
WAVELET BASED NEURO-FUZZY SYSTEM IN
FORECASTING OF DYNAMIC SYSTEMS

1

[\

ABSTRACT
THESIS

SUBMITTED FOR THE AWARD OF THE DEGREE OF

Mottox of $l|iIo!S(opI)p

ELECTRICAL ENGINEERING

•Y

AHMAD BANAKAR

DEPARTMENT OF ELECTRICAL ENGINEERING
ZAKIR HUSAIN COLLEGE OF ENGINEERING AND TECHNOLOGY

ALIGARH MUSLIM UNIVERSITY
ALIGARH (INDIA)

2007

- (.SSS,:'̂

ABSTRACT
In this thesis, application of wavelet functions in wavelet networks and neuro-

fuzzy models are considered. The ability of localized analysis of wavelets jointly in

frequency and time domain in addition to the learning ability of artificial neural

network, prompt the Wavelet Neural Network (WNN) a superior system model for

complex and seismic application. The presented work is an attempt to propose a

comparative study for three types of wavelet function used in WNN, namely, Mexican

hat, Morlet and Sine wavelet functions. A conjunction of sigmoid and wavelet

activation functions, by summation and product operators, is propose to combine the

localize approximation property of wavelets with functional approximation properties

of neural network (with sigmoid activation function).

In describing the behavior of many complex and ill-defined systems, precise

mathematical models may fail to give satisfactory results. In such cases, fuzzy models

are used to reflect the uncertainty of the systems in a proper way. In this thesis.

Wavelet Neuro-Fuzzy (WNF) model is introduced where the consequent part of each

fuzzy rule corresponds to a sub-WNN consisting of wavelet with the specified dilation

value. Therefore, a WNF model has the ability to deal with impreciseness and

uncertainty in a better way than ANFIS because of localizes region property of the

wavelets. A hybrid learning method of gradient descent and genetic algorithm is

applied to learn the parameters of the WNF model. A comparative study of the

Parallel and the Series-Parallel configurations in parameter identification of the TSK

neuro-fuzzy model is also presented in this work.

In the series of development of different recurrent network and neuron model,

the presented work, based on WNN, proposes different types of recurrent neuron

model to compare sigmoid and wavelet function for incorporating the dynamics inside

the model of dynamic systems. Due to the dynamic behavior of recurrent network,

they are suitable in dealing with the modeling of dynamic systems as compared to

static behavior of feed-forward network.

A number of theorems cover universal approximation capability of all the

proposed networks. An adaptive learning rate based of Lyapunov stability theorem is

also applied to guarantee the convergence and the stability of the parameter learning

process by determine the upper bound of learning rates.

The propose networks/models are tested upon six different types of dynamic

systems and finally is applied to predict the Indian summer monsoon rainfall data.

1

Motivation

During the nineteen century Fourier transform, solved many problems in

physics and engineering. This prominence led scientists and engineers to think of

them as the preferred way to analyze phenomena of all kinds. This ubiquity forced a

close examination of the method. As a result, through the twentieth century,

mathematicians, physicists, and engineers came to realize a drawback of the Fourier

transforms: they have trouble reproducing transient signals or signals with abrupt

changes, such as the spoken word or the rap of a snare drum.

At the present scenario, wavelet decomposition emerges as a new powerful

tool for function approximation due to its multi-resolution property. Recent advances

have shown the existence of orthonormal wavelet bases, from which follows the

availability of rates of convergence for approximation by wavelet based networks.

Several works has been done and so many works are going on for wavelets. Its

application in neural network and neuro-fuzzy model gives tremendous performance

for function approximation. However, until this time, selection of parameters and

support of wavelet properties are mystery. Due to these discrepancies and multi

resolution property of the wavelets, we have motivated to work with wavelet for

forecasting and modeling applications of dynamic systems.

The organization of the thesis is as follows:

Chapter 2: Wavelet Networks

A comparative study of two existing wavelet networks namely Wavelet

Synapses Neural Network (WSNN) and Wavelet Activation Neural Network

(WANN), based on three different wavelet function is presented in this chapter. Feed

forward neural networks show the ability to deal with complex problems and

especially in input-output data systems. In addition, wavelet transformation has the

ability of representing a function and revealing the properties of the function in the

localized regions of the joint time frequency space. The chapter covers some basic

concept of wavelet same as wavelet transform, Continuous Wavelet Transform

(CWT) and Discrete Wavelet Transform (DWT). Three types of non-orthogonal

wavelet are introduced in this section. These wavelets when used in feed-forward

network give wavelet network.

Chapter 3: Generalized Wavelet Networks

The main objective of this thesis is to improve existing one layer feed-forward

network with SAF and WAF. Feed-forward neural networks show the ability to deal

with complex problems and especially in input-output data systems. In addition,

wavelet transformation has the ability of representing a function and revealing the

properties of the function in the localized regions of the joint time frequency space.

Due to above ability, in this chapter, combination of sigmoid and wavelet activation

function is proposed. It has shown that a smart combination of these not only

decreases the size of the network, it also increases the accuracy of the network. Two

proposed wavelet neural network namely Summation Sigmoid-Wavelet (SS-W) and

Multiplication Sigmoid-Wavelet (MS-W) neuron model are discussed in details. One

method for structure identification of the model is introduced. General approximation

capability of the network has also been presented in this chapter with different

theorems.

Chapter 4: Neuro-Fuzzy Model

This chapter serves as an introduction into the basic concept of parameter

identification for neuro-fiizzy models. Two parameter identification schemes, namely

Parallel (P) and the Series-Parallel (S-P) configurations, are described in this chapter.

A combination of these two configurations is proposed for neuro-fuzzy models.

Modified mountain clustering is applied to neuro-fiizzy models for structure

determination and initialization of the neuro-fiizzy models. An algorithm with

adaptive learning rate is used to learn learning parameters of the model. Convergence

of the learning procedure is guaranteed by Lyapunov stability theorem.

Chapter 5: Wavelet Neuro-Fuzzy Model

This chapter discusses about the wavelet neuro-ftizzy model. The proposed

network in chapter 3 with better performance is used in the consequent part of each

fijzzy rule in TSK neuro-fijzzy model that results WNF model. A hybrid of Genetic

Algorithm and Gradient Descent has been employed to learn the model parameters.

Chapter 6: Recurrent Wavelet Networks

In this chapter, recurrent neuron models are introduced. Due to the dynamic

behavior of recurrent networks, they are suitable in dealing with the modeling of

dynamic systems as compared to static behavior of feed-forward network. The

quantitative behavior of the sigmoid and wavelet activation fimctions for dealing with

and saving the dynamic of systems are considered. The general approximation

properties of the recurrent neuron models are also evaluated. Since the convergence

analysis plays an important role in the recurrent networks, the Lyapunov stability

approach is employed to guarantee the convergence of network.

Chapter 7: Case study, Indian Monsoon Rain-Fall

The agricultural economy of India is closely linked to the performance of

summer monsoon rainfall all over India. The ability to understand and predict

circulation and rainfall during the Asian summer monsoon on various time-scales is of

prime importance to the economy of several nations of this region because of its affect

on agriculture, drinking water, transportation, health, power, and the very livelihood

of billions people living in the monsoon region. Due to these reason, in this chapter,

all the proposed networks are tested on rainfall data.

Chapter 8: Conclusion

Finally, conclusions of the thesis and suggestions for the future work have

been covered in chapter 8.

WAVELET BASED NEURO-FUZZY SYSTEM IN
FORECASTING OF DYNAMIC SYSTEMS

SUBMITTED FOR THE AWARD

Mottor
<

T^E DEGREE OF

ECTItlCAL^NGINEI

AHMAD BANAKAR

Rll

DEPARTMENT OF ELECTRICAL ENGINEERING
ZAKIR HUSAIN COLLEGE OF ENGINEERING AND TECHNOLOGY

ALIGARH MUSLIM UNIVERSITY
ALIGARH (INDIA)

2007

T6555

THESIS APPROVAL SHEET

The thesis entitled "WAVELET BASED NEURO-FUZZY SYSTEM IN

FORECASTING OF DYNAMIC SYSTEMS" submitted by Mr. Ahmad Banakar,

Department of Electrical Engineering, Zakir Husain College of Engineering and

Technology, Aligarh Muslim University, Aligarh, India, is approved for the award of

the degree of Doctor of Philosophy (Ph.D.).

Internal Examiner External Examiner

Chairman,
Dept.of Electrical Engg.,

AMU, Aligarh.

CERTIFICATE

This is to certify that the thesis entitled "WAVELET BASED NEURO-FUZZY

SYSTEM IN FORECASTING OF DYNAMIC SYSTEMS", which is being

submitted by Mr. Ahmad Banakar for the award of the degree of Doctor of

Philosophy in Electrical Engineering of the Faculty of Engineering and Technology,

Aligarh Muslim University, Aligarh, India, is entirely based on the work carried out

by him under my supervision. The work reported, embodies the work of candidate

himself and is original one, has not been submitted to any other University or

Institution for the award of any degree or diploma, according to best of my

knowledge.

lammadjFazle Azeem)
Dated: 1^/09/2007 [_^S^^fi0/J

ABSTRACT
In this thesis, application of wavelet functions in wavelet networks and neuro-

fiizzy models are considered. The ability of localized analysis of wavelets jointly in

frequency and time domain in addition to the learning ability of artificial neural

network, prompt the Wavelet Neural Network (WNN) a superior system model for

complex and seismic application. The presented work is an attempt to propose a

comparative study for three types of wavelet function used in WNN, namely, Mexican

hat, Morlet and Sine wavelet functions. A conjunction of sigmoid and wavelet

activation functions, by summation and product operators, is propose to combine the

localize approximation property of wavelets with functional approximation properties

of neural network (with sigmoid activation function).

In describing the behavior of many complex and ill-defined systems, precise

mathematical models may fail to give satisfactory results. In.such cases, fuzzy models

are used to reflect the uncertainty of the systems in a proper way. In this thesis.

Wavelet Neuro-Fuzzy (WNF) model is introduced where the consequent part of each

fuzzy rule corresponds to a sub-WNN consisting of wavelet with the specified dilation

value. Therefore, a WNF model has the ability to deal with impreciseness and

uncertainty in a better way than ANFIS because of localizes region property of the

wavelets. A hybrid learning method of gradient descent and genetic algorithm is

applied to learn the parameters of the WNF model. A comparative study of the

Parallel and the Series-Parallel configurations in parameter identification of the TSK

neuro-fuzzy model is also presented in this work.

In the series of development of different recurrent network and neuron model,

the presented work, based on WNN, proposes different types of recurrent neuron

model to compare sigmoid and wavelet function for incorporating the dynamics inside

the model of dynamic systems. Due to the dynamic behavior of recurrent network,

they are suitable in dealing with the modeling of dynamic systems as compared to

static behavior of feed-forward network.

A number of theorems cover universal approximation capability of all the

proposed networks. An adaptive learning rate based of Lyapunov stability theorem is

also applied to guarantee the convergence and the stability of the parameter learning

process by determine the upper bound of learning rates.

The propose networks/models are tested upon six different types of dynamic

systems and finally is applied to predict the Indian summer monsoon rainfall data.

Ill

ACKNOWLEDGMENT

I thank God to give me three years more to complete this research and allow
me to see and understand another culture. I receive to this point that all human have a
lot of co-operation with together to forget differences between themselves.

It is my great pleasure to express my appreciation to everyone who is directly
or indirectly related with this research.

I should give my full respect to my supervisor, Dr. Mohammad Fazle Azeem,
His always-cheerful conversations, a friendly behavior, and his unique way to make
his students realize their hidden talents are extraordinary. I heartily acknowledge his
constant encouragements, genuine efforts and being tolerant to my irregularities
during the entire course of this work.

I express my sincere gratitude to Professor M.S. Jamil Asghar who always
answers me kindly and make co-operation with me.

I would like to thanks the chairman of the Department of Electrical
Engineering, Professor Prabhat Kumar, and Ex-Chairman of the Department of
Electrical Engineering, Professor A. K. Gupta, for providing me the facility for
successful completion of this research work.

I also extend my thanks to all teachers and staff member of the Department of
Electrical Engineering.

It is my pleasure to remember myself and mention the name of my close
friends and seniors in Aligarh, Professor Asef, Dr. Rahmani, Roohi, Farzaneh,
Huseini, Bazaee, Golami, Alidad, Basir, Heidari, Haqi, Mohammadianfar, Kord,
Oanaq, Bameri, Mirakizadeh, Faraz, Mojarabian, Monazami, Adhami, Kamarzarin,
Soltanzadeh, Khubfekr, Vinod Kumar, Jahangir Eqbal, Golam Abas, Akbar Ali Jafri.

I caimot forget the Indian Government and the UGC office for helping me,
which supported me and allowed me to take JRF scholarship. I respect all Indian and
this ground that respect me, patience to me when I was angry and smile with me when
I was glad.

Finally, I wish to extend my fully thanks to my family:
My father, when I started my course he was waiting for its completion.

But he expired. I wish Allah for "rahmat" on him.
My mother, who staying with me, I do not know how can I write a

sentence to thanks her. I can say her only "I love you!"
My brother, Mr. Abdorahim Banker & his wife Maryam, my sisters

Efat and Mahboubeh and my heart in India.
My relations, Mr. Amiri, Mohammad Saleh & his wife, Zeinab,

Mohsen, Fatemeh, Zahra

Ahmad Banakar
\f^

IV

Dedicated to

-/^^ 'P^^^rC^

CONTENTS

Page No.

Thesis Approval Sheet

Certificate

Abstract

Acknowledgment

Contents

List of Figures

List of Tables

List of princ

Chapter 1:

l-I

1-2

1-3

1-4

1-5

1-6

1-7

1-8

Chapter 2:

2-1

ipal Symbols and Abbreviations

Literature Review

Introduction

Identification

Soft Computing

1-3.1 What is absorbed in Soft Computing?

1-3.2 Importance of Soft Computing

Wavelet

Motivation

Scope of the Thesis

Organization of Thesis

Description of Some Dynamic Systems

Wavelet Networks

Introduction

VI

XVlll

XIX

XX

2

2

3

4

4

7

8

10

13

19

19

VI

2-2 Artificial Neural Network 21

2-3 Wavelet 22

2-3.1 Continuous time Wavelet Transform (CWT) 23

2-2.2 Discrete time Wavelet Transform (DWT) 25

2-3.3 Types of the wavelet 25

a) Mexican hat wavelet 27

b) Morlet wavelet 27

c) Sine (Shannon) wavelet 29

2-4 Wavelet Neural Network 30

2-4.1 Wavelet Synapses Neural Network 31

2-4.2 Wavelet Activation function Neural Network 32

2-5 Gradient Descent learning of parameters 34

2-6 Simulation Results 37

2-7 Conclusions 51

Chapter 3: Generalized Wavelet Networks 53

3-1 Introduction 53

3-2 Localized Wavelet Neural Network (LWNN) 55

3-3 Sigmoid-Wavelet Neuron Networks 56

3-3.1 Feed-forward network 57

3-3.2 Summation Sigmoid-Wavelet (SS-W) Neuron 57

3-3.3 Multiplication Sigmoid-Wavelet (MS-W) Neuron 58

3-4 Universal approximation of the S-W neuron networks 59

3-5 Gradient Descent learning of parameters 61

3-6 Structure determination of S-W neuron networks 64

3-7 Simulation Results 66

VI1

3-8 Conclusions 102

Chapter 4: Parameter Identification of Neuro-Fuzzy model 103

4-1 Introduction 103

4-2 Neuro-Fuzzy model 106

4-3 Configurations for Parameter Identification 110

4-3.1 Parallel Configuration 110

4-3.2 Series-Parallel configuration 112

4-3.3 Proposed Configurations 113

a) Consequent Series-Parallel configuration 115

b) Premise Series-Parallel configuration 116

4-4 Learning procedure 116

4-4.1 Structure determination and Initialization 117

4-4.2 Training 117

a) Gradient Descent Technique of the parameters 118

b) Learning Convergence theorems 119

c) Adaptive learning rate 120

4-5 Simulation Results 122

4-6 Conclusions 139

Chapter 5: Wavelet Neuro-Fuzzy Model 141

5-1 Introduction 141

5-2 Wavelet Neuro-Fuzzy 143

5-2.1 Architecture of Proposed Wavelet Neuro-Fuzzy 143

5-3 Genetic Algorithm and Gradient Descent 146

5-3.1 Basic of the Genetic Algorithm 146

5-3.2 Components of GA 148

Vlll

a) Solution Representation (Encoding & Decoding) 148

b) Initialization 149

c) Evaluation function 149

d) Selection, Crossover, Mutation and Reproduction 150

5-3.3 Gradient Descent learning of parameters 150

5-3.4 Learning Convergence theorem 152

5-4 Simulation Results 153

5-5 Conclusions 182

Chapter 6: Recurrent Wavelet Networks 183

6-1 Introduction 183

6-2 Structures of Recurrent Neuron Models 186

6-2.1 Sigmoid-Recurrent Wavelet (S-RW) Neuron 186

6-2.2 Recurrent Sigmoid-Wavelet(RS-W) Neuron 187

6-2.3 Feedback to Sigmoid from Wavelet (FS-W) Neuron 188

6-2.4 Feedback to Wavelet from Sigmoid (FW -S) Neuron 189

6-2.5 Recurrent Neuron (RN) 190

6-3 Universal approximation of the proposed recurrent neuron models 191

6-4 Gradient Descent learning of parameters 194

6-4.1 Sigmoid-Recurrent Wavelet (S-RW) Neuron 194

6-4.2 Recurrent Sigmoid-Wavelet (RS-W) Neuron 195

6-4.3 Feedback to Sigmoid from Wavelet (FS-W) Neuron 196

6-4.4 Feedback to Wavelet from Sigmoid (FW-S) Neuron 197

6-4.5 Recurrent Neuron (RN) 197

6-4.6 Stability analysis of the recurrent neuron models 198

6-5 Simulation Results 203

IX

6-6 Conclusions 235

Chapter 7: CASE STUDY: Indian Summer Monsoon Rainfall 237

7-1 Introduction 237

7-2 Forecasting Ability of Rainfall Data 239

7-3 Simulation Results 241

7-5 Conclusions 251

Chapter 8: Conclusions & Future work 253

8-1 Conclusions 253

8-2 Future work 255

Appendix A: Universal Approximation Theory 257

Appendix B: Modified Mountain Clustering 269

Appendix C: Stability and Convergence Analysis of Gradient

Descent Learning Algorithm 273

References 291

Bio-data 302

LIST OF FIGURES

Fig. No. Title

Fig. 1.1: Control action of an operator

Fig. 2.1: Architecture of the single layer neural network

Fig. 2.2: Representation of (a) a wave and (b) a wavelet

Fig. 2.3: Mexican hat wavelet functions

Fig. 2.4: Morlet wavelet functions

Fig. 2.5: Sine wavelet functions

p. 2 fi. (̂) Simple neuron model (b) Wavelet activation function neuron model

and (c) Wavelet synapses neuron model

Fig. 2.7: Wavelet Synapses Neural Network (WSNN)

Fig. 2.8: Wavelet Activation Function Neural Network (WANN)
p. 2 Q. Actual output and network output with WSNN (Mexican hat) network

and the error for Example 1
p. 2 in. Actual output and network output with WANN (Mexican hat) network

and the error for Example 2

p. 2 11. Actual output and network output with WANN (Mexican hat) network
and the error for Example 3

p. 2 12. Actual output and network output with WANN (Mexican hat) network
^' * • and the error for Example 4

p. 2 1^. Actual output and network output with WANN (Mexican hat) network
*̂ ' ' and the error for Example 5

p. 214. Actual output and network output with WANN (Mexican hat) network
^' ' * and the error for Example 6

p. 2 1«. Actual output and network output with WANN (Mexican hat) network
^' * * and the error for Example 7

_. - ^, Actual output and network output with WANN (Mexican hat) network
Fig. 2.16: j * i . r t 7 i o

* and the error for Example 8
Fig. 3.1: Localized Wavelet Neural Network (LWNN)

XI

Fig. 3.2:

Fig. 3 J :

Fig. 3,4:

Fig. 3.5:

Fig. 3.6:

Fig. 3.7:

Fig. 3.8:

Fig. 3.9:

Fig. 3.10:

Fig. 3.11:

Fig. 3.12:

Fig. 3.13:

Fig. 3.14:

Fig. 3.15:

Fig. 3.16:

Fig. 3.17:

Fig. 3.18:

Fig. 3.19:

Feed-forward Neural Network

Summation Sigmoid-Wavelet (SS-W) neuron network

Multiplication Sigmoid-Wavelet (MS-W) neuron network

Wavelet with different scaling factor and shifting

Algorithm for Structure Determination

Learning pattern of feed-forward network with SS-W neuron network
using Morlet activation function with scaling factor a=l, 2 & 3 for
Example 1

Learning pattern of SS-W neuron network with all wavelet functions
for Example 1

Learning pattern of feed-forward network with MS-W neuron network
using Morlet activation function with scaling factor a=l, 2 & 3 for
Example 1

Learning pattern of MS-W neuron network with all wavelet functions
for Example 1

Actual output and network output with MS-W (Morlet) neuron network
and the error for Example 1

Learning pattern of feed-forward network with SS-W neuron network
using Morlet activation function with scaling factor a=l, 2, 3 & 4 for
Example 2

Learning pattern of SS-W neuron network with all wavelet functions
for Example 2

Learning pattern of feed-forward network with MS-W neuron network
using Morlet activation function with scaling factor af=l, 2, 3 & 4 for
Example 2

Learning pattern of MS-W neuron network with all wavelet functions
for Example 2

Actual output & predicted output of MS-W (Morlet) neuron network
and the error for Example 2

Learning pattern of feed-forward network with SS-W neuron network
using Morlet activation function with scaling factor a=l, 2 & 3 for
Example 3

Learning pattern of SS-W neuron network with all wavelet functions
for Example 3

Learning pattern of feed-forward network with MS-W neuron network
with scaling factor a=l, 2 & 3 for Example 3

XII

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

, 3.20:

, 3.21:

, 3.22:

3.23:

3.24:

3.25:

3.26:

3.27:

3.28:

3.29:

3.30:

3.31:

3.32:

3.33:

3.34:

3.35:

3.36:

3.37:

Learning pattern of MS-W neuron network with all wavelet functions
for Example 3

Actual output & predicted output of MS-W (Morlet) neuron network
and the error for Example 3

Learning pattern of feed-forward network with SS-W neuron network
using Morlet activation function with scaling factor a=l, 2 & 3 for
Example 4

Learning pattern of SS-W neuron network with all wavelet functions
for Example 4

Learning pattern of feed-forward network with MS-W neuron network
with scaling factor a=l, 2 & 3 for Example 4

Learning pattern of MS-W neuron network with all wavelet functions
for Example 4

Actual ou^ut & predicted output of SS-W (Morlet) neuron network
and the error for Example 4

Learning pattern of feed-forward network with SS-W neuron network
using Morlet activation function with scaling factor a=l, 2, 3 «& 4 for
Example 5

Learning pattern of SS-W neuron network with all wavelet functions
for Example 5

Learning pattern of feed-forward network with MS-W neuron network
with scaling factor a=l, 2 & 3 for Example 5

Learning pattern of MS-W neuron network wdth all wavelet functions
for Example 5

Actual output & output of MS-W (Morlet) neuron network and the
error for Example 5

Learning pattern of feed-forward network with SS-W neuron network
using Morlet activation function with scaling factor a=l, 2 & 3 for
Example 6

Learning pattern of SS-W neuron network with all wavelet functions
for Example 6

Learning pattern of feed-forward network with MS-W neuron network
with scaling factor a=l, 2, 3 & 4 for Example 6

Learning pattern of MS-W neuron network with all wavelet functions
for Example 6

Actual output & output of MS-W (Mexican hat) neuron network and
the error for Example 6

Performance index of feed-forward SS-W neuron network with
different scaling factor 'd for all examples

XIII

Fig. 3.38: Performance index of feed-forward MS-W neuron network with
different scaling factor 'd for all examples

Fig. 4.1: Neuro-Fuzzy model

Fig. 4.2: Parallel configuration

Fig. 4.3: Series-parallel configuration

Fig. 4.4: Proposed parallel and Series-parallel configuration

-,. ._, Output ofthe plant feedback to the consequent part and the output of
model feedback to the premise part

-,. . , Output of the plant feedback to the premise and the output of model

feedback to the consequent part

Fig. 4.7: Learning algorithm for Neuro-Fuzzy model

Fig. 4.8: Learning pattern of all configurations for Example 1

Fig. 4.9: Initial membership functions ofthe normalized inputs for Example 1

Fig. 4.10: Learned membership functions ofthe normalized inputs for Example 1
-,. . I ^. Actual output & model output with CS-P configuration and the error

for Example 1

Fig. 4.12: Learning pattern of all configurations for Example 2

Fig. 4.13: Initial membership functions ofthe normalized inputs for Example 2

Fig. 4.14: Learned membership functions ofthe normalized inputs for Example 2

p. . jg. Actual output & model output with CS-P configuration and the error
for Example 2

Fig. 4.16: Learning pattern of all configurations for Example 3

Fig. 4.17: Initial membership functions ofthe normalized inputs for Example 3

Fig. 4.18: Learned membership functions of the normalized inputs for Example 3

p. ^ JO. Actual output & model output with CS-P configuration and the error
for Example 3

Fig. 4.20: Learning pattern of all configurations for Example 4

Fig. 4.21: Initial membership functions of the inputs for Example 4

Fig. 4.22: Learned membership functions ofthe normalized inputs for Example 4

XIV

Fig. 4.23:

Fig

Fig

Fig

Fig.

