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PREFACE 

This thesis entitled "OPTIMIZATION IN MULTIVARIATE 

SAMPLING" is submitted to the Aligarh Muslim University, 

Aligarh, India, to supplicate the degree of Doctor of Philosophy in 

Statistics. It consists of the research work carried out by me in the 

Department of Statistics and Operations Research, Aligarh Muslim 

University, Aligarh, India. 

The fundamental problem of optimization is to arrive at the 

best possible decision in any given set of circumstances. However, 

sometimes what is best for one person is worst for another and more 

often we are not at all sure what is meant by best. The first step, 

therefore, in mathematical optimization is to choose some quality, 

typically a function of several variables, to be maximized or 

minimized, subject possibly to one or more constraints. The next 

step is to choose a mathematical method to solve the optimization 

problem; such methods are usually called optimization techniques 

or algorithms. 

The problem of deriving statistical information on the 

population characteristics, based on sample data, can be formulated 

as an optimization problem in which we wish to minimize the cost 

of the survey, which is a function of the sample size, size of the 

sampling unit, the sampling scheme and the scope of the survey, 

subject to the restriction that the loss in precision arising out of 

making decisions on the basis of the survey results is within a 

certain prescribed limit. Or alternatively, we may minimize the loss 

in precision, subject to the restriction that the cost of the survey is 



within the given budget. Thus we are interested in finding the 

optimal sample size and the optimal sampling scheme which will 

enable us to obtain estimates of the population characteristics with 

prescribed properties. 

In stratified sampling the population is first divided into 

groups called strata. These strata are mutually exclusive and 

exhaustive. Independent simple random samples are then drawn 

from these strata. 

The procedure of stratified sampling is intended to give a 

better cross-section of the population than that of unstratified 

sampling. It follows that one would expect the precision of the 

estimates of the population characteristics to be higher in stratified 

than in unstratified sampling. Stratified sampling is also convenient 

in other ways like the selection of sampling units, the location and 

enumeration of the selected units, distribution and supervision of 

field-work. In general the whole administration of the survey is 

greatly simplified in stratified sampling. 

An important problem in stratified sampling is the 

determination of sample sizes (allocation) for different strata. They 

may be chosen to minimize the sampling variance of the estimator 

for a fixed cost or to minimize the total cost of the survey for a 

desired precision. Such an allocation is called an optimum 

allocation. 

The solution of the above problem for univariate case i.e. 

when a single characteristic is studied on each and every population 

unit, exits in sampling literature. However, the multivariate case is 

Vll 



more complicated and few attempts have been made to attack the 

problem so far. 

In multivariate sample surveys where more than one 

population characteristics are under study, the optimum allocation 

of the sample sizes to various strata becomes complicated due to the 

fact that an allocation that is optimal for one characteristic may be 

far from optimal for other characteristics. 

In this thesis we have formulated some problems arising in 

multivariate sample survey designs as multiobjective convex 

programming problems. Attempt has also been made to develope 

procedures to solve these problems using Chebyshev goal 

programming approach. 

The thesis consists of five chapters. Chapter-I provides an 

introduction to Multivariate Stratified Sampling, Optimization, 

Multiobjective Programming, Chebyshev and Fuzzy Goal 

Programming and also a brief history of the use of Auxiliary 

Information in Multivariate Sample Surveys. 

In Chapter-II, we formulate the multiple character problems 

arising in the areas of Stratified Random Sampling, Two-stage 

Sampling, Double Sampling and Response Errors as multiobjective 

convex programming problems. 

A solution procedure is developed in Chapter-Ill for the 

multiobjective convex programming problem by linearizing the 

convex objective functions at the respective optimal points obtained 

by minimizing the individual objective functions. The 

multiobjective linear problem is then solved by Chebyshev goal 

programming approach. A numerical example is also presented. 

VIU 



In Chapter-IV, we represent the allocation problem with 

multiple characters as a convex programming problem with several 

linear objective functions and a single convex constraint. The 

cutting plane technique is used for linearizing the single convex 

constraint and then the optimum allocation is obtained by using 

Chebyshev goal programming approach. A comparison has also been 

made with the fuzzy programming solution. A numerical example is 

solved to illustrate the procedure. 

In Chapter-V, we discuss the simultaneous estimation of 

several finite population means under stratified sampling design, in 

the situations where mean vector of the auxiliary variables is 

known. An optimum estimator by using the criterion of preference 

coined by Tripathi and Chauby (2000) has been obtained. 
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CHAPTER! 

INTRODUCTION 

1.1 MULTIVARIATE STRATIFIED SAMPLING 

Sampling theory deals with the problems associated with the 

selection of samples from a population according to certain 

probability mechanism. The purpose of survey is to obtain 

information about the population which is defined according to the 

aims and objects of the survey. Since the information on population 

is based on sample data, a stage is always reached in planning of a 

sample survey, at which a decision must be made about the size of 

the sample, size of the sampling unit, the sampling scheme, the scope 

of the survey, number of strata and stratum boundaries etc. These 

decisions have much significance, e.g., the decision regarding the 

size of sample to be selected is important because too large a sample 

implies a waste of resources and too small a sample diminishes the 

utility of the results obtained. The problem of deriving the maximum 

statistical information on a population characteristic has been 

formulated as an optimization problem by minimizing the cost of the 

survey subjected to the restriction that the loss of precision is within 

a certain prescribed limit or alternately by minimizing the loss in 

precision subject to the restriction that cost of the survey remains 

within the given budget. 



Stratified sampling is the most popular among various sampling 

designs that are extensively used in sample surveys. The problem of 

determining the number of strata, the problem of cutting the stratum 

boundaries, the problem of optimum allocation of sample sizes to 

various strata are treated as optimization problems and solved by 

several authors. 

In multivariate stratified sampling where more than one-

population characteristics are to be measured on every selected unit, 

the above problems become more complicated because of the non 

availability of a single optimality criterion which is suitable for all 

the characteristics. 

The problem of sample allocation in multivariate stratified 

sampling has drawn attention of researchers for long time starting 

apparently with Neyman (1934). It is felt that unless the strata 

variances for various character are distributed in the same way, the 

classical Neyman allocation based on the variances of a single 

character is of no use because an allocation which is optimum for one 

characteristic may not be acceptable for another. For this reason, 

there is no unique or even widely accepted solution to the problem of 

optimum allocation in multivariate stratified sampling. One way to 

resolve this problem is to search for a compromise allocation, which 

is in some sense optimum for all the characters. 

Cochran (1963) suggested the use of the average of individual 

optimum allocations for various characters. Chatterjee (1967) worked 

out a compromise allocation by minimizing the sum of the 

proportional increases in the variances due to the use of non-

optimum allocations. Both the above authors have assumed that the 



measurement cost with respect to the various characters in a 

particular stratum is constant. 

The first author to give the convex programming formulation to 

the allocation problem in multivariate stratified sampling was Kokan 

(1963). Kokan and Khan (1967) derived an analytical solution to this 

convex programming problem. They also showed how the sample 

allocation problem in other designs such as two-stage sampling, 

double sampling and response errors can be viewed as a convex 

programming problem. Chatterjee (1968) also considered the 

allocation problem for multivariate stratified surveys. An integer 

solution to this problem was given by Khan and Bari (1977). 

Roy, B (1971) defined an unique objective function when a 

precise weight is known for each character in a survey. In the 

absence of such apriori knowledge of relative weights a problem 

cannot be exactly transformed to give a unique objective function 

and hence a best compromising solution. 

The optimum allocation in multivariate stratified sampling 

using prior information about the population means within stratum 

can be obtained by assigning an L-variate normal prior distribution to 

the vector of within stratum population means, where L denotes 

number of strata. Ericsion (1965) stated the problem as to "minimize 

the posterior variance of the overall population mean subject to a 

total budgetary constraint". He also discussed the case when more 

than one population characteristics are to be estimated, under the 

assumption that the strata are sufficiently similar with respect to the 

various characteristics. Soland (1967) also treated the case of 

multivariate stratified sampling when there is prior information 



concerning the unknown stratum means of all the variates. He 

discussed the stratification problem proposed by Dalenius (1953) and 

formulated it as a non-linear programming problem and also 

formulated other multivariate stratified sampling problems that may 

be solved by non-linear programming. 

Ahsan and Khan (1977) considered the multivariate allocation 

problem where the prior information about the unknown within 

stratum means of p characters is available in terms of a multivariate 

normal distribution with known parameters. Ahsan and Khan (1982) 

treated this problem by considering the posterior variances of the 

population means when the sampling is multipurpose. 

Chaddha et.al. (1971) used dynamic programming technique to 

find the optimum allocation in univariate case. Omule (1985) used 

the same technique to obtain compromise allocation for multivariate 

case by minimizing the total cost of the survey when the sampling 

variances of the estimates of various characteristics are subjected to 

specified tolerances limits. Jahan et. al.(1994) applied the dynamic 

programming technique for obtaining the compromise allocation by 

minimizing the total relative increase in the variances as compared to 

the optimum allocation, when the costs for measuring the various 

characteristics are fixed in advance. Khan (1997) treated the 

multivariate problem as a multi-stage decision problem, in which the 

k-th stage of the solution provides the sample size for the k-th 

stratum. 

Bethal (1989) expresses the optimal multi-character stratified 

sample allocation as a closed expression in terms of normalized 

lagrangian multipliers whereas Rahim (1994) proposed an alternative 



procedure based on distance function of the sampling errors of all the 

estimates. Various authors like Nandi and Aich (1995), Chernyak and 

Starytskyy (1998), Chernyak and Chornous (2000) either suggested 

new criteria or explored further the already existing criteria. 

In chapter 11 of this thesis, we formulate the multiple character 

problems arising in the areas of Stratified Random Sampling, Two-

Stage Sampling, Double Sampling and Response Errors as 

multiobjective convex programming problems with convex objective 

functions and linear constraints. 

A solution procedure for the multiobjective convex 

programming problem formulated in chapter 11 is developed in 

chapter 111 by linearizing the convex objective functions at the 

respective optimal points when single objective is considered. The 

multiobjective problem is then solved by Chebyshev goal 

programming approach. 

In chapter IV, we transform the allocation problem with 

multiple characters into a convex programming problem with several 

linear objective functions and a single convex constraint. The cutting 

plane technique is then used for linearizing the single convex 

constraint and then the optimum allocation is obtained again by using 

the Chebyshev goal programming approach. 

1.2 OPTIMIZATION 

The fundamental problem of optimization is to arrive at the 

best possible decision in any given set of circumstances. Of course. 



many situations arise where the best is unattainable for one reason or 

another; sometimes what is best for one person is worst for another; 

more often we are not at all sure what is meant by best. The first 

step, therefore, in mathematical optimization is to choose some 

quantity, typically a function of several variables, to be maximized 

or minimized, subject possibly to one or more constraints. The 

commonest type of constraints are equalities and inequalities which 

must be satisfied by the variables of the problem, but many other 

types of constraints are possible; for example a solution in integers 

may be required. The next step is to choose a mathematical method to 

solve the optimization problem; such methods are usually called 

optimization techniques or algorithms. 

