^{VI} /(11)	4+10c/CrVI7	10 ⁴ /Cr ^{VI} 7(15)	4+10g/Cr ^{VI} 7
0	26.66	1.425	26.66	1.426
10	25.41	1.405	25.00	1.398
20	23,44	1.370	23.44	1.370
30	21.67	1.336	21.72	1.337
40	20.60	1.314	19.67	1.294
50	19.50	1.290	18.62	1.270
60	18.32	1.263	17.62	1.246
70	17.06	1.232	16.60	1.220
80	15.63	1.194	14.96	1.175
90	14.92	1.174	14.32	1.156
100	13.67	1.136	12.88	1.110
Rate constan (min. ⁻¹)	nt 6.32 x	10 ⁻³	7.10 x	10 ⁻³
Fig. 16.	Cu	rve 3.	Cu	rve 4.

-

.

Toble - XEXVIII.

Effoct of ionic strength on the rate of exidation. Semp.78[±].1^oC; $[H_2GO_6]$ = 6.5H; $[Butyric acid_7 = 0.5E;$ $[Cr^{VI}7 = 26.66 \times 10^{-4}E.$

[UeC10_7	2.0U			
Ionic strength	6.811			
fine(nine.)	104 (Er VI7(n) \$+100/Er ^{VI} 7		
0	26.66	1.428		
10	25.00	1,398		
20	23.22	1.366		
30	20.60	1.314		
40	18.83	1.275		
50	17.50	1.243		
60	16.60	1.221		
70	14.90	1.173		
60	13.33	1.125		
90	12.85	1.109		
100	10.13	1.005		
Rate consta (min. ⁻¹)	nt 8.22	x 10 ⁻³		

Fig. 15.

Curve 5.

[Acetic_7 acid	NIL		0.21	
Tico(mino.)	10 ⁴ /Gr ^{VI} /(1)	4+log/CrVI7	10 ⁴ /cr ^{V1} /(1)	4+log/Cr ^{VI}
0	26.66	1.425	26.60	1.425
10	24.14	1.382	21.90	1.340
20	21.77	1.338	20.58	1.313
30	19.44	1.288	18.46	1.266
40	17.37	1.240	16.75	1.224
50	15.76	1.197	15.30	1.184
60	14.15	1.150	14.00	1.145
70	13.44	1.128	13.26	1.122
80	13.02	1.114	12.86	1,109
90	12.56	1.098	12.00	1.080
100	11.86	1.074	11.26	1.051
Rate constan (min. ⁻¹)	t 9.05 :	x 10 ⁻³	9.70 x	10-3
Fig. 16.	C	urve 1.	Cu	rve 2.

2able - XXXIX.

Influence of acotic acid on the rate of exidation.

Acetic 7 acid	0.05	0.7).90
Cine(mins.)	10 ⁴ /Cr ^{VI} 7(E)	4+20c/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /	4+103 [Cr
0	26.66	1.425	26.66	1.425
10	24.65	1.355	23.48	1.370
20	20.57	1.311	20.20	1.305
30	18,08	1.257	19.03	1.279
40	16.81	1.225	16.64	1.221
50	15.44	1.188	15.20	1.181
60	14.80	1.170	13.42	1.127
70	13.44	1.127	12.18	1.085
80	11.87	1.074	11.66	1.065
90	10.92	1.038	10.78	1.032
100	10.34	1.015	10.04	1.001

Table - XL.

Infk	Influence of acetic acid on the oxidation rate.					
Perp	.70 [±] .1 ⁰ 0	$C_{H_2}SO_4 7$	= 5.011; ∠But 5.66 x 10 ⁻⁴ H.	yric acid	7= 0.5M;	
ZA0 R	otioJ cid	1.011		1.	. 211	
<u>Sine</u>	(mins.)	10 ⁴ /or ^{VI} 7(11)	4+10 <i>e</i> /Cr ^{VI} 7	10 ⁴ /cr ^{VI} 7	4+100/ErVI7	
0		26. 66	1.425	26.66	1.425	
10		23.34	1.369	21.98	1.342	
20		20.71	1.316	20.56	1.313	
30	•	18.51	1.267	18.25	1.261	
40		16.42	1.215	15,98	1.203	
80		15.02	1.176	13.81	1.140	
60		13,36	1.125	12.65	1.098	
70		12,18	1.085	11.59	1.064	
80		11,48	1.060	10.52	1.022	
90		9.87	0.994	9.32	0.969	
100		9.12	0.960	8,41	0.925	
Eato (:	constan min. ⁻¹)	t 11.18 2	x 10 ⁻³	11.8	1 x 10 ⁻³	
Pic.	16.	Cı	irve 5.	an fan sen an sen a	Curve 6.	

Teble - XM.

STUDIES WITH VALERIC ACID

.

Order in Chronic edid

The progress of the reaction was followed by an identical method described for propionic and butyric acids. The plot of log chronic acid concentration Vs time gave good straight lines and the slopes were used for the determination of first order rate constants. Tables given below record the first order dependence of the reaction on chronic sold concentration.

FIG. 17(A) DEPENDENCE OF RATE CONSTANT ON CHROMIC ACID CONCENTRATION

Chromie 7 acid	166.67 x 10 ⁻⁴ []		66.66 x 10 ⁻⁴ li	
Pine(mins.)	10 ⁴ /cr ^{VI} 7(11)	4+106/Er ^{VI} 7	10 ⁴ /Cr ^{VI} 7(1)	4+100/CrVI
0	166.67	2,221	66.66	1.823
10	166.04	2,220	63.90	1.805
20	167.62	2.197	62.82	1.798
30	152.68	2.183	61.94	1.791
40	149.72	2.175	69.42	1.773
50	142.80	2.154	56.10	1.749
60	137.75	2.139	62.32	1.718
70	129.87	2.113	49.48	1.694
80	123,88	2.093	48.06	1.681
90	118.20	2.071	46.17	1.664
100	112.85	2.052	44.60	1.649
Eate constant (min1)	t 4.28 :	x 10- ³	4.34 :	r 10 ⁻³
Fig. 17(a).		Surve 1.	(Curve 2.

Sable - XLII.

Dependence of rate constant on chronic acid concentration. Temp.75[±].1^oC; \Box H₂SO₄/= 5.0H; \Box Valeric acid/= 0.1H.

FIG. 17 (B) DEPENDENCE OF RATE CONSTANT ON CHROMIC ACID CONCENTRATION

$\mathbf{T} \mathbf{G} \mathbf{O} \mathbf{I} \mathbf{G} = \mathbf{X} \mathbf{I}$			t
--	--	--	---

Dependence of rate constant on chromic acid concentration. Remp.75[±].1^oC; \square_{2} SO₄7= 5.0E; \square Valeric acid 7= 0.1E.

Chromic_7 acid	41.60 x 1	o ^{−4} ¤ .	33.33 x 10 ⁻⁴ 1		
Pine(mins.)	10 ⁴ /cr ^{VI} 7(1)	4+10c/Cr VI7	10 ⁴ /cr ^{VI} 7(1)	4+100 (Cr VI	
0	41.66	1.619	53.33	1.522	
10	40.24	1.604	31.74	1.501	
20	38.37	1.585	30.30	1.481	
30	37.42	1.673	29.47	1.469	
40	35.34	1.548	28.17	1.449	
50	33.65	1.526	26.95	1.430	
60	32.07	1.506	25.25	1.402	
70	31.06	1.492	23.48	1.370	
80	29.74	1.473	22.15	1.345	
90	28.92	1.461	21.08	1.324	
100	27.22	1.435	19.93	1,298	
Rate constan (min. ⁻¹)	t 4.23 x	4.23 x 10 ⁻³		10-3	
Fig. 17(a).	Cu	rve 3. Fig	. 17(b) Cu	rve 1.	

Table - XHV.

Dependence of rate constant on chronic acid concentration. Temp.75[±].1^oC; $\sum H_2SO_4$ 7= 5.0N; $\sum Valeric acid 7= 0.1N$.

Chronic_7	27.77 x 10	-4 _H	20.83 x 10 ⁻⁴ 11		
Time(mins.)	10 ⁴ /cr ^{VI} 7(E)	4+108/CrV17	10 ⁴ /Cr ^{VI} 7(15)	4+10g/0r ^{VI}	
0	27.77	1.443	20.83	1.318	
10	26.66	1.425	19.92	1.299	
20	25.78	1.411	19.05	1,280	
30	25.35	1.403	18.87	1.269	
40	23.76	1.376	17.15	1.234	
50	22.94	1.360	16.45	1.216	
50	22.19	1.346	15.59	1.192	
70	20,87	1.319	14.82	1.171	
80	20.05	1.302	14.09	1.149	
90	18.67	1.271	13,37	1.126	
100	17.92	1.253	12.61	1.008	
Rate constan (min1)	t 4.47 x	4.47 x 10 ⁻³		r 10 ⁻³	
Fig. 17(b).	Cur	ve 2.	Cu	cve 3.	

Table - RLV.

Dependence of rate constant on chromic acid concentration $\text{Topp.75}^{+}.1^{\circ}\text{C}; \ \text{Cl}_{2}50_{4}\text{,}7=5.0\text{H}; \ \text{Cvaloric acid}7=0.1\text{M}.$

Chromic_7	16.66 x	10 ⁻⁴ 11
Tine(mins.)	10 ⁴ /cr ^{VI} 7(1)	4+10020r ^{VI} 7
0	16,66	1.221
10	15.96	1.203
20	15.35	1.186
30	14.76	1.170
40	14.00	1.146
60	13.27	1.122
60	12.44	1.094
70	11.53	1.062
80	10.83	0.022
90	9+87	0.994
100	9.14	0.961
Rate constant (min1)	5,22	x 10 ⁻³
F1.c. 17(b).	Curv	e 4.

Order in substrate

.

Rate constants at different substrate concentrations were obtained by varying valeric acid concentration kcoping other factors constant. The first order dependence on substrate was inferred from the plot of rate constant Vs. substrate concentration where a straight line passing through the origin was obtained. The plot is shown in figure 19.

FIG. 18(A) DEPENDENCE OF RATE CONSTANT ON VALERIC ACID CONCENTRATION

	4.0 x 10 ⁻²	I	5.0 x 10 ⁻²	
Tine(mins.)	10 ⁴ /cr ^{VI} /(13)	4+105/0r VI7	10 ⁴ /Cr ^{VI} 7(II)	4+10g/C
0	33.33	1.522	33.33	1.522
15	31.90	1.503	31,98	1.504
30	31.43	1.497	31.03	1.491
46	30.54	1.485	29.95	1.476
60	29.87	1.475	28.92	1.461
75	28.86	1.460	27.97	1.446
90	28.45	1.454	27.15	1.433
105	27.77	1.443	26.84	1.423
120	27.23	1.435	25.97	1.413
135	26.55	1,424	25.17	1.401
150	26.04	1.418	24.48	1.388

Table - XLVI.

FIG.18(B) DEPENDENCE OF RATE CONSTANT ON VALERIC ACID CONCENTRATION

Tal	b 1 e	XLVII.			
Doper Vole	ndence o ric acià	f rate const •	ant on the co	acentration	of
Tenp	•75 [±] •1 ⁰ 0	: _H2504_7.	5.0%; [Cr ^{V1} 7	°≂ 33.33 x 1	0 ⁻⁴ 11.
	lerio_7 cid	6.6 x 10 ⁻²	'n	10.0	x 10⁻²h
Fine	(mins.)	10 ⁴ /cr ^{v1} 7(1)	4+108/0r ⁹¹⁷	10 ⁴ /Cr ^{VI} 7(E) 4+log/Cr ^{VI} 7
0		33.33	1.522	33,33	1.522
15		31.16	1.493	31.74	1.501
30		29.74	1.473	29.29	1.466
45		28,80	1.469	28.47	1.454
60		27.59	1.641	27.17	1.434
75		25.96	1,414	25.95	1.414
90		24,94	1.397	24.25	1.384
105		23.99	1.380	22.48	1.351
120		22.98	1-361	21.08	1.323
135		22.02	1.342	19.93	1.299
150		21.28	1.326	19.02	1.279
Rate (1	constan ain. ⁻¹)	t 3.80 x	: 10 ⁻³	5.30	x 10 ⁻³
FLC.	18(.)	Curv	re 3. Fi	g. 18(b) Cur	ve 1.

•

.

102

FIRST ORDER DEPENDENCE OF RATE CONSTANT ON VALERIC ACID CONCENTRATION

FIG. 19

.

Table - XLVIII.

Dependence of rate constant on the concentration of valeric acid.

Perp. 75*.1°C: [H2S04]= 5.00: [CrVI7= 33.33 x 10-41.

[Valeric_] acid	20.0 x 10	-2 ₁₁	40.0 x 10 ⁻² H		
Tine(mins.)	10 ⁴ /Cr ^{VI} 7(H)	4+log/Cr ^{V1} 7	10 ⁴ /Cr ^{VI} 7(11)	4+10e/CrV	
0	33.33	1.522	83.33	1.522	
10	30.72	1,487	30.25	1.480	
20	28.68	1.457	27.19	1.434	
30	26.84	1.428	25.23	1.402	
40	24.58	1.391	23.16	1.364	
50	22.07	1.343	20.55	1.312	
60	20.35	1.308	17.64	1.246	
70	18.25	1.261	15.43	1.188	
80	16.21	1.210	13.21	1.121	
90	14.50	1.161	11.70	1.068	
100	12.34	1.091	10.56	1.023	
Rate constan (min. ⁻¹)	t 9.87 x	10 ⁻³	18.60	r 10 ⁻³	
Fig. 18(b).	Curve	2.	Curfe	3.	

.

Variation of rate constant with acidity

The effect of hydrogen ion concentration on the oxidation rate was studied exactly in the same manner as in the oxidation of propionic and butyric acid. It is seen from table LII that at lower acidities the oxidation rate varies elmost exactly as the square of hydrogen ion concentration but in solutions of high ionic strength and high acidity, the reaction velocity changes at a rate somewhat greater than that required for second order dependence. However, the plot of logarithm of rate constant against modified acidity function H- + log $\frac{e_{\rm H_{20}}}{e_{\rm H_A}}$ yielded a straight line but the slope was quite high.

FIG. 20 ACIDITY DEPENDENCE OF THE OXIDATION RATE

2	8	ъ	1	0	-	XLIX.
---	---	---	---	---	---	-------

Acidity dependence of the oxidation rate. Temp.75[±].1^oC; $(H_2 SO_4 J + (NeHSO_4 J = 6.0H);$ (Valeric acid J = 0.2H); (Cr^{VI}J = 26.66 x 10⁻⁴H.

[H2604.7	3.0M		- 3,513		
fice(mins.)	10 ⁴ /cr ^{VI} /()	4+log/Gr ^{VI} 7	10 ⁴ /Cr ^{VI} 7(E)	4+10g/Cr ^{VI} /	
0	26.66	1.428	26.66	1.425	
10	26.03	1.415	25.66	1.409	
20	25.55	1.407	25.40	1.404	
30	24.87	1.395	24.58	1.390	
40	24.55	1.391	24,18	1.383	
50	24,45	1.388	23.86	1.377	
60	24.02	1.380	23.12	1.364	
70	23.18	1.365	22.60	1.384	
80	22,92	1.361	21.90	1.340	
90	22.65	1.355	21.17	1.325	
100	22.33	1.349	20.16	1.304	
Rate constan (min. ⁻¹)	at 2.04 x	10-3	2.60 x	10 ⁻³	
F1.5. 20.	Curve	1.	Curve	2.	
Acidity dependence of the oxidation rate. Temp.75 [±] .1 ^o C; $[H_2SO_4]$ + $[HaHSO_4]$ = 6.0H; $[Valeric acid_7 = 0.2H; [CrVI7 = 26.66 x 10^{-4}H]$.					
--	---------------------------------	---	--------------------------	--	-------------------------------------
<u>Cuss</u>	504.J	4.0E		4.58	tynikäityysymmisen tien tiikitäätää
Tipe((mine.)	10 ⁴ /cr ^{VI} /(11)	6+10e/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+100/Cr ^{VI} 7
0		26.66	1.425	26.66	1.425
10		25.71	1.611	25.71	1.410
20		24.45	1.388	24.44	1.588
30		23.93	1.378	23.22	1.365
40		23.14	1.364	21.47	1.331
50		21.72	1.336	20.30	1.307
60		20.76	1.317	19.05	1.279
70		20.37	1.309	17.87	1.252
80		19.77	1.296	16.58	1.219
90		18.72	1.272	15.25	1.183
100		17.62	1.246	14.18	1.510
Rate (r	consten min. ⁻¹)	t 3.88 x	10 ⁻³	6.25 x	10-3
Fig.	20.	Curve	3.	Curv	s 4.

•

Acidity depo	endence of the	e oxidation r	ate.	
7c=p.75∸. 1*(Valeric (+ 2 Ballog_/= acid_7= 0.20;	6.04: <u>Cr^{VI}</u> = 26.6	6 x 10 ⁻⁴ 4.
["204.7	5.0M		5.5	
finc(mins.)	10 ⁴ /cr ^{VI} 7(11)	4+108/Er VI7	10 ⁴ /cr ^{VI} /(U)	4+10g/Cr ^{VI} 7
0	26.66	1.425	26.66	1.425
10	25.57	1.007	24.26	1.385
20	23,44	1.370	21.20	1,326
30	20.76	1.317	16.30	1.212
40	18.73	1.272	12.10	1.083
50	16.83	1.226	9.92	0,998
60	14.53	1.162	8.07	0.906
70	13.00	1.114	6.76	0.830
80	11.42	1.057	5.01	0.700
90	10.25	1.011	3.68	0.566
100	9,28	0.968	2.18	0.359
Hate constant (min. ⁻¹)	nt 9.02 x	10 ⁻³	11.32 :	r 10 ⁻³
Fig. 20.	Curve	5.	Curv	e 6.