Fig.

Fig.

Fig.

Fig.

.4.24

4.25

4.26

4.27

5.1:

5.2:

5.3:

5.4:

Fig. 5.5:

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.6:

5.7:

5.8:

5.9:

5.10:

5.11:

5.12:

5.13:

5.14:

5.15:

5.16:

Actual output & model output with CS-P configuration and the error
for Example 4

Learning pattern of all configurations for Example 5

Initial membership functions of the normalized inputs for Example 5

Learned membership functions of the normalized inputs for Example 5

Actual output & model output with CS-P configuration and the error
for Example 5

Proposed Wavelet Neuro-Fuzzy Model

Algorithm for initialized and learning of the learning parameters

Maximum fitness of GA up to each generation for Example 1

Initialized membership functions, learned by GA, of the normalized
inputs for Example 1

Learned membership functions, obtained by GA & GD, of the
normalized inputs for Example 1

Learning pattern of WNF model by Genetic Algorithm and Gradient
Descent for Example 1

Actual output & WNF model output and the error for Example 1

Maximum fitness of GA up to each generation for Example 2

Initialized membership functions, learned by GA, of the normalized
inputs for Example 2

Learned membership functions, obtained by GA & GD, of the
normalized inputs for Example 2

Learning pattern of WNF model by Genetic Algorithm and Gradient
Descent for Example 2

Actual output & WNF model output and the error for Example 2

Maximum fitness of GA up to each generation for Example 3

Initialized membership functions, learned by GA, of the normalized
inputs for Example 3

Learned membership functions, obtained by GA & GD, of the
normalized inputs for Example 3

Learning pattern of WNF model by Genetic Algorithm and Gradient
Descent for Example 3

XV

Fig. 5.17: Actual output & WNF model output and the error for Example 3

Fig. 5.18: Maximum fitness of GA up to each generation for Example 4

Fie 5 19* Initialized membership functions, learned by GA, of the normalized
inputs for Example 4

Fiff 5 20* Learned membership functions, obtained by GA & GD, of the
normalized inputs for Example 4

_.. _ - | . Learning pattern of WNF model by Genetic Algorithm and Gradient
Descent for Example 4

Fig. 5.22: Actual output & WNF model output and the error for Example 4

Fig. 5.23: Maximum fitness of GA up to each generation for Example 5

-,. -~. Initialized membership functions, learned by GA, of the normalized
inputs for Example 5

-,. _ - _. Learned membership functions, obtained by GA & GD, of the
°' ' ' normalized inputs for Example 5

F' 5 26- Learning pattern of WNF model by Genetic Algorithm and Gradient
Descent for Example 5

Fig. 5.27: Actual output & WNF model output and the error for Example 5

Fig. 5.28: Maximum fitness of GA up to each generation for Example 6

F'ff 5 29' Initializedmembershipfunctions, learned by GA, of the normalized
inputs for Example 6

Fie 5 30* Learned membership functions, obtained by GA & GD, of the
normalized inputs for Example 6

Fie 5 31* Learning pattern of WNF model by Genetic Algorithm and Gradient
Descent for Example 6

Fig. 5.32: Actual ou^ut & WNF model ou^ut and the error for Example 6

Fig. 6.1: Summation Sigmoid-Recurrent Wavelet (SS-RW) neuron model

Fig. 6.2: Multiplication Sigmoid-Recurrent Wavelet (MS-RW) neuron model

Fig. 6.3: Summation Recurrent Sigmoid-Wavelet (SRS-W) neuron model

Fig. 6.4: Multiplication Recurrent Sigmoid-Wavelet (MRS-W) neuron model

p. g g. Summation Feedback to Sigmoid from Wavelet (SFS-W) neuron
^' ' ' model

Fie 6 6* Multiplication Feedback to Sigmoid from Wavelet (MFS-W) neuron
*̂ * * model

XVI

Fig

Fig

Fig,

.6.7:

.6.8:

.6.9:

Fig. 6.10:

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

6.11:

6.12:

6.13:

6.14:

6.15:

6.16:

6.17:

6.18:

6.19:

6.20:

6.21:

6.22:

6.23:

6.24:

6.25:

Summation Feedback to Wavelet from Sigmoid (SFW -S) neuron
model

Multiplication Feedback to Wavelet from Sigmoid (MFW -S) neuron
model

Summation Recurrent Neuron (SRN)

Multiplication Recurrent Neuron (MRN)

Learning pattern of feed-forward network with recurrent SS-W neuron
models for Example 1

Learning pattern of feed-forward network with recurrent MS-W neuron
models for Example 1

Actual output and network output v^th MFW-S model and the error for
Example 1

Learning pattern of feed-forward network with recurrent SS-W neuron
models for Example 2

Learning pattern of feed-forward network with recurrent MS-W neuron
models for Example 2

Actual output and network output with MFW-S model and the error for
Example 2

Learning pattern of feed-forward network with recurrent SS-W neuron
models for Example 3

Learning pattern of feed-forward network with recurrent MS-W neuron
models for Example 3

Actual output and network output with SS-RW model and the error for
Example 3

Learning pattern of feed-forward network with recurrent SS-W neuron
models for Example 4

Learning pattern of feed-forward network with recurrent MS-W neuron
models for Example 4

Actual output and networic output with SRN model and the error for
Example 4

Learning pattern of feed-forward network with recurrent SS-W neuron
models for Example 5

Learning pattern of feed-forward network with recurrent MS-W neuron
models for Example 5

Actual output and network output with MFW-S model and the error for
Example 5

xvn

LIST OF TABLES

Table No. Title

Table 2.1: Performance Index of WSNN and WANN networks for different
wavelet activation functions

Table 3.1: Performance Index (J) with different networks and wavelet
functions for Example 1

Table 3.2: Performance Index (J) with different networks and wavelet
functions for Example 2

Table 3.3: Performance Index (J) with different networks and wavelet
functions for Example 3

Table 3.4: Performance Index (J) with different networks and wavelet
functions for Example 4

Table 3.5: Performance Index (J) with different networks and wavelet
functions for Example 5

Table 3.6: Performance Index (J) with different networks and wavelet
functions for Example 6

Table 4.1: Performance index of different configuration identification models

Table 5.1: Performance Index (J) of MS-W neuron model, NF and WNF
models

Table 6.1: Performance Index for Recurrent SS-W neuron models

Table 7.1: Performance Index (J) with different networks for rainfall data

XIX

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

6.26:

6.27:

6.28:

7.1:

7.2:

7.3:

7.4:

7.5:

7.6:

7.7:

7.8:

7.9:

7.10:

7.11:

7.12:

Learning pattern of feed-forward network with recurrent SS-W neuron
models for Example 6

Learning pattern of feed-forward network with recurrent MS-W neuron
models for Example 6

Actual output and network output with MS-RW model and the error for
Example 6

//estimate for the original and random rainfall data

Performance index of Wavelet Neural Network (WNN) with different
scaling factor a

Performance index of feed-forward SS-W neuron model with different
scaling factor a

Performance index of feed-forward MS-W neuron model with different
scaling factor a

Maximum fitness of GA up to each generation for rainfall data

Learning pattern of WNF model by Gradient Descent for rainfall data

Learned membership function, obtained by GA & GD, of the
normalized input x(t-l) for rainfall data

Learned membership function, obtained by GA & GD, of the
normalized input x(t-2) for rainfall data

Learned membership function, obtained by GA & GD, of the
normalized input x(t-3) for rainfall data

Learned membership function, obtained by GA & GD, of the
normalized input x(t-4) for rainfall data

Learned membership function, obtained by GA & GD, of the
normalized input x(t-5) for rainfall data

Actual output and model output with WNF model and the error for
Indian Monsoon Rainfall data

XVIll

LIST OF PRINCIPAL SYMBOLS AND ABBREVIATIONS

Symbols Description

t Time

0^,0^ & h^ Coefficients in Fourier series

/ Function

k Integer variable

/r Pie number

M Input function

y Dynamic function

sin Sine function

Cosine function cos

CC>2 Oxide Carbon

a Scaling factor in wavelet function

b Shifting in wavelet function

<D Activation function

M Number of hidden layer in neural network

n Number of inputs

b Bias for each hidden neuron in neural network

C Weights between first (input) & second (hidden) layer

W Weights between second (hidden) &. third (output) layer

Y Output of models\networks

j Number of hidden neurons in neural network

/ Number of inputs

y/ Wavelet or mother wavelet function

* Complex conjugation

XX

9? Real number

i 2

z

T(a;)

n

exp

{',y)

M

Y

Y
'WANN

P

V

q

<^m

J

e

yf

1

0 '

'G'

e

111
s

h

fi.

Square integrable function

Integer variables

The Fourier transform oftf/if).

Integer number

Exponential function

Data sample in real numbers

Maximum number of scaling factor

Output of WSNN network

Output of WANN network

Number of dataset

Learning parameter

Epoch

Momentum update coefficient

Performance index

Error

Decay factor

Adaptive learning rate

Output of layer one

S-W neurons

Sigmoid activation function

Norm function

Epsilon number

Real function

Compact set

XXI

P Integer value

C^ Weights to inputs signal for wavelet activation function

Cj Weights to inputs signal for sigmoid activation function

\^,T\ Time-interval

X Inputs set

R Rule

i" Firing strength of rules

A Linguistic labels of fuzzy sets

m Number of rule

T^ Corresponding delay of input

tg Corresponding delay of output

w, cf" input

X Center of Gaussian membership function

<j Standard deviation of Gaussian membership function

X' Inputs set of the Consequent part or local model

/ Coefficient

y" Model \ network output

^wm Output of WNN

c Center matrix

h Length of binary string

Pe Probability of crossover

Pm Probability of mutation

A\ Premise variable membership function for input 1 & rule 2

A\^ Learned premise variable membership functions for input 1 & rule2

y ' Outputs of initialized local model

xxn

y./

Q^

Qs

Qws

Qsw

Q

X,

m

N

R

H

Outputs of learned local model

Feedback weight in S-RW

Feedback weight in RS-W

Feedback weight in FS-W

Feedback weight in FW-S

Feedback weight in RN

Time series

Mean value of original time series

Number of observations

Cumulative deviations

Hurst exponent

Abbreviations Description

ANN Artificial Neural Networks

SC Soft Computing

FT

Fuzzy Logic

NN Neural Computing

EC Evolutionary Computation

ML Machine Learning

PR Probabilistic Reasoning

MIQ Machine Intelligence Quotient

WNN Wavelet Neural Networks

NN Neural Network

SAF Sigmoid Activation Function

XXIll

WAF Wavelet Activation Functions

WNF Wavelet Neuro- Fuzzy

TSK Takagi-Sugeno-Kang

WSNN Wavelet Synapses Neural Network

WANN Wavelet Activation Neural Network

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

SS-W Summation Sigmoid-Wavelet

MS-W Multiplication Sigmoid-Wavelet

P Parallel

S-P Series-Parallel

FFNN Feed Forward Neural Network

WT Wavelet Transform

TFR Time-Frequency Representation

GD Gradient Descent

LWNN Localized Wavelet Neural Network

S-W Sigmoid-Wavelet

H.N. Hidden Neuron

Ex Example

ANFIS Adaptive Neuro-Fuzzy Inference System

MISO Multi-Input and Single-Output

NARMA Non-linear Auto-Regressive Moving Average

MMC Modified Mountain Clustering

GA Genetic Algorithm

NF Neuro-Fuzzy

S-RW Sigmoid-Recurrent Wavelet

RS-W Recurrent Sigmoid-Wavelet

XXIV

FS-W Feedback to Sigmoid from Wavelet

FW-S Feedback to Wavelet from Sigmoid

RN Recurrent Neuron

SS-RW Summation Sigmoid-Recurrent Wavelet

SRS-W Summation Recurrent Sigmoid-Wavelet

SFS-W Summation Feedback to Sigmoid from Wavelet

SFW-S Summation Feedback to Wavelet from Sigmoid

SRN Summation Recurrent Neuron

MS-RW Multiplication Sigmoid-Recurrent Wavelet

MRS-W Multiplication Recurrent Sigmoid-Wavelet

MFS-W Multiplication Feedback to Sigmoid from Wavelet

MFW-S Multiplication Feedback to Wavelet from Sigmoid

MRN Multiplication Recurrent Neuron

ISMR India Summer Monsoon Rainfall

EMD India Meteorological Department

GCM General Circulation Models

RR Rescaled Range

H Hurst

HTM Indian Institute of Tropical Meteorology

XXV

Chapter 1

Literature Review

1-1 Introduction

Science has evolved from trying to understand and predict the behavior of the universe

and systems within it. Much of this is based on finding suitable models, which agree with

observations, and analyzing the results. These models can come in many different forms such as

regression models. Artificial Neural Networks (ANN) and Fuzzy systems.

Forecasting is a systematic effort to anticipate future events or conditions. The most well

known type of forecast may be that of the meteorologist who prepares daily weather forecasts

that help us decide how to dress each day and whether to take an umbrella when we leave for

work in the morning. Other common forecasts are those that anticipate fixture economic

conditions, traffic patterns, and even the size and number of classrooms that will be needed in

local schools.

In a prediction fi-amework, the results of a statistical analysis based on data about the past

are used to speculate about the fiiture and to make decisions. In other way, forecasting and

decision-making are very closely related. In a prediction context, researchers use data about the

past with the newest data about actual to speculate about the future and they encourage policy

makers to act on that statistical vision of the future.

1-2 Identification

Forecasting and identification have very close relationship with each other. Hence, better

identification model results the high precision forecasting. Identification is a process through

which one ascertains the identity of another person or entity.

Simulations (and models, too) are abstractions of reality. Often they deliberately

emphasize one part of reality at the expense of other parts. Whereas models are mathematical,

logical, or some other structured representation of reality, simulations are the specific application

of models to arrive at some outcome.

In order to achieve the mission and goals, more industrial specific properties should be

needed to enable the sharing and the reusing of semantics of models among different domains,

territories or countries.

1-3 Soft Computing

Soft computing refers to a collection of computational techniques in computer science,

artificial intelligence, machine learning and some engineering disciplines, which attempt to

study, model, and analyze very complex phenomena: those for which more conventional

methods have not yielded low cost, analytic, and complete solutions. Earlier computational

approaches could model and precisely analyze only relatively simple systems. More complex

systems arising in biology, medicine, the humanities, management sciences, and similar fields

often remained intractable to conventional mathematical and analytical methods. That said, it

should be pointed out that simplicity and complexity of systems are relative, and many

conventional mathematical models have been both challenging and very productive, i

Unlike hard computing schemes, which strive for exactness and full truth, soft computing

techniques exploit the given tolerance of imprecision, partial truth, and uncertainty for a

particular problem. Another common contrast comes from the observation that inductive

reasoning plays a larger role in soft computing than in hard computing.

In effect, the role model for soft computing is the human mind. The guiding principle of

soft computing is: Exploit the tolerance for imprecision, uncertainty, partial truth, and

approximation to achieve tractability, robustness and low solution cost. The basic ideas

underlying soft computing in its current incarnation have links to many earlier influences, among

them Zadeh's 1965 paper on fiizzy sets; the 1973 paper on the analysis of complex systems and

decision processes; and the 1979 report (1981 paper) on possibility theory and soft data analysis.

The inclusion of neural computing and genetic computing in soft computing came at a later

point.

1-3.1 What is absorbed in Soft Computing?

Now, the principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Neural

Computing (NC), Evolutionary Computation (EC) Machine Learning (ML) and Probabilistic

Reasoning (PR), with the latter subsuming belief networks, chaos theory and parts of learning

theory. What is important to note is that soft computing is not a melange. Rather, it is a

partnership in which each of the partners contributes a distinct methodology for addressing

problems in its domain. In this perspective, the principal constituent methodologies in SC are

complementary rather than competitive. Furthermore, soft computing may be viewed as a

foimdation component for the emerging field of conceptual intelligence.

1-3.2 Importance of Soft Computing

The complementarities of FL, NC, GC, and PR have an important consequence: in many

cases a problem can be solved most effectively by using FL, NC, GC and PR in combination

rather than exclusively. A striking example of a particularly effective combination is what has

come to be known as "neuro-fiizzy systems". Such systems are becoming increasingly visible as

consumer products ranging from air conditioners and washing machines to photocopiers and

camcorders. Less visible but perhaps even more important are neuro-fiizzy systems in industrial

applications. What is particularly significant is that in both consumer products and industrial

systems, the employment of soft computing techniques leads to systems, which have high MIQ

(Machine Intelligence Quotient). In large measure, the high MIQ of SC-based systems account

for the rapid growth in the number and variety of applications of soft computing.

In many ways, soft computing represents a significant paradigm shift in the aims of

computing - a shift which reflects the fact that the human mind, unlike present day computers,

possesses a remarkable ability to store and process information which is pervasively imprecise,

uncertain and lacking in categoricity.

1-4 Wavelet

Wavelet analysis is a new development in the area of applied mathematics. They were

first introduced in seismology to provide a time dimension to seismic analysis that Fourier

analysis lacked. Wavelet analysis allows researchers to isolate and manipulate specific types of

patterns hidden in masses of data [Soman'05].

Wavelets are mathematical functions that cut up data into different frequency

components, and then study each component with a resolution matched to its 'scale'. They have

advantages over traditional Fourier methods in analyzing physical situations where the signal

contains discontinuities and sharp spikes. Wavelets were developed independently in the fields

of mathematics, quantum physics, electrical engineering, and seismic geology. Historical

perspective of wavelets is as follows:

Historical Perspective: In the history of mathematics, wavelet analysis shows many

different origins [Meyer'93]. Much of the work was performed in the 1930's, and at that

time, the separate efforts did not appear to be parts of a coherent theory.

Pre-1930: Before 1930, the main branch of mathematics leading to wavelet began with

Joseph Fourier (1807) with his theories of frequency analysis, now often referred to as

Fourier synthesis. He asserted that any 2;r - periodic function /(/) is the sum of its

Fourier series.

QQ + ̂ {a 1^ coskt + b,^ sinkt) (1.1)

The coefficients a^, a^ and b^ are calculated by

ao=^)f(t)dt, a, =!]/(/>//, b,=-]f(t)dt (1.2)
i i / t Q n Q /I Q

Fourier's assertion played an essential role in the evolution of the ideas mathematicians

had about the functions. He opened up the door to a new functional universe.

After 1807, by exploring the meaning of functions, Fourier series convergence,

and orthogonal systems, mathematicians gradually were led from their previous notion of

frequency analysis to the notion of scale analysis. That is, analyzing f{x) by creating

mathematical structures that vary in scale. How? Construct a function, shift it by some

amount, and change its scale. Apply that structure in approximating a signal. Now repeat

the procedure. Take that basic structure, shift it, and scale it again. Apply it to the same

signal to get a new approximation and so on. It turns out that this sort of scale analysis is

less sensitive to noise because it measures the average fluctuations of the signal at

different scales.

Wavelet multi resolution analysis

The 1930s: In the 1930s, several groups, working independently, researched the

representation of the functions using scale-varying basis functions. By using scale

varying basis function, called the Haar basis function, Paul Levy a 1930s physicist,

investigated Brownian motion, a type of random signal [Meyer'93]. He found that the

Haar basis function is superior to the Fourier basis functions for studying small-

complicated details in the Brownian motion.

Another 1930s research effort by Littlewood, Paley, and Stein involved computing the

energy of the function f{x):

1 ^^
energy = -l\fitfdt (1.3)

^ 0

The computation produced different results if the energy was concentrated around

a few points or distributed over a larger interval. This result disturbed the scientists

because it indicated that energy might not be conserved. The researchers discovered a

function that can vary in scale and can conserve energy when computing the functional

energy. Their work provided Devid Marr with an effective algorithm for numerical image

processing using wavelets in the early 1980s.

1960-1980s: During these years a lot of work has been done. Some of the pioneering

works done by Coifinan and Morlet are given below:

• Guido Weiss and Ronal R. Coifman (1960-1980): These two mathematicians

studied the simplest element of a function space, called atoms, with the goal of finding

the atoms for a common fiinction and finding the "assembly rules" that allows the

reconstruction of all elements of the function space using these atoms.

• Grossman andMorlet (1980): A physicist and an engineer, broadly defined wavelets

in contest of quantum physics. These two researchers provided a way of thinking for

wavelets based on physical intuition.

1980-1990s: in these years, the pioneering work of the Stephane Mallat (1985) on

pyramidal algorithm or muhi-resolution theory gave the new apex in wavelet era.

• Stephane Mallat (1985): In 1985, Stephane Mallat gave wavelets an additional

jump-start through his work in digital signal processing. He discovered some relationship

between quadrature mirror filters, pyramidal algorithms, and orthonormal wavelet bases.

Y. Meyer constructed the first non-trivial wavelets. Ingrid Daubechies used Mallat's

work to construct a set of wavelet orthonormal basis ftinctions that are perhaps the most

elegant, and have become the comer stone of wavelet applications today.

Post-1990s: During this decade application of wavelets, develop in many branch of

science, same as signal processing, identifications, numerical analysis and networks.

1-5 Motivation

During the nineteen century Fourier transform, solved many problems in physics and

engineering. This prominence led scientists and engineers to think of them as the preferred way

to analyze phenomena of all kinds. This ubiquity forced a close examination of the method. As a

result, through the twentieth century, mathematicians, physicists, and engineers came to realize a

drawback of the Fourier transforms: they have trouble reproducing transient signals or signals

with abrupt changes, such as the spoken word or the rap of a snare drum [Soman'05].

At the present scenario, wavelet decomposition emerges as a new powerful tool for

function approximation due to its multi-resolution property. Recent advances have shown the

existence of orthonormal wavelet bases, from which follows the availability of rates of

convergence for approximation by wavelet based networks.

Several works has been done and so many works are going on for wavelets. Its

application in neural network and neuro-fuzzy model gives tremendous performance for function

approximation. However, imtil this time, selection of parameters and support of wavelet

properties are mystery. Due to these discrepancies and multi resolution property of the wavelets,

we have motivated to work with wavelet for forecasting and modeling applications of dynamic

systems.

1-6 Scope of the Thesis

In recent years, wavelets have become a very active subject in many scientific and

engineering research areas. Especially, Wavelet Neural Networks (WNN), inspired by both the

feed forward neural networks and wavelet decompositions, have received considerable attention

[Q. Zhang'92, Q. Zhang'97, J. Zhang'95] and become a popular tool for function

approximation. The main characteristic of WNN is that wavelet functions are used as the

nonlinear transformation function in the hidden layer, instead of the usual sigmoid function.