The theory and practice of optimization has developed rapidly 

since the advent of electronic computers in 1945. It came of age as a 

subject in the mathematical curriculum in the 1950's, when well 

established methods of the differential calculus and the calculus of 

variations were combined with the highly successful new techniques 

of mathematical programming which were being developed at that 

time. 

The optimization problems that have been posed and solved in 

the recent years have tended to become more and more elaberate, not 

to say abstract. Perhaps the most outstanding example of the rapid 

development of optimization techniques occurred with the 

introduction of Dynamic programming by Bellman in 1957 and of the 

maximum principle by Pontryagin in 1958. The techniques were 

designed to solve the problems of the optimal control of dynamical 

systems. 



The simply stated problem of maximizing or minimizing a 

given function of several variables attracted the attention of many 

mathematicians over the past fifty years or so for developing the 

solution techniques under mathematical programming. 

1.3 MATHEMATICAL PROGRAMMING 

A mathematical programming problem (MPP) can be stated as 

follows: 

Maximize (or minimize) Z = f{xi,X2,--,x^) (1.3.1) 

Subject to the constraints 

g,(xi,X2,...,x„){<, = , > } 0 ; / = l,2,...,m (1.3.2) 

and Xj > 0 ; 7 = 1,2,...,« (1.3.3) 

where in (1.3.2) one and only one sign among { < , = , > } holds true 

for each /. Usually, unless specified otherwise, in an MPP all the 

involved functions are assumed to be continuously differentiable. 

The variables Xj, J = \,2,...,n are called decision variables, the 

function Z = f{x],X2,...,x^) in (1.3.1) is called objective function, the 

conditions (1.3.2) are called the constraints and the additional 

restrictions in (1.3.3) are called non-negativity restrictions. Often 



(1.3.3) is also included in (1.3.2) and the MPP takes a more simple 

expression as: 

Maximize (or minimize) f[xj 

Subject to g,(x){< = >}0; /-l,2,..., m 

where :X' = (JC},X2,.. ,-X„) is the vector of decision variables. 

To develop the theory of mathematical programming either of 

the maximization or minimization problems may be taken as standard 

form because of the simple reason that maximization of f{x) is 

equivalent to minimization of -f{x) and vise-versa. Furthermore all 

the constraints can be described with <or=or> by simple operations 

of multiplying by -1 and /or addition or subtraction of some slack or 

surplus variables defined to have a >0 value and noting that an 

equation is equivalent to two inequalities, one with < and the another 

with > sign. Thus we may transform any given MPP in the following 

form: 

Minimize f{x). 

Subject to gi{x)>0, 

and x>0. 

(1.3.4) 



Any X satisfying the constraints and non-negativity restriction 

to an MPP is called a feasible solution to the MPP. The set of all 

feasible solutions to an MPP is usually denoted by F. Thus the set F 

for MPP (1.3.4) is F - {x | g ( j )> 0,x> O}. 

Any x*eF for which f{x*)<f{x) for all XEF is called an 

optimum solution for a minimization MPP. 

The optimal value x of the decision variables is the function 

of various parameters appearing in MPP, such as: the availability of 

resources, costs or profits and technological coefficients 

(coefficients of decision variables in constraint functions). If some or 

all of the parameters of an MPP are stochastic variables rather than 

deterministic quantities then the MPP is called a Stochastic 

Programming Problem. 

If all the functions involved in an MPP are linear functions of 

decision variables the MPP is called a Linear Programming Problem 

(LLP). On the other hand if some or all the functions are nonlinear, 

the MPP is called a Nonlinear Programming Problem (NLPP). 

Depending upon the nature of the involved functions, 

restrictions on the decision variables and the objectives function(s), 

an MPP (Linear and /or Nonlinear) can further be placed in one or 

more of the several classes such as Integer Progamming Problem 

(IPP), Quadratic Programming Problem (QPP), Convex Programming 

Problem (CPP), Separable Programming Problem (SPP), Geometric 

Progamming Problem (GPP) and Multiobjective Progrmming Problem 

(MOPP). 



1.4 MULTIOBJECTIVE OPTIMIZATION 

The single-objective approach had been so ignored, and so 

widely accepted, that it may seem hard to believe that it has only 

seen widespread use since 1947. Further, it is easy to forget the fact 

that in 1947 the very notion of even a single-objective function was 

considered quite revolutionary. Specifically, until the development of 

LP, the typical mathematical model consisted of either a system of 

equations or a system of inequalities and, for the most part, one's 

attention was directed toward the determination of just a feasible 

solution (i.e., one that satisfied the system of constraints as opposed 

to one that both satisfied the constraint set and optimized a single 

measure of performance). As such, in 1947, the concept of the 

inclusion of an objective function was considered just as radical as 

some now view the inclusion of multiple-objective functions. 

However, although the consideration of multiple objectives 

may seem a novel concept, virtually any nontrivial, real word 

problem invariably involves multiple objectives. For example, the 

success of an airplane is determined by such things as its cost (to be 

minimized), payload (to be maximized), speed (to be maximized), 

maximum range (to be maximized), weight (to be minimized), 

survivability (to be maximized) etc. And, in the design of an aircraft, 

we may actually hope to optimize each and every one of these 

parameters. 

In the traditional LP model, each and every constraint is 

considered to be absolutely rigid. That is, if a solution does not 

satisfy each and every constraint it is termed infeasible. However, in 

real-world problems, the notion of strictly rigid constraints does not 

10 



necessarily hold at least not for every constraint function. In real-

world problems, we just may be able to tolerate a certain level of 

"violation" of a constraint. Such flexible constraints are termed 

"soft" constraints (or soft goals) and are frequently encountered 

when we deal with actual problems. Thus, a soft constraint is one 

that we would like to satisfy, but for which we would be able to 

accept some degree of "violation". On the other hand, a hard 

constraint (or hard goal) is one for which any degree of violation 

would be absolutely intolerable. However, from a traditional LP 

point of view, such notions as multiple objectives and soft 

constraints only serve to complicate the situation. 

There are several ways in which the multiobjective problem 

might be modeled. 

(i) Conversion to a linear program via objective function 

Transformation (or deletion) 

The traditionalist would most likely decide that, regardless of 

what management may have stated, a single objective model is going 

to be employed. Thus, one way to force the problem into the single 

objective format is to select one of the objectives, use it as the single 

objective, and then either ignore the other objectives or treat them as 

(rigid) constraints. 
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(ii) Conversion to a linear program via Utility Theory: 

A Method of Aggregation 

Theoretically (and only theoretically), it should be possible to 

combine any number of objectives into an equivalent, single 

objective if we can determine a common measure of effectiveness 

(i.e., a so-called "Proxy") by means of which each of the objectives 

may be expressed. The basis of such an approach is the aggregation 

of multiple objectives into a single and, it can be considered, 

equivalent function. 

(iii). Conversion to a Goal Program (GP) 

When one employs utility theory, the bulk of one's efforts is 

typically dedicated toward obtaining an adequate and rational 

representation of the decision maker's (theoretically) preference 

function. However, when one uses goal programming the effort shifts 

toward that of obtaining a better representation of the actual 

problem, through the development of the goal-programming model. 

Whichever approach is deemed "best" is strictly a function of one's 

personal perspective. 

There are actually a number of types of goal programs, each 

espousing a somewhat different philosophy (i.e, with respect to how 

to measure the "goodness" of a solution to a problem involving 

multiple, conflicting goals). Three of the most popular (as well as the 

most practical) forms of GP are Archimedean GP (i.e., weighted GP), 
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Non-Archimedean GP (i.e., lexicographic GP, or preemptive GP), and 

Chebyshev GP (or Minimax GP, or Fuzzy GP). 

To form a goal-programming model, the very first thing that 

must be done is to convert all objectives into goals. When we convert 

the objectives into goals, we apply the following guidelines: 

A maximizing (or a minimizing) objective is converted into a 

type 11 (>) (or type 1 (<) ) inequality by means of the establishment 

and inclusion of a right-hand side, or aspiration level value. Indeed, 

we convert a goal into a constraint. Specifically, in a typical model, 

some of the goals will be hard (i.e, they absolutely must be attained) 

and some will be soft (i.e., some deviation is tolerable). Thus, we 

need a means to indicate the deviations from the right-hand sides of 

the constraints corresponding to each goal, whether hard or soft. To 

accomplish this, we shall add negative deviations and subtract 

positive deviations from the left-hand sides of each goal (and 

constraint). 

Now, although the model is expressed in terms of goals (where 

some are hard and some are soft), we next need a function by means 

of which the achievement of the minimization of the unwanted goal 

deviations may be measured. This function, in fact, is termed the 

goal programming achievement function. Further, we need a 

philosophy upon which to develop such a function. Two approaches 

are found in the literature. 

(a) Archimedean Goal Programming 

In Archimedean, or weighted, GP, we shall form an 

achievement function consisting of precisely two terms. The first 
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term represents the sum of all unwanted deviations for those goals 

that are hard (i.e., the rigid constraints). The second is composed of 

the weighted sum of all unwanted deviations for those goals that are 

soft. Thus, the achievement function for the general Archimedean GP 

model is given as 

Lexmin u = 

where 

Lexmin= lexicographic minimum (or achievement 

function) 

w= achievement vector (or achievement function) 

r|^ '= vector of negative deviations, at priority level k 

p^ '= vector of positive deviations, at priority level k 

ik) \x^ 1= vector of weights for all negative deviations, at 

priority level k 

(k) cô  ^= vector of weights for all positive deviations, at 

priority level k. 

(b) Non-Archimedean Goal Programming 

In non-Archimedean GP (also called lexicographic or 

preemptive GP) as well, we form an achievement function. However, 
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the number of terms in this achievement function will always be 

three or more. As before, the first term represents the sum of all 

unwanted deviations for those goals that are hard (i.e., rigid 

constraints). The second is composed of the weighted sum of all 

unwanted deviations for those goals at priority level two. The third is 

composed of the weighted sum of all unwanted deviations at priority 

level three, and so on. The general form of the achievement function 

for a non-Archimedean GP is given as 

Lexrain „ = |.«,lW+<o(')p(") .{^('^^^''K J'^V'^ 

Wherein the total number of priority levels is K (i.e., 

A comprehensive presentation on goal programming and its 

extensions is given in Ignizio (1976), and a summary of different 

variations of goal programming is provided in Charnes and Cooper 

(1977). In addition, a wide survey of literature around goal 

programming up to the year 1983 is presented in Soyibo (1985). 