Table - H.

`

Table - LII.

Effect of acidity on the rate constant

<u>∠_</u> H+ <u></u> (13)	<u></u>	k x 10 ³ (min. ⁻¹	$\frac{k}{\left(1.mole^{-1}min^{-1}\right)} \ge 10$	$\int_{-\frac{1}{2}}^{3} \frac{k}{\sqrt{-H^{+}7^{2}}} x 10^{4}$ $\int_{1}^{1} (1^{2} \cdot \text{mole}^{-2} \text{min}^{-1})$
3.0	9.00	2.04	0.68	2.26
3.5	12.25	2.80	0.80	2.28
4.0	16.00	3.88	0.95	2.42
4.5	20.25	6.25	1.38	3.08
5.0	25.00	9.08	1.80	3.60
5.5	30.25	11.32	2.58	3.74

Temperature dependence

Reaction was studied under identical conditions. Activation energy was calculated graphically - and other thermodynamic parameters were calculated from the formulae sentioned earlier. The values of E:,

 $\triangle H^{\pm}$ and $\triangle S^{\pm}$ were found to be 20.7 Kcal, 20.0: Ecal and -19.1 eu respectively. The observations at various temperatures are presented below:

Tepporature	343 ⁰ 1	ζ.	3490	K
fice(mine.)	10 ⁴ /3r ^{VI} /(")	4+10c/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} 7(1)	4+10g[C
0	26.66	1.425	26.66	1.425
10	26.06	1.416	25.56	1.407
20	24.68	1.392	24.58	1.390
30	23.91	1.378	23.88	1.372
40	23.35	1.368	22.43	1.350
50	21.92	1.340	21.22	1.326
60	20+48	1.311	19.68	1.294
70	19.52	1.236	18,14	1.258
80	17.78	1.249	16.44	1.216
90	16.95	1.229	13.30	1.124
100	15.84	1.200	11.38	1.056

111

2able - MV.

Temperature dependence of the reaction rate.

 $[u_2 SO_4] = 5.0 \text{H}; [Valeric acid] = 0.2 \text{H}; [Cr^{VI}] = 26.66 \times 10^{-4} \text{E}.$

Temporature	353°	K	358 ⁰ K	
Tipe(mins.)	10 ⁴ /cr ^{VI} /(1)	4+100/Cr V17	10 ⁴ /cr ^{VI} 7(11)	4+10E[0r ^{VI} 7
0	26.66	1.425	26+66	1.425
10	25.35	1.404	25.18	1.401
20	24.04	1,381	21.22	1.326
30	23.09	1.363	18.86	1.275
40	20.98	1.321	15.67	1.195
50	19.89	1.298	12.48	1.096
60	17.95	1.258	9.84	0.993
70	15.85	1.200	7.31	0.864
60	13.83	1.141	5.60	0.748
90	11.97	1.078	4.61	0.664
100	9.92	0.996	3.74	0.572
Rate constar (nin1)	nt 11.51 :	x 10 ⁻³	20.34 :	x 10 ⁻³
F16. 21.	Curv	e 3.	Curv	e 4.

Table - LV.

Temporature dependence of the reaction rate.

 μ_{2} SO₄.7= 5.04; [Veleric acid_7= 0.24; [σ_{r}^{VI} 7= 26.66 x 10⁻⁴H.

Tenporaturo	363 ⁰ K		368 ⁰ E	
live(mins.)	10 ⁴ /cr ^{VI} 7(1)	4+10c/CrVI7	10 ⁴ /Cr. ^{VI} 7(11)	4+10g/Cr ^{VI}
0	26.66	1.425	26.66	1.425
5	25.32	1.403	24.68	1.392
10	24.11	1, 382	22.05	1.343
15	22.46	1.351	18.83	1.275
20	20.51	1.312	15.29	1.184
25	19.08	1.280	11.96	1.078
30	17.02	1,231	7.19	0.856
35	15.28	1.184	6.27	0.797
40	13.16	1.119	5.09	0.707
45	11.52	1.061	4.02	0.604
50	9 *7 7	0.990	3.38	0.529
Rate constan (nin. ⁻¹)	t 27.63 :	r 10 ⁻³	40.68 x	10 ⁻³
Pig. 21.	Gurve	e 5.	Curve	S.

Effect of ionic strength

Ionic strength of the medium was varied by adding various emounts of sodium perchlorate. A slight increase in the rate constant with increasing ionic strength was found. The date are given in the following tables.

FIG. 23 DEPENDENCE OF RATE CONSTANT ON IONIC STRENGTH

Cuacio,7	Nil		0.5	
lonic strength	4.5 M		5.0	2
Timo(mins.)	10 ⁴ /Cr ^{VI} /(II)	4+10g/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} 7(11)	4+10g/Cr ^{VI} 7
0	26.66	1.425	26.66	1.425
15	24.61	1.391	24.50	1.389
SO	23.14	1,364	22.71	1.356
45	22.40	1.350	21.52	1.333
60	21,15	1.325	20.82	1.307
75	19,74	1.295	19.20	1.287
90	17.80	1.250	17.80	1.260
105	16.50	1.217	16.06	1.205
120	15.46	1,189	14.87	1.172
135	14.44	1.159	13.46	1,129
150	13.20	1.120	12, 11	1.083
Rate constan (min. ⁻¹)	it 4.82 x	10-3	5.37 x	10 ⁻³
Fig. 23.	Curv	• 1.	Curve	2.

Table - LVI.

Bffeot of ionic strength on the rate constant.

.

[Boc104.7	1.0	0E1	1.5	
Tonic otrength	5.50M		6.011	
Tino(mins.)	10 ⁴ /Cr ^{VI} 7(1)	4+10@/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} /(H)	4+10@/Cr ^{VI}
0	26.66	1,425	26.66	1.425
15	24.36	1.386	23.31	1. 385
30	22.91	1.360	22.52	1.352
45	21, 15	1.325	20.43	1.310
60	19.54	1.291	18,74	1.272
75	18.10	1.257	17.36	1.239
90	17,08	1.232	15.83	1.199
105	15,57	1.192	14.55	1.163
120	14.24	1.153	13,58	1.133
135	13.00	1.114	12.30	1.090
150	11.56	1.063	10.82	1.034
Bate constan (min. ⁻¹)	nt 5.48 x	10 ⁻³	5.80 x	10-3
Fig. 23.	Curv	e 3.	Carve	4.

Table - LVII.

Effect of ionic strength on the rate constant.

Pable - MIII.

.

Effect of ionic strength on the rate constant. Femp.75[±].1^oC; [H₂SO₄] - 4.5H; [Valeric acid] - 0.1H; [Cr^{VI}] - 26.66 x 10⁻⁴H.

[Be0104.7	2.0011			
Ionic_ strength	6.5	IOM		
Time(mins.)	10 ⁴ /cr ^{VI} 7(1)	4+10g/Cr ^{VI} 7		
0	26.66	1.425		
15	24.43	1.388		
30	22.35	1.349		
45	20.22	1.305		
60	18.35	1.263		
75	16.73	1.223		
90	15.40	1.187		
105	14.04	1.147		
120	12.72	1.104		
135	11.40	1.057		
150	10.20	1.008		
Rate constant (min. ⁻¹)	t 6.26 x	: 10 ⁻³		
Pig. 23.	Curve	5.		

CAcetic 7 acid	0.18		0.2	11
Pine(mins.)	10 ⁴ /Cr ^{VI} 7(11)	4+10c/Cr VI7	10 ⁴ /Cr ^{VI} 7(11)	4+10g/CrV
o	26.66	1.425	26.66	1.425
15	24.39	1.387	24.90	1.396
30	23,48	1.370	25.08	1.363
45	21.60	1.834	21.04	1.323
60	19.56	1.291	19.22	1.283
75	18.02	1.255	17.50	1.243
90	16.70	1.223	15.92	1.202
105	15.24	1. 183	14.10	1.149
120	13,63	4.131	12.00	1.078
135	12.45	1.095	10.82	1.022
150	11.20	1.049	9.26	0.967
Rate constan (min. ⁻¹)	1t 6.26 x	10-3	7.82 x	10-3
Fig. 24.	Curv	e 1.	Curv	• 2.

Table - LIX.

Influence of acctic acid on the oxidation rate.

Table -	- LX.			
Influence of	f acetic acid	on the oxide	tion rate.	
Temp.75 ⁺ .1°(Cr ^{VI} 7= 26.	5.0%; [Vale .66 x 10 ⁻⁴ M.	ric acid 7= 0	.211;
[Acetic] acid	0.5N		0.7	
Time(mins.)	10 ⁴ /0r ^{VI} /(II)	4+10g/CrV17	10 ⁴ /Gr ^{VI} 7(E)	4+10g/Cr VI7
0	26.66	1.425	26.66	1.425
15	24. 11	1.382	23.98	1.379
30	22.40	1.350	21.68	1.336
45	20*08	1.302	19.00	1.278
60	17.70	1.248	16.64	1.221
75	16.11	1.207	14.45	1.160
90	13.67	1.135	12,43	1,094
108	12.08	1.082	11,17	1.048
120	10.66	1.028	9.52	0.978
135	8.96	0.952	8.43	0.926
150	7.81	0.893	7.44	0.872
Rate constan (min1)	1t 8.44 x	10 ⁻³	8.82 x	10 ⁻³
Fig. 24.	Curve	3.	Curv	8 4.

ZAcotic_7 ecia	1.02		1.	813
Time(mins.)	10 ⁴ /Cr ^{VI} 7(1)	4+10@/CrVI7	104 / Cr VI 7(11)	4+108/Cr VI
0	26, 66	1.425	26.66	1.425
15	23.38	1.368	23.05	1.363
30	20,91	1.320	20.64	1.314
45	18.24	1.262	17.90	1.253
60	16,20	1.209	14.51	1.161
75	13,90	1.143	12.43	1.094
90	12,10	1.082	11.28	1.052
105	10.51	1.021	8.91	0.950
120	9.03	0.955	8.03	0.905
135	8.26	0.917	6.40	0.805
150	6,80	0.032	4.81	0.682
Rate constar (min. ⁻¹)	1\$ 8.95 x	10 ⁻⁵	9.97 x	10 ⁻³
F1g. 24.	Curve	5.	Curve	6.

Influence of acetic soid on the oxidation rate.

fable - LII.

CHAPTER III

EINSTICS OF OXIDATION OF BRANCHED CHAIN FATTY ACIDS

INTRODUCTION

The knowledge of the influence of structure on reactivity is not only important from synthetic point of view but also represents an important tool in the study of reaction mechanism. The dependence of the oxidation rate on carboxylic acid structure has not been investigated systematically. It was, therefore, thought worthwhile to study the effect of branching on the rate of oxidation of fatty acids. For this purpose, studies on the oxidation of isobutyric, isovaleric and pivalic acids by chromic acid were carried out under different experimental conditions.

The oxidation of carboxylic acids containing tertiary carbon atom was studied by Symons and Kenyon¹²⁸. They obtained hydroxy carboxylic acids from the corresponding branched chain carboxylic acids by using potassium permanganate in concentrated wikaline solution, $R^{\mu'}CH(CH_2)_n CO_2 H \longrightarrow R n'C(OH)(CH_2)_n CO_2 H$. The reaction was slow in dilute alkaline solution even at clevated temperatures and resulted in the degradation of acid. In concentrated alkaline solution, the reaction was faster and proceeded at room temperature leading to hydroxy acids which were not further attacked. They interpreted it by postulating that for reactions with permanganate, the active exident was the free hydroxyl radical or the $\overline{0}$ radical ion.

A survey of oxidetions of organic compounds by alkaline solutions of potassiun manganate as well as by strongly alkaline solutions of potassium hypomanganate has been reported by Pode and "aters¹²⁹. They observed that a slight reaction occurred with isobutyric and isovaleric acids in 10T potassium hydroxide. Inspired by the above studies Beckwith and Goodrich¹³⁰ carried out the detailed investigation of oxidation of various branched chain carborylic acids by (a) $K_2 InO_4$ in dilute alkali; (b) KINO₄ in concentrated alkali; (c) $K_2 S_2 O_8$ in dilute alkali; (d) $K_2 S_2 O_8$ in dilute acid. They suggested that the reaction proceeded via free hydroxyl radicals according to the following scheme:

$$\operatorname{FnO}_{4}^{-} + \operatorname{OH} \rightleftharpoons \operatorname{LinO}_{4}^{-} + \operatorname{OH}$$

$$\operatorname{R} - \operatorname{C}_{2}^{\mathrm{R}} - (\operatorname{CH}_{2})_{n} \operatorname{CO}_{2} + \operatorname{OH} \twoheadrightarrow \operatorname{R} - \operatorname{C}_{2}^{\mathrm{R}} - (\operatorname{CH}_{2})_{n} \operatorname{CO}_{2} + \operatorname{H}_{2} + \operatorname{OH} \xrightarrow{\mathrm{R}} - \operatorname{C}_{2}^{\mathrm{R}} - (\operatorname{CH}_{2})_{n} \operatorname{CO}_{2} + \operatorname{H}_{2} + \operatorname{H}_{2} + \operatorname{H}_{2} + \operatorname{C}_{2} + \operatorname{$$

Persulphate was believed to provide hydroxyl radicals on thermal decomposition in the following way:

$$s_2^{2-} = 250_4^{-}$$

 $s_2^{0} = 50_4^{-}$
 $s_4^{0} + H_2^{0} \longrightarrow 50_4^{-} + H^+ + 0H$

Evidence for hydroxylation as the major effect in the persulphate oxidation of organic compounds has also been reported by Bacon and Bott¹³¹. They found that aqueous colution of sodium persulphate containing little amount of ailver nitrate as catalyst, converted the branched chain fatty acids into alcohols with loss of carbon dioxide. Pivalic acid gave tert-butanol and isobutyric acid, a mixture of isopropanol and mothyl acetate in the ratio of 20:1. The following mochanism was proposed:

$$R CO_{2}H + \overline{SO_{4}} \longrightarrow R COO'$$

$$R COO' \longrightarrow R' + CO_{2}$$

$$R' + SO_{3}OO\overline{SO_{3}} \longrightarrow RO\overline{SO_{3}} + SO_{4}$$

$$RO \overline{SO_{3}} + H_{2}O \longrightarrow RO\Pi + HSO_{4}$$

In the case of isobutyric acid, the \sim -hydrogen atom was attacked followed by decarboxylation to propene. A qualitative study of oridation of isobutyric acid and its ester has been reported by Fichter and Heer¹³².

Oxidative degradation by chromium trioxide in acetic acid was developed as an effective method for the location of a branch in higher saturated carbon chain acids¹³³. Detection of end products by gas chromatography indicated that the expected cleavage products were obtained from the branched chain acids. The oxidation of a series of branched alkyl carboxylic acids by Cr(VI) oxide was studied by Rocek⁹³ who determined the retardation factor due to inductive effect of the carboxyl group.

Besides permanganate, persulphate and chromic acid other oxidants have also been used. A slight attack on icobutyric acid by venadium in concentrated sulphuric acid has been reported¹²². The oxidation of carboxylic acids by Co(III) was studied by Clifford and Vaters¹²³. They showed that the rate of oxidation of isobutyric and pivelic acids were of the first order with respect to the concentrations of the organic acid and inversely proportional to the concentration of the perchloric acid. Acetone was detected to be the oxidation product of isobutyric acid while t-butanol was found in the oxidation of pivelic acid. STUDIES WITH ISOBUTYRIC ACID

•

Order in Chronic acid

The oxidation rate was measured as a function of chromic acid concentration. In all the experiments the concentration of chromic acid was kept so low in comparison to those of substrate and sulphuric acid concentrations that the latter remained essentially constant during any one run. A slight increase in the rate constant was observed when chromic acid concentration was decreased. The data are given in the tableo. FIG. 1 DEPENDENCE OF RATE CONSTANT ON CHROMIC ACID CONCENTRATION

2able - I.

Dependence of rate constant on chronic acid concentration. Temp.= 75 \pm .1°C; $/H_2SO_4$ /= 5.0%; /leobutyric acid /= 0.1%

Chronic_7 acid	66.66 x 10 ⁶ 11		33.33 x 10 ⁻⁴ 1		
Time(mine.)	10 ⁴ /_cr ^{VI} /(1)	4+10@[Cr ^{V1}]	10 ⁴ /cr ^{VI} /(1)	4+10g/Cr	
0	66.66	1.823	33.33	1.522	
10	64.30	1.809	31.70	1.601	
20	62.86	1.798	30.78	1.488	
30	61.94	1.791	29.65	1.472	
40	60,88	1.784	29.02	1.462	
50	60.24	1.779	28.60	1.456	
60	59,45	1.774	28.51	1.452	
70	58,93	1.770	28.03	1.447	
80	58,24	1.765	27.46	1.438	
90	57.75	1.761	26.90	1.429	
100	56.96	1.755	26.20	1.418	
"ate constan" (min. ⁻¹)	t 1.98 x	10 ⁻³	2.00 :	x 10 ⁻³	
Fig. 1.	Curve 1		Curve	2	

2 a b l e - II.