Incorporating the time-frequency localization properties of wavelets and the learning ability of

the Neural Network (NN), WNN has shown its advantages over the regular methods such as NN

for complex nonlinear system modeling.

At present, there are two different kinds of WNN structiire. One is with fixed wavelet

bases, where the dilation and translation parameters of wavelet basis are fixed, and only the

output layer weights are adjustable. Another type is the variable wavelet bases, where the

dilation parameters, translation parameters and the output layer weights are adjustable

[Billings'OS]. For the WNN with fixed wavelets, the main problem is the selection of wavelet

bases/fi-ames. The wavelet bases have to be selected appropriately since the choice of the wavelet

basis can be critical to approximation performance. Obviously, to improve the approximation

accuracy, a large number of wavelet neurons are required for WNN with fixed wavelet bases.

This will result in a large complex network structure and cause over-fitting problem.

Since the dilation parameter has explicit physical concept, i.e., resolution, it plays a

significant role in wavelet analysis and approximation of a given fiinction. In this thesis, for

selection of the wavelet bases/fi-ames, we have used variable wavelet bases for the better

accuracy of function approximation though its complexity is increased. In addition, we have

presented a comparative study for different types of the wavelet fimctions. To used

approximation of inputs by Sigmoid Activation Function (SAF) and Wavelet Activation

Functions (WAF), separately, we have proposed two neuron models to combine them.

In dealing with the modeling of dynamic systems recurrent network have better

performance as compared to static behavior of feed-forward network based on proposed

sigmoid-wavelet neuron models different types of recurrent neuron models are introduced. These

recurrent neurons give us opportunity of comparative study of recurrent neuron models consist of

SAF and WAF in feed-forward neural network architecture.

In many complex and ill-defined systems especially with the uncertainty of the systems,

the fiizzy models have shown high performance. Motivated by both the theory of multi-

resolution analysis of WNN and the traditional Neuro-fuzzy model, Wavelet Neuro- Fuzzy

(WNF) model is introduced. The goal of introducing the WNN in the fuzzy model is improving

function approximation accuracy in terms of the dilation and translation parameters of wavelets,

meanwhile not increasing the number of wavelet bases. In general, the Takagi-Sugeno-Kang

(TSK) fuzzy models consist of a set of rules, and the consequent of each rule acts like a "local

model" by using fiizzy set to partition the input space into local fuzzy regions. The consequents

of these rules are represented by either a constant or a linear equation. In this work, the

consequent part of each fuzzy rule corresponds to sub-WNNs at different resolution levels and

used to capture different behaviors (global or local) of the approximated function. Here, the role

of the fuzzy set is to determine the region for the contribution of the sub-WNNs to the output of

the WNF. As a result, wavelets with different dilation values under these fuzzy rules are fully

utilized to capture various essential components of the system.

In addition, in this work, the series-parallel and parallel configurations, which are used in

parameter identification of networks\models, are exploited simultaneously for learning the

parameters of the premise and the consequent part of the neuro-fuzzy model.

1-7 Organization of Thesis

The organization of the thesis is as follows:

Chapter 2: Wavelet Networks

A comparative study of two existing wavelet networks namely Wavelet Synapses Neural

Network (WSNN) and Wavelet Activation Neural Network (WANN), based on three different

10

wavelet function is presented in this chapter. Feed-forward neural networks show the ability to

deal with complex problems and especially in input-output data systems. In addition, wavelet

transformation has the ability of representing a function and revealing the properties of the

function in the localized regions of the joint time frequency space. The chapter covers some

basic concept of wavelet same as wavelet transform, Continuous Wavelet Transform (CWT) and

Discrete Wavelet Transform (DWT). Three types of non-orthogonal wavelet are introduced in

this section. These wavelets when used in feed-forward network give wavelet network.

Chapter 3: Generalized Wavelet Networks

The main objective of this thesis is to improve existing one layer feed-forward network

with SAF and WAP. Feed-forward neural networks show the ability to deal with complex

problems and especially in input-output data systems. In addition, wavelet transformation has

the ability of representing a function and revealing the properties of the function in the localized

regions of the joint time frequency space. Due to above ability, in this chapter, combination of

sigmoid and wavelet activation function is proposed. It has shown that a smart combination of

these not only decreases the size of the network, it also increases the accuracy of the network.

Two proposed wavelet neural network namely Summation Sigmoid-Wavelet (SS-W) and

Multiplication Sigmoid-Wavelet (MS-W) neuron model are discussed in details. One method for

structure identification of the model is introduced. General approximation capability of the

network has also been presented in this chapter with different theorems.

11

Chapter 4: Nenro-Fuzzy Model

This chapter serves as an introduction into the basic concept of parameter identification

for neuro-fuzzy models. Two parameter identification schemes, namely Parallel (P) and the

Series-Parallel (S-P) configurations, are described in this chapter. A combination of these two

configurations is proposed for neuro-fiizzy models. Modified mountain clustering is applied to

neuro-fuzzy models for structure determination and initialization of the neuro-fiizzy models. An

algorithm with adaptive learning rate is used to learn learning parameters of the model.

Convergence of the learning procedure is guaranteed by Lyapunov stability theorem.

Chapter 5: Wavelet Neuro-Fuzzy Model

This chapter discusses about the wavelet neuro-fuzzy model. The proposed network in

chapter 3 with better performance is used in the consequent part of each fuzzy rule in TSK

neuro-fuzzy model that results WNF model. A hybrid of Genetic Algorithm and Gradient

Descent has been employed to learn the model parameters.

Chapter 6: Recurrent Wavelet Networks

In this chapter, recurrent neuron models are introduced. Due to the dynamic behavior of

recurrent networks, they are suitable in dealing with the modeling of dynamic systems as

compared to static behavior of feed-forward network. The quantitative behavior of the sigmoid

and wavelet activation functions for dealing with and saving the dynamic of systems are

considered. The general approximation properties of the recurrent neuron models are also

evaluated. Since the convergence analysis plays an important role in the recurrent networks, the

Lyapunov stability approach is employed to guarantee the convergence of network.

12

Chapter 7: Case study, Indian Monsoon Rain-Fall

The agricultural economy of India is closely linked to the performance of summer

monsoon rainfall all over India. The ability to imderstand and predict circulation and rainfall

during the Asian summer monsoon on various time-scales is of prime importance to the economy

of several nations of this region because of its affect on agriculture, drinking water,

transportation, health, power, and the very livelihood of billions people living in the monsoon

region. Due to these reason, in this chapter, all the proposed networks are tested on rainfall data.

Chapter 8: Conclusion

Finally, conclusions of the thesis and suggestions for the future work have been covered

in chapter 8.

1-8 Description of Some Dynamic Systems

Six different classes of dynamic systems are described in the following examples for

validation of the proposed work. Among them the selected four dynamic examples are different

nonlinear differential equations with different order [Narendra'90]. Example five is a general

benchmark problem of gas furnace data [Box'70], whereas, example six is an action performed

by the operator at chemical plant [Sugeno'93].

Example 1: Linear regression with nonlinear input

The system is a non-linear second order dynamical model [Narendra'90]. The function

' / is a polynomial of current input u{k) of degree three whereas the input u{k) is a sum of two

sinusoids given in (1.6).

13

y(k +1) = 0.3>'(^)+ 0.6y(k - \)+f[u(k)] (1.4)

Where

/["W]=[«Wr+0.3[«W] '-0.4«(A:) (1.5)

u{k) = sin(2;z^/250)+sin(2;z;t/25) (1.6)

In this example, 500 input-output data are generated. First three hundred data are used for

learning procedure and remaining 200 data are for prediction.

Example 2: Non-linear regression with random input

This system expressed as second order nonlinear function that is presented by (1.7). The

input u{k) is a random variable uniformly distributed in the interval [-1, 1]. Five hundred input-

output data are generated by the second order difference equation [Narendra'90]: three hundred

data are used to train the model and remaining two hundred data are used for validation of the

model.

y{k+i)=Mk\y{k-i)] +wW (1.7)

where f\mction / is:

/{ichAk-i) ^'*

Example 3: Non-Linear Regression with Non-Linear Input

A system described by difference equation [Narendra'90] and expressed as (1.9).

14

u{k) = sm{27dcl25) + sin(2;nt/l O) (i . i O)

This system is having first order nonlinear dynamic. Hundred input-output data are

produced by input u{k) as given in (1.10). Eighty data is used for training and 20 remaining data

are used for testing and validation.

Example 4: Non-linear Regression of Input and output

hi this example, a nonlinear plant with third delay in output and with two delays in inputs

has been taken fi-om [Narendra'90, Lee'OO] and describes as:

y{k +1) = f{y{k\ y{k-\\ y{k-2\ u{k\ u{k-\)) (i . i D

Where / i s :

Uxl^xl <'"'

The reference [Narendra'90] has used five input to predict next output but [Lee'OO] used

only u{k) and y\k) to predict next output >'(^ +1}. Here we also used these two variables to

predict the output >'(^ + l)- One thousand input-output data are produced by using the input

expressed by (1.12) to identify the models. The input u{k) is selected same as equation (1.12)

for data! to 1000.

15

u(k) =

sin —
125 j

1.0

-1.0

A;<250

250<yt<500

500 < A; < 750

0.3 sin
(7±\ . (Tdi \

+ 0.6 sin

+ 0.1sin —
25) l32,

(7±\

(1.12)

vlOy
750 < A: < 1000

Example 5: Gas Furnace data

A benchmark problem of system identification is considered [Box'70]. The process in

this example is a gas furnace with single input «(/), i.e., gas flow rate and single o\xVpvXy\t),

i.e., CO2 concentration. Here we supposed there are three inputs: >'(/-l), "(^-3) and u{f-A)

to the model [Sugeno'93]. Total 290 data are utilized which can be found in [Box'TO]. First 250

data are used to train the models and remaining 40 data are used for testing and validation of the

model.

Example 6: Human Operation at a Chemical Plant

We deal with a model of an operator's control action of a chemical plant [Sugeno'93].

The plant is for producing a polymer by the polymerization of some monomers. Since the start

up of the plant is very complicated, a man has to make the manual operation at the plant. As

shown in Fig. 1.1 there are five input candidates (M, , W2'"'' "5) whom a human operator might

refer at the start up of chemical plant to take control action y , for production of polymer.

16

«i : monomer concentration.

" 3 :

"4 , "5

y '•

change in monomer concentration,

monomer flow rate,

local temperatures inside the plant,

set point for monomer flow rate.

Here w, and u^ are employed to model the control action [Azeen'03]. Out of 70 datf points of

the above six variable from the actual plant, first 60 data are used for training the model and

remaining 10 data are used for prediction.

Input Candidates

Monomer
Concentration

Change of monomer
concentration

Monomer flow rate

Temperature 1

Temperature 2

(Output)

^

^

Operator

(5 rules)

Set point for
monomer
flow rate

" T I ^ — • : Selected input variables.

Fig. 1.1. Control action of an operator

17

Chapter L

Wavelet Networks

2-1 Introduction

The approximation of general continuous functions by nonlinear networks such as those

discussed in [Zhang'92, Poggio'90a,b] is very useful for system modeling and identification.

Such approximation methods can be used for example in black-box identification of non-linear

systems. Feed Forward Neural Networks (FFNN) has been established as a general approximator

for fitting nonlinear models from input-output data [Hoiiiic'89, Funahashi'89, Hartman'90,

and Bluin'91].

In addition, wavelet transformation has the ability of representing a function and

revealing the properties of the function in the localized regions of the joint time frequency space.

The wavelet with coarse resolution can capture the global (low frequency) behavior easily, while

the wavelet with fine resolution can capture the local behavior (higher frequency) of the function

accurately. These distinguished characteristics give wavelet based neural networks with the

advantages of fast convergence, easy training, and high accuracy [Ho'Ol]. In view of the

similarity between wavelet transformation and feed-forward neural networks, the idea of

augmenting both, Zhang and Beneviste [Zhang'92] have proposed Wavelet Neural Networks

19

(WNN). WNN instigate a superior system model for complex and seismic application in

comparison to Neural Network (NN) with sigmoid activation function. The application of

wavelet is mostly limited to small dimension [Benveniste'94], though WNN can handle large

dimension problem [Zhang'97].

Basis function networks have been investigated by many researchers, employing various

kinds of basis function, e.g. hyper basis function [Poggio'90a], splines [Poggio'90,

Friedman'91], polynomial [Sanger'90, Sanger'91] and radial basis function [Poggio'90b,

Moody'89].

Due to the above advantages of wavelets over other basis functions, Boubez and Peskin

[Boubez'93] used wavelet functions as basis functions. They adopted orthonormal sets of

wavelets and verified that network weights can be computed directly and independently.

Yamakawa [Yamakawa'94] has proposed to adopt the over-complete system of non-orthogonal

smooth wavelet bases in order to approximate a nonlinear function with a smooth function. He

proposed two types of neuron models and used a simple cosine function as a compactly

supported wavelet function. Later some authors used the Yamakawa's models with non-

orthogonal wavelet functions like Mexican [Zhang '95, Ho'Ol]. But none of the reported work

caters a comparative study for different types of the wavelets. In this chapter, two types of

wavelet network architectures introduced by Yamakawa [Yamakawa'94], namely, Wavelet

Synapses Neural Network (WSNN) and Wavelet Activation function Neural Network (WANN)

are described. Different wavelet activation functions are applied and the networks are tested by

eight different dynamic examples.

This chapter is organized as follow: In section 2-2, a brief discussion of artificial neural

network is presented. In section 2-3, wavelet and wavelet transform are discussed. Section 2-4

20

proposes Wavelet Neural Network (WNN) models and describes their convergence analysis. The

learning algorithm based on Gradient Descent describes in section 2-5. Experimental results are

revealed in section 2-6 and, finally conclusions are relegated to section 2-7.

2-2 Artificial Neural Network

Artificial Neural Network (ANN) was introduced in the middle of the last century to

reproduce learning and generalization of the human brain [Bernieri'94, Patterson'96,

Schalkoff 97]. Ability of ANN to deal with complex problems, generalization of the result from

known situation to unforeseen situation and ability to carry out classifications of the elements of

a given set make them one of the most useful technique in functional approximation, nonlinear

system identification and control, pattern recognition and classification, and optimization.

The architecture of the single hidden-layer neural network is given in the Fig. 2.1. The

operation performed by each layer is also described below:

1. Input Layer: Each node of this layer passes the input signal with its connection

weights to the hidden layer neurons of the network.

2. Hidden Layer. Hidden layer perform two operations: in the first operation, all the

signals coming from the input nodes multiplied with their coimection weights and summed up;

and in the second operation these summed quantities passes through the activation (logistic

sigmoid) fimction that maps the signal and gives the output in between the range [-1,1] or [0,1].

3. Output Layer. In this layer, the output coming from the hidden layer multiplied

with its connection weights and finally the linear summation of all the signal, which gives the

output of the network, takes place.

The mathematical expression for the output of the neural network is given in (2.1).

21

M n

y=i:i:<^j{cjr^^+b}wj (2.1)
j=\ /=i

Where bj, for j=\,2,...,M, denotes the bias for each hidden neuron, C^,; for y=l,2,...,Mand

i=\,2,...,n denotes the weight to signal X^ going to the/*' neuron. Wj for j=\,2,...,L is the

weight to the output of/" neuron for output of the network, O^ is the activation function for the

/''neuron.

X,

X2

Xi

X„

Input Layer Hidden Layer Output Layer

Fig. 2.1. Architecture of the single layer neural network

2-3 Wavelet

A wave is usually defined as an oscillating function of time or space, such as a sinusoid.

A wavelet is a "small wave", which has its energy concentrated in time to give a tool for the

lysis of transient, nonstationary, or time varying phenomena. The function ^ (v is a wavelet ana

or mother wavelet if it satisfies these two properties:

22

(2.2)

(2.3)

First property is suggestive of a function i.e. oscillatory or that which has a wavy

appearance and second property implies that most of the energy in it is confined to a finite

duration. We will take wavelet and use them in a series expansion of signals or functions in the

same way as Fourier series uses the wave or sinusoid to represent a signal or function.

2-3.1 Continuous time Wavelet Transform (CWT)

The Wavelet Transform (WT) in its continuous form provides a flexible time-frequency

window, which narrows when observing high frequency phenomena and widens when analyzing

low frequency behavior. Thus, time resolution becomes arbitrarily good at high frequencies,

while the frequency resolution becomes arbitrarily good at low frequencies. This kind of analysis

is suitable for signals composed of high frequency components with short duration and low

frequency components with long duration, which is often the case in practical situations. Here, a

brief review from the theory of wavelets is described that gives basic idea about the wavelets and

the related work. Wavelets are divided in the two parts: Continuous Wavelet Transform (CWT)

and Discrete Wavelet Transform (DWT) [Rao'04, Daubechies'92, Burrus'97, Stark'05,

Soman'05, Cgui'95]. Historically the CWT was the first studied wavelet transform:

Let be any square integratable function. The CWT of with respect to a

wavelet ^y) is defined; as:

23

W{a,b)=jf{t)//:^,{t)dt (2.4)

Where

la

^t-b^
n , (2.5)

H^\t) is the mother wavelet, 'a' is a scaling factor, 'b' is shifting parameter and * denotes complex

conjugation. The family of functions can be obtained by scaling and shifting of ^ (0 - Thus, the

wavelet transform is a ftmction of two variables. Both f{t) and y/{t) belong toZ,2(9^), the set

of square integrable fiinction, also called the set of energy signals.

The signal or fiinction can be expressed as (2.6).

/(0=JJ^(a,6).^[^^j^6^a (2.6)

The mother wavelet has the property that the set i^/ ,(t) forms an orthogonal basis in

Z,^(5R). This implies that the mother wavelet can, in turn, generate any fiinction in Z^C^R). The

mother wavelet has to satisfy the following admissibility condition:

y^ L 0) ^ ^

— 00

Where ^{co) is the Fourier transform ofy/{f).

In practice ^{co) will have sufficient decay, so that the admissibility condition is reduced to:

c»
\y,{t)dt = ̂ [0)=0 (2.8)

- 0 0

24

2-3.2 Discrete time Wavelet Transform (DWT)

The CWT has the drawbacks of redundancy and impracticability with digital computers.

As parameters (a, 6) are of continuous values, the resulting CWT is a very redundant

representation, and impracticable as well. This impracticability is the result of redundancy.

Therefore, the scale and shift parameters are evaluated on a discrete grid of time-scale leading to

a discrete set of continuous basis functions. The continuous inverse wavelet transform (2.6) is

discretized as:

/(0=S^,-^."'>
V «< y

(2.9)

To analyze discrete time signals, it is convenient to take integer values for ' ci' and ' b' in

defining this basis: if a = 2^ and b = n-2^ (where j and n are integers) then, via translations

and dilations:

kA')l.-\r"^'^^'-"-'" 9^
(2.10)

Equation (2.10) forms a sparse orthonormal basis of .̂ (9?). This means that the wavelet

basis induces an orthogonal decomposition of any function in L (5?).

2-3.3 Types of the wavelet

The difference between wave (sinusoids) and wavelet is shown in Fig. 2.2. Waves are

smooth, predictable and everlasting, whereas wavelets are of limited duration, irregular and may

be asymmetric. Waves are used as deterministic basis functions in Fourier analysis for the

expansion of the fianctions (signals), which are time invariant, or stationary.

25

(a) (b)

Fig. 2.2. Representation of (a) a wave and (b) a wavelet

The important characteristic of wavelets is that they can serve as deterministic or non-

deterministic basis for generation and analysis for the most natural signals to provide better time

frequency representation, which is not possible with waves using conventional Fourier analysis.

The selection of basic (or mother) wavelet depends very much on the nature of the signals and

the goal of the signal processing. These basis vectors have the following important properties.

• Vanishing moments: The higher the degrees of vanishing moments a basis has, the better

it models the smooth part of the signal.

• Regularity: This property is important in signal compression if high ratios are desired;

the shapes of the basis vectors become "visible" under these circumstances. The larger

the regularity, the smoother the basis vector becomes. Low regularity might result in

fractal- like shapes in the reconstructed signals or images.

• Compact Support: This property is important for efficient and exact numerical

implementation [Daubechies92].

Some wavelets are better than others are for specific applications. In general however,

because of these properties, wavelet bases generate very efficient and simple representations for

26

piecewise smooth signals and images. The manner in which vanishing moments, regularity and

compact support affect the wavelet's efficacy as a basis for signal classification is not clear. One

would expect that a wavelet that "looks like" the elemental components of the signals under

consideration would be most appropriate. More important however, is the ability of the wavelet

basis to generate a Time-Frequency Representation (TFR) that clearly distinguishes signals in

different classes. This requires that the wavelet functions appropriately model the signal, and that

they be localized and well behaved in the time-frequency plane.

In this thesis, three types of wavelet function, namely Mexican hat, Morlet and Sine are

introduced.

a) Mexican hat wavelet

This wavelet is derived firom a function, which is proportional to the second derivative

function of the Gaussian probability density function. It is non-orthogonal, with infinite support

and has maximum energy around origin with the narrow band. The expression for Mexican hat

wavelet is given by (2.11) and it is shovm in Fig. 2.3.

i//(x)=\}-2x^)-exp[-x^) (2.11)

b) Morlet wavelet

This wavelet is derived from a function that is proportional to the cosine function and

Gaussian probability density function. It is non-orthogonal, infinite support and its maximum

energy lies around origin with the narrow band. The Morlet wavelet is expressed as (2.12) and

shown in Fig. 2.4.

i//{x) = exp(- x^j- cos(5x) (2.12)

27

Mexican Wavelet Function

Fig. 2.3. Mexican hat wavelet functions

Morelet Wavelet Function

Fig. 2.4. Morlet wavelet functions

28

c) Sine (Shannon) wavelet

This wavelet is derived from a function that is proportional to the cosine function. This

wavelet is also non-orthogonal with infinite support and maximum energy occupies wider band

around origin as compared to the above two wavelets. The Sine wavelet is specified as (2.13) and

shown in Fig. 2.5.

i//{x) = sin(;Dc)/(;cc) (2.13)

SINC Wavelet Function

Fig. 2.5. Sine wavelet functions

29

2-4 Wavelet Neural Network

The applications of orthonormal wavelet bases and wavelet frames are usually limited to

problems of small dimension [Zhang'97]. The main reason is that they are composed of

regularly dilated and translated wavelet. For practical implementations, infinite basis and frames

are always truncated. The number of wavelets in a truncated bases or fi-ames drastically increases

with the dimension, therefore, constructing and storing wavelet bases or frames of large

dimension are with prohibitive cost.

In most practical situation of large dimension, the available data are sparse [Zhang'97].

If the inverse wavelet transform is discretized according to the distribution of the data, there are

expectations to reduce the number of wavelets needed in the reconstruction. It is thus possible to

handle problem of large dimension with such adaptive discretization of the inverse wavelet

transform.

The adaptive discretization consists of determining the parameters w,, a, and b in (2.6)

according to data samg[e\x,y). This problem is very similar to neural network training. In fact,

formula (2.6) can be viewed as a one hidden layer of neural network with y/ as the activation

function of the hidden neuron and with a linear neuron in the output layer. For this reason, we

refer to the adaptively discretized inverse wavelet transform as wavelet network.

A basic McCulloch and Pitts neuron model is characterized by weighted sum (linear sum)

of inputs and a sigmoid activation function. Two wavelet neuron models were proposed in

[Yamakawa'94] by modifying the basic neuron model. We have used wavelet synapses and

wavelet activation function neuron model of Yamakawa in this chapter, which is shovm in the

Figure 2.6.