The short comings and the solution of the goal programming 

were discussed by Khorramshahgol and Hooshiari (1991), 

Chakraborty and Sinha (1995), Neelam and Arora (1999), 

Chakraborty and Dubey (2001). 

1.5 CHEBYSHEV GOAL PROGRAMMING 

Charnes and Cooper (1961) introduced the idea of Goal 

Programming. Later Charnes and Cooper (1977) discussed the 
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solution of multiple objective optimization problems through Goal 

Programming (GP). Ignizio (1983,1985) observed that the Chebyshev 

GP (or Minimax GP) and Fuzzy GP are (closely) related. Ignizio and 

Cavalier (1994) have illustrated the procedure of solving the 

multiobjective linear programming problem through an example by 

its formulation to Chebyshev Linear Goal Programming (LGP) and 

compared it by the Fuzzy LGP. They also discussed the Chebyshev 

multiplex model for solving multiobjective problem. 

The Minimax or Chebyshev formulation implies the 

optimization of a utility function where the maximum deviation is 

minimized. The underlying philosophy of Chebyshev LGP is to find 

that solution that serves to minimize the single worst unwanted 

deviation from any (soft) goal. This particular notion also provides 

the basis of what is called Minimax GP and Fuzzy programming or 

Fuzzy GP. 

As with any GP approach, the first step is to convert the 

problem into one containing nothing but goals. Next, we solve the 

problem as a conventional LP, using but one objective at a time. 

Once we have solved such a problem, we have determined the best 

possible value of the objective being considered as an aspiration 

level. An aspiration level is employed in order to convert an 

objective into goal. It represents a target level for the given 

objective- a level that is desired and/or acceptable. The use of 

aspiration levels to transform objectives (which are to be optimized) 

into goals (which are to be achieved) is known as the concept of 

"Satisficing". Satisficing, in turn, is a pragmatic approach based 

upon the manner in which most organizations, and most individuals. 
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approach real-world decision making (Simon, 1957 and March and 

Simon, 1958). That is, rather than attempting to achieve solution 

optimality (which is actually only meaningful for static, 

deterministic, error free, single objective problems), we hope to find 

a solution that comes "as close as possible" to satisfying our goals. 

Consider the multiobjective linear programming problem 

Minimize Zj^, /: = 1,2,...,/? 

Subject to Ax(<,>,or=)b (1-5.1) 

j > g . 

The general form of the Chebyshev LGP model may be written as 

Minimize 5 

Subject to: 

Zj^ -h<L}(, for all p objectives (1.5.2) 

Ax{<,>,or=)b^, for all m constraints 

8 > 0 , x > 0 

where 

5 = dummy variable representing the worst deviation level 

Zyj.= a linear function representing the k"̂  objective 
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Lyt= minimum value that Z]^ can take on while solving the various 

LPs in (1.5.1) individually for Zi, . . . . ,Z^. 

1.6 FUZZY PROGRAMMING 

Zimmermann (1978, 1981) developed fuzzy mathematical 

programming to solve the problems with several functions. 

Narasimhan (1980) in one of his papers discussed goal programming 

in fuzzy environment. Sandipan Gupta and Chakraborty (1997), use 

the fuzzy programming approach to multiobjective linear 

programming problems. Several other authors such as Kassem and 

Ammer (1996), Mohan and Nguyen (1999), Han-Lin Li and Chian-

Son Yu (2000), Aghezzaf and Ouaderhman (2000) and Aghezzaf 

(2001) etc have also discussed the fuzzy programming approach for 

solving multiobjective fuzzy programming problems. 

Like Chebyshev goal programming, the basis of fuzzy 

programming approach is also to minimize the worst deviation from 

any (soft) goal. Using Zimmermann's (1978, 1985) approach to fuzzy 

programming, and assuming that all objectives are of the minimizing 

type, we may represent the general fuzzy linear programming model 

as: 

Minimize 5 (1.6.1) 

Subject to: 

di 
<S, for all p objectives (1.6.2) 



Ax{<,>,or=)b, for all m constraints (1.6.3) 

S>0,x>0 (1.6.4) 

where f/;j.=maximum value that Z/^ can take on while solving the 

various LPs in (1.5.1) individually for Z-[,....,Zp 

L/( = minimum value that Z/^ can take on while solving the 

various LPs in (1.5.1) individually for Z| , . . . . ,Zp. 

dk = Uk-k-

and the left-hand side of (1.6.2) is termed the fuzzy membership 

function. 

The purpose of the fuzzy goal programming approach is to find 

the solution that serves to minimize the largest fuzzy membership 

function [worst deviation level (S)]. However the fuzzy 

programming model is identical to the Chebyshev programming 

model except for the weight given to 6. 

In the multiobjective allocation problem, there are p non­

linear objective functions which later turn into soft goals with a 

single linear constraint (hard goal). To apply Chebyshev/Fuzzy goal 

programming approach, all the hard and soft goals must be in linear 

form so that the worst deviation from the approximated linear goals 

is minimized. We thus approximate the non-linear soft goals by 

linear ones and use the linearized soft goals for minimizing the worst 

deviation in finding the Chebyshev/Fuzzy point. The aspiration levels 

being used in the Chebyshev/Fuzzy goal programming approach are 
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taken as the optimal values of the respective non-linear programming 

problems instead of those of the linear programming problems. 

1.7 AUXILIARY INFORMATION IN SAMPLE SURVEYS 

This section presents the developments related to the utilization 

of auxiliary information in sample surveys for estimating the 

population means. 

The works of Bowley (1926) and Neymen (1934,1938) can be 

referred to as the initial efforts to utilize the auxiliary information in 

sampling theory. The works of Watson (1937) and Cochran 

(1940,1942) initiated the use of auxiliary information in devising 

estimation procedures aimed at improvement of the precision of 

estimation. Hansen and Hurwitz (1943) were the first to suggest the 

use of auxiliary information to selecting the units with varying 

probabilities. 

In most of the survey situations, the auxiliary information is 

always available in one form or the other or it can be made available 

by diverting for this purpose a part of survey resources at moderate 

cost. In whatever form the auxiliary information is available, one 

may always utilize it to devise sampling strategies which are better 

(if not uniformly then at least in a part of parametric space) than 

those in which no auxiliary information is used. The method of 

utilizing auxiliary information depends on the form in which it is 

available. 

20 



In sample surveys, the auxiliary information may be utilized in 

three basic ways [Tripathi (1970,1973,1976)]: 

(i) The information on one or more auxiliary variables may be 

used at the planning or designing stage of the survey. For 

example, one may stratify the population according to the 

frequency distribution of an auxiliary variable. 

(ii) The information on one or more auxiliary variables may be 

used at the sample selection stage of the survey i.e., in 

selecting units for sample with or without replacement and with 

varying probabilities proportional to some suitable measure of 

size 

(iii) The information on one or more auxiliary variables may be 

used at the estimation stage e.g., through defining ratio, 

regression, difference and product estimators based on the 

auxiliary information. 

The auxiliary information may also be used in mixed ways as 

well by combining any two or all of the above three basic ways. 

The univariate ratio and regression estimators [Cochran 

(1940,1942)], difference estimator [Hansen et al. (1953)] and product 

estimator [Robson (1957), Murthy (1964)] for population mean of Y 

based on the knowledge of the population mean of an auxiliary 

character X are well known in sampling theory, and for their 

detailed study in the case of simple random sampling without 

replacement (SRSWOR) and in that of stratified sampling one may 

refer to the books by Cochran (1977), Sukhatme et al. (1984), Raj 

(1968), Murthy (1967), Kish (1965) and others. 
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The univariate ratio, regression, product and difference 

estimators [Murthy (1967)] for any general sampling design are 

defined respectively as 

X 

Yrg ^Y-\^\X-X 

Y - ^ ^ 
' X 

Yd=Y-X\^-'x) 

where Y and X are the unbiased estimators of the population means 

Y and X of the estimation and auxiliary variables respectively, X is 

a suitably chosen constant and P is the sample regression coefficient 

of fon X. 

Das and Tripathi (1980) and Das (1988) gave the classes of 

estimators for Y, for any sampling design, as 

[x-t2{x-x)Y 

and 2̂ =^[^-4^~^)J 

respectively, where t\, 2̂ ^"^ ^ ^^^ suitably chosen constants. The 

classes of estimators due to Srivastava (1971, 1980) for any general 

sampling design are given as 

22 



d2=rh 

and d4 ^g 
f —\ 

X 
\ J 

where h and g are suitably chosen functions. 

In Sample Surveys, the use of multivariate auxiliary 

information in estimating mean 7 of a study variable y has largely 

been made in the form of knowledge of population mean of a p-

dimensional auxiliary vector. 

Olkin (1958) and Raj (1965) extended the univariate ratio and 

difference estimators to the multivariate case for SRSWOR as 

i = \ 

Xi 

and 
/ = 1 

respectively, where 00/'s are weights such that ^ c o / =1 , y^ and x in 

are the means of characters j^and Xj based on a sample of n units. 

Xj is the population mean of Xj and Xj a suitably chosen constant. 

Khan and Tripathi (1967) defined the multivariate ratio 

estimator in double sampling as 
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/=] y-^im J 
Xifj 

and multivariate regression estimator as 

yirm ~ ym "*" P \y.p \^n ~ —m J 

where jc„j being mean of Xj based on s( l) , J^^ and x^^ being means 

of y and x, based on s(2); J^ = ( j j^,J2« v , ^ o « j "̂̂ ^ 

Tripathi and khattree (1989) discussed the estimation of means 

of several principal variables under simple random sampling, in the 

situations where means of several auxiliary variables are known. 

Further, Tripathi (1989) extended the results to the case of two 

occasions. Tripathi and chaubey (1993) considered the problem of 

obtaining optimum probabilities of selection based on auxiliary 

variables, in PPS sampling for estimating the mean of several 

variables. Recently, Tripathi and chaubey (2000) discussed the 

estimation of finite population mean vector y of the principal 

variables, under the general sampling designs, in the situations where 

mean vector x of the auxiliary variable is known. 

In chapter V of this thesis, we define the estimator of the finite 

population mean vector of several principal variables under stratified 

sampling design, in the situations where mean vector of the auxiliary 
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variables is known. An optimum estimator by using the criterion of 

preference given by Tripathi and Chaubey (2000) has been obtained. 
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CHAPTER-II 

SOME M U L T I O B J E C T I V E C O N V E X P R O G R A M M I N G 

P R O B L E M S A R I S I N G IN M U L T I V A R I A T E S A M P L I N G 

2.1 INTRODUCTION 

In multivariate surveys there are more than one population 

characteristics to be estimated and usually these characteristics are of 

conflicting nature. The derivation of the optimal sample numbers 

among various strata or various stages thus requires some special 

treatment. 

In this chapter, we formulate the problems of multivariate 

sampling arising in the areas of stratified random sampling, two-

stage sampling, double sampling and response errors as multi-

objective convex programming problems with convex objective 

functions and a single linear constraint with some upper and lower 

bounds. 

2.2 MULTIVARIATE STRATIFIED SAMPLING 

We consider a multivariate population partitioned into L 

strata. Suppose that p characteristics are measured on each unit of 

the population. We assume that the strata boundaries are fixed in 



advance Let n, be the number of units drawn without replacement 

from / stratum ( / = 1,2,...,L). Let Nj be the size of / stratum. For 

th J character, an unbiased estimate of the population mean 

Y,{j = \,2,...,p), denoted by y,s(, has its sampling variance 

Lrj j ^ 
^/i^}, /-I,2,..,p 

J 

where 

2 2 Substituting a,, = W, Sj,, we get 

nyjst) -t—-trr^ j = h2,...,p. (2.2.1) 

th fh 
Let C,, be the cost of enumerating the j character in the / 

stratum and let C be the upper limit on the total cost of the survey. 

Then assuming linear cost function one should have 
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L P 
m:C,jn,<C, 

orYC,n,<C, (2.2.2) 

P 
where C, - ^ C , , , the cost of enumeration of all the p characters in 

the / stratum 

Further one should have 

l<n,<N,, 1^1,2,...,L (2.2.3) 

We determine the optimum values of n,, by minimizing (in 

some sense) all the p variances (2 2.1) for a fixed budget (2.2.2) i.e 

we have to 

Minimize Vj = 2_,^^-Xi:j-^ J = l,2,...,p 
1=1^1 ,=i^i 

L 

Subject to Y,^i^i-C (2.2.4) 

1=1 

and l^n,<N , ^ , , L 
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Since N,'s are given, it is enough to minimize 

L 
J=l2,...,p 

;=1^ ' 

Using X, for n,, the problem (2.2.4) can be written as the following 

multiobjective non-linear programming problem: 

L 
Minimize 

Subject to 

and 

a 

J:C,X,<C 

}<X,<N, ,=10 r 
j ^ ' i j ' 

{a) 

(b) 

(c) 

(2.2.5) 

The objective functions in (2.2.5) are convex [see Kokan and Khan 

(1967)], the single constraint is linear and the bounds are also linear. 

The problem (2.2.5) is, therefore a multiobjective convex 

programming problem 

If some tolerance limits, say v . , are given on variances of the 

p characters then the allocation problem reduces to the single 

objective convex programming problem 
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L 
Minimize ^C,Xj 

/=1 

^ a 
Subject to Y,~-<Vj ,J=\,2, -,? (2.2.6) 

\<X,<N„ / = 1,2,...,L. 

2.3 TWO-STAGE SAMPLING 

Let us consider a population which consists of N Primary 

Stage Units (PSU's) and the /̂ ^ PSU consists of M, Secondary Stage 

Units (SSU's). A sample of n PSU's is to be selected and from the 

/̂  selected PSU, a sample of m^ SSU's is to be selected 

Let us denote 

y,rj= value obtained for the r^^ SSU in the /̂ ^ PSU for j ' 

character 

M,= number of SSU's in the i^^ PSU, (z = 1,2,...,A^). 

N 
MQ = ^ M ; = total number of SSU's in the population. 

i=\ 

M = = average number of SSU's. 
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niQ - Y^nii = total number of SSU's in the sample. 
/=1 

Yn = V——= the / PSU population mean for / character. 
r=\ ' 

Yj^j - X ^^^ overall population mean of PSU means for j 
,=i" 

N 

character. 

Yj=— =^,^^11= population mean per SSU for j ' ^ 

character. 

Z -^ifJ th = sample mean per SSU for j character. 

n 

T^^y^ 
y,=' ^ ——= sample mean per SSU in the i'^ PSU for /'^ 

•̂  nM 

character. 
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Define 

N 

T{->y>j-Yjf 
S 2 _i=] 

N-\ 
population variance between PSU's 

th 
means for j character 

o2 _r = J 

(M, - y) 
population variance within PSU's for 

where 

th J character. 

u, 
M 

.th For J character (j = \,2,...,p), the unbiased estimate of the 

population mean Y, is y, which has the sampling variance as 

v(y,) S. WJ 

a ^2 si 
sl^l^ WJ 

n bj • ^ „ , , , - 2 + constant terms 
i^inNM"- m, 
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^n , K a,, 
^_^ + constant terms (2.3.1) 
1=1 ' 

where 

.2 „ M^ o2 

Let C be the upper limit on total cost of the survey Assuming 

the cost of the suivev to be linear, we should have 

nC ^ 
'^Co^-^Y.^h^C (2.3.2) 

^ / = 1 

where Cg is the average cost of selection per PSU and C\ is the 

average cost of sampling per SSU. In practice, CQ is likely to be 

larger than C\ 

Now the problem is to determine the optimum values of n and 

rrij so as to minimize the variances (2.3.1) of the various characters 

for a fixed budget C. Ignoring the constant terms in (2.3.1), and 

using Xf) for n &. X, for nrrij, we get the following multiobjective 

convex programming problem 
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Minimize Vj = J ] - ^ , j = 1,2,...,;? 

N 
subject to Y^Cj^i^C (2.3.3) 

/=0 

and Xo<N,Xi<NMi, / = 1,2,...,A^ 

where Cj = — for i = \,2,...,N. 
N 

Case of Equal Primary-Stage Units 

The equal Primary-Stage Units problem can be considered as a 

particular case of the unequal Primary-Stage Units problem where 

Ml = M for / = 1,2,...,A^. 

Let X'] =n and X2=nm then the problem in case of eqi|ial primary-
I 

stage units reduces to the following multiobjective convex 

programming problem in only two variables: 

2 Qjj 
Minimize Vj = 2 ^ - f , j = 1,2,...,/? 

2 
Subject to J^CiXi<C (2.3.4) 

/=1 

and Xi <N,X2< NM 
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2.4 DOUBLE SAMPLING 

Consider the problem of double sampling for stratification in 

which the population is to be stratified into L strata. The first 

sample of size n' is selected by simple random sampling without 

replacement to estimate the strata weights. A second sample of n 

units with rij units from the / stratum is selected in which p 

characters y\,y2^---^yp ^^e observed. In allocating the sample size n 

L 
to different strata, we use Neyman allocation where « = 2^«/ . 

/=! 

Let Wj = —- be the proportion of population units falling in the 

/ stratum and Wj = — be the proportion of first sample units falling 
n' 

th in the / stratum. Wi being unknown is estimated by w,. 

— th th 
Let yjj be the sample mean of the j character in the / 

stratum, / = 1,2,...,L; j = \,2,...,p and Yy be the population mean of the 

j character in the / stratum. For j character (7 = l,2,...,p), an 

L 
unbiased estimate of the population mean 7 . , is yt = ^^iyji, 

i=\ 

which, for large populations, has the sampling variance 
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L r 

40)=I 2, wX\-w,)' 
w,+ 

si ^^Wi[Yij-Y} 

/=1 n n J "/ / = i n 

where 

''{y,jr-y,]} s,M , / = l,2,...,L;7 = l,2,...,/7. 

For the proportional allocation «, =^nWj, the variance of 3^, is 

approximately given by 

1=1 1=1 

(2.4.1) 

An approximate expression of minimum variance under 

th Neyman allocation for j character is 

n' n 

wh ere v^j = X ^ / ( ^ / / -"^Y ^"^ V2j =Y^W,S}j, / = 1,2. 
/ = i /=1 
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Let C be the upper limit on total cost of the survey. Assuming 

the cost of the survey to be linear, we should have 

Ci«' + C 2 « < C (2.4.2) 

where C\ is the cost per unit of measuring the auxiliary variate and 

C2 is the cost per unit of measuring all the study variates. C\ is 

generally smaller than C2 . 

Here it is required to find the values of n' and n so that the 

total cost does not exceed the given budget and at the same time, the 

variances for various characters are minimized. 

The problem then again reduces to the following multiobjective 

convex programming problem in two variables: 

2 V,-

Minimize Vj^X^^^ J = \X-,P 

2 

Subject to Y,CiXi<C (2.4.3) 
/=1 

and \<Xj< N, i = 1,2 

where n'= X^ and n = X2. 

If the upper tolerance limits Vj ,(J ^ I,2,...,p) are ^iven on the 

variances of the various characters and it is required to piinimize the 

cost of the survey, then we get the following single objective 

problem 
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2 
Minimize ^CjXj 

i=\ 
2 V 

SubjecttoY,^^Vjj = \X...,P (2.4.4) 
i=\^i 

\<X,<N, /=1,2. 

2.5 RESPONSE ERRORS 

Let an individual be selected at random from the population of 

A'̂  individuals and an interviewer be picked up at random out of M 

interviewers and assigned to the selected individual. Denote by yabc 

the response value obtained for c sample individual by b sample 

th interviewer in the a (population) group. The expected value of 

yabc '^'11 ^^ ^ • ̂ ^^ sample mean is 

L k^ na 

a=\ b c 

In many surveys, interviewers are available to interview only 

certain classes of the population and only in certain geographical 

areas. We shall, therefore, conceive of our interviewers as divided 

into L groups with M^ interviewers in the a* group who are 

available to interview a particular Â ^ individuals and no others. 
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When all the interviewers are available to interview all individuals, 

we have L = \\Ma = ^ ^ ^ a = ^• 

Now n of the N individuals in the population are selected at 

th random and m^ interviewers are selected at random from the a 

interviewer group to interview those sample individuals who are 

L 
available for interview by this interviewer group. Let ni-2_^m^ be 

a 

the total number of interviewers selected. Hensen & Hurwitz (1951) 

derive the total variance of individual responses around the mean of 

all individual responses in the population as 

y(y)A^h^, CT yi 

n m 

Suppose a population of M interviewers is available to 

enumerate a population of N individuals on each of which p 

characters are defined. For j character {j = \,2,...,p), the total 

variance of the sample mean j7 .• is given by 
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y^Mj-^yj')^^»L (2 5 1) 
n m 

where CT^,/ IS the covariance between responses obtained from 

th different individuals by the same interviewer for j character (this 

covariance being taken within interviewer groups, since independent 

selections of interviewers are made from each inteiviewer group ) 

2 
and (5y, are the variances of over all responses for all individuals to 

th all interviewers for the j character 

With the ordinary survey which has a fixed total budget, 

increasing the number of interviewers will increase cost and will 

require a reduction of expenditures at some other point, e g , 

reducing the expenditure per interviewer or per individual or 

reducing the number of individuals included in the sample 

Let C be the total budget available for field work on the 

survey Assuming the cost of the survey to be linear, we should have 

Cin + C2m<C (2 5 2) 

where Cj is the cost per individual in the sample and C2 is the cost 

per interviewer 
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The problem is to determine the values of n and m which can 

be found by minimizing the variances (2.5.1) for a fixed cost (2.5.2). 

The problem of finding the optimal number of interviewers who 

should be assigned the job and the optimal number of individuals to 

be selected is finally formulated as 

V| , V2 , 
Minimize V,=—- + — ~ , j = \,2,...,p 

n m 

Subject to C\n + C2W ^ C 

and n < N, m < M 

(2.5.3) 

where we have used 

V 

Using Xi for n and A'2 for m, the problem (2.5.3) reduces 

again to the following form of multiobjective convex programming 

problem: 

2 V 

Minimize Vj =Y,~ , 7 = 1,2,...,/? 

2 

Subject to 2 ]C ,A^/<C (2.5.4) 
/=1 

and Xi <N, X2< M. 

41 



In case we are interested in minimizing the cost of the survey 

while the tolerance limits are given on the variances for the various 

characters, the problem takes the form similar to (2.4.4). 

42 



CHAPTER-III 

CHEBYSHEV SOLUTION TO A MULTIVARIATE 

STRATIFIED SAMPLING PROBLEM 

3.1 INTRODUCTION 

Usually in sample surveys more than one population 

characteristics of conflicting nature are estimated. When stratified 

sampling is to be used, an allocation among various strata that is 

optimum for one character is generally not so for the others. A 

suitable overall optimality criterion is required for dealing with such 

situations. 

Various authors either suggested new criteria or explored 

further the already existing criteria such as Neyman (1934), Peter 

and Bucher (1940), Geary (1949), Dalenius (1957), Ghosh (1958), 

Yates (1960), Aoyama (1963), Chatterjee (1968). Kokan and Khan 

(1967), Huddleston, et al (1970), Arvanitis and Afonja (1971), 

Chromy (1987), Bethel (1985, 1989) etc., discuss the use of convex 

programming in relation to the multivariate optimal allocation 

problem. Each approach has its advantages and disadvantages. The 

weighted average method is computationally simple, intuitively 

appealing and can be solved under a fixed cost assumption, but the 

choice of the weights is arbitrary and the optimality properties are 



not clear. The convex programming approach gives the optimal 

solution to the defined problem where the upper limits are given on 

the variances and the cost is to be minimized. But if the variances are 

to be minimized a further search is usually required for an optimal 

solution which falls within the budgetary constraint. 

In this chapter, we consider the problem of minimizing the 

variances for the various characters with fixed (given) budget. Each 

convex objective function is first linearized at its minimal point 

where it meets the linear cost constraint. The resulting multiobjective 

linear programming problem is then solved by Chebyshev goal 

programming. 

3.2 MULTIVARIATE ALLOCATION PROBLEM 

The multivariate allocation problem formulated in section 2.2, 

(2.2.5) is 

Minimize Vj = Y.~^^ 7=1,2,...,/? 
/-I ^i 

L 
Subject to YjCiXi<C (3.2.1) 

/=1 

and \<Xi<Ni, i = l,2,...,L. 

Each objective function in (3.2.1) is convex and the single 

constraint as well as the upper and lower bounds are linear. The 

problem (3.2.1) for J = k is, therefore, a convex programming 
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problem which can be solved by using any method of convex 

programming. Each of the p problems for k = \,2,...,p may have a 

different solution. A unique solution, suitable for all the p problems 

is obtained here by using the criterion of Chebyshev goal 

programming. In order to be able to apply the Chebyshev goal 

programming approach we approximate the convex objective 

functions in (3.2.1) by linear ones and then solve the resulting LPPs. 

The criterion behind the Chebyshev goal programming is to find a 

solution that minimizes the single worst unwanted deviation from any 

(soft) goal. In other words, it is a minimax goal programming 

approach. 

3.3 TRANSFORMATION INTO A MULTIOBJECTIVE LINEAR 

PROGRAMMING PROBLEM 

In the multiobjective allocation problem (3.2.1) there are p 

non-linear objective functions which later turn into soft goals with a 

single linear constraint (hard goal). To apply Chebyshev goal 

programming approach, all the hard and soft goals must be in linear 

form so that the worst deviation from the approximated linear goals 

in minimized. We thus approximate the non-linear soft goals by 

linear ones. 

It may be noted that an analytic solution of the problem (3.2.1) 

for single character, say, j = k is given (see Kokan and Khan (1967)) 

as 
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L 
^ik = c^dikC, I c, \ X 4^ikCi , i = I,2,...,L (3.3.1) 

provided that \<x',;^ < N,, i = 1,2,...,L . 

In case the lower and/ or upper bounds are violated for some / 

(which IS a very extreme case and rarely occurs in practice), some 

extra efforts are needed as explained in the above reference. 

However, since at this stage we need only approximate points, we 

may fix such x',i^ at the corresponding bounds. 

Our strategy will be to approximate the convex objective 

surface Vj^ by the tangent hyperplane at the point (3.3.1). 

This is obtained as 

'^**^'*t)+^%,f'-''*'• ' = 'A-.i 

where V F ^ / ' \ is the vector of partial derivatives. 

^n{.'„) = ^\k ^2k ^Lk 

L {Akf fer fe)^ 
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Then 

vKi(,;,)(x,-x;,)=i^-i;i^ 
,=lXik i=lKhk) 

This gives 

Then the multiobjective convex programming problem (3.2.1) 

reduces to the following approximate multiobjective linear 

programming problem' 

Minimize v^ = 2 ^ - f - Z 7 T V ' -̂  =^'2,...,/? 
/=1 ^// /=i k)^ 

Subject to j ; C,X,<C 
/ - I 

(3.3.2) 

and 1<Z,<7V, , i = \,2,.:,L. 
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3.4 SOLUTION USING CHEBYSHEV GOAL PROGRAMMING 

It can be noted that for individual objective functions the 

solutions of the respective problems in (3.2.1) and those in (3.3.2) 

coincide for j = \,2,...,p and are given by (3.3.1). 

To solve the multiobjective LPP (3.3.2), we use the Chebyshev 

goal programming approach in which the p objective functions are 

put in the form of constraints, termed as soft goals, with upper 

bounds called aspiration levels. Aspiration level L/^ is nothing but 

the minimum value of Vj^ obtained by solving the convex 

programming problem (3.2.1) individually for the k objective 

function. The explicit solutions for these p problems can again be 

obtained by using (3.3.1). 

The Chebyshev goal programming model for solving (3.3.2) is 

given (as explained in (1.5.2)) as 

Minimize 5 

L 
Subjectto Y. C,Xi<C (3.4.1) 

/=1 

L a L a- X• 
22: T^-S ?^-8<L^. ; = l,2.....p 

Xi 

and l<Xi<Ni, / = 1,2,...,L 
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where 5 (dummy variable) represents the worst deviation level. 

Our practical experience shows that the solution X^h by 

transforming the multiobjective convex programming problem to the 

multiobjective linear programming problem and using the Chebyshev 

approach for i t ' s solution, provides us a satisfactory point in the 

sense that the values of the various objective functions at this point 

remain very close to the optimal values obtained by individually 

solving the convex programming problems (3.2.1) for various 

y = 1,2,....,/?. 

This observation is evident also from the numerical example given 

below. 

3.5 NUMERICAL EXAMPLE 

Consider a population, divided into two strata with three 

characters under study for which the values of Ni,Wi,Si],Sj2 and 5,3 

are given in the following table: 

TABLE-3.1 

Stratum 

i 

1 

2 

N, 

180 

270 

W 
1 

0.40 

0.60 

Sn 

1.5 

3.0 

Sa 

2.25 

4.75 

S.s 

0.75 

5.25 

Cn 

0.6 

0.8 

c„ 

0.9 

1.2 

C,3 

1.5 

2.0 
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2 o 2 The variance coefficients matrix is obtained by ajj =Wj Sjj as 

(«(/) = 
0.36 0.81 0.09^ 

3.24 8.12 9.92 

Let us fix the budget at 100 units. 

The above problem is transformed to the multiobjective convex 

programming problem as 

. . . ,, 0.36 3.24 ,, 0.81 8.12 ^ ,, 0.09 9.92 
Minimize K] =—^^—I--;-;;—, Vj =—;^ + —;^— (^na K3 =—;-^ + 

Xi X' X, X, X, X, 

Subject to 3Z,+4A^2^100 (3.5.1) 

and 
1<A^1<180 

\<X2<210 

First we find out the solutions of the problems of minimizing 

Vl, V2 and F3 individually, subject to the only linear constraint 

3A^1+4X2<100 by using (3.3.1). 

For F| the solution is 

x'u =100V0.36x3/3{V0.36x3 + V3.24x4} 

= 7.47, 

x'2] =100V3.24x 4/4{V0.36x3 +V3.24X 4} 
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= 19.40. 

Similarly the solutions of V2 and V^ are given by (7.16, 19.63) and 

(2.54, 23.10) respectively. 

Now, Linearized form of the objective function V^ at the point (7.47, 

19.40) is obtained as 

vi~ -0.0065X1-0.0086X2+0.4304 

Similarly the linearized forms of the objective functions V2 and V2 at 

the respective points are obtained as 

V2r-0.0158Xi-0.0211X2+1.0540 

V3--0.0140X1-0.0186X2+0.9300 

The values of L^, L2, and L3 (aspiration levels) at the points 

(7.47, 19.40), (7.16, 19.63) and (2.54, 23.10) are obtained as 0.2152, 

0.5270 and 0.4650 respectively. 

Now, the approximated multiobjective linear programming 

problem to the multiobjective convex programming problem (3.5.1) 

is 

Minimize Vj = - 0.0065Xi -0.0086X2+0.4304, 

V2 = - 0.0158Xi -0.0211X2 +1.0540 

and V3 =-0.0140X1-0.018X2+0.9300 (3.5.2) 
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Subject to : 3Xi+4X2<100 

and l<Xi<180 , \<X2<210. 

The Chebyshev model of the problem (3.5.2), becomes as to 

Minimize 5 

Subject to: 

- 0.0065^1 - 0.0086^2 - 5 < -0.2152 

- 0.0158Zi - 0.0211^2 - 5 < -0.5270 

- O.OMOXj - O.OI86X2 - 8 <-04650 

3^^1+41-2^100 

(3.5.3) 

l<Xi <180 

and 1<AS<270 

6>0. 

The Chebyshev point by solving the LPP (3.5.3) is 

X^;, =(12.15,15.89) with 6 = 0. The values of sample s^zes «| and «2' 
I 

rounded to the nearest integers, are 12 and 16 respecti-jely. 
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The solution print out of the problem through MATLAB is: 

X = 

n.UAi 

15.8825 

0 

Lambda = 

0 

0 

0 

0 

0 

0 

How = 

ok 

Z = 

0 

This solution is being summarized in table-3.2. 

The percent increases in the three variances for the Chebyshev 

point as compared to the respective individual variance minimization 

points are 104.78%, 110.23% and 136.04%. 
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TabIe-3.2 

Values of Vj at the individual optimal points and at the Chebyshev point 

Rounded 
«1 & ^2 

Value of F, 

Value ofF^ 

Value of 1̂3 

Optimization 
w.r.t. Vi 

(7,19) 

0.2219 

0.5432 

0.5351 

Optimization 
w.r.t. V2 

(7,20) 

0.2134 

0.5218 

0.5090 

Optimization 
w.r.t. K3 

(3,23) 

0.2609 

0.6232 

0.4614 

Chebyshev 
point 

(12,16) 

0.2325 

0.5752 

0.6277 

3.6 SOLUTION OF A TWO DIMENSIONAL MULTIVARIATE 

PROBLEM WHEN THE COST IS MINIMIZED 

Let us consider the problem (2.2.6). Due to its special character 

(only two dimension), we give in the following an easy method of 

solution by using the Analytical approach of Kokan & Khan (1967). 

The problem is to 

Minimize C = ^CjXj 

1=1 

a 
Subject to Y,'-^<Vj, j = \,2,...,P 

i^\^' 
\<Xi< Nj. 

(3.6.1) 
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Using the transformation Xj -—, this reduces to 

Minimize ^ Q 

/=1 ^i > 

2 \ n 
S'wZj/ecY /o Ya^ij^i - ^j ' ^ = 12,...,p 

- •r--5r6)^<9 > 

,̂,.- ^ (3.6.2) 

— < .r, < 1. 

First we identify the linear constraints ki and ^2 such that 

min 
V _ Vk\ 

mm 
7 ^27 ^2yt2 

(3.6.3) 

Let us denote the minimum of C subject to the constraint(7j by ^K 

An explicit expression for ^v/; = Ui ,-̂ 2 / ^̂  givs" by 

xy^ = Vj^aijCi/aij 
' 2 

,' = 12. (3.6.4) 

We illustrate the method by an (hypothetical) example 

represented in the following figure in which we have taken four 

constraints. The level curves of the objective functions touching the 

various constraints are also traced. 
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The minimum intercept on JCJ is cut by the constraint (1) and the 

minimum intercept on X2 is cut by the constraint (4). 

Now jĉ  ^ violates the constraint (1) and x^ ' violates the constraint 

(4). A dangling solution, will then be the point of intersection of the 

lines (1) & (4), viz x^ '̂̂ ^l 

(2) This new point, however violates the constraint (2). So we test x^ ' 

which violates the constraint (1). Since x^' also violates the 

constraint (2), the intersection of the lines (1) & (2) is tested, which 

satisfies all the constraints and thus gives the optimal solution. 

Let us consider the numerical example of 3.5 in which we are 

given the upper bounds on the three variances respectively as 

0.30,0.60 and 0.50. 

Then the problem to be solved is 

Minimize 1- — 

Subject to 0.36JC| +3.24^2 ^0.30 

0.81x1+8.12JC2 <0.60 (3.6.5) 

0.09x1 +9.92x2 < 0.50 

0.0056 <xi <1 

0.0037 <X2<1 

We identify the linear constraints (2) & (3) by using (3.6.3). 

By using (3.6.4), we obtain x^^^ and x^' as (0.1591, 0.0580) & 

(0.4233, 0.0466). 
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Now, x^ * violates the constraint (2) and x^ ^ violates the constraint 

(2 3) (3). Then the solution x^ ' ^ is obtained as the point of intersection 

of the lines (2) «fe (3) le ^^^'^^ = (0.2585,0.0481). This point also 

satisfies the constraint (1). Hence it is the optimal solution to the 

given problem. 

The values of sample sizes n^ and «2 are found respectively as 

3.87 & 20.79 which rounded to the nearest integers are 4 & 21. The 

value of the objective function at the optimal point is 96. The same 

numerical example has been solved in section 3.5 where we fixed the 

cost at 100 and minimized the variances. The optimal solution given 

in tabIe-3.2 may be compared with this solution. 
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CHAPTER-IV 

USE OF CUTTING PLANE TECHNIQUE FOR SOLVING THE 

MULTIVARIATE SAMPLING PROBLEMS 

4.1 INTRODUCTION 

In this chapter, we again consider the sampling problems of 

chapter II where p convex objective functions are to be minimized 

subject to the linear cost constraint. The problem is first transformed 

to a multiobjective nonlinear programming problem with several 

linear objective functions and a single convex constraint. The non-

linearity of the single non-linear constraint is handled through 

linearizing it by the cutting plane technique. The resulting LPP is 

then solved by Chebyshev goal programming approach. A 

comparison of Chebyshev solution with the fuzzy programming 

solution has also been made. 

4.2 MULTIVARIATE SAMPLING PROBLEMS 

The multivariate sampling problems formulated in chapter-II 

have the form 



Minimize ^0 ~ S — ' J = h^,--^P 
i=\^i 

L 
Subject to 2_j^i^i -^ 

i=\ 

and \<X^<N,, i = U,...,L. 

Using — for X, the problem gets transformed to 
X, 

L 
Minimize Zj = 'J^a,jX, ,7 = 1,2,...,/? (4.2.1) 

1=1 

^ C 
Subject to. g{xy Y — -C<0 (4.22) 

,=\^i 

— < x , < l , / = 1,2,...,L. (4.2 3) 

In order to be able to find a Chebyshev point, we will linearize 

the only convex constraint (4.2.2) by using the cutting plane 

technique of J.E. Kelly (1960). 

4.3 OBTAINING AN EQUIVALENT PROBLEM BY 

LINEARIZING THE CONVEX CONSTRAINT 

Let X^^^^=(.xf^°\...,;c^^°^) be the solution of LPP, which 

minimizes (4.2.1) for J =k subject to the bounds (4.2.2). 

Then we compute 
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-^(0) L Q 
^(0) 

•C . 

Define S] & €2 to be two small positive tolerance limits for 

convergence. 

If g(^^(0)) < £ ] , this means that (4.2.2) is satisfied to the tolerance 

limit and thus X ^ ' solves the convex programming problem 

(4.2.1)-(4.2.3) for j=k. 

If g(X^(0)) > £ ] , we linearize the convex constraint g(Jf) < 0 about 

the point X^^°^ as : 

G{X)« g{X^^^^) + Vg(X^(^^)'(X - X^(^)) < 0., 

w here g(x^^°^) is the value of g{x) at the point Z^^^^ and 

vg(x^(°)y = _5_ 

U = l -̂ z i=\ ^' 

X^-c 
S-^L I / = 1 X, 

X kiO) 

Cl Ci CL 

(xf(°) )2 (X2'(0) 2̂ (x^(°) )2 

Then 

vg(x*(°))'(x-.Y*(''))=i-|^-i '̂•̂ ' 
'=.^/- ' '=l(xf"" )2 
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Thus the constraint (4.2.2) linearized at the point X ^ Ms 

(4.3.1) 

We then solve the following LPP: 

L 
Minimize Zj^ = '^ci,/fXj 

/ = ] 

Subject to 2Y-%--Y ^'' 

1 
N, 

<Xi<\, 

C<0 

/ = 12,...,L 
, * - , . . , 5 J 

(4.3.2) 

Denote the solution of LPP (4.3.2) by 

^^©^(^.^(O^ _^*(l)) 

Jh • 
At r iteration we find X ^^ and k(t) 

^ ( 0 ^ _ V _ ^ gix'''n=z 
/=1X 

k(t) 
C 

If g(^'^^^) < ei then clearly X^^^^ al so solves the CPP 

(4.2.1)-(4.2.3). 
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Otherwise we linearize the constraint g(X) about the point 

X^^^^ and solve the LPP: 

L 
Minimize Z/^ = ^Oj/^Xj 

i=l 

Subject to 2Y^^-Y^~^ C < 0 , l = QX...fk 
r^X^r .ri(,f(0)2 

(4.3.3) 

N, 
< x , < l , / = 1,2,...,L. 

The process is then repeated until 

g (^*( ' ) ) 
* fh * 

< ei say at r̂ ^ iteration. The LPP (4.3.3) for tk=tk 

approximates the CPP (4.2. l)-(4.2.3) for j = k. 

At some stage it is also possible that 

j^k{t~\) _ ^k{t) 

g (Z^(^)) > but 

<e2- In this case the LPP (4.3.3) does not exactly 

solve the CPP (4.2. l)-(4.2.3). However, as the point X^^^ is getting 

repeated, we will consider the LPP (4.3.3) to approximate the CPP 

* 
(4.2. l)-(4.2.3) and take the corresponding t equal to t . 

Taking tQ=\, the following LPPs are now solved for s = l,2,...,p: 
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L 
Minimize Z^ - '^cij^Xj 

Subject to lY^-%-Y^-^ C < 0 , / = 0,l,...,4;^ = U,. . . ,p(4.3.4) 

— <Xj<\, / = 1,2,...,L. 
^i 

Let the minimum values of Z^ thus found be Z^ , 5 = 1,2,...,/' at 

the corresponding minimal points X^, s = \,2,...,p. The p solutions 

X. , ,Xp have been obtained by minimizing the individual 

objective functions subject to the linearized constraints which will 

give us the aspiration levels being used in Chebyshev goal 

programming model. 

4.4 SOLUTION USING CHEBYSHEV GOAL PROGRAMMING 

For obtaining an unique solution suitable for all the p 

objective functions, we use the Chebyshev goal programming 

technique. The Chebyshev formulation of the multivariate sampling 

problem (4.2. l)-(4.2.3) is the following LPP: 
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Minimize 5 

Subject to 2 Y - ^ - Y , - ^ C<0,l = 0,\,...,tk;s = \X..;P 
, -x ;w ~t(,m )2 

L 
-0 

/ = 1 

1 

Â / 
< X, < 1 , 

(4.4.1) 
5 = 1,2,...,;? 

i = \2 L 
., —,..., -

where 5 (dummy variable) represents the worst deviation level and 

Zg , 5 = 1,2,...,/? are the aspiration levels. 

4.5 ALGORITHM 

Let us consider the problem (4.2. l)-(4.2.3). 

Set k = \ and t = 0. 

Step I: U k> p , go to Step III. Otherwise find the point X^^'^ by 

solving the LPP (4.3.3). 

Step II: If g(x'^'h < El or 
^k{t-\) _-^kit) < e 2 for some t, say tj^, 

where Sj and EJ are the suitable tolerance limits, then go to 

step 1 with k = k + \ . 

Otherwise go to step I with t = t + \. 
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Step III: Solve LPP (4.3.4) for s = \,2,-,P to obtain X^, the 

approximate minimal points for the respective objective 

functions, with minimum corresponding values of Z^ as Z^ . 

Step IV: Solve the Chebyshev goal programming model (4.4.1) of 

the problem (4.2.1)-(4.2.3) to obtain the Chebyshev point 

* 
X ch 

4.6 FUZZY SOLUTION 

Like Chebyshev goal programming, the basis of fuzzy 

programming approach is also to minimize the worst deviation from 

any goal. For obtaining a fuzzy solution, we first compute for each 

s (s = \,2,...,p), the maximum and minimum values of the respective 

objective functions. 

70 LttZ,iX]) = ZJ,\ j = \X...,P 

Clearly zf = z j = min Z,{X^) = L,, say. 
J 

Denote v[mxZ^{Xj) = Us-
J 

The differences of the maximum and minimum values of Z .̂ are 

denoted by dg -U^ - L^ , 5 = 1,2,...,p. 
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The fuzzy programming formulation of the problem (4.2. l)-(4.2.3) is 

the following LLP : 

Minimize S 

Subject to 2 Y-^-Y^^^ C < 0 , / = 0,l,...,4;5 = l,2,...,p 

L (4.6.1) 
Y,o„x,-d,5<Z^, , .v = l,2,...,p (*) 

—-<x, < 1 , z = l,2,...,L. 

Comparing (4.4.1) and (4.6.1) it can be noted that the fuzzy 

programming solution is better than the Chebyshev solution if d^, 

the differences between maximum and minimum values of the 

objective functions, are greater than 1 for all characteristics. The 

reason behind tins is that in this case (i.e. when dg>\) the 

constraints (4.6.1.*) in fuzzy programming are less restrictive than 

the corresponding constraints in Chebyshev problem (4.4.1). 

4.7 A NUMERICAL EXAMPLE 

Let us consider again the numerical example given in 3.5.1 
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By making the transformation Xj= , the problem (4.2. l)-(4.2.3) 
Xi 

is obtained as 

Minimize Z^ = 0.0036JCI + 0.0324JC2, Z2 = 0.0081^1 + 0.0812^2 

and Z3 = 0.0009x1 + 0.0992^2 

3 4 
Subject to — + — <1 (4.7.1) 

0,5556<xi <100 

0.3704 <.V2< 100. 

Let us fix £] for the three objective functions be 0.01, 0.006 and 

0.08 & 62 for the three objective functions be 0.005. 

The approximated linear programming problems corresponding to the 

three objective functions Zi,Z2 and Z3, as derived in (4.3.3) are 

obtained as follows: 

Minimize Z] =0.0036JC]+0.0324^2 

Subject to 971.82x1 + 2915.45x2 >3139.74 

66.77x1+2915.45x2 > 2342.9 

387.05x1+651.57x2 >1602.56 

35.69x1+735.7x2 >1192.12 

126.74x1+154.58x2 > 807.54 
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13.75x1+205.9x2 > 602.42 

32.21JCI+53.99JC2> 390.52 

4.54JC1 + 70.45JC2 > 309.52 (4.7.2) 

10.54x1 +24.39x2 > 210 

2.28x1+29.95X2 > 171.22 

4.54x1+15.39x2 >130.76 

1.86xi+17.73x2 >115.66 

2.78x1+13.54x2 >1.05 

0.5556 <xi<100 

0.3704 <X2< 100 

Minimize Z2 =0.0081xi +0.0812x2 

Subject to 971.82x1 + 2915.45x2 > 3139.74 

66.77x,+2915.45x2 > 2342.9 

387.05x1+ 651.57x2 >1602.56 

35.69x1+735.7x2 >1192.12 

126.74x1+154.58x2 > 807.54 

13.75x1 + 205.9x2 > 602.42 (4.7.3) 

32.21x1 +53.99x2 >390.52 

4.54x1+70.45x2 > 309.52 

10.54x1+24.39x2 > 210 

2.28x1+29.95x2 > 171.22 

4.54x1+15.39x2 > 130.76 

1.86x1+17.73x2 > 115.66 

1.99x1+14.59x2 >101.68 

2.78x1+13.54x2 > 1.05 

0.5556 <x i< 100 

0.3704 <X2< 100 
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Minimize Z3 = 0.0009J«:I + 0.0992JC2 

Subject to 971.82x| + 2915.45x2 >3139.74 

66.77x1+2915.45x2 > 2342.9 

0.84x1+2915.45x2 > 2091.54 

20.64x1+779.58x2 > 1174.24 

0.33x1+796.34x2 > 1048.74 

5.69x1+231.71x2 >591.48 (47.4) 

0.1 Ix] + 238.27x2 >529.14 

1.58xi+81.57x2 > 304.84 

0.05x, + 83.88x2 > 273.84 

0.47xi +37.88x2 > 170.02 

0.03x1+37.93x2 > 152.34 

0.5556<xi<100 

0.3704 <X2< 100. 

The solutions X^ X^ and Z3 of the three problems (4.7.2), (4.7.3) 

and (4.7.4) are obtained as: 

X^ =(12.26,5.24) with z f =0.2138 

X ° =(14.16,5.04) with Z^ =0.5238 

Jr3° =(40.63, 3.98) with Z3̂  =0.4318. 

The optimal values Zj ,1^ and Z^ will be used as aspiration levels 

in the Chebyshev goal programming model. 

The Chebyshev goal programming model (4.4.1) yields the following 

LPP: 
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Minimize 5 

Subject to 0.0036JCI +0.0324JC2 -c^< 0.2138 

O.OOSljci +0.0812x2 - ^ ^ 0 . 5 2 3 8 

0.0009^1 + 0.0992JC2 - ^ < 0.4318 

0.5556 <jci< 100 

0.3704 <JC2^ 100 

plus the 25 linearized constraints given in (4.7.2), 

(4.7.3) and (4.7.4). 

The Chebyshev point by solving the above problem is 

Jf*;, =(23.19, 4.20) with ^ = 0.0058. The values of sample sizes n^ 

and «2 are found respectively as 4.31 and 23.81 which rounded to 

the nearest integers are 4 and 24. The values of the thi^ee objective 

1 2 
functions (variances) at this point are Z , = 0.2250,Z, =0.6409 and 

Z^\= 0.4359. 

For obtaining the fuzzy point we find the values of Z\ at the 

points X2 and X-^ , the values of Z2 at the points X, and X^ and 

the values of Z3 at the points X-^ and X2 which are respectively 

obtained as (0.2142,0.2754), (0.5245,0.6526) and (0.5305,0.5125). 

Thus 

Li =0.2138, ^1=0.0.2754 
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12=0.0.5238, ^2=0 .6526 

13=0.4318,(73=0.5305 

^1=0.0616 

fi^2 =0.1288 

^3=0.0987 

The fuzzy goal programming model (4.6.1) yields the following LPP: 

Minimize 5 

Subject to 0.0036x1 + 0.0324^2-0.0616 J < 0.2138 

0.0081x1 + 0.0812x2-0.1288<^<0.5238 

0.0009x1 +0.0992x2-0.0987^ <0.4318 

0.5556 < x i < 100 

0.3704 <X2< 100 

plus the 25 linearized constraints given in (4.7.2), 

(4.7.3) and (4.7.4), 

The fuzzy point for the given problem by solving the LPP 

(4.6.1) is A^}^ =(22.55,4.21) with J = 0.0607. The corresponding 

values of sample sizes n^ and «2 are found respectively as 4.43 and 

23.76. 

It may be remarked that the maximum deviation of the optimum 

point from the various goals is greater for the fuzzy point as 

compared to the Chebyshev point. This was expected (since all the 
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dj are « 1 ) as noted in section 4.6. However, after rounding to the 

nearest integers the solution coincides with that of the rounded 

solution for Chebyshev method, (i.e. 4,24). 

TABLE-4.1 

Value of Zj at the individual optimal points and at the Chebyshev 

and fuzzy points 

Rounded 

Value of 
^1 

Value of 
7-1 

Value of 

Optimization 

w.r.t. Zj 

(8,19) 

0.2155 

0.5288 

0.5335 

Optimization 

w.r.t. Z2 
(7,20) 

0.2134 

0.5218 

0.5090 

Optimization 

w.r.t. Z3 
(2,25) 

0.3096 

0.7299 

0.4419 

Chebyshev 

Point 
(4,24) 

0.2250 

0.6409 

0.4359 

fuzzy 

point 
(4,24) 

0.2250 

0,6409 

0.4359 

The percent increases in the variances for the Chebyshev point 

(and fuzzy point) as compared to the individual variance 

minimization points are 104.41%, 122.82%and 0.99% respectively. 
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4.8 THE CASE OF THE PRESENCE OF BOUNDS ON THE 

VARIANCES OF SOME CHARACTERS 

We now consider the situation where there are tolerance limits 

on the variances for some of the characteristics. Let the upper limits 

on the j variance be given as m j , j sJ', J' (zJ = {l,2,...,p]. 

Then one requires 

L 

i=J 

In this situation, the multiobjective convex programming problem to 

be solved is 

L 
Minimize Zj = J ^ a^jx, , je(j -J') 

i=I 

L c. 
Subject to. J^~<C 

i=jXi (4.8.1) 

L 

i=l 

~<Xj<l , i = I,2,...,L. 
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Let us Consider a population with four strata each of size 150. 

There are five different characters under study and it is required that 

the variances of the first, third and fifth characters have the upper 

tolerance limits 0.70,0.60 and 0.80 respectively. The total field cost 

is 160 units. 

The costs of completely enumerating a unit in the different 

strata and the coefficients of variance (a,,)are given in the following 

table 

TABLE-4.2 

J 

i 

1 

2 

3 

4 

I 
3.4 

3.9 

2.2 

5.0 

2 
5.8 

1.6 

AA 

2.2 

« / / • 

3 
2.4 

4.8 

1.0 

3.9 

4 
1.8 

2.8 

5.7 

1.3 

5 
2.9 

5.9 

3.6 

4.8 

Ci 

2 

3 

1 

2 

The multiobjective convex programming formulation of the above 

problem is as follows 
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,, 5.8 1.6 4.4 2.2 ,, 1.8 2.8 5.7 1.3 
Minimize V2 = — + — + — + — , V4= — + — + — + — 

m «2 "3 «4 m «2 «3 «4 
Subject to 2«] + 3^2 + ^3 + 2̂ 74 <160 

3.4 3.9 2.2 s o ^ ^ ^ g 

<0.60 

<0.80 

m 
2.4 

^1 

2.9 

+ — 
«2 

4.8 
+ — 

"2 

5.9 
+ — 

+ — 
«3 

1.0 
+ 

«3 

3.6 
+ — 

+ : 
«4 

3.9 
+ — , /I4 

4.8 
+ — 

(4.8.2) 

"1 «2 n^ n. 
and 1<«, < 150,/= 1,2,3,4. 

Using rt, for —, the problem (4.8.2) reduces to the following form: 

Minimize V2 =5.Sxi +1.6^2 +4.4^3 +2.2^4,^2 =1.8xi + 2.8JC2 +5.7X3 +1-3X4 

2 3 1 2 
Subject to — + — H + — <160 

Xj X2 X3 X4 

3.4xi + 3.9x2 + 2.2x3 + 5.0x4 ^0-70 (4.8.3) 

2.4x1 + 4.8x2 + ^3 + 3.9x4 <0.60 

2.9xi + 5.9x2 + 3.6x3 + 4.8x4 ^0-80 

0.0067 <x ,<l , / = 1,2,3,4. 

The solutions X2 and X^ by solving LPPs (4.3.4) for ^ = 2,4 

are obtained as 

X^ = (0.0467,0.0544,0.0357,0.0490)&J/2° = 0-6464 

A-J =(0.0555,0.0505,0.0358,0.0463)&F4 =0.5055 
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The optimal values of V2 and V^ are used as aspiration levels in the 

Chebyshev model. 

The Chebyshev point by solving the LPP (4.4.1) is 

jr*;, =(0 0519,0 0519,0 0379,0.0452) with 5-0.0078. The values of sample 

sizes «i,«2,«3 and n^ are found respectively as 19.2678,19.2678,26.3852 and 

22 1239 which round to the nearest integers are 19,19,26 and 22. 

The solution is being summarized in the following table: 

TABLE-4.3 

Rounded values 
of sample sizes 
ValueofFj 

ValueofF4 

Opt. w.r.t. V2 
(21,18,28,20) 

0.6322 

0.5099 

Opt.w.r.tF4 
(18,20,30,22) 

0.6486 

0.4891 

Cheb.point. 
(19,19,26,22) 

0.6587 

0.5204 

The percent increases in the variances for the Chebyshev point 

as compared to the individual variance minimization points are 

104.19%, and 106.40%. 
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CHAPTER-V ^T X^ 

OPTIMAL ESTIMATION OF MEANS OF SEVERAL 

VARIABLES USING MULTIVARIATE AUXILIARY 

INFORMATION UNDER STRATIFIED SAMPLING 

5.1 INTRODUCTION 

Most of the sample surveys are devoted to collect information 

on several variables simultaneously. The usual problem in 

multipurpose surveys is to estimate the population means or totals of 

several variables simultaneously by using a number of auxiliary 

variables the information on which may be available through the past 

census data or it may be collected through diverting a part of the 

survey budget. In a land survey, for instance the estimates of the 

total number of agricultural labourers, literates and schedule casts 

for a certain administrative block may be easily available through 

past census data and the information on the variables such as the 

number of households, number of male workers and number of 

cultivators of the villages may not be readily available but may be 

known through diverting a part of the survey budget to it. 

The problem of estimation of the population mean (or total) of 

a single survey variable in the situation where population means (or 

totals) of several auxiliary variables are known has been considered 

by several authors including Olkin (1958), Raj (1965), Srivastava 



(1965, 1966), Rao and Mudhoikar (1967), Singh (1967), Srivastava 

(1971), Tripathi (1970, 1976, 1987) and Mukherjee et. al. (1987). 

The use of information on several auxiliary variables for 

estimating the population means of more than one principal variables 

has also been considered by several authors. Tripathi and Khattree 

(1989) discussed the estimation of means of principal variables 

yi,...,yp under simple random sampling, in the situations where 

means of auxiliary variables X],...,Xg are known. Further, Tripathi 

(1989) extended the result to the case of two occasions. Tripathi and 

Chaubey (1993) have considered the problem of obtaining the 

optimum probabilities of selection based on Xi,...,Xg in pps sampling 

for estimating the means of y-^,...,yp. Recently, Tripathi and 

Chaubey (2000) discussed the problem of estimating the mean of a 

vector variable y = \y\,---,yp) based on a general sampling design 

and on the knowledge of means of several variables JC = (jX],...,^^j for 

a finite population. They also gave the criterion of preference of one 

estimation procedure over the others in a quite general form stronger 

than customary criteria. 

In this chapter, we discuss the estimation of finite population 

mean vector \Y\,...,Ypj=Y_ of the principal variables \Y\,...,Yp)=Y_ , 

under stratified sampling design, in the situations where mean vector 

\X\,...,Xqj= X^ of the auxiliary variables ( X i , . . . , X ^ j = X is known. 
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5.2 NOTATION 

Consider a finite population U = ^,2,...,N}. The population is 

divided into L strata. 

Let 

yjlh= the value of / unit for J estimation character in the h 

stratum. 

and 

Xjf(fj= The value of / unit for k auxiliary character in the h 

stratum. 

(y = 1,2,...,p; k = 1,2,...,^; h = 1,2,...,L). 

Let v., be the observed value of the vector of estimation 
—in 

variables y-^,...,yp on the / unit in the h stratum and similarly let 

XJPJ be the observed value of the vector of auxiliary variables x^,...,Xq 

th fh 
on the / unit in the h stratum. 

The population mean vectors of the estimation variables and of the 

th auxiliary variables in the h stratum are given respectively as 

1 ^1, 
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an 
_ 1 ^h 

L 
Denote by L= Y^^hLh 

L 

an 

Consider a random sample of size n from a finite population U. 

On each of the sample unit, the measurement for p estimation 

variables y\,...,yp and the q auxiliary variables Xi,...,Xg are obtained 

as 

y\2^-^yp2 
• * 
• 9 

y\n^--ypr, 

and 

^X^ X ^ 

» • 

Let the population be stratified into L strata and denote by y. 
^ih 

th the vector of sample values of estimation variables on the / unit in 

the h stratum, i = 1,2,...,n^,h = 1,2,...,L and denote by Xj^ the vector 

th fh 

of sample values of auxiliary variables on the / unit in the h 

stratum, / = \,2,...,n^,h = \,2,...,L. 
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The customary unbiased estimators of F;, and X_^ are given by 

1 "h 

"h — 1 
and ^ / , = — X ^ / / 7 

Denote by Y_= J^lV/^Y^fj 

and K^Y.^hKh 

5.3 THE PROPOSED CLASS OF ESTIMATORS 

For h^ stratum, let us define 

where X;, =Yh\^--y^hpl ^^^ i^/? = V /̂?! y-^^hk ) ^^e the customary 

unbiased estimators of 7;, and X;, respectively, and T^ =\t ,j 

py^q matrix of statistics. 

jk> »s « 



The class of estimators for the vector of population mean Y_ 

may be defined as 

L 

I Ust)-iyht-h^^h\^h-^h (5.3.1) 

where Tk = an 
M d t., are suitably chosen 

pxq 

statistics such that their means exits. It may be noted that parallel to 

random sampling case several interesting estimators may be 

generated from Y_{st) ^^^ specific choices of 7/,. 

We will consider only the class of estimators (5.3.1) when T^ is a 

pre-specified non-random matrix. 

5.4 CRITERION OF OPTIMIZATION 

For fixed 7'/,, f ^̂ .̂ ^ is unbiased for 7 and its MSE matrix 

^^{st)] ŝ obtained below. We have 

L 

h=\ 

On squaring both sides, 
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{l(st) - if = t^hl^h - r J+T^ilh -^hf- ^h{h - Lh]x.h - x.h, 
h^\ 

Taking expectation on both sides, we have 

/7=1 -lT^E^_^,-Y_^^h-1^!] 

Or 

M t(s<)]= i w; -{si))- L^"h i'yy 
h 

Vyy +ThV^xTfj-ThC'yx -CyxTft (5.4.1) 

where 

Vyy=Eth-lhllh-lh 

an 

Now, we consider the following criteri<3t of preference given by 

Tripathi & Chaubey (2000): 
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Let K{Zy)= sUZy -Y\Zy -Y) denote the mean square error 

(MSE) matrix of an estimator Z ^ of 7 . 

C.P. (1) : An estimator Zy is said to be better than another 

estimators Z^y of F if and only if M\Z yj- M\Z^yj is non negative 

definite whatever be the value of y ,...,y 
N' 

C.P. (2): Let C=^yj be a class of estimators of Y_. An estimator 

Z™ G C is said to be optimum for Y_ in the class C if and only if 

^[Z_y)~\Z_(jy) is non-negative definite (n.n.d.) for all Z^yY'Z^oy) in 

the class C and for all possible values of y ,...,y^. 

We will find the optimum value of 7), in (5.3.1) under the criterion 

C.P. (2). 

5.5 OPTIMUM CHOICE OF T^ 

For obtaining the optimum choice of T^, we differentiate 

(5.4.1) w.r.t. Tfj and equate to zero. 

Mht)))_lr.r2 
XX = 0 
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I I 

2Cy^+2ThV^^-Q 

^-'/z ^XX ~ ^^yx 

^ /, ~ ^yx '^ XX (5.5.1) 

Substituting the optimum value of 7), in (5.4.2), we have 

«fcfco)= I ^h 
yy y^ ^^ ^^ ̂ yx'^ xx ^yx ^ XX ^yx 

-C V~^ C ^ yx*^ XX ^ yx 

L 

= 1'*'* 
h=\ 

V +C V C -2C V~ C 1^ yy ^ ^yx^ XX ^yx ^^yx ^ XX ^yx 

L 
V -C V^ c' . yy ^ yx ^ XX ^ yx • 

Hence, optimum MSE Matrix of Y_ is given by 

M 
'.opt L 

^W =2«', h 
V -c F~V 
. yy ^yx*^xx^yx h=\ 

(5.5.2) 

Now, consider the difference 
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M t{si)) 
L 

M 
(-opt ^ _-̂  , 

L 

Vyy + TfjVxxTf, - T^Cyx - Cyx T^ 

-K . yy yy: ^^ ^yx 
h=\ 

- 1 ^ ' 
~ 2-1 h L ̂  ^ ^ ^ ^ h ^ yx ^ yx ^ h '^^ yx ^xx ^ >'X 

h=] 

L 

-Y.K 
Th v., 7-; - ITV,, rf + T?P' [/„ 7-;̂ '' 

'^h^yx ^ vx /̂? "*" ^ vx''̂ xx ^ _yx "̂  XX ^ ^ x 

L 

h=\ — Cy^lf^ + ̂ yx^ h 

L 

= Z»'; h 
yx 

L 

-YFi 
.opt \^^ \rj. _ rpOpt \ _^[rp^ _ jOpt t y ^ j,Opt _ ^ Th -Tr)Vxx\Th -TD n^h -Trwxxn yx 

+ [rTv^x-CyXTh-TT] 
. (5.5.3) 

Since the first term on the RHS of (5.5.3) is non-negat ive definite 

(n.n.d.) , the difference on the LHS for T^ "^T^^^ can be i|iade n.n.d. 

if and only if 

^ h ^ vx ^: 
-1 

JX ' XX • (5.5.4) 
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Hence the optimum choice of 7), w.r.t. the criterion C.P.(2) is as 

given in (5.5.4). 
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