Dependence of rate constant on chromic acid concentration. Temp.= 75 \pm .1°C; \square_0 SO_A 7= 5.0C; \square Tsobatyric acid 7= 0.1U

•	· - 2 4·		•	-	
[chronic_] acid	chronic_7 27.77 x 10 ⁻⁴ H acid		20.83 x 10 ⁻⁴ 11		
Tine(nins.)	10 ⁴ /Cr ^{VI} /(11)	4+10g/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(11)	4+log/Cr ^{VI} 7	
0	27.77	1.443	20.83	1,318	
10	26+85	1.429	20.12	1.303	
20	26.10	1.416	19.53	1.290	
30	25+64	1.409	19.08	1.280	
40	25.18	1.401	18.70	1.272	
50	24.77	1.393	18.28	1.262	
60	24.18	1.383	17.83	1,251	
70	23.72	1.375	17.45	1.242	
80	23.26	1.366	17.16	1,234	
90	22.64	1.354	16.53	1,218	
100	22.00	1.342	16.00	1,204	
Rate constan (min. ⁻¹)	it 2.17 x	10 ⁻³	2.43 x	10 ⁻³	
F1., 1.	Curve	3.	Curve	4.	

Table - III.

Dependence of rate constant on chromic acid concentration. Temp.= $75^{\circ} \pm .1^{\circ}C_{\circ}/H_{2}SO_{4}/= 4.0U_{\circ}/I_{\circ}C_{\circ}/I_{\circ}O_{\circ}/I_{\circ}$

[Chromic_] acid	18.51	18.51 x 10-417		16.66 x 10 ⁻⁶ 11		
Time(mins.)	10 ⁴ /Cr ^{VI} 7(11)	4+106/CrVI7	10 ⁴ /Cr ^{VI} 7(11)	4+10g/0r ^{VI} /		
0	18.51	1.267	16.66	1.221		
10	17.77	1.249	15.94	1.202		
20	17.37	1.239	15.51	1.190		
30	16.66	1,221	15.18	1.181		
40	16,30	1.212	14.70	1.167		
50	16.04	1.205	14.33	1.156		
60	15.70	1.196	13.97	1.145		
70	15.33	1.185	13.58	1.133		
80	15.00	1,176	13.24	1,122		
90	14.45	1.160	12,94	1.112		
100	14.32	1.155	12.52	1.097		
Rate constant (min. ⁻¹)	t 2.37 x	10 ⁻³	2.63 x 10) ⁻³		
Fig. 1.	Curve	5.	Curve 6			

Order in Isobutyric acid

To determine the order with reference to isobutyric acid, experiments were performed with different concentrations of the substrate keeping the other factors constant. The order was inferred from the plot of rate constant Vs. isobutyric acid concentration. The straight line passing through the origin indicated the first order dependence on the substrate.

2 a b l e - IV.

•

Dependence of rate constant on the concentration of isobutyric acid.

[Isobutyric] 4.0 x 10 ⁻² 11 acid			5.0 x 10 ⁻² Li		
Sine(mins.)	10 ⁴ /Cr ^{VI} 7(11)	4+100/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(11)	4+10g/CrVI7	
0	33,33	1.522	33, 33	1.522	
10	31.84	1.503	31.27	1.495	
20	31.45	1.497	30.63	1.486	
30	31.20	1.494	30.24	1,480	
40	31.00	1.491	29.86	1.475	
50	30.81	1.483	29.73	1.473	
60	30.54	1.485	29.54	1.470	
70	30.30	1.481	29.00	1.462	
80	29.97	1.476	28,90	1.460	
90	29.71	1.472	28.64	1.457	
100	29.45	1.469	28,25	1,451	
Rate constant (min. ⁻¹)	0.85 x	10 ⁻³	1.06 x	10 ⁻³	
F1. 2.	Curve 1	•	Curve	2.	

	Temp.=	70	*	.1°C; _H2S04 7= 5.	011; [Cr ^{VI}]-	33.33 x	10 ⁻⁴ 11-
--	--------	----	---	--------------------	---------------------------	---------	----------------------

Table - V.

Dependence	of rate	constant	on	the	concentration	of
isobutyric	acid.	*				

Temp.= 70 ± .1°C; [H2S0] 7= 5.01; [CrVI7= 33.33 x 10-41.

[Isobutyric_7 10.0 x 10 ⁻²]		25.0 x 10 ⁻² 11		
Tine(mine.)	10 ⁴ /0r ^{VI} /(13)	4+100/Cr ^{VI} 7	10 ⁴ /Cr ^{VI} /(11)	4+10g/Cr
0	33.33	1.522	33.83	1.522
10	30. 67	1.486	31.60	1.499
20	30.28	1.481	30.41	1.483
30	29.62	1.471	28.82	1.459
40	29.02 .	1.462	27.63	1.441
50	28.23	1.450	27.00	1.431
60	27.56	1.440	26.40	1,423
70	27.23	1.435	25.84	1.412
80	26.76	1.427	24.90	1.396
90	26.30	1.420	24.31	1.385
100	25,90	1.413	23.98	1.381
Rate constant (cin. ⁻¹)	2.07 x	10 ⁻³	3.94 x	10 ⁻³
Fig. 2.	Curv	e 3.	Curve	4.

•

Table - VI.

n i Mandulan ya saingi kita k a ki giran hili Bash Taraka AR	Technic Association of the second s		
10 ⁴ /Cr ^{VI} /(11)	6+10g/Cr ^{VI} 7	10 ⁴ /cr ^{VI} 7(1:)	4+107/0
33.33	1.522	33.33	1.522
30.28	1.481	28.08	1.448
28,08	1,448	24.28	1.385
26,13	1,417	21.10	1.324
24.67	1,390	18.88	1,276
23.14	1,364	16.90	1,228
21.98	1.342	16.59	1,193
20.87	1.319	12.69	1.103
19.84	1,297	11.23	1.053
18,28	1,262	9.93	0 •9 97
17.05	1.931	***	-
	33.33 30.28 28.08 26.13 24.57 23.14 21.98 20.87 19.84 18.28	33.33 1.522 30.28 1.481 28.08 1.448 26.13 1.417 24.57 1.390 23.14 1.364 21.98 1.342 20.87 1.319 19.84 1.297 18.28 1.262	33.33 1.522 33.33 30.28 1.481 28.08 28.08 1.461 28.08 28.08 1.448 24.28 26.13 1.417 21.10 24.67 1.390 18.88 23.14 1.364 16.90 21.98 1.342 15.59 20.87 1.319 12.69 19.84 1.297 11.28 18.28 1.262 9.93

FIRST ORDER DEPENDENCE OF RATE CONSTANT ON ISOBUTYRIC ACID CONCENTRATION

FIG. 3

2 a b 1 e - VII.

Dependence	of	rato	constant	on	the	concentration	of
icobutyria	aci	lā.					

Temp.= 70 = .1°C/H2S04 7= 5.00; / CrVI7= 33.33 x 10-4U.

Teobutyric_7 acid	100.0 x 10 ⁻²			
Time (minc.)	10 ⁴ [cr ^{y1}](1)	4 + 10g [Ce ^{VI}]		
0	33.33	1.522		
10	25,60	1.403		
20	21.24	1.327		
30	15.61	1.193		
40	13.63	1.40		
50	11.06	1.070		
60	9.83	0.992		
70	7.20	0.857		
80	5+98	0.777		
90	5.20	0.716		
100	6. 84	0.694		
Rate constant (min1)	15.84	z 10 ⁻³		

F1g. 2.

Curve 7.
Variation of rate constant with hydrogen ion concentration

At high additions it is difficult to study the influence of hydrogen ions on the reaction velocity by varying the pH of the medium. Nevertheless, hydrogen ions as such have been varied by varying the sulphuric acid content of the reaction mixture. The ionic strength was adjusted by sodium hydrogen sulphate. The rate constants at various concentrations of sulphuric acid are registered below. The rate constants obtained by dividing pseudo first order rate constants by corresponding hydrogen ion concentration and by the square of hydrogen ion concentration are shown in table XI. It is seen that the order of the reaction is two with respect to hydrogen ions.

Acidity dependence of the oxidation rate.

Temp. = $75 \pm .1^{\circ} C/H_{2} SO_{4} 7 + CHellGO_{4} 7 = 6.01';$

[Toobutyric acid_	7=	0.212 Cr	*=	26.66 x	10 ^{-*} E.
-------------------	----	----------	----	---------	---------------------

[n2804]	3.0	<u>.</u>	3.50		
fire(mine.)	10 ⁴ _Cr ^{VI} 7(7)	4+108/ErVI7	10 ⁴ /cr ^{V1} 7	4+log/Cr ^{VI}	
0	26.66	1.425	26.66	1.426	
15	24.74	1.393	23.98	1.360	
30	23.22	1.365	22.25	1.347	
45	22.20	1.346	21.20	1.326	
60	21.00	1.322	20.24	1.306	
75	20.12	1.300	19.12	1.281	
90	19.13	1.281	18.17	1.260	
105	18.45	1.266	17.16	1.230	
120	17.50	1.243	16.50	1.217	
135	17.10	1.233	15.70	1.196	
150	16.68	1.222	14.93	1.174	
Rate constant (min. ⁻¹)	t 3.18 x :	10 ⁻³	3 .7 2 x	10 ⁻³	
Fig. 4.	Curve	1.	Curve 2.		

_H2S04_7	4.	.00	4.	521
Tipo(mins.)	10 ⁴ /Cr ^{VI} 7(11)	4+10c/CrVI7	10 ⁴ /cr ^{VI} /(::)	4+log/CrVI7
0	26.66	1.425	26.60	1.425
15	22,38	1.349	21,58	1.342
30	20.50	1.311	19.45	1,289
45	18.86	1.275	18.04	1.256
60	17.70	1.247	16.28	1.211
75	16.58	1.219	15.20	1.182
90	15.80	1.198	14.23	1.155
105	15.12	1.179	13.05	1.115
120	13.88	1.142	11+60	1.071
135	12.90	1.110	11.06	1.063
150	12.10	1.092	10.15	1.006
Rate constan (min. ⁻¹)	nt 4.70 x	4.70 x 10 ⁻³		10 ⁻³
Fig. 4.	Curv	. 3.	Curve	4.

Table - X.

Acidity dependence of the oxidation rate.

Semp. = 75 ± .1°C/H2S047 + [HaHS04]7= 6.01:

[H2504.7	8.0	П	5.511			
?ino(mins.)	10 ⁶ /0r ^{V1} 7(11)	4+100/CrV17	10 ⁴ /cr ^{VI} /(1)	4+10@/Cr ^{V1}		
0	26.66	1,425	26.66	1.425		
15	21.46	1.331	20.63	1.314		
30	19.20	1.283	17.70	1.248		
45	17.00	1.230	15.63	1,194		
60	15.80	1.198	13.68	1,136		
75	14.30	1,155	12.64	1.101		
90	13.83	1.125	11.32	1.053		
105	11.97	1.078	9.54	0.979		
120	11.00	1.045	8.16	0.911		
135	9.83	0.992	7.12	0.852		
150	8.98	0.953	5.57	0.746		
Rate constant (min. ⁻¹)	: 6.47 x	6.47 x 10 ⁻³		x 10 ⁻³		
Fig. 4.	Curv	e 5.	Cur	ve 6.		

-

Effect of acidity on the rate constant.

<u>∠</u> "B ⁺ _7 (13)	<u>_</u> H+ <u>7</u> 2	k x 10 ³ (min. ⁻¹)	$\frac{k}{1 \text{ motermin}^{-1}} \times 10^{-1}$	$\frac{3 \frac{k}{2 + 7^2} \times 10^4}{(1^2 \cdot \text{mole}^{-2} \min^{-1})}$
3.0	9.00	3.18	1.06	3.53
3.5	12.25	3.72	1.07	3.03
4.0	16.00	4.70	1.17	2.93
4.5	20.25	5.80	1,28	2.86
5.0	25.00	6.47	1.29	2,58
5.5	30.25	9.65	1.75	3.19

<u>**Temperature** dependence</u>

The exidation of isobutyric acid was studied at aix different temperatures under identical conditions of reactants concentrations and ionic strength. The plot of log k Vs. $\frac{1}{2}$ yielded a straight line and the energy of activation was calculated from the slope. The value was found to 14.7 Heal. The other thermodynamic parameters i.e. ΔH^{\pm} and ΔS^{\pm} were calculated from the equations given in Chapter II and the values are 14.0 Keal and -37.5 ev. respectively.

Sable - XII.

Temperature dependence of the oxidation rate.

[12504] 7- 5.011 [Isobutyric acid] - 0.211 [CrVI7-26.66 x 10-41.

<u><u><u>Comporature</u></u></u>		338	or	343 ⁹ H		
Sino	(mins.)	10 ⁴ /Cr ^{VI} 7(11)	4+10 (Cr VI7	10 ⁴ /Cr ^{VI} /(1)	4+10c/CrV	
0		26.66	1.425	26.66	1.425	
10		25.74	1.410	25.72	1.410	
20		24.92	1.296	24.80	1.394	
30		24.10	1.992	23.90	1.876	
60		23.18	1.365	23, 28	1.367	
50		22.26	1.347	22.50	1.362	
60		21.64	1.335	21.77	1.338	
70		21.03	1.322	21.20	1.526	
60		20.46	1.311	20.53	1.312	
90		20.06	1.302	19.90	1.299	
100		19.60	1.292	19.23	1.284	
21	ate consi (min. ⁻¹)	tent 2.32 x)	10 ⁻³	3.10 x	10-3	
Fic.	5.	Curve 1.		Curv	e 2.	

Seble- ZHI.

Temperature dependence of the oridation rate.

[1204.7. 5.0H; [Icobutyric cold.7. 0.2N; [Cr^{VI}7. 26.66 x 10⁻⁴H.

Temperature	348	°⊼	353 ⁰ I		
Sime(cine.)	10 ⁴ /or ^{VI} /(1)	4+10c/Gr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+10[[[TrVI]	
0	26.66	1.425	26.66	1.425	
10	25.60	1.406	24.94	1.397	
20	24.42	1.837	23.23	1.366	
30	23.62	1.373	22.15	1. 346	
40	22.72	1.350	20.97	1.321	
50	21,65	1.935	19.85	1.297	
60	20.74	1.316	18.72	1.272	
70	19.90	1.299	17.86	1.252	
80	19.03	1.279	16.84	1.226	
90	18.23	1.261	15.77	1.197	
100	17.12	1.233	14.90	1.173	
Rate cons (min)	stant 4.00 : ¹)	r 10 ⁻³	5 .60 x :	10 ⁻³	
F1: 5.	Cu	rve 3.	Curve	4.	

FIG. 6 ACTIVATION ENERGY

Table - XIV

Tomporature dependence of the oxidation rate.

$[H_2SO_4_7 = 5.0H. []sobutyric acid_7 = 0.2H.$ $<math>[Cr^{VI}7 = 26.66 \times 10^{-4}H.$

lemperature		359	o _k	363 ⁰ K		
21 De	(wins.)	10 ⁴ /Cr ^{VI} 7(1)	4+10@[Cr VI7	10 ⁴ /Cr ^{VI} /(1)	4+10g/Cr ^{VI}	
0		26.66	1.425	26.66	1.425	
10		24.77	1.394	24.74	1,393	
20		22.77	1.357	22.50	1.352	
30		21.10	1.524	20.94	1.321	
40		19.60	1.292	19.23	1,284	
5 0		18.35	1.263	17.51	1.243	
60		17.25	1.236	15.80	1.198	
70		16+10	1.206	14.40	1.158	
60		14.35	1.157	12.63	1.101	
90		13.36	1.123	10.70	1.029	
100		12.25	1.088	9.66	0.984	
E	ste cons (min1	tant 7.56 x	10-3	9.37 x	10 ⁻³	
Fig.	1g. 8. Curve 5.		е б.	Curvo 6.		

Variation with ionia strength

The method of calculation applied to ovaluate the ionic strength has been described earlier. Studies with isobutyric acid show a positive salt effect. However, the plot of $/4^{-/2}$ Vo-log K do not give any information about the reaction mechanism. The tables below record the observations at various ionic strengths.

Table - XV.

Effect of ionic strength on the rate constant.

Ecmp. 75 [±] .1^oC [H₂60₄]⁻ 4.50; [Isobutyric acid]⁻ 0.20; [Cr^{VI}]⁻ 26.66 x 10⁻⁴1.

/ Ionic Strength	4.	515	5• 0∄		
fine(mine.)	10 ⁴ /Cr ^{VI} 7(2)	4+108[CrV17	10 ⁴ /Cr ^{VI} 7(11)	4+10g/Cr	
0	26.66	1.625	25.66	1.425	
15	25.30	1.403	25.68	1.410	
30	24.10	1.883	23.83	1.377	
45	22.83	1.359	22.87	1.359	
60	22.18	1.346	28.00	1.342	
75	21,48	1.332	21.15	1.325	
90	20.77	1.317	20.20	1.305	
105	20.07	1.301	19.28	1.285	
120	19.48	1.288	18.42	1.265	
139	18.90	1.276	17.56	1.245	
150	18.40	1.264	16.70	1.222	
Rate const (min	tant 2.56 x 1)	10 ⁻³	3.00 x 10	y ~ 3	

300104	1.0	1	1.5	11	
Tonic	6 . 5E		6.0E		
Are(mins.)	10 ⁴ /cr ^{VI} 7(=)	4+100/02 ^{V1} 7	10 ⁶ /02 ^{VI} 7(13)) 4+10g/Cr	
0	20.66	1.425	26.66	1.425	
15	25.53	1.407	24.86	1.395	
30	23.36	1.368	23.35	1,368	
45	22.34	1.349	22.05	1.543	
60	21.20	1.326	20.90	1.320	
75	80.10	1.303	19.44	1.283	
90	19.07	1.290	18.30	1.262	
105	18.32	1.262	16.90	1.227	
L20	17.47	1.042	15.84	1.199	
135	16.62	1.220	14.68	1.166	

Rable - IVI.

Table - XVII.

Effect of ionic strength on the rate constant.

Temp.	75	#	.1°C	∠H220	°4.7=	4.5数		odutyric	acid 7-
				0.20;	Cor VI	7- 26	.66 x	10 ⁻⁴ 11.	

_ Ionic strength	6.	.617
Tine(mins.)	10 ⁴ /Cr ^{VI} /(15)	4 + 10g [Cr ^{VI}]
0	26.66	1.425
16	24.90	1.396
30	23.32	1.367
45	21.90	1.340
60	19.37	1.287
78	17.39	1.252
90	16.00	1,204
105	15,62	1,193
120	14.12	1.150
135	13.04	1.115
150	12,34	1.091

Table - XVIII.

Influence of moetic acid on the rate of oxidation. Temp. 75 $\pm \cdot 1^{\circ}$ CH₂SO₄ = 5.0H; Cleobutyric acid = 0.2H; Cr^{VI} = 26.66 x 10⁻⁴H.

[Acetic acid_]		r N <u>i</u> l	NIL		
24ne	(mins.) 1	10 ⁴ (Cr ^{VI} 7(E)	6+106/CrV17	10 ⁴ /0r ^{VI} /(E)	3+10g/Ur VI7
0		26.60	1.425	26.66	1.425
15		25.50	1.406	24.34	1.396
30		24.43	1.397	22.65	1.355
45		23.62	1.373	21.29	1.327
60		22.72	1.386	19,95	1.300
75		21.65	1.335	18.95	1.277
90		20.74	1.316	17.63	1.246
105		19.98	1.301	16.26	1.211
120		19,03	1.279	15.10	1.179
135		18.24	1.261	14.52	1.162
150		17.12	1,233	13.57	1,132
Rate constant 4.00 x 10 ⁻³ (min. ⁻¹)		10-3	4.95 x	10 ⁻³	
Fig.	8.	Curv	e 1.	Curve	2.

Pable - XIX.

Influence of acetic sold on the rate of oxidation.

Pemp.	75	1	.1°C	Ca2504-	7 =	5.()e;	 	e014]7=	0.211;
•				[Cr VI7=	26.	•66	X	10 ⁻⁴ 1.		

Acetic acid	1.7 0.	211	0.613		
Time(nine.)	10 ⁴ /Cr ^{VI} /(11)	4+10E/Cr VI7	10 ⁴ /Cr ^{VI} /(11)	4+100/Cr VI	
0	26.66	1.425	26.60	1.425	
15	24.03	1.380	23.44	1.370	
50	22,14	1.849	21.80	1.558	
45	20,50	1.312	20.34	1.308	
60	19.03	1.280	18.34	1,263	
75	18.20	1.260	17.07	1.232	
90	16.68	1.227	15.33	1.185	
105	15.78	1.198	13.75	1,138	
1.20	14.62	1.165	12.38	1.093	
135	13.40	1.127	10.86	1,036	
150	12.35	1.092	9.90	0.995	
Rate const (min1	ant 5.68 x	10-3	6.90 3	e 10 ⁻³	

,

Curve S.

Curve 4.

.

Chestic aci	.a.7 o.	.7 E	1.0	[]
2ice(mins.)	10 ⁴ /Cr ^{VI} 7(E) 4+108/0r ^{V1} 7	10 ⁴ /or ^{VI} 7(1)	6+108/0r ^{VI}
0	26.66	1.425	26.66	1.425
10	22.78	1.357	21.64	1.335
80	20.38	1.309	19.23	1.284
30	18.14	1.258	17.36	1.239
40	16.82	1.225	15.97	1.203
50	15.33	1.185	14.26	1.154
60	13.73	1.137	12.66	1.102
70	12.50	1.097	11.00	1.041
80	11.44	1.056	9.83	0.992
90	10,16	1.007	8.44	0.926
100	8.88	0.994	6.90	0.638
Rate const (min1)	ant 7.50	r 10 ⁻³	8.94 x	10-3
Fig. 8.	Cu		Curv	e 6.

Table - XX.

•

Influence of gostic acid on the rate of oxidation.

Warm. 75 2 100 / 80. 7- 8.000 / Techuturte anth 7- 0.984

STUDIES WITH ISOVALERIC ACID

•

Order in Chronic acid

In order to determine the order of reaction with reference to emident, experiments were performed varying the concentration of chronic acid at constant isobutyric and sulphuric acid concentrations. The plot of log $\langle Cr^{VI} \rangle$ variable yielded good straight lines in all the cases. The rate constants were determined from the slopes of these lines and were found to be almost constant indicating first order dependence on exident concentration. The rate data are shown belows

FIG. 9 DEPENDENCE OF RATE CONSTANT ON CHROMIC ACID CONCENTRATION

Dependence of rate constant on chronic acid concentration. Semp. 75 \pm .1°C; \square_2 SO₄ 7= 5.00; \square sovaloric acid 7= 0.10.

Chronis J acid	66, 6	6 x 10 ⁻⁴ 2	33.33 x 10 ⁻⁴ 11		
Time(mins.)	_10 ⁴ /cr ^{VI} 7(11)	6+10@/CrVI7	10 ⁴ /Cr ^{VI} 7(1)	4+100/CrVIZ	
0	66.66	1.023	33, 33	1,522	
10	63.12	1,000	31.74	1.501	
20	60.31	1.760	30.22	1.480	
30	57.26	1.757	29.10	1.463	
40	53.95	1.732	27.56	1.640	
50	50.00	1.698	26, 28	1.419	
60	44.90	1.652	25.10	1., 399	
70	41.23	1.615	23.83	1.377	
80	37.14	1.569	22.15	1.345	
90	32.62	1.513	20.46	1.311	
100	. 58*88	1.461	18.98	1.278	
Bate con (min.	stant 6.80 : ¹)	r 10 ⁻³	6.40	x 10 ⁻³	
Fig. 9.	Curve 1.		Cur	ve 2.	

7	8	b	1	e	-	XXII.

Dependence of rate constant on chromic acid concentration. Temp. 75 \pm .1°C; $\underline{/H_2}^{GO}$, $\underline{/}=$ 5.02; $\underline{/}$ Iso-valeric acid $\underline{/}=$ 0.12.

[Chronic_7 acid	23,80	x 10 ⁻⁴ 11	18.51 x 10 ⁻⁴ 0		
Time(mins.)	10 ⁴ /cr ^{VI} /(1)	4+10 c/or VI7	10 ⁴ /Gr ^{VI} 7(II)	6+10@/0r ^{VI}	
0	23.60	1.376	18,51	1.267	
10	23,26	1.366	17.97	1.254	
20	22.03	1.343	16.67	1.227	
30	21.22	1.326	16.10	1.206	
40	20.46	1.310	14.77	1.169	
50	19.43	1.288	13.60	1.133	
60	18,56	1.269	12.56	1.099	
70	17.14	1.234	11.33	1.054	
80	15.60	1.193	10.20	1.008	
90	14.89	1,173	9.10	0.959	
100	13.77	1.139	7.96	0.901	
Rate con (min.	etant 6.40 : -1)	x 10 ⁻³	7.22	x 10 ⁻³	
F1 3. 9.	Curve 3.		Cu	rve 4.	

Toble - XXIII

Dependence of rate constant on chromic acid concentration. Remp. 75 \pm .1°C; $\sum H_2 SO_4 = 5.0E$; $\sum 180$ -valeric ecid = 0.1E.

Chronic acid	7 16.	66 x 10 ⁻⁴ 11	13.93 z 10 ⁻⁴ H		
Time(mins.)	10 ⁴ /Cr ^{V1} 7(1:)	4+10g/Or ^{VI} 7	10 ⁴ /Cr ^{VI} 7(E)	4+log/Cr ^{VI} 7	
0	16.66	1.021	13.33	1.124	
10	16.18	1.209	12.40	1.093	
20	15.40	1,183	11.86	1.074	
30	14.74	1.168	11.22	1.050	
40	13.84	1.141	10.50	1.021	
50	12.90	1.111	9.83	0.995	
60	11.63	1.069	9.16	0.962	
70	11.02	1.048	8.47	0.928	
80	10.00	1.000	7.74	0.889	
9 0	9.13	0.960	7.10	0.851	
100	8.20	0.914	6.57	0.817	
Rate constan (min. ⁻¹)	tent 7.56 x 10 ⁻³ 1)		7.56 x 10 ⁻³		
E1: 9.	Cur	ve 5.	Cur	ve 6.	

Order in isovaleric acid

The order with respect to isovaleric acid was determined exactly in the same way as in the oxidation of isobutyric acid and found to be unity. The plot of rate constant Vs isovaleric acid concentration is shown in the figure 11 and the data are given in the following tables.

FIG. 10 DEPENDENCE OF RATE CONSTANT ON ISOVALERIC ACID CONCENTRATION

Table - XXIV.

Dependence of rate constant on the concentration of isovaleric acid.

Temp. 75 ± .1°C; [H2504.7- 5.0E; [CrVI7- 33.33 x 10-41.

<u>_Icoveleric</u> eoid	7 4.0	x 10 ⁻²	5.0 x 10 ⁻² H		
Tine(cins.)	10 ⁴ /Cr ^{VI} /(H) 4+100/02 ^{VI} 7	10 ⁴ /Cr ^{VI} /(II)	4+108/CrVI	
0	33.33	1.522	33,33	1.522	
15	33.06	1.519	33.06	1.519	
30	32,80	1.515	32.35	1.509	
45	32.34	1.509	31.70	1.501	
60	31.68	1.803	30.98	1.491	
76	31.50	1.498	30,46	1.483	
90	31.03	1.491	29.60	1.471	
105	30.50	1.484	29.15	1,464	
120	30.04	1.477	28.37	1.452	
135	29.38	1.468	27.60	1.440	
150	28.60	1.456	26.87	1.429	
Rete cons (min1	tant 1.08	z 10 ⁻³	1.64 x	10 ⁻³	
11.2. 10.	Cu	rve 1.	Curve 2.		

/Icoveleric ecid	7 10.0	0 x 10 ⁻² 0	20.0	x 10 ⁻⁴ 11
Tine(mino.)	10 ⁴ /0r ^{VI} /(11)	4+100/ErV17	10 ⁴ /Cr ^{VI} /(1)	6+10c/Cr ^{V1} /
0	33.33	1.522	33.33	1.522
15	32.13	1.507	31.00	1.491
30	31.28	1,498	28.50	1.454
45	29.56	1.470	26.98	1.431
60	28.37	1.452	25.40	1.404
78	27.17	1.434	23.10	1.363
90	26.12	1.417	20.63	1.318
105	24.40	1.387	19.17	1,282
120	23.34	1.368	17.32	1.239
135	21.70	1.336	18.67	1.195
150	19.64	1.293	14.08	1.148
Rate cons (min. ⁻¹	tant 3,20 x	10 ⁻³	5.44 x	10 ⁻³
F13. 10.	Curv	в 3.	Curv	6 4.

2able - XXV.

.

FIRST ORDER DEPENDENCE OF RATE CONSTANT ON ISOVALERIC ACID CONCENTRATION

Table - XXVI.

Dependence of rate constant on the concentration of isovaleric acid.

Semp. 75 - .1°C; [H2S04.7- 5.01; [CrVI7- 33.38 x 10-41.

Clsovaleric acid	7 25.0 1	: 10 ⁻² 11	33.33 x 10 ⁻² E		
Fice(mine.)	10 ⁴ /Cr ^{VI} /(E)	4+10g/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+106/Cr ^{VI} 7	
0	33.33	1.522	33.33	1.622	
15	30.93	1,490	30.54	1.485	
30	28.87	1.460	28.10	1.4/18	
45	26.67	1.426	25.70	1.410	
60	24.14	1.382	22,13	1.545	
76	22.28	1.348	19.53	1.291	
90	20.22	1.305	17.22	1.236	
105	17.43	1.241	14.30	1.155	
120	15.63	1.194	12.25	1.088	
135	14.03	1.147	10.27	1.011	
150	12.44	1.034	8.87	0.948	
Bate cons (cin.~	tent 7.73 1)	x 10 ⁻³	10.50 x	10 ⁻³	

F1 . 10.

Curve 5.

Curve G.

Variation of rate constant with acidity

Sulphuric acid was varied from 3.0H to 5H. The rate was found to increase with increasing sulphuric acid content of the reaction mixture. Since sulphuric acid is considered to dissociate into $HOO_4^$ ions only, codium bisulphate was used to compensate for the change of ionic strength. The results of acidity variation are reported in the tables below.

/H ₂ SO ₄ / Time(mins.)	3.0H		3,511	
	10 ⁴ /Cr ^{VI} /(11)	4+10g/Cr ^{VI} 7	10 ⁴ /cr ^{VI} /(1)	4+10e/0
0	26.66	1.425	26.66	1.425
15	25.90	1.419	25.80	1.411
30	25.46	1.406	24.20	1.383
45	24.63	1.391	23.50	1.371
60	23.74	1.378	22.00	1.342
76	22.70	1.356	20.30	1.307
90	21.23	1.327	18.95	1.277
105	20, 10	1.303	17,40	1.240
120	19.30	1.285	15.53	1.191
135	18.37	1.264	14.18	1.151
150	17.06	1.232	12.43	1.094

Table - XXVII.

158
Table - XXVIII.

Acidity dependence of the oxidation rate.

lep.	75	*	.1°Cj	LH2804	\$	Nell	504.7-	6.0¤	Ľ	1:	ovalerio	
				acid 7=	0.	201;	CrrVI]	7 = 26.	66	X	10 ⁻⁴ E.	

/u2804_7	4.00		4.50			
fine(mine.)	10 ⁴ /Gr ^{VI} /(1)	4+10c/CrVI7	10 ⁴ /cr ^{VI} 7(11)	4+log/CrVI		
0	26.66	1.425	26.66	1.425		
15	25.45	1.405	24.20	1.363		
30	24.34	1.386	23.80	1,376		
45	23.23	1.366	21.64	1.335		
60	21.64	1.335	19.80	1.296		
78	19.84	1.297	17.63	1.243		
90	17.57	1.244	15.15	1. 180		
105	15+60	1 193	13.10	1.117		
120	14.40	1.158	11.20	1.049		
135	12,12	1.083	9.42	0.974		
150	10.42	1.018	7.86	0.895		
Rate Constant (min. ⁻¹)	6.14 x :	10 ⁻³	8.37 *	10 ⁻³		
Fig. 12.	Curv	e 3.	Curv	e 4.		

Table - XXIX.

Acidity dependence of the oxidation rate.

Yexp. 78 \pm .1°C; $(\Pi_2 SO_4 + \Pi_2 SO_4 / - 6.00)$; [Isovaleric acid_7= 0.20; $(\Box_7^{VI} / - 26.66 \times 10^{-4} U.$

CB25047	8	.00	
Tino(mina.)	10 ⁴ /cr ^{VI} /(1) 4+log [Ör ^{VI}]	
0	2 6. 66	1.425	
15	24.57	1.390	
SO	22.43	1.350	
45	19.70	1.294	
60	17.20	1.235	
75	13.94	1.144	
90	11.40	1.056	
105	10.27	1.011	
120	7.47	0.673	
135	5.38	0.731	
150	4.13	0.621	
Rate cone (min."	tant 10.2	8 x 10 ⁻³	enteter

Mg. 12.

Curve 5.

Table - XXX.

Effect of acidity on the rate constants.

(n)	<u> </u>	k x 10 (min. ⁻¹	³ <u>k</u> x 10) <u>/ H⁺ 7</u> 10 (1. mote min.	$\int_{\frac{1}{2} \text{ mole}^{-2} \text{min}}^{3} \frac{k}{2} e^{x} 10$,4 .n1)
3.0	9.00	3.37	1.12	3.74	
3.5	12.25	4.82	1.37	3.93	
4.0	16.00	6.14	1.53	3.83	
4.5	20.25	8.37	1.86	4.13	
5.0	25,00	10.28	2.05	4.01	
-					

Temperature dependence

Reaction was otudied at six different temperatures under identical reaction conditions. Activation energy and other thermodynamic parameters were calculated from standard equation described earlier. The values found are:

Acti vi	aci	on	onorgy		11.5	Real
Scat (dí	not	ivation	#	10.8	Kcal
Intro	ру	of	activation	難	-46.5	eu.

The rate constants at various temperatures are given in the following tables.

162

FIG. 13 TEMPERATURE DEPENDENCE OF THE OXIDATION RATE

Sice(mine.)			243 ⁰ K		
	10 ⁴ /Cr ^{VI} 7(1)	4+106/Er VI7	10 ⁴ /Cr ^{VI} /(11)	4+loc/Cr	
0	26.66	1.425	26.66	1,425	
10	25.63	1.408	26.05	1.415	
20	25.04	1.398	25.28	1.402	
30	24.50	1.389	24.40	1.387	
40	23.74	1.375	22.60	1.357	
50	23.04	1.362	21.90	1.340	
60	22.28	1.348	20.70	1.316	
70	21.57	1,334	19.65	1.293	
80	20.87	1,319	18.43	1.265	
90	19.84	1.297	17.33	1,238	
100	17.95	1.284	16.12	1.207	

Table - XXXI.

🖌 🗄 V 4 V 💳 AAA444	2	a d	1	6	-	XXXII.	
--------------------	---	-----	---	---	---	--------	--

•

Temperature dopendence of the oxidation rate.

_n₂so _¢ _7	- 5.0Mg	<i>C</i> isovaleric	acid 7 =	0.13;
Cr ^{VI} 7 -	26.66 x	10 ⁻⁴ 11.		

Imperature	353 ⁰ r		359 ⁰ e			
Tipe(mine.) 1	.0 ⁴ _Cr ^{VI} 7(E)	4+10g/ErV17	10 ⁴ /Cr ^{VI} /(11)	4+105/Cr ^{V1} 7		
0	26.66	1.425	26.66	1.425		
10	25.70	1.410	25.58	1.408		
20	23,98	1.390	23.87	1.378		
30	23.12	1.364	22.50	1,352		
40	21.87	1.340	20.41	1,310		
60	19.95	1.300	18,70	1.272		
60	19.23	1,284	17.30	1,238		
70	18.03	1.256	15.84	1.200		
80	17.14	1.234	15.13	1.180		
90	16.14	1.208	14.32	1.156		
100	15.34	1.186	12.76	1,106		
Rate constan (min. ⁻¹)	t 5.62	x 10 ⁻³	7.36 x	10-3		
F1 3. 13.	Cu	rve 3.	Curv	e 4.		

Scoperature	363 ⁰ K		368 ⁰ K	
Pine(rino.)	10 ⁴ /cr ^{VI} /(11)	4+10g/Cr VI7	10 ⁴ /Cr ^{VI} 7(D)	4+108/Cr ^{VI}
0	26.66	1.425	26.66	1.425
10	24.26	1.385	23.70	1.375
20	22.13	1.348	20,90	1.320
30	20.51	1.312	17.98	1.255
40	18,88	1.276	15.48	1.190
50	16.74	1.284	13.67	1.136
60	15.13	1.180	11.56	1.063
70	13.98	1.146	10.35	1,015
80	12.20	1.096	9.03	0.956
90	11,27	1.052	-	-
100	10.30	1.013	-	~ ,

Effect of Ionic Strength

By verying the concentration of modium perchlorate, the ionic strength of the reaction mixture was regulated. A positive influence is observed. The plot of $0/\mu^{1/2}$ Vs.log & fails to give any conclusive results. The rate constants at various ionic strengths are registered below.

Ŷ	8	ъ	1	6	-	XXXI	٧.
---	---	---	---	---	---	------	----

Effect of ionic strength on the oxidation rate. Temp.75[±].1^oC; $/H_2SO_4/=4.511$; /Isoveleric acid/=0.111; $/Cr^{VI}/=26.66 \times 10^{-4}1$.

_Mac104_7	7 H11		0.611		
. Ionic strength	4.	511	5.01		
fine(mine.)	10 ⁴ /Cr ^{VI} /(H)	4+10c/CrVI7	10 ⁴ /cr ^{VI} /(II)	4+10c/CrVI7	
0	26.66	1.425	26.66	1.425	
15	26.20	1.418	26.34	1.420	
30	25,46	1.405	25.50	1.406	
46	24. 67	1.392	24.33	1.386	
60	23.83	1.377	23.17	1.365	
78	22.90	1.360	22.02	1.342	
90	22.16	1.347	20.90	1.320	
105	21,53	1,333	19.64	2.293	
120	20.70	1.315	18.66	1.271	
135	19.67	1.294	17.73	1.248	
150	18.96	1,278	16.73	1.223	
Rate cons (min.	etant 2.50 x ⁻¹)	10 ⁻³	3.77 🗶	10 ⁻³	
Pig. 15.	Cur	ve 1.	Curv	e 2.	

Yemp.754.1	$\frac{\sqrt{Cr^{VI}}}{\sqrt{Cr^{VI}}} = 2$	= 4.5E; <u>(</u> 180 6.66 x 10 ⁻⁴ E.	valeric acid_	/= 0.12
[11a0104]	1.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.5	17
lonic_ otrength	6,511		6.0	
Tino(mins.)	10 ⁴ /0r ^{VI} 7(H)	4+10c/CrV17	10 ⁴ /cr ^{VI} /(E)	4+log/ErVI7
0	26.66	1.425	26.66	1.425
15	25.35	1.404	25.50	1.406
30	24.46	1.388	24,20	1.383
45	22.95	1.360	22.84	1.358
60	21.38	1.330	20.88	1.319
75	19,65	1.293	19.23	1,284
90	18.00	1.255	17.16	1.234
105	16.90	1,227	15.60	1.193
120	15.80	1.198	13.44	1.128
135	14.64	1.165	11.83	1.073
150	13.38	1.126	10+23	1.010
Rate con (min.	stant 5.56 x -1)	10 ⁻³	7.25 x	10 ⁻³
Fir. 15.	Cur	ve 3.	Curv	e 4.

Table - XXXVI.

Effect of ionic strength on the oxidation rate.

Temp. 75[±].1°C; $[H_2SO_4] = 4.511$; $[Isovaloric acid_7=0.11]$; $[Cr^{VI}7 = 26.66 \times 10^{-4}1]$.

[NaClo ₄]	2.08		
Ionic strength	é	.5 11	
Time(mins.)	10 ⁴ /cr ^{VI} /(1	1) 4+100/Cr ^{VI} 7	
0	26.66	1.425	
15	24.80	1.394	
30	23,20	1.365	
45	21.13	1.324	
60	19.26	1.284	
75	17.20	1,235	
90	15.20	1.181	
105	13.08	1.116	
120	11.06	1.034	
135	8.90	0,950	
150	6.80	0.832	
Eate cons (min1	tant 8.46	x 10 ⁻³	
			nise I

Fig. 15.

Curve 5.

Tabl	Table - XXXVII.				
1niiuen Tepp.75	Temp.75 ⁺ .1 ^o C; $\sum_{R_{c}}^{R_{c}}$ 5.00;				
Cheetic J acid	0.10		0,21		
fine(mins.)	10 ⁴ /cr ^{VI} 7(H)	4+10c/Cr VI7	10 ⁶ /Cr ^{VI} 7(11)	4+10g/0rV17	
0	26,66	1.425	26.66	1.425	
15	25.07	1.399	24.00	1.394	
30	23.34	1,368	22.70	1.386	
45	21.17	1.325	20.96	1.321	
60	19.87	1.287	19.00	1.278	
75	17.16	1.234	16+94	1.229	
90	14.98	1.175	14.52	1. 162	
105	13.14	1.118	12.67	1.102	
120	11.60	1.065	11.08	1.044	
135	10.03	1.003	9.02	0.955	
150	8.34	0.921	7.12	0.853	
Rate cons	tant 8.22 : 1)	x 10 ⁻³	8 .94 x	10 ⁻³	
11/. 16.	Ci	arve 1.	Curv	0 2.	

Table -	XXXVIII.		
Influence of	acetic acid	I on the oridatio	n rete.
2emp.75±.1°C	$\frac{\int H_2 SO_4 J}{\int Cr^{VI} J} = 1$	• 5.00; / Icovale 26.66 x 10 ⁻⁴ 1.	eric acid 7= 0.10;
Cheetic 7 acid	0,	.511	
Sine(nine.)	104/Cr VI7(1) 4+10g/Cr ^{VI} 7	
0	26+66	1.425	
15	22.95	1.339	
30	20.83	1.312	
45	19.36	1.263	
60	15.92	1.202	
75	14.02	1.146	Ň
90	12.10	1.083	
105	9.94	0.997	
120	7.88	0.893	
135	6.34	0.802	
150	4.50	0.653	
Rate cons (min1	tant 10.4)	10 x 10 ⁻³	
F1c. 16.	6	nrve 3.	

.

•

Chcetic J acid	0.1	70	1.01	
Pine(mins.)	10 ⁴ /0r ^{VI} 7(11)	4+10g/CrVI7	10 ⁴ /Cr ^{VI} /(11)	6+10@/Cr VI7
0	26.66	1.425	26.66	1.425
10	23.67	1, 372	22.18	1.346
20	21,10	1.384	19.78	1.296
30	19,50	1.290	18.60	1.269
40	17.96	1.264	16.16	1.208
50	16.67	1.219	14.82	1,171
60	14.87	1,172	12.60	1.107
70	13.38	1.126	11.32	1.057
80	12.25	1.089	10.20	1.003
90	11.06	1.044	9.54	0.931
100	9.57	0.981	7.10	0.851
Bate con (min.	stent 11.18 -1)	x 10 ⁻³	12 . 17 x	10 ⁻³
Flg. 16.	C.	urvo 4.	Cur	ve 5.

Chapter IV

·

Kinetics of Oxidation of phenylasetic acid

The oxidation of phenylated fatty acids is important from the biological point of view since it throws light upon the mode of oxidation of fatty acids of related structures in the animal body. Dakin 134,135 studied the oxidation of phenylated fatty acids in vivo and in vitro by hydrogen peroxide. His resulto afforded the most convincing evidence of the occurrence of β -oxidation in both the cases showing a close analogy between The use of copper as a catelyst in the oxidation then. of phenyl derivatives of aliphatic acids has been reported by Jones and LacLean 136. They observed that the ense of oxidation was increased with the increase in the side chain. The special susceptibility of phenylacetic acid to oxidation was ascribed to the fact that β -oxidation took place at the nuclear carbon atom to which the side chain was attached.

Bacterial oxidation of benzoic and phenylacetic acids by Vibrio¹³⁷ was reported to take place by different metabolic routes, but a section of tricarboxylic cycle which enters through β -ketoglutaric acid was shown to be common to both.Hockenhull¹³⁸ demonstrated that the initial oxidation of phenylacetic acid by "enicillium chrysogenum took place in the side chain as dehydrogenetion process with the formation of benzaldehyde. Phenylacetaldehyde and hydroxyphenylacetic acid were envisaged as intermediates. Elercuric and iodoacotate ions were observed to inhibit the oxidation. Spiro¹³⁹ suggested that \prec -oxidation of fatty acids in the organism was not due to a peculiar oxidation mechanism, but it was limited by the properties of the oxidation compound which determined the peculiar position of attack.

The oxidation of phenylated fatty acids by hot alkaline pormanganate was investigated by Przhevalskii¹⁴⁰ who reported that the oxidation took place at the carbon atom next to phenyl group. The hydroxyl group was introduced which was then further oxidized to a carbonyl compound and finally to benzoic acid. The remainder side chain was oxidized to carbon dioxide or to a dibasic acid. Oxidative degradation of carboxylic acids by potassium permanganate has also been reported by Skraup et al¹⁴¹. These workers obtained benzoic acid from phenylacetic acid; benzoic and benzoylformic acid from hydrocinnamic and phenylbutyric acids by oxidizing then with one mole of acid and 0.1 mole of potassium carbonate. Permanganate oxidation of phenylacetic and phenylpromionic acids in

174

acid, basic and neutral media was carried out by Dimitrov and Stefanova¹⁴². Formation of pyruvic acid, as identified by gas chromatography, was attributed to the breaking of benzene ring. Use of solid manganese dioxide as an oxidant for the oxidation of organic compounds was reported by El-Sadar¹⁴³ who obtained benzaldehyde (50% yield) and carbon dioxide from phenylacetic acid.

The usual oxidative degradation process in lignin chemistry to vanillin by nitrobenzene was applied to model compounds¹⁴⁴. It was shown that phenylacetic acid was oxidized to bencoylformic acid. Perculphate oxidation¹⁴⁵ of phenylacetic acid gave dinhenylnethane (36% yield) and boncaldehyde. Bacon and Henna¹⁴⁶ used argentic picolinate as a suitable exidant for organic corpounds in aqueous suspensions. They found that phenylacetic acid was oxidized to bonzaldehyde by this reagent. Waters 123 obtained little benzaldehyde from the oxidation of phenylacetic acid by cobaltic salts. Fieser's 147 observations on the alkyl side chain by chromic anhydride strongly suggest that the degradation of an acid side chain proceeds by en initial β -oxidation followed by decarboxylation to β -keto acid. The lower homologous acids arise by the sicilar processes. Hence they concluded that the phenomena of β -oxidation was not limited to biological oxidations.

only. The schenatic representation is as follows: $-(CH_2)_9CO_2H \longrightarrow -(CH_2)_7COCH_2CO_2H \longrightarrow$ $-(CH_2)_7CO CH_3 \longrightarrow -(CH_2)_{1-7} CO_2H.$

Recently¹⁴⁸ oridative decarboxylation of phenylacetic acid has been shown to proceed through ionic mechanism and not via free radical one. Benzoylformic acid has been postulated as the key intermediate, the formation of which has been illustrated by either radical or ionic mechanism. The reaction has been shown schematically as:

In the present chapter studies on the oxidation of phenylacetic and bencoic acids were conducted in order to get an insight into the mechanism of oxidation of fatty acids by chromic acid.

Order in Chronic acid

The disappearance of chromic acid followed apparently first order kinotics. when it was examined as plots of $\log \sqrt{Cr^{VI}}$ Vs.time. The typical plot is shown in figure 1. It is to be noted that decrease in chromic acid is accompanied by increase in rate constants. The observations at various chromic acid concentrations are tabled belows

2	a	ъ	1	e	-	I.
-		-		-		

4

Dependence of rate constant on chromic acid concentration. Temp.75[±].1^oC; $\Box_{2}SO_{4}$ 7. 5.01; \Box Thenyl acotic acid 7.6.6x10⁻²0.

Chronic_7	romic_7 66.66 x 10 ⁻⁶ 2		33.	53 x 10 ⁻⁴ 1
Time(mino.)	10 ⁴ /Cr ^{VI} /(C)	6+10[[TrVI7	10 ⁴ ∠cr ^{VI} 7(□)	6+10E/Er ^{V1} 7
0	66.68	1.823	33.33	1.522
10	65.13	1.814	32.00	1.505
20	63.72	1.804	30.97	1.401
30	62.55	1.796	29.72	1.473
40	60.40	1.781	28.62	1.456
60	67.73	1.701	27.25	1.435
60	55.05	1.740	26.52	1.623
70	52.20	1.718	24.95	1.397
80	50,52	1.703	23.54	1.371
90	48.40	1.684	23.34	1.368
100	46.26	1.665	21.80	1.338
Ante constar (min1)	nt 4.20 x	10 ⁻³	4.27 x	10 ⁻³
Fig. 1.	Curv	e 1.	Curv	e 2.

2able - II.

Dependence of rate constant on chronic acid concentration. Comp. 90⁴. 1^oC; [H₂S0₄] = 5.00; [Phenyl acetic acid] = 0.6x10⁻²D.

Chropic J	hropic $\int 23.80 \times 10^{-4}$		19.1	61 x 10 ⁻⁴ 11
Sine(mins.)	10 ⁴ /07 ^{VI} 7(1)	4+10@[Cr ^{VI} 7	10 ⁶ /Cr ^{VI} 7(11)	4+log/TrVI
0	23,80	1.376	18.51	1.267
10	22.65	1.355	17.70	1,248
20	21.82	1.339	16.75	1.224
30	21.20	1.326	16.19	1.200
40	20.52	1.312	15.58	1.192
. 80	20.20	1.508	14.68	1.166
60	19,80	1.274	14.00	1.146
70	18.18	1.239	13.28	1.123
60	17.36	1,239	12.60	1.100
90	16.68	1.222	13.03	1.080
100	15.53	1.191	11.32	1.054
Sate consta (min. ⁻¹)	nt 4.14 x	10-3	4.60 x	10-3
Fig. 1.	Curve	3.	Curv	e 4.

Soble - III.

Dependence of rate constant on chronic acid concentration. 2emp.75⁺.1⁰C; [H₂S0₄] = 5.08; [Phenylacetic acid] = 6.6x10⁻²0.

[Chronic_7 acid	16.66 x	10 ⁻⁴ 11	13.33 x 10 ⁻⁴ 11		
Time(mins.)	10 ⁴ /cr ^{VI} 7(11)	4+10c/Cr VI7	10 ⁴ /Cr ^{VI} /(11)	4+log/cr ^{VI}	
0	16.66	1.221	13.33	1.124	
10	15.87	1.200	12.66	1.099	
20	15.10	1.178	11.90	1.075	
30	14.44	1.159	11.45	1.059	
40	13.70	1.136	10.78	1.033	
50	13.23	1.121	10.33	1.014	
60	12.70	1.103	9.74	0.988	
70	12.03	1.080	9,12	0.960	
80	11.36	1.055	8.69	0.938	
90	10,66	1.028	8.14	0.910	
100	10.03	1.001	7 * GO	0,880	
Date constan (min. ⁻¹)	t 4.73 x	10 ⁻³	4.86 x	10 ⁻³	
Fig. 1.	Curv	e 5.	Curv	e 6.	

.

Table - IV.

Dependence of rate constant on chronic acid concentration. Temp.75[±].1^oC; [H₂SO₆] = 5.0E; [Phenylacetic acid] = 6.6x10⁻²H.

Chronic_7	11.10 x 10 ⁻⁴ 0			
Time(mins.)	10 ⁴ /Cr ^{VI} /(11)	4+10g/CrV17		
0	11.10	1.045		
10	10+68	1.028		
20	10.28	1.012		
30	9.89	0.994		
40	9.50	0.977		
50	9.05	0.956		
60	8.87	0.933		
70	8.03	0.905		
80	7.55	0.878		
90	7.05	0.648		
100	6.55	0.816		
Rate constant (min1)	: 4.73	x 10 ⁻³		
Fig. 1.	Cui	Curve ?.		

Order in phenylacetic acid

The oxidation of phenylacotic acid by chronic acid was studied at low cubstrate concentration and could not be varied much because of its poor colubility. However, first order dependence on substrate was estimated from the plot of rate constant Ve.phenylacetic acid concentration. A straight line passing through the origin was obtained. The rate at various concentrations of phenylacotic acid are given in the following tables: DEPENDENCE OF RATE CONSTANT ON PHENYLACETIC ACID CONCENTRATION

FIG.2

[Phenylacet ecid	:107 4.0	x 10 ⁻² 11	5.0 x	10 ⁻² 11
fine(nine.)	10 ⁴ /Cr ^{VI} 7(1)) 4+105[Cr ^{VI}]	10 ⁴ /cr ^{VI} /(!!)	4+108/Cr
0	33+33	1.522	33.33	1.622
15	31.88	1.503	32.20	1,507
30	30.93	1.490	30.86	1,489
45	30.10	1.478	29.98	1.476
60	29.47	1.470	28.97	1.462
75	28.53	1.485	28.16	1.450
90	27.77	1.443	26.98	1.430
105	27.08	1.432	26.20	1.418
120	26, 26	1.419	26,25	1.402
135	25.56	1.407	24.50	1.390
150	24.87	1.395	23.60	1.372

fable - VI.

Dependence of rate constant on the concentration of phenylacetic acid.

Temp. 70[±]. 1[°]C; [H₂S04.] = 5.01; [Er^{VI}] = 33.33 x 10⁻⁴H.

[Phonylacetic] 6.6 x 10 ⁻² H acid				
Fice(cins.)	104 (Cr VI 7(D)	4+108/CrVI7		
0	38.33	1.522		
15·	31. 62	1.500		
30	30.17	1.496		
45	28.72	1.458		
60	27.03	1.432		
75	25.44	1.405		
90	23.98	1.380		
105	23.10	1.363		
120	22.10	1.344		
135	21.14	1.325		
150	20.13	1.301		
Rate constant (min1)	3.77	x 10 ⁻³		
F16. 2.	Cur	ve 3.		

[Phenylacetic] 8.0 x 10 ⁻² 11 acid			10.0 x 10⁻²	
fire(cine.)	10 ⁴ /cr ^{VI} /(11)	4+10c/0r VI7	10 ⁴ /Cr ^{VI} /(1)	4+10g/Tr
0	33.33	1.522	33.33	1,522
10	32.24	1.508	81.86	1.503
20	30.90	1.490	30.46	1.483
30	29.70	1.072	29.06	1.463
40	23.67	1.457	27.65	1.441
60	27.53	1.440	25.87	1.412
60	26.44	1.422	24.33	1.390
70	25.23	1.402	23.32	1.367
80	23.98	1,390	22.05	1.343
90	22.62	1.354	20.70	1.315
100	21.64	1.333	19.43	1.288
Cate constan (min1)	4.28 x 10 ⁻³		5.72 x 10 ⁻³	

2able - WII.

186

FIRST ORDER DEPENDENCE OF RATE CONSTANT ON PHENYLACETIC ACID CONCENTRATION

Variation of rate constant with addity

No suitable buffer could be prepared for studying the influence of pH on the reaction rate. Hevertheless, hydrogen ion concentration was changed as such by varying the sulphuric acid - sodium bisulphate ratio in the reaction mixture. The concentration of hydrogen ions was calculated on the assumption that the first dissociation of sulphuric soid is complete and second dissociation is negligible. The effect of various concentrations of sulphuric acid on the rate constants are given in the tables. It is observed that the quotients obtained by dividing pseudo first order rate constants by hydrogen ion concentration wary but by the square of hydrogen ion concentration remain constant in each run. It indicates that the reaction is of second order with respect to hydrogen ions.

187

Acidity dependence of the oxidation rate. Nemp.70 [±] .1 ^o C; $[II_2SO_4] + [UallSO_4] = 6.0M;$ $[Phonylacotic acid_7 = 6.6 \times 10^{-2}M;$ $[Cr^{VI}7 = 26.66 \times 10^{-4}M.$						
	4.02	an a	4.5	[]		
Tipe(cins.)	10 ⁴ /Cr ^{VI} /(1)	4+10[[[T	10 ⁴ /cr ^{VI} 7([])	4+100/0rV17		
0	16.66	1.221	16,66	1,221		
15	15.75	1.197	15.48	1.189		
SO	15.12	1.180	14.70	1.167		
45	14.46	1.160	13.95	1.144		
60	13.64	1.135	13.08	1.116		
78	13.05	1.115	12.55	1.098		
90	12.30	1.093	12.10	1.083		
105	11.60	1.071	11.36	1.055		
120	11.13	1.046	10.70	1.024		
135	10,56	1.023	9.93	0.997		
150	10.20	1.012	9.54	0.970		
Eate constan (min. ⁻¹)	nt 3.33 :	x 10 ⁻³	3.77 x	10 ⁻³		
F1g. 4.	CULA	e 1.	Curve	2.		

Sable - VIII.

5.0U 4_(Tr ^{VI} 7(B) 16.66 18.30 14.64	4+10c/Cr ^{VI} 7 1.221 1.162	5.6) 10 ⁴ /0r ^{VI} 7(13) 16.66 15.40 14.13	3 4+10@/Cr ^V 1.221 1.187
⁴ (5r ^{VI} 7(B) 16.66 18.30 14.54	4+100/Cr ^{VI} 7 1.221 1.164 1.162	10 ⁴ /cr ^{VI} 7(13) 16.66 15.60 14.13	4+100/Cr ^V 1.221 1.187
16.66 18.30 14.54	1.221 1.184 1.162	16.66 18.60 14.13	1.221
18.30 14.54	1.104 1.162	15.40 14.13	1.107
14.54	1.162	14.13	4 4 11 11
			1.100
13.67	1.136	12.87	1.109
12.53	1.098	11.50	1.060
11.58	1.063	10.52	1.022
10.93	1,038	9.72	0.987
10.43	1.018	8+80	0.944
9.58	0.981	7.87	0.896
8.60	0.944	7.10	0.851
7.97	0.901	6.17	0.790
4.82 x	10 ⁻³	6,47 x	10-3
	11.58 10.93 10.43 9.58 8.60 7.97 4.82 x	11.58 1.063 10.93 1.038 10.43 1.018 9.58 0.981 8.60 0.944 7.97 0.901 4.82 x 10 ⁻³	11.58 1.063 10.52 10.93 1.038 9.72 10.43 1.018 8.80 9.58 0.981 7.87 8.80 0.944 7.10 7.97 0.901 6.17 4.82 x 10^{-3} 6.47 x Curve 3.

Acidity dep Temp.70 [±] .1 ⁰	endence of t C; [HgS04] [Phenyle [Or ^{VI} 7 =	the exidation rate. + $\sum \text{MeHSO}_{5}$ = 6.0E; mostic moid 7= 6.6 x 10 ⁻² E; 16.66 x 10 ⁻⁶ E.
Cheso, J		6.0[]
Sine(mins.)	10 ⁴ /Cr ^{VI} 7(1	1) 4+106/Gr ^{VI} 7
o	16.00	1.221
15	15.10	1.180
30	13.38	1.126
45	11.67	1.067
60	10.40	1.017
78	9.16	0.961
90	7.87	0.096
105	7.00	0.846
120	6.20	0.792
135	5.30	0.724
150	4.94	0.627
Rate constan (min1)	nt 8.05	x 10 ⁻³
P1, 4.	Cur	ve 5.

Table - XI.

.

Effect of acidity on the rate constant.

∠_H+_7 (□)	с <u>н</u> +72	$k \ge 10^3$ (min. ⁻¹)	$\frac{k}{\left[1+\frac{1}{2}\right]} \times 10^{3}$ (1. mole min ⁻¹)	$\frac{k}{1^{2}} \times 10^{4}$ (1 ² .mole ⁻² min. ⁻¹)
4.0	16.00	3.33	0.83	2.08
4.5	20.25	3.97	0.88	1.98
5.0	25.00	4.82	0.96	1.92
5.5	30.25	6,47	1.17	2.13
6.0	36.00	8.05	1.34	2.23

<u>Semperature dependence</u>

The effect of temporature on the oxidation rate was determined under similar reaction conditions. Activation energy, heat of activation and entropy of activation were determined from the formulae mentioned already. Observations recorded under identical conditions but varying temperature are presented in the following tables. The values of activation parameters are:

•••	Encrey	of activation	*	17.9	Keol
	licat of	ectivation		17.2	Kcal
	Entropy	of activation	2 1	-28.5	eu.

FIG. 5 TEMPERATURE DEPENDENCE OF THE REACTION RATE

fcoperature	338	oK	343 ⁰ K	
Pine(ning.)	10 ⁴ /cr ^{VI} /(1)	4+10g/Cr VI7	10 ⁴ /cr ^{VI} 7(13)	4+10@/CrV
0	26.68	1.425	26.66	1.425
10	26.35	1.420	26.15	1.417
20	26.10	1.416	25.34	1.404
50	25.90	1.413	24.73	1.393
40	25.34	1.405	23.76	1.376
50	24.87	1.395	23.30	1.367
60	24.40	1.387	22.90	1.360
70	24.05	1.381	22,40	1.350
80	23+65	1.373	21.83	1.340
90	23.30	1.367	21.38	1.330
100	22.98	1.361	20.72	1.316

Table - XII.

193

Table - XIII.

Temperature dependence of the oxidation rate.

[H2604 7= 5.0H;	[Phenylacetic	eció]7 =	5.3 x	10 ⁻² 0;
	[cr VI] = 26.66	x 10 ⁻⁴ H.		

Penperature	349 ⁰ 1	Z	353	°r
Tine(mins.)	10 ⁶ /cr ^{VI} /(1)	4+106/Er ^{VI} 7	10 ⁴ /cr ^{VI} 7(::)	0+10g/0r ^{VI}
0	26.66	1.425	26.66	1.425
10	25.98	1.016	25.56	1.407
20	25.45	1.405	24.62	1.391
30	24.67	1.392	23.32	1.367
40	23.72	1.375	21.90	1.340
50	23,20	1.365	20.60	1.313
60	22,50	1.352	19.25	1.284
70	21.52	1.332	18,16	1.259
80	20.84	1.319	17.10	1.233
90	20.05	1.302	16.28	1.211
100	19.20	1.283	15.30	1.184
Rete constan (min. ⁻¹)	nt 3.55 x	: 3.55 x 10 ⁻³		10 ⁻³
F17. 5.	Curve	Curve 3.		4.

2	0	b	1	0	-	XI	V	*
---	---	---	---	---	---	----	---	---

Temperature dependence of the oxidation rate.

_H_SO4_7= 5.0H;	[Phonylaoetic	acid = 5.3 x	10 ⁻² D;
*	<u>∠</u> Cr ^{VI} 7 - 26.66	x 10 ⁻⁶ 11.	

2ccpersture	3 59 0	359°E 363°E		359 ⁰ E		363 ⁰ g	
Pine(rinc.)	10 ⁴ /cr ^{VI} 7(::)	4+10c/5r VI7	10 ⁴ /Cr ^{VI} /(17)	4+10g/Cr ^{VI}			
0	26.66	1.425	26.66	1.425			
10	25.53	1.407	25.14	1.400			
20	24,20	1.383	23.67	1.374			
30	22.70	1.356	21.69	1.336			
60	21,10	1.324	19.70	1.294			
60	19.57	1.291	18.13	1.258			
6 0	17.82	1.251	16.10	1.206			
70	16.44	1.215	14.37	1.157			
80	15.32	1, 185	13.35	1.125			
90	14.07	1.148	12.08	1.082			
100	12,90	1,110	10.56	1.023			
Rate constan (min. ⁻¹)	t 7.73 x	10-3	9.53 x	10 ⁻³			
115. S.	Gurve	Gurve 5.		6.			

Rffect of ionic strength

The ionic strength of the reaction minture has been controlled by adding verious amounts of sodium perchlorate. Jonic strength of the medium has been calculated on the following assumptions.

- (a) The first dissociation of sulphuric acid is complete and second dissociation is nogligible:
- (b) Phenylacetic acid and chronic acid do not contribute significantly to the total ionic strength.
 The data appear in the following tables:

Table - XV.

Effect of ionic strength on the reaction rate.

Semp.75[±].1^oC; [H₂SO₆] = 4.5U; [Phenylacetic acid] = 5.3x10⁻²U; [Or^{VI}] = 16.66 x 10⁻⁴U.

[Na CR047 011 0.51]				
Ionic	4.5		5.0	
Time(mine.)	10 ⁴ /Cr ^{VI} 7(11)	4+106/Cr VI7	10 ⁴ /Tr ^{VI} 7(11)	4+108/8r VI7
0	16.66	1.221	16.66	1.221
15	16,20	1.200	15.23	1.182
30	15.82	1.190	13.80	1.140
45	15.40	1.187	12.88	1.110
60	14.92	1,173	12.08	1.082
75	14.46	1,160	11.76	1.070
90	14.04	1,147	10.82	1.035
105	13.72	1.137	10,23	1.010
120	13.33	1.125	9.90	0.996
135	12.94	1.112	9.60	0.982
150	12.50	1,096	9.25	0.966
Rate consta (min. ⁻¹)	nt 2.03 x	10 ⁻³	3.90 :	ĸ 10 ^{−3}

7	ø	Ъ	1	0	•	-	XVI.	-
---	---	---	---	---	---	---	------	---

Effect of ionic strength on the reaction rate.

Cemp. 75[±].1^oC; $(H_2SO_4/7=4.50; /Phenylacetic acid_7=5.3x10^{-2}E; /Cr^{VI}/7=16.66 x 10^{-4}E.$

[Enclog]	1.02		1.611	
Ionic strength	5.50	•	6.017	
Time(mins.)	10 ⁴ /Cr ^{VI} /(1)	4+10@ (Or VI7	10 ⁴ /Cr ^{VI} /(1)	4+10g[Cr ^{VI}]
0	16.66	1.221	16.66	1.221
15	14.58	1,163	12.27	1.154
30	13.36	1,126	13.00	1.114
45	12.30	1.090	11.92	1.076
60	11.42	1.058	10.84	1.035
75	10.85	1.035	10.29	1.012
90	10.03	1.001	9.54	0.979
105	9.24	0.965	8.40	0.924
120	8.74	0.941	7.97	0.901
135	8.08	0.907	7.22	0.858
150	7.50	0.874	6.70	0.826
Rate constan (nin1)	nt 5.48 x	10 ⁻³	6.52 :	x 10 ⁻³
Fig. 7.	Curv	e 3.	Cur	ve 4.

Temp.75 * .	$1^{\circ}C; $ H_2SO_4 $Phenylic $ $Cr^{VI}7 =$	7 = 4.5 H; ncetic acid_ $7 = 5.3 \times 16.66 \times 10^{-4}$ H.	10 ⁻⁴ 1
CNaC104-	7	8 .0 11	
lonic strength	1	6.50	
Pipe(nine	.) 10 ⁴ /cr ^{VI} /(1	I) 4+log/Cr ^{VI} 7	
0	16.66	1.221	
15	13.90	1.143	
30	11.34	1.054	
45	10.48	1.020	
60	9.44	0.975	
75	8.50	0.930	
90	7.98	0.902	
105	6.86	0.836	
120	6.08	0.784	
135	5.72	0.758	
150	4.90	0.690	
Rate cons	itant 8.86	x 10 ⁻³	ı

.

[hoetic] acid	0.12	<u>.*```</u> .	0.21		
Pine(mins.)	10 ⁴ /cr ^{VI} /(11)	4+log/CrVI7	10 ⁴ /Cr ^{VI} 7(11)	4+10g/Cr ^{VI} 7	
0	26 .66	1.425	26.66	1.425	
15	24.90	1.396	24.98	1.397	
30	23.03	1.362	22.96	1.361	
45	21.66	1.335	21.46	1.331	
60	20.23	1.306	19.95	1.300	
78	19.13	1,281	18.72	1.272	
90	17.42	1.241	17.66	1,247	
105	16.38	1.214	16.43	1.215	
120	14.78	1.170	15.03	1.177	
135	14.07	1.148	13.80	1.140	
150	12.73	1,104	12.18	1.085	
Rate constan (min. ⁻¹)	t 5.20 :	5.20 x 10 ⁻³		10 ⁻³	
Fig. 8.	Cur	ve 1.	Curv	e 2.	

Table - XVIII.

Influence of costin sold on the resoling rate.

3

Table -	- XIX.		
Influence of Temp.78 [±] .1 ⁰	f acetic acid C;	on the react = 5.0H; etic acid_7= 1 .66 x 10 ⁻⁴ H.	ion rate. 5.3 x 10 ⁻² 1;
[Acotic] Boid	0.9	1 1	
Time(mins.)	10 ⁴ /3r ^{VI} /(1)	4+105/ErVI7	
o	26.66	1.425	
15	24.57	1.390	
30	22.25	1.347	
45	20.12	1.304	
60	17.90	1.253	
75	16.50	1,217	
90	15.02	1,176	
105	13.33	1.124	
120	12.37	1.092	
135	10.96	1,039	
150	9.62	0.982	
Rate constan (min1)	nt 6.90 :	x 10 ⁻³	
Fig. 8.	Cur	ve 3.	

[Acetic] scid	0.71		1.00	
Sime(cinc.)	10 ⁴ /Cr ^{VI} /(1)	4+100/ErVI7	10 ⁴ /Cr ^{VI} /(1)	4+10g/Cr ^{VI}
0	26.66	1.425	26.66	1.425
10	23.38	1.368	23.54	1.371
20	22.12	1.344	20.32	1.308
30	20.25	1.306	18.26	1.261
40	18.88	1.276	17.55	1.240
80	10.08	1.257	16.04	1,205
50	16.60	1.225	14.48	1.161
70	15.86	1.200	13.08	1.116
80	14.64	1,165	11.77	1.070
90	13.33	1,125	10.70	1.030
100	11.82	1.072	9.30	0.968
Rate constan (min1)	nt 7.73 x	10 ⁻³	9.20 :	x 10 ⁻³
F1g. 8.	Curv	Curve 4.		ve 5.

Sable - XX.

Influence of scatic sold on the reaction rate.

Remp.75-.1°C; [H.S04] = 5.00; [Phenylacetic acid] = 5.3x10-2H;

CHAPTER V

.

DISCUSSION

The kinetics of oxidation of lower fatty acids by chromic acid closely resembles that of hydrocarbons by the same oxidant. The trend in reactivity of the mothyl, methylene and methine groups has been found to be similar in both the reactions. The introduction of phenyl group has the same effect as in the case of hydrocarbons. From the similarity in the rates of oxidation of hydrocarbons and fatty acids, conclusion is drawn that the reaction possesses important features of carbonium ions.

From the proliminary experiments it is observed that acctic and pivalic acids are not attacked by chromic acid. It indicates that neither methyl group nor carboxyl group is oridized by this oridant. The resistivity of these groups towards chromic acid oxidation has also been demonstrated by Hickinbottom¹⁴⁹ and Rocek⁹³. This clearly indicates that methylene and methine groups of the alignatic acids are oxidized.

The reaction rate depends upon the first power of Cr(VI), the first power of substrates, but the dependence of rate constant on hydrogen ion concentration is of

203

second order. It is seen that as the concentration of Cr(VI) is decreased, the first order rate constant increases. But the increase is not to an extent such that a higher order term in Cr(VI) may be defined. Similar effect was observed by Novick and Cestheiner¹⁵ in the exidation of isopropyl alcohol and by Kemp and Waters⁹⁸ in the exidation of formic acid and formaldehyde. The explanation put forward by Westheimer that it is due to the hydrolysis of the dichromate ion

$$\operatorname{Cr}_2 \operatorname{O}_7^- + \operatorname{H}_2 \operatorname{O} = 2 \operatorname{HCr}_4$$

seems to be the correct one.

Rocek and Krupicka²⁶ showed that in strong sulphuric acid solutions, the rate of chromic acid oxidation of isopropyl alcohol follows H_0 , since the water molecule does not participate in the transition state. Westheimer⁴¹ showed that H_0 is not the correct acidity function to be used in describing the protonation of the acid chromate ion and the H-function should be used. The latter increases more repidly with decreasing water concentration in the solvent than does H_0 since both proton and acid chromate ion will be hydrated whereas the neutral product chromic acid will have a considerable degree of hydration. Loe and Stewart¹⁵⁰ introduced a new function $H = + \log \frac{2}{4} H_2 O/2 HA$ and showed that it gave a much better fit to the ionization data than the simple acidity functions H_0 or H-. By comparing the values of these functions, it is seen that the value of new function decreases more rapidly than H-. The values of these functions at higher temperatures are not reported in the literature but it has been determined⁶⁷ that a very small but systematic drift is found in the relationship between acidity function and acid concentration with changing temperature. However, the plots of logarithm of rate constants against new acidity function yielded a straight line but the slope was quite high. The high slope may be due to the use of unvalid acidity functions.

It has been shown that the oxidation of organic substrates by Cr(VI) depends upon its particular species whose stability and structure depends upon the acidity of the medium. Chromic acid is a fairly strong acid $(k_1 = 0.18, k_2 = 3.2 \times 10^{-7})$ and in dilute aqueous colutions the following equilibric have been reported $^{151-153}$.

(a)
$$H_2^{\text{OrO}_4} \rightleftharpoons H^* + H^{\text{OrO}_4}$$

(b)
$$\operatorname{HCrO}_4^- \longrightarrow \operatorname{H}^+ + \operatorname{CrO}_4^-$$

(c)
$$2HCrO_4^{-} = Cr_2O_7^{-} + H_2O_{-}^{-}$$

(d)
$$\operatorname{HCr}_2 O_7 = 3^+ + \operatorname{Cr}_2 O_7$$

(e)
$$H_2 cr_2 o_7 \implies H^+ + H cr_2 o_7^-$$

The dimerization equilibrium (C) is of great importance. In dilute acidic aqueous solutiono, at concontrations greater than 0.05H, the dichromate ion (and its protoneted species) is the prodominant species and at lower concentrations, the monomer (and its protonated species) predominates¹⁵². It has also been confirmed¹² that dichromate ion-is a far weak oridizing agent than acid chromate ion. Very little, however, is known about the chromium species in the strong acidic medium.

It has been suggested by many workers that electron deficient cations such as NCrO_3 and H_3CrO_4 are the most probable species^{26,154,155}. Since the concentration of sulphuric acid used is comparable to that used formerly, it can safely be concluded that the protonated species as shown above are the effective oxidizing agent in our system.

It is seen that increase in ionic strength increases the rate of oxidation. Interpretation of these data seens to be difficult as there may be many factors which may cause a change in rate with changing ionic strength. The acid chromate-dichromate equilibrium is a function of ionic strength for two reasons. First, increasing ionic strength will favour the formation of a

divelent ion and secondly, a divelent ion will have a higher ion pair association constent than a univalent ion. Both of these effects cause the equilibrium . to shift towards the dichromate ion as the ionic strength increases. This would correspondingly decrease the rate of reaction. It is contrary to our findings and hence this explanation is untenable. The decrease in rate constant with increasing louis strength indicates a reaction between oppositely charged ions. But increase in rate with increasing ionic strength is consistant with a reaction between neutral molecule and charged species 156. It seems reasonable because the reacting aliphatic acid molecule is undoubtelly a neutral molecule and hexavalent chromium is a cationic species HCrOJ. Therefore step (2) of the reaction wechenism is favoured by increasing ionic strenath.

The influence of chain length on the rate of oxidation of fatty acids was determined and the observed order of reactivity followed the sequence propionic butyric < valeric. This is the order of reactivity expected on the basis of Rocek and Krupiceka's mechanism²⁶. The increase in the rate constant with increasing carbon chain may be due to the greater number of methylene groups or it may be due to the nucleophilicity of larger alkyl groups, a situation similar to that found earlier for the chromic acid oxidation of alcohols³³. It is also known^{51,133,147,156}, that carboxyl group greatly inhibits the chromic acid oxidation of carbon chain. Rocek⁹³ carried out the qualitative investigation of the carboxyl group effect and attempted to express this influence on the basis of his kinetic data. We also found that the order of reactivity of fatty acids is in agreement with Nocek's observation. As the carbon chain increases, the inductive effect of carboxyl group diminishes and hence the increase in oxidation rate with increasing chain length takes place.

It is well known that branching in the β -position to the reaction centre has a very pronounced effect on the reaction velocities and can cause changes in the rate constants of many orders of magnitude¹⁵⁷. The results on the oxidation of brenched chain acids show that the replacement of one hydrogen by one methyl group increases the rate by 20 times. This is consistant with the fact that methyl groups which are electron releasing make the methylene group more negative and thus facilitate the attack by electrophilic species $HCrO_3^+$. The high rates of oxidation of branched chain acids can also be accounted in the same way.

208

In order to follow the effect of bencene ring on the oxidation rate of alighatic acids benzoic and phenylacetic acid were taken. Benzoic acid was hardly oxidized but phenylacetic acid was oxidized about 25 times faster than propionic acid. The increase of the reaction rate cannot however, be attributed to the oxidation of benzene ring which is hardly affected by chromic acid as evidenced by the unreactivity of benzoic acid which is formed as the end-product.

The rate of chromic acid oxidation of fatty acids in the presence of manganous or cerous ions was found difficult to measure. However, experiments were performed with various concentrations of manganese (II) and cerium (III) ions. The rates were highly irregular and, therefore, no satisfactory conclusion could be drawn. The fact is that there are many complications which are responsible for these irregular results. Firstly, various manganese salts obscures the end point of an icdometric titration (perhaps by catalysing the cir oxidation of I⁻). Secondly, the analytical procedure determines both the Cr(VI) concentration and the concentration of manganese species of oxidation states higher than two. Several attempts were made to find an analytical procedure which would distinguish between Cr(VI) and higher oxidation states of manganese and cerium. But no such procedure could be evolved. It was however, found that the amount of chromic acid consumed in the reaction mixture to which no manganese (II) or corium (III) ions had been added, was more than that to which these ions had been added. It indicated that some retardation by these ione was caused.

On the basis of the results which have been obtained the rate law may be written as

$$-\frac{d(Cr^{VI})}{dt} = k/Fatty acid 7/(Cr^{VI}7/1)^{4}7^{2}.$$

The following mechanism which is consistant with the above rate law, involves the direct transfer of methylene hydrogens as hydride ions to the oxidiring agent.

(1)
$$HCr0_{4}^{-} + 2H^{+} = HCr0_{3} + H_{2}^{-}$$

(2)
$$R = C = H + 0 = Cr^{+} = 0 - H = 10 = R = C = 0 = Cr = 0H + H^{+}$$

 $CO_{2}H = CO_{2}H = CO_{2}H$

(3)
$$R = C = 0 = Cr = OH$$
 from $R = C = 0 = Cr = OH$
(3) $R = C = 0 = Cr = OH$ from $R = C = 0 = Cr = OH$
(4) $R = 0 = 0 = Cr = OH$ from $R = 0 = Cr = OH + H^{+}$
(5) $CO_{2}H$ $CO_{2}H$

(5)
$$R = C = 0 = Cr = 0H \xrightarrow{\text{fost}} R = C = CO_2H + Cr = 0 + H^+$$

 $CO_2H = 0H$

(7)
$$R = C = C = 0 = H + 0 = Cr^+ = 0H$$
 fort $R = C^+ + CO_2 + H_3 CrO_3$

(8)
$$R = C^{+} \xrightarrow{E_{2}O} R = C = OE + H^{+}$$

Hares and Rocck¹⁵⁸ reported that the exidation of mothylene group was a two stage process. In the first stage a partially developed carbonium ion is formed (by hydride ion transfer); the second step is the reaction of this species with Cr(IV) compound already formed in the first stage. In our reaction mechanism equations(2)and (3) show the formation of carbonium ion from the fatty moid molecule. The formation of carbonium ions in the chromic acid exidation of organic compounds has been confirmed by Mecsolu¹⁵⁹. It is reasonable to assume equation (2) as the rate determining step since it involves the abstraction of hydride ion.(generally bydride chifts i re relatively show processes). A mechanism very similar to this has been postulated by Poster and Hickinbottom¹⁴⁹ for the chromic acid, oxidation of methylene group in the saturated hydrocarbons.

$$R - \frac{H}{C} - H + H_2 CrO_4 \longrightarrow R - \frac{H}{C} - 0 - CrO_2 H \longrightarrow R$$

$$R - \frac{C}{R} - 0 - Cr(OH)_2 \longrightarrow R_2 CO.$$

The intermediate \rightarrow C-0.CrO₂H postulated as common to these oxidations was assumed to arise by abstraction of a hydride ion to give a carbonium ion capable of combining with HCrO₃. It is suggested that the intermediate \rightarrow C-0.CrO₃H mey also be formed by direct attack of chromium trioxide on the carbon.

Then the carbonium ion has been formed it picks up a water molecule from the solvent to give the complex compound shown in equation (4). This complex subsequently breaks down to give keto acid and a compound of tetravalent chronium. The fate of this intermediate (as shown in eqn.6) is similar to that previously postulated 1,99,160

. The hydride abstraction mechanism in our system is strengthened by the fact that groups which release electrons, would be expected to facilitate such a reaction and are observed to enhance the oxidation rate. The keto acid is cleaved to give $R = C^+$ and carbon dioxide. $R = C^+$ reacts with water rapidly forming the lower acid. The cleavage of keto acid can not be caused by direct attack of chromic acid on the keto acid molecule but must result from the action of some unstable intermediate containing chromium in an unusual valence state. The evidence for it was obtained by adding manganese or cerous ions to the reaction mixture. These ions are not oxidized by chromic acid itself but the earlier work¹⁶⁰ shows that these ions react rapidly according to the equations

> $\operatorname{Cr}^{\operatorname{IV}}$ + $\operatorname{Un}^{\operatorname{II}} \longrightarrow \operatorname{Cr}^{\operatorname{III}}$ + $\operatorname{Un}^{\operatorname{III}}$ $\operatorname{Cr}^{\operatorname{IV}}$ + $\operatorname{Ce}^{\operatorname{III}} \longrightarrow \operatorname{Cr}^{\operatorname{III}}$ + $\operatorname{Ce}^{\operatorname{IV}}$.

Furthermore, an unstable intermediate containing pentavalent chromium also occurs during chromic acid oxidations¹⁶⁰ but arises only from tetravalent chromium by way of reaction (6). Therefore, when Mn⁺⁺ or Ce⁺⁺⁺ sweeps away tetravalent chromium from solution, it removes pentavalent chromium as well. Hence no cleavage of keto acid takes place.

As the reaction under study is very complicated, no significance can be attached to the thermodynamic parameters. However, these functions have been calculated and are tabulated below.

Acid	E (Kcal/nole)	△ F [‡] (Kcal/mole)	△H≠ (Kcal/nole)	($\triangle S^{\pm}$ eu.)
Propionic acid	17.0	27.2	16.3	- 30	.8
Butyric acid	18.4	26.9	17.7	- 26	.1
Valeric acid	20.7	26.7	20.0	- 19	.1
Isobutyric acid	14.7	27.3	14.0	- 37	•5
Isovaleric acid	11.5	27.2	10.8	- 46	•5
Phenylacetic aci	d 17.9	27.3	17.2	- 28	.4

It is seen that the value of $\triangle F^{\pm}$ is the same in all the acids. But the values of energy of activation E and $\triangle H_{,}^{\pm}$ however, increase with the increase in chain length. These values are comparatively low for branched chain acids. It is well known that if $\triangle S^{\pm}$ is positive, the formation of activated complex is more probable and the reaction is fast while negative entropy of activation indicates slow reactions. A comparison of $\triangle S^{\pm}$ values for straight chain acids justifies the observed order of reactivity, valeric> butyric> propionic. The high rates of oxidation in the presence of acetic acid can be explained by assuming that in the solvents containing acetic acid, most of the chromic acid is present as an acetyl derivative $CH_3COOCrO_3H$ or its conjugate acid $CH_3COO CrO_3H_2^+$ with an oxidizing power considerably higher than that of even chromic acid or chromacidium ion. It is evident that the replacement of a hydroxyl hydrogen by an acetyl group would considerably decrease the electron density on the central chromium atom and increase its electrophilic reactivity and hence the greater oxidizing power.

Another explanation which seems attractive is that the reaction mechanism involves the transient formation of carbonium ions. The length of the life of a carbonium ion depends upon the nucleophilic properties of a solvent. It has been reported¹⁶¹ that increasing acetic acid concentrations stabilize a carbonium ion. Thus a greater concentration of acetic acid should favour a mechanism that leads to such an intermediate. It has also been reported (Hall and Spengeman, reported at the Kansas City meeting of the A.C.S. April, 1936) on the basis of more extensive data, that a solution of sulphuric acid in glacial acetic acid is much nore acidic than that of the same sulphuric acid concentration in water. The high rate of oxidation of phenylacetic acid is also consistent with our mechanism because phenyl group stabilizes the carbonium ion due to reconance.

The reaction which is the subject of the present study had to be followed in a medium of considerable complexity. It is, therefore, unlikely that any suggested reaction scheme will be susceptible to rigorous enalysis.
BIBLIOGRAPHY

- 1. Hampton, J., Leo, A., and Westheimer, F.H. J. Am. Chem. Soc., 78, 306 (1956).
- 2. Cawley, J.J., and Westheimer, F.H. ibid., 85,177 (1963).
- 3. Mosher, W.A., and Langerak, E.O. 1bid., 71, 286 (1949).
- Heidig, H.A., Funck, D.L., Wrich, R., Baker, R., and Kreiser, W., ibid., 72, 4617 (1950).
- Bowden, K., Heilborn, I.N., Jones, E.R.H., and Ueedon, B.C.L. J. Chem. Soc., 1946, 39.
- 6. Bowman, M.I., Moore, C.E., Deutsch, H.R., and Hartman, J.L. Trans. Kentucky Acad. Sci, 14, 33 (1953).
- 7. Feiser, L.F., J. Am. Chem. Soc., 75, 4386 (1953).
- 8. Poos, G.I., Arth, G.E., Buyler, R.E., and Sarett, L.H. J. Am. Chem. Soc., 75, 422 (1953).
- 9. Holum, J.R., J. Org. Chem., 26, 4814 (1961).
- 10. Mosher, 7.A., and Preiss, 0.1. J. An. Chen. Soc., 75, 5605 (1953).
- 11. Oppenauer, R.V., and Oberrauch, H. Anales. Asoc. Quim., Arc., 37, 246 (1949).
- 12. Leo, A., and Westheirer, F.H. J. An. Chem. Soc., 74, 4383 (1952).
- 13. Anbar, C., Dostrovsky, I., Samuel, D., and Yoffe, A.D. J. Chen. Soc., 1954, 3603.

- 14. Zeiss, H.H., and Lathews, C.N. J. Am. Chem. Soc., 78, 1694 (1956).
- Vestheimer, F.H., and Novick, A. J. Chem. Phys., 11, 506 (1943).
- 16. Cohen, U., and Vestheiner, F.H. ibid., 74, 4383 (1952).
- 17. Kuivilu, H.G., and Beeker, W.J. ibid., 74, 5329 (1952).
- Antony, V., and Chatterjee, A.K.
 Z. Anorg. Allgem. Chem., 280, 110 (1955).
- 19. Schreiber, J., and Eschenmosher, A. Helv. Chim. Acta., 38, 1529 (1955).
- 20. Kvart, H., and Francis, P.S. J. Am. Chem. Soc., 77, 4907 (1955).
- 21. Rocek, J., and Krupicka, J. Coll. Czech. Chem. Commun., 23, 2068 (1958).
- Chaterjee, A.C., and Antony, V.
 2. Physik, Chen. (Leipzig), 210, 103 (1959).
- 23. Krauss, H.L., Z. Naturforsch, 136, 199 (1958).
- 24. Klamiong, U., Acta. Chim. Scand. 11, 1313 (1957) 12, 576 (1958).
- 25. Rocek, J., Westheimer, F.H., Eschenmosher, A., Holdovanyi, L., and Schreiber, J. Helv. Chim. Acta., 45, 2554 (1962).
- 26. Rocek, J., and Krupicka, J. Cham. and Ind. (Lond.), 1668 (1957).
- 27. Cestheimer, F.H., and Chang, Y.T. J. Phy. Chem., 63, 438 (1959).

- 28. Kwart, II., end Francis, P.S. J. Am. Chem. Soc., 77, 4907 (1955).
- 29. Graham, G.T.H., and Vestheimer, F.H. ibid., 80, 3030 (1958).
- 30. Cawley, J.T., and Westheimer, F.H. Chem. and Ind. (London), 656 (1960).
- 31. Lansbury, P.T., Pattison, U.A., and Dichl, J.U. Chem. and Ind. (London), 653 (1962).
- 32. Sager, F., J. Am. Chem. Soc., 78, 4970 (1950).
- 33. Rocek, J. Coll. Czech. Chem. Comm., 23, 833 (1957). 25, 375 (1960).
- 34. Slack, R., end Waters, W.A. J. Chem. Soc., 594 (1949).
- 35. Chatterjee, A.R., and Pukherjee, S.K., Z. Physik Chem. (Leipzig), 207, 372 (1957); 208, 281, (1958); 210, 166 (1959).
- 36. Chang, Y.V., and Vestheimer, F.H. J. Am. Chem. Soc., 82, 1401 (1960).
- 37. Criegee, R., Kraft, L., and Renk, R. Ann., 507, 159 (1933).
- 38. Buist, G.J., and Bunton, C.A. J. Chem. Soc., 4580 (1957).
- 39. Rocek, J., and Westheimer, F.H. J. Am. Chem. Soc., 84, 2241 (1962).
- 40. Lucchi, E. Bull. Sci. Fac Chin. Ind. Bologna, 208, 333, (1940); Gazz. Chin. Itel., 71, 729, 752 (1941).
- 41. "iber", R.B., and "111, T. J. Am. Chem. Soc., 80, 3022 (1958).

- 42. "Tiberg, K.B., and Stewart, R. ibid., 77, 1786 (1955).
- 43. Rocek, J., Totrahedron Letters, No. 5, 1 (1959).
- 44. Chatterjee, A.K., and Mukherjee, S.K. J. Am. Chem. Soc., 80, 3600 (1958).
- 45. Kemp, T.J., end Waters, W.A. Proc. Roy. Soc., A274, 480 (1963).
- 46.(a) Bell, R.P., B. Darwent, B.D.B., Trans. Faraday, Soc., 46, 34 (1950).
- 46.(b) Bell, R.P., and Clunic, J.C. 1bid., 48, 439 (1952).
- 46.(c) Bell, R.P., Rend, N.H., and (Liss) "ynne-Jones, K.U.A. ibid., 52, 1093 (1956).
- 47. Bell, R.P., and Rand, H.H. Bull. Soc. Chim., 115, 115 (1955).
- 48. Fuson, R.C., Advanced Organic Chemistry. John Willey & Sons. Inc., New York, N.Y. 1954, p.366.
- 49. Merz, J.H., and Caters, U.A. Diss. Farad. Soc., No. 2, 106 (1947).
- 50. Tiberg, K.B., and Richardson, V.H. J. Am. Chem. Soc., 84, 2800 (1962).
- 51. Petit, G. Bull. Soc. Chim. France., 12, 568 (1945).
- 52. Uneda, K., and Tarama, K.I. Nippon Kagaku Zasshi, 83, 1216 (1962).
- 53. Best, P.A., Lettler, J.S., and Tabes, W.A. J. Chem. Soc., 1962, 822; Littler, J.S., ibid, 1962, 827, 832.

- 54. Uiberg, K.B., and Gatzke, A.L. Unpublished results.
- 55. Rocek, J., and Rielh, Sr.A. Private Communication.
- 56. Guyot, J., and Simon, L.J. Compt. rend. Acad. Sci., 170, 736 (1920).
- 57. Goves, C.E. Ann., 167, 357 (1873).
- 58. Beilstein, F., and Kurbatow, A. Ann., 202, 215 (1880).
- 59. Wendland, R., and LaLonde, J. Org. Syn. Coll., Vol. IV, 757 (1963).
- 60. Abell, R.D., J. Chem. Soc., 1951, 1379.
- 61. Fittig, R., Ahrens, V., and fattheides, L. Ann., 147, 15 (1868).
- 62. Slack, R., and Vaters, V.A. J. Chem. Soc., 1948, 1666.
- 63. Ogata, Y., and Akimoto, H. J. Org. Chem., 27, 294 (1962).
- 64. Brandenberger, S.G., Maas, L.V., and Dvoretzky, I., J. Am. Chem. Soc., 83, 2146 (1961).
- 65. Friedman, L., Fishel, D.L., and Schechter, H. J. Org. Chem., 30, 1453 (1965).
- 66. Evens, K.B., and Evens, R.J. Tetrahedron, 8, 313 (1960).
- 67. Paul, M.A., and Long, F.A. Chen. rev., 57, 1 (1957).
- 68. Behr, A. Ber., 5, 277 (1872).

- 69. Blitz, H. Ann., 296, 219 (1897).
- 70. Bockemuller, C., and Janssen, R. Ann., 542, 166 (1939).
- 71. Barbier, P., and Locquin, R. Compt. rend. Acad. Sci., 156, 1443 (1913).
- 72. Tieland, H., Schlichting, and Jacobi, R. Z. Physiol. Chem., 161, 80 (1926).
- 73. Berlin, A.A., Davankov, A.D., and Kalliopin, L.F. J. Appl. Chem. USSR., 18, 217 (1945).
- 74. Hickinbottom, U.J., and Wood, D.G.M. Nature, 168, 33 (1951).
- 76. Hickinbottom, W.J., Hogg, D.R., and Wood, D.G.H. J. Chem. Soc., 1954, 4400.
- 76. Hickinbottom, V.J., Peters, D., and Vood, D.G.U. J. Chem. Soc., 1955, 1360.
- 2eiss, H.H., and Zwanzig, F.R.
 Chem. and Ind. (London), 545, 1956.
 J. Am. Chem. Soc., 79, 1733 (1957).
- 78. Davis, U.A., and Hickinbotton, W.J. J. Chem. Soc., 1958, 2205.
- 79. Elks, J., Evens, R.E., Longe, A.G., and Thomes, G.H. J. Chem. Soc., 1954, 451.
- 80. Mares, F., and Rocek, J. Coll. Czech. Chem. Comm., 26, 2370 (1960).
- 81. Rock, J. and Fareo, F. ibid, 24, 2741 (1959).
- 82. Rocek, J. 1bid, 22, 1509 (1957).

- 83. Rourim, P., and Tykva, R. ibid., 26, 2511 (1961).
- 84. Fieser, L.F., J. Am. Chem. Soc., 70, 3237 (1948).
- Bredt, J., and Pinten, P.
 J. Prakt. Chem., 115, 45 (1927).
- 86. Sager, W.F., and Brodley, A., J. Am. Chem. Soc., 78, 1187 (1956).
- 87. Sager, W.F. ibid., 78, 4970 (1956).
- 88. Rocek, J. Coll. Czech. Chem. Commun., 23, 833 (1958).
- 89. Uiberg, K.B., and Eisenthal, R. Tetrahedron., Vol. 20, 1151-61 (1964).
- 90. Rocek, J. Tetrahedron Letters, 135 (1962).
- 91. Snethlage, IL.C.S., R Rec. Trav. Chim., 59, 111 (1940).
- 92. Azanares, J.I., and Raga, J.B.V. Anales. Real. Soc. Hspan. Fis. Quim. (Hadrid) Scr. B50, 545, 656 (1954).
- 93. Mares, F., and Rockk, J. Coll. Czech. Chem. Commun., 26, 2389 (1961).
- 94. Kreulen, D.J.7., and Ter. Horst, D.T.J. Rec. Trav. Chim., 59, 1165 (1940).
- 95. Snethlage, H.C.S. ibid., 60, 877 (1941).

.

96. Eahajani, A.V., and Dhattacharya, A.K. Proc. Natl. Acad. Sci. India, sect A23(2) C5 (1954).

- 97. Pungor, E., and Trompler, J. J. Inorg. Nucl. Chem., 5, 123 (1957).
- 98. Hahajani, A.V. Proc. Natl. Acad. Sci. India, sect. A26(1), 49(1957).
- 99. Westheimer, F.H. Chem. rev., 45, 419 (1949).
- 100. Chapman, E.T., and Smith, E.H. J. Chem. Soc., 20, 173 (1867).
- 101. Coninck, W.O.De., Chem. Zentr., 1906, 1, 449.
- 102. Beilstein, F., and Vicgand, E. Ber., 17, 840 (1884).
- 103. Bakore, G.V., and Narain, S. J. Chem. Soc., 1963, 3419.
- 104. Kwart, H., and Francis, P.S. J. Am. Chem. Soc., 77, 4907 (1955).
- 105. Tocher, L. J. Chem. Edn., 35, 207 (1958).
- 106. Hetch., and Grungweig. Ber., XI, 1053 (1878).
- 107. Dakin, H.D. J. Biol. Chem., 4, 77 (1908).
- 108. Dakin, H.D. ibid., 4, 91, 227 (1908).
- 109. Dakin, H.D. Am. Chem. J., 44, 41-48 (1910).
- 110. Chutterbuck, P.W., and Raper, H.S., Biochem. J., 19, 385 (1925).

- 111. Allen, R.H., and Ditgemann, E.J. J. Am. Chem. Soc., 63, 1922 (1941).
- 112. Ogata, Y., and Sawaki, Y. Tetrahedron, 21, 3381 (1965).
- 113. Hatcher, V.H., and Hill, A.C. Trans. Roy. Soc. Can. Sect(III)(3), 23 (1929).
- 114. Berezin, I.V. Ugarova, N.N., Panish, A.M., and Khrolova, O.R. Zh. Fiz. Khim., 39(2), 369 (1965).
- 115. Csanyi, L.J. Acta. Chim. Acad. Sci. Hungary., 21, 35-40 (1959).
- 116. Poster, L.U., and Payne, J.H., J. Am. Chem. Soc., 63, 223-25 (1941).
- 117. Klinc, L. Biochem. 2., 220, 117 (1930).
- 118. Dimitrov, D., and Natan, V., Godishnik Khim. Technol Inst., 8(2), 127 (1961).
- 119. Neunhoeffer, 0., and Baths, J. J. Prakt. Chem., (4), 2, 84 (1955).
- 120. Deupre, J.F., and Lyons, R.E. Proc. Indiana, Acad. Sci., 46, 101 (1937).
- 121. Fleury, P., and Boisson, R. J. Pharm. Chin., 30, 307, 16 (1939).
- 122. Morette, A., and Gaudefroy, G. Compt. rend., 237, 1523 (1953).
- 123. Clifford, A.A., and Waters, W.A. J. Chem. Soc., 1965, 2796.
- 124. Polonovski, N. Compt. rend., 178, 576 (1924).

- 125. Polonovski, E., and Lindenberg, A. ibid., 209, 546 (1939).
- 126. Sully, B.D. J. Chem. Soc., 1942, 366.
- 127. Feigl, F., 'Spot Tests in Organic analysis' Elsvier Publishing Company, 1960. pp. 369, 121.
- 128. Kenyon, J., and Symons, E.C.R. J. Chem. Soc., 1953, 2129.
- 129. Pode, J.S.P., and U.A. Unters. ibid., 1956, 717.
- 130. Beckwith, A.L.J., and Goodrich, J.E. Aust. J. Chen., 18, 1023 (1965).
- 131. Bacon, R.G.R., and Bott, R.V. Chem. and Ind., 1953, 1285.
- 132. Pichter, F., and Heer, J. Helv. Chim. Acta., 18, 1276 (1935).
- 133. Cason, J. Feesenden, S., and Agre, C.L. Tetrahedron, 7, 289 (1959).
- 134. Dakin, H.D. J. Biol. Chem., 4, 419 (1908).
- 135. Dakin, H.D. ibid., 4, 424 (1908).
- 136. Jones, R.O., and MacLean, I.S., Biochem. J., 29, 1877 (1935).
- 137. Dagley, S., Fewster, N.E., and Happold, F.C. J. Bact., 63, 327-36 (1952).
- 138. Hockenhull, D.J.D., Valker, A.D., Wilkin, G.D., and Winder, F.G. Biochem. J., 50, 605 (1952).

- 139. Spiro, K. Helv. Chim. Acta., 4, 459 (1921).
- 140. Prazheval'skii, E.S. J. Russ. Phys. Chem. Soc., 49, 567-72 (1917-18).
- 141. Skraup, S., and Schwanberger, E. Ann., 462, 135-58 (1928).
- 142. Dimitrov, D., and Stefanova, A.D., Godishnik Khim. Technol Inst., 11(2), 159 (1964).
- 143. Barakat, H.Z., Wahab, M.F.A., and El-Sadar, M.H. J. Chem. Soc., 1956, 4685.
- 144. Kratzl, K., Hoyos, F.E., and Silbernagel, H. Lontash. Chem., 91, 219-26 (1960).
- 145. Horii, Z., and Sakurai, K. J. Pharm. Soc. Japan, 77, 1-2 (1957).
- 146. Bacon, R.G.R., and Hanna, V.J.V. Proc. Chem. Soc., 1959, 305.
- 147. Nakanishi, K., and Fiesor, L.F. J. Am. Chem. Soc., 74, 3910 (1952).
- 148. "atanabe, T., Furukawa, N., and Oal, S. Bull. Chem. Soc., Japan., 41, 242 (1968).
- 149. Foster, G., and Hickinbottom, W.J. J. Chem. Soc., 1960, 680.
- 150. Lee, D.J., and Stewart, R., J. Am. Chem. Soc., 86, 3022 (1965).
- 151. Neuss, J.D., and Rieman, W. J. Am. Chem. Soc., 56, 2238 (1934).
- 152. Tong, J.Y.P., and King, E.L. 1bid., 75, 6180 (1953).

- 153. Baily, N., Carrington, A., Lott, K.A.K., and Symons, H.C.R. J. Chem. Soc., 1960, 290.
- 154. Levitt, L.S. J. Org. Chen., 1297 (1955).
- 155. Vaters, V.A. Qvart, rev., 12, 277 (1958).
- 156. Snethlage, H.G.S. Rec. Trav. Chim., 56, 873 (1937).
- 157. Ingold, C.K., 'Structure and Mechanism in Organic Chemistry'. Cornell Univ. Press. Ithaca, 1953.
- 158. Mares, F., and Rocek, J. Coll. Czech. Chem. Commun., 26, 2355 (1961).
- 159. Necsolu, I., and Nemitzescu, C.D. Chem. & Ind., 1960, 377.
- 160. Vatanabe, V., and Vostheimer, F.H. J. Chem. Phys., 17, 61 (1949).
- 161. Dostrovsky, I., and Samuel, D. J. Chem. Soc., 1954, 658.