30

(a) (b) (c)

Fig. 2.6: (a) Simple neuron model (b) Wavelet activation fianction neiu-on model and (c) Wavelet

synapses neuron model

2-4.1 Wavelet Synapses Neural Network

The architecture of WSNN is shown in Fig. 2.7. Suppose M is the total number of

wavelet functions selected. If ^o,/, is used as nonlinear transformation function of A/number of

hidden units and C^ ^ is the connection weights, then layer wise analysis of the architecture is

given below:

Layer 1 (Input layer): In this layer, each input is directly applied to every wavelet

fianction V^a,b •

• Layer 2 (Hidden layer): This layer performs two operations. Firstly, the output of

input layer multiplied with connection weights C^j,, and then linear summation takes

place in second operation (2.14).

M a-l

yi=Y.ll^'a,b^a,t{'^i)
a=\ b=\

(2.14)

31

fKS3W

Layer I Layer 2 Layers

Fig. 2.7. Wavelet Synapses Neural Network (WSNN)

• Layer 3 {Output layer): In this layer, the outputs of hidden layer are linearly

summed that gives the output of the model. The output of WSNN network can be

calculated by:

^WSNN ~ 2^ yi
i=\

(2.15)

Where / = 1,2, • • • ,« ; denotes the number of inputs applied to the network.

For a WSNN network with scaling factor M, there is M-{M +1)/2 learning parameter C for

each input. Therefore, the total number of learning parameters is n • M - (M + 1)/2, where n is the

number of inputs.

2-4.2 Wavelet Activation function Neural Network

In this network, wavelet functions are used as activation function. The architecture of

WANN is shown in Fig. 2.8. Layer wise description of the network architecture has been given

below:

32

• Layer 1 {Input layer): In this layer, all the inputs are muhiplied with their

connection weights C^jj.

• Layer 2 {Hidden layer): Two operations are performed in this layer. First, output

of input layer are summed linearly and applied to each wavelet function Wa,b in second

operation as given in (2.16).

ya,b=¥a,b\Y^C'abX, (2.16)

• Layer 3 {Output layer): In this layer, also two operations are performed. The

outputs of hidden layer multiplied by their connection weights W^j, in first operation,

and then linear summation takes place in second that gives the output of WANN. The

mathematical expression for the output of WANN is given in (2.17).

M a-\

^WANN ~ 2^2u '^a,b ' ya,b (2.17)
a=\ b=\

For a WANN network with scaling factor M, there is M-{M + \)I2 hidden neuron.

Therefore, the total number of learning parameters C in Layer 1 is equal to n-M -{M +1)/2,

where n is the number of inputs. The number of learning parameters W in Layer 3 is also equal

to M-{M +1)/2. Therefore, the total number of learning parameter in this model is equal to

{n + \)-M-{M + \)/2.

33

Xi

X2

Xi

x„

Layer 1 Layer 2

Fig, 2.8, Wavelet Activation Function Neural Network (WANN)

Layers

2-5 Gradient Descent learning of parameters

The Gradient Descent (GD) learning can be achieved by minimizing the performance

index/as follows:

J =
1

2.P.yl
±[Y(p)-m) (2,18)

p=\

where y = maxr(p)-minl'(p) , Y is output of network and / is actual data, P is the

number of dataset. The reason for using normalized mean square error is that it provides a

universal platform for model evaluation irrespective of application and target value specification

while selecting an input to the model [Azeem'OOa],

In the batch-learning scheme employing P-data set, change in any parameter is covered

by the equation

p

S
p.\

(2,19)

34

and the parametric update equation is;

v{q + \) = v{q) + Au{q) (2.20)

where Au{q)=-dJ/du and u may stand for any of the parameters C'^j, or W^j,, and C'^f, in

,th
WSNN or WANN networks, respectively, q is q epoch, a„ is a momentum update coefficient

in the limits 0 < a„ < 1 (typically a„ = 0.9), //̂ is a decay factor (typically in the range of 10'̂

to 10-̂).

We apply gradient descent technique to modify the parameter C'„^ in WSNN. The

,th
parameter update formula for/7 data set is as follows:

dJ
A , C (^) = - ; 7 T - - = /7

dY

dc:. P-/r K, (2.21)

where rj is adaptive learning rate. By applying gradient descent technique to modify the

parameters W^ ̂ and C^ ̂ in WANN, the parameter update formulas for p data set are derived

as follows:

A,c:.,fe)=

^wM=

dJ
-T] —

dJ
-TJ

= 77

= 77

1

P-y'r

1

•e

•e

dY

dC'

A

dY

(2.22)

(2.23)

where e = Y-Y is the error between the actual output and the model output. By applying

ay r^Y P)Y

chain method to the above equation or and for WSNN or WANN networks
dc:, dw^, dc:,

are derived as follows:

35

a) ForWSNN

^ ^ = W (x) (2.24)

b) ForWANN

dY

dW.
= ya.b=¥aA

\

a,h /=! J
(2.25)

dY

a,D

I ' a,b T a,i

f n

V/=i
(2. 26)

WAF I// for different wavelet function is given in (2.11-2.13). i//' in (2.26) is differential

functions for the wavelet functions. Derivative for Mexican hat, Morlet and Sine function are

given in (2.27-2.29), respectively.

^•J,) = -jj.,.e-''-[24-2-zq (2.27)

<b{^) =
- 2
— z-e ' -008(5-2)-^ '" —sin(5z)
a a

, / \ 1 TT-z-cosiTU-z^-smiTr-z)
¥aA^) = ^ 1 ^

a 71 -z

(2.28)

(2.29)

Where z - /=i

C' -x.-b

a

36

2-6 Simulation Results

In this section, different types of dynamic systems tliat are discussed in chapter 1 have

been considered. WSNN and WANN networks are tested for three different types of wavelet

functions, namely, Mexican hat wavelet, Sine wavelet and Morlet wavelet function. A

comparative study of performance index J, for WSNN and WANN networks with different

wavelet function and scaling factor M, for all examples, is shown in Table 2.1.

Revisited Example 1: Linear regression witli nonlinear input

In this example, WSNN with Mexican hat wavelet function and WANN with Morlet

wavelet function, yield better performance and WSNN network with Mexican hat is the best

with performance index J=l. 1576x10'̂ . However, WSNN with Sine wavelet function dose not

converge at all. The learning parameter C of this network is as follows. The number of column in

learning parameter C shows the number of inputs and the number of rows shows the number of

hidden neurons in WSNN network. Figure 2.9 shows actual and network output of WSNN

network with Mexican hat wavelet function. The error also is shown in this figure.

C =

0.0036

0.1986

0.7855

0.2880

0.2875

0.5777

0.1967

0.3233

0.5139

0.2669

0.1192

0.2816

0.6003

0.0883

0.4213

-0.2941

0.1560

0.0446

-0.1814

-0.2797

0.4240

0.4679

-0.2516

0.3298

0.2097

0.1209

-0.1469

0.3829

-0.0911

0.0687

0.4620

-0.1829

0.3546

0.3043

-0.1977

-0.0771

-0.4133

0.0074

0.2538

0.0594

0.3820

0.3937

0.6085

0.6319

0.6646

37

Prediction

500

100 200 ^ 300
Data

400 500

Fig. 2.9. Actual output and network output with WSNN (Mexican hat) network and the error for

Example 1

Revisited Example 2: Non-linear regression with random input

In this example, WSNN and WANN networks with Morlet function have better

performance and WANN with Morlet function is the best model with performance index

J=1.147xl0'^ The learning parameters C & ^ of this network are as follows. The number of

rows in C and the size of W show the number of hidden neuron and the number of column in C

shows the number of inputs in WANN network. WSNN network with Sine wavelet function, for

this example, does not converge. Figure 2.10 shows actual output and network output of WANN

network with Morlet function and the error.

38

c =

0.3201

0.6301

0.8352

0.0139

0.2697

0.6200

0.5601

0.1206

0.8266

0.3806

0.8865

0.6964

0.5681

0.9238

0.1527

0.2279

0.6295

0.5727

0.7949

0.4789

0.0414

0.3121

•0.3583

1.0795

0.4967

0.3628

-0.0012

0.0387

0.1711

0.8065

0.3832

0.5978

0.0735

1.0723

0.1077

0.1698

0.8287

1.4104

0.6907

0.3247

0.8807

0.8033

0.0777

0.1124

0.9189

W =

0.1787

0.0826

0.1689

0.6186

0.4415

0.4237

0.0696

0.8107

0.5939

0.8456

0.5364

0.9113

0.7424

0.5382

0.9793

300

300

350 400

350 400
Data

450

450

500

500

Fig. 2.10. Actual output and network output with WANN (Mexican hat) network and the error

for Example 2

39

Revisited Example 3: Non-Linear Regression witfi Non-Linear Input

In this example, WSNN with Morlet and WANN network with Mexican hat wavelets

have better performance while WANN network with Mexican hat and performance index

y=l.436x10"' is the best. WSNN with S inc wavelet function does not convergence. Actual output

and the output of the WANN network with Mexican hat wavelet function and the error are

shown in Fig. 2.11. The learning parameters C & Wfor this network are as follows.

C =

1.0575

0.6299

0.7022

0.9972

0.3040

0.1794

0.9202

0.2894

0.3859

0.6504

0.3331

0.2020

0.2421

0.2264

0.0812

-0.2304

0.6032

0.5383

0.6570

0.8453

-0.0317

0.6102

0.4761

0.6415

0.6816

0.7914

0.5176

0.3185

0.0371

0.2415

w =

0.5725

-0.0644

0.5778

0.4333

0.3929

0.4022

•0.3507

0.5410

0.3716

1.0131

0.5824

0.1109

0.2274

0.3756

0.5056

40

10

-10

llf*

1

1 C

1

Learning

f\ ^
\ /i 1

1

^ 'Prediction
\ 1
\ 1 A

1 V
1

20 40 60 80 100

Prediction

•1.5
20 40 ^ . 60 Data 80 100

Fig. 2.11. Actual output and network output with WANN (Mexican hat) network and the error

for Example 3

Revisited Example 4: Non-linear Regression of Input and output

In this example, Morlet and Mexican hat wavelet give better learning pattern for WSNN

and WANN models, respectively. However, WANN with Mexican hat wavelet function yields

best performance index with . ^ 1.229x10'̂ . WSNN with Sine function does not converge. Actual

output and the output of the WANN network with Mexican hat wavelet function and the error are

shown in Fig. 2.12. The learning parameters C & FT of this network are as follows.

41

c =

0.2983

0.8244

0.7990

0.5296

0.5257

0.6817

0.0682

0.6209

0.0034

0.3570

0.3079

0.8802

0.0225

0.7148

0.9337

0.9195

0.8071

0.5669

0.5529

0.1979

0.5770

0.3274

0.9769

0.6931

0.3717

0.7465

0.2760

0.4158

0.9028

0.6596

w =

0.0620

0.3012

-0.0032

0.3721

0.3190

0.4128

-0.0985

-0.0528

0.3878

0.4114

0.0006

0.3154

0.3611

0.5669

0.3047

1000

ui

V.JLt 1

-0.2 h

200 400 ̂ , 600
Data

800 1000

Fig. 2.12. Actual output and network output with WANN (Mexican hat) network and the error

for Example 4

42

Revisited Example 5: Gas Furnace Data

In this example, Morlet and Mexican hat wavelet give better learning pattern for WSNN

and WANN models, respectively. However, Mexican hat in WANN is the best with performance

index 7=2.632x10'̂ while WSNN learning pattern for Sine does not converge. Figure 2.13 shows

the actual output and WANN network with Mexican hat wavelet output. The error is presented in

this figure. The learning parameters C & ^ of this network are as follows.

0.7684

0.7315

0.8833

0.2034

0.4194

0.2129

0.0350

0.0811

0.8505

0.3402

0.4661

0.9137

0.2285

0.8620

0.6566

0.5781

1.0590

0.0239

0.7845

0.0268

0.5195

0.1921

0.7156

0.2506

0.9338

0.1371

0.5216

0.8952

0.9423

0.3350

1.0060

0.5302

0.6560

0.8445

0.1347

0.0224

0.2246

0.1165

0.0693

0.8529

0.1802

0.0324

0.7339

0.5365

0.2760

w =

0.6476

0.5161

0.2141

0.1751

0.4582

0.7032

0.5793

0.5092

0.0742

0.1932

0.3796

0.2764

0.7708

0.3139

0.6381

43

Prediction

150 200

50 100 150
Data

200 250

Fig. 2.13. Actual output and network output with WANN (Mexican hat) network and the error

for Example 5

Revisited Example 6: Human Operation at a Chemical Plant

In this example, WSNN and WANN networks with Morlet function yield better

performance, while WANN with Morlet wavelet function is best with performance index

J=8.228xl0'^. WSNN network for Sine wavelet function does not convergence. Actual output

and the output of the WANN with Morlet function and error are shown in Fig. 2.14. The learning

parameters C & fF of this network are as follows.

44

c =

0.4057

0.9355

0.9166

0.4103

0.8934

0.0579

0.3529

0.8131

0.0097

0.1389

0.2028

0.1986

0.6036

0.2721

0.1988

0.0235

0.6898

0.5639

0.8558

0.5141

0.4043

0.8283

0.5315

0.1842

0.6628

0.8312

0.0096

0.6847

0.3739

0.8302

w =

0.8845
0.0877
0.6509
0.3865

0.8861

0.8016

0.3885

-0.0089
0.8592

0.4738
0.5520
0.7564

0.9346

0.7825
0.1992

10000

5000

Learning

10

Pijediction

20 30 40 50 60 70

Prediction

Fig. 2.14. Actual output and network output with WANN (Mexican hat) network and the error

for Example 6

45

Example 7: Human Operation at a Chemical Plant
A test signal is generated by the following dynamical system [Yamakawa'94]:

5X
'n + l

\ + x
2 n n-l n-l (2.30)

with initial values of A'o = 0.2, A", = 0.3 and A'2 = i.o. This signal is chaotic and difficuh to predict.

A time series of 120 data are produced. First 100 data are used for training of the model and

remaining 20 data are used for prediction.

In this example, WSNN and WANN networks with Morlet and Mexican hat wavelet

function, respectively, yield better performance. WANN network with Mexican hat is best with

y=3.4516x10" ,̂ while WSNN network with Sine wavelet function does not convergence. Figure

2.15 shows system output and the output of the WANN network with Mexican hat function. The

error also is shown in Fig. 2.15. The learning parameters C &)^ of this network are as follows.

2
>
eC 0

%.

-2

1 1 1

1 . J1 Learning . J

VlJlJlJirli u l l n l i & l i l li

1 1 I 1

' ililil'il i l l[
•jf y V 1

1 '

1
prediction'

1 1

Prediction

120

120

Fig. 2.15. Actual output and network output with WANN (Mexican hat) network and the error

for Example 7

46

c =

•0.3596

0.6207

0.2815

•0.0350

1.0787

0.3849

0.9713

•0.1619

0.4246

0.0163

0.7904

0.7639

0.9237

0.0934

0.4308

0.9412

0.1112

0.1214

0.9567

0.9259

0.9002

0.8594

0.6908

0.6603

0.2899

0.2742

0.6395

0.2006

0.9389

0.6815

0.6812

0.0981

0.0695

1.2978

1.2888

0.5269

0.0813

-0.1119

-0.3032

0.3584

0.9736

0.0283

0.8169

0.3422

0.8273

0.5225

-0.5422

-0.1694

0.4819

0.5305

0.9054

0.4248

0.5815

0.6083

0.7989

0.1383

-0.0108

0.9756

-0.4890

2.7240

0.2231

-1.1089

0.2822

0.4099

0.6710

1.3133

1.3394

0.1869

0.3086

3.1322

-0.0579

0.4453

0.6658

0.7317

1.0359

0.7421

0.6735

-0.1662

0.7609

1.9629

0.4761

1.0177

0.2813

0.3538

w =

0.0128

0.0447

-1.1800

2.2251

-0.2346

1.3796

-0.2380

-0.8916

0.3217

1.4936

0.4532

0.0418

-1.6513

4.3237

-0.3870

0.0195

-1.0231

-0.1762

1.6222

0.8967

0.3455

0.6990

-0.2268

0.7616

-0.0580

0.3231

0.1512

0.6458

Example 8: Human Operation at a Chemical Plant
The time series used in this example is generated by the chaotic Mackey-Glass

differential delay equation defined below:

l + x '" (/ - r) (2.31)

47

The data of above equation is available in MATLAB (mgdata.dat) and are produced by:

x(0)=1.2, r = 17 and x(/) = 0 for ^ < 0 . The variablesJc(?-18),x(r-12), x(t-6) and x{t) are

inputs and x{t + 6) is the output of the model. The number of data set produced for validity test

of network is 1000. Out of that 500 data are used for training and the remaining 500 are testing

the networks.

WSNN network with Morlet and WANN network with Mexican hat wavelet functions

have better performance whereas WANN with Mexican hat is best with performance

y=6.2074xl0'^. In this example, WSNN network does not convergence with Sine wavelet

function. Actual output and the output of the WANN network with Mexican hat are shown in

Fig. 2.16. The error is presented in this figure. The learning parameters C & W of this network

are as follows.

500

100 200 300 400 500
Data

Fig. 2.16. Actual output and network output with WANN (Mexican hat) network and the error

for Example 8

48

c=

1.7687

0.0954

1.6205

0.4907

0.4255

0.8360

0.3593

0.5352

0.9296

0.3852

0.1562

0.7094

0.8224

0.0272

0.7140

0.3412

0.8663

0.4887

0.7337

0.3297

0.2796

0.1768

0.1810

0.7401

0.3809

0.5824

0.1289

0.6313

-2.3279

-0.0658

2.4201

0.2756

0.4772

1.3197

0.6888

1.0094

0.9555

0.4586

0.2770

0.2880

0.1423

0.2723

0.7101

0.2555

0.8206

0.4449

0.3865

0.4204

0.5065

0.4292

0.6450

0.7606

0.9226

1.0455

0.4668

0.7213

-2.4718

0.3538

0.1788

-0.0730

0.8384

0.5969

0.0098

0.3123

1.0148

0.0748

0.2386

0.6958

0.2983

0.5418

0.0809

0.9391

0.5403

0.4361

0.5506

0.3151

0.4061

0.2114

0.5559

0.8463

0.6033

0.6702

0.1988

0.3652

-1.9171'

0.2268

0.1756

0.1768

0.7852

-0.2602

0.4698

0.2134

0.5380

0.2369

0.8289

0.1025

0.9269

1.2093

0.9921

0.7334

0.4366

0.6267

0.2544

0.7794

0.3002

0.9432

0.7471

0.4224

0.7688

0.2624

0.4574

0.9892

W =

'-1.0867

0.4760

0.4742

-0.0190

-0.0887

-0.7065

-0.0143

-0.5303

-0.1470

0.0951

0.1671

0.2572

0.6524

0.7984

0.1243

-0.0697

0.4345

0.5252

0.1026

0.7279

0.0478

-0.0267

0.3977

-0.4437

-0.1951

-0.2055

0.1677

0.5594

49

Table 2.1: Performance Index of WSNN and WANN networks for different wavelet activation

functions

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Networks

WSNN

WANN

NN

WSNN

WANN

NN

WSNN

WANN

NN

WSNN

WANN

NN

WSNN

WANN

NN

WSNN

WANN

NN

WSNN

WANN

NN

WSNN

WANN

NN

N.H. (M)

15(M=5)

20

15(M=5)

13

15 (A/=5)

15

15 (M=5)

18

15 (M=5)

16

15 (A^5)

20

28 (A^5)

12

28 (M=5)

12

Performance Index (J)

Mexican hat

1.1576x10-*

2.817x10"*'

4.3x10-'

2.762x10-'

1.508x10"*

1.436x10-*

2.6536x10-'

1.229x10=*

1.0976x10-'

2.632x10-^

9.0252x10-*

8.668x10-*"

7.7x10-^

3.4516x10-5

4.0988x10-'

6.2074x10-*

Morlet

1.339x10-*'

1.993x10-*

9.01x10-*

3.2x10-'

1.147x10-'

4.019x10-'

1.452x10-^

3.591x10-^

2.769x10-^

2.0679x10"'

9.737x10-'

4.849x10-'

2.6546x10-'

7.530x10-*

1.04x10-'

8.3505x10-*

8.228x10-*

1.096x10-'

1.9x10-^

3.482x10-'

8.0x10-^

2.3x10"^

3.0x10-*

8.23x10"'

Sine

4.388x10"*

3.319x10"'

2.042x10"^

2.280x10-^

6.837x10"*

2.622x10"'

9.9988x10-'

1.1721x10-'

50

In Table 2.1, different networks namely Wavelet Activation function Neural Network

(WANN), Wavelet Synapses Neural Network (WSNN) and Neural Network (NN) are shown in

second column. In this column, the network with better performance is Bold. Third column

shows the Number of Hidden neurons (N.H.). The maximum number of scaling factor (A/) for

WANN and WSNN is shown in bracket. The last colimm is also shows the performance index J

for different wavelet functions namely Mexican hat, Morlr\et and Sine. The best performance

index is Bold.

2-7 Conclusions

In this chapter, a comparative study of Wavelet Synapses Neural Network (WSNN) and

Wavelet Activation Neural Network (WANN) networks is studied. Three types of wavelet

activation functions, namely Mexican hat, Morlet and Sine are tested in WSNN and WANN

networks. The comparative result of different wavelets shows that Mexican activation function

yield better performance in WANN network however in WSNN network most the times Morlet

activation function is better. WSNN does not convergence with Sine wavelet function. WANN

network generally yields better performance than WSNN network.

51

Chapter %5

Generalized Wavelet Networks

3-1 Introduction

At the present scenario, wavelet decomposition emerges as a new powerful tool for

function approximation due to its multi-resolution property. Wavelet Neural Networks (WNN)

inspired by both the feed forward neural networks and wavelet decompositions have received

considerable attention [Q. Zhang'92, 97] [J. Zhang'95] and become a popular tool for function

approximation.

The main characteristic of WNN is that some kinds of wavelet functions are used as the

nonlinear transformation function in the hidden layer, instead of the usual sigmoid function.

Incorporating the time-frequency localization properties of wavelets and the learning of the

general Neural Network (NN), WNN has shown its advantages over the regular methods such as

NN for complex nonlinear system modeling.

In this chapter, two types of WNN namely Summation Sigmoid-Wavelet (SS-W) and

Multiplication Sigmoid-Wavelet (MS-W) are proposed [Banakar'06a]. Literature survey

indicates that all studies show the efficacy of wavelets when used in wavelet network. But none

of the reported work caters a comparative study for different types of the wavelets. The presented

53

work is an attempt to propose a comparative study for three types of wavelet used in WNN,

namely, Mexican hat, Morlet and Sine wavelet function. The idea of this work is to use

approximation of inputs by Sigmoid Activation Function (SAF) and Wavelet Activation

Functions (WAF) separately and then to combine them. The SAF in NN can modulate low

frequency section of signal and the WAF in WNN can modulate high frequency section

especially sharp section of signal. Conjunction of SAF and WAF combines the localize

approximation property of wavelets with functional approximation properties of neural network.

The temporal change in dynamic system, particularly when the changes are sharp, can be

acciimulated in wavelets. The output of every neuron in SS-W is summation of SAF and WAF

and output of each neuron in MS-W is the product of these two.

The result of these two models are compared with a Localized WNN (LWNN) that

proposed in [Banakar'06b]. A local model is used in WNN to approximate output of each

wavelet. It means that localization of wavelet is approximated by a linear function of inputs (i.e.,

local model) then precise output of the WNN hopes to be improved. By LWNN the precision of

the results increase but complexity of network is increased while in two proposed SS-W and MS-

W networks precision increases where as complexity decreases.

This chapter is organized as follow: In section 3-2, Localized wavelet Neural Network

(LWNN) is discussed. Section 3-3 proposes sigmoid-wavelet neuron networks. SS-W & MS-W

neuron networks are described imder this section. Universal approximation of the proposed SS-

W & MS-W neuron networks are described in section 3-4. The learning algorithm based on

Gradient Descent describes in section 3-5. Structure determination of the proposed networks is

derived in section 3-6. Experimental results are revealed in section 3-7 and, finally conclusions

are relegated to section 3-8.

54

3-2 Localized Wavelet Neural Network (LWNN)

The structure of LWNN is shown in Fig. 3.1. Same as WANN the network is framed into

four layers. Layer wise description of the network architecture has been given below:

• Layer 1 (Input layer): The neurons in this layer only transmit the inputs to the

hidden neuron.

• Layer 2: This layer hold two inner sections. First the inputs are weighted with C,

and then they are passed through wavelet activation function V^a^b • The mathematical

expression for the output of this layer is given in (3.1).

0L=y^ a,b (3.1)

• Layer 3 {Localized Layer): In this layer, the local models ^<,4(x) exert on

outputs of second layer. It's mean that localization of wavelet is approximated by a local

function to increase the precision. The local model)^o^(x) expressed as linear function

of input X as follows:

Output of nodes in third layer is:

• Layer 4 (Output Layer): The final output of the network is:

M a-\

y=1.101 (3.4)
a=l 6=0

55

^l
^ 1 ^ "- U

^ ^rAA^
7 '̂''̂ (̂/XV̂

1 I I —

JCS)—*

KlD—^

VE)—*

n* a',. ^ W

^^2.1 Oio

• . .»
^ a ^

*

TjnM Olj,

1 L

WM(X)

»A
n ^

- « • W2^(X)

^/<^S
•vy
W^i(x)

» (^
*yy

W^^„(x)

. ^

Of.

J 1 —

L ^
^ t C)-^^

I

Layer 1 Layet 2

Fig. 3.1. Localized Wavelet Neural Network (LWNN)

Layer 3 Layer 4

For a WANN network with scaling factor M, there is M - (M + 1)/2 hidden neuron.

Therefore, the total number of learning parameters C in Layer 1 is equal to n-M-(M +1)/2,

where n is the number of inputs. The number of learning parameters W in Layer 3 is also equal

to {n + \)-M-{M +1)/2. Therefore, the total number of learning parameter in this model is equal

to(« + 2>Jl/-(A/ + l)/2.

3-3 Sigmoid-Wavelet Neuron Networks

In this section, we introduce a feed-forward network. Each neuron in this network is a

combination of SAF and WAF. In both network a Sigmoid-Wavelet (S-W) neuron is used in

hidden layer. If the summation operator combines SAF and WAF, that results a Summation

Sigmoid-Wavelet (SS-W) neuron. Whereas with a product operator results a Multiplication

Sigmoid-Wavelet (MS-W) neuron.

56

3-3.1 Feed-forward network

Feed-forward network with different type S-W neuron in the hidden layer is proposed.

Figure 3.2, shows a feed-forward network. In the hidden layer, neurons represented by 'G' are S-

W neurons. The output of feed-forward network is given in (3.5)

(3.5)

where y, is the output of S-W neurons, W, is the weights between hidden neuron and output

neurons and L is the number of hidden neuron.

CW.CN

Ii^ut Layer Hidideii Layer Ou^ut Layer

Fig. 3.2. Feed-Forward Neural Network

3-3.2 Summation Sigmoid-Wavelet (SS-W) Neuron

The detailed structure of S-W neuron is shown in Fig. 3.3. The output of each S-W

neuron is summation of the output from SAF and WAF and is given by (3.5).

57

'«0

Fig. 3.3. Summation Sigmoid-Wavelet (SS-W) neuron network

yj{k) = y%khyj{k) (3.6)

.c The function yj and yj are output of SAF and WAF for/ S-W neuron, in the hidden

layer, respectively. The function yj and yj are expressed as (3.7-3.8)

\ /=1
(3.7)

r n
y'j{k) = wY^Ci^'xik)

\i=\
(3.8)

Xf is /* input. C5 and C^ are weights to inputs signal for SAF and WAF, in each hidden

neuron, respectively.

3-3.3 Multiplication Sigmoid-Wavelet (MS-W) Neuron

The detailed structure of MS-W neuron is shown in Fig. 3.4. The output of each S-W

neuron is product of the output from SAF and WAF and is given by (3.9)

58

Fig. 3.4. Multiplication Sigmoid-Wavelet (MS-W) neuron network

yj('^) = yj('c)-yJU) (3.9)

,t^ A The function >'y and yj are outputs of SAF and WAF for / S-W neuron, in the

0 I//

hidden layer, respectively. The function yj and yj are expressed as discussed in (3.7-3.8)

3-4 Universal approximation of tlie S-W neuron networlcs

For system identification, the Universal Approximation means that for any given

continuous output trajectory y{t) of any nonlinear dynamic system over any compact time-

interval /e[/o,r] , the output Y{t) of the SS-W and MS-W networks can approximate >'(/)

uniformly with arbitrarily high precision. The proposed SS-W and MS-W networks can be

shown to be a universal approximate for continuous functions over compact set if it satisfies

some certain conditions. The conditions for different wavelet functions are described in

following theorems. Prove of the theorems have been given in appendix A.

59

Theorem 3.1: Universal approximation theorem of SS-W neuron network, for any real function

.̂•9?" ->9?" which is continuous on a compact set î c9?" and for any given

£• > 0 there is an SS-W network / , with Mexican hat, Morlet or Sine WAF, such

that sup||/(x)- ̂ (x)|| < E. Here ||| can be any norm.
xeA

Theorem 3,2: Universal approximation theorem of MS-W neuron network with Mexican hat

WAF, for any real function A: 5H" -> 9?" which is continuous on a compact set

ift c: 1H" and for any given f > 0 there is an MS-W network /,with Mexican hat

WAF, that satisfies condition (3.10), such that s\xp\f{x)- A(X| < s. Here \l can be
X6ifl

any norm.

•x/2
CyyX¥^b±a^^ (3.10)

where C^ =|C^^,C^^,...,C^ j , X = \X\,X2,.:,x„).

Theorem 3.3: Universal approximation theorem of MS-W neuron network with Morlet WAF, for

any real function A: 9?" -> 9?" which is continuous on a compact set ift c 9{" and

for any given e > 0 there is an MS-W network /,with Morlet WAF, that satisfies

condition (3.11), such that sup||/(x)- A(;C| < e. Here ||| can be any norm.
xefi

Cy,X^h-¥a{lp + \)- (3.11)

where C^ = |C^^,C^^,...,C^ j , X = {x^,X2,...,x„] and p is any integer value.

Theorem 3.4: Universal approximation theorem of MS-W neuron network with Sine WAF, for

any real function A: 9t" - • 9?" which is continuous on a compact set Ac.'iR" and

60

for any given ^ > 0 there is an MS-W network / ,with Sine WAF, that satisfies

condition (3.12), such that sup||/(x)- /j(x| < e. Here {{| can be any norm.
X6/1

C„X*h^pa (3.12)

where C^ =|C^,C^^,.,.,C^ j , X = ^^,x^,...,x^ and p is any integer value.

3-5 Gradient Descent learning of parameters

The gradient descent learning can be achieved by minimizing the performance index J

and using the parametric update equation as given in (2.18) and (2.20), respectively.

Applying gradient descent technique to modify the parameters W^j^ & C„ ̂ in LWNN

results the following parameter update formulas for/?"' data set:

^Wa,Ssi)^-^-::::7-^n'
dY

dW„ a,b P'/r ^K a.b

^pCaM = -^T7^ = V-
dY

dC. a,b P'/r dQ a,b

(3.13)

(3.14)

where e = y-y is the error between the actual output and the model output. By applying

A A

chain method to the above equations, and —z— for LWNN network are derived as
dW, a,b dC

follows:

A.

dY
dJV, a,b

sol
5Wl aji

ajt

f n

V/=l
(3.15)

61

8Y _dOl,_dWjx) _^ ,ffr' '
3w:, dw:. SK, /=!

(3.16)

''-=^=^..{^)^=KXX)-X, • < J Y.C'., • ̂ ,
5Q» 5C,,, a,6

(3.17)

where O^j, and Oj ̂ are outputs of second and third layers in LWNN network as shown

in Fig. 3.1.

In S-W nexiron networks by applying gradient descent technique to modify the

parameters W, C^ &-Cg, following parameter update formulas for/?* data set are resulted:

" ^^^^ ' dWj / P-yl dWj
(3.18)

A„C, {q) = -TJ = T] --e
dC

(3.19)

A ^ M ^ 1 ^^
A.Q \q) = -V = 7 r-e

(3.20)

Applying chain method to - — , and in above equation for SS-W and MS-
dWj a c . dC,

W neuron networks the following equations are derived:

a) For SS-W neuron network

^ = y^.{k) = y^{khyj{k)
dWj

(3.21)

62

/

'»',

n
dC/-. ' - ' ^ U = l

f

'S,

n
^ = xXk\Wre' lci-x.{k)
dCi -^ ' ^ U = l

(3.22)

(3.23)

b) For MS-W neuron network

(3.24)

r

^ and {̂ in (3.16-3.21) are SAF and WAF, respectively. SAF 9 is given in (3.22).

e(s)=
\ + e-

(3. 25)

(3.26)

(3.22)

n

where s = ^Cg -x.. Differential functions for the SAF is 0' and expressed as follows:

0'{s) = 0(s)i\-0{s)) (3.23)

WAF I// and i//' the differential functions of the WAF's, for Mexican hat, Morlet and Sine

function wavelet functions are given in (2.11-2.13) and (2.27-2.29), respectively.

63

3-6 Structure determination of S-W neuron networks

There are two methods for selecting the number of hidden layer neurons in feed-forward

neural network. In one method, initially large numbers of hidden layer neurons are selected. As

the training progress, the neurons output are monitored to remove the redundant and the inactive

neurons from the hidden layer. Redundant neurons are those whose output is a linear

combination of the rest of the two or more neurons for all the data set. Inactive neurons are those

whose output remains constant for all the data set, they add a bias to the next layer neurons.

Second method employs, in the begirming, a fewer number of neurons in the hidden layer, as the

learning progresses the nimiber of hidden layer neuron is increased. While increasing the number

of neurons in the hidden layer, redimdancy and inactiveness should be checked.

In this thesis, method for structure determination of the network is devised for feed

forward S-W neuron network. Each SS-W and MS-W neuron is a parallel combination of WAF

and SAF; it means that the number of WAF and SAF is the same. Since wavelet parameter is

highly dependent on the nature of the input-output signal, initially the scaling parameter is

selected with the minimum possible value (a=l for normalize I/O signal) and shifting parameter

is chosen by appropriate positioning of wavelet (i.e., b=0). This results in a single hidden layer

neuron. Later on, by gradually increasing the scaling factor and appropriate positioning of

wavelets the number of neuron in the hidden layer goes on increasing, resulting in the growth of

network. A criterion is specified to stop the growth of the network. The decomposition of the

input signal space by the wavelets is shown in Fig. 3.5. As shown in Fig. 3.5, we select minimum

number of WAF by using scaling factor ci=l and shifting b=0. Therefore, the number of sigmoid

activation function is one. In total, for a=l there is only one neuron constituting one WAF and

SAF. In the next step the WAF with scaling factor a=2 is added to previous network. For a=2

64

shifting parameter b is change from 0 to 1. Therefore, in this stage there are three WAF along

with three SAF. In this stage the numbers of neuron increase to 3. In the same way for a=3

shifting parameter b is change from 0 to 2 and the number of neurons increase to 6. In this

manner, the network grows itself imtil the specified criterion, for stopping of this growth, is

accomplished.

Fig. 3.5. Wavelet with different scaling factor and shifting

Various methods for correct selection of these parameters, in more effective way, have

been proposed in [Zhang*95, Oussar'OO]. Since the data are normalized, the number of wavelet

fimction with scale 'a' needed to cover normalized range is no more than a +1. Let a the value

for scaling factor, the value of shifting parameter b change from 0 to a-1. Here, in proposed

method, firstly, the number of WAF is to be fixed and then the same number of SAF is added. To

select the number of WAF, we increase scaling factor from one to higher value, in step of one,

until we obtain the desired accuracy. For a value of scaling factor a, the nimiber of hidden S-W

neurons in network is equal toa(a +1)/2. Therefore, the total number of learning parameters in

this model is equal to a{a +1)- (2« +1)/2.

65

For every scaling factor a, the network is initialized and trained. The number of scaling

factor and therefore number of hidden neurons continued to be increased until this increase in

hidden neurons improves the model performance index 7 expressed in (2.18). Figure 3.6 shows

the algorithm of structure determination.

3-7 Simulation Results

In this section, different types of dynamic systems that are discussed in chapter 1 have

been considered. The proposed SS-W and MS-W neuron networks in feed-forward network have

been tested with three different types of wavelet functions, namely, Mexican hat wavelet. Sine

wavelet and Morlet wavelet function.

Revisited Exampie 1: Linear regression witti noniinear input

Figures 3.7 and 3.37, show the procedure of structure determination for SS-W neuron network.

The scaling factor 'a' has been increased one by one. For 'a=l' there is only one WAF with one

SAF that constitutes one neuron. The performance of this model is shown in Fig. 3.7 with solid

line. For 'a=2' there is three WAF. First wavelet is for 'a=V and the rest two are corresponds to

'af=2' with shifting parameter '6=0 & 1'. Therefore, three SAF are also added to form three SS-

W neuron networks in the hidden layer of feed-forward network. In Fig. 3.7 the performance of

the model with 'a=2' is shown with dashed line. In the next step increasing the scaling factor is

increased to '0=3' the number of neuron in the hidden layer is increased to six. This increase is

due to addition of three WAF with shifting "6=0, 1, & 2". In Fig. 3.7 the learning pattern of the

model with 'a=y is shown with dotted black color line. Since the performance reduces due to this

increase of'a' from 2 to 3, fiirther increase of its value is stopped so the model with 'a=2' is to be

considered as model with best performance.

66

Table 3.1 shows performance index J for Mexican hat, Morlet and Sine wavelet

activation functions. In this table, number of Hidden Neuron (H.N.) for each model also has been

shown, hiitialization of the learning parameters W, Cs and Cw for all wavelet and the learning

parameters for Mexican hat, Morlet and Sine wavelet function corresponding to the learned SS-

W neuron network are as follows:

Initialization of the learning parameters:

W =

0.1934

0.6822

0.3027

Cs =

0.8216

0.6449

0.8179

0.6602

0.3419

0.2897

0.3411

0.5340

0.7271
^w ~

0.5416 0.3783 0.5935

0.1508 0.8600 0.4965

0.6979 0.8536 0.8997

For SS-W neuron network with Mexican hat wavelet function:

W^ =

0.7254

•0.5889

1.1855

0.4502

0.7798

0.3642

0.4534

0.5004

0.4942

0.9474

0.0121

0.4880

/ _
0.5796 0.0727 0.3838

0.6658 0.2252 0.4201

0.4610 0.1697 1.1744

For SS-W neuron network with Morlet wavelet function:

W^ =

0.4984

-0.0850

1.2565

0.1321

0.2035

0.1970

0.0556

0.7568

0.5095

0.9209

0.5316

0.3451
'W

1.1391 0.2984 0.0283

0.1046 0.8329 0.9810

0.5440 -0.0482 0.5068

For SS-W neuron network with Sine wavelet function:

W^ =

0.7805

-0.6753

0.8946

0.5208

0.0287

0.0940

0.2643

0.4157

0.5112

0.9944

0.5242

0.4782

0.0416 0.4875 0.4077

1.0471 0.9260 0.4550

0.6568 0.5245 0.7591

In this example, Morlet wavelet yields better resuh with J=l.734x10"^. Figure 3.8 shows learning

pattern of SS-W neuron network with different types of wavelet fimction.

67

START

a=0

~F
a=a+1

b=Q^.a-^
Set structure of the Network

With a&b

Initialization
q=0

i
q=q+1

GD Algorithm for parameter learning and
Evaluation of performance J

Yes

Select a&b
Structure Determination with a&b

STOP & Save the learning Parameter

Fig. 3.6. Algorithm for Structure Determination

68

400 ^600
epoch

800 1000

Fig. 3.7. Learning pattern of feed-forward network with SS-W neuron network using Morlet

activation function with scaling factor a=l, 2 & 3 for Example 1

10

10
-5

\
\
1 «
1 I
' . \

\ \ w
\ »
V \

1 ^ V

Ljii
• * - > . -

1

' • ' • ^ " • < . " . « ,

1 '

SS-W(Mexican hat) .
— - SS-W(Sinc)
— SS-W(Morlet)

-

•

-

'

" • ^ • " • " . — , _ . _ _

' *~** ' ****~"*«. ,^
- . ^

1 - "

200 400 ^600 800 1000
epoch

Fig. 3.8. Learning pattern of SS-W neuron network with all wavelet functions for Example 1

69

Figures 3,9 and 3.38, show the procedure of structure determination for MS-W neuron

network. The scaling factor 'a' has been increased one by one. For 'a=V there is only one WAF

with one SAF that constitutes one neuron. The performance of this network is shown in Fig. 3.9

with solid line. For 'a=2' there is three WAF. First wavelet is for 'a=r and the rest two

corresponds to 'a=2' with shifting parameter '6=0 & V. Therefore, three SAF are also added to

form three MS-W neuron networks in the hidden layer of feed-forward network. In Fig. 3.9 the

performance of the network with 'a=2' is shown with dashed line. Further increasing the scaling

factor, i.e., 'a=3' the number of neuron in the hidden layer increased to six. This increase is due

to addition of three WAFs with shifting "b=0, 1, & 2". In Fig. 3.9 the learning pattern of the

network with 'a=y is shown with dotted black color line. Since the performance reduces due to

this increase of'a' from 2 to 3, ftuther increase of its value is stopped so the network with 'a=2' is

to be considered as network with best performance. In this example, MS-W network has three

hidden neuron. Initialization of the learning parameters W, Cs and Cw for all wavelet fimctions is

same as SS-W neuron network. Figure 3.10 shows learning pattern of MS-W neuron network

with different type of wavelets. Learning parameters for Mexican hat, Morlet and Sine wavelet

fimction corresponding to the learned MS-W neuron network are as follows.

For MS-W neuron network with Mexican hat wavelet fimction:

W^ =

1.2325'

0.3809

0.1769

0.5197

0.8730

0.9363

0.3334

0.1681

0.8708

0.3799

0.6703

0.9645

0.7042 -0.1224 0.6061

0.4457 0.4127 0.2055

0.3613 0.4217 0.1096

For MS-W neuron network vdth Morlet wavelet fimction:

70

lyf
-0.0602
0.5548
1.1146

0.8185
0.6340
0.8862

0.6608
0.3407
0.3314

0.3415
0.5837
0.8063

0.6088 0.3229 0.5377

•0.1648 0.4196 -0.0864

0.4203 -0.0865 0.6054

For MS-W neuron network with Sine wavelet function:

W^ =

0.9520

0.2201
0.7252

0.4317
0.1141

0.8605

0.9389
0.4661

0.9715

0.3218
0.8700
0.8332

0.4475 -0.4184 0.7518

0.8709 0.7142 -0.0132

0.6003 0.7018 0.7514

10

10

10'

10

•

•1

I
• ^ ' I k

i

:

1—

1

1 — 1

1 1

1 ' ..

— a=2
a=1
a=3 1

•

•

:

-

•

200 400 ^600
epoch

800 1000

Fig. 3.9. Learning pattern of feed-forward network with MS-W neuron network using Morlet

activation function with scaling factor a=l, 2 & 3 for Example 1

71

10^

J io '

10'

1 1 —

i
• i

1

i
1
I

\
1 t

- - - 1 1

"I • • • • 1

- — IVlS-W(Morlet)
MS-WJMexican hat) :

- — MS-W(Sinc)

n . :

'

200 400 600
epoch

800 1000

Fig. 3.10. Learning pattern of MS-W neuron network with all wavelet functions for Example 1

Table 3.1 shows performance index with different network. For each network. Wavelet

function with the better performance is Bold and the best is Bold-Italic. MS-W neuron network

with Morlet activation function yields better performance. Actual output & network output for

MS-W with Morlet wavelet function and error between them have been shown in Fig. 3.11.

Table 3.1: Performance index (J) with different networks and wavelet functions for Example 1

Model ->

H.N. ->

Mexican hat

Morlet

Sine

SS-W

6

2.763 xlQ-*"

1.734x10-*

5.566x10-*

MS-W

6

1.505x10-*

ZSSS^lOr'

1.714x10-*

WNN

15

2.817x10-*

1.993x10-*

4.388x10-*

LWNN

15

1.843X10-*

5.806x10-*

6.750x10-*

NN

20

9.01x10-*

72

50

•50

Learning Prediction

100 200 300 400 500

Fig. 3.11. Actual output and network output with MS-W (Morlet) neuron network and the error
for Example 1

Revisited Example 2: Non-linear regression witti random input

The structure determination of the SS-W neuron network is started from 'CF=V. We

increase scaling factor one by one. For every scaling factor the model is being learned. Figures

3.12 and 3.37 show that an increase in scaling factor decreases the performance index. In Fig.

3.12, the performance of the network with 'a=4' is shown with dashed-dot line. By increasing

scaling factor from 3 to 4 the performance index does not improve. So scaling factor "a=3" is

selected. Table 3.2 shows that SS-W model with Morlet wavelet fimction yield better result with

performance index ^=1.648x10"'. Figure 3.13 shows the Learning pattern of SS-W neuron

network with all wavelet fimctions. SS-W neuron network with Morlet wavelet fimction yields

better result. Initialization of the learning parameters fV, Q and Cw for all wavelet fimctions and

learning parameters for Mexican hat, Morlet and Sine wavelet fimction corresponding to the

learned SS-W neuron network are as follows.

73

Initialization of the learning parameters:

W =

0.2844

0.4692

0.0647

0.9883

0.5827

0.4235

Cc =

0.6945

0.6213

0.7948

0.9568

0.5225

0.1729

0.9797

0.2714

0.2523

0.8757

0.1365

0.0117

0.8939

0.1991

0.2987

0.8801 0.7373 0.6614

C =

0.4965

0.8997

0.8216

0.6449

0.8179

0.6602

0.3419

0.2897

0.3411

0.5340

0.7271

0.3092

0.8385

0.5680

0.3704

0.7027

0.5465

0.4448

For SS-W neuron network with Mexican hat wavelet function:

W^ =

0.5873

0.7124

1.1610

0.0349

0.6710

0.16116

0.2910

0.3976

0.8655

0.7986

0.3401

0.0450

0.5654

0,6184

0.6638

0.9035

0.9343

0.3517

0.663 r
0.6739

0.0673

0.8843

0.6251

0.6497

-0.6071

0.9502

1.4262

0.7930

0.4494

0.8773

0.1894

0.6577

-0.1030

0.3450

1.1507

0.0386

0.9035

-0.3634

1.0077

0.5887

1.1337

0.5877

For SS-W neuron network with Morlet wavelet function:

W^ =

0.5257"

0.2387

0.3102

1.1563

0.1041

0.5969

0.7220

0.6647

0.7962

1.0360

0.5490

0.9188

0.1751

0.9902

0.2844

0.2470

0.8723

0.7393

0.0541

-0.0926

0.9160

-0.0480

0.2637

0.5517

0.4195

1.4692

0.6935

-0.0476

0.7678

1.2763

-0.0524

0.8091

0.3470

1.0244

0.7572

0.6754

1.5715

0.8285

0.6080

1.2828

0.3325

0.3700

For SS-W neuron network with Sine wavelet function:

W^ =

1.0267

0.5687

0.6634

0.6977

0.0858

1.0382

0.5016

0.5665

0.9160

1.3856

0.6364

1.1642

0.3292

1.0474

0.2490

0.0917

0.8915

0.6049

0.4022

0.2288

0.9086

-0.1136

0.2880

0.4129

-0.2107

0.8408

1.3764

0.6284

0.9498

1.5183

0.7048

0.7642

0.4185

0.2844

0.7066

0.3564

0.7356

0.7181

0.3031

0.6090

0.4947

0.1966

74

10"

10

c 1 1 1

:

i

1 — ' 1 '

-.-.- a=4
a=3 •

- — a=2
a=1 ':

•

i
1
j
U

^
t

i\

• 1 * »

• .T*"*"'"'*''"'——.-. ._. ——«.

" V

200 400 JOO 800
epoch

1000

Fig. 3.12. Learning pattern of feed-forward network with SS-W neuron network using Morlet

activation function with scaling factor a=l, 2, 3 & 4 for Example 2

10

n

>i

i
> i i

I *(

111
Vil
11\

i'A
• 1 \

SS-W(Mexican)
- - - SS-W(Slnc)
- SS-W|MorIet)

-

1 1 ._ — 1 = :

0 200 ^̂ ® epoch ̂ '̂ ® ^^^ "^^^^

Fig. 3.13. Learning pattern of SS-W neuron network with all wavelet functions for Example 2

75

The structure determination of the MS-W neuron network is shown in Fig. 3.14 and

3.38. We increase scaling factor one by one. For every scaling factor, the model is being

learned. Figure 3.14 shows that an increase in scaling factor from 3 to 4 decreases the

performance index. So scaling factor "a=3" is selected. Figure 3.15 shows MS-W neuron

network with Morlet wavelet function and performance index J= 1.14x10'̂ yields better result

than other wavelet function. Initialization of the learning parameters W, Cs and Cw for all

wavelet functions is the same as SS-W neuron network. Learning parameters for Mexican hat,

Morlet and Sine wavelet function corresponding to the learned MS-W neuron network are as

follows.

For MS-W neuron network with Mexican hat wavelet function:

W^ =

0.3663

0.3697

1.2722

0.0115

0.3907

0.3525

0.8239

0.6466

0A086
0.7272

0.4846

0.1493

0.4427

0.7398

0.6310

0.9670

0.8960

0.0599

0.3504

0.4643

0.4287

0.5741

-0.0742

0.5516

0.4605

0.8790

1.4699

0.4654

0.8827

1.0165

1.4307

0.2679

0.2401

0.5797

0.4866

0.3759

1.3181

0.3782

0.0996

0.7328

0.9822

0.6195

For MS-W neuron network with Morlet wavelet function:

^ ^ =

0.3819

0.5532

0.4300

1.1513

1.0745

0.3216

0.6968

0.6278

0.8312

0.9930

0.6058

0.8711

0.2118

0.9899

0.2727

0.1459

0.8981

0.7548

0.1425

0.0559

0.9200

0.2559

0.4131

0.6410

K^ff, —

0.5980

0.9313

0.7562

0.0433

0.5472

0.9107

-0.0123

0.7336

0.2912

0.9934

0.9982

0.4966

1.2977

0.4126

0.3371

0.9832

-0.0975

0.5188

76

For MS-W neuron network with Sine wavelet function:

W^

0.8328

0.1318

0.4229

1.2157

0.0080

0.8076

0.6599

0.5568

0.8306

1.5580

0.5983

0.9680

0.3699

1.0286

0.2402

-0.0885

0.8568

0.7346

0.3790

0.1483

0.9583

-0.3822

0.2690

0.6711

C^ —

0.0662

0.8341

1.1880

0.7968

0.8891

1.2417

0.8344

0.4317

0.4777

0.2937

0.6864

0.0826

0.7076

0.5897

0.2306

0.9282

0.4932

0.0906

Table 3.2 shows SS-W and MS-W neuron networks with Morlet wavelet function have better

performance index than WNN and NN. Actual output & predicted output of MS-W neuron

network, that has best performance, and error are shown in Fig. 3.16.

400 600
epoch

1000

Fig. 3.14. Learning pattern of feed-forward network with MS-W neuron network using Morlet

activation function with scaling factor a=l, 2, 3 & 4 for Example 2

77

10̂

10

\ i
1 »
1 V

• 1 1 I i
1 I i
i I '
i \ »

1 \ . \

—1 1 •

\ . . . ,

1 1

— r

1

MS-W(Morlet)
MS-W(Mexican) .
MS-W(Sinc)

_
•
•

•

.

•

•

200 400 600 800 1000
epoch

Fig. 3.15. Learning pattern of MS-W neuron network with all wavelet fimctions for Example 2

Table 3.2: Performance index (J) with different networks and wavelet functions for Example 2

Model ->

H.N. -^

Mexican hat

Morlet

Sine

SS-W

12

2.838x10''

1.648x10-'

3.457x10-'

MS-W

12

2.861x10-'

LUS^lff^

3.131x10-'

WNN

15

2.762x10-'

1.147x10-5

3.319x10"'

LWNN

15

1.425x10-*

2.730x10-'

1.403x10-̂

NN

13

4.019x10"^

78

-2

300

1 ' B

lUff^lillvHlUnlil

' 1 •

1 1 —

Prediction

y M U M U I
i i *

300

350

350

400 450 500

400
Data

450 500

Fig. 3.16. Actual output & predicted output of MS-W (Morlet) neuron network and the error for

Example 2

Revisited Example 3: Non-Linear Regression with Non-Linear input

To determine structure of the SS-W model scaling factor is increased. As shown in Fig.

3.17 and 3.37 scaling factor 'a=2' is a good selection for this model because there is a decrease

in performance index by further increasing the scaling factor from 'a=2' to 'a=3'. Figure 3.18

shows the learning pattern of SS-W neuron network with all wavelet functions. Morlet wavelet

function with performance index J= 1.2831x10'̂ yields better result. Initialization of the

learning parameters for all wavelet functions and learning parameters for Mexican hat, Morlet

and Sine wavelet function corresponding to the learned SS-W neuron network are as follows.

Initialization of the learning parameters:

W =

0.0575
0.3675
0.6314

Cs =

0.1536
0.6756

0.6992

0.7275
0.4783
0.5548

C^ —
0.7176
0.6926
0.0840

0.4543
0.4418
0.3532

79

For SS-W neuron network with Mexican hat wavelet function:

fV^ =

1.4043

1.1737

0.8438

0.5219

0.8660

0.0877

0.3848

0.0500

0.7753

1.1255

0.6189

1.1825

0.1423

0.6988

0.7516

For SS-W neuron network with Morlet wavelet function:

W^ =

0.1404

0.6101

1.4617

0.4138

0.8885

0.1535

0.1439

0.2143

0.2371

0.6539

-0.1573

1.4455

0.9401

0.8090

-0.0524

For SS-W neuron network with Sine wavelet function:

W^ =
1.6235

1.2487

0.4890

0.6378

0.6725

0.6619

0.8295

0.4529

1.0008

1.2126

1.4398

0.7364

0.0908

1.0214

0.8657

10
3.3

10

10

10

3.5

3.7

3.9

V̂^
^ ^

1

— a=2
a=3
a=1

-

I
\

1 \
1 \

1 V.-^^

V
\.^z^^^'

200 400 JOO
epoch

800 1000

Fig. 3.17. Learning pattern of feed-forward network with SS-W neuron network using Morlet

activation function with scaling factor a=l, 2 & 3 for Example 3

80

400 600
epoch

1000

Fig. 3.18. Learning pattern of SS-W neuron network with all wavelet functions for Example 3

To determine structure of the MS-W neuron network, scaling factor is increased. As

shown in Fig. 3.19 and 3.38 scaling factor 'fl=2' is a good selection for this model because there

is a decrease in performance index by further increasing the scaling factor from 'a=2' to 'a=3'.

Figure 3.20 shows MS-W neuron network with Morlet wavelet function yields better result.

Initialization of the learning parameters for all wavelet functions is the same as SS-W neuron

network. Learning parameters for Mexican hat, Morlet and Sine wavelet function corresponding

to the learned MS-W neuron network are as follows.

For MS-W neuron network with Mexican hat wavelet function:

W^ =

0.9291

0.0907

0.7180

0.4274

0.8978

0.7241

0.6136

0.3487

0.1487

1.2520

0.6861

0.8687

0.0636

0.1496

0.7700

81

For MS-W neuron network with Morlet wavelet function:

W^ =

0.7266

0.2420

0.7478

0.1789

0.7362

0.6930

0.7075

0.4613

0.5831

1.0280

0.1226

0.6264

-0.0306

0.0151

0.2613

For MS-W neuron network with Sine wavelet function:

W^ =

0.8351

-0.7163

1.4378

0.4455

0.5390

0.4525

0.6482

0.7465

1.1529

1.0189

0.9876

1.4656

-0.1066

0.3791

0.5487

Table 3.3 shows that MS-W neuron network have better performance with J=l.361x10"^. The

actual output & output of MS-W model with Morlet function and error are shown in Fig. 3.21.

J 10
-3

\
•

•

!

i
< -

1 1

— a=2
a=3 •

a=1

•

•

•

•

1 ~ " ~i ' i .——————-

0 200 400 600 800 1000
epoch

Fig. 3.19. Learning pattern of feed-forward network with MS-W neuron network with scaling

factor a=l, 2 & 3 for Example 3

82

10

10

J

10

10

-15
1

-3.6
1

-3.7

r

-3.8

1

*

1
\
i
4
{
1

1 t
I t
9 ^ i \

g \

V \
' • ^ — .

1

" ' • ' • " ~ J " " " " " 1 ! , J ,

MS-W(Mexican hat)
— MS.W(Morlet)
- - - MS-W(Sinc)

-

" * * —

1 1

200 400 600
epoch

800 1000

Fig. 3.20. Learning pattern of MS-W neuron network with all wavelet ftmctions for Example 3

Table 3.3: Performance index (J) with different networks and wavelet functions for Example 3

Model ->

H.N. ->

Mexican hat

Morlet

Sine

SS-W

6

1.415x10"̂

1.283^ ICr^

1.553x10"*

MS-W

6

1.381x10"̂

1.361x10"̂

1.418x10"'

WNN

15

1.436x10-̂

3.591x10"̂

2.042x10"^

LWNN

15

1.412x10"*

1.753x10-'

1.403x10"*

NN

15

2.769x10"*

83

10

-10
20 40 60 80 100

Fig. 3.21. Actual output & predicted output of MS-W (Morlet) neuron network and the error for

Example 3

Revisited Example 4: Non-linear Regression of input and output

The number of hidden neuron for SS-W neuron network is selected by evaluating the

performance index of the model in each step with an increase in scaling factor. Figures 3.22 and

3.37 show the performance index J for scaling factor 'a=V, 'a=2' and 'o=3' with one, three and

six WAF, respectively. Scaling factor 'a=3' is selected and therefore in SS-W neuron network

there is six WAF in parallel vnth six SAF. Figure 3.23 shows that Morlet wavelet function yield

better result than Mexican hat and Sine wavelet function. The performance index of SS-W

neuron network with Morlet function is 7=5.8144x10"*. Initialization of the learning parameters

W, Cs and Cfv for all wavelet functions and the learning parameters for Mexican hat, Morlet and

Sine wavelet function corresponding to the learned MS-W neuron network are as follows.

84

Initialization of the learning parameters

W =

"0.4057"

0.9354

0.9169
Q =

"0.1388

0.2027

0.1987

0.6037"

0.2721

0.1988

c =
"0.4102

0.8936

0.0578

0.3528

0.8131

0.0098

For SS-W neuron network with Mexican hat wavelet function:

W^ =

0.5871"

0.1212

0.5307

"0.5852

0.9196

0.2273

1.0646"

0.3019

0.3373

0.6828

0.4357

0.7960

0.5328

0.7834

1.0929

For SS-W neuron network with Morlet wavelet function:

W^ =

-0.2472'

0.3717

0.9206

"0.2047

0.2612

0.2491

0.6295"

0.3877

0.4202

0.7202

1.1281

0.8534

0.9475

1.3045

0.4250

For SS-W neuron network with Sine wavelet function:

W^ =

1.1042

0.6174

0.4585

0.3352

0.2803

0.7303

0.4900

0.3633

0.8005

0.7244

0.3401

0.6166

0.4270

0.7207

0.6950

The number of hidden neuron for MS-W neuron network is selected by evaluating the

performance index of the network in each step vA\h an increase in scaling factor. Figures 3.24

and 3.38 show the performance index J for scaling factor 'a=l', 'a=2' and 'a=3' with one, three

and six WAF, respectively. For this example scaling factor 'a=2' is selected and therefore in

MS-W network there is six WAF in conjimction with six SAF.

85

10"̂

10^

1 r •• • • • I — -

—- a=2
a=3
a=1 :

'

•

•

-

•

-
r*.... ;
1 •

1 1 1 1

0 200 400 600 800 1000
epoch

Fig, 3.22. Learning pattern of feed-forward network with SS-W neuron network using Morlet

activation function with scaling factor a=l, 2 & 3 for Example 4

10

10 -5

• r " 1

i
i
i

i
t

\
i i

!i

L-
1 \

' '

1 1

—- SS-W(Morlet)
SS-W(Mexican hat)

—- SS-W{Slnc}

•

,
•

1 1

200 400 ^600 800 1000
epoch

Fig. 3.23. Learning pattern of SS-W neuron network with all wavelet functions for Example 4

86

The learning pattern for different wavelet function is shown in Fig. 3.25. Morlet wavelet

function with performance J=6.394xl0'^ is better. Initialization of the learning parameters for all

wavelet functions is the same as SS-W neuron network. Learning parameters for Mexican hat,

Morlet and Sine wavelet function corresponding to the learned MS-W neuron network are as

follows.

For MS-W neuron network with Mexican hat wavelet function:

W^ =

0.2633"

0.9345

0.2150

'0.4207

0.5962

0.7877

0.9500

0.8587

0.1882

C' =

0.4913

1.1295

0.7792

0.5861

0.2060

0.9338

For MS-W neuron network with Morlet wavelet function:

W^ =

0.4836"

0.7579

1.8742

"0.4960

0.4507

0.3975

0.4889

0.8517

0.9263

0.1344

0.7711

0.5809

0.6227

0.7040

0.6553

For MS-W neuron network with Sine wavelet function:

W^ =

0.4035"

0.1384

0.5889

"0.6582

0.5010

0.4738

0.6469

0.2651

0.2669

0.7281

1.0474

0.9093

0.5289

0.3279

1.1550

From Table 3.4, SS-W neuron network with Morlet wavelet function is the best. Figure 3.26

shows its actual output & identify output and the error between them.

87

10
-3

J M^*

^ 10

10
-5

1 1 1
V

•

l'"̂
i-J

1

\

1

- — a=2 •
a=3 :
a=1

•

•

> 500 1000

0 200 400 600 800 1000
epoch

Fig. 3.24. Learning pattern of feed-forward network with MS-W neuron network with scaling
factor a=l, 2 & 3 for Example 4

400 JOO
epoch

1000

Fig. 3.25. Learning pattern of MS-W neuron network with all wavelet functions for Example 4

88

Table 3.4: Performance index (J) with different networks and wavelet functions for Example 4

Model ->•

H.N. ->

Mexican hat

Morlet

Sine

SS-W

6

8.709x10-̂

5.814x10-"

9.673 xlQ-"

MS-W

6

6.772x10'*'

6.394x10-*

8.349x10-*'

WNN

15

1.229x10-̂

9.737x10'*

2.280x10-̂

LWNN

15

2.933x10'=*

1.973x10''*

9.372x10'"

NN

18

4.849x10-*

Learning
• • • • • • • • • 'WHIfT

400 600 800 1000

200 400 600 800 1000
Data

Fig. 3,26. Actual output & predicted output of SS-W (Morlet) neuron network and the error for

Example 4

89

Revisited Example 5: Gas Furnace Data

For structure determination of the SS-W neuron network, scaling factor increased one by

one. Figures 3.27 show learning pattern for network with scaling factor equal ^a=V, 'a=2' and

'fl=3'. From Fig. 3.27 and 3.37 the model with scaling factor '^=3' is selected. Figures 3.28,

shows learning patterns for SS-W model with different wavelet functions. As shown in Table

3.5, Morlet wavelet function has better resuh wdth 7=1.676x10"'. Initialization of the learning

parameters W, Cs and Cw for all wavelet functions and the learning parameters for Mexican hat,

Morlet and Sine wavelet function corresponding to the learned SS-W neuron network are as

follows.

Initialization of the learning parameters:

JV =

0.9501

0.2311

0.6068

0.4859

0.8913

0.7621

Q =

0.1388

0.2027

0.1987

0.6037

0.2721

0.1988

0.0152

0.7467

0.4451

0.9318

0.4659

0.4186

0.8462

0.5251

0.2026

0.6721

0.8381

0.0196

c =

0.4564

0.0185

0.8214

0.4447

0.6154

0.7919

0.9218

0.7382

0.1762

0.4057

0.9354

0.9169

0.4102

0.8936

0.0578

0.3528

0.8131

0.0098

For SS-W neuron network v^th Mexican hat wavelet function:

W^ =

0.0497

0.6125

1.2767

0.3384

0.4341

0.8267

-0.0064

0.7804

0.3359

0.8861

0.4079

0.3213

0.8239

0.5592

0.0917

0.6255

0.7789

-0.0793

0.7241

0.3090

0.9981

0.6050

0.8239

0.6170

0.7798

0.8278

-0.0892

0.3719

0.8370

0.8309

0.2648

0.9842

-0.2117

0.3185

0.7128

-0.0775

0.1917

-0.0306

0.9923

0.6285

0.4825

0.3643

90

For SS-W neuron network with Morlet wavelet function:

W^ =

0.7503

0.6885

0.2407

0.2820

0.1944

0.9577

0.5363

0.7994

0.6606

0.9880

0.9439

0.0198

0.3312

0.5259

0.2490

0.5863

0.0322

0.5337

0.7165

0.9740

0.7564

0.7473

0.4417

0.6517

C^ -

0.0515

0.6862

0.5112

0.6421

0.6189

0.5659

0.4726

0.7400

0.1053

0.7742

0.8886

0.8577

0.9382

0.4478

0.0084

0.6421

0.4937

-0.2022

For SS-W neuron network with Sine wavelet function:

W^ =

0.5029

0.6198

0.3330

0.2710

0.2038

0.6084

0.8742

0.5390

0.2309

0.9098

0.6723

0.1571

0.6873

0.5749

0.1239

-0.0485

0.2953

0.0407

0.0355

1.0030

0.2185

0.1770

0.6804

0.6745

0.2194

0.5954

0.2222

0.8815

0.1997

0.3975

0.9243

0.8175

0.3052

0.3829

0.5362

0.0198

0.0115

0.7418

0.8288

0.5185

0.2375

0.5854

-̂-5
10

1 '

10^

c

1 1 1

• * 1

1 ••. ̂ *

I '

-.... as4

a=3
— a=3

a=1]
V \ \

'• '>:'>»v

'. •». "̂ •• y "•.>

^ • • . . ^ • • ' . - :

"'"•s.
••, '>,

'** ' • • ^ - ^ . ^

'*'•».. '̂*''*-.

1 r ,

1 200 400 600 800 10
epoch

Fig. 3.27. Learning pattern of feed-forward network with SS-W neuron network using Morlet

activation function with scaling factor a=l, 2, 3 & 4 for Example 5

91

1 0 ^

10
-6

: - T — —1 —

V

' 1
SS-W(Mexican hat)

—- SS.W(Sinc)
—- SS-W(Morlet)

0 200 400 ^600 800 1000
epoch

Fig, 3.28. Learning pattern of SS-W neuron network with all wavelet functions for Example 5

Figure 3.29 shows learning pattern for MS-W neuron network with scaling factor 'a=l\

'0=2' and 'a=3'. From this figure and Fig. 3.38, MS-W neuron network with scaling factor 'fl=2'

is selected. Learning pattern of MS-W neuron network with different types of wavelet function is

shown in Fig. 3.30. Morlet wavelet function yields better result with performance 7=1.5258x10" .̂

Initialization of the learning parameters for all wavelet functions and the learning parameters for

Mexican hat, Morlet and Sine wavelet function corresponding to the learned MS-W neuron

network are as follows.

Initialization of the learning parameters

W =

0.5364"

0.1632

0.2109
Cs =

"0.1311
0.0682

0.1252

0.1661
0.9114

0.1362

0.6170

0.2689

0.2206
r =

0.2168
0.6517

0.0527

0.2292
0.6674

0.3109

0.3066
0.7206

0.9544

92

For MS-W neuron network with Mexican hat wavelet function:

W^ =
0.5263
1.0675

0.9779

0.3676
0.8084

0.5864

0.2345

0.3898

0.5886

0.2319

1.0246

1.0055

0.4345 0.4230 0.9894

•0.0158 0.3467 0.6899

•0.0097 -0.1890 0.9405

For MS-W neuron network with Morlet wavelet function:

W^ =
0.5364
0.1632

0.2109

0.1311
0.0682

0.1252

0.1661
0.9114

0.1362

0.6170
0.2689

0.2206

0.2168 0.2292 0.3066
0.6517 0.6674 0.7206
0.0527 0.3109 0.9544

For MS-W neuron network with Sine wavelet function:

W^ =
0.6745
0.4021
0.7322

0.2838
-0.0343
0.7817

0.3909
0.2040
0.3056

1.1315
0.6045
0.2442

0.5535 0.5946 0.8460

0.1973 0.0426 0.7206

-0.0816 0.6083 0.7539

Table 3.5 shows comparative study of the different neuron networks. In this example,

MS-W neuron network with Morlet wavelet function is better. Actual output and output of MS-

W (with Morlet) model and error between them are shown in Fig. 3.31.

Table 3.5: Performance index (J) with different networks and wavelet functions for Example 5

Model ->

H.N. -^

Mexican hat

Morlet

Sine

SS-W

12

1.208x10'"

1.676x10'

1.343x10'"

MS-W

6

2.384x10""

1.665^ la'

6.641x10'"

WNN

15

2.632x10-'

7.530x10'"

6.837x10'"

LWNN

15

8.065x10'"

3.719x10''

6.837x10""

NN

16

1.04x10'̂

93

10

10

-5

6

E ' ' ^
— , - • • -

a=1
a=3

- — a=2

•

\ \

200 400 600
epoch

800 1000

Fig. 3.29. Learning pattern of feed-forward network with MS-W neuron network with scaling

factor a=l, 2 & 3 for Example 5

10
-5

10

10

: 1 — r

\ —
\
»

V
V
\ % >

\
\

\
\

\

V
1 I

MS-W(Mexlcan hat)
— - MS-W{Sinc)

MS-W(Morlet)

^ * ' * * * ' * — . ^ " " * • • * • • * • • » . »

" — 1 1 1 " " ~ - ^ . » -

•

•

.
•

•

200 400 <600 800
epoch

1000

Fig. 3.30. Learning pattern of MS-W neuron network with all wavelet functions for Example 5

94

rediction

100 150 200 250

50 100 150 200 250
Data

Fig. 3.31. Actual output & output of MS-W (Morlet) neuron network and the error for Example 5

Revisited Example 6: Human Operation at a Chemical Plant

Figure 3.32 shows the structure determination of the SS-W neuron network for scaling

factor '0=1,2 and 3'. From Fig. 3.32 and 3.37, scaling factor 'fl=3' is selected. The SS-W model

is analyzed for three types of wavelet and the result is presented in Fig. 3.33 and Table 3.6. It

illustrates that Sine wavelet function is better among different types of the WAF with

performance index 7=8.1898x10'^. Initialization of the learning parameters W, Cs and Cw for all

wavelet functions and the learning parameters for Mexican hat, Morlet and Sine wavelet

function corresponding to the learned MS-W neuron network are as follows.

95

Initialization of the learning parameters:

W =

"0.6273"

0.6990

0.3971

0.4136

0.6552

0.8375

Cs =

"0.7035

0.4849

0.1146

0.6648

0.3653

0.1400

0.5667

0.8230

0.6739

0.9994

0.9616

0.0588

r = 'PC

0.3716

0.4252

0.5946

0.5657

0.7165

0.5113

0.7764

0.4893

0.1859

0.7006

0.9827

0.8066

For SS-W neuron network with Mexican hat wavelet function:

W^ =

0.6597
1.3802
0.2992
0.3615
0.3513
0.7515

0.6509
0.4109
0.7211
0.7308
0.2305
0.1848

0.7900
1.1331
0.9197
0.1477
0.2504
0.9317 J

"0.8098

0.0132

0.3258

0.1742

0.3722

0.0117

0.5226

1.0989

0.4514

0.7838

0.8198

0.2220

For SS-W neuron network with Morlet wavelet function:

•0.0321'

•0.1086

0.8564

0.0344

0.8818

0.2789

W^ =

"0.4881

0.9926

0.3732

0.5313

0.1812

0.5019

0.4232'

0.6592

0.6998

0.9587

0.2151

0.1214_

"0.4194

0.2129

0.0352

0.0811

0.8501

0.3402

0.4511

0.9437

0.3523

0.8552

0.9246

0.8864

For SS-W neuron network with Sine wavelet function:

W^ =

0.6629

0.3057

0.9393

0.9553

0.9507

0.0336

0.5588

0.4870

0.3973

0.4930

0.9685

0.8270

0.2374

0.8123

0.9421

0.1563

1.0416

0.1172

0.8016

0.4330

0.2408

0.6348

0.3667

0.4314

0.6799

0.3736

1.1871

0.3802

1.3521

0.2705

96

10

10

10

•

— 1 —

a=3 '•

a=1
-— a=2
- - - a=4 :

•

•

l.::,
. \ : : : : : : . . : : : : : : . " : . : : . :

- - •:
1 _ , J 1 1 :

200 400 JSOO 800 1000
epoch

Fig. 3.32. Learning pattern of feed-forward network with SS-W neuron network using Morlet

activation function with scaling factor a=l, 2 & 3 for Example 6

10 • ' .

•

.

r 1

i

\

\

\

I

w
w

S
1 1

1 1

— SS-W(Mexlcan hat)
-— SS-W(Slnc)
— SS-W(Morlet)

-

.

1 1 J

200 400 ^600 800 1000
epoch

Fig. 3.33. Learning pattern of SS-W neuron network with all wavelet functions for Example 6

97

Figure 3.34 shows the structvire determination of the MS-W neuron network for scaling

factor 'fl=l, 2, 3 and 4'. From this figure and Fig. 3.38, scaling factor 'a=3' is selected. Figure

3,35 shows the learning pattern for different wavelet fimction. Mexican hat wavelet function

yields better resuh with performance index J= 6.9712x10" .̂ Initialization of the learning

parameters for all wavelet functions is the same as SS-W neuron network. Learning parameters

for Mexican hat, Morlet and Sine wavelet function corresponding to the learned MS-W neuron

network are as follows.

For MS-W neuron network with Mexican hat wavelet function:

W^ =

0.8574

0.0283

0.7642

0.4525

0.0369

0.7375

0.4001

0.1544

0.0644

0.1204

0.0293

0.8650

0.4904

0.8003

0.8871

0.3581

0.8250

0.4208

0.2342

0.1279

0.4124

0.6348

0.1815

0.4031

0.9645

0.3487

1.0744

0.7235

0.4005

0.2550

For MS-W neuron network with Morlet wavelet function:

W f _

0.1239

0.6012

0.4934

0.3015

0.9614

0.9189

0.7035

0.4848

0.1146

0.6648

0.3653

0.1401

0.5486

0.8584

0.6605

1.0156

1.0146

0.0199

0.3717

0.4253

0.5944

0.5658

0.7161

0.5112

0.7282

^Idei
0.3501

0.6061

1.1179

0.9401

For MS-W neuron network with Sine wavelet function:

W^ =

0.8472

0.6839

0.4283

0.4333

0.0034

0.8511

0.6508

0.4108

0.7211

0.7309

0.2305

0.1847

0.8391

1.0945

0.9377

0.0715

0.2547

0.9729

0.8095

0.0133

0.3257

0.1743

0.3722

0.0116

0.9633

0.5405

0.5015

0.6810

0.7700

0.2802

98

As shown in Table 3.6, MS-W neuron network has best performance index. Figiire 3.36 shows

system output and the output of the MS-W neuron network with the error between them.

Table 3.6: Performance index (J) with different networks and wavelet functions for Example 6

Model ->

H.N. ->

Mexican hat

Morlet

Sine

SS-W

12

9.277x10""

8.674x10-"

S.lSPxlO-"

MS-W

12

6.971x10-*

7.479x10-"

8.739x10-"

WNN

15

8.668x10'"

8.228x10-"

2.622x10''

LWNN

15

8.360x10""

8.506x10-"

1.129x10-'

NN

20

1.096x10-^

Figures 3.36 and 3.37 show the change of performance index with increasing scaling factor 'a' for

all examples with SS-W & MS-W neuron model, respectively. The number of hidden neuron is

increased if the performance index improved.

10 -3

10

10 -5

' ^^ -^ '

•

•

\

>

1 1

i , 1

— r ' ' 1

— a=4 :
— a=2

a=1 -
a=3 ;

,
'

• :

•

; ... l'.'." .. , 3

200 400 JOO 800
epoch

1000

Fig. 3.34, Learning pattern of feed-forward network with MS-W neuron network with scaling

factor a=l, 2, 3 & 4 for Example 6

99

— MS.W(MorIet)
MS-W(Mexlcan hat)

— - IVIS-W(Sinc)

0 200 400 600 800 1000
epoch

Fig. 3.35. Learning pattern of MS-W neuron network with all wavelet functions for Example 6

10000

5000

10 20 30 40 50 60 70

-0.04
10 20 30 40 50 60 70

Data

Fig. 3.36. Actual output & output of MS-W (Mexican hat) neuron network and the error for

Example 6

100

10

10

10

10

10

10

i"

I-*

r*

i'

• \ w s
\ Neuron=3+3=6

5w. \

:s,
X^ " *<[\

V >. \

1 1
1 1
\ 1

\ i V — u _ J

w s
Neuron=6+6=12

_Ex3 ,̂-..

< \

1 1

'"EXT";" i
1 _ 1

IxTT ;
1 1

1 1

\ — W

1

'

Ex 2. J

Ex 6 :

.

Ex 5 J

1

* 2 ' \ 3 /

Fig. 3.37. Performance index of feed-forward SS-W neuron network with different scaling
factor 'a' for all examples

10

10̂

10

.2

^ ^ fV'v "*••» Neuron=3+3=6 Neuron=6

\ -X "*V '̂ Ex 3 '' ^

w s w s
Neuron=6+6=12

Ex 2

ix6

Fig. 3.38. Performance index of feed-forward MS-W neuron network with different scaling
factor 'a' for all examples

101

3-8 Conclusions

In this chapter, S-W neuron network has been proposed. Each S-W neuron network is a

combination of SAF and WAF. The S-W neuron networks have advantage over either SAF or

WAF separately applied to feed-forward networks. The proposed neuron networks are used in

the hidden layer of a standard single hidden layered feed-forward network. Their performances

are evaluated by modeling of dynamic system. They have been tested on six different examples.

Three types of wavelet activation functions, namely Mexican, Morlet and Sine are tested

in the S-W neuron network. The comparative results of different wavelets show that Morlet

activation function yields better performance in either SS-W or MS-W neuron networks.

The proposed SS-W or MS-W neuron networks have better performance than WNN

network with WAF only and NN with SAF only, even with fewer mmiber of hidden layer

neurons. The S-W neuron networks have better performance in comparing to LWNN network.

MS-W neuron network yields better performance in comparison to SS-W neuron network.

102

Chapter 4

Neuro-Fuzzy Model

4-1 Introduction

Control theory deals with the analysis and synthesis of dynamical systems in which one

or more variables are kept within prescribed limits. Many real worid applications need to

describe models for unknown systems [Narendra'90]. In the past few decades, system modeling

and identification attracted the attention of a considerable number of researchers [Narendra'90,

Qiii'92, Mastorocostas'02, Xu'87, Sugeno'93, Takagi'85, Azeem'OOb, Lee'OO], the reason is

its extensive application in practical life.

System identification plays a principal role In Input-Output data analysis, such that a

better result can be obtained from better model. System identification includes two parts:

Structure identification and parameter identification. In structure identification, input variables

and input-output relations are found. In parameter identification, the parameters of the model are

adjusted by optimizing a performance index [Narendra'90, Sugeno'93j.

The Parallel (P) and the Series-Parallel (S-P) configurations are the two common

methods to identify parameters for the unknown model of dynamic systems [Narendra'90,

Qin'92- Bemieri'94]. In Series-Parallel configuration, the output of the system (plant) is fed into

103

the model. Since there is no feedback of the model output to itself, a static learning algorithm is

applied. In this configuration, the parameter learning will converge if the outputs are bounded for

bounded inputs [Narendra'90].

In the Parallel configuration, the output of the model is fedback as inputs to the model.

Identification using parallel configuration, the model feedback introduces dynamics to the

model; but it can learn the system dynamics without assuming much knowledge about the

structure of the system under consideration [Qin'92]. This model is suitable for long-term and

multi-step prediction in forecasting problem. When information about system is less, this

configuration is better; however, the learning convergence is not guaranteed [Narendra'90].

Since the output of the model can be carried out on-line, the Parallel configuration can be used

for on-line learning approach [Bemieri'94].

Recently fuzzy system identification has attracted the researchers involved with systems

modeling [Jang'93, Sugeno'93, Yager'94, Gebhardt'94, Wu'OO, Azeem'03a, KIir'03]. In

describing the behavior of many complex and ill-defined systems, precise mathematical models

may fail to give satisfactory results. In such cases, fuzzy models are used to reflect the

uncertainty of the systems in a proper way. Takagi and Sugeno introduced Takagi-Sugeno-Kang

(TSK) fuzzy model [Takagi'85, Sugeno'88]. The basic idea in this approach is to decompose the

complicated input space into subspaces and then approximate the system in each subspace by a

linear/non-linear regression model called local model. The resulting fuzzy model is the

aggregation of these local models. Later Shing and Jang proposed Adaptive Neuro-Fuzzy

Inference System (ANFIS) as a powerful method for mapping input-output system modeling

based on fuzzy inference system [Jang'93, Nauck'97].

In these application models, it is possible to use both parallel and parallel-series

104

configuration for estimation of unknown parameters of the model. The present work proposes an

implementation of combining parallel and series-parallel configuration on TSK fuzzy model. It

has advantages over both parallel and series-parallel configuration. Premise and consequent part

of the rules in TSK models are learned by parallel and series-parallel configuration respectively,

or vice versa. If the output of plant is feedback to premise part and output of the model feedback

to consequent part, it results a Premise Series-Parallel (PS-P) configuration. In the same way if

model output feedback to premise part and the plant output feedback to consequent part, we have

a Consequent Series-Parallel (CS-P) configuration. Therefore in this way the advantage of both

configuration, i.e. tracking the real output of the plant by series-parallel configuration and long-

term or multi step prediction with less knowledge about the plant by parallel configuration are

exploited together. Consequently, we obtain the best model that follow real output for long time

prediction with less knowledge about the plant.

A lot of learning algorithm has been developed for recurrent models. Two specific

algorithm that are based on GD are Back-Propagation Through Time (BPTT) [Rumelhart'86-

Werbos'88] and Real Time Recurrent Learning (RTRL) [Williams'89]. However, these

algorithms have two main problems: stability and slow rate of the convergence during learning

procedure. The problem is that for stability, learning rate should be small but when that is small

the speed of the convergence become low. To eradicate these two discrepancies large number of

studied has been done for improving the speed of convergence [Wu'OO, Yu'95a, Barbounis'06]

in addition to incorporating the stability [Yu'Ola, Yu'Olb, Chen'94, Wang'97, Yu'95b, Li'06,

Jin'99, Yi'06] to the parameter learning procedure. In [Yu'Olb], the passivity theory has been

applied to analyze the stability of the dynamic neural network for identification problem. Yi,

etal., (Yi'06] carried out a comparative study for output convergence [Yi'Ol, Liu'04, Li'04] and

105

the state convergence [Cao'03 a, Cao'03 b, Forti'94, Forti'95, Liang'Ol] of a recurrent neural

network. Yu, etal. [Yu'95b] have shown that the neuro-fiizzy model under certain condition is

stable by applying the Lyapunov stability theorem and passivity theory. However, they have not

ascertained any boundary for learning parameter. Based on Lyapunov-Krasovskii functional

method, Li and Liao [Li'06] have proposed a robust learning algorithm for recurrent neural

network under noise disturbance while Chen and Jain [Cheii'94] have proposed a robust BP

algorithm and shown that by improving the learning rate the algorithm is stable under noise

effect. Wang etal. [Wang'97] have introduced a robust and fast learning algorithm for B-spline

membership function using robust objective function and gradient descent method. Using

Lyapunov stability theorem a mathematical way to calculate the upper bound of the learning rate

for recurrent wavelet neural network [Yoo'06] and a mamdani fuzzy model [Lee'OO], based on

the parameter of the network, have been introduced, respectively. Azeem, etal., [Azeem'OSa]

used an easy and imderstandable way for adaptive learning rate to increase speed of convergence

rate. In this chapter, presented studies guarantee the stability and the speed of the learning

procedure by applying the Lyapunov stability theorem and the adaptive learning rate to the

learning procedure of neuro-fuzzy model.

The chapter spread over six sections: Brief discussion about neuro-fuzzy model is given

in section 4-2. In section 4-3, parameter identification configurations are devised. Section 4-4

deals with the learning algorithm and convergence analysis of S-W neuron models. Section 4-5

consists of simulation results and discussions. Finally, the conclusions are relegated to section 4-

6.

106

4-2 Neuro-Fuzzy model

Each rule of a fuzzy model based on TSK fuzzy model mapped the input space A" c R"

to a Imear function in the output space w" czR, and has the form:

/?" : if x^ is A" A XJ is A" A . . . A X„ is A" then y is w^ix) (4.1)

with m = \...M,M being the number of rules. Each rule is premised on its own input

vector A" e 9?", A" is linguistic labels of fuzzy sets describing the qualitative nature of the input

variable A:,-, A and is a fiizzy conjunction operator (usually of T-norm),

The TSK model was introduced in [Takagi'85, Sugeno'88] as a hybrid model, which

integrates the fuzzy conditions in the input space with the functional relationships in the output

space. TSK-model has a linear or nonlinear relationship of inputs w^ix) in the output space.

Rules of TSK model are in the following form:

R" : if \ is A*" then ;; is w^ix) (4.2)

A linear form of w^^x) in (4.1 & 4.2) is as follows:

w*" {X) = ŵ + w^j +... + wy„ (4.3)

where, w"(x) defines a locally valid model on the support of the Cartesian product of fuzzy sets

constituting the premise parts. The normalized firing strength for the normalized calculation or

non-normalized firing strength for the non-normalized calculation is then multiplied with the

output function >!''"(A-). By taking Gaussian membership function and equal number of fuzzy sets

to rules with respect to the inputs, firing strength of rules (4.2) is written as:

107

»=i V

I mi

y ^mi J
(4.4)

where x„, and <7„, are the center and the standard deviation of the Gaussian membership

functions. Applying T-norm (product operator) of the membership functions of the premise parts

of the rule and the weighted average gravity method for defuzzification, the output of the TSK

model is defined as:

| ; / i^„(x)->v'"(x)
Y _ m~\

M (4.5)

The functionally equivalent neuro-fiizzy model of TSK model is shown in Fig. 4.1. In the

follov^ng description, ŵ denotes the input to they'"' node in the f^ layer; 0\ denotes the/'' node

output in layer /.

Layer 1: Nodes in layer 1 represent input variable. Every node accepts input values and transmits

it to the next layer.

^ 1 = "m = /̂ (4.6)

Layer 2: Nodes in this layer represent the terms of the respective linguistic variables. Every node

operates on incoming signal with Gaussian membership function expressed by (4.7).

The parameters to be learned in this layer are x„, and <7„,. Corresponding to each rule

the learning parameter are expressed in vector form as x„ = Fmi»̂ m2»—'̂ mnl ^<^

108

La^rl Layer 2 Layer 3 Layer 4 Layers

Fig. 4.1. Neuro-Fuzzy model

^i=/^.™(x) = exp (4.7)

Layer 3: Each node in layer 3 represents a fuzzy rule. The output from the nodes in layer 2,

specified for a fuzzy rule, is being input to the nodes, specified for that rule, in layer 3.

The output of each node in layer 3 is the product of all inputs; it represents the firing

strength of that rule. Thus, the firing strength of the m^ rule is specified as (4.4,4.8).

Ol=YlOi=juA^) (4.8)

109

Layer 4: Nodes in layer 4 are called consequent nodes. Two inputs are applied to each node in

this layer, namely the output from the layer 3 node and the output from its corresponding

local model approximated by (4.3). The output of each node is the product of both input

and given by (4.9). Where X' is input for local model either from the system or from the

model depending upon the configuration.

O: =7" = w'"(X')-0^ =w'"(X')-//,.(X) (4.9)

Layer 5: Three nodes in this layer constitute the aggregation and deftizzification of frizzy rules.

The output of all nodes from layer 4 is the input to the first node and its output is the sum

of all inputs and expressed as (4.10). The output of all nodes from layer 3 is the input to

the second node and its output is the sum of all inputs and expressed as (4.11). Inputs to

the third node in this layer are the output from first and second node. The output of the

third node in the ratio of these two inputs is given in (4.12).

''=Eo»=i;(»''(x')-/'..(x)) (4.10)
m=l m=l

M M

m=\ m=\
^=Z^« =!>"." W (4.11)

5̂ " a 0^=Y =-NF=T (4.12)

4-3 Configurations for Parameter Identification

The problem of identification consists of selecting a suitable model and algorithm for

learning its parameter. In this section, two well-known parameter identification methods, series-

110

parallel and parallel configurations are discussed to optimize the learning parameter of the neuro-

fuzzy model. Two new configurations, which are combination of series-parallel and parallel

configurations, applicable to TSK model are proposed.

4-3.1 Parallel Configuration

Parallel configuration for system identification is shown in Fig. 4.2. A Linear/nonlinear

dynamic system models may be represented by mapping fi-om the input space to the output

space, which we call as fimction approximation. To construct a neuro-fuzzy model for a Multi-

Input and Single-Output (MISO) system using parallel configiiration, consider a Non-linear

Auto-Regressive Moving Average (NARMA) model representing a MISO system.

^'^ = \y{t-i),y(t-2Uy{t-T^) (4.13)

where u^;{q=\,...,r) and y denote the inputs and model outputs respectively, r,, and r̂ are

the corresponding delays. Fimction ' / in (4.13) may be linear or non-linear. Here it is supposed

to be a neuro-fuzzy model. The output of model in parallel configuration is a fimction of the past

output of the model as well as input delays. The premises of the rules, which represent delays as

well as the order of dynamic systems, for a NARMA model of a complex system, are denoted

by:

A = (;'l^ivs.^(r^,+...+r(,+r)'-'''(r„+.,.+r„+r+l)'"'j^„J

= {«,(0 , . . . ,« , (/ - r ,) ,«2(4- ,w.(^-^J , i^(^- l)v . , i^(f - rJ} '̂̂ •̂ '̂ ^

where n = r,, +...+r,, + r„ + r

In Parallel configuration, input to the consequent part is X' = X.

I l l

u(k)

X

Z

Plant

7,

;^r^;

+
JY

(V ^ "'̂ -̂
^
^

i^

Model'' / / /

/ /

X i

j'A^ :

Learning
Algorithm ^

Fig. 4.2. Parallel configuration

A-Z.2 Series-Parallel configuration

In the series-parallel configuration, output of the model is a function of the input delays

and past values of the plant output as shown in Fig. 4.3. Plant is a system that should be

identified with neuro-fuzzy model.

«(V

\
z

* Plant

^
/ / / /

Mod0

/
/

>!'

z

y(k)

(

m

Learning
AI gorithm

+
- ^ e(kj

<- -'

112

Fig. 4.3. Series-parallel configuration

We shall assume that output of unknown model in series-parallel configuration, which

should be identified is as follows:

y(t)=g [y{t-l),y(t-2Uy{t-T,)

\

(4.15)

Function 'g' in (4.15), represented by neuro-fuzzy model. Where u^;{q = l,...,r) and y denote

the inputs and model outputs, respectively. 7̂^ and r„ are the corresponding delays. The premise

inputs in this configuration are denoted by:

= {«, (4 . . . , M, (t - r,.,), U2 (/),..., M, (/ - r,,), y{t -1),..,;;(/ - r,)}
(4.16)

where n = r„ +... + r,, + r̂ + r

In S-P configuration, input to the consequent part is X' = X.

4-3.3 Proposed Configurations

In the proposed configuration, output of the model depends upon the system history as

well as the present and past output of the model as shown in the Fig. 4.4. System history means

present and past input and output of the system. Our objective is that the model should track the

actual system output. It means that the error between plant and model output decrease and results

in an improved performance of the model. In S-P configuration, the main problem is selecting a

model fi:om a class of models and its structure determination. After selecting the model and

deciding about its structure, the problem is reduced to parameter learning of the model. One

important problem in S-P configuration is that model output is of no use during learning

procedure except calculating the error. By using output of the model to learn the learning

113

parameter the significance of the model in learning procedure can be acquired. Parallel

configuration has advantage that without much information about the system, it can learn the

parameter of the model. In this configuration, the model output tracks the plant output by

minimizing the error between them. If the convergence of the learning procedure is guaranteed

the parallel configuration, is most suitable for long-term prediction.

Since, a neuro-fuzzy model is divided into two parts; i.e. premise and consequent parts,

either the system output feedback to the premise part and the model output to the consequent part

or vice versa. If the output of the system is feedback to the premise part and the output of the

model feedback to the consequent part of the neuro-fiizzy system, it results a Premise Series-

Parallel (PS-P) configiiration. In the same way, if the output of the model feedback to the

premise part, and the output of the plant feedback to the consequent part, we have a Consequent

Series-Parallel (CS-P) configuration.

Learning
Algorithm

Fig. 4.4. Proposed parallel and Series-parallel configuration

114

This configurations can be used in special cases that model is combination of two part.

Especially, as discussed before, fuzzy models are divided into two parts; premise and consequent

parts. For the proposed configuration, the output of the model is written as:

y(t) = h y{t-\\y{t-2\.,y{t-T^\
^y{t-\\y(t-2Uy{t-T:)

(4.17)

Function'/i' in(4.17)hereisrepresentedbyneuro-fuzzy model. Where u^\{q = \,...,r) denote the

inputs, y and y are model and system outputs, respectively, r,̂ and r^ are the corresponding

delays.

a) Consequent Series-Parallel configuration (CS-P)

In CS-P, the output of the model is fedback to the premise part as it is for parallel

configuration and the output of the plant is fedback to the consequent part as it is for series-

parallel configuration, which is shown in Fig. 4.5. It is a well-established fact that the premise

part of each rule in fuzzy models exemplifies a local region in the input space in which

consequent part act as a local model for the output space [Sugeno'93, Takagi'85- Sugeno'88,

Zeng'94- Zeng'95], These local models in the output space are approximated by linear or non

linear function of the premise variables. In CS-P configuration, the plant inputs and output with

its delays are employed to approximate the local models in the consequent part of the TSK

model, whereas the inputs and the delays of the model output are utilized to comprehend the

input space region. The premise inputs in this configuration are denoted by:

•^ — ri>"'>^(r„+,..+r^+r)»-'''(r;,+...+r;^+''+0'*""''^''i

= M\'--yuXt-T^^\u^{t\...,uXt-ri,\y{t-\\..,y[t-Tj^

where input to the consequent part in CS-P configuration is:

(4.18)

115

A — (^ivj^(r,,+...+r„+r)»^(r„+...+rfr+r+l)vj-^„/

Model «, {t\..., tt, {t - T,, I u, {t\.... u, (/ - T„)

\f \/

y{t-\ly{t-2),..,y{t-rj

Premise Part

A A

Consequent Part

y{t-\),y{t-2),..,y{t-zj "i {t\ - , Wi (' - r„ I "2 (̂ ^ - , " . (< - r,r)

Fig. 4.5. Output of the plant feedback to the consequent part and the output of model feedback to

the premise part

b) Premise Series-Parallel configuration (PS-P)

In PS-P, the output of the model feedback to the consequent part and the plant output is

used for the premise part as shown in Fig. 4.6. In PS-P configuration, the model inputs and

output with its delays are employed to approximate local models in the consequent part of the

TSK model whereas the inputs and the plant output with their delays are utilized to comprehend

the input space region. The premise inputs in this configuration are denoted by:

(4.20)

and input to the consequent part in PS-P configuration is

= {«,(4...,M,(/-r„),K2(/),...,«,(/-rJj)(/-li..,i)(/-rJ}
(4.21)

116

Model a,(4...,«,(/-rJw,(/)...,«,(/-r,)

\/ >f

yit-lly{t-2l..,y{t-rj

Premise Part Consequent Part

y{t-\),y{t-2),..,y{t-T,) «1 it\ -> «l (t - ^n \ "2 i.t\ - . «r (' - I-/r)

Fig. 4.6. Output of the plant feedback to the premise and the output of model feedback to the

consequent part

4-4 Learning procedure

In this section, structure determination and initialization of the neuro-fiizzy model are

presented. Discussion of different configurations in parameter learning of the neuro-fu2zy

models also is including. In this section, an adaptive learning algorithm is introduced to learn the

parameters of the model.

4-4.1 Structure determination and Initialization

Structure determination in neuro-fuzzy models means determination of the number of

rules and input membership function. Initialization of the neuro-fuzzy models means that

initializes center and standard deviation of membership function and initializes each linear

function in consequent parts. In present work, Gaussian membership function is used. To

determine number of necessary rules Modified Mountain Clustering (MMC) is applied

[Azeem'OSa, Yager'94, Chiu'96]. The purpose of clustering is to do natural grouping of large

set of data, producing a concise representation of system's behavior. Azeem et.al., [Azeem'OSa]

have proposed a simple and easy way to implement, MMC for estimating the number and

location of cluster centers. A brief discussion about MMC and its parameter is covered in

Appendix B.

117

4-4.2 Training

To adjust the learning parameter of the model, the performance index J as given in (2,18)

is minimized by Gradient Descent (GD) algorithm. In this section, the GD based algorithm is

applied. Since the parallel, CS-P and PS-P configurations include external recurrent to the model

during learning procedure; criterion for learning stability and convergence has been evolved. To

learn the parameters of the recvurent network, based on the gradient descent, different methods

are presented in literature. All learning methods are the same as of back-propagation-through-

time [Rumelhart'86- Werbos'88] or real-time recurrent learning algorithm [Williams'89] and it

can be applied to adjust parameters of the recurrent network. In this work, by applying Lyapunov

theorem, the learning stability and the convergence of learning procedure is guaranteed. To

guarantee the speed of the convergence an adaptive learning rate with upper boimd is applied.

a) Gradient Descent Technique of tfie parameters
For fine-tuning of initialized model/network parameters, a GD technique with momentum

update and forgetting factor, as discussed in chapter 2, is applied to modify the parameters x ,(X

and W in (4.4 - 4.5). The parameter update formula for/?'*" data set is as follows:

a r 1 a y

dW" "^ P-y; dW"

/ s dj 1 ay

^CTmi P-yr dOTmi

, - f ^ dJ 1 dY

(4.23)

(4.24)

(4.25)

where e = y-y is the error between the plant output and the model output. By applying the

118

r^Y f^Y r^Y

chain rule to the above equation,—^, -^^^ and —— for different configurations are derived

as follows: Define B = ^' then,

M

E .̂.W
m=\

^ = P. (4.26)

^ = x,./?„ (4.27)
mi

§ ^ = w „ (X ') - ^ - (l - > 5 j . i : i ^ (4.28)

£^=„.(v).^.(i-^.).2:(i^ (4.29)

X and X' in above equation are determined by (4.14) and (4.16) for P and S-P configurations,

respectively. In CS-P configurations, X and X' are obtained by (4.18) and (4.19), respectively.

With PS-P configuration, (4.20) and (4.21) are used to extract X andZ', respectively. Fig. 4.7

shows the learning algorithm for TSK Neuro-Fuzzy model with different configuration. Using

performance indexes J as in (2.18) convergence theorem of the learning procedure is stated as

follows:

b) Learning Convergence theorems
Small value of learning rate 77 results in slower speed of convergence. Large value of 7

causes the learning procedure non-stable. Therefore learning rate should be chosen in such a way

that the stability and convergence be guaranteed. To guarantee the stability during the learning

procedure, Lyapunov stability theorem is applied. This formulates the appropriate range of

119

learning rate. Following Theorems guarantees the convergence stability of the neuro-fiizzy

models:

Theorem 4.1: The asymptotic learning convergence of S-P and CS-P configurations (since local

models have same variables i.e. X) are guaranteed if the learning rate for

different learning parameters follows the upper bound as mentioned below:

0<Tj„<2-P'y'^

0<%<
2-P-y'r

(4.30)

(4.31)

max \w{xj
\ min /

0 < ; 7 J <
1-P-y]

max w {xX
(-, Y

(4.32)

V^min J

Theorem 4.2: The asymptotic learning convergence of P and PS-P configurations (since local

models have same variables i.e.X') are guaranteed if the learning rate for

different learning parameters follows the upper bound as mentioned below:

0<Tj,<2-P-yj

0<7a <
2-P-y'r

,\2 r ^ \

(4.33)

(4.34)

max lw(X')|
m

\ mm /

0 < ; 7 J <
2-P-yl

max\w{X'X
ftt

r 1 \
(4.35)

V.'̂ 'min J

Stability analysis and convergence is carried out in Appendix C.

120

c) Adaptive learning rate

The learning rate is adaptive with the lower and upper bounds as mentioned in the above

stated Theorem. Whether the learning rate (7) is increased or decreased, it depends on the

change in the value of performance index J. A two-phase adaptive scheme, to make the learning

rate adaptive, is used in the GD technique. The initial value of learning rate is kept at 0.1 for all

applications. In the first phase either it increases or decreases by a factor of "10". When it

reaches within bounds, in a very few epochs (i.e. < 10), then the second phase starts. This

increase or decrease is dependent upon the acceptance or rejection, respectively, for updating the

parameters. In the second phase, involving the operation7 <- ;^ ; we choose y = \.Q5 for the

acceptance of parameter updates and y = 0-7 for the rejection of the same. In the first phase, if

the learning rate is continuously decreasing due to the rejection for update of the parameter, and

the learning rate reaches v^th in a bound, the update of the parameter is accepted. This

acceptance forces the learning rate to increase according to the second phase. If the learning rate

is continuously increasing, in the first phase due to the acceptance for update of the parameter,

and this increase in learning rate goes beyond the upper bound, the update of the parameter is

rejected. This rejection forces the learning rate to decrease according to the second phase. Once

first phase finishes learning rate follows the rule of second phase until the learning last.

121

START

Structure determination

Initialization

ConfiQuration selection

I
Set the bounded of the learning parameter

I
Initialize the teaming parameters,

GD Algorithm for parameter leaming and
Evaluation of perfbnnance J

Yes

Save the leaming Parameter
Phase 1: rj = \Orj

Phase!: T] = \.05T]

No

STOP & retum the leaming Parameter

Select
Configuration:

P
S-P

CS-P
PS-P

Phase 1: 7 = 0.17
Phase 2: 77 = O.?^

Yes

Fig. 4.7. Leaming algorithm for Neuro-Fuzzy model

122

4-5 Simulation Results

In this section, different types of dynamic systems that have been discussed in chapter 1

is considered. The selected dynamic examples are different nonlinear equation with different

dynamic order. First 4 example are dynamical equations and Example 5 is a general benchmark

problem.

Revisited Example 1: Linear regression with noniinear input

By applying modified clustering and cluster validity function [Azeem'OSa, Xie'87], five

rules are obtained. Figure 4.8 illustrates the learning pattern and Table 4.1 shows the value of

performance index of models obtained for all configurations. In this figure, the parallel-series

category has shown by solid-blue, parallel with dot-black, PS-P with dot-slash & green and CS-P

with slash-dot. The S-P and the CS-P configurations have better performance and CS-P is the

best. It means that when the actual output of the system feedback to consequent part it yield

better result. The mitial fu22y rules for the models are listed below:

R': if u(k) is Al A y{k-l)isAl A y{k) is AI then y'{k + l) is w\X)

R': if u{k)isAf A y{k-l)isA^ A y{k)isAl then y'{k+\) is w'{X)

R': if uik)isAf A y{k-l)isAl A y{k)isA^ then y'{k + \) is w'{X)

R': if u(k)isA* A y(k-\)isA^ A y{k)isAt then y\k+\)is w'{X)

R': if u{k)isA^ A y{k-\)isAl A yik)isAl then /{k + l) is w'{X)

where,

w'(A') = 0.0200 - 0.0356M(A:)-0.7385 ;;(^ -1)+1.7168:);(A:)

W ' (Z) = - 0 . 2 1 2 7 + 0.5018«(A:)-0.7315>'(A:-1)+1.7663:);(A:)

w'(x) = 0.0727 + 0 .0387«(A:) - 0.9743;;(A: -1)+1.8446;;(^)

w'(;i^)=-1.4026+ 3.6808M(yt)-0.13761>'(A:-l)+1.0485>;(A:)

w' (X) = 0.4522 - 0.6490«(yt)-1 .0283>;(A: - 1)+ 1 M07y(k)

123

The premise variable membership functiony4l'-y4l^^2'-^2' andAi-A3^ for inputs u{k), y{k-i)

and y{k) are shown in Fig. 4.9. The fuzzy rules corresponding to the learned network are listed

below:

R'^: if uik) is Al^ A y(k-i) is AY A Kk)is^]^ then y'(k + l) is w'^{X)

R^^: if u(k)isA^^ A y{k-i} is A^^ A yik)isA^^ then y'ik + l) is w^^(X)

R^^: if u{k)isA,^^ A Xk-l) is ^2^ A y{k)isA^^ then / (* + !) is ^'^(.r)

^ '^: if M(k)is/4y A y{k-l) is A*^ A ^k) is/l,'^ then / (^ + l) is ^^^(X)

R'^: if u(k)isA^^ A Xk-l) is ^2^ A y{k)isAl^ then / f r + l) is w'^(^)

where,

w'-̂ (X) = 0.0246 - 0.0248«(jt)- 0.7424:);(A: - 1)+1.71 56;;(A:)

w^^ (X) = -0.2026 + 0.5045«(A:) - 0.7499;;(yt -1)+1.74S4y(k)

W^^(X) = 0.0757 + 0.0399w(A:)- 0.976 1;;(A: - l)+l.B3S5y{k)

w'^(x) = -lA054 + 3.6797u{k)-0A360y(k-l)+L049Sy{k)

w^^(x)=0A420-0.6545u{k)-l.020ly{k-l)+l.S430y{k)

The learned premise variable membership functions A\^-A\^, A%^-A^^9xA A^^-A^^fox

inputs i/(jfc), X ^ ~ 0 ^"^ K^) "̂̂ shown in Fig. 4.10. Figure 4.11 shows the actual output,

model output and model error with CS-P configuration. In this figure, actual output of the plant

is solid-blue and the model output is dot-red. The error is solid-blue. The value of performance

index 7=1.8694x10'̂ for the model obtained for CS-P configuration.

124

10

10

10'

[• ' '

I , '•"I
: \

\

• to'-'

(

1 \ \ \ » \
1 V

)

1

>. , .
%

• T •
A m

B

B e B

— CS-P
•

-

•

500 1000

. 1 - . . . 1 _ 1

200 400 ^600
epoch

800 1000

Fig. 4.8. Learning pattern of all configurations for Example 1

^ i > . 3. •••. :^i •

0.5-

0.38 0.39 OA 041 0.42 OAZ 0>t4
A,* AJ " ' '/\ 1 4,3 A ŝ

0.5 •. /• / y\ A
^ X ..>C N

y -

0.4 y(k) 0.6

Fig. 4.9. Initial membership functions of the normalized inputs for Example 1

, . ^
j f c - i " '

125

/ \ i3 ' A^^t

1

.5

A^*' A^ A^'<

/ A ')̂ V
A^^t

\

/ \ ,5/

< ;

OA y{K) 0.6

Fig. 4.10. Learned membership functions of the normalized inputs for Example 1

50

-50

_̂ JVV /jwr"""

100 200 300 400 500

0.02

o
t:
111

•0.02

4f
1 r 1

Learning '

1

Prediction

1

100 200 ^ ^ 300 400 500
Data

Fig. 4.11. Actual output & model output with CS-P configuration and the error for Example 1

126

Revisited Example 2: Non-linear regression with random input

Figure 4.12 and Table 4.1, show the performance index for different identification

configuration. The CS-P configuration model yields better result with five rules, obtained by

MMC and cluster validity fimction. The initial fiizzy rule of the CS-P configuration is listed

below:

R': if u(k)isAl A y{k-\)isA\ A y(k)isAl then y'(k+\) is w'{X)

R^: if u{k)isA^ A y{k-i)isA^ A y{k)isA^ then y^{k + }) is w\X)

R': if u(k)isA^ A ^k - l) is ^ A j)(k) i s ^ then / (^ + l) is w'(^)

R*: if u{k)isA* A y{k-i}isA^ A j^(k) is^j' then / (A : + 1) is w'(^)

where,

w' [X) = 0.3527 + 0 .6184M(A:) - 0.5301;;(A: - 1) + 0.5573>;(A:)

W ' (Z) = 0 . 3 3 0 8 + 0 . 7 1 6 0 M (A :) - 0 . 3 0 6 3 :) ; (A : - 1) - 0 . 1 1 9 4 > ; (A ;)

w^ (X) = 0.6575 + 0.6492u{k)- 0.371 ly{k - 1) - 0.2846>'(A:)

w' (X) = 0.5092 + 0.705 lu(k) - 0.6106;;(^ -1) - 0AS^9y(k)

The premise variable membership fimction A\^-A\^, A-i-A-i and A-^-A^ for inputs M(A;), y{^ -1)

and ^(A) are shown in Fig. 4.13. The fiizzy rules corresponding to the learned non-normalized

network are listed below:

/?'^: if M(k)is^;^ A j) (k- l) i s4^ A y^isA^-^ then y(it + l) is w'^C^)

R^^ \ if u{^isA]f A y{^-'i)isAY A y^isA\f then / (A : + 1) is >v'̂ (;sr)

/?^^: if M(k)is/lf^ A j)(k-l)is ^2'̂ A y^isA^/ then /(ifc + l) is w'^C^)

i?'^: if «(k)is/4,''^ A y^^-'i)is A\f A j)(k)is/43'^ then y% + '^\sw'^{X)

127

where,

W^ {X) = 0.4130 + 0.7532«(A:)- QAl%6y{k -1)+ 0M29y{k)

W^^(A^) = 0.3017 + 0.7805W(A:)-0.3881>;(/t -1)-0.1744>;W

W^^{X) = 0.6266 + 0.5967w(A:)- 0.112l7(;t - 1) - 0.2307^^:)

w'^{x) = 0.5018 + 0.81 16M(A:)- 0.4932j(A: - 1) - 0.6007;/(A:)

The learned premise variable membership function functions A\^^-Ai"^^, A^^-A-^^znd. A^^

-A^'^^for inputs u{k), y{k~i) and y{k) are shown in Fig. 4.14. Figure 4.15 shows actual output

and model output of the CS-P model. The error for learning and prediction section is shown in

Fig. 4.15. The value of performance Index 7= 1.1040x10''̂ is obtained for CS-P configuration.

10'

-6

1 1 1 1

'. :

, \

1 1 1

S-P
CS-P
p

- - - PS-P

1

200 400 ^600 800 1000
epoch

Fig. 4.12. Learning pattern of all configurations for Example 2

128

' > ' • '•!.

Fig. 4.13. Initial membership functions of the normalized inputs for Example 2

Fig. 4.14. Learned membership functions of the normalized inputs for Example 2

129

300

450 500

350 400
Data

450 500

Fig. 4.15. Actual output & model output with CS-P configuration and the error for Example 2

Revisited Example 3: Non-Linear Regression witli Non-Linear input

By applying MMC and cluster validity, three rules are generated. Figure 4.16 and Table

4.1, show performance index for different configuration of the identification models. CS-P

configuration model yield better resuh with performance Index 7=3.2015x10" .̂ Next on S-P

model is better. The initial fiizzy rule of the CS-P configuration is listed below:

R': if u{k)isAl A y{k) is A \ then y'{k + \)is w'{X)

R^: if u{k)isA^ A y{k) is A^ then y^{k + \) is w^{X)

R': if u{k)isAf A y{k) is A^ then / (^ + l) is w'(^)

where.

TV

W

W

-1.3762 + 2.5888M(̂)-h 1.0779:);(A:)

-3.8700 + 7J564u{k)- 0.0247:);(A:)

-2.9392 + 8.0787M(A:)+ 0.0428J;(A:)

130

algorithms have been proposed [Davis'89, Shaefer'87, Whitley'95, Lobo'97, Azeem'OSb].

Azeem etal. [Azeem'03b] introduced a hybrid method based on GD and GA. They have applied

GA in each epoch of GD to increase the convergence and also to maximize the possibility of

localizing in the region of global minimum. In this work we applied GA to initialization the

proposed WNF models. Later by using GD we tune the learning parameters of the WNF model.

The organization of this chapter is as follows: Wavelet Neuro-Fuzzy model is introduced

in Section 5-2. Section 5-3 envelops the initialization of the learning algorithm based on genetic

algorithm and fine tuning of the WNF parameter by gradient descent. Examples and simulation

are discussed in section 5-4 followed by the conclusion in section 5-5.

5-2 Wavelet Neuro-Fuzzy

In this section, based on MS-W neuron model, which has yield better performance as

discussed in chapter 3, WNF model is proposed. The antecedent part of each fuzzy rule in the

proposed neuro-fiazzy model represents input space in which a local model operates. These local

models are estimated by MS-W neuron model, see chapter 3: Fig. 3.2 and Fig. 3.3.

5-2.1 Architecture of Proposed Wavelet Neuro-Fuzzy

Figure 5.1 shows a wavelet neuro-fiizzy model. This model can be described by a set of

following fuzzy rules:

m m m ^ '.
R : IF xi is A^ and - and x„ is A^ THEN y^ = 7 ^ ^ ^ ^ ^^^^

Where i?" is the w* rule; x^ is the /* input variable; y„ is the output of the m"* local model for

rule/?"; %AW„ is output of local, MS-W neuron network, model; and A-, is the linguistic

term of the premise part with Gaussian membership function given by (4.7). From the Fig. 5.1,

structure of WNF is described as follows:

143

Layer 1: Nodes in layer 1 represent input variable. Every node accepts input values and transmits

it to the next layer.

Layer 2: Nodes in this layer represent the terms of the respective linguistic variables. Every node

operates on incoming signal with Gaussian membership function expressed by (4,7).

The parameters to be learned in this layer are x„, and <j„,. Corresponding to each rule

the learning parameter are expressed in vector form as x„={x„j,x„2,-,x„„}

ando-„={a„„<T„2 a„„}.

Layer 3: Each node in layer 3 represents a fuzzy rule. The output from the nodes in layer 2,

specified for a fuzzy rule, is being input to the nodes, specified for that rule, in layer 3.

The output of each node in layer 3 is the product of all inputs; it represents the firing

strength of that rule. Thus the firing strength of the /w"' rule is specified as (4.4).

Layer 4: Nodes in layer 4 are called consequent nodes. Two inputs are applied to each node in

this layer, namely the output from the layer 3 node and the output from its corresponding

local model approximated by MS-W neuron network. The output of each node is the

product of both input and given by (5.2).

ymF„ = /"^" (X)- W „ (X') (5.2)

Layer 5: There are three nodes in this layer that constitutes the aggregation and defuzzification of

fuzzy rules. The output of all nodes from layer 4 is the input to the first node and its

output is the summation of all inputs and expressed as (5.3). The output of all nodes from

layer 3 is the input to the second node and its output is the summation of all inputs and

expressed as (5.4). Inputs to the third node in this layer are the output from first and

second node. The output of the third node is the ratio of these two input and given in

(5.5). The output of the third node in this layer is the output of WNF.

144

^=i("."W-w(x'))
m=l

(5.3)

M

m=I

a
|;(«^.(x)-f„«.(x'))

V — "̂ — "»=!

1

(5.4)

(5.5)

Layer 1 Layer 2 Layers Layer 4 Layers

Fig. 5.1. Proposed Wavelet Neuro-Fuzzy Model

145

In these equations n is the number of inputs and M is number of rules and the number of

fuzzy sets for each input is supposed to be equal to the number of rules. To determine number of

necessary rules Modified Mountain Clustering (MMC) is applied. The purpose of clustering is to

do natural grouping of large set of data, producing a concise representation of system's behavior.

The description of MMC can be found in Appendix B.

5-3 Genetic Algorithm and Gradient Descent

In this section a hybrid algorithm based on GA and GD introduced for learning of the parameter.

We use the GA for initialization of the learning parameter. After that by applying GD technique

the learning parameters are adjusted. In this chapter we have applied CS-P configuration that

yield better performance as discussed in chapter 4. In CS-P configuration, the plant inputs and

output vydth its delays are employed to approximate local models in consequent part of the fiizzy

rules, whereas inputs and delays of the model output are utilized to comprehend the input space

region. The premise and the consequent inputs in this configuration are denoted by (4.18) and

(4.19), respectively.

5-3.1 Basic of the Genetic Aigoritiim

The basic theory of GA can be found in [Goldberg'89], and in this Section we will

discuss in brief what are the components of GA and how they fimction in the solution process.

Suppose we are seeking to find a solution to a problem. To apply a genetic algorithm to

that problem, the first thing to do is to encode the problem into artificial chromosomes. These

artificial chromosomes can be the strings of I's and O's, or the parameter lists, or even the

complex computer codes, but the key thing to keep in mind is that the genetic machinery wdll

manipulate a finite representation of the solutions, not the solutions themselves. The second

146

thing to do to solve a problem is to have some means of discriminating good solutions from bad

ones. This can be as simple as having a human intuitively choose better solutions, or it can be an

elaborate computer simulation or a model that helps to determine the quality of a solution. But

the idea is to ascertain a solution's relative fitness to purpose by some means. The genetic

algorithm will use these very means to guide the evolution of future generations.

Having encoded the problem in terms of chromosomes and having devised a means of

discriminating good solutions from bad ones, we prepare to evolve solutions to our problem by

creating an initial population of encoded solutions. The population can be created randomly or

by using prior knowledge of possible good solutions, but either way GA will search from a

population, not from a single point.

There are various types of operators that are used in GA, but quite often (i) selection, (ii)

recombination and (iii) mutation. The selection and genetic operators can process the population

iteratively to create a sequence of populations that will hopefiilly contain more and more good

solutions to our problem over a period of time.

To cite briefly, selection operator allocates greater survival to better individuals. This is

what is known as the survival of the fittest mechanism, which we impose on our solutions. This

can be accomplished in a variety of ways. Weighted roulette wheels can be spun, local

tournaments can be held, various ranking schemes can be invoked, but whatever we do, the main

task is to seek better solutions over worse ones. Of course, if we were to only choose better

solutions repeatedly from the original database of initial solutions, we would expect the

population to contain the best solution of the first generation. However, simply selecting the best

is not enough, and some means of creating new, possibly better individuals must be found. This

is where the mechanisms like recombination and mutation emerge.

147

Recombination is a genetic operator that combines bits and pieces of parental solutions to

form new, possibly better offspring. Again, there are many ways of accomplishing this.

Achieving desirable performance does depend on getting the recombination mechanism designed

properly; but the primary concern is to see that the offspring under recombination will not be

identical to any particular parent, so we combine the parental traits in a novel manner.

Recombination by itself is not very useful, because a population of individuals processed under

repeated recombination alone will undergo what amounts to a random shuffling of existing traits.

As against recombination, which creates a new individual by combining the traits of two

or more parents, mutation acts by simply modifying a single individual. There are many

variations of mutation, but the main constraint is that the offspring must have traits identical to

the individual parental traits except that the operator may make one or more changes to an

individual's traits. Mutation by itself represents a ''random walk" in