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Preface 

Mathematics is a central element of our current, technology but few people re

alize that this celebrated high technology is so strongly based on Mathematics. The 

theory of variational inequalities is a powerful and elegant tool of the current math

ematical technology and have become a rich source of inspiration for scientist and 

engineers. There are numerous standard textbooks and monographs dealing with 

various aspects of this domain. In the last four decades, this theory has been ex

tended and generalized in various directions because of the applications to a wide 

class of problems arising in various branches of mathematical, physical and engineer

ing sciences and optimization. There are three different aspects to study variational 

inequalities (i) Mathematical Modelling: To convert the problems of real life or the 

problems from science, engineering and social sciences into a variational inequal

ity problem is called mathematical modelling, (ii) Existence Theory: To study the 

existence of solutions of variational inequalities, (iii) Numerical Methods: To find 

the algorithms for computing the approximate solutions of variational inequalities, 

which converge to the exact solution. 

It is mentioned by Aubin [15] in his book that the Nash equilibrium problem 

for differentiable functions can be formulated in the form of a variational inequality 

problem defined over the product of sets. Further, Pang [97] showed that not only 

Nash equilibrium problem but also various equilibrium-type problems, like, traffic 

equilibrium, spatial equilibrium, and general equilibrium programming problems 

from operations research, economics, game theory, mathematical physics and other 

areas, can also be uniformly modelled as a variational inequality problem defined 

over the product of sets which is equivalent to the problem of system of variational 

inequalities. 

This thesis deals with the existence theory and numerical methods of differ

ent kinds of variational inclusions, variational-like inclusions, system of variational 
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inequalities, system of generalized variational inclusions, system of variational-like 

inclusions, variational inclusions with fuzzy mappings. 

Chapter 1 deals with the brief introduction of variational inequalities, variational-

like inequalities, variational inclusions and system of variational inequalities besides 

some basic definitions and results from functional analysis. 

In Chapter 2, we consider a system of mixed variational inequalities and a sys

tem of mixed variational-like inclusions in the setting of Banach spaces. By applying 

the notion of J-proximal mapping and J^-proximal mapping and their Lipschitz con

tinuity, we suggest the iterative methods for computing the approximate solutions 

of these systems. The existence and convergence of solutions obtained by defined 

algorithms are also studied. 

In Chapter 3, we consider a system of set-valued variational inclusions and a 

system of generalized variational inclusions with i^-accretive operators in uniformly 

smooth Banach spaces. An iterative algorithm for computing the approximate solu

tions of these systems is defined. Some existence and convergence results are also de

rived. In the last section, we consider a system of generalized ./^-resolvent equations 

in uniformly smooth Banach spaces. An equivalence relation is established between 

system of generalized if-resolvent equations and system of generalized variational 

inclusions. 

In Chapter 4, we consider the generalized variational-like inclusions for fuzzy 

mappings. We develop an Ishikawa type perturbed iterative algorithm and a Mann 

type perturbed iterative algorithm for computing the approximate solutions. The 

existence and convergence analysis is also studied. Further, we consider a class of 

mixed variational inclusions for fuzzy mappings. The existence and convergence 

analysis for this class of mixed variational inclusions for fuzzy mappings discussed 

by using the definition of relaxed strongly accretive operators. In the last section, we 

introduce generalized T-resolvent equations with fuzzy mappings. An equivalence 

relation is established between the mixed variational inclusions for fuzzy mappings 

and the generalized T-resolvent equations with fuzzy mappings. 

In Chapter 5, we introduce and study a system of generalized variational in

clusions with (A, r?)-accretive mappings in Banach spaces. By using the resolvent 
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Chapter 1 

Preliminaries 

1.1. Introduction 

Variational inequalities introduced by Stampacchia [112] have enjoyed vigorous 

growth for the last forty years. Variational inequality theory describes a broad spec

trum of interesting and important developments involving a link among various fields 

of mathematics, physics, economics and engineering sciences [2,4,14,16,17,21,26,29, 

33,35,36,46,48,58,59,61,70,74,98,105,119,122-124,126]. It turned out that the odd-

order and nonsymmetric free, moving, unilateral obstacle and equilibrium can be 

studied via the general variational inequality approach. 

In recent past, considerable interest has been shown in developing various exten

sions and generalizations of variational inequalities related to multivalued operators, 

nonconvex optimization and structural analysis. This theory was developed simulta

neously not only to study the fundamental facts about the qualitative behaviour of 

solutions of nonlinear problems, but also to solve them more efficiently numerically. 

In different sections of this chapter, we discuss various notions which are essen

tial for presentation of results in the subsequent chapters. 

1.2. Some Basic Concepts And Results 

In this section, we present some basic notations, definitions and known results 

of functional analysis which will be used in the subsequent chapters. 

Throughout this thesis, unless otherwise specified, we assume that E is a real 

Banach space endowed with a norm ||.||, E* is the topological dual of E, (•, •) is the 
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duality pairing between E and E*, d is the metric induced by the norm |].| |, CB(E) 

is the family of all nonempty closed and bounded subsets of E, 2E is the family of 

all nonempty subsets of E, D(-, •) is the Hausdorff metric on CB(E) defined by 

D(A,B) = max< sup d(x,B), sup d(A,y) L 

where d(x,B) = inf d(x,y) and d(A,y) = inf d(x,y). 

We denote by H a real Hilbert space and by H* its dual. 

Theorem 1.2.1.[111]. Let K be a nonempty, closed and convex subset of Hilbert 

space H. Then for all z G H, there exists unique u € K such that 

H-z — it|| = inf \\z — v 

Definition 1.2.1. The point u satisfying (1.2.1) is called the projection of z onto 

K and we write 

u = PK(z). (1.2.2) 

Lemma 1.2.1.[83]. If if is a nonempty, closed and convex subset of H and z is a 

given point in if, then u E K satisfies the inequality 

(u — z, v — u) > 0, for all v E K, 

if and only if 

u = PK(Z), 

where PJC is the projection of H onto K. 

Lemma 1.2.2.[83]. The projection PK defined by (1.2.2) is nonexpansive, i.e., 

\\PK{u) - PK{v)\\ < \\u - v\\, for all u,veH. 

Theorem 1.2.2.(Riesz representation theorem) [111]. If / is a bounded linear func

tional on a Hilbert space H, there exists a unique vector v G H such that 

f(u) = (u,v), for all u G H and | |/ | | = ||u||. 

2 
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Definition 1.2.2. Let X and 7 be a topological vector space. A multivalued 

mapping P : X —> 2Y is said to be: 

(i) upper semicontinuous at xo G X, if for every open set V in Y containing F(x0), 

there exists an open neighbourhood U of x0 in X such that P(x) C V, for all 

x eU; 

(ii) closed, if for every net {x^} converges to x* and {y^} converges to y* such that 

for all A, y\ G P{x\) implies that y* G P(£*). 

Definition 1.2.3. Let E be a Banach space and / : E —> R U {+oo}. Then / is 

said to be convex, if 

f(tu + (l-t)v)<tf(u) + (l-t)f(v), 

holds for all £ G (0,1) and u, v.eE. 

Definition 1.2.4.[7]. Let E be a real Banach space. Then 

(i) a mapping J : E —>• 2E* is called normalized duality mapping defined by 

J-(x) = {/ G £* : <*,/) = llxlHI/ll, for all x E E} 

(ii) a mapping Jq: E ^ 2E* is called generalized duality mapping defined by 

Jq(x) = {feE*:(xtf) = \\x\\* and | |/ | | = \\x\r\ for all x G E} 

For q = 2, the generalized duality mapping coincides with the usual normalized 

duality mapping. 

Definition 1.2.5.[34]. Let T : E ->• OB(£) be multivalued mapping and let £>(.,.) 

be the Hausdorff metric on CB(E), T is said to be ^-Lipschitz continuous, if for any 

x,y G E such that 

£>(Ta;,:ry)<£||a;-y| | , 

where £ > 0 is a constant. 

Theorem 1.2.3.(JVad£er)[87]. Let (X,d) be a complete metric space. If F : X —> 

CB(X) is a multivalued contraction mapping, then F has a fixed point. 

3 
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Definition 1.2.6.[3]. A Banach space E is said to be uniformly convex if for any 

given e > 0, there exists 6 > 0 such that for all x,y G E, \\x\\ < 1, ||y|| < 1 and 

||x — y\\ = e we have 

||x + y | | < 2 ( l - < 5 ) . 

The function 

5E(e) = inf | l - t ± M . ||X|| = i; M = lf ||X _ y|| = e 

is called the modulus of the convexity of the space E. 

Definition 1.2.7.[3]. A Banach space E is said to be uniformly smooth if for any 

given e > 0, there exists 5 > 0 such that 

J!£±idi±J!£zidl _ i < e||y|| 

holds. 

The function 

/+N / \\x + y\\ - \\x~y\\ ! I, I, •, I, I, + 

/£>£;(*) = sup<^ 1 : ||a:|| = 1, \\y\\ = t 

is called the modulus of the smoothness of the space E. ' 

Remark 1.2.1. The space E is uniformly convex if and only if 6E{C) > 0 for all 

e > 0, and it is uniformly smooth if and only if lim^o ^ ^ = 0. 

Definition 1.2.8. [3]. The Banach space E is called q-uniformly smooth, if there 

exists a constant C > 0 such that 

pE{t) < Ctq, q>\. 

Definition 1.2.9. Let T, g : E —> E be two single valued mappings. Then T is said 

to be: 

(i) accretive, if for all x,y e E there exists j(x — y) G J(x — y) such that 

(T(x)-T(y),j(x-y))>0; 

4 



(ii) strictly accretive, if for all x,y G E there exists j(x — y)& J(x - y) such that 

(T(x)-T(y),j(x-y))>0; 

and the equality holds if and only if x — y; 

(iii) strongly accretive, if for all x,y G E there exists j(x — y) G J(x — y) and a 

constant 5T > 0 such that 

(T(a;)-r(y),j(a:-y))>^lk-y||2; 

(iv) strongly accretive with respect to <? if for all x, y G E there exist a constant ST 

such that 

<T(z) - T(y),j(g(x) - g{y))) > 5T\\g(x) - g{y)\\"; 

(v) Lipschitz continuous if for all x, y G E there exists a constant AT such that 

| | r ( x ) - r ( y ) | | < A T | | x - y | | . 

Definition 1.2.10. Let H : E -> E* and rj : ExE ^ Ebe single-valued mappings. 

Then 

(i) T) is said to be monotone, if for all x,y G E 

(x-y,n(x,y)) > 0; 

(ii) r) is said to be strictly monotone, if for all x,y G E 

{x-y,r](x,y)} > 0; 

and equality holds if and only if x = y; 

(iii) r\ is said to be strongly monotone, if for all x,y G E there exists a constant 

S > 0 such that 

(x-y,n{x,y)) > 5\\x - y\\2; 

(iv) 7] is said to be H-strongly accretive with constant a > 0, if for all x,y E E 

(r](x,y),H(x)-H(y))>a\\x-y\\2; 
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(v) T) is said to be Lipschitz continuous, if for all x,y G E, there exists a constant 

A > 0 such that 

| |»7(^y)ll<A||a:-i/| |; 

(vi) H is said to be r]-strongly accretive, if for all x,y G E there exists a constant 

a > 0 such that 

(n(x,y),H(x)-H(y)) > a\\x-y\\2. 

Definition 1.2.11. A multi-valued mapping A : E —> 2E is said to be: 

(i) accretive, if for any x,y G E, there exists j(x — y) G ^7(x — y) such that for 

all u G A(x) and i; G A(y), 

(u-v,j(x-y)) > 0; 

(ii) k-strongly accretive k G (0,1), if for any x,y G E, there exists j(x — y) G 

J ^ z - y) such that for any u G A(a;), u G A(y) 

(u-v,j{x~y))> £;||x-y||2; 

(iii) m-accretive, if A is accretive and (I + pA)(E) = E, for every (equivalently, for 

some) p > 0, where / is the identity mapping (equivalently, if A is accretive 

and (I + A)(E) = E); 

(iv) Lipschitz continuous, if for all x\ G A(ui), x2 G A(ii2), there exists A^ > 0 

such that for any Ui, w2 G E 

\\x\ -Z2II < A^Hwi - u 2 | | . 

Remark 1.2.2. If E = H is a Hilbert space, then A : £>(A) C E -> 2 £ is an 

m-accretive mapping if and only if it is a maximal monotone mapping. 

Lemma 1.2.3.[63]. Let g : E —> E be a continuous and fc-strongly accretive 

mapping. Then g maps E onto E. 
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Definition 1.2.12. Let T, F : E -»• 2E be set-valued mappings. The mapping 

g : E x E -^ E is said to be: 

(i) Lipschitz continuous in first argument with respect to T if there exists a con

stant Afll > 0 such that 

\\g(ui,•) -g(u2,.)\\ < xgi\\ui - u 2 \ \ 

for all ui G T(xi), u2 £ T(x2) and £1,2:2 G -B; 

(ii) Lipschitz continuous in second argument with respect to F if there exists a 

constant AS2 such that 

\\g(;Vi) -g(.,v2)\\ <Xg2\\vl-v21| 

for all i>i G F(xi), v2 G i*1^) and xi,x2 G .E1. 

Definition 1.2.13. Let (p : E ^ R\J {+00} be a proper functional, </? is said to be 

subdifferential at a point x G E, if there exists a point /* G i?* such that 

<p(y) - </?(z) > (/*, y-x), for all y G £ ; 

where /* is called a subgradient of <p at x. The set of all subgradient of y? at a; is 

denoted by d<p(x). 

The mapping dip : E ^> 2E* defined by 

dip{x) = {f G £* : ip{y) - ip{x) > (f\y- x), for all y e E} 

is said to be subdifferential of (p at x. 

Lee et a/. [81] introduced the following concept of 77-subdifferential. 

Definition 1.2.14. Let 77 : £ x E -s- £ and y> : £ -> i?U {+00}. A vector w* G £* 

is called an n-subgradient of ip at a; G dom <p, if 

(w*, 77(3/, a;)) < (p(y) - (p(x), for all yeE. 

Each </? can be associated with the following n-subdifferential map dv(p defined 

by 
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Q <x) = { ^w* G E* : (w*>v{y,x)) < <f{y) - ¥>(z), for all y E E}, x e dom p, 
1 0 x £ dom </?. 

Definition 1.2.15. A Banach space E is reflexive if the mapping J : x —> Fx from 

E into E**, where Fx(f) .= f(x), / 6 E*, is an onto mapping. 

Definition 1.2.16.[18]. Let A : D(A) <Z E ^ 2E be an m-accretive mapping. For 

any p > 0, the mapping J^ : E —>• -D(-A) associated with A defined by 

J^(w) = (/ + pA)- 1 ^) , for all u e £ , 

is called the resolvent operator. 

Remark 1.2.3.[18]. The resolvent operator J^ is single-valued and nonexpansive, 

that is, 

\\J?(x)-jf(y)\\<\\x-y\\, for all x,y £ E. 

Definition 1.2.17. Let A : D{A) C E -> 2E be an m-accretive mapping. For any 

p > 0, the resolvent operator J^ : E -)• D(-A) associated with A, is said to be: 

(i) retraction, if 

(/ + pA)~l o (/ + pA)-\u) = {I + pA)-\u), for all ueE, 

where / is the identity operator; 

(ii) nonexpansive retraction, if 

l l#(*i) - # M l < P i - *2|| for all Zl,z2 e E. 

Proposition 1.2.1.[7,101]. Let E be a real Banach space and J : E -> 2B* be a 

normalized duality mapping. Then for any x,y G E, the following holds: 

(i) ||z + y||2 < \\x\\2 + 2(y,j(x + y)), for all j{x + y) e J{x + y); 

8 



(ii) (x-yj(x)-j(y)) <2d2rE(4\\x-y\\/cl 

where c = y/(\\x\\2 + \\y\\2)/2. 

Proposition 1.2.2.[120,121]. Let E be a real uniformly smooth Banach space. 

Then E is <?-uniformly smooth if and only if there exists a constant Cq > 0 such 

that for all x, y G E 

\\x + y\^<\\x\\^ + q(y,Jq(x)) + Cq\\y\\q-

Definition 1.2.18.[50]. Let H : E -> £7 be an operator. A multivalued mapping 

M : E -> 2 £ is said to be H-accretive if M is accretive and (if + pM){E) = £ for 

all p > 0. 

Remark 1.2.4. Ii H = I, then Definition 1.2.18 reduces to the usual definition of 

m-accretive operator. 

Definition 1.2.19. Let H : E -* J3 be a strictly accretive operator and M : E -^ 2E 

be an ff-accretive multivalued mapping. The H-resolvent operator J™ : E -^ E 

associated with H and M is defined by 

jMp(x) = (H + pM)-l(x), for all i e £ . 

Theorem 1.2.4. [50]. Let H : E -> J5 be a strongly accretive operator with 

constant r and M : E —>• 2E be an if-accretive multivalued mapping. Then the H-

resolvent operator Jjf : E -> E associated with H and M is Lipschitz continuous 

with constant £, that is, 

PHM- J%M\\ ^\\\x-vl fora11 ^ G £ ; -

Definition 1.2.20. Let f : H —> H be a mapping. A multivalued mapping 

S : H ->• 2H is said to be: 

(i) relaxed Lipschitz continuous with respect to / , if there exists a constant k > 0 

such that 

< /0) - /(«), x-y) < -k\\x - y||2, 

for all x,j/ G H,u£ S(x), v e S'(y); 
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(ii) relaxed monotone with respect to / , if there exists a constant c > 0 such that 

(f(u) ~ f{v), x-y)> -c\\x - y||2, 

for all x,y £ H,ue S(x), v G S(y). 

For the justification of Definition 1.2.20, we construct the following two exam

ples. 

Example 1.2.1. Let H — R and S = I, the identity mapping. Suppose f(x) = 

—3x, 0 < e < 3, k = (3 — e). Then it is easy to see that / is relaxed Lipschitz 

continuous mapping. 

Example 1.2.2. Let H — R and S = I, the identity mapping. Suppose f(x) = 

3x, e = 4 , 5 , . . . , c = (e — 3). Then it is easy to see that / is relaxed monotone 

mapping. 

Definition 1.2.21. Let rj : H x H —> H he a given map. A multivalued mapping 

Q : H —> 2H is called n-monotone if for all x,y G H 

(u-v,n(x,y)) > 0, 

for all u G Q(x), v G Q(y). 

Remark 1.2.5. Q is called maximal n-monotone if and only if it is 77-monotone and 

there is no other ^-monotone multivalued mapping whose graph strictly contains 

the graph of Q. 

Definition 1.2.22. Let n : E x E ^ E he a, single-valued mapping. Then the 

set-valued mapping M : E —>• 2E is said to be: 

(i) 77- accretive, if 

(u-v,jq(rj(x,y))} > 0 , 

for all x,y G E,ue M{x), v G M(y); 

(ii) strictly r]-accretive, if M is 77-accretive and equality holds if and only if 

x = y; 
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(iii) r-strongly rj- accretive, if there exists a constant r > 0 such that 

{u-v,jq(r)(x,y))) > r\\x-y\\q, 

for all x,y e E,ue M{x), v G M(y); 

(iv) m-relaxed r)-accretive, if there exists a constant m > 0 such that 

{u - v, jq(r](x, y))) > -m\\x - y\\q, 

for all x,y e E,ue M(x), v E M(y). 

Remark 1.2.6. 

(i) If r = 0 and equality holds if and only if x = y, then (iii) of Definition 1.2.22 

reduces to the definition of strictly ^-accretive mappings. 

(ii) If rj{x,y) = x — y, then (iii) of Definition 1.2.22 reduces to the definition of 

r-strongly accretive mappings. 

Example 1.2.3. Let E =R, M(x) = x, rj(x,y) = (-2a;) - {-2y), then it is easy to 

see that M is a 2-relaxed ^-accretive function. 

Definition 1.2.23. Let A : E -> E, rj : E x E ->• E be two single-valued mappings. 

Then a set-valued mapping M : E ->• 2E is called (A, rj) -accretive, if M is m-relaxed 

77-accretive and (̂ 4 + pM){E) = E, for every p > 0. 

Remark 1.2.7. 

(i) If m = 0, then Definition 1.2.23 reduces to the definition of (H, ?))-accretive op

erators [54] which includes generalized m-accretive operators [69], ff-accretive 

operators [50] and classical m-accretive operators. 

(ii) When m = 0 and E = H is a Hilbert space, then Definition 1.2.23 reduces 

to the definition of (H, ?y)-monotone operators [53,55] which includes maximal 

77-monotone operators [68] and classical maximal monotone operators [129]. 
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Definition 1.2.24. Let A : E -4 E he a strictly 77-accretive mapping and M : E -> 

2E be an (A, ^-accretive mapping. Then resolvent operator J^M : E —> E is defined 

by 

JiM(?) = (A + pM)-\x), for all i e £ 

Lemma 1.2.4.[77]. Let n : E x E ^ E he r-Lipschitz continuous, A : E ^ E he 

r-strongly 77-accretive mapping and M : E —)• 2E he an (̂ 4, ?7)-accretive mapping. 

Then the resolvent operator J^fy : E -> E1 is ^-^-Lipschitz continuous, i.e., 

K;io*o - tfjtfM ^ ^z—\\x-y\\' for a11 x>ye E> 
I OfIV 

where p G (0, ^ ) is a constant. 

Definition 1.2.25. A mapping g : E —1 E is said to be (b, ^-relaxed cocoercive, if 

there exists constants 6, £ > 0 such that 

foOO - 9(y)Jq(x - y)) > -b\\g(x) - giyW + £||x - y\\*, 

for all x, y G E. 

1.3. Variational Inequalities 

Many problems of elasticity and fluid mechanics can be expressed in terms of 

an unknown u, representing the displacement of a mechanical system, satisfying 

a(u, v-u)>F(v~ u), for all v £ K, (1.3.1) 

where K is a nonempty, closed, convex subset of a Hilbert space H, a(.,.) is a 

bilinear form and F is a bounded linear functional on H. The relations of the type 

(1.3.1) are called variational inequalities. 

If the bilinear form a(.,.) is continuous, then by Riesz representation theorem 

1.2.2, we have 

a(u,v) = (A(u),v), for all u,v G H, (1.3.2) 

where A is a continuous linear operator on H. 
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Then inequality (1.3.1) is equivalent to find u G K such that 

(A(u),v -u)>(F,v-u), for all v e K. (1.3.3) 

If the operators A and F are nonlinear, then variational inequality (1.3.3) is 

known as strongly nonlinear variational inequality, introduced and studied by Noor 

[92]. 

If F = 0, then (1.3.3) is equivalent to find u G K such that 

(A(u),v~ u) > 0, for all v G K. (1.3.4) 

The variational inequality of the type (1.3.4) was introduced and studied by Fichera 

[57] in 1964. Lions and Stampacchia [82] proved the existence of unique solution of 

(1.3.4) using essentially the projection techniques. 

It is worth mentioning that the unilateral contact problems involving contact 

laws of monotone nature do not lead to the formulation of variational inequalities 

directly. However, it has been shown by Panagiotopoulus [95], using the notions of 

Clarke's generalized gradient and Rockafeller's upper subderivative, that the non-

convex unilateral contact problems can only be characterized by a class of strongly 

nonlinear variational inequalities (1.3.3). 

Till now, variational inequalities have been generalized and extended in vari

ous directions. Variational-like inequality is one of its generalized form, which was 

introduced and studied by Parida et al. [96]. 

Let K be a closed convex set in lRn. Given two continuous maps F : K —> W1 

and r] : K x K —>• Rn, then the variational-like inequality-problem is to find u G K 

such that 

{F(u),rj(u,v))>0, for all v e K. (1.3.5) 

If r](u,v) = v — u, then variational-like inequality (1.3.5) is equivalent to the 

variational inequality (1.3.4). 

A useful and important generalization of variational inequalities is a mixed 

type variational inequality containing nonlinear term. Due to the presence of the 
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nonlinear term, the projection method can not be used to study the existence of a 

solution for the mixed type variational inequalities. In 1994, Hassouni and Moudafi 

[60] used the resolvent operator technique for maximal monotone mappings to study 

mixed type variational inequalities with single-valued mappings, which are called 

variational inclusions and developed a perturbed algorithm for finding approximate 

solutions of mixed variational inequalities. 

Let if be a real Hilbert space endowed with a norm ||.|| and inner product (.,.) 

and given continuous mappings T,g : H —̂  H, with Im(g) D dom (dip) ^ 0. 

Then the following problem of finding u 6 H such that g(u) D dom (dip) ^ 0 

and 

(T(u) - A(u), v - g(u)) > ip(g(u)) - ip(v), for all v e H, (1.3.6) 

where A is a nonlinear continuous mapping on H, d(p denotes the sub differential of 

a proper, convex and lower semicontinuous function ip : H —¥ RU{+co}, dom (dip) 

denotes the domain of dip. 

Problem (1.3.6) is called variational inclusion problem, introduced and studied 

in [60]. 

1.4. System Of Variational Inequalities 

In the recent past, systems of variational inequalities are used as tools to solve 

various equilibrium-type problems like, Nash equilibrium, traffic equilibrium, spa

tial equilibrium and general equilibrium programming problems, problems from op

erations research, economics, game theory, mathematical physics and other areas; 

see for example [12,15,32,56,73,75,76,85,86,97] and references therein. Pang [97] uni

formly modeled these equilibrium-type problems in the form of a variational inequal

ity defined on a product of sets. He decomposed the original variational inequal

ity into a system of variational inequalities, which are easy to solve, to establish 

some solution methods for finding the approximate solutions of above mentioned 

equilibrium-type problems. Later, it is found that these two problems, variational 

inequality defined on a product of sets and system of variational inequalities, are 

equivalent. 
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Further, Ansari and Yao [12] introduced and studied the following system of 

variational inequalities in Hausdorff topological vector space. 

Let / be an index set and for each i E I, let Et be a Hausdorff topological vector 

space with its topological dual Ef. Let {Ki}i£i be a family of nonempty, convex 

subsets with each K{ in Et. Let K = \[ Ki} K{ = J] Kj and E = Y\ Et. For 
i£l j^H, j€l i£l 

each i (=. I, let Ai : K -* E* be & given function. 

Find x = (x~i, x1) G K such that for each i £ I, 

(Ai(x),yi-Xi)>0, for all yt e Kit 

Kassay and Kolumbdn [72] introduced the following system of variational in

equalities and proved the existence of solutions using Ky-Fan's lemma. 

Let Hi and H2 are two Hilbert spaces, A C Hi and B C Hi are two nonempty, 

closed and convex sets. Let F : H\ x H2 —>• #1 , C : Hi x Hi —> H2 be the 

single-valued mappings. 

Find (a,b) e Ax B such that 

(F(a, b),x-a}>0, for all a; € A, 

{G(a,b),y-b} > 0, for all y G B. 

Verraa [114] introduced and studied the following system of nonlinear varia

tional inequalities. 

Let H be a real Hilbert space endowed with the inner product (.,.) and norm 

||.||. Let A C H be a closed, convex subset of H. T : A —)• H is a nonlinear mapping 

and p, 7 > 0 are constants. 

Find (a,b) E Ax A such that 

(pT(6) + a - 6, x - a) > 0, for all s e 4 , 

(7T(a) + b - a, x - b) > 0, for all y E A. 
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Since then many authors have generalized and extended the system of varia

tional inequalities (inclusions) in different directions using different techniques; see 

for examples [30,49,51,52,54,67,102,104,116,117] and references therein. 
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Chapter 2 

Systems Of Mixed Variational 
Inequalities And Mixed 
Variational-like Inclusions 

2.1. Introduction 

Pang [97], Cohen and Chaplais [32], Bianchi [20], Ansari and Yao [12] considered 

a system of scalar variational inequalities and Ansari et al. [13] introduced and 

studied a system of vector equilibrium problems and a system of vector variational 

inequalities by using fixed point theorem. Allevi et al. [11] considered a system 

of generalized vector variational inequalities and established some existence results 

with relative pseudo monotonicity. Kassay and Kolumba n [72] introduced a system 

of variational inequalities and proved an existence theorem by using Ky-Fan's lemma. 

Peng and Yang [104] introduced a system of quasi-variational inequality problems 

and proved an existence theorem by maximal element theorems. 

Recently, Peng [102] introduced a system of generalized mixed quasi-variational-

like inclusions with (H,^-accretive operators, i.e., a family of generalized mixed 

quasi-variational-like inclusions with (H, ^-accretive operators defined on a product 

of sets in Banach spaces. 

In 2002, Ding and Xia [45] introduced the concept of J-proximal mapping for a 

lower semicontinuous subdifFerentiable proper (may not be convex) functional, which 

is an extension of the resolvent operator technique, to propose an iterative algorithm 

for computing the approximate solutions of variational-like inequality problems. The 

generalization of J-proximal mapping is introduced and studied by Ahmad et al. 

[10], called J^-proximal mapping. 
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In Section 2.2, we consider a system of mixed variational inequalities in Banach 

spaces. By using J-proximal mapping and its Lipschitz continuity introduced by 

Ding and Xia [45], an iterative algorithm for finding the approximate solutions of 

system of mixed variational inequalities is suggested. 

In Section 2.3, we consider a system of mixed variational-like inclusions in Ba

nach spaces which is a generalization of problem considered in section 3.2. By 

applying the notion of J^-proximal mapping and its Lipschitz continuity introduced 

by Ahmad et al. [10], the existence of solutions for system of mixed variational-like 

inclusions is proved. The convergence analysis is also studied. 

The following definitions and results will be used to prove the results of Section 

2.2 and Section 2.3. 

Definition 2.1.1.[45]. Let E be a Banach space with the dual space E*, <p : E —>• 

i?U{+oo} be a proper subdifferentiable (may not convex) functional and J : E —» E* 

be a mapping. If for any given point x* £ E* and p > 0, there is unique point x £ E 

satisfying 

(Jx - x*, y - x) + p<p(y) - p<p(x) > 0, for all y £ E. 

The mapping x* ->• x, denoted by Jp(p{x*), is said to be J-proximal mapping of 

<p. We have x* - Jx £ pd<f>(x), it follows that Jjj*(x*) = (J + pd</>)_1(z*). 

Remark 2.1.1. If E is Hilbert space, ip is a convex lower semi continuous proper 

functional on E and J is the identity mapping on E, then the J-proximal mapping 

of if reduces to the resolvent operator of tp on Hilbert space. 

Lemma 2.1.1.(Ding and Tan [44]). Let D be a nonempty convex subset of a 

topological vector space and / : D x D —>• RU {+00} such that 

(i) for any x £ D, y —>• f(x, y) is lower semicontinuous on each compact subset of 

n 
(ii) for each finite set {xi, • • • , xn} £ D and for each y = Y1 ^ixi w r t h K > 0 a n d 

i= l 
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n 

i=l 

min f(xi,y) < 0; 
l<i<n 

(iii) there exists a nonempty compact convex subset D0 of D and a nonempty 

compact subset K of D such that for each y G ZA-K", there is an x G co(D0 U 

{y}) satisfying f(x, y) > 0, then there exists y G D such that f(x, y) < 0, for 

all xeD. 

Definition 2.1.2. [10]. Let E be a Banach space with the dual space E*, <p : 

E —>• i? U {+00} be a proper 77-subdifferentiable (may not be convex) functional, 

n : E x E -+ E and J : E -> E* be the mappings. If for any given point x* G i?* 

and p > 0, there is a unique point x E E satisfying 

(Jx - x*, r)(y, x)) + pip(y) - pip{x) > 0, for all y G E, 

then the mapping x* -> x, denoted by Jp
v(p(x*) is said to be J7*-proximal mapping 

of ip. We have x* — Jx G pd^^x), it follows that 

#*(*•) = (7+ ^ 0 " V ) . 

Remark 2.1.2. If <p : Z? —> RU{+oo} is proper subdifferentiable and r](y,x) = y—x' 

for all x,y G E, then Definition 2.1.2 of J^-proximal mapping coincides with the 

definition of J-proximal mapping. 

Definition 2.1.3. A functional / : E x E —» RU {+00} is said to be 0-diagonally 

quasi-concave (in short 0-DQCV) in y, if for any finite subset {xi, • • • , xn} C E and 
n n 

for any y = J2 ^ixi w ^ n \ > 0 a n d X] ^ = 1, 

min f(xi,y) < 0. 
l < i < n 

Some sufficient conditions are given here which guarantee the existence and Lip-

schitz continuity of the J-proximal mapping and J^-proximal mapping of a proper 

functional on reflexive Banach spaces. 

Theorem 2.1.1.[45]. Let E be a reflexive Banach space with the dual space E* and 

cp : E —» R U {+00} be a lower semicontinuous, subdifferentiable, proper functional 
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which may not be convex. Let J : E -> E* be an a-strongly accretive continuous 

mapping. Then for any p > 0 and any x* e E*, there exists a unique x G E such 

that 

(Jx - x*, y - x) + pip(y) - p<p(x) > 0, for all y <= E. 

That is x = J ^ x * ) and so the J-proximal mapping Jfv of ip is well defined and is 

1/a-Lipschitz continuous. 

Theorem 2.1.2. [10]. Let E be a reflexive Banach space with the dual space E* and 

ip : E —»• RU {+00} be lower semicontinuous, ?7-subdifferentiable, proper functional 

which may not be convex. Let J : E —> E* be a mapping and let r] : E x E -» E 

be Lipschitz continuous with constant r > 0, J-strongly accretive with constant 

a > 0 such that rj(x,y) = —r\{y,x) for all x,y £ E and for any x £ E, the function 

h(y,x) = (x* — Jx,r](y,x)) is 0-DQCV in 1/. Then for any p > 0, and any x* G £*, 

there exists a unique x £ E such that 

(Jx — x*, rj(y, x)) + p</?(y) — p<p{x) > 0, for all y E E. 

That is, x = Jp
v,p(x*) and so the J^-proximal mapping of (p is well defined and 

r/oLipschitz continuous. 

The following MatLab programming shows that 77 : E x E -> E satisfies condi

tions (l)-(3) in Theorem 2.1.2 and condition (4) is shown seperately. 

Example 2.1.1. Let E = R and J = I 

function value=eta(x,y) 

if abs(x*y)<l/4 

varue=2*x-2*y; 

elseif abs(x*y)>=l/4 & abs(x*y)<l/2 

value=8*abs(x*y) * (x-y); 

elseif abs(x*y)>=l/2 

value=4*(x-y); 

end 
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Then it is easy to see that: 

(1) (r)(x,y),x — y)> 2\x - y\2 for all x,y e R, i.e., r) is 2-strongly accretive; 

(2) r)(x,y) = -ri(y,x) for all x,y e R; 

(3) \r](x,y)\ < A\x — y\ for all x,y £ R, i.e., r\ is 4-Lipschitz continuous; 

(4) for any x G R, the function h(y,u) = (x — u,r)(y,u)) = (x — u)rj(y,u) is 

0-DQCV in y. 

n 
If it is false, then there exists a finite set {y1; • • • ,yn} and ito = 5Z A^j with 

i=i 
n 

Aj > 0 and Y2 Ai = 1 such that for each i = 1,2, ,n 

{ (a; - uo)(2yi - 2u0) if |^wo| < 1/4, 

(x - «o)8|yitfo|(y» - u0) if 1/4 < Ijfiuol < 1/2, 

4 ( x - w 0 ) ( ^ - u o ) if 1/2 < Ij/iitol. 
It follows that (x — uo)(2yi — 2u0) > 0, for each i = 1,2, ,n and hence we 

have 
n 

0 < ^2 ^i(x ~ uo)(2yi - 2u0) = (x- u0)(2u0 - 2u0) = 0, 

which is not possible. Hence h(y,u) is 0-DQCV in y. Therefore, 77 satisfies all as

sumptions in Theorem 2.1.2. 

2.2. System Of Mixed Variational Inequalities 

This section is devoted to the study of a system of mixed variational inequalities 

in Banach spaces. By using J-proximal mapping and its Lipschitz continuity for a 

nonconvex, lower semicontinuous, subdifferentiable, proper functional, an iterative 

algorithm for computing the approximate solutions of system of mixed variational 

inequalities is suggested. The existence and convergence of solutions of our system 

are proved. 

Let Ei and Ei be any two real Banach spaces. Let S : E\ x Ei —» E*, T : 

Ei x E2 ->• ££, /1 : Ei -> Ei and f2 • E2-^ E2 be the single-valued mappings, H : 
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Ei ->• CB(E*) and F : E2 -> CB(E2) be set-valued mappings. Let î ] : £1 x ^ -^ 

.RU {+00} be lower semicontinuous, subdifferentiable (may not be convex), proper 

functional on Ei satisfying /i(x) 6 dom (d<fi(-,x)) and tp2 : E2 x E2 -^ RU {+00} 

be lower semicontinuous, subdifferentiable (may not be convex), proper functional 

on E2 satisfying f2(y) £ dom (dip2(-, y)), where dipi(-, x) is subdifferential of < î(-, a:) 

and d(p2(-,y) is subdifferential of <̂ 2(-, J/)- We consider the following system of mixed 

variational inequalities: 

Find {x,y) £ Ei x E2, u £ H(x) and v £ F(y) such that 

(5(x, u), a - /1 (x)) >tpi(fx (x),x) -(pi (a, x), for all a £ Eu 

{T(u,y),b-f2(y))><p2V2{v),y)-<p2{b,y), for all 5 e £ 2 . (2.2.1) 

If Ei=Hi, E2=H2, where Hi and H2 are Hilbert spaces, fi=f2=I, where I 

is the identity mapping, H and F are single-valued mapping, ipi(x,-)=ipi(x) and 

^(y, ')=(f2(y), then the Problem (2.2.1) reduces to the following problem: 

Find (x,y) £ H1 x H2 such that 

(S(x,F(y)),a-x)+ ipi(a)-ipi(x) >0, for all a £ Hi, 

{T{H(x),y),b-y)+<p2{b)-<p2{y)>0, for all 6 e ifa, (2.2.2) 

which is called a system of nonlinear mixed variational inequalities. Some special 

cases of the Problem (2.2.2) can be found in [114]. Further, if F=H=I, then the 

Problem (2.2.2) reduces to the system of nonlinear variational inequalities problem 

considered by Cho et al. [30]. 

We mention the following theorem which transfer our problem system of mixed 

variational inequalities (2.2.1) into a fixed point problem. 

Theorem 2.2.1. (x,y,u,v), where (x,y) £ Ex x E2, u £ H(x), v £ F(y) is 

a solution of the system of mixed variational inequalities (2.2.1) if and only if it 

satisfies 

fi{x) = J^^MMx)) - pS{x,v)], 
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f2(y) = J*»M[JMy)) - lT(u,y)], 

where Jx : E1 -> E{, J2 : E2 -> E*2, J
9/1^ = (J, + pd^{-,x))-\ J^y) = 

(J2 + ldip2{-, y))_ 1 arid p > 0, 7 > 0 are constants. 

Proof. The fact is directly follows from Definition 2.1.1. 

We propose the following proximal point algorithm to compute the approximate 

solutions of our problem system of mixed variational inequalities (2.2.1). 

Algorithm 2.2.1. For any given (xQ,yo) G Ei x J52, we choose UQ G H(XQ), 

v0 G F(yo) and compute {xn}, {yn}, {un} and {vn} by iterative schemes as follows: 

A(xn + 1) = J ^ l ( ^ V i ( / i ( * n ) ) - pS(xn,vn)], (2.2.3) 

h{yn+1) = Jd^yn)[J2{h{Vn)) -lT{un,yn)l (2.2.4) 

and choose un+\ G i?(xn +i) and vn+i G F(yn+i) such that 

K + i - Un|| < (l + ^ j ) D(H(xn+l), H(xn)), (2.2.5) 

IK+i - «n|| <(l + ^ y ) D(F(yn+1), F(yn)), (2.2.6) 

where p > 0 and 7 > 0 are constants and n = 0,1,2, 

We use Algorithm 2.2.1 to compute the approximate solutions of system of 

mixed variational inequalities (2.2.1). The convergence analysis is also studied. 

Theorem 2.2.2. Let Ei and E2 be two reflexive Banach spaces with their duals 

E{ and ££, respectively. Let S : Ex x E2 -» £* and T : Ei x E2 -+ E% are 

Lipschitz continuous in both the arguments with constants Xs1, \s2 and A^, XT2, 

respectively. For i = 1,2, let /j : Ei —> £7* is Lipschitz continuous with constants 

A/; and strongly accretive with constants <$/. such that /(£») = Ei, Ji : Ei ^ E* 

be Lipschitz continuous with constants A^ and strongly accretive with constants 

CVJ. Let </?i : Ei x f̂  -» R U {+00} be lower semicontinuous, subdifferential (may 

not be convex), proper functional on E\ satisfying f\{x) G dom (d<pi(-,x)) and 

<p2 '• E2 x E2 —>• i? U {+00} be lower semicontinuous, subdifferential (may not be 
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convex), proper functional on E2 satisfying f2(y) G dom (dip2(-,y)), for all x G Ei 

and y G E2. Let H : Ex ->• CB(E1*) and F : E2 ^ CB(E^) be D-Lipschitz 

continuous mappings with constants AcH and A£)F, respectively. 

If there exists constants p > 0 and 7 > 0 such that 

| | J ^ - V ) - JJW(-'X-1 V ) | | < Mll̂ n - Sn-l||, (2.2.7) 

for any xn ,xn_i G £q, 2* G E{, 

\\j^y«)(y*) - ^ ( • * - i ) ( y * ) | | < ^ U J ^ _ ^ . J , (2.2.8) 

for any yn, yn_x e E2, y* G £2* 

and the following condition is satisfied: 

' /4(AJlA / l)H8p»A|1+2^q; , / W ^ A ^ 7 
U < y (2*/l+3)o2 + y (25/2+3)al < X 

V ( V ^ /4(Aj2A/2)'+87aA^+2Ai"aai 
U < * ' (2*/l+3)a? + V (2^/2+3K2 < i -

(2.2.9) 

Then the system of mixed variational inequalities (2.2.1) admits a solution (x, y, u, v) 

and the sequences {xn}, {yn}, {un} and {vn} converge to x, y, u, and v, respectively, 

where {xn}, {yn}, {wn} and {vn} are the sequences generated by Algorithm 2.2.1. 

Proof. We can write 

||Zn+l - Zn||2 = | | / l (Zn+l) ~ flM ' fl{xn+l) + / i ( l „ ) - Xn+1 + Xn\\
2. 

By Proposition 1.2.1, we have 

||Zn+l - ^n||2 < ||/l(^n+l) ~ / l W l P 

-2(fi(xn+1) - / i ( x „ ) + Xn+1 - En, j{Xn+l - xn))- (2.2.10) 

By (2.2.3), we have 

/ i f r ^ i ) = J ^ ^ - ^ l J i C / i W ) - p5(xB>t;n)]. 

Thus 
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||/l(x^4-i) - fl(xn)\\
2 = WJfK^iJiVlM) - PS(Xn,Vn)} 

-jfn^-Mihixn-i)) - p5(xn_1,i;n_1)]||2. 

Since ||x + y\\2 < 2(||x||2 + ||y||2), therefore by the assumption (2.2.7) and Theorem 

2.1.1, we have 

\\\h(xn+1) - h{xn)\\
2 < WJfn^MMxn)) - PS(xn,vn)} 

-jf^^WfliXn-!)) ~ pS{x^Uy^l)]\\2 

+ \\J^^)[J1(f1(xn^)) - pSiXn^V^)} 

-J9/*-*-i )[J1(/1(xn_1)) - pSix^Vn^W2 

aV 
-p5(a;n_iJt;n_i)]|| + p* \\xn - z n - i 

l2\\Wl(Xn))-J1(f1(Xn_1))tf + 2-£ 
(X-\ Cxi 

< -WWliXn)) - Jil/iCXn-i))!!2 + -^\\S{xn,Vn) 
^1 a l 

-S(xn-Uvn^)\\2 + p*2\\xn - Xn^W2. (2.2.11) 

By the Lipschitz continuity of J\ and / i , we have 

|| J l ( / l{Xn)) ~ JlUl{xn-l))\\ < XjMfrn - Z „ - l | | . (2.2.12) 

By the Lipschitz continuity of S(-, •) in both the arguments, (2.2.6) and D-Lipschitz 

continuity of F, we have 

\\S(xn,Vn) - S(xn,Vn-i)\\ < Xsahn - Vn-i\\ 

<\s2(l + ^)D(F(ynlF(yn^)) 

< AS2 (l + ^ XDF\\yn - yn-il (2-2.13) 

| |5(x„,Vi) - 5(a;n_i,u„_i)|| < ASl||zn - x„_i||. (2.2.14) 

Using (2.2.13) and (2.2.14), it follows that 

\\S(xn,vn) - 5(a;„_i,t;n_i)||2 < 2||S(zn,<) - S{x 
n> Vn—1)\\ 

+2||5(a;nji;n_i) - £(:rn_i,t;n_i)||2 
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<2(XS2XvF)2U + ~) \\yn-yn-i\ 

+2A|.| |a:n-a;„_i| |2 . (2.2.15) 

By (2.2.12) and (2.2.15), (2.2.11) becomes 

| | / l ( Z n + l ) - / l M | | 2 < A ^ A / J ' + A P X + V 1 

a a? 

8 
+ ^ P 2 ( A S 2 A D F ) 2 ( 1 + 

Q!i 

1 

n + 1 

\Xn X-n— 1 

| | y n - y n - i | | 2 - (2.2.16) 

By using the strong accretiveness of f\ with constant 5^ and (2.2.16), (2.2.10) 

becomes 

| |xn + 1-xn | |2 < | |/i(a;n+i)-/i(a;n)||2-2(/1(a;n+1)-/1(a;n)+a;n+i-a; r i,j(xn+1-xn)) 

< i(A,1A/l)
2 + ^ 2 A | 1 + 2 ^ 2 

a at 
Xn Xn—i 

8 / 1 \ 2 

+ ^>2(A52A i ?F)2 1 + " \\Vn - 2/n-l||2 

-{26fl+2)\\xn+1-xn\\
2. (2.2.17) 

It follows that 

\xn+i ~ xn\\ < 
8p2A2 

5x + V 2 < 4(Aj1A/l)
2 

(2(5/, + 3W ( % + 3)Q? ' {25h + 3)a2 

8p2(Ag2AgF)2(l + l ) 2 

+ (2Sfl+3)al "Vn yn~l11 

= &l\\Xn ~ Z„_i||2 + 02|!?/n - Vn-lf 

< 8i\\Xn ~ Xn-i\\2 + 02\\yn - Vn-lW2 

+2y/T1yJ%\\xn - xn_i||||yn - y„_i|| 

= (V0l\\Xn ~ Z „ _ l | | + Vfahn - y n - l | | ) 2 . 

\Xn Xn—\\ 

Thus, we have 

\\Xn+l - Xn\\ < V ^ l l l ^ n ~ Z n - l | | + V ^ H ^ n ~ Vn-l\\, (2 .2 .18) 
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_ 4(A J l A / l )
2 8p2A2

Si 2/x*2^ 
1 (25A + 3)a 2 + (2«A + 3)a? + (257l + 3)a? 

and 
B _ 8 p 2 ( A g 2 A g F ) 2 ( l + i ) 2 

(2<J7l + 3)a 2 • 

We can also write 

WVn+i - 2/n||2 = 11/2(2/̂ +1) - h{yn) - f2(yn+i) + h{yn) - yn+i + yn||2-

By Proposition 1.2.1, we have 

||2/n+l - ynf < | | / 2 ( y n + l ) - h{yn)f - 2 { / 2 ( j / n + l ) ~ / 2 ( ? /n ) 

+2/n+i - yn,j(yn+i - yn))- (2.2.19) 

By (2.2.4), we have 

/20/n+i) = J f 2(-'y"}[J2(/2(yn)) - 7 T K , y n ) ] . 

Thus 

||/2Q/n+l) - /2(yn)||2 = WJ^^MfiiVn)) " 7^(^,2/ ,)] 

- J f 2(-^-)[J2(/2(yn_1)) - 7 r K - i , y n - i ) ] | | 2 . 

Using the same argument as for (2.2.11), we have 

h\f2(yn+i) -h{yn)\\2 < -2\\Uf2{yn)) - J2{h{yn-r))f + KwT^yn) 

-rCun-i.yn-OH2 + v**2\\yn ~ yn-i\\
2 • (2.2.20) 

By the Lipschitz continuity of J2 and /2 , we have 

lk 2 ( / 2 (yn) ) -J 2 ( / 2 (yn- i ) ) | |<A j 2 A / 2 | | y n -y n _ 1 | | . (2.2.21) 

By the Lipschitz continuity of T(-, •) in both the arguments, (2.2.5) and D-Lipschitz 

continuity of H, we have 

\\T(un,yn) - T(un,yn^)\\ < XT2\\yn - y ^ l (2.2.22) 

27 



\\T(un,yn^) - T(un-i,yn-i)\\ < A T l | K - « n - i | | 

<AT l (l + ^\D{H{xn),H{xn^)) 

1 
< A T I A D F U + ^ J \\xn - Zn-ill- (2.2.23) 

Using (2.2.22) and (2.2.23), it follows that 

\\T(un,yn) - T(u 
n—l-i 2/n—1 Jll 

< 2\\T{un,yn) -T{un,yn-1)\\
2 + 2\\T{un,yn-1) -T(un-Uyn^)\\2 

< 2Xl2\\yn - yn^f + 2(ATlADJ2 (l + ^ ||x„ - xn^\\2. (2.2.24) 

By (2.2.21) and (2.2.24), (2.2.20) becomes 

| | / 2 ( y n + i ) - / 2 ( y n ) | | 2 < 
^ '< » \ 2 , ° „ . 2 \ 2 | o. .**2 

a 
(AJ2A / 2)^ + - , 7 ^ + 2^ 

a 
\yn-yn-i\ 

+-^72(AT1AC H)2fl + i ) Hxn-an-iH2. (2.2.25) 

By using the strong accretiveness of fi with constant 5f2 and (2.2.25), (2.2.19) 

becomes 

\\yn+i~ynf < 11/2(2/^+1)- f2(yn)f -2(f2(yn+i)- f2(yn) + yn+i-yn,j(yn+i-yn)) 

< 
8 „ 2 \ 2 1 o,,**2 

a2 L a 2 
I /n -2 /n - l | 

8 / 1 \ 2 

+ ^272(AT lAD H)2(l + - j \\Xn~Xn-iW2 

-{25h + 2)\\yn+l-yn\\
2. (2.2.26) 

It follows that 

\\yn+i - yn\\
2 < 

4(Aj2A/2)2 + 8 7 ^ + 2 ^ ^ 

{2bh + 3)a2
2 

S ^ A r ^ J ^ l + l ) 2 

(25 / 2+3)a 2 

Wn - 2 / n - l 

2-n ^n—1 
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Thus, we have 

= #3||yn - 2/n-lH2 + 041|En ~ £TI - I | | 2 

< &3\\yn - yn-if + Oi\\xn - xn-if 

+2y/93\/%\\yn ~ yn-l\\\\Xn - 2=71-11| 

= (V^lll/n - yn-l\\ + V(k\\Xn ~ Zn-i | |)2 . 

|bn+l - Vn\\ < V^hn - J/n-lll + \fth\\Xn ~ xn-l\\, (2 

where 

and 

e , = 
4(Aj2A/2)

2 + 8r2VA^2 + 2^2a2
2 

(2% + 3)a 

_87
2(ATlADH)2(l + l)^ 

(25/2 + 3)ai • 

By (2.2.18) and (2.2.27), we have 

Hzn+i -a;„|| + ||yn+i -yn\\ < {\/di + y/(k)\\xn - xn-i| | 

+ ( v ^ + V ^ ) l l l / n - y n - l | | 

= On(\\xn - £„_iH + ||yn - yn~i\ 

where 

(2 

On = max< 
'4(AJlA/l)

2 + 8p2A|i+2M*2a2 

(28h + 3)a? 

+1 
f872(ATlADJ2(l + l ) 2 /8p2(AS2ACF)2(l + l ) ' 

(2<5/2 + 3)«2 ( 2 ^ + 3)a2 

+1 
'4(Aj2A/2)

2 + 87
2A2,2 + 2/x**2a2 

(2Sh + 3)a2 

Let 
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6 = max< 
(25 h + 3)a2 

, / 8 7
2 (A r i A 0 J 2 8p*(\S2\DFy 

+ d (25h + 3)aj ' V (25h+2>)a\ 

+ /4(Aj2A/2)2 + 8 7 ^ + 2 ^ 2 a i 

(2<5/2+3)al 

Then 0n -> 0 as n -> oo. By (2.2.9), we know that 0 < 6 < 1 and so (2.2.28) implies 

that {xn} and {yn} are both Cauchy sequences. Thus, there exists x G E\ and 

2/ G Ei such that xn —> a; and yn —>• y as n —>• oo. 

Now we prove that U „ 4 M £ #(a;) and vn—>vE F(y). In fact, it follows from the 

£>-Lipschitz continuity of H, F,(2.2.5) and (2.2.6) that 

K - Wn-ill < (l + ~l) Xnjxn - z„-i | | , (2.2.29) 

K - V n - i | | < f l + ^ A ^ H y n - y ^ x l l . (2.2.30) 

From (2.2.29) and (2.2.30), we know that {un} and {vn} are also Cauchy sequences. 

We can assume that un —» u and vn —>• u as n —y oo. 

Further, 

d(tx, # (z ) ) < ||« - r*n11 + d(tin, H(x)) 

< \\u-un\\ + D(H(xn),H(x)) 

< \\u - un\\ + AD^||xn - x\\ -> 0, a s n - > +oo. 

Hence d(u, #(2;)) = 0 and therefore u G H(x). Similarly, we can show that v G F(y). 

By continuity of fu /2 , J1; J2, 5*, T, J ^ 1 , Jf"2, <pu <p2, H, F, and Algorithm 2.2.1, 

we know that x, y, u and v satisfy the following relations 

h(x) = Jd^[Jl(fl(x))-pS(x1v)l 

f2(y) = J^'y)[J2(f2(y))-lT(u,y)}. 

By Theorem 2.2.1, (x, y) GfijX E2, u G H(x) and v G F(y) is a solution of Problem 

(2.2.1). This completes the proof. 
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2.3. System Of Mixed Variational-Like Inclusions 

In this section, we consider a system of mixed variational-like inclusions in 

Banach spaces. By applying the notion of Jv-proximal mapping and its Lipschitz 

continuity for a nonconvex, lower semicontinuous, 77-subdifferentiable proper func

tional, we define an iterative method for system of mixed variational-like inclusions. 

Let Ei and E2 be any two real Banach spaces, S : E\ x E2 -> E{, T : Ex x E2 -> 

E2, /1 : Ei ->• Ei, f2 : E2 ->• E2, r)i : Ex x Ex - • Ex and T]2 : E2 x E2 ^ E2 

be the single-valued mappings, H : Ei -^ 2El and F : E2 -> 2E2 be any two 

multivalued mappings. Let ipi : E\xEi —> RU{+oo} be lower semicontinuous (may 

not be convex), ^x-subdifferentiable, proper functional on E\ satisfying fi(Ei) n 

dom dVl<pi 7̂  0 and <̂2 : E2 x E2 —> R U {+00} be lower semicontinuous (may 

not be convex), T^-subdifferentiable, proper functional and E2 satisfying f2(E2) H 

dom dmtp2 ^ 0, where dm<pi is 771-subdifferential of <px and dV2<p2 is 772-subdifferential 

of y?2- Then we consider the following system of mixed variational-like inclusions: 

Find (x, y) e Ei x E2, u G #(x) and w G F(y) such that 

{ ^ ( x ^ J ^ ^ a J ^ x ) ) ) > (pi(fi(x),x)-ipi(a,x), for all a G Eu 

(T(u,y),V2(bJ2(y))) > Mf2(y),y) ~ <P2(b,v), f ° r all b G E2. (2.3.1) 

It is clear that for a suitable choices of the mappings involved in the formulation 

of the system of mixed variational-like inclusions (2.3.1), we can derive many systems 

of variational inequalities (inclusions) considered and studied in the literature. 

We suggest a fixed point formulation which shows the equivalence between 

our problem system of mixed variational-like inclusions (2.3.1) and a fixed point 

problem. 

Theorem 2.3.1. (x,y,u,v), where (x,y) G• Ei x E2, u G H(x) and v G F(y) is a 

solution of system of mixed variational-like inclusions (2.3.1) if and only if (x, y, u, v) 

satisfies 

f1{x) = jfn'nM[J1(h(x))-pS{x,v)]i 
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h(y) = J^M-'v)[J2(h(y))-lT(u,y)}, 

where Jx : E1 -4 ££, J2 : E2-+ E*2, j ^ ^ ' x ) = (Jx + ^ ^ i ( - , a r ) ) " 1 , 

jSn<P2{;y) = ( j 2 + 7^2(^2(-, y))"1, p > 0 and 7 > 0 are constants. 

Proof. The fact directly follows from Definition 2.1.2. 

The above fixed point formulation enables us to suggest the following proximal 

point algorithm. 

Algorithm 2.3.1. For any given (x0,yo) G Ex x E2, we choose u0 G H(x0), 

vo G F(y0) and compute {xn}, {yn}, {un} and {vn} by iterative schemes as follows: 

/ iCa^i ) = Jd
p^

l{',Xn)[Ji(h(xn)) - PS{xn,vn)\, (2.3.2) 

h{yn+i) = Jd^'Vn){J2{h{yn)) - lT(un,yn)} (2.3.3) 

and choose un+i G H(xn+1) and -un+i G F(yn+1) such that 

un G # (x n ) , | K + 1 - unll < (l + ^—) D(H{xn+1), H{xn)), (2.3.4) 

vn G Ffon), K + 1 - vn\\ <(l + ^ - ^ D(F(yn+l), F(yn)), (2.3.5) 

where p > 0 and 7 > 0 are constants and n = 0,1,2, 

Now the existence of solutions for system of mixed variational-like inclusions 

(2.3.1) is proved and the convergence of iterative sequences generated by the Algo

rithm 2.3.1 is also studied. 

Theorem 2.3.2. Let E\ and E2 be two reflexive Banach spaces with their duals 

E{ and E2, respectively. For i = 1,2, let ^ : Ei x Ei ->• Ei be Lipschitz contin

uous with constants Tj such that r]i(xi,x2) = —r]i(x2,Xi) for all Xi,x2 G Ei, Jr 

strongly accretive with constants ctj and for any X\ G Eit the function hi(x2,xi) = 

(x* - JiXi,r]i(x2,xi)) is 0-DQCV in x2. Let Ji : Ei -» £* be Lipschitz contin

uous with constant Aji5 /j : Ei -» .E; is Lipschitz continuous with constant A/4 

and strongly accretive with constant 5/. such that fi(Ei) = E{, <f>i : Ei x Ei —* 

R U {+00} be lower semicontinuous, ^-subdifferentiable, proper functional satisfy

ing fi(Ei)ndom dViifi ^ 0. Let S : E1xE2 -* E* is Lipschitz continuous in both the 
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f2(y) = J°r,2M-'v)[J2(f2(y))-iT(u,y)}, 

where Jx : Ex -+ El J2 : E2 -> E*2, fp^>x) = (J, + pam ¥ > 1(. ,x))"1 , 

^Y"2^2 ,2/ = (J2 + 7^2(p2(-,y))-1, p > 0 and 7 > 0 are constants. 

Proof. The fact directly follows from Definition 2.1.2. 

The above fixed point formulation enables us to suggest the following proximal 

point algorithm. 

Algorithm 2.3.1. For any given (£0,2/0) G E\ x E2, we choose u0 G H(XQ), 

vo G F(yo) and compute {xn}, {yn}, {un} and {vn} by iterative schemes as follows: 

fi(xn+l) = J ^ W ( " , X B ) [ J I ( / I ( S « ) ) - pS(xn,vn)\, (2.3.2) 

/2(2/n+i) = Jd^2{''yn)[Uf2{yn)) - 7r(u„,y„)] (2.3.3) 

and choose un+i G i/(xn + 1) and wn+i G F(yre+i) such that 

uneH{xn), \\v^1-vn\\<(l + :^-—jD{H{xn+1),H{xn)), (2.3.4) 

^n G F(yn), \\vn+1 - vn\\ <(l + ^j)D(F(yn+l),F(yn)), (2.3.5) 

where p > 0 and 7 > 0 are constants and n = 0,1,2, 

Now the existence of solutions for system of mixed variational-like inclusions 

(2.3.1) is proved and the convergence of iterative sequences generated by the Algo

rithm 2.3.1 is also studied. 

Theorem 2.3.2. Let E1 and E2 be two reflexive Banach spaces with their duals 

El and E%, respectively. For i = 1,2, let rji : Ei x Ei —> Ei be Lipschitz contin

uous with constants Tj such that rji(xi,X2) = —Vi(x2jx\) f° r a ^ ^1,^2 £ Ei, Jj-

strongly accretive with constants a; and for any x\ G Ei, the function hi(x2,X\) = 

(x\ — JiXi,r)i(x2,xi)) is 0-DQCV in x2. Let Ji : Ei -+ E* be Lipschitz contin

uous with constant Xj., /* : £^ —>• £* is Lipschitz continuous with constant Xft 

and strongly accretive with constant 5ft such that fi(Ei) = Ei, <pi : Ei x Ei -+ 

R U {+00} be lower semicontinuous, ryj-subdifferentiable, proper functional satisfy

ing fi(Ei) ndom dVi<Pi 7̂  0- Let S : E\ x E2 —> E{ is Lipschitz continuous in both the 
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arguments with constants Xs1 and Xs2, respectively and T : E\ x E2 —> E2 is Lip-

schitz continuous in both the arguments with constants A^ and Ay2, respectively. 

Let H : Ei -> CB(E^) and F : E2 ->• CB(E*2) be D-Lipschitz continuous with 

constants AoH and A£>F, respectively. 

If there exists constants p > 0 and 7 > 0 such that 

||j^iViC-.*-)^*) _ j ^ 1 ^ - 1 ^ * ) ! ) < ^ 1 ) ^ - -c^l l (2.3.6) 

for any xn,xn_i E E\, x* e E* 

and 
|| j W * . ) ^ ) _ j 7 ^ ^ ( - ^ - ) ( ^ ) | | < M - | | y n _ ^ ^ n (2.3.7) 

for any yn,yn_i G £2 , V* e E*2 

and the following condition is satisfied: 

\ . /4r1
2(AJlA/l)2+8r2p2A|i+2^a2 > l ^ ^ ^ x }2 ^ 

V (2^+3)a? + y (2^+3)^ ^ X 

U <• y (25/l+3)o? + y (25/2+3)a! ^ J 

(2.3.8) 

Then the system of mixed variational-like inclusions (2.3.1) admits a solution (x, y, it, v) 

and the sequences {xn}, {yn}, {un} and {vn} converge to x, y, u, and v, respectively, 

where {xn}, {yn}, {un} and {vn} are the sequences generated by Algorithm 2.3.1. 

Proof. We can write 

||xn+1 - Xn||
2 = ||/i(x„+i) - fi(xn) ~ fi{xn+i) + fi(xn) - Xn+i + Xnf. 

By Proposition 1.2.1, we have 

\\xn+l - Xn\\2 < ll/l^n+l) - /l(^n)||2 ~ 2(f1(xn+1) - fi(xn) + Xn+X - Xn, 

j(xn+1-xn)). (2.3.9) 

By (2.3.2), we have 

fl(xn+l) = J9
p
nM''Xn)[Jl(fl(Xn)) ~ PS(xn,Vn)}. 
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Hence, we have 

||/l(Zn+l) - / l M | | 2 = \\fP^^Xn){Hh{xn)) - PS(xn,Vn)} 

_ J ^ l V l ( , x n _ l ) [ J i ( / i ( ^ _ i ) ) _ pS{Xn_uVn_im2^ 

Since \\x + y\\2 < 2(||x||2 -f ]]y||2), therefore by the assumption (2.3.6) and Theorem 

2.1.2, we have 

\\\Mxn+1) - AMU2 < ||J^l(-'Xr0[Ji(/iM) - Ps(xn,vn)} 

-Jp" l ¥5 l ( ' 'Xri )[Ji(/i(^_i)) - PS(xn^vn^)}\\2 

+\\Jd
p^'Xn){Jl(f1(xn-1)) - pS(xn^vn^)} 

-J^'^VltflO^-l)) - PS(xn-UVn^)}f 

< ̂ WlMfiM) -pS(xn,vn)} - {MMx^)) 
aV 

~pS{xn_l,vn^l))\\
2 + / /2 | |x„ - xn-i\ 

,2 0^2 J2 

< ^WMflM) - Jl(fl(Xn-l))\\2 + ^f\\S(XniVn) 
Qli Ot-y 

SiXn^V^f + ̂ WXn-Xn^f. (2.3.10) 

By the Lipschitz continuity of J\ and / i , we have 

WHHXn)) - J ^ M x ^ m < XjMM - fl(Xn-l)\\ 

^Xj^fMn-Xn^l (2.3.11) 

By the Lipschitz continuity of S(-, •) in both the arguments, (2.3.5) and D-Lipschitz 

continuity of F, we have 

\\S(xn,vn) - S(xn,vn-i)\\ < \s2\\vn - vn-i\\ 

< XS2 (l + ~) XDF\\yn - yn_x||. (2.3.12) 

\\S{xn,Vn-i) -5(x„_i , t ; n_i) | | < XSl\\xn-xn-i\\. (2.3.13) 
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Using (2.3.12) and (2.3.13), it follows that 

\\S(xn,vn) - 5(a;n_1,i;n_i)||2 < 2\\S{xn,vn) - S(x 

+2\\S{xn,vn^l) - 5(a:n_i,7;n_i)||2 

< 2(XS2XDF)2 (l + M l l ^ - y ^ l l 2 

+2XSi \\xn — xn-x || . 

By (2.3.11) and (2.3.14), (2.3.10) becomes 

(2.3.14) 

H/iK+ i)-/iWI|2< 4rf 
a? 

8r2 

^jAhY + -TPXk+^ *2 

a 
\xn x n _ i | 

8r2 

a 
2p

2(Xs2XDF)2 1 + - ) | | ^ - y ^ | l 2 

n 
(2.3.15) 

Since / i is strongly accretive with constant 5/1? by (2.3.9), we have 

||a:n+i-a;n | |2 < | | / i ( a ; n + 1 ) - / i (x n ) | | 2 -2 ( / i (x n + 1 ) - / 1 (x r i ) + a;n + i-x r i , j(xn+1-xn)) 

< \2 , o r l J 2 \ 2 ^ ( A , 1 A / l )
2 + ^ p ^ A ^ + 2 ^ *2 

a a; 

ST* 

a 
2 P 2 ( A S 2 A D F ) 2 ( I + ^ ) | | y n - y n - i | | 2 I 

n 

\Xn Xn—i\ 

2 

-(25h+2)\\xn+1-xn\ (2.3.16) 

It follows that 

|2-n+l Xn\\ 2; 

*2„,2 '^{Xj^f , 8r2p2Xl 2^a{ 

( 2 5 / l + 3 K (2<5 / l+3)a2 ( 2 ^ + 3)a2J 

8r1V(A52ADF)2(l + ^ ) 2 

\xn xn—\\ 

(2Sfl + 3)aj 

= e^xn - a;n_i||2 + 62\\yn - yn-i\\ 

Vn-Vn-ll 

< fliHzn - x„_i||2 + 92\\yn - y^xH2 

+2y/6~iy/¥2\\xn - Zn-i||||z/n - yn_x | 

= ( V ^ l | | « n - Sn-lH + V ^ l l ^ n ~ Z/n-
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Thus, we have 

\\xn+l - X„|| < \ffl\\xn - Xn-x\\ + \fh\\Vn - l/n-l | l , (2.3.17) 

where 

4r2(AJlA/l)
2 Srf^Al, 2M*2a2 

#1 = 777? , o x o + 77T? , o \ -9 . + (2<5 / l +3K ( 2 ^ + 3 ) a 2 ( 2 ^ + 3)a? 
and 

_8T2p2(As2AgJ2(l + a 2 

( % + 3)a? 
We can also write 

||S/n+l - yn| |2 = ||/2(2/w+l) - /2(2/n) ~ fiiVn+l) + fiiVn) ~ Vn+l + Vnf • 

By Proposition 1.2.1, we have 

WVn+l - Vnf < WfliVn+l) ~ fliVnjf ~ 2(f2(yn+1) - f2(yn) + Vn+l ~ Vn, 

j(yn+1-yn)}. (2.3.18) 

By (2.3.3), we have 

/2(yn+l) = J^'yn)[J2(f2(yn)) - lT(un,yn)}. 

Hence, we have 

MUr+l) - /2(r/n)||2 = \\Jd^Vn\j2{J2{yn)) ~ jT(Un,yn)} 

-J^2i''yn-l){Uf2(yn-i)) - 7T(nn_1,yn_1)]||2. 

Using the same argument as for (2.3.10), we have 

1 9 T 2 ?T 2 -V 2 

211/2(2/^1) - /2Q/n)||2 < -^\\Mf2{yn)) ~ W2{yn-l))\? + ^-\\T(un,yn) 

-T(un_uyn^)\\2 + !i**2\\yn - y^f. (2.3.19) 

By the Lipschitz continuity of J2 and f2, we have 

H-WaW) - ^(/2(yn-i))|| < Aj2||/2(yn) - /2(yn-i)|| 

<^f2\\yn-yn-i\\. (2.3.20) 
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By the Lipschitz continuity of T(-, •) in both the arguments, (2.3.4) and £>-Lipschitz 

continuity of H, we have 

\\T(un,yn) -T(un,yn-i)\\ < Xr7\\yn - yn-i\\- (2.3.21) 

\\T(Un,yn-i) -TiUn-uVn-JW < ATl | K - Un_! | 

<AT l [l + -)D(H(xn),H{xn^)) 

1 
< XTADF [l + ^) Wxn - ^n-i||. (2-3.22) 

Using (2.3.21) and (2.3.22), it follows that 

\\T(un, yn) - T(«n_i, jh-OH2 < 2\\T(un, yn) - T(un, yn^)f 

+2\\T{un,yn-x) - T(un_i,yn_i)((2 

<2A2,2||yn-yn_1||2 + 2(ATlAr)H)2 

+2(XTlXDH)2(l + ^) Wxn-x^f. (2.3.23) 

By (2.3.20) and (2.3.23), (2.3.19) becomes 

| | / 2 ( y n + i ) - / 2 ( y n ) | | 2 < 
4 T 2 RT2 

iT(A,2A /2)2 + 9 - 7 ' % + 2/, 
**2 

af, Oi.n 
\yn -yn-i\ 

8r2 / 1 \ 
-^-12{^DH? ( 1 + - J \\Xn - Xn-i||2. (2.3.24) 

Since fa is strongly accretive with constant 5f2, by (2.3.18), we have 

WVu+l-Vuf < | | /2(yn+l) - /2(yn) | |2 - 2</2(l/n+l) - fi(yn) + Vn+l ~ Vn, j(yn+l ~ Vn)) 

< 
r4r„2 RT2 

2 ( \ \ ^2 | 0 / 2 2 \ 2 i_o, ,**2 
(A/aA/a) + —T7 AT2 +

 2M « o « n 
2/n - 2 / n - l 

gr2 / 1 \ 2 

—f T ^ r ^ J 2 1 + - ) \\xn - a;n_i|i2 
Qn n 

-(2<J/a +2)||yn+1 - y n | (2.3.25) 
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It follows that 

WVn+l - Vn\? < 
'4r|(Aj2A/2)

2 , 8r2
2
7
2A^2 , 2^a\ 

+ + (25 h + 3)a| " (25/2 + 3)a2 (2<fo + 3)a| 

,8r2V(AT lADJ2(l + i ) 2 

\\Vn ~ Vn-

<"n •"n—\\ 

Thus, we have 

where 

(2<5/2 + 3)a2 

= 03\\yn - yra_!||2 + 94\\xn - Xn^f 

< ^ l l y n - y n - l l ^ + ^ l l x ^ - X n - i H 2 

+ 2 V
/ ^ 3 V / ^ 4 l l ^ - yn-l\\\\Xn - Xn-l 

= ( V ^ l l l / n - Vn-l\\ + y/OlllXn ~ Z n - l | | ) 2 -

\Vn+l ~ Vn\\ < \/(h\\yn ~ Vn-l\\ + V ^ H ^ n ~ ^ n - l | 

03 = 
4r|(Aj2A/2)

2 , 8r2VA^2 , 2/x**2
a| 

+ + (25/2 + 3)a2 (25 /2+3)a2 (25 h + 3)a2 

and 

04 = 
8r2

7
2(A r iADJ2(l + ^) : 

(2<5/2 + 3)a2 

By (2.3.17) and (2.3.26), we have 

||xn+i -a;n | | + \\yn+i -yn\\ 

< (y/o[+y/el)\\xn - a;n-i|| + {y/h + y/O^Wvn ~ Vn-i\ 

'4r1
2(AJlA/l)

2 + 8r1VA2
i + 2^2a2 

(25 h + 3)a? 

n 2 

+1 

+ 

+i 

f8r2
272(ATlAgH)2(l + a 

(25 h + 3)a| 
|Xn Xn—\\ 

f8r1V(Ag2AgF)2(l + l ) 2 

(2*A + 3)a? 

^r2
2(Aj2A/2)

2 + 8 r 2
7

2 A 2
r 2 + 2 ^ a 2 

(25/2 + 3)a2 

(2.3 

|2/n - 2 / n - l | 
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= On(\\xn - xn-i\\ + \\yn - yn-i\\), (2.3.27) 

where 

, /4r1
2(AJlA/l)2 + 8 r ^ A | i + 2 / * ' 2 a 2 

v„ = max< ' 
(26 h + 3)a2 

n 2 
/8r2

272(AriADJ2 (1 + I ) 2 l8rfp\XS2XDFy (l + J J 
(2<S/a + 3)a2 ' y ( 2 ^ + 3)a 

+ 
4T2

2(AJ2A/2)2 + SraVA^ + 2 / ^ a 2 

(2<JA + 3)a2 

Let 

0 = max< 
'4r2(AJlA/l)

2 + 8r 1 VA 2
i +2^ 2 a 2 

(26h + 3)a2 

, /STMAftApJ' /8r2p2(Ag2ADF)2 

+ A / (25 /2+3)a2 'V (25 / l +3)a 2 

/4r|(Aj2A/2)
2 + Sr.VA^ + 2^*2a2" 

V (25/2 + 3)«2 

Then On -> (9 as n -)• oo. By (2.3.8), we know that 0 < 6 < 1 and so (2.3.27) implies 

that {xn} and {yn} are both Cauchy sequences. Thus, there exists x £ Ei and 

y E E2 such that xn —> x and yn —>• y as n —> 00. 

Now we prove that un —> u G #(#) and vn —> v e -F(j/). In fact, it follows from the 

D-Lipschitz continuity of H, F, (2.3.4) and (2.3.5) that 

\\un - W n - l | | < ( 1 + - ) XDH\\xn ~ Xn-l\\, (2.3.28) 

\\vn-vn-i\\< (l + -j\DF\\yn-yn_1\\. (2.3.29) 

From (2.3.28) and (2.3.29), we know that {un} and {vn} are also Cauchy sequences. 

We can assume that un —» u and vn -» f as n —>• oo. 
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Further, 

d(u, H(x)) < \\u - un\\ + d(un, H(x)) 

< \\u-un\\+D(H(xn),H{x)) 

< \\u - un\\ + \DH\\xn - x\\ -» 0, a s n - ^ +00. 

Hence d(u, H(x)) — 0 and therefore u E H(x). Similarly, we can show that v E F(y). 

By continuity of fu /2 , Jlt J2, S, T, J / 1^ 1 , J7"
2^2, rju r]2, tplt ip2, H, F and 

Algorithm 2.3.1, we know that x, y, u and v satisfy the following relations 

fi(x) = J?»'plM[J1{Mx))-pS(x,v)], 

f2(y) = J^M-'y)[Mh(y))-iT(u,y)}. 

By Theorem 2.3.1, (x, y) E E\ x E2, u E H(x) and v E F(y) is a solution of Problem 

(2.3.1). This completes the proof. 
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Chapter 3 

Systems Of Variational Inclusions 
In Uniformly Smooth Banach 
Spaces 

3.1. Introduction 

In the last decade, variational inclusions, generalized forms of variational in

equalities, have been extensively studied and generalized in various directions to 

study a wide class of problems arising in mechanics, optimization, nonlinear pro

gramming, economics, finance and applied sciences, etc; see for example [1,5,8,22,24, 

25,41,115]. Several authors used resolvent operator technique to propose and an

alyze the iterative algorithms for computing the approximate solutions of different 

kinds of variational inclusions. Fang and Huang [49] studied variational inclusions 

by introducing a class of generalized monotone operators, JT-monotone operators 

and defined an associated resolvent operator. Fang and Huang [50] further extended 

the notion of iif-monotone operators to the Banach spaces, called ff-accretive oper

ators. They also gave some properties of the resolvent operator associated with the 

i?-accretive operator. 

Yan et.al. [125] introduce and study a new system of set-valued variational 

inclusions with Tif-monotone operators in Hilbert spaces. By using the resolvent 

operator associated with if-monotone operator due to Fang and Huang, the authors 

constructed a new iterative algorithm for solving the system of set-valued varia

tional inclusions and proved the existence of solutions for the system of set-valued 

variational inclusions and the convergence of iterative sequences generated by the 

algorithm. As generalization of system of variational inequalities, Agarwal et.al. [6] 
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introduced a system of generalized nonlinear mixed quasi-variational inclusions and 

investigated the sensitivity analysis of solutions for their system. 

The concept of resolvent equations is equally important and is initially used 

by Noor [90]. This technique has been used to develop some numerical methods for 

solving the mixed variational inequalities and variational inclusions; see for examples 

[9,93,94] and references therein. The resolvent equations include the Wiener-Hopf 

(normal maps) equations as a special case. The Wiener-Hopf equation were intro

duced by Shi [108] and Robinson [107] in the connection with variational inequalities. 

The Wiener-Hopf equations technique was use to develop various numerical methods 

for solving the variational inequalities and complementarity problems. 

In Section 3.2, we introduce and study a system of set-valued variational inclu

sions. An iterative algorithm for computing the approximate solutions of system of 

set-valued variational inclusions is defined and convergence criteria is also discussed. 

In Section 3.3, we introduce and study a system of generalized variational in

clusions with ^-accretive operators in uniformly smooth Banach spaces. We prove 

the convergence of iterative algorithm for this system of generalized variational in

clusions. 

In Section 3.4, we introduce and study a system of generalized .^-resolvent equa

tions in uniformly smooth Banach spaces and also mention the corresponding system 

of generalized variational inclusions. An equivalence relation is established between 

system of generalized if-resolvent equations and system of generalized variational 

inclusions. Further, we prove the existence of solutions for the system of generalized 

if-resolvent equations and the convergence of iterative sequences generated by the 

algorithm. 

We introduce the following definition which is used to prove Theorem 3.3.1 and 

Theorem 3.4.1 and is supported by an example and numerical example. 

Definition 3.1.1. The .ff-resolvent operator Jjf : E —» E is said to be retraction 

if 

KM)? = • # » , for all x E E. 
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Example 3.1.1. For p = 1, let 

/ a n 0,12 

021 &22 

H = an n x n matrix 

<2n2
 s i m / 

and 
/fen 612 

&21 &22 

M = 

&ln\ 

^2n 

an n x n matrix 

\fenl fen2 bnnJ 

We define the following operations for matrices H and M: 

(i) ay + fey = 1 if i = j ; 

(ii) ay + fey = 0 if z ̂  j , 

then we have 

[ < P ( * ) ] 2 = ^p(« ) , for all x G 15. 

Numerical Example 3.1.2. Here we present the following MatLab programming 

for the justification of Definition 3.1.1. The program is valid for any value of p > 0. 

#=input('Enter the matrix H: '); 

A;=input('Enter the value of k: '); 

n=size(H, 1); lambda=eye(n) — H; 

more on; 

for hrow=l : k 

disp(['Hrow= ' int2str(hrow)]); 

M=(l/hrow)*lambda; 

disp('The matrix M= '); 

disp(M); 

end 
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For illustration, we take H to be a real non-singular 3 x 3 matrix then our program 

will generate M to be a 3 x 3 matrix for the values of p in between 1 to k = 5 such 

that 

[ < P ( * ) ] 2 = J&i*)-

Enter the matrix H: [1 3 7;4 6 9;-l 6 8] 

Enter the value of k: 5 

Hrow= 1 

The matrix M— 

Hrow= 2 

The matrix M-

Hrow= 3 

The matrix M-

Hrow= 4 

The matrix M-

Hrow= 5 

The matrix M= 

0 
-4 
1 

- 3 
- 5 
- 6 

- 7 
- 9 
- 7 

0 -1.5000 -3.5000 
-2.0000 -2.5000 -4.5000 
0.5000 -3.0000 -3.5000 

0 -1.0000 -2.3333 
-1.3333 -1.6667 -3.0000 
0.3333 -2.0000 -2.3333 

0 
-1.0000 
0.2500 

-0.7500 
-1.2500 
-1.5000 

-1.7500 
-2.2500 
-1.7500 

0 -0.6000 -1.4000 
-0.8000 -1.0000 -1.8000 
0.2000 -1.2000 -1.4000 
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3.2. System Of Set-valued Variational Inclusions 

In this section, we introduce and study a system of set-valued variational inclu

sions in the setting of uniformly smooth Banach spaces. An iterative algorithm for 

computing the approximate solutions of this system is suggested. By using the def

inition of nonexpansive retraction, we prove convergence result for the approximate 

solutions obtained by the Algorithm 3.2.1. 

Let Ei and E2 be any two real Banach spaces. Let S : E\ x E2 —> Eu T : 

Ex x Ei —> E<2, p : Ei —> Ei and q : E2 —> E2 be single-valued mappings, G : 

Ei -» CB(Ei), F : E2^ CB(E2), M : Ei x El -»• 2S l and N : E2 x E2 ^ 2E* 

be set-valued mappings, / : Ei —> E\ and g : E2 —» E2 be nonlinear mappings with 

f(Ei) n D(M) ^ 0 and g(E2) n D(JV) ^ 0. We consider the following system of 

set-valued variational inclusions: 

Find (x,y) e Ei x E2, u e G(x) and v G F(y) such that 

OeS(x-p(x),v) + M(f(x),x), 

OeT(u,y-q(y)) + N{g(y),y). (3.2.1) 

Some special cases: 

(i) If x = 2p(x), y = 2g(y), M(f{x),x) = M(f(x)) and iV(^(y),y) = N(g(y)), 

then Problem (3.2.1) reduces to the problem of finding (x,y) G Ei x E2, 

u G G(x), v G F(y) such that 

0G5(p(x),^) + M(/(x)) , 

OeT(u,q(v)) + N(g(y)). (3.2.2) 

Problem (3.2.2) is considered by Lan et.al. [78] in Hilbert spaces with A-

monotone operators. 

(ii) If p(x) = 0 = q(y), M(f(x),x) = M(x) and N(g(y),y) = N(y), then Problem 

(3.2.1) reduces to the problem of finding (x,y) G Ei x E2, u G G(x), v G F(y) 

such that 
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Oe S(x,v) + M(x), 

OeT(u,y) + N(y). (3.2.3) 

Problem (3.2.3) is considered by Huang and Fang [67] in Hilbert spaces. 

We mention the following lemma which ensures that the system of set-valued 

variational inclusions (3.2.1) is equivalent to a fixed point problem. 

Lemma 3.2.1. (x,y,u,v), where (x,y) G Ei x E2, u G G(x) and v G F(y) is 

a solution of the system of set-valued variational inclusions (3.2.1) if and only if 

(x,y,u,v) satisfies 

f(x) = J^x\f(x)-pS(x-p(x),v)), 

g(y) = J?M(g(y) - 7T(u,y - q(y))), . (3.2.4) 

where p > 0 and 7 > 0 are constants. 

Proof. The fact is directly follow from the Definition 1.2.16 of resolvent operator. 

Based on Lemma 3.2.1 and Nadler's Theorem 1.2.3 [87], we suggest the following 

Algorithm for solving the system of set-valued variational inclusions (3.2.1). 

Algorithm 3.2.1. For any given (x0,yo) £ E\ x E2, we choose u0 G G(x0), v0 G 

F(XQ) and compute the sequences {xn}, {yn}, {un} and {vn} by iterative schemes 

as follows: 

xn+1 =xn- f(xn) + J^'Xn)(f(xn) - pS(xn - p(xn), vn)), (3.2.5) 

yn+1 =yn- g(yn) + J^>yn\g(yn) - lT(un,yn - q(yn))\ (3.2.6) 

and choose un+\ G G{xn+\) and vn+i G F(yn+i) such that 

unEG{xn), \\un-un+1\\ <(l + (n+l)-1)D(G{xn),G{xn+1)), (3.2.7) 

vn e F{yn), \\vn - vn+1\\ < (1 + (n + ly^D^n), F{yn+1)). (3.2.8) 

n— 1,2, and p, 7 > 0 are constants. 
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Now we study the convergence of iterative sequences generated by Algorithm 

3.2.1 and prove the existence of solutions of the system of set-valued variational 

inclusions (3.2.1). 

Theorem 3.2.1. Let Ex and E2 be any two real uniformly smooth Banach spaces 

with module of smoothness rg^t) < C\t2 and r^2(t) < C2t
2 for some d, C2 > 0. Let 

M : Ei x Ei -> 2El and N : E2xE2-^ 2E2 be m-accretive mappings, S : Ex x E2 -> 

Si and T : Ei x E2 -^ E2 are single-valued mappings such that 5 and T are 

Lipschitz continuous in first argument with constants Xsx and A^, respectively; and 

Lipschitz continuous in second argument with constants Xs2 and AT2, respectively. 

Let / : Ei -^ Ei, g : E2 ^> E2, p : E1 -> Ei and q : E2 -¥ E2 be strongly accretive 

mappings with constants 5f, 5g, 8P and 5q, respectively; and Lipschitz continuous 

with constants A/, Xg, Xp and Xq, respectively such that f(Ei) n D{M) ^ </> and 

c/(£2) n D(N) ^ <j>. Let G : £ x -> CJ3(Ei) and F : E2 ^ CB(E2) be D-Lipschitz 

continuous mappings with constants A,DG and XJJF , respectively. Suppose that there 

exists constants ip, <p > 0 and p,7 > 0 such that for each x E Ei, y E E2, x* <E E* 

\\J^\X*)-J^X—\X*)\\ < lJ,\\xn-Xn^\\, 

and the following conditions are satisfied: 

^/ l - 257 + 64CiAj + A; + if; + pXSlyjl -2Sp + 6ACiX2
p + jXTlXDQ<1, 

yjl - 28g + 64C1A2+Ag + (p+7AT2^/l - 28q + 6iCiX2
q+pXS2XDp < 1. (3.2.9) 

Then the system of set-valued variational inclusions (3.2.1) admits a solutions (x,y, 

u,v) and the iterative sequences {xn}, {yn}, {un} and {vn} generated by Algorithm 

3.2.1 converge strongly to x, y, u and v respectively. 

Proof. From Algorithm 3.2.1, nonexpansiveness of the operator J^4 and by as

sumption, we have 

||xn+1 - xn\\ = \\xn - f(xn) + JJ?{''Xn){f(xn) - pS{xn-p(xn),vn)) 
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-[Xn-l ~ f(Xn-l) + J^^ifiXn^) 

-pS(xn_i -p{xn-i),vn-i))]\\ 

< \\xn ~ Xn-l ~ (f(Xn) ~ / (x n _ i ) ) ] | 

+ HM(''In)(/M - Ps(xn-p(xn),vn)) 

- J f f t - I j ( / ( ^ 1 ) - P % - 1 -p(xn-l),Vn-l))\\ 

< \\xn - Xn-i ~ {f{xn) ~ f(xn-i))\\ 

+ \\J^'Xn)(f(Xn) - pS(xn-p(Xn),Vn)) 

- J^'Xn)(f(xn-i) ~ pS(xn-i-p(xn-l),Vn_i))\\ 

+ \\jf{-'Xn\f(Xn-l) ~ pS(xn^-p(xn-l),Vn-i)) 

_ J ^ ( ^ - i ) ( / ( X n _ 1 ) - P 5 ( X „ _ ! -p(xn-i),Vn-l))\\ 

< \\xn - Xn-i - (f(xn) ~ /(ajn_i)) | | + \\(f(xn) 

- pS(xn-p(xn),vn) - (f{xn-i) - pS{xn-i -p(arn_i),un_i))| | 

+lj)\\xn - Xn-i\\ 

< \\xn - Xn_x - ( / (x n ) - / (X„_i)) | | + \\f(xn) ~ f(xn-i)\\ 

+ p\\S(xn-p(xn),vn) - S(xn-i -p{xn-i),vn)\\ 

+ p\\S{xn_i -p{xn-i),vn) - S(xn_i -p(xn-i),vn_i)\\ 

+ V | |x n -x n _ 1 | | . (3.2.10) 

By Proposition 1.2.1, we have 

\\xn - xn-i ~ ( / W - f(xn-i))\\
2 < (1 - 2(5/ + 64dAj)11x„ - x n _J 2 . (3.2.11) 

As / is Lipschitz continuous with constant A/, we have 

WfM ~ /(zn-i)H < A/||a;n - Xn-iII- (3.2.12) 

By using the Lipschitz continuity of S in second argument and F is D-Lipschitz 

continuous, we have 
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\\S(xn-i -p(xn- i) ,Un) -5(a; n_i -p(aJ„_i),u„_i)|| 

^ A s ^ l + n - 1 ) ^ ^ ^ ) , ^ ^ - ! ) ) 

< A52ADF(l + n^ 1 ) | | y n -^ n _i | | . 

By using the Lipschitz continuity of S in first argument, we have 

\\S{xn -p(xn),vn) - S(xn-i - p(xn-i),vn)\\ 

< A S l | | x n - x n _ ! - {p(xn) -p(x n _i) ) | | . 

Using the same arguments as for (3.2.11), we have 

<A 5 l i y i -2<5 p + 64C1A2|| 

By using (3.2.11)-(3.2.13) and (3.2.16), (3.2.10) becomes 

||xn+i - xn\\ < J l - 25/ + 64CiA^||a;re - £„-i| | + A/||x„ - xn-i\ 

+p\SlJl - 25p + 64CiA2||a;n - zn_i|| + pXS2XDp 

x( l + n_1)| |yn - 2/n_i|| + ij)\\xn - xn-i\\ 

(3.2.13) 

(3.2.14) 

||a:n - xn^ - (p(xn) -pix^m2 < (1 - 26p + 64 (7^ ) ||xn - ^ . J 2 . (3.2.15) 

By (3.2.14) and (3.2.15), we have 

\\S(xn-p{xn),vn) - S(xn-i -p(xn-i),vn)\\ 

(3.2.16) 

< yj\ - 26f + 64Ci AJ + Xf +i/> + pXSl y/l ~ 25p + QACAj 

x\\xn - xn-i\\ + pXs2XDF(l + n~l)\\yn - yn-i\\. (3.2.17) 

Similarly, 

\\yn+i - yn\\ = \\yn -g(yn) + J"{''yn)(g(yn) -iT{uniyn - q{xn))) 

-\yn-x - g(xn^) + J^'y^\g(yn-i) - iT(un^,yn^ - g(y„-i)))]|| 

< \\yn - yre_i - (g(yn) - g{yn-i))\\ 

+ \\J^'yn)(9(yn)-lT(un,yn-q(yn))) 
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- J^(,,Wn)(^(yn-i) - 7 ^ ( ^ - 1 , y„_i - q{yn-i] 

+ \\J^'yn)(g(yn-i) - 7TK- i , ! / n - i - q(yn-i))) 

- J?{-'yn-l)(g(yn-i) - 7 r K - i , y n - i - g(y„-i)))|| 

+ l\\T{un, yn - q(yn)) - T(un_u yn - q(yn))\\ 

+ nr\\T(un-i,yn-q{yn)) -T(un-i,yn-i - q(yn-i))\\ 

+ <p\\yn-yn-il (3.2.18) 

Using the same argument as for (3.2.11), we have 

I k - yn-i - (g(yn) - g(yn-i))\\
2 < (1 - 25g + Q4C2\

2
g)\\yn - Vn^\\\ (3.2.19) 

As g is Lipschitz continuous with constants Xg, we have 

\\g{vn) ~g(yn-i)\\ < \g\\yn-yn-i\\. (3.2.20) 

By using the Lipschitz continuity of T in first argument and G is D-Lipschitz con

tinuous, we have 

\\T(un,yn - q(xn)) - T(un_1 ;yn - q{yn))\\ 

< ^Ti\\Un - Un-i\\ 

^XTAl + n-'MGMMxn-i)) 

< A T I A D G ( 1 + n-l)\\xn - xn_!||. (3.2.21) 

By using the Lipschitz continuity of T in second argument, we have 

\\T{un^yn - q{yn)) - T(un_i,yn_i - q(yn-i))\\ 

< ATJyn - yn_! - (q(yn) - q(yn-i))\\. (3.2.22) 

Using the same argument as for (3.2.11), we have 

\\yn - yn_! - (q(yn) - g(yn_i))f < (1 - 2Sq + 64C2A_2)||yn - yn.x\\. (3.2.23) 
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By (3.2.22) and (3.2.23), we have 

\\T(un-i,yn - q(yn)) - T(un-i,yn_i - q{yn-i) 

< XT2 y
/ l - 2 5 g + 64C2A2||yn - yn_x \ 

Using (3.2.19)-(3.2.21) and (3.2.24), (3.2.18) becomes 

(3.2.24) 

||2/„+i - yn|| < y 1 - 2Sg + 64C2A2||yn - j/„_i|| + Xg\\yn - yn^\ 

+lXTlXDa{l + n~l)\\xn - zn_i|| + 7A r a^/l-2«59 + 64C2A2 

x | | 2 / n - 2 / n - l | | + ^ | | y n - J / n - l | | 

< ^ 1 - 2 ^ + 64C2A2 + Xg + <p + 7 A T 2 A v / l -25 g + 64C2A2 

x | | j / n - yn_i || + 7ATlXDG(1 + n_ 1) ||a;n - xn- i ||• (3.2.25) 

Equation (3.2.17) and (3.2.25) implies that 

||xn+i - xn\\ + \\yn+i -yn\\ 

< yjl - 26f + QACXX) + Xf + i> + pA5l ^ 1 - 25p + 6 4 6 ^ 

+7AT1Ai3G(l + n- 1 ) ] | | a ; r a -x n _ 1 | |+ [^1 - 2<5P + 64C2A2 

+Xg + if + 7AT2yjl - 25q + 64C2A2 + PXS2XDF(1 + n'1) 

x\\yn~yn-i\\ 

< 0n(\\xn - x^W + \\yn - yn-xW), (3.2.26) 

where 

6n = maxl yjl - 25f + QAdXj+Xf+iP+pXs^l - 2SP + 64C1A2+7ATlA.DG(l+rr1), 

yjl - 25g + 64C2A2+A9+^+7AT2 <Jl - 25q + 64C2A2,+pA52ADF(l+rT1) 

Let 
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9 = maxi yjl - 28f + 64C1AJ + Xf + ^ + pA S l ^1 - 25p + 64CiA2 + 7 AT 1 A D G , 

^ 1 - 2<5g + 64C2A2 + Aff + <p + 7AT2 ^ / l - 25, + 64C2A2 + p\S2\Dp I. 

Then 0n —)• 9 as n —> 00. By condition (3.2.9) we know that 0 < 6 < 1 and so 

(3.2.26) implies that {xn} and {yn} are both Cauchy sequences. Thus, there exists 

x £ Ei and y E E2 such that xn -> x and yn —)• y as n —>• 00. 

Now we prove that un —> u E G(x) and vn —> v E F(y). In fact, it follows from 

(3.2.13) and (3.2.21) that {un} and {vn} are also Cauchy sequences. Let un —>• u 

and un —> v, respectively. We will show that u E G(x) and v E F(y). 

Since un E G(xn) and 

d(un,G(x)) < max ld(un,G(x)), sup d(G(xn),v) 
I t/€G(z) 

<max>| sup d(y,G{x)), sup d(G(xre),f) 
2/GG(x„) -ueG(x) 

= £>(G(a:n),G(x)), 

we have 

d(u, G(x)) < \\u - un\\ + d{un, G{x)) 

<\\u-un\\+D{G{xn),G(x)) 

< \\u - un\\ + \DG\\xn — â || —̂  0, as n —> +00, 

since G(x) is closed, we have u E G(x). Similarly v E F(x). By continuity and 

Algorithm 3.2.1, we know that x,y,u, and v satisfy the following relation 

f(x) = jyM(f(x)-PS(x-p(x),v)), 

g{y) = J^>y\g{y)-1T{u,y-q{y)). 

By Lemma 3.2.1, (x,y,u,v) is a solution of Problem (3.2.1). This completes the 

proof. 
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3.3. System Of Generalized Variational Inclusions 
With //-accretive Operators 

In this section, we study a system of generalized variational inclusions with H-

accretive operators in uniformly smooth Banach spaces. An iterative algorithm is 

denned for computing approximate solutions of this system of generalized variational 

inclusions with H-accretive operators. The convergence criteria is also discussed. 

Let E be a real Banach space. Let G, F : E —> CB(E) be multivalued mappings 

and f,g,p,q : E -> E, S,T : E x E -> E, Hi,H2 : E -> E are all single-valued 

mappings. Let M : E x E —> 2E be a multivalued mapping such that for each x G E, 

M(-,x) is ifi-accretive and N : E x E —> 2E be a multivalued mapping such that for 

each y e E, N(-,y) is if2-accretive. We consider the following system of generalized 

variational inclusions with H-accretive operators: 

Find x,y G E, u e G(x), v e F(y) such that 

OeS{x-p(x),v) + M(f(x),x), 

OeT(u,y~q(y)) + N(g(y),y). (3.3.1) 

The following fixed point formulation convert system of generalized variational 

inclusions with H-accretive operators (3.3.1) into a fixed point problem. 

Lemma 3.3.1. x,y G E,u G G{x), v G F(y) is the solution of system of generalized 

variational inclusions with H-accretive operators (3.3.1) if and only if it satisfies 

m = J3??[HIU(X)) - ps(x - P{x),v)], 

9(y) = 4{J[HMy)) - lT(u,y- q(y))}, 

where p > 0 and 7 > 0 are constants. 

Proof. The proof of the above lemma is a direct consequence of the Definition 

1.2.19 of if-resolvent operator and hence is omitted. 
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We invoke Lemma 3.3.1 and Nadler's theorem 1.2.3 [87] to propose the following 

iterative algorithm. 

Algorithm 3.3.1. For any given x0,y0 e E, we choose u0 e G(x0), v0 e F(y0) and 

compute {xn}, {yn}, {un} and {vn} by iterative schemes as follows: 

Zn+l = Xn- f(Xn) + J%^n)[Hx{f{xn)) - PS(xn - P(xn), Vn)}: 

Vn+i =yn- g(yn) + J$"n)[HMyn)) - iT{un, yn - q{yn))] 

and choose un+i € G(xn+i) and vn+i e F(yn+1) such that 

| | u n - w n + i | | < D(G(xn),G(xn+l)), 

\\vn - vn+1\\ < D(F(yn),F(yn+1)), 

where p > 0 and 7 > 0 are constants and n = 0,1, 2, 

Now we study the existence of solutions of system of set-valued variational 

inclusions with H-accretive operators (3.3.1) and the convergence of approximate 

solutions obtained by the Algorithm 3.3.1. 

Theorem 3.3.1. Let E be a real uniformly smooth Banach space with module 

of smoothness rjs(i) < Ct2 for some C > 0. Let HX,H2 : E —> E be strongly 

accretive and Lipschitz continuous operators with constants rx, r^ and A^ A/f2, 

respectively. Let f,g,p,q : E —>• i? be strongly accretive mappings with constants 

8f, Sg, Sp and 5q, respectively; and Lipschitz continuous with constants A/, Xg, Ap 

and \q, respectively. Suppose that S,T : E x E -> E be both Lipschitz continuous 

mappings in the first argument with constants Asi; XTl, respectively; and in the 

second argument with constants AS2, AT2, respectively. Let G,F : E -> CB(E) be 

D-Lipschitz continuous mappings with constants AoG and A#F, respectively. Let 

M : -B x £• -> 2B be a multivalued mapping such that for each x G E, M(-,x) is 

#!-accretive and N : S x E -> 2E be a multivalued mapping such that for each 

y £ E, N(-, y) is J?2-accretive and the ifi-resolvent operator associated with M and 

./^-resolvent operator associated with N are retractions. 

If there exists constants p > 0 and 7 > 0 such that 
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Azad £y 

0 < i i^i+^m + i 
r : V l - p A S l 5 ( p ) r2 

n / R f ^ i l XH2\ + l^T2B{q) 1 . , 
U < B{g + — W—- + / / + — P\S2XDF 

r2 V 1 - I\T2B(Q) ri 

where 

£ ( / ) = y/l - 25 ; + 64CAJ; B(p) = ^ 1 - 25p + 64CA2; 

B(<?) = v/l-2<J f f + 64CA|; B(q) = yJl-25q + MC\* . 

Suppose that 

for all x, xn, xn_i G E 

(3.3.3) 

and 
r^(-*»)/ TN{;yn-i) 

for all y, yn, yn-X € £ 

(3.3.4) 

Then the system of set-valued variational inclusions with H-accretive operators 

(3.3.1) admits a solution (x,y,u,v) and the sequences {xn}, {yn}, {un} and {vn} 

converge to x, y, u and v, respectively, where {xn}, {yn}, {un} and {vn} are the 

sequences generated by Algorithm 3.3.1. 

Proof. From Algorithm 3.3.1 and Theorem 1.2.4, we have 

llZn+l-Znll = \\xn-f{xn) + J^'fn)[Hl{f{xn))-pS{xn-p{xn),Vn)} 

-[x r i_1-/(x7 1_1) + J^ ; x "- l ) [F 1 ( / (x n _ 1 ) ) -p5(a ; r i _ 1 -p(x n _ 1 )^ n _ 1 ) ] | | 

< ||xn - Zn_i - (f{xn) - f(xn-i))\\ 

+ \\J^Xn)[H1(f(xn))-pS(xn-p(xn),vn)} 

+ pH^l^U^n-l)) - PS(xn^-p(xn^),Vn^)} 

55 



- J & ^ m f i x ^ - p S i X n ^ - p f a - ! ) , ^ ) ] ] ] 

< \\Xn ~ Xn_! - (f(xn) - /(Xn_!))|| + - H t f i C / M ) - H^fix^)) 

- p[S{xn-p(xn),vn) - S(xn_i -p(a:n_i),tin)]| | 

H /o||5(a;n_i -p (x n - i ) , u n ) - 5(xn_: -p(xn_i),wn_i) | | 

+ II^K(/B)[^l(/(^n-l)) -pS{xn.X ~p(xn-1)1Vn.1)] 

~ ^ / " - ^ [ ^ ( / ^ n - i ) ) - P5(x„_i ~p(xn^),vn^)}\\. (3.3.5) 

Since / is strongly accretive with constant 5f and Lipschitz continuous with constant 

A/, by Proposition 1.2.1, we have 

||xn - xn_j - (f(xn) - /Orn-i))H2 < (1 - 25/ + 64CA 2 )K - xn-X\\2 

= B2{f)\\xn-xn_l\\\ (3.3.6) 

where B2(f) = (1 - 2<f, + 64CA2). 

Since ^ is Lipschitz continuous with constant XH1 , f is Lipschitz continuous with 

constant Xj, p is strongly accretive with constant 5P and Lipschitz continuous with 

constant Ap, S is Lipschitz continuous in the first argument with constant Xs1 and 

using Proposition 1.2.1, we have 

WHiifM) -Hi(f(xn-i)) - p[S(xn-p(xn),vn) -S(xn-i -p(ar„_i),un)]| |2 

< \\Hi(f(xn)) - #i(/(:i:n_i))||2 - 2p(S(xn - p(xn),vn) - 5(x„_i -p(xn-i),vn), 

j{Hl(f(xn)) - H^ffan-x)) - p[S(xn - p(xn),Vn) - S{xn-i - p ( X n - l ) , Vn)])) 

< AH lA / | |3 ;n-xn_i | |2 + 2p||S'(xn-p(a;n),un) - 5(a;n_i -p(x„_i),v„) | | 

x||i^1(/(a;„))-Jf/'i(/(a:„_1))-p[S ,(a:n-p(a;„),i; ra) -5(a;„_i — p(ac„_i), v„)]||. 

(3.3.7) 

Now as 5 is Lipschitz continuous in the first argument with constant Xsy and using 

the same argument as for (3.3.6), we have 

||5(a;„ -p(xn),vn) - S{xn-i -p(xn-i), vn)\\ 

< A5l \\xn - Z„_i - (p(xn) - p(xn_] 
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< \Sl yjl - 25p + 64CX2
p\\xn - xn-!||. (3.3.8) 

Thus, 

\\Hx(f(xn)) " # i ( / (zn- i ) ) - p[S(xn -p(xn),vn) - S(x^ -p(xn^),vn)]\\2 

< XHlXf\\xn - x^W2 + 2pXs^l - 25p + 64C\$\\xn - xn_x|| 

x ll-^i ( /W)--f f i ( / (xn- i ) ) -p[5 ' (a ; n -p(x n ) , 'u n ) -5(a ;„_i -p(x n _i) ,u n ) ] 

< XHlXf\\xn - Xn^W2 + pXSlJl - 25p + 64CA2|||a;n - xn_i||2 

+ \\H1(f(xn))-Hi(f(xn-l))-p[S{xn-p(xn),vn)-S(xn_1-p(xn-1),vn)}\\2 

(3.3.9) 

which implies that 

| | # i ( / M ) -Hi(f(xn-1)) - p[S(xn-p(xn),vn) -S(a;„_i - p(xn-i), vn)}\\2 

^ XHlXf + pXSlV
/l~26p + 64CXl 

- l - p A S l V / l - 2 ( 5 p + 64CA^ " 1N 

< A ^ + p A ^ ^ _ 2 

l - p A S l B ( p ) 

where B(p) = y/l - 26p + 64CA£. 

It follows from the Lipschitz continuity of S in the second argument with constant 

Xs2 and D-Lipschitz continuity of F with constant XDF, that 

||5(jC„_i -p{Xn-i),Vn) - S(xn-i -p(xn-i),Vn-i)\\ 

< ^S2\\
vn ~ Vn-i\\ 

<\sMF(yn),Hvn-i)) 
<XS2XDF\\yn-yn-i\\. (3.3.11) 

Using (3.3.6)-(3.3.11) and condition (3.3.3), (3.3.5) becomes 

i II ̂  T 3 f t \ \ \ ii i X ^Xf + pXSlB(p) 
\xn+i -xn\\ < B(f)\\xn - xn-i\\ + — W — r

J — — = ^ — x n - x n _ i 

+—pAsaA^Hj/n - 2/n_i|| + //| |:rn - xn_i\\ 
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H P^S2^DF\\yn - Vn-l\\-

\Xn Xn—\\ 

(3.3.12) 

Again by Algorithm 3.3.1 and Theorem 1.2.4, we have 

-[yn-i - g(yn-i) + JJS£;Wn_l)[#2(0(j/n--i)) - 7 ^ ( ^ - 1 , ^ - 1 - q(yn~i 

< \\yn - j/n_i - (g(yn) - g{yn-i))\\ 

+ \\JH^n)mg{yn)) - 7 TK,y n - q{xn))\ 

~ 4tflHMyn-l)) - 7 ^ - 1 , ^ - 1 - ?(</n-l))]|| 

+ WJ^T^HMyn-i)) - TTK- i .yn-x - q(yn-i))} 

< \\yn - j/n_i - (g(yn) - ^(j/„-i))|| + —\\H2(g(yn)) - H2(g{yn-i)) 

T2 
l[T{un, yn - q{yn)) - T(un, yn-X - q{y, 'n-1 

1 
+•—7||T(u„,2/n_i -?(j/n-i)) -T(i in_i ,yn_i -g( j / n- i ) ) | | 

+ ll^2
(,?n)[^2(^(yn-i)) - 7 ^ K _ 1 ) y n _ 1 - q{yn-i))] 

- J^n-l][H2{g{yn^)) - 7 T K _ 1 ; 1 / n _ 1 - qr(2/ri_1))]j|. (3.3.13) 

Since g is strongly accretive with constant 5g and Lipschitz continuous with constant 

Xg and using the same argument as for (3.3.6), we have 

hn - J/n-1 - (Sfon) " <K^-l))l|2 < (1 ~ ^g + 6 4 ^ ) 1 1 ^ - y^f 

= B\g)\\yn-yn^\\\ 
(3.3.14) 

where B2{g) = (1 - 2<5P + 64CAJ). 

Since #2 is Lipschitz continuous with constant XH2, g is Lipschitz continuous with 

constant Xg, q is strongly accretive with constant Sq and Lipschitz continuous with 
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constant Ag, T is Lipschitz continuous in the second argument with constant XT2 

and using Proposition 1.2.1, we have 

\W9(yn)) ~ H2{g(yn^)) - j{T(un,yn - q(yn)) - T(un_uyn^ - q(yn-i))}\\2 

< \\H2(g(yn)) - H2(g(yn-i))\\
2 - 2j(T(un,yn - q(yn)) - T ^ y ^ - q{yn-i)), 

3(H2{g(yn)) - H2(g(yn-i)) ~ l[T(un,yn - q(yn)) - T{un,yn-i - q(yn-\))])) 

< XH2Xg\\yn - 2/n-i||2 + 2j\\T(un, yn - q(yn)) - T(un,yn-X - q(yn-i))\\ 

x\\H2{g{yn)) ~ H2{g{yn-i)) -l[T(un,yn - q{yn)) -T{un,yn^ - q{yn_1))]\\. 

(3.3.15) 

Now as T is Lipschitz continuous in the second argument with constant Ay2 and 

using the same argument as for (3.3.6), we have 

\\T(un,yn - q(yn)) - T( i t n ,y n_i - q(yn-i))\\ 

< ^TiWyn - i/n-i - {q{yn) - g(yn-i)) | | 

< A r2^/l - 25q + 64CA2||yn - y ^ . (3.3.16) 

Thus, 

\\H2(g{yn)) - H2{g{yn-i)) - l[T{un,yn - q{yn)) - T{un,yn^ - g(y„-i)N1"2 

< AH2A9||y„ - yn-i\\
2 + 27AT2^/l - 2Sq + 64CA2||yn - y ^ U 

x\\H2(g{yn))-H2(g{yn^))--f[T{un,yn-q(yn))-T(un:yn^-q{yn-i 

< XH2\g\\yn - yn^\\2 + 7AT2 y/l - 25q + 64CA2{||yn - y^f 

+ | | H 2 ( 5 ( y n ) ) - ^ 2 ( 5 ( l / n - l ) ) - 7 [ r K , l / n - g ( Z / n ) ) - T K , y n _ i - 7 ( l / n - l ) ) ] | | 2 j , 

(3.3.17) 

which implies that 

\H2{g{yn)) - H2(g(yn-i)) - j{T(un,yn - q(yn)) - T(un ,yn- i - q(yn-i))}\\ 
2 

< A g 2 A g + 7 A r 2 V / l - 2 ^ + 64gA^ | | _ 

- . l - 7 A r 2 V
/ l - 2 5 g + 64CA2 lWn Vn 1" 

^XHXg + ,XTB{q) 
l - 7 A T a B ( g ) 
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where B(q) = y/1 - 2Sq + 64C\2
q. 

It follows from the Lipschitz continuity of T in the first argument with constant A^ 

and D-Lipschitz continuity of G with constant ADG , that 

||T(un, j / n _ ! - q{yn-i)) - T(un-i,yn-i - q{yn-\))\\ 

< ATl||un - un_i|| 

<XTlD(G{xn,G(^n-l)) 

< \TI^DG\\XTI ~~~ xn-l\\-

Using (3.3.14)-(3.3.19) and condition (3.3.4), (3.3.13) becomes 

(3.3.19) 

ii ii n / MI ii 1 M t f , A o + 7 A T 2 - B (</),, i 

hn+i ~ yn\\ < B(g)\\yn - yn_i|| + -J i^1\TB(q) ^Vn ~~ Vn~^ 

H l^T^DaWXn - E n - i l l + A***||j/n ~ Vn~l\ 

'n(\j_
 l lXH2Xg + <y\T2B{q) • 

B(9) + ^ l - 7 A T 2 5 ( g ) + ^ . 

H—7AT1ADG||XTI - xre_i||. 

|!/n-J/n-ll 

Combining (3.3.12) and (3.3.20), we have 

H^ra+l — xn\\ + | | l /n+l ~~ VnW 

< 
R m x 1 xH,Xf + pXSlB{p) 1 

(3.3.20) 

•^n 2-ra-ll 

+ 
' , s. . 1 /A//2A9 + 7Ar2S(g) ^ 1 .. . 

r2V l -7Ar 2 -Bg n 

< 0[||a;n - zn_i || + ||yn - yn_i (3.3.21) 

where 

d = max{B(f) + ±-J^-
1 XHlXf + pXSlB(j>) 1 

r-i V l-pXSlB[p) r2 

1 \H2\g + -y\T2B(q) „ 1 -i 
B(9) + —\l -, „,x—p^\ + ^ + — P A 5 2 A ^ | . r2V l - 7 A r 2 5 ( 5 ) 
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H- resolvent equations and the convergence of iterative sequences generated by the 

algorithms is also dicussed. 

Let Ei and E2 be any two real Banach spaces, -S : Ei x E2 —> E\, T : Ei x 

E2 -> E2, v '• Ei -> Ei, q : E2 -^ E2, Hi : Ex -»• J^ and H2 : E2 -+ E2 be 

single-valued mappings, G : Ex ^ CB(E1), F : E2 -^ CB(E2) be multi-valued 

mappings. Let M : £1 x J5i -> 2£ l be # raccretive and N : E2 x E2 ^ 2E2 be 

i?2-accretive mappings. Let / : E\ —> E\ and g : E2 —> E2 be nonlinear mappings 

with f(Ei) n D(M(-,x)) ^ 0 and g(E2) D D(N{-,y)) ^ 0, respectively. Then we 

consider the following system of generalized H-resolvent equations: 

Find (x,y) e Ei x E2, u e G(x), v G -F(y), z' G Ex, z" G E2 such that 

5(x - p(x),v) + p-'Rutf^') = 0, P > 0, 

rKy-^D + ̂ d / ) ^ , 7>o, (3.4.1) 

where < ; * > = / - * ( # / / > ) , R»™ = I - H2{J^f) and J%?\ JN
H^ are 

the resolvent operators associated with M and N, respectively. 

Now we mention the corresponding system of generalized variational inclusions 

of the system of generalized H-resolvent equations (3.4.1). 

Find (x,y) G Ex x E2, u G G(x), v G F(y) such that 

OeS(x-p(x),v) + M(f(x),x), 

0GT(u,y-q(y)) + N(g(y),y). (3.4.2) 

Lemma 3.4.1. (x,y) G Ex x E2, u G G(x), v G F(y) is a solution of system of 

generalized variational inclusions (3.4.2) if and only if (x,y,u,v) satisfies 

/(*) = J%?[Hi(f{x)) - PS(x - p{x\ v)], 

9(V) = Jn^mgiv)) ~ lT(u,y- q(y))], 

where p > 0 and 7 > 0 are constants. 

Proof. The proof of Lemma 3.4.1 is a direct consequence of the Definition 1.2.19 

of //-resolvent operator, and hence is omitted. 
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The following proposition established an equivalence relation between the sys

tem of generalized H-resolvent equations (3.4.1) and corresponding system of gen

eralized variational inclusions (3.4.2). 

Proposit ion 3.4.1. The system of generalized variational inclusions (3.4.2) has 

a solution (x,y,u,v) with (x,y) G E\ x E2, u G G(x), v G F(y) if and only if 

system of generalized H-resolvent equations (3.4.1) has a solution (z',z",x,y,u,v) 

with (x, y) G Ei x E2, u G G(x), v G F(y), z' G E1, z" G E2 such that 

m = J^f(z'), (3.4.3) 

9{v) = JNH^\n (3-4.4) 

where z' = Hi(f(x)) - pS(x-p(x),v) and z" = H2(g(y)) - 7/T(u,y - q{y)). 

Proof. Let (x,y,u,v) be a solution of system of generalized variational inclusions 

(3.4.2). Then by Lemma 3.4.1, it satisfies the following equations 

/(*) = j£??[Hi(f(x)) - PS(x - p(x),v)}, 

9(V) = 4{
2f[HMy)) ~ lT(u,y~ q(y))}. 

Let z' = H^fix)) - pS{x-p{x),v) and z" = H2{g{y)) - -yT(u,y - q{y)), then we 

have 

z' = Hl{J^f\z'))-pS{x-p{x\v) and z" = H^fiz'^-^T^y-qiy)), 

it follows that 

ti-H^fW) = *-Hi(J$£V)) 

= Hi{J%?V))-pS{x-p{xlv) 

= -pS(x-p(x),v), 

and similarly 

(/ - H2(J%]f))(z") = - 7 T ( n , y - q(y)), 
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i.e., 

S(x-p(x),v) + p-1R%f(z') = 0, 

T(u,y-q(y)) + 1-
lRI£?(z")=0. 

Thus, (z',z",x,y,u,v) is a solution of system of generalized H-resolvent equations 

(3.4.1). 

Conversely, let (z1, z", x, y, u, v) be a solution of system of generalized H-resolvent 

equations (3.4.1), then 

pS{x-p{x\v) = -R^f{z'\ (3.4.5) 

lT(u,y-q(y)) = -R^\z"). (3.4.6) 

Now 

PS(x-p(x),v) = -R^f(z>) 

= -(/ - HriJ^fW) 
= mj^fw) - z> 

-[H^fixY-pSix-pix)^)}, 

which implies that 

m = JHtfmfW) - pS(x-p(x),v)}, 

and 

lT{u,y-q{y)) = -RN
H^{z") 

= -(I - H,{JN
H^W) 

= (H3(JS™W) - z>' 

= (HtiJg^WMv)) ~ lT(u,y- q(y))} 

-[H2(g(y))~^T(u,y-q(y))i 

which implies that 

9(y) = 4™[HMv)) - lT{u,y- q(y))}. 
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Thus, we have 

/(*) = J$?[Hi(f{x)) - PS(x-p(x),v)], 'HllP 

9(V) = J^WMy)) - 7T(«,y - q(y))]. 

Thus, by Lemma 3.4.1, (x,y,u,v) is a solution of system of generalized variational 

inclusions (3.4.2). 

Alternative Proof. Let 

z' = H1(f(x))-pS(x-p(x),v) and z" = H2{g{y))->yT(u,y - q(y)), 

using (3.4.3) and (3.4.4), we can write 

*' = mjfifVW-pSix-pixlv) and z" = (H^fW^-^T^y-qiy)) 

which implies that 

S(x-p(x),v)+p-1R%f(z') = 0, p>0, 

T{u,y-q{y)) + i-lRN
H

{J{z") = ^ 7 > o , 

the required system of generalized H-resolvent equations (3.4.1). 

We suggest a number of iterative methods for computing the approximate so

lutions of system of generalized H-resolvent equations (3.4.1). 

Algorithm 3.4.1. For given (x0,y0) e Ei x £2 , u0 e G(x0), v0 e F(y0), z'0 e Eu 

Z'Q 6 E2, compute {z'n}, {z„}, {xn}, {yn}, {un} and {vn} by the iterative schemes 

as follows: 

fM = J £ ( / B ) « ) . (3-4.7) 

9{Vn) = 4l?)W)> (3-4-8) 
uneG(xn): \\un+1-un\\ < D(G(xn+i),G{xn)), (3.4.9) 

vneF{yn): \\vn+l-vn\\ < D{F{yn+1),F(yn)), (3.4.10) 

*n+i = [Hi(f{xn))-pS(xn-p(xn),vn)], (3.4.11) 

4+i = [H2(g(yn)) - lT(un,yn - q(yn))}. (3.4.12) 

n = 0, l ,2, 
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The system of generalized H-resolvent equations (3.4.1) can also be written as 

z' = #!(/(*)) - S(x -p(x),v) + (/ - p - ^ / V ) , 

z" = H2(g(y)) - T(u,y- q(y)) + (I - ^R^iz"). 

We use this fixed-point formulation to suggest the following iterative method. 

Algorithm 3.4.2. For given (x0,yQ) G E1 x E2, u0 G G(x0), v0 G F(y0), z'0 G Eu 

z'o £ F2,, compute {z'n}, {z1^}, {xn}, {yn}, {un} and {vn} by the iterative schemes 

as follows: 

f[Xn) = JHi,f> " \Zn)i 

9(yn) = JS^K), 

un G G{xn) : Hwn+i - un\\ < D(G(xn+i),G(xn)), 

vn£F(yn): \\vn+1-vn\\ < D{F{yn+l),F(yn)), 

4*1 = Hi{f{Xn)) - S(Xn - P(xn),Vn) + (I- p-^RH^Vn), 

C l = HMVn)) - T{Um Vn - qiVn)) + ( / - TX)B$?\%)-

n = 0,l ,2, 

Now we study the existence of solutions of system of generalized H-resolvent 

equations (3.4.1) and the convergence of the iterative sequences generated by the 

Algorithm 3.4.1. 

Theorem 3.4.1. Let E\ and E2 be any two real uniformly smooth Banach spaces 

with module of smoothness TEl{t) < Cit2 and rE2{t) < C2t
2 for C2,C2 > 0, re

spectively. Let G : J5i -> CB{E1) and F : E2 -> CB(E2) be D-Lipschitz con

tinuous mappings with constants \DG and \DF, respectively. Let H\ : E± —> E\ 

and H2 : E2 —> E2 be strongly accretive and Lipschitz continuous mappings with 

constants n , r2 and XHX, A#2, respectively. Let M : E\ x E\ —> 2El be i^-accretive 

operator and N : E2 x E2 —> 2Ei be ^-accretive operator such that the Hi-resolvent 

operator associated with M and if2-resolvent operator associated with N are re

tractions. Let f,p:Ei^Ei,g,q:E2^-E2be strongly accretive mappings with 

constants 8f, 5P, Sg and Sq, respectively and Lipschitz continuous with constants Ay, 
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Xp, Xg and Xq, respectively. Let S : Ex x E2 -» E1 and T : E\ x E2 -» £2 be 

Lipschitz continuous in first and second arguments with constants Xs1, As2 and A^, 

Ar2, respectively. 

If there exists constants p > 0 and 7 > 0, such that 

B[/2 + 1 + pASl y i - 2(5P + 64dAg + 7ATlXDa 

n ( i - f ) 

n _ Bi'/2 + 1 + 7ATa y i - 2,5, + 64C2A^ + p\s,\DF __ i , , , , . , , 
U < -? ^ r < 1, {6A.L6) 

where 

5 ; = 2y /l-2r1A2+64C1A2 f iA2, B'2 = 2 ^ 1 - 2<5/ + 64CiAj, 

5;' = 2 ^ 1 - 2r2A2 + 64C2A|f2A2, 52 ' = 2 ^ 1 - 2<Jfl + 64C2A2 . 

Then there exists (a:,?/) G £1 x £2 , u G G(z), w G F(y), z' G £1, 2" G E2, 

satisfying the system of generalized H-resolvent equations (3.4.1) and the iterative 

sequences {z'n}, {z^}, {xn}, {yn}, {un} and {vn} generated by Algorithm 3.4.1 

converge strongly to z', z", x, y, u and v, respectively. 

Proof. From Algorithm 3.4.1, we have 

I I 4 + 1 - 4 I I = \\HlU{xn))-PS(xn-pM,Vn)-[Hi{f{xn-i))-pS{xn-i-p(xn-i),Vn-i 

< \\xn - xn-i - (Hi(f(xn)) - # i ( / (z n _i) ) ) | | + \\xn - xn-i\\ 

+p\\S(xn - p(xn),vn) - S(xn_i -p(x„_i),u„_i) | | . (3.4.14) 

Since Hi is strongly accretive with constant r\ and Lipschitz continuous with con

stant Aifj, / is Lipschitz continuous with constant A/ and by Proposition 1.3.. 12, we 

have 

\\xn - xn_x - (tfi(/(z„)) - ^ ( / ( a ^ ) ) ) ! ! 2 

< \\xn - Xn^f + 2(-(H1{f(Xn)) - H^ftXn-!))), 

j(xn - xn_i - {Hi(f(xn)) - iJi(/(z„_i)))) 

= \\xn - xn-i | |2 + 2(-(Hi(f(xn)) - Hi(f(xn-1))),j{xn - ain-i)) 
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+2{-(H1{f(xn))-H1(f(x^1))), 

j{xn - xn-i - (Hi(f(xn)) - i7i(/(a;n_i))) - j(xn - i„_i))> 

< \\xn - xn^\\2 - 2r1 | | /(xn) - /(xn_!) | |2 

< \\xn - Zn-ill2 - 2r1X
2

f\\xn - zn_i||2 + QACiX2
HlX

2
f\\xn - xn-i | |2 

' < (1 - 2rxA
2 + 64C1A^A2) ||a;n - zn- i | |2 . (3.4.15) 

Since S is Lipschitz continuous in both arguments, F is D-Lipschitz continuous, we 

have 

\\S(xn-p{xn),vn) - 5 ( x „ _ i -p{xn-i), vn-i)|| 

= \\S{xn - p{xn),Vn) - S (z n -1 - p(xn-l) ' i Vn) 

+S(xn-i -p(xn-i),vn) - S(xn-i -p(a;„_i),i;n_i)|| 

< \\S(xn-p{xn),Vn)-S(xn-i - p(Xn-l),Vn)\\ 

+ \\S(xn-i - p(xn-i),vn) - S(xn-i -p(xn-i),vn-i)\\ 

< XSl]\xn - Xn-i - (p(xn) -p{xn-i))\\ + XS2\]vn - Vn^\\ 

Xn Xn—1 - (p{xn)-p{xn-i))\\ + XS2D(F{yn),F{yn^)) 

< XSl\\xn-xn-i-(p{xn)-p(xn-i))\\ + XS2XDF\\yn~yn^\\. (3.4.16) 

By Proposition 1.2.1, we have 

\\xn - xn^ - (p(xn) - p(xn^))\\2 < (1 - 2SP + 64dA2) \\xn - xn_!||2. (3.4.17) 

Using (3.4.17), (3.4.16) becomes 

\\S(xn - p{xn), Vn) - S (x n _! - P(^n- l ) , fn- l ) | | 

< A S l ^ l - 2 5 p + 64CiA2||a;n - z n _i | | + A52ADF||yra - 2,„-i||. (3.4.18) 

Using (3.4.15), (3.4.18), (3.4.14) becomes 

z'n+l-z'n\\ < v/l - 2 r i A j + 64CiA2
7iA

2c||a;n-:En_1|| + ||:En-:rn_1| 

+P ( A S I yjl - 26p + 64CiA2||a;n - xn_i|| + As2ADF||yn - y„_i||j 

68 



= (y / l -2r 1A2+64C 1A| f iA2 + l + p\SlJl - 25p + QAC.Xj, ) Hx^-x^!| | 

+pXs2XDF\\yn-yn_i\\ 

= (B[/2 + l + PXSlyjl - 25p + 64CiA2 ) \\xn - xn^\\ 

+pXS2XDF\\yn-yn_1\\, (3.4.19) 

where B[ = 2J1 - 2rxX) + UdX^X). 

Again, from Algorithm 3.4.1, we have 

lkn+i-<ll = \\H2{9{yn))-lT(un,yn-q(yn))-[H2{g(yn-i))~lT(un^1,yn-1-q(yn_1))}\\ 

< \\yn-yn-i - {H2(g(yn)) - H2(g(yn-1)))\\ + \\yn -yn-i\\ 

+j\\T(uniyn - q{yn))-T{un.uyn^ - q{yn-i))l (3.4.20) 

Since H2 is strongly accretive with constant r2 and Lipschitz continuous with con

stant XH2, g is Lipschitz continuous with constant As and by proposition 1.2.1, we 

have 

\\yn - yn_1 - (H2(g(yn)) - ^ ( y ^ ) ) ) ! ] 2 

< (1 - 2r2X
2

g + 64C2X
2
H2X

2
g) \\yn - y^f. (3.4.21) 

Since T is Lipschitz continuous in both arguments, G is D-Lipschitz continuous, we 

have 

\\T(un,yn - q(yn)) - r(un_i,yn_i - q{yn-\))\\ 

< \\T(un,yn - q(yn)) - T(un-Uyn - q(yn))\\ 

+ \\T(Un-l>yn ~ q{yn)) ~ T(Un-Uyn-i - q{yn-l))\\ 

< XTl\\un - Wn-i|| + XT2\\yn - q(yn) - (yn_1 - q(yn_1))\\ 

< ATl £>((?(<), G(zn_i)) + Ar2||yn - yn-i - (q(yn) - g(yn-i))|| 

< ^T1XDG\\xn~xn^1\\+XT2\\yn-yn_1-(q(yn)-q(yn_1))\\. (3.4.22) 

Using same argument as for (3.4.17), we have 

\\yn - yn-x - (q(yn) - g(yn-i))||2 < (l - 25q + 64C2A
2) \\yn - yn_x\\

2. (3.4.23) 

Using (3.4.23), (3.4.22) becomes 
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\\T(un,yn - q(yn)) - T(un-i,yn-i - q(yn-i] 

< AriADo||a:n - x^W + \ny/l ~ 25q + 64C2A2||2/n - ^ . J . (3.4.24) 

Using (3.4.21), (3.4.24), (3.4.20) becomes 

C-i - <ll ^ V
/ l -2r2A2 + 64C2A

2
H2A2||yn - yn^\\ + \\yn - y ^ 

+7 (^T^DaWxn - Xn-iH + AT2^ 1 - 2<J, + 64C2A
2.||yn - yn-i\\j 

= (^/l - 2r2A2 + 64C2A|f2A2 + 1 + 7AT2^/l - 25, + 64C2A
2) U ^ - y ^ 

+7AriAi)G||2;n-xn_i|| 

= (Bi72 + 1 + 7 A r a ^l-2<J , + 64C2A2) \\yn - yn^\\ 

+7Ar1AjDG||x„-a;„_i||, (3.4.25) 

where B'( = 2^1 - 2r2A
2 + 64C2A^A2,. 

By (3.4.19) and (3.4.25), we have 
\\z' -7'\\4-\\7" _ 7"\\ 

< (sJ/2 + 1 + pASlA/ /l-25p + 64C1A2 + 7 A T I A D G ) ||xn - a ^ H 

+ (Bi'/2 + 1 + 7Ar2A/l-25g + 64C2A2 + PXS2XDF) \\yn - yn-i\l 

(3.4.26) 

Also from (3.4.7) and (3.4.8), we have 

\\xn - xn_!|| = \\xn - zn_: - (/(zn) - f(xn^)) + J%up{z'n) - J H 1 > P « - I ) I I 

< ||X„ - Xn-! " (/(X„) - /(X^))!! + | | < , p « ) - Jl^'n^W 

< \\xn - xn_x - {f(xn) - /(xn_!))|| + -\\z'n - z'^l (3.4.27) 

Using same argument as for (3.4.17), we have 

||z„ - !„_! - (f(xn) - /(xn-i))| |2 < (1 - 26f + 64CiAj) \\xn - xn^\\2. (3.4.28) 

Using (3.4.28), (3.4.27) becomes 
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•&71, 

1 
n - a;„-i|| <y/l- 2Sf + 640^2(1^ - xn^\\ + -\\z!n - z'n^\ 

JDI 1 

< — l l r - r 11I -I- —-IIy - ?' II 

where B'2 = 2J\ - 25 f + 64CiAj. 

Which implies that 

and 

r i ( l - # 

lz' - z' II (3.4.29) 

|l/n - Vn-l\\ = \\yn ~ Vn-l ~ {g{Vn) ~ pft /n-l)) + . / t f a , 7 « ) ~ JH2a(
Zn-l) 

< ||y» - Vn-i - (g(yn) - g(yn-i))\\ + II • / & „ « ) - J$7ll(4-
l 

< ||yn-?/n-i - (g{yn) - 9(yn-i))\\ + — I K - 4 - 1 1 
^2 

(3.4.30) 
' 2 

Using same argument as for (3.4.17), we have 

I k - l/n-i - (g(Vn) ~ g(yn-i))\\2 < (1 - 255 + 64C2Aj) | | j ,B - ^ J 2 . (3.4.31) 

Using (3.4.31), (3.4.30) becomes 

\\yn - 2/n-i|| < A/1 - 25ff + 64C2A2||yn - yn-i | | + —1|< - <'_i|| 

S II i 

2 11 II l l " " I I 
— TrWVn ~ Vn-lW H 2 n — Z n - l l l ' 

2 r2 
where 52 ' = 2^/1 - 2Sg + 64C2A^. 

Which implies that 

||2/« — 2/«-i|| < 

Using (3.4.29) and (3.4.32), (3.4.26) becomes 

V -z'\\ + \\z" -z"\\ 
l"W,-L1 ^-7] T^ K -nJ -1 ^ n 

B'J 
T 2 [ l - ^ 

\z" - z" I (3.4.32) 

°n+l ^n\ 

< 

°n+l ^nl 

BJ/2 + 1 + p\Sl y/l - 25p + 64CiA£ + 7ATl ADG 

f i ( i - f ) 
lzn Zn-l\ 
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+ 
B'{/2 + 1 + 7 A r a V / l - 2 5 9 + 64C2A^ + P\S2XDF 

T2 1 - ^ 
\zn Zn-l\ 

<«(IK-4-ill + IK-dll). (3-4.33) 
where 

S i /2 + 1 + p\Sl v/l-25p + 64C1\$ + 7ATlAOG 
9 = max< — 

n l - -f 
Bf/2 + 1 + 7AT2 X/1 - 2Jg + 64C2A^ + pAg2 A J F \ 

By (3.4.13), we know that 0 < 0 < 1 and so (3.4.33) implies that {z'n} and {z!^} are 

both Cauchy sequences. Thus, there exists z' G Ex and z" G £2 such that z'n —> z' 

and z^ —> 2" as n —>• 00. 

Prom (3.4.29) and (3.4.32), it follows that {xn} and {y„} are also Cauchy sequences, 

that is, there exists x G E\ and y e E2 such that xn -4 a; and yn ->• t/ as n -> 00. 

Also from (3.4.9) and (3.4.10), we have 

|| < D(G{xn+i),G(xn)) < XDc\\xn+i -xn\\, 

\\vn+l - vn\\ < D(F(yn+i),F(yn)) < \DF\\yn+i - yn\\, " 

and hence, {un} and {vn} are also Cauchy sequences, so there exist u G Ex and 

v e E2 such that un-*u and vn -> u, respectively. 

Now, we will show that u G G(z) and v G F(y). In fact, since un G G(x„) and 

d(un,G{x)) <max\d(un,G(x)), sup d(G(zn),tuiH 

< m a x i sup d(w2,G(a;)), sup d(G(xn),w1) > 
I u)2eG(x„) tuiGG(x) J 

= D(G(xn), G(x)), 

we have 

d{u, G(x)) < \\u - un\\ + d(un, G(x)) 

< \\u-un\\+D{G{xn), G{x)) 

< \\u — un\\ + \DG\\XTI — x\\ —> 0 as n —> 00. 
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Which implies that d(u,G(x)) = 0. Since G(x) G CB(E), it follows that u € G(x). 

Similarly, we can show that v G F(y). By continuity of / , g, p, q, Hi, H2, G, F, M, 

N, S, T, JH[IP(-,X), J#2i7(-,y) and Algorithm 3.4.1, we have 

z' = H^fix)) - pS(x - p(x),v) = Jff1(j£)P(-,x)(2 ')) - pS(x - p(x),v) e Eu 

and 

z" = H2(g(y)) ~ lT{u,y- q(y)) = H2{J^{-,y){z")) - <yT(u,y - q(y)) G E2. 

By Proposition 3.4.1, (z',z",x,y,u,v) is a solution of Problem (3.4.1). This com

pletes the proof. 
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Chapter 4 

Generalized Variational Inclusions 
For Fuzzy Mappings 

4.1. Introduction 

It is well known that the fuzzy set theory, which was introduced by Zadeh [128] 

in 1965, has gained importance in analysis from both theoritical and practical point 

of view. Applications of the fuzzy set theory can be found in many branches of 

mathematical and engineering sciences; see [23,27,43,47,66,91,99,100,130]. Varia

tional inequality theory provides us a unified frame work for dealing with a wide 

class of problems arising in elasticity, structural analysis, economics, physical and 

engineering sciences, etc; see [28,31,37,40,42,84,89,118] and references therein. 

In 1989, Chang and Zhu [27] first introduced the concept of variational inequali

ties for fuzzy mappings and extended some of the results of Lassonade [80], Shih and 

Tan [109], Takahashi [113] and Yen [127] in the fuzzy setting. They investigated ex

istence theorems for some kinds of variational inequalities for fuzzy mappings, which 

were the fuzzy extensions of some theorems in [109,113]. 

Several classes of variational inequalities and complementarity problems for 

fuzzy mappings were considered and studied by Chang and Haung [23], Noor [91], 

Haung [66], Park and Jeoug [99,100], Ding and Park [43] and Ding [38,39] in Hilbert 

spaces. 

In Section 4.2, we study generalized variational-like inclusions for fuzzy map

pings. We develop an Ishikawa type perturbed iterative algorithm and a Mann type 

perturbed iterative algorithm for computing the approximate solutions of general

ized variational inclusions for fuzzy mappings. 
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In Section 4.3, we consider a class of mixed variational inclusions for fuzzy map

pings. The existence and convergence analysis is discussed by using the definition 

of relaxed strongly accretive operators. 

In Section 4.4, we introduce the generalized T-resolvent equations with fuzzy 

mappings in connection with the mixed variational inclusions for fuzzy mappings 

discussed in Section 4.3. An equivalence relation is established between the mixed 

variational inclusions for fuzzy mappings and the generalized T-resolvent equations 

with fuzzy mappings. Further, we prove the existence of solutions and the conver

gence of iterative sequences generated by the algorithm. 

We assume that if is a Hilbert space with norm |j.j| and inner product (.,.). 

F(H) denotes the collection of all fuzzy set over H. A mapping F : H —>• T{H) is 

said to be fuzzy mapping. For each x G H, F(x) (denote it by Fx, in the sequel) is 

a fuzzy set on H and Fx(y) is the membership function of y in Fx. 

A fuzzy mapping F : E —>• T(E) is said to be closed if for each x G E, 

the function y —> Fx(y) is upper semicontinuous i.e., for any given net {ya} C H 

satisfying ya -> yQ G E, lim supaFx(ya) < Fx(y0). 

For A G F(E) and A G [0,1], the set (A)x = {x G E : Ax > A} is called a X-cut 

set of A. 

Let A : E —> ^(E) is a closed fuzzy mapping satisfying the following condition 

(I): 

Condition (I). There exists a function a : E —> [0,1] such that for each x G 

E, (Ax)a(x) is a nonempty bounded subset of E. 

It is clear that if A is closed fuzzy mapping satisfying the condition (I), then 

for each x G E, the set (Ax)a(x) G CB(E). 

Definition 4.1.1. A mapping g : H —> H is said to be: 

(i) monotone, if for all x,y G H 

(g(x)-g(y),x-y) > 0; 
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(ii) strictly monotone, if for all x,y G H 

(9(x)-g(y),x-y) > 0; 

and equality holds if and only if x = y; 

(iii) strongly monotone, if for all x,y G H there exists a constant 5 > 0 such that 

(g(x)-g(y),x-y) > S\\x - y\\2. 

Definition 4.1.2. Let E be a q-uniformly smooth real Banach space let B : E —> 

CB(E) be a multivalued mapping. The mapping t : E —v E is said to be relaxed 

strongly accretive with respect to B, if there exists a constant k > 0 such that 

{t(u)-t{v),jq{x-y))<-k\\x-y\\q, for all:r,y G E, u G B(x), uGB(n) . 

Example 4.1.1. Let E = R, B = I, the identity mapping. Let t(x) = — 2a;, e > 0, 

k = (2 — e). Then it is easy to see that £ is relaxed strongly accretive mapping. 

4.2. Generalized Variational-like Inclusions For 
Fuzzy Mappings 

In this section, we consider a class of generalized variational-like inclusions for 

fuzzy mappings. First, we established an equivalence of generalized variational-like 

inclusions for fuzzy mappings with some fixed point problems and develop Ishikawa 

type perturbed iterative algorithm and a Mann type perturbed iterative algorithm 

for this class of generalized variational-like inclusions for fuzzy mappings. The exis

tence and convergence for our problem is also discussed. 

Let M,S,T : H —> F{H) be three fuzzy mappings, m,f,g,P:H-^H and 

n : HxH —» if be the single-valued mappings. We consider the following generalized 

variational-like inclusion problem for fuzzy mappings: 

Find x € H, u € (M(x))P, v e (S(x))r, w e {T{x))r, r e (0,1] such that 

x G dom </? and 

(P(u)-(f(v)-m(w))My,9W)) > <p(9W)-<P(y), forall yeH (4.2.1) 

where (p : H —> R U {+00} and dom cp = {x G H : (^(x) < 00}. 
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Some special cases: A ^ ' J?" 

(i) If m = 0, r]{y1g{x))=y - g(x) and P, / and T are identity ma^^gsy^jhgn 

Problem (4.2.1) is equivalent to finding x e H, u e (M(x))rTv~~£~(S(x))r, 

r £ (0,1] such that g(x) C\ dom d<p i=- 4> and 

(u-v,y-g(x)) > <p(g{x))-ip(y), for all y £ H. (4.2.2) 

Problem (4.2.2) is called variational inclusion problem for fuzzy mappings 

which is considered and studied by Park and Jeong [99]. 

(ii) If <P=5K, the indicator function of the nonempty closed convex set K in i7, 

then Problem (4.2.2) is equivalent to finding x £ H,u £ (M(x))r, v £ (S(x))r, 

r £ (0,1] such that g(x) £ K and 

(u-v,y-g(x)} > 0, for all y £ H, (4.2.3) 

which is called completely generalized strongly variational inequality problem 

for fuzzy mappings. 

Assumption (U) . The mapping n : H x H —» H satisfies the condition 

r)(y,x)+r)(x,y) = 0, for all x,y £ H. 

Remark 4.2.1. If 77 : HxH —>• H satisfies Assumption (U) and ip : H —>• i?U{+co}, 

then it is easy to see that the 77-subdifferential mapping d^tp : H —v 2H is 77-monotone. 

We need the following result due to Lee et al. [81] to transform our problem 

generalized variational-like inclusion problem for fuzzy mappings (4.2.1) into a fixed 

point problem. 

Proposition 4.2.1. Let n : H x H —> H be & strictly monotone mapping and Q : 

H —> 2H an 7)-monotone multivalued mapping. If the range (I+XQ), R(I+XQ) = H, 

for A > 0 and / is the identity mapping, then Q is maximal 77-monotone. Further, 

the inverse mapping (/ + AQ)_1 : H —> H is single-valued. 

We assume that 77 : H x H —¥ H is strictly monotone and satisfies Assumption 

(U) and (p : H —>• R U {+00} is a mapping such that R(I + Xdv(p) = H, for X > 0. 
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Prom Proposition 4.2.1, we note that the mapping 

J£{x) = {I + Xdrtip)-1^), for all x G H, 

is single-valued. 

Lemma 4.2.1. (x,u,v,w), where xeH,uG (M(x))r, v G (S(x))r, w G (T(x))r is 

a solution of generalized variational-like inclusion problem for fuzzy mappings (4.2.1) 

if and only if it satisfies 

g(x) = Jt\g{x)-X{P{u)-{f{v)-m{w)))]t (4.2.4) 

where A > 0 is a constant, J% = (I + Xdntp)~l is so-called proximal mapping and / 

stands for the identity operator on H. 

Proof. From the definition of Jjf, we have 

g(x) - X(P(u) - (f(v) - m(w))) G g(x) + \dn<p(g{x)) 

and hence 

(/W-mW)-P(u)G^(#)). 

By using the definition of 77-subdifferential, we have 

({f(v)-m(w))-P(u),Tj(y,g(x))) < <p(y) - <p{g(x)), for all y G H. 

Thus, (x,u,v,w) is a solution of generalized variational-like inclusion problem for 

fuzzy mappings (4.2.1). 

From the above Lemma 4.2.1, we see that generalized variational-like inclusion 

problem for fuzzy mappings (4.2.1) is equivalent to the fixed point problem of type 

x e N{x), 

where 

N(x) = x- g(x) + JMx) - X(P(u) - (f(v) - m(w)))}. (4.2.5) 

Using this fixed point formulation, we suggest the following perturbed Ishikawa 

type and Mann type iterative algorithms. 
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Ishikawa Type Perturbed Iterative Algorithm: 

Let M,S,T : H ->• F(H) and g,P,f,m:H->H. For any x0 G H, the iterative 

scheme is defined by un G (M(xn))r, vn G (S{xn))r, wn G (T(xn)) r, u„ G (M{yn))r, 

vn e {S(yn))r, wn G (T{yn))r, 

Xn+i = (1 - a - ) ^ + an[yn - g(yn) + Jln (g(yn) - X(P(un) - {f{vn) - {m(wn))))\ + e„, 

yn = (l-pn)xn + (3n[xn-g(xn) + J^n{g{xn)-X(P{un)-(f(vn)-(rn{wn))))}+pnrn, 

for n > 0, where en and rn in H, for all n > 0 are errors, {</?™} is the sequence 

approximating </?, {an} and {/?„} are real sequences satisfying ao = 1, 0 < an,(3n < 
oo 

1, for n > 0, ^ a n = oo and A > 0 is a constant. 
71=0 

If /3n = 0, for all n > 0 in Ishikawa type perturbed iterative algorithm, then we 

have the following Mann type perturbed iterative algorithm. 

Mann Type Perturbed Iterative Algorithm: 

Let M,S,T : H ->• F{H) and g,P,f,m:H-*H. For any x0 e H, the iterative 

scheme is defined by un € (M(xn))r, vn G (S(xn))r, wn G (T(xn)) r, 

xn+x = (1 - an)x„ + an[xn - g(xn) + J%n {g(xn) - X(P(un) - {f{vn) - (m(wn))))} + e„, 

for n > 0, where {an} is a sequence satisfying ao = 1, 0 < an < 1, for n > 0 and 
oo 

^ an = oo, en G if, for all n, is an error which is taken into account for a possible 
ra=0 

inexact computation of the proximal point, {(fn} is the sequence approximating ip 

and A > 0 is a constant. 

We need the following lemma due to Lee et al. [81], to prove the main result. 

Lemma 4.2.2. Let r\ : H x H —»• H be strongly monotone and Lipschitz continuous 

with constants a > 0 and r > 0, respectively, and satisfy the Assumption (U). Then 

K ( Z W A G / ) I I < r i b - y | | , for all x,yeH 

where r = —. 
(J 

We prove the existence of solutions of generalized variational-like inclusion prob

lem for fuzzy mappings (4.2.1) and the convergence of the iterative sequences gen

erated by the Ishikawa type perturbed iterative algorithm is discussed. 
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Theorem 4.2.1. Let 77 : H x H -¥ H be strongly monotone and Lipschitz con

tinuous with constants a > 0 and r > 0, respectively and satisfy assumption (U). 

Let M,S,T : H —>• ^ ( i / ) be Lipschitz continuous with corresponding constants 7, /i 

and d, respectively, S be relaxed Lipschitz with respect to / with constant k and T 

be relaxed monotone with respect to m with constant c. Let g,f,m,P:H-^Hbe 

Lipschitz continuous with corresponding constants lg, If, lm and lp, respectively and 

g is strongly monotone with constant 8 > 0. For each n, let cpn : i7 —>• i? U {+00} 

and (p : H -^ R\J {+00} be mappings such that i?(7 + \dv(pn) = i?(J + Aĉ t/?) = # , 

for A > 0. 

If 

r2(k - c) - rlpiil - L) 
A — 

r2(lfh + lmdf - rHpi1 

< 
y/[T*{c -k)+ rlPl{l - L)}2 - [{r\lfh + lmd)2 - r2l2

pl
2)(r2 _ 1 _ L2 + 2L)} 

T2(lfh + lmd)2~rH2
pl

2 

(4.2.6) 

T2(C -k)> rlPl{L - 1) + yf{T*(lfh + lmd)2 - r2l2
pl

2){r2 - 1 - L2 + 2L), 

l/h + lmd > I PI, 

for L = (1 + r).y/l — 26 + ^ < 1, then (x*,u*,v*,w*) is a solution of generalized 

variational-like inclusion problem for fuzzy mappings (4.2.1). 

Moreover, if 

lim \\Jtn{z) - Jl{z)\\ = 0, for all z e H, 
n—>oo 

and {xn}, {un}, {vn} and {wn} are defined by Ishikawa type perturbed iterative 

algorithm with conditions: 

(i) lim ||en|| = 0 = lim \\rn\\ = 0 and 
n—J-OO n—>oo 

n n 

(u) J2 I I (1 _ aj '(l _ c)) converges, 0 < c < 1. 
i=0 j= j+ l 
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Then {xn}, {un}, {vn} and {wn} strongly converge to x*, u*, v* and w*, respectively. 

Proof. Define a multivalued mapping F : H —> 2H by 

F(x) = | J [x-g(x) + JZ(g(x)-\(P{u)-(f(v)-m(w))], 
u£(M{x))r,ve(S(x))r,W&(T(x))r 

for each x E H. For any x,y £ H, a £ F(x), b G FQ/), there exist ui G (M(x))r, 

ui G (5(x)) r, Wl e (T(x))r, u2 G (M(y))r, v2 G (5(y)) r, w2 G (T{y))r such that 

a = x - <7(z) + J*\g(x) - X{P{ux) - (/(Vl) - m(Wl)))], 

6 =!/-<Kv) + rx[g{y)-X{P(u2) - (/(i») -mh)) ) ] . 

By Lemma 4.2.2, it follows that 

| |o-6| | = \\x-g(x) + J^[g(x)-X(P(u1)-(f(v1)~m(w1)))} 

-{y- g(y) + Jf\g(v) - KPM - Ufa) - m(w2)))}}\\ 

< \\x-y- {g{x) - g{y))\\ + r\\g{x) - A(P(^) - (f{Vl) - m(tui))) 

-[g(y)-X(P(u2)-(f(v2)-m(w2)))]W 

< (i + T)\\x-y- (g(x) - g(y))\\ + r\\x - y + X(f(Vl) - f(v2)) 

- A(m(^) - m(w2))\\ + T\\\P{UI) - P(u2)\\. (4.2.7) 

By using the Lipschitz continuity and the strong monotonicity of g, we have 

\\x-y- (g(x) - g{y))\\2 = \\x - y\\2 - 2(x - y,g(x) - g(y)) + \\g(x) - g(y)\\2 

< (l-25 + l2
g)\\x-y\\2. (4.2.8) 

Since M, S and T are Lipschitz continuous and / , m and P are Lipschitz continuous, 

we have 

\\P{Ul) - P{u2)\\ < lp\\ux-u2\\ < lp-y\\x-y\\, (4.2.9) 

\\f(vi)~f(v2)\\ < Z / l h - ^ U < lfh\\x-y\\, (4.2.10) 

\\m(wi) - m(w2)\\ < lm\\wi-w2\\ < lmd\\x - y\\. (4.2.11) 
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Further, since S is relaxed Lipschitz and T is relaxed monotone, we have 

\\x-y + AC/fa) - f(v2)) - \(m(wt) - m(w2))\\
2 

= \\x ~ vf + 2A(/(vi) - f(v2), x - y) - 2X(mw1 - mw2, x - y) 

+A2 | |/(^i) - f(v2) - {m{wl) - m{w2))\\
2 

< [1 - 2A(fc - c) + A 2( /^ + /md)2]||x - y\\\ (4.2.12) 

By (4.2.7)-(4.2.12), we obtain 

\a-b\\ < (1 + r)^l-26 + ll + ryjl - 2A(fc - c) + A2(///i + Zmd)2 

+rAlp7 

= 0 | | s - y | | , 

ja: — 2/|| 

where 9 = (1 + r^ /1 - 25 + Z2 + Ty/\ _ 2A(/c - c) + A2(/;/i + lmd)2 + r\lP^. 

It follows from condition (4.2.6) that 0 < 9 < 1. Since a G F(x), 6 G F(y) are 

arbitrary, we obtain 

H{F{x),F{y)) < 9\\x~y\\, for all x,yeH. (4.2.13) 

It follows from (4.2.13) and by Theorem 3.1 of Siddiqi and Ansari [110] that F 

has a fixed point x* G H i.e., x* G F(x*). By the definition of F , there exist 

u* G (M(x*))r, v* G {S{x*))r, w* G (T(x*))r such that (x*, u*, v*, w*) is a solution 

of generalized variational-like inclusion problem for fuzzy mappings (4.2.1). 

Next we prove that the iterative sequences {xn}, {un}, {vn} and {wn} defined by 

Ishikawa type perturbed iterative algorithm strongly converges to x*,u*, v* and w*, 

respectively. 

Since generalized variational-like inclusion problem for fuzzy mappings (4.2.1) has a 

solution (x*,u*,v*,w*) then, by Lemma 4.2.1, we have 

x* = x* - g(x*) + J*\g(x') - \(P(u*) - (/(«*) - m(w*)))}. 
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Further, since S is relaxed Lipschitz and T is relaxed monotone, we have 

\\x-y + X(f(Vl) - f(v2)) - \{m(Wl) -m(w2))\\
2 

= \\x ~ v\\2 + 2Mf(vi) - f(v2),x -y)- 2X(mw1 - mw2, x-y) 

+A\f{vi) - f(v2) - ( m W - m(w2))\\
2 

< [1 - 2X(k - c) + X2{lfh + lmd)2]\\x - y\\2. (4.2.12) 

By (4.2.7)-(4.2.12), we obtain 

(1 + r) Jl - 25 + l] + ry/l - 2X(k -c) + X2(lfh + lmd)2 la-611 < 

+ T A / P 7 

= 0\\x-y\\, 

\x-y\ 

where 0 = (1 + T ^ / l - 2 5 + Jjj + r-y/1 - 2A(fc - c) + A2(Z//i + /md)2 + TXIP1. 

It follows from condition (4.2.6) that 0 < 0 < 1. Since a <E F(x), b £ F(y) are 

arbitrary, we obtain 

H(F{x),F(y)) < 6\\x-y\\, for all x,y £ H. (4.2.13) 

It follows from (4.2.13) and by Theorem 3.1 of Siddiqi and Ansari [110] that F 

has a fixed point x* £ H i.e., x* £ F(x*). By the definition of F , there exist 

u* e (M(x*))r, v* e (S(x*))r, w* £ (T(a;*))r such that (x*, u*, v*, w*) is a solution 

of generalized variational-like inclusion problem for fuzzy mappings (4.2.1). 

Next we prove that the iterative sequences {xn}, {un}, {vn} and {wn} denned by 

Ishikawa type perturbed iterative algorithm strongly converges to x*,u*, v* and w*, 

respectively. 

Since generalized variational-like inclusion problem for fuzzy mappings (4.2.1) has a 

solution (x*:u*,v*,w*) then, by Lemma 4.2.1, we have 

x* = x*- g(x*) + J*\g(x*) - X{P{u*) - (/(„•) - m(w*)))]. 
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By making use of the same arguments used for obtaining (4.2.8), (4.2.9) and (4.2.12), 

we get 

\\yn - x* - (g(yn) - g(x*))\\ < y/l-25 + lj\\yn-x*\\, 

\\P(un) - P(u*)\\ < lP7\\yn-x*l 

\\yn -x* + X(f(vn) - /(«•)) - X(m(wn) - m(w*))\\ 

By setting 

and 

< yjl - 2X(k - c) + X2(lfh + lmd)2 \\yn - x* 

h(u*) = g(x*) - X(P(u*) - (f(v*) - m(w*))) 

KVn) = g{yn) - X(P{un) - (f(vn) - m(wn))). 

We have 

\\xn+i - x*\\ = 11(1 - an)xn + an[yn - g(yn) + </fn(%n))] + en 

- ( 1 - an)x* - an[x* - g(x*) + Jx(Hx 

< (1 - a„)||xn — a5*|| + On\\yn - x* - (g(yn) - g(x*))\ 

+o*\\J?(h(yn))-JZ{h(x*))\\ + \\en\\. 

By Lemma 4.2.2, we have 

\\J^(h(yn))-J%(h(x*))\\ 

= l l - T ( % n ) ) " JT(h(x*)) + J?(h(x*)) - J*(h{x*))\\ 

< r\\h(yn) - h(x*)\\ + \\J?(h(x*)) - Jt(h(x'))\\ 

< r[\\yn - x* - (g{yn) - g(x*))\\ + \\yn - x* + X(f(vn) 

-f(v*)) - X(m(wn) - m(w*))\\ + X\\P(un) - P(u 

+\\Jtn(h(x*))-rx(K^))\\ 

(4.2.14) 

yJl-25 + lj+y/l- 2X(k ~C) + X2(lfh + lmd)2 + XlPl 

x\\yn-x*\\ + \\J^(h(x*))-J*(h(x*))\\. (4.2.15) 
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On combining (4.2.14) and (4.2.15), we get 

\\xn+1-x*\\ < (l-an)\\xn-x*\\+anJl-26 + l*\\yn-x 

+anr 

+Xlp7 

^l-26 + l2
g + ^ l - 2X(k - c) + \\lfh + lmd)2 

\yn - x*|| + an\\J^{h{x*)) ~ JZ(h{x*))\\ + \\en\ 

= (1 - an)\\xn - x*\\ + an9\\yn - x*\\ + anen + \\en\\, (4.2.16) 

where 9 = (1 + Ty/l-25 + l* + Ty/l - 2X(k - c) + \2{lfh + lmdf + TXIP1 

and 

en = \\J^(h(x*))-^(h(x*))\\. 

Next 

\\yn-x*\\ = II(1 - Pn)xn + Pn[xn - g(xn) + J%n(h(xn))} + [3nrn 

- ( 1 - pn)xn - pn[x* - g(x*) + JZ(h(x'))]\\ 

< (1 - (3n)\\xn -x*\\+ Pn\\xn -x*- (g(xn) - g(x*))\\ 

+(3n\\J^(h(xn)) - rx(h(x*))\\ + (3n\\rn\\. (4.2.17) 

By making use of the same arguments used for obtaining (4.2.15), we get 

\\rx»(h(xn))-rx(h(x*))\\ 

<T yJl-25 + lj + ^l- 2\{k - c) + X2(lfh + lmdf 

+XlPj \Xn X \\ -\- 6n. (4.2.18) 

On combining (4.2.17) and (4.2.18), we get 

||l/n - x*|| < (1 - Pn)\\xn -x*\\ + (3n9\\xn -x*\\ + /3nen + 0n\\rn\ 

< (1 - A»(l - 0))\\xn ~x*\\+ pn(en + \\rn\\) 

< \\xn-x*\\+pn(en+ \\rn\\), 

since ( 1 - / ^ ( 1 - 0 ) ) < 1. 

(4.2.19) 
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On combining (4.2.16) and (4.2.19), we get 

||xn+i - x*\\ < (1 - an)\\xn - x*\\ + an9\\xn - x*\\ 

+an9/3n(en + \\rn\\) + ane 

= (1 - an(l - 6))\\xn - x*\\ + anen + 6anpn(en + ||rn||) + ||en|| 
n n n 

< f ] ( l + <*i(l - 9))\\X0 - 35*11 + J2aJ H(l- <l ~ °)>i 
i=0 j=0 i=j+l 

n n 

n 

where fj (1 — cti(l — 9)) — 1, when j — n. 

Now, let B denote the lower triangular matrix with entries 
n 

bnj-aj 11(1-^(1-0)). 

Then B is multiplicative; see Rhoades [106], so that 
n n 

n—>oo *—* -*- -*• 

n n 

hm ^ ^ - J ] (1 - 0,(1 - 0))(Cj- + Hrjll) = 0. 

Since lim ||rn|| = 0 and lim en = \\J%n{h(x*)) - Jf(h(x*))\\ = 0. 
n—>oo n-4oo 

Let D be the lower triangular matrix with entries 
n 

Condition (ii) implies that D is multiplicative, and hence 

0 0 n <• 

n—>oo 
j=0i=j+l 
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Since lim ||en|| = 0. Also 
n—>co 

n 

lim TT(1 - 04(1 - 9)) = 0, 
n—too x -1-

i=0 

n 

since J3 ai — °°- Hence, it follows from inequality (4.2.20) that 
i=0 

lim ||xn+i - x * | | = 0 , 

i.e., the sequence {xn} strongly converges to x* £ H. Since un £ (M(t/n))r, it* £ 

(M(x*))r and M is Lipschitz continuous, we have 

||wn-w*|| < H(M(yn),M(x*)) < y\\yn - x*\\ -)• 0 as n ->• oo. 

i.e., {un} strongly converges to u*. Similarly, we can prove that {vn} and {^n} 

strongly converge to v* and w*, respectively. 

We remark that, if @n = 0, for all n > 0, Theorem 4.2.1 gives the conditions un

der which the sequences {xn}, {un}, {vn} and {wn} defined by Mann type perturbed 

iterative algorithm strongly converge to x*,u*,v* and w*, respectively. 

4.3. Mixed Variational Inclusions With 
Fuzzy Mappings 

In this section, we consider a class of mixed variational inclusions with fuzzy 

mappings in Banach spaces. The existence of solutions of mixed variational inclu

sions problem with fuzzy mappings is discussed and the convergence of iterative 

sequences generated by the proposed algorithms is also studied by using the defini

tion of relaxed strongly accretive operators. 

Let A,B,C : E —> F{E) are closed fuzzy mappings satisfying condition (I). 

Then there exists three functions a, b, c : E —> [0,1] such that for each x £ E, we have 

(Ax)a(x),(Bx)b(x),(Cx)c(x) £ CB(E). Therefore we define multivalued mappings 

A,B,C : E -> CB(E) by A(x) = (Ax)a{x], B{x) = (Bx)b{x), C(x) = (Cx)<x), for 

each x £ E. In the sequel, A, B and C are called the multivalued mappings induced 

by the fuzzy mappings A, B and C, respectively. 
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Let p,t,h,g,T : E —>• E are single-valued mappings and M : .E —> 2E be a 

T-accretive multivalued mapping. Let A,B,C:E^ T(E) are fuzzy mappings. 

Let a, 6, c : E —>• [0,1] be given functions. For any given f & E, A > 0, we consider 

the following mixed variational inclusion problem with fuzzy mappings: 

Find x, u, v, w G E such that Ax(u) > a(x), Bx(v) > b(x), Cx(w) > c(x) and 

/ G (p(u) - (t(v) - /i(w))) + XM(g(x)). (4.3.1) 

We remark that for suitable choices of A, B, C, p, t, h, g and M, the mixed 

variational inclusion problem with fuzzy mappings (4.3.1) reduces to various new as 

well as known classes of variational inclusions and variational inequalities; see for 

example [50,64,65,88] and references therein. 

We first transform our mixed variational inclusions problem with fuzzy map

pings (4.3.1) into fixed point problem and then establish an iterative algorithm for 

finding the approximate solutions of mixed variational inclusion problem with fuzzy 

mappings (4.3.1). 

Lemma 4.3.1. (x,u,v,w), where x G E, u G A(x), v G B(x) and w G C{x) is a 

solution of mixed variational inclusion problem with fuzzy mappings (4.3.1) if and 

only if it satisfies 

g(x) = J%*x[pf + T(g(x)) - p(p(u) - (t(v) - h(w)))}, 

where J^'pX = (T + p\M)~l and p > 0 is a constant. 

Proof, x G E, u G A(x), v G B(x), w G C(x) is a solution of mixed variational 

inclusions problem with fuzzy mappings (4.3.1). 

&fe (p(u) - (t(y) - h(w))) + XM(g(x)) 

^pfe p{p(u) - (t{v) - h{w))) + p\M{g(x)) 

^pfe -{T(g(x)) - p(p(u) - (t(v) - h(w)))} + (T + pXM)(g(x)) 

** 9{x) = Jr'pX[pf + T(g{x)) - p(p(u) - (t(v) - h(w)))}. 
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Using Lemma 4.3.1 and Nadler's theorem 1.2.3 [87] , we suggest an iterative al

gorithm for finding the approximate solutions of mixed variational inclusion problem 

with fuzzy mappings (4.3.1) as follows. 

Algorithm 4.3.1. For any given xQ e E, we choose u0 G A(xQ), v0 G B(x0) and 

wo G C(XQ) and compute the sequences {xn}, {un}, {vn} and {wn} by iterative 

schemes as follows: 

g(xn+1) = J^px[pf + T(g(xn)) - p(p(un) - (t(vn) - h(wn)))}, 

un G A(xn), \\un+1 -Un\\< ( 1 + — — J D(A(xn+1), A(xn)), 

Vn G B(xn), \\vn+1 - vn\\ < (l + Y^) D(B(xn+l),B(xn)), 

wn G C{xn), ||iwn+i - wn\\ < f 1 + — — J L>(C(xn+1), C(x„)), 

where p > 0 is a constant and n = 0,1, 2, 

Theorem 4.3.1. Let E be a g-uniformly smooth Banach space and T : E —>• 

E be strongly accretive and Lipschitz continuous operator with constants 7 and 

AT, respectively. Let g,p,h : E -^ E be both strongly accretive and Lipschitz 

continuous mappings with constants r, a, (3 and Xg, Xp and A ,̂ respectively. Let 

A, B,C : E -> ^(f?) be closed fuzzy mappings satisfying Condition (I) and let 

A,B,C:E^ CB(E) be the multivalued mappings induced by the fuzzy mappings 

A, B and C, respectively. Let A, B and C are D-Lipschitz continuous mappings 

with constants XA, XB and Ac, respectively. Let t : E —> E be relaxed strongly 

accretive with respect to B with constant k and Lipschitz continuous with constant 

A?\ Suppose that M : E —> 2E be a T-accretive multivalued mapping and there 

exists a constant p > 0 such that 

[1 - (a - k + (3)pq)Xq
TXl + pqcq[XpXA + A,AB + A^AC]9 < iqrq, (4.3.2) 

where cq is the constant as in Proposition 1.2.2. Then the iterative sequences {xn}, 

{un}, {vn} and {wn} generated by the Algorithm 4.3.1 converge strongly to x, u, 

v and w, respectively and (x,u,v,w) is a solution of mixed variational inclusion 

problem with fuzzy mappings (4.3.1). 
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Proof. By the strong accretivity of g with constant r, we have 

\\g(xn+1) - g(xn)\\\\xn+1 - Znll9'1 = \\g(xn+1) - g(xn)\\\\Jq(xn+1 - xn)\\ 

> (g(xn+1) - g(xn), Jg{xn+1 - xn)) 

> r| |xn+i — xn\\ , 

which implies that 

||a;n+i - xn\\ < -\\g(xn+i) - g(xn)\\. (4.3.3) 
r 

It follows from Theorem 1.2.4 and Algorithm 4.3.1, that 

\\g(xn+l) - g(xn)\\ = \\j¥'pX{pf + T(g(xn))-p(p(un)-(t(vn)-h(wn)))} 

-JT'^Pf + T^n-l)) - P(PK-1) - (t(Un-l) ~ ^ K - l 

< -\\T(g(xn)) - p(p(un) - (t(vn) - h(wn))) - (Tigixn^)) 
1 
- p ( f K - i ) - ( t K - i ) - h{wn^))))\\. (4.3.4) 

Since P is Lipschitz continuous with constant Xp and A is D-Lipschitz continuous 

with constant A^, we have 

\\p{un) -p(un-i)\\ < Ap|| 
^•n ^n—1|| 

< xJl + ^JDiAix^^iXn-!)) 

< XpXA f 1 + - J HaJn-aJn-ill- (4.3.5) 

Since t is Lipschitz continuous with constant Xt and B is D-Lipschitz continuous 

with constant AB, we have 

| | t (vn)-£(vn_i) | | < A t | |vn-u„_i | | 

< AJI + M D ^ ^ ) , ^ ^ - ! ) ) 

< AtAB ( l + - J | |a:n-a;„_i| |. (4.3.6) 

Also, since h is Lipschitz continuous with constant A/t and C is D-Lipschitz contin-
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uous with constant Ac, we have 

\\h(wn) - h(wn-i)\\ < Xh\\wn - wn-i\ 
1 

< Xh[l + -)D(C(xn),C(xn.1)) 
n, 

< XhXc ( 1 + - J ||ain-a;n_i||. (4.3.7) 

Using (4.3.5)-(4.3.7), Proposition 1.2.2 and Lipschitz continuity of T and g with 

constants XT and Ag, respectively, strong accretivity of p and h with constants a and 

P, respectively and relaxed strong accretivity of t with respect to B with constant 

k, we estimate 

l l r ( 5 ( ^ n ) ) - p ( p ( W n ) - ( ^ K ) - / l ( ^ n ) ) ) - [ T ' ( ^ ( x n _ i ) ) - / 9 ( p ( « n _ i ) - ( t ( z ; n _ i ) - / l ( w n _ ] 

<\\T{g(xn))-T{g{xn-1)W 

-pq(p(un) - p(un-i), Jq(T(g(xn)) - T{g(xn^)))) 

+pq{t(vn) - t ^ ) , Jq(T(g(xn)) - T ^ z ^ ) ) ) ) 

-pq(h(wn) - h(wn-i), Jq(T{g{xn)) - T(g{xn^)))) 

+pqcq(\\p(un) - (t(vn) - h(wn))) - (p(un-i) 

< XTXq\\xn - a;n_i||9 - pqaXTXQ
g\\xn - zn_i||9 

+pqkXq
TXq

g\\xn - xn-i\\
q - pqf3XTXq\\xn - xn-i\\

q 

+Pqcq XPXA U + - ) +A4AB f 1 + ^ 

+XhXc(l + - \Xn Xn—i 

< (1 - (a - k + P)pq)Xq
TXq + pqcq (XPXA + XtXs + XhXc) 

*K)' \^n *̂ re—1 

Using (4.3.4) and (4.3.8), (4.3.3) becomes 

| | ^ n + l %n\\ S ^nl l^n %n—l||> 
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where 

9n = —r {/ [1 - (a - k + 0)pq]Xq
TXq

9 + picq (XPXA + XtXB + XhXc) ( 1 + -

Letting n —> oo, we see that 9n —> 8, where 

e = ^ [ l - ( a - k + (3)pq]Xq
TXq

g + picq[(XpXA + XtXB + \h\c)]«. 

Since 9 < 1 by condition (4.3.2), 8n < 1 for n sufficiently large. Therefore (4.3.9) 

implies that {xn} is a Cauchy sequence in E and hence there exists x € E such that 

xn —>• x. By D-Lipschitz continuity of A, B and C, we have 

||wn -Un-i\\ < f 1 + - ) XA\\xn -xn~i\\, 

\\vn - Vn-l\\ < f 1 + ~ J AB||a!n - Xn-iH, 

\\wn - wn-i\\ < 11 + - ) Ac||a;n - arn_i||. 

It follows that {un}, {vn} and {wn} are Cauchy sequences in E. Hence there exist 

u,v,w e E such that un -^ u, vn-^ v, and wn -> iu. Further, since un G A(xn), we 

have 

d(u,i(a:)) < \\u - un\\ + d(un, A(x)) 

< \\u-un\\ + D(A{xn),A(x)) 

< \\u-un\\ + XA\\xn-x\\ -> 0, 

and hence u G A(a;). Similarly v G £(z) and ry G C(x). It follows from Algorithm 

4.3.1 that 
TM,p\ 

g(x) = 4J'pA[T(g(x)) - P(p(u) - (t(v) - h( w 

By Lemma 4.3.1, it follows that (x,u,v,w) is a solution of Problem (4.3.1). This 

completes the proof. 
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4.4. T-resolvent Equations With Fuzzy 
Mappings 

In this section, in connection with mixed variational inclusion problem with fuzzy 

mappings (4.3.1), we introduce the following T-resolvent equation problem with fuzzy 

mappings: 

Find z,x E E, ue A(x), v G B(x), w G C(x) such that 

(p(u) - (t(v) - h(w))) -f + p-lB%'p\z) = 0, (4.4.1) 

where R^'px = I - T(J^'p A) , / is the identity operator, J^pX is the T-resolvent 

operator and p > 0 is a constant. 

We establish an equivalence relation between the mixed variational inclusion 

problem with fuzzy mappings (4.3.1) and T-resolvent equation problem with fuzzy 

mappings (4.4.1). Further using this equivalence an iterative algorithm is suggested 

to compute the approximate solutions of T-resolvent equation problem with fuzzy 

mappings (4.4.1). 

Proposition 4.4.1. The mixed variational inclusion problem with fuzzy mappings 

(4.3.1) has a solution (x,u,v,w), where x G E, u G A(x), v G B(x) and w G C(x) if 

and only if T-resolvent equation problem with fuzzy mappings (4.4.1) has a solution 

(z,x,u,v,w), where z,x G E, u G A(x), v G B(x) and w G C(x), 

g(x) = 4!'pX(z) (4.4.2) 

and 

z = pf + T(g(x)) - p(p(u) - (t(v) - h(w))), (4.4.3) 

p > 0 is a constant. 

Proof. Let (x,u,v,w) be a solution of mixed variational inclusion problem with 

fuzzy mappings (4.3.1). Then by Lemma 4.3.1, it is a solution of the following 

equation 

g(x) = J^p\pf + T(g(x)) - p(p(u) - (t(v) - h(w)))}. (4.4.4) 
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Let z = pf + T(g(x)) - p(p(u) - (t(v) - h(w))), then from (4.4.4), we have 

g(x) = J$*\z). 

By using the fact that R^'px = I - T(J^f'px), we obtain 

z = pf + T{J^p\z)) - p(p(u) - (t(v) - h(w))) 

*> z - T(J^pX(z)) =pf- p(p(u) - (t(v) - h(w))) 

#[I- T{J^x)]{z) =pf- p(p(u) - (t(v) - h(w))) 

& R%'p\z) = pf- p(p(u) - (t(v) - h(w))). 

Hence 

(p(u) - (t(v) - h(w))) -f + p^R^'p\z) = 0. 

Based on Proposition 4.4.1, we suggest the following iterative algorithm to com

pute the approximate solutions of T-resolvent equation problem with fuzzy mappings 

(4.4.1). 

Algorithm 4.4.1. For any given ZQ,XO e £ w e choose UQ G A(XQ), VQ G B(X0) 

and wQ G C(XQ) and compute the sequences {zn}, {xn}, {un}, {vn} and {wn} by 

iterative schemes as follows: 

g{xn+1) = J?'pX(zn+1), (4.4.5) 

un G A(xn), |K+i - un\\ < (1 + —— ) D{A{xn+i),A(xn)), 

vn G B(xn), \\vn+i — VT.II < f 1 + T — - J D(B(xn+1), B(xn)), 

wn G C(xn), ||iu„+i - w„|| < ( 1 + — — J D(C(xn+1), C{xn)), 

zn+i = pf + T(g{xn)) - p{p{un) - (t(vn) - h(wn))), 

where p > 0 is a constant and n — 0,1,2, 

Theorem 4.4.1. Let E be a q-uniformly smooth Banach space and T : E —>• 

i? be strongly accretive and Lipschitz continuous operator with constants 7 and 

Ar, respectively. Let g,p,h : i? —> E be both strongly accretive and Lipschitz 
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continuous mappings with constants r, a, (3 and Xg, Xp and Xh, respectively. Let 

A,B,C : E —> F(E) be closed fuztey mappings satisfying Condition (I) and let 

A, B, C : E —>• CB{E) be the multivalued mappings induced by the fuzzy mappings 

^4, 5 and C respectively. Let A, B and C are .D-Lipschitz continuous mappings 

with constants A^, A^ and Ac respectively. Let t : E —>• E be relaxed strongly 

accretive with respect to B with constant fc and Lipschitz continuous with constant 

AT- Suppose that M : £7 —> 2E be a T-accretive multivalued mapping and there 

exists a constant p > 0 such that 

[l-(a-k + f3)pq]Xq
TXq

g + AjApA^ + XtXB + A^Ac]9 < (27A, - 7 r ) 9 . (4.4.6) 

where cq is the constant as in Proposition 1.2.2. Then the iterative sequences 

{zn}, {x„.}, {un}, {vn} and {wn} generated by the Algorithm 4.4.1 converge strongly 

to z, x, u, v and w, respectively and (z, x, u, v, w) is a solution of T-resolvent equation 

problem with fuzzy mappings (4.4.1). 

Proof. From Algorithm 4.4.1 and (4.3.8), we have 

\\zn+i - zn\\ = \\pf + T(g(xn)) - p(p(un) - (t(vn) - h(wn))) 

-[pf + T{g(xn^)) - /0(p(Un_i) - ( t ( u n _ i ) - % > n - l ) ) ) ] | | 

= \\T(g(xn)) - p(p(un) - (t(vn) - h(wn))) 

-[(T(ff(xn_i)) - p ( p K - Q - (tjVn-j) - ftK-l)))]|| 

< {/ [1 - (a - A; + £)pg] A^Ag + p % (XPXA + XtXB + XhXc) ( 1 + - J 

V \\rv» rp 119 

From (4.3.3) and (4.4.2), we obtain 

| | x n - x n _ i | | < -\\g(xn) - g{xn-x)\\ 
r 

= -\\g{xn) - g{xn-i) + g{xn) - g{xn-i) - J^'pA(zn) + JT,pX{zn-i)\\ 

< ±l2\\g(xn) - g(xn^)\\ - \\J^p\zn) - J ^ ( z „ _ i ) | | ] 

2 1 
_ ~^o K'n n̂—1 W^n Zn— i , 

r r 7 

since g is Lipschitz continuous with constant Xg and JT
 ,p is --Lipschitz continuous. 

Therefore, we have 
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||zn - Z„_i|| < —— r\\Zn - Zn-i\\, (4.4.8) 

(27Ag - 7 r ) 

combining (4.4.7) and (4.4.8), we get 

\\zn+i ~ zn\\ < kn\\zn - zn_i||, (4.4.9) 

where 

kn = x
 l_ . mi - (a - fc + P)pq]Xq

TXq
g + (Acq (XPXA + XtXB + XhXc) (l + ^ J . 

Letting n —>• oo, we see that fcn -> fc, where 

fc = ^ ^ [ 1 - (a - fc + /g)pg]A^A% + picq[{XpXA + A,AB + A/tAc)]^. 

Since k < 1 by condition (4.4.6), /cre < 1 for n sufficiently large. Therefore (4.4.9) 

implies that the sequence {zn} is a Cauchy sequence in E. So there exists z € E 

such that zn —> z as n —> oo. Prom (4.4.8), we know that the sequence {xn} is a 

Cauchy sequence in E, so there exists x £ E such that xn—>x. Also from Algorithm 

4.4.1 and D-Lipschitz continuity of A, B and C, we have 

IK+i-w„| | < \l + Y—^D{A{xn+1),A{xn)) 

< ( 1 + —— J A A I K + I - a;„||, 
V 1 + nJ 

IK+i - vn\\ < ML + ^ A D(B{xn+1),B(xn)) 

< (1 + —— J XB\\xn+1 - xn||, 
V 1 + nJ 

\\wn+1 - wn\\ < (1 + —— J D(C(xn+i), C{xn)) 

< f 1 + T - — ) XC\\xn+l - Xn\\, 

and hence {un}, {vn} and {ion} are also Cauchy sequences in E, so there exist u, v, 

w £ E such that un —> u, vn —> v and wn —> u>. By using the same arguments as in 

the proof of Theorem 4.3.1, it is easy to see that u G A(x), v £ B(x) and w G (7(x). 
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Now by using the continuity of the operators T, g, p, t, h, A, B, C, JT
 ,p and 

Algorithm 4.4.1, we have 

z = pf + T(g(x)) - p(p(u) - (t(v) - h(w))). 

By Proposition 4.4.1, it follows that (z, x,u, v,w) is a solution of Problem (4.4.1). 

This completes the proof. 
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Chapter 5 

Generalized Variational Inclusions 
Wi th (A, 7/)-accretive Mappings 

5.1. Introduction 

Lan et al. [79] introduced the concept of (A, 7?)-accretive mappings, which gener

alizes the existing 77-subdifferential operators, maximal 77-monotone operators, gener

alized monotone operators (//-monotone operators), A-monotone operators, (H,n)-

monotone operators, (A, ?7)-monotone operators in Hilbert spaces, if-accretive map

pings, generalized m-accretive mappings and (H, ^-accretive mappings in Banach 

spaces. He also studied some properties of (A, ??)-accretive mappings and defined 

resolvent operator associated with (A, ^-accretive mappings. 

In Section 5.2, we introduce and study a system of generalized variational in

clusions with (A, ^-accretive mappings which is more general than a system of vari

ational inclusions recently considered by Jin [71]. By using the resolvent operator 

technique associated with (A, 7?)-accretive mappings, we define a new iterative algo

rithm for computing the approximate solutions of system of generalized variational 

inclusions. 

5.2. System Of Generalized Variational Inclusions 

Let g : E ->• E, N, S : E x E -> E; A{ : E -> E, rjt : E x E -> E {i = 1,2) 

be nonlinear mappings and T,F : E —» CB{E) be set-valued mappings. Suppose 

Mi : E —>• 2E be (A*, ^-accretive mappings (i = 1,2). We consider the following 

system of generalized variational inclusions with (A, n)-accretive mappings: 
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Find x,y e E, ue F(y), v G T(x) such that 

0 G Al(g{x)) - AMy)) + p,[N(y,u) + Ml{g{x))], 

0 e A2(g(y)) - A2(g(x)) + p2[S(v,x) + M2(g(y))}, (5.2.1) 

where pi > 0 (i = 1,2) are two constants. 

Some special cases: 

(i) If T, F are single-valued mappings and N(y, •) = T(y), S(-,x) — T(x), then 

Problem (5.2.1) reduces to the problem of finding x,y G E such that 

0 € AM*)) - M9(y)) + Pi[T(y) + MMx))], 

0 G A2{g{y)) - A2(g(x)) + p2[T(x) + M2(g(y))}. (5.2.2) 

Problem (5.2.2) is very recently considered by Jin [71]. 

(ii) If Ai=A2=H, M1=M2=M, px = p, p2 = A, M : E -> 2E be i7-accretive 

mapping and N and S are same as in (5.2.2), then Problem (5.2.1) reduces to 

the problem of finding x,y G E such that 

0 G H(g(x)) - H{g{y)) + p[T(y) + M(g(x))), 

0 G H(g(y)) - H(g(x)) + X[T(x) + M(g(y))}. (5.2.3) 

Problem (5.2.3) was introduced and studied by He et al. [62]. 

It is easy to see that the system of generalized variational inclusions with (A, rj)-

accretive mappings (5.2.1) includes many more known variational inclusions and 

system of variational inclusions considered and studied in recent past. 

By using the resolvent operator technique associated with (A, ??)-accretive map

pings, we define an iterative algorithm for computing the approximate solutions of 

system of generalized variational inclusions with (A, rf)-accretive mappings (5.2.1). 

Lemma 5.2.1. (x,y,u,v), where x,y G E, u G F(y), v G T(x) is a solution of 

system of generalized variational inclusions with (A, n)-accretive mappings (5.2.1) if 

and only if (x,y,u,v) satisfies 
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9{x) = J%&[AMv)) ~ P i ( % t * ) ) ] , P l > 0, (5.2.4) 

where 

9(y) = J%M\[M9{X)) - P2(S(v,x))}, p2 > 0. (5.2.5) 

Proof. The conclusion follows directly from the Definition 1.2.24. 

Based on Lemma 5.2.1 we construct the following iterative algorithm for solv

ing the system of generalized variational inclusions with (A, rj)-accretive mappings 

(5.2.1). 

Algorithm 5.2.1. For any given xo,yo G E, we choose UQ G F(y0), v0 G T(XQ) 

and 0 < e < 1 and compute the sequences {xn}, {yn}, {un} and {vn} by iterative 

schemes as follows: 

Zn+i =xn- g{xn) + J^MMMyn)) - pi(N(ymun))}, (5.2.6) 

where 

9iVn) = JZM\\M9{xn)) - P2(S(vn,xn))}, (5.2.7) 

and choose u n + i G F(yn+i) and vn+i G T(xn+j) such that 

I K - Un+i|| < D{F{yn),F{yn+1)) + en+l\\yn - yn+1||, (5.2.8) 

K - twill < D(T(xn),T(xn+1)) + en+1\\xn - xn+l\\. (5.2.9) 

71 = 0,1,2, 

Remark 5.2.1. If e = 0, N{yn,-) = T(yn), S(-,xn) = T(xn), then our Algorithm 

5.2.1 reduces to the Algorithm 3.1 of Jin [71]. 

We prove the existence of a solution of system of generalized variational inclu

sions with (A, T])-accretive mappings (5.2.1) and study the convergence of iterative 

sequences generated by Algorithm 5.2.1. 

Theorem 5.2.1. Let £ be a q-uniformly smooth Banach space. Let rji : E x 

E —> E be Lipschitz continuous mappings with constants r;, A\ : E —> E be rv 

strongly ^-accretive and Lipschitz continuous mappings with constants A^ and 

Mi : E -¥ 2E be (Au ^-accretive mappings for i = 1, 2. Let N, S : E x £ -> £ be 
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Lipschitz continuous mappings in both the arguments with constants A^, A/v2; ASl, 

As2, respectively and F,T : E -4 CB(E) be D-Lipschitz continuous mapping with 

constants XoF and \QT, respectively. Suppose g : E —)• E is Lipschitz continuous 

with constant Xg and strongly accretive mapping with constant Sg. If there exist 

constants pi G (0, ^-) and p2 G (0, ^ ) such that 

[AAlAp + pi(AjVj + AAT2A£)F)][AA2AP + p2(Xs1XDr + Ag2)] 

[1 - y i - g<5p + CgAg[flg(ri - pimi)(r2 - p2m2)] 

(5.2.10) 

where Cg is the constant as in Proposition 1.2.2. Then the iterative sequences {xn}, 

{Vn}, {un} and {vn} generated by Algorithm 5.2.1 converge strongly to x, y, u and 

v in E, respectively and (x,y,u,v) is a solution of system of generalized variational 

inclusions with (A, n)-accretive mappings (5.2.1). 

Proof. From Algorithm 5.2.1 and using the Lemma 1.2.4, we have 

||xn+i - Xn|| = ||Xn - g{?n) + ^MMMVU)) ~ Pl(N(yn,Un))} 

-{xn-! - g(xn^) + J^M\[Ai(g(yn-i)) - pi(i%„_i,Un-i))]}| | 

< \\Xn - Xn-X ~ {g{xn) - 0(x„-i))|| + WJ^MMVn)) 

-pi(N(yn,un))} - J^AMyn^)) - p1(N(yn-U'Un-i))]\\ 

r 9 - l 
< \\xn - xn-i - (g(xn) - g(xn-i))\\ + \\Ax(g(yn)) 

-Aiigiyn-i)) - pl{N{yn,un) - N{yn-UUn-i))|| 

< ||a;n - z n- i - (g(xn) - g(xn^))\\ 

T-9 - 1 
1 

n - p\vfi\ 
r - 9 - l 

-\\Ai{g{yn)) - AMyn. l ; 

+ — Pi\\N{yn}un) - Niyn-uUn-JW. (5.2.11) 

rx - p1mi 

Since g is Lipschitz continuous with constant Ap, strongly accretive with constant 

Sg and using Proposition 1.2.2, we have 
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\\xn - xn_i - (g(xn) - #(z„_i))||9 

< \\xn ~ ^ n - l | | 9 - q(g(Xn) ~ g{Xn-l), Jq{Xn ~ Xn-i)) 

+Cq\\g(xn) - ^ (x n _ i ) | | 9 

< (1 - qSg + CqXl)\\xn - xn_!||9. (5.2.12) 

By the Lipschitz continuity of A\ and g with constants A^ and Xg, respectively, we 

have 

\\M9(yn)) - Axigivn-iM < XAl\\g(yn) - g(yn^)\\ 

< ^A^gWVn - Vn-l\\- (5.2.13) 

Since N(-, •) is Lipschitz continuous in both the arguments with constants A^ and 

A;v2, respectively, F is D-Lipschitz continuous with constant XDF and using (5.2.8), 

we have 

\\N(yn,Un) - i V ( y n - l , U n - l ) | | 

< \\N(yn,un) - N(yn^,un)\\ + \\N{yn_uun) - N(y 

< AjvJIj/n - 2 / n - l | | + XN2\\un - ^ n - J 

< >^NA\yn - Vn-iW + \N*[D{F{yn),F(yn-i)) + en\\yn - yn-i\\\ 

<[XNl+XN2{XDF + en)]\\yn-yn^\\. (5.2.14) 

Using (5.2.12)-(5.2.14), (5.2.11) becomes 

p n + l ~ Xn\\ < y 1 - C[dg + GqXg\\Xn — X n _ i | 

9 - 1 

[AAA+Pi(AJVi+-W^+en))] | |2/n-?/n-i | | (5.2.15) 
n - piml 

and 

\\g(yn) - g{yn-i)\\\\yn - Vn-i\\q~l > (g{yn) - g{yn-i), Jq{yn - yn-\)) 

>s9\\g(yn)-g(yn-i)\\q, 

which implies 

||2/T» —2/n-i | | < T-^iVn) ~ g(yn-i)\\ 
°9 

<hJ^llMgM)-P2(S(vn,xn))} 
°9 
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• C S ^ O r t Z n - x ) ) - P2(S(vn-UXn-l 

< 
T. 9 - 1 

r2 - P 2 ^ 2 

l^2(^(arn)) - A2(g(xn-i)) - p2(S(vn,a;n) 

- 5 ( t ; n - i , x n _ i ) 

< 
r - 9 - 1 

r2 - p2m2 

| A 2 ( 3 ( X n ) ) - A 2 ( 2 ( X n - l ) ) | | 

1 Tr 
9 - 1 

r2 - p2ra2 

-P2||'S'(w,i,Xn) - S(vn-i,Xn. 

By the Lipschitz continuity of Ax and g, we have 

\\A2(g(xn)) - A2(<?(xn-i))|| < XA2\\g(x 

n) g\Xn— 1/H 

< A^ApHln-Xn-ill. 

Using the same argument as for (5.2.14), we have 

Xn Xn—i 

By (5.2.17), (5.2.18), (5.2.16) becomes 7V . 9 - 1 

•[Ayi2A3+p2(ASl(A£,T + e") + AS2)]|| 
Xn Xn—i 

1 

r2 - p2m2 

Using (5.2.19), (5.2.15) becomes 

||x„+i - xn\\ < i9(en)||xn - xn-i\ 

where 

6(en) = ^ 1 - qS9 + CqXg + (T1T2) 9 - 1 

(5.2.16) 

(5.2.17) 

(5.2.18) 

. (5.2.19) 

(5.2.20) 

Sg{n - pimi){r2 ~ P2m2) 

x[XAlXg + px(XNl + XN2{XDF + en))][XA2Xg + p2(XSl(XDT + en) + A5J]. 

Let 

9= ^ 1 - q6g + CqX
q

g + 
(rlT2) 

9 - 1 

&g{ri - Pimi)(r2 - p2m2) 
x[A/iiAs + PI(ATVJ + XN2XDF)][XA2Xg + p2(Xs1XDT + X$2 
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Since 0 < e < 1, it follows that 6(en) -> 8, as n -» oo. 

Prom (5.2.10), we have 6 < 1, and consequently {xn} is a Cauchy sequence in E. 

Also it follows from (5.2.19) that {yn} is a Cauchy sequence in E. Since S is a 

Banach space, there exist x,y E E such that xn —>• x, yn —>• y as n —> oo. 

We have 

| | i tn-itn_i| | < D(F(yn),F{yn-i)) + en\\yn - yn_x\\ 

< ><DF\\yn - yn-i\\ + e n | |yn-yn- i | | 

= (^W + en)\\yn - yn-i\\, 

| | ^ - ^ „ - i | | < ^ ( T ( ^ ) , T ( x n _ 1 ) ) + era|| 

•En ^ n — 1 | | 

< ^DT\\xn ~ Xn-i\\ + en\\xn - Xn-i\\ 

= (XDT + en) | |o;n-xn_i | | 

and hence {un} and {vn} are also Cauchy sequences in E. Let un —> u E E and 

vn —> v E E. Since g, N, S, T, F, Ai, rji, Mi (i = 1,2) are all continuous mappings 

in £ and by Algorithm 5.2.1, we have 

x = x- g(x) + J^\[AMy)) ~ Pi(N(y,u))}, 

where 

g(y) = CMllMg(x))-P2(S(v,x))}. 

Finally, we prove that u E F(y), v E T(x). In fact, since un E F{yn) and 

d(un,F(y)) < m&x\d(un,F(y)), sup d(F(yn),wi)\ 

k wieF(y) > 

< maxl sup d(w2,F(y)), sup d(F(yn),iui)} 

= D(F(yn),F(y)). 

We have 
d(u, F(y)) < \\u -un\\ + d(un, F(y)) 

<\\u-un\\+D(F(yn),F(y)) 
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< ||u - un\\ + \DF\\Vn - 2/11 -> 0, as n -> oo, 

which implies that d(u,F{y)) = 0. Since F(y) € CB{E), it follows that it e F(y). 

Similarly, we can show that v E T(x). 

Then by Lemma 5.2.1, (x,y,u,v) is a solution of Problem (5.2.1). This completes 

the proof. 

Remark 5.2.2. For the suitable choices of operators TV, 5, F and T, we can easily 

derive Theorem 4.1 of Jin [71]. 
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Chapter 6 

Nonlinear Relaxed Cocoercive. 
Generalized Variational Inclusions 
And Generalized Resolvent 
Equations 

6.1. Introduction 

Nonlinear relaxed cocoercive variational inclusions involving (A, 7])-accretive 

mappings were introduced and studied by Lan et al. [79] in g-uniformly Banach 

spaces. Motivated by the work of Lan et al. [79], in this chapter, we generalize their 

problem in g-uniformly smooth Banach spaces and also we introduce and study the 

corresponding generalized resolvent equations. 

In section 6.2, we deals with the existence and convergence of nonlinear relaxed 

cocoercive generalized variational inclusions with [A, ?7)-accretive mappings. In the 

last section, we introduce and study the generalized resolvent equations with (,4, r/)-

accretive and relaxed cocoercive mappings. 

6.2. Nonlinear Relaxed Cocoercive Generalized 
Variational Inclusions 

This section deals with the study of nonlinear relaxed cocoercive generalized 

variational inclusions with (A, ?])-accretive mappings in (/-uniformly smooth Banach 

spaces. We define an iterative algorithm for finding the approximate solutions of 

this class of variational inclusions without Hausdorff metric. We also establish that 

the approximate solutions obtained by proposed algorithm converge to the exact 

solution of nonlinear relaxed cocoercive generalized variational inclusions problem. 
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Let r},N, W : E x E -» E, g,A : E ->• £ be the single-valued mappings, 

B,C,D,F : E ^ 2E be the multivalued mappings. Let M : E x J5 —> 2E be an 

(A,??)-accretive mapping in the first argument such that g(E) n dom (M(.,.)) ^ 

0. We consider the following nonlinear relaxed cocoercive generalized variational 

inclusions: 

Find ue E, x e B(u), y G C(u), z G D(u), v G F(u) such that 

0 G N(x,y) - W(z,v) + M{g{u),u). (6.2.1) 

Some special cases: 

(i) If M(g(u),u)=M(g{u)) and W, D, F = 0, then Problem (6.2.1) reduces to the 

problem of finding u G E, x G B(u), y G C(u) such that 

OeN(x,y) + M(g(u)). (6.2.2) 

Problem (6.2.2) is considered by Peng [103]. 

(ii) If B and C are single-valued mappings, then Problem (6.2.2) can be replaced 

by finding u G E such that 

OeN(B(u),C(u)) + M{g(u)). (6.2.3) 

A similar problem to (6.2.3) is considered by Lan [77]. 

(iii) If C = 0 and B,g = I, the identity mapping, then Problem (6.2.3) reduces to 

the problem of finding u G E such that 

0eN{u) + M{u). (6.2.4) 

Problem (6.2.4) is considered by Bi et al. [19]. 

We suggest a result which convert our problem nonlinear relaxed cocoercive 

generalized variational inclusions (6.2.1) into a fixed point problem. 

Lemma 6.2.1. (it, x, y, z, v), where u G E,x G B(u), y G C(u), z G D(u), v G F(u) 

is a solution of nonlinear relaxed cocoercive generalized variational inclusions (6.2.1) 

if and only if (u, x, y, z, v) satisfies 
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s(«) = <i(,«) Ws(«)) - PWX, y) - w(z>v))] - (6-2-5) 

where J^M(-,U) = (^ + PM(-,u))~l and p G (0, ^ ) is a constant. 

Proof. The proof follows directly from the Definition 1.2.24. 

By using the above fixed point formulation, we propose the following iterative 

algorithm for computing the approximate solutions of nonlinear relaxed cocoercive 

generalized variational inclusions (6.2.1) without Hausdorff metric. 

Algorithm 6.2.1. For any given UQ G E, we choose XQ G B(UQ), yo £ C(UQ), 

ZQ G D(UQ), VQ G F(UO) and compute the sequences {un}, {xn}, {yn}, {zn} and {vn} 

by iterative schemes as follows: 

g(un+l) = J^{.Un) \A{g{un)) - p(N(xn,yn) - W(zn,vn))}, (6.2.6) 

n = 0,1,2, , p G (0, ^ ) is a constant. 

By using the definition of multivalued Lipschitz operator, we prove that the 

approximate solutions obtained by the proposed algorithm converge to the exact 

solution of nonlinear relaxed cocoercive generalized variational inclusions (6.2.1). 

Theorem 6.2.1. Let E be a q-uniformly smooth Banach space and r\ : E x E —> E 

be Lipschitz continuous mapping with constant r. Let A : E —>• E be r-strongly n-

accretive and Lipschitz continuous mapping with constant A^ and M : E x E —¥ 2E 

be (A, ^-accretive mapping. Suppose N, W : E x E —> E be Lipschitz continuous 

mappings in both arguments with constants A^, A/v2 and A ^ , Xw2, respectively 

and B,C,D,F : E —> 2E be Lipschitz continuous mappings with constants AB, 

Ac, XD and Xp, respectively. Let g : E —>• E be (b, £)-relaxed cocoercive, Lipschitz 

continuous with constant Xg and strongly accretive with constant 6. 

Suppose that there exist p G (0, ^ ) and t > 0 such that the following condition 

holds: 

K,M(,Un)(z) - ^ ( . ^ o ^ H ^ * K " «n-ill (6-2-7) 

for all un,un-i G E 
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and 

T^XA 0 < I -?/l-qti + (qb + Cq)\l 
r — pm V 

r • 9 " 1 / 

— {/(Aiv2Ac + XNlXB)q ~(q- Cq){\W2\F + \WlXD)i 
r — pm v 

^XA 
+ t < 1 (6.2.8) 

r — pm 

where Cq is the constant as in Proposition 1.2.2. Then the iterative sequences {un}, 

{xn}, {yn}, fen} and {vn} generated by Algorithm 6.2.1 converge strongly to u, x, 

y, z and v, respectively and (u, x, y, z, v) is a solution of nonlinear relaxed cocoercive 

generalized variational inclusions (6.2.1). 

Proof. From Algorithm 6.2.1, Lemma 1.2.4 and (6.2.7), we have 

\\g{un+1) -g(un)\\ = \\J^{.,Un)[A(g(un)) - p{N(xn,yn) -W(zn,vn))} 

= KU,un)i
A(9(un)) ~ p(N(xn,yn) - W(zn,vn))] 

-J^M(-,un)[M9(un-i))-p{N(xn^,yn^)-W(zn^,vn^))} 

+J^.,un)[M9(^-i))-p(N(xn-Uyn^)-W{zn-Uvn-l))] 

^ \\JnU-,un)[
A(9{un)) - p(N(xn,yn) - W(zn,vn))} 

-J^M^AigiUn^-piNiXn.uyn^-WiZn^Vn.,))}^ 

+ l l ^ i ( , « n ) W ^ ( U n - l ) ) - / 0 ( ^ ( a : n - l . I / n - l ) - ^ ( 2 n - l . V n - l ) ) ] 

\\A(g(un)) - A{g{un-i)) - p{N(xn,yn) - W(zn,vn) < r 
9 - 1 

r — pm 

-(N(xn-1,yn-i) - W(zn_1,wn_i))}| + t\\un - un-i\ 
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< ^^\\A(g(un)) - A(g(un^))\\ + -^-\\N(xn,yn) r — pm r — pm 

-iV(xn_i,y„_i) - (W(zn,vn) - W(*n-i,u„-i))| | 

+t | |Un-U„_i| | . (6.2.9) 

Since A is XA-Lipschitz continuous, we have 

r9_1A4 
\\g{un+1) - g{un)\\ < \\un - un_x - [g{un) - g{un-i))\\ 

r — pm 
prq~l 

+ \\N(xn,yn) - N(zn-Uyn-i) - {W(zn,vn) r — pm 

vr — pm 

Since g is (6, ̂ -relaxed cocoercive and Ag-Lipschitz continuous, we have 

-W(zn-l,vn.l))\\+ ( — — + t ) K - W n - i | | . (6-2.10) 
Vr — pm J 

\un - wn_i - {g{un) - g(un-i))\\
q 

< \\un - U n _ i | | 9 . - g ( ^ K ) - 9{Un-i),jq{Un - Wn-l)> + C g | | # (u n ) ~ £?(^n-l)IC7 

< ||un - un^\\q + qb\\g{un) - ^(Un-OH9 - q£\\un - un_i| |9 + CqX
q
g\\un - u ^ H 9 

< \\un - un^\\q + qb\q
g\\un - un-i\\

q - q£\\un - u n - i | | 9 + CqX
q\\un - un-i\\

q 

= (1 - q£ + (qb + Cq)X
q)\\un - un_x\\

q. 

Thus, we have 

| | u n - u „ - i - (g(un) - g(un_i))\\ < {J 1 - q£ + (qb + Cq)X
q

g\\un - w„_i||. (6.2.11) 

Also 

\\N(xn,yn) - iV(a;n_i,yn_i) - {W(zn,vn) - Wta-i.Un-i))!!9 

< \\N(xn,yn) - ^ ( x ^ ! , ^ . ! ) ! ! 9 - (<? - C,) 

x\\W( )-W(zn_l,vn-l)\\
q. (6.2.12) 

Since the multivalued mappings B and C are Lipschitz continuous with constants 

XB and Ac, we have 
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\\xn - x„_i|| < AB|| ||, (6.2.13) 

for all xn e B{un), xn-i E B(un-i), 

\\yn-yn-i\\ < Ac|| " r e "71—1 
||, (6.2.14) 

for all yn E C(un), yn-\ E C(un-i) . 

Since A?" is AATj-Lipschitz continuous in first argument and A^-Lipschitz continuous 

in second argument, B is As-Lipschitz continuous and C is Ac-Lipschitz continuous, 

we have 

\\N{xn,yn) - N{x 
n—li yn—\) || 

= \\N{xn,yn) - N(xn,yn-i) + N(xn,yn-i) - N(xn-i,yn-i)\\ 

< \\N(xn,yn) - N(xn,yn-i)\\ + \\N(xn,yn-i) - N(xn-i,yn-i)\\ 

Xn •En— 1 

< \N2\c\\un — Tin-ill + A ^ A ^ H U n — U n - l | | 

= (AAT2AC + AjVjAsJH'Un -t in-i l l . 

Thus, 

| |iV(xn,yn)-iV(xn-i !yn-i)||9<(Aiv2Ac + Aiv1AB)'?||tin-'u,l_i||'?. (6.2.15) 

Using the similar arguments as for (6.2.15), we obtain 

| | W ( Z n ^ n ) - ^ ( ^ n - l ^ n - l ) i r < ( A W 2 A F + A M / 1 A D ) 9 | | U n - U n - l | | 9 . (6 .2 .16) 

Using (6.2.15) and (6.2.16), (6.2.12) becomes 

\\N(xn,yn) - N(xn-i,yn-i) - (W(zn,vn) - W(2n_i,u„_i))||9 

< (AN2AC + ANlAB)9||tin - Un-i\\
q ~{q- Cq)(XW2XF + XWlXD)Q\\un ~ Wn-lH9 

= [(Aiv2Ac + A ^ A B ) 9 -(q- Cq){XW2XF + A^A^)9] ||un - un_i||9. 

It follows that 

\\N(xniyn) - N(xn-i,yn-i) - (W{zn,vn) - W(z„-i,un-i)) | | 

< ^J{XN2XC + ANlAB)9 -(q- Cq)(XW2XF + XWlXD)" 
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X \\Un Un—1 II • 

Combining (6.2.11) and (6.2.17) with (6.2.10), we obtain 

(6.2.17) 

\\g(un+i) ~ g(un)\\ < 
rq~lXA 

r — pm 
1 - q£ + (qb + CqX

Q
g)\\un - Un-i\ 

pr 9 - 1 

r — pm 
(AJV2AC + XN1\B)Q — {q — Cq)(\w2^F + XW^DY 

x\\un - wn_i|| + [ \-t) | | u „ - n n _ i | 
r — pm J 

r — pm 

• g - i 

— f/l-qt + iqb + CM 
— nm V 

_pr 
r — pm 

{/(AjvaAc + XNlXB)q ~{q- Cq){\W2XF + AWlAD)9 
— nm v 

T * " ^ 
+ t \Un -Un-i\ 

r — pm 

By the strong accretivity of g with constant 5, we have 

\\g(un+i) - g(un)\\.\\un+l - un | |9_1 > {g(un+1) - g(un),jq(un+1 - un)) 

(6.2.18) 

which implies that 

> 5\\un+x -un\\
q 

\un+i - un\\ < --\\g{un+i) - g(un) (6.2.19) 

Combining (6.2.18) and (6.2.19), we have 

\un+1 -un\\ < 
Tq-lXA 

r — pm 
I - qt + (qb + Cq)X

q
g 

pr 9 - 1 

r — pm 
tf(XN,Xc + AWlAs)9 -(q- Cq)(XW2XF + XWlXD)i 

, rq-lXA 

r — pm 
+ t un -un-i 

Q\\un-un-i\\, (6.2.20) 
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where 

- \ r — pm 

• 9 - 1 

^ 1 - qi + (qb + Cq)\
q

9 

)Tq~1 I 

y (AAT2AC + XNl\B)q ~{q~ Cq){XW2\F + XW,XDY r — pm 

+ t 
r — pm 

By (6.2.8), we know that 0 < 9 < 1 and so (6.2.20) implies that {un} is a Cauchy 

sequence. Thus, there exists u 6 E such that un —> u as n —> oo. 

The Lipschitz continuity of multivalued mapping B, C, D and F implies that xn —> 
i 

z> Un ~> V, Zn ̂  z and i;n ->• t>. 

As A, 77, M, TV, W, 5 , C, D, F, g and Jf'M all are continuous and by Algorithm 

6.2.1, it follows that u, x, y, z and v satisfy the following relation 

9(u) = < i ( , u ) [A(g(u)) - p(N(x,y) - W(z,v))}. 

By Lemma 6.2.1, (u,x,y,z,v) is a solution of Problem (6.2.1). This completes the 

proof. 

6.3. Generalized Resolvent Equations With 
(A, 7y)-accretive And Relaxed 
Cocoercive Mappings 

In this section, in connection with nonlinear relaxed cocoercive generalized vari

ational inclusion problem (6.2.1), we consider a generalized resolvent equations with 

(A, ^-accretive and relaxed cocoercive mappings in g-uniformly smooth Banach 

spaces. A relationship between nonlinear relaxed cocoercive generalized variational 

inclusion problem (6.2.1) and generalized resolvent equations is established. This 

equivalence is used to define an iterative algorithm without Hausdorff metric for 

solving generalized resolvent equations. 

Let n,N,W : E x E -> E, g,A : E -* E be the single-valued mappings, 

B,C,D,F : E ->• 2E be the multivalued mappings. Let M : E x E -> 2E be an 
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(A, ??)-accretive mapping in the first argument such that g(E) n dom (M(.,.)) / 0. 

In connection with nonlinear relaxed cocoercive generalized variational inclusions 

(6.2.1), we consider the following generalized resolvent equations: 

Find s,u G E, x G B(u), y G C(u), z G D(u), v G F(u) such that 

N(x,y) - W(z,v) + p-'R^.^s) = 0, (6.3.1) 

where p > 0 is a constant, Rp'Mr. u\ = I — A[J£'M, UA, I is the identity mapping and 

We mention the following lemma which established an equivalence between the 

nonlinear relaxed cocoercive generalized variational inclusions (6.2.1) and generalized 

resolvent equations (6.3.1). 

Lemma 6.3.1. The nonlinear relaxed cocoercive generalized variational inclusions 

(6.2.1) has a solution (u,x,y,z,v), where u G E, x G B(u), y G C(u), z G D(u), 

v G F(u) if and only if the generalized resolvent equations (6.3.1) has a solution 

(s,u,x,y,z,v), where s,u G E, x G B(u), y G C(u), z G D(u), v G F(u), 

9iu) = J^.^sl (6.3.2) 

and 

s = A(g(u))-p{N(x,y)-W(z,v)}. 

Proof. Let (u,x,y,z,v) be a solution of nonlinear relaxed cocoercive generalized 

variational inclusions (6.2.1). Then by Lemma 6.2.1, it is a solution of the following 

equation 

9H = ^M(.,u)[M9(u)) - p{N(x,y) - W(z,v)}}. 

Using the fact RfyM = 1- A[jfyM] and equation (6.2.5), we have 

KAM(-,u)lA(9(n)) - p{N(x,y) - W(z,v)}} 

= A(g(u))-p{N(x,y)-W(z,v)} 

-AKU,uM(9^)) - p{N(x, y) - W{z, v)}}} 

= A(g(u)) - p{N(x, y) - W{z, v)} - A(g(u)) 
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= -p{N(x,y)-W(z,v)}. 

Which implies that 

N(x,y)-W(z,v) + p-1Rp
Tl'

A
M{.iU)(s) = 0 

with s — A(g(u)) — p{N(x, y) — W(z, v)}, i.e., (s, u, x, y, z, v) is a solution of gener

alized resolvent equations (6.3.1). 

Conversely, let (s, u, x, y, z, v) be a solution of generalized resolvent equations (6.3.1), 

then 

p{N(x,y) - W(z,v)} = -RP
v'

A
MM(s) = A[J^M(a)] - a. (6.3.3) 

Prom (6.3.2) and (6.3.3), we have 

p{N(x,y) - W(z,v)} = A[JZ£M[A(g(u)) - p{N(x,y) - W(z,v)}}} 

-A(g{u)) + p{N(x,y)-W{z,v)}. 

Which implies that 

A(g(u)) = A[j;£M[A(g{u)) - p{N(x,y) - W(z,v)}]\ 

and thus 

9(«) = <M(,U )[^(5W) - PWx,y) - W(z,v)}}. 

i.e., (u,x,y,z,v) is a solution of nonlinear relaxed cocoercive generalized variational 

inclusions (6.2.1). 

Alternative proof. Let 

s = A{g{u))-p{N{x,y)-W(z,v)}, 

and from (6.3.2), we have 

9(v) = < ' i ( , u ) (s) , 

thus, we have 

s = WZMMW] - P{N(x,y) - W(z,v)}. 

By using the fact that A[jfyM(s)] = [A(J*MM)](S), it follows that 

N(x,y)-W(z,v) + p-1Ii$fM(8) = 0, 
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the required generalized resolvent equations (6.3.1). 

We now invoke Lemma 6.2.1 and Lemma 6.3.1 to define the following itera

tive algorithm without Hausdorff metric for solving generalized resolvent equations 

(6.3.1). 

Algorithm 6.3.1. For any given so,wo £ E, we choose XQ G B(UO), yo G C(uo), 

ZQ G D(UQ) and VQ G F(UQ) and compute the sequences {sn}, {un}, {xn}, {yn}, {zn} 

and {vn} by iterative schemes as follows: 

s M = '££(,«>») (6-3-4) 

and 

sn+i = A(g(un)) - p{N(xn, yn) - W{zn, vn)}, (6.3.5) 

where p G (0, ^ ) is a constant and n = 0,1, 2, 

Based on Algorithm 6.3.1, we give the approximation-solvability of the gener

alized resolvent equations (6.3.1) involving (A, ^-accretive mapping and cocoercive 

mappings in ^-uniformly smooth Banach spaces. The convergence of iterative se

quences generated by Algorithm 6.3.1 is also proved. 

Theorem 6.3.1. Let E be a (/-uniformly smooth Banach space and A : E —> E be 

r-strongly 77-accretive and Lipschitz continuous with constant XA, TJ : E x E —> E 

be Lipschitz continuous with constant r and M : E x E —» 2E be (A, r?)-accretive 

mapping in the first argument. Let N, W : E x E —> E be Lipschitz continuous 

mappings in both arguments with constants A/vn A/v2 and \wi, Aw2, respectively 

and B,C, D,F : E —> 2E be Lipschitz continuous with constants XB, XC, XD and 

Xp, respectively. Suppose g : E —> E be (b, ^-relaxed cocoercive and Lipschitz 

continuous with constant Xg. 

If there exit p G (0, ^ ) and i > 0 such that the following conditions hold: 

ll<'M(,Un)(^) - ^£(,«»-i)0OII < * K - u^ill, (6-3.6) 

for all un,un-i, s G J5 

and 
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< W l - q£ + {qb + Cg)X
g

9 + p[{XNlXB + \N2\C) + (XWlXD + XW2XF) 

^ (r - pm)[l -(t+j/l-qZ + (qb + Cq)X
q

9) - r^XA 

where Cq is the constant as in Proposition 1.2.2, then the iterative sequences {sn}, 

{un}, {xn}, {yn}, {zn} and {vn} generated by Algorithm 6.3.1 converge strongly 

to s, u, x, y, z and v, respectively and (s,u,x,y,z,v) is a solution of generalized 

resolvent equations (6.3.1). 

Proof. From Algorithm 6.3.1, we have 

||sn+i - sn\\ = \\A(g(un)) - p{N(xn,yn) - W(zn,vn)} 

-[A{g(un-i)) - p{N(xn-Uyn^l) - W(zn_uvn-.1)}}\\ 

< \\A(g{un)) - A(g(un-1))\\+ p\\N(xn,yn) - N{xn.uyn^)\\ 

+p\\W(zn,vn)-W(zn-1,vn-1)\\. (6.3.8) 

By the Lipschitz continuity of A, we have 

\\A{g{un)) - A{g{un^))\\ < XA\\g(un) - ^ ( ^ _ i ) | | . (6.3.9) 

By the Lipschitz continuity of N in both the arguments and Lipschitz continuity of 

B and C, it follows that 

\\N(xn,yn) - N(x n—li Vn—l) || 

< \\N{xniyn)-N[xn,yn-{)\\ + \\N(xn,yn^) - N{x 

n—1) 2/n—1JII 

< ^N2\\yn -Vn-lW + XNl\\xn - Xn-i\\ 

< XN2Xc\\un - iin_i| | + XNlXB\\un - u n _i | | 
= (AN2AC + XNlXB)\\un - u n_i | | . (6.3.10) 

By the Lipschitz continuity of W in both the arguments and Lipschitz continuity of 

D and F, it follows that 

\\W(zn, Vn) - W(Zn-U Vn-l)\\ 

< \\W(zn,Vn) - W(Zn, Vn-i)\\ + \\W(zn,Vn_i) - W(zn-i, Vn-i) \\ 
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< Aw2||l>n — Vn-i\\ + \wi\\zn — 2 re_i| | 

< Avi/2Air||tin — Un_i| | + A^AjoHlin — Un-i\\ 

= (XW2XF + XWlXD)\\un - Un-i\\. (6.3.11) 

Combining (6.3.9)-(6.3.11) with (6.3.8), we obtain 

||sn+i - sn\\ < XA\\g{un) - g(un-i)\\ + p[{XNlXB + A/v2Ac) 

+{XW1XD + AvK2Air)]||un - •un_1|| 

< XA\\un - wn_i - {g{un) - g(un-i))\\ + XA\\un - un^\\ 

+p[{XNlXB+XN2Xc)+(XWlXD+XW2XF)]\\un-un_1\\. (6.3.12) 

Since g is (b, £)-relaxed cocoercive and A9-Lipschitz continuous, we have 

||un - un_i - (g(un) - g{un-i))\\
q 

< \\un - l in-lH9 - q{g{un) ~ g(Un-l),jq{un ~ Un- l ) ) + Cq\\g(un) - g(un^)\\q 

< \\un - ttn_i||9 + qb\\g(un) - g(un^x)\\
q - q£\\un - un_i\\q + CqX

q
g\\un -un-X\\q 

< \\un - un-i\\
q + qbXq\\un - u n _ i | | 9 - q£\\un - un^\\q + CqX

q
g\\un - u„_i||9 

= (1 - qti + (qb + Cq)X
q
g)\\un - un^\\q. (6.3.13) 

It follows that 

| | U n - U n - l - (g(Un) - # ( u n _ i ) ) | | < ^ 1 - q£ + (qb + Cq)X
q
g\\un - Un-i || - (6.3.14) 

Combining (6.3.14) with (6.3.12), we have 

| | s n + i - s n | | < [XA^l-q£ + (qb + Cq)X
q + XA 

+p[{XNlXB+XN2Xc)+(XwlXD+XW2XF)}\\un-un_1\\. (6.3.15) 

By using Lemma 1.2.4 and condition (6.3.6), we have 

ln - Un_1 | | = | | ^ ( . i U n ) ( 5 n ) - J^M(;nn^)(Sn-l) ~ I s K ) ~ p f a n - l ) ~ Un-1 ~ «n]| | 

^ l l ^ ; i ( , u ^ ( S n ) - ^ M ( - , u n _ 1 ) ( S « - 1 ) l l + l ^ n - U n _ i - ( c ? ( u n ) - 5 ( w „ _ 1 ) ) | | 

117 

\Un 

\ 3 



+ \\un - Un-! - (g(un) - g(Un-i))\\ 

- II •Jr)',M{-,un)\S^)~'J
v',M{-,un)\Sn-l) 11 + 11 Jv',M(;Un)(Sn-~L)~J71',M(;un-l)(

Sn-^ 

+\\un - Un-i - {g{un) - g{un-i))\\ 
r 9 - l Tq~L I 

< ||sn-sn_i||+t||wn-un_i|| + A71 - q£ + (qb + Cq)\
q

g\\un-un-i\ 
r — pm V 
r 

g - 1 

r — pm 

which implies that 

| u n - l 4 n _ i | | < 

\sn - sn_i|| + (t + y i - ^ + (g6 + Cg)A^)||wn - un_!||, 

T « -

1—pm 

i - ( t + y i - t f + Gz& + c,)A2 
^n Sn—1 (6.3.16) 

Using (6.3.16), (6.3.15) becomes 

< 
A^yi -q£ + (qb + Cq)X

q
g + XA + p[(XNlXB + XN2XC) + (XWlXD + XW2XF)} r «~ l 

(r - pm)[l -{t+ i/l - qt, + (qb + Cq)X
q )] 

X \\Sn ^n—l 

i.e., 

where 

\sn+l — Sn\\ < # | | s n — Sn_i | | , 

6=± 
XA ̂ /l-q^ + (qb + Cq)X

q + XA + p[(XNi XB + XN2 Ac) + (XWl AD + XW2 XF)} r < 7 - l 

pm){\ - (t + y i - ^ + (qb + Cq)X
q )} 

From (6.3.7), we have 0 < 9 < 1 and consequently {sn} is a Cauchy sequence in £. 

Thus, there exists s £ E such that sn —> s as n —» oo. 

From (6.3.16), we know that {un} is also a Cauchy sequence in E. Therefore, there 

exists u 6 E such that un —>• u as n —>• oo. Since the multivalued mappings fi, C, D 
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and F are Lipschitz continuous, it follows that {xn}, {yn}, {zn} and {vn} are also 

Cauchy sequences, we can assume that xn —> x, yn —> y, zn —>• z and vn —> v. 

Since A, g, N and W all are continuous and by Algorithm 6.3.1, it follows that 

sn+1 = A(g(un)) - p{N(xn,yn) - W(zn,vn)} 

—> s = A{g{u)) - p{N(x, y) - W(z, v)}, n -> oo, (6.3.17) 

J!M^)M = 9M —• g(u) = j;$M(s), n ^ oo. (6.3.18) 

By (6.3.17), (6.3.18) and Lemma 6.3.1, we have 

N{x,y) - W(z,v) + p-l[I - A(jfyM{s))] = 0 

i.e., 

N(x,y)-W(z,v) + p-1Rp
r]>

A
MM(s) = 0. 

By Lemma 6.3.1, (s, it, x, y, z, v) is a solution of Problem (6.3.1). This completes the 

proof. 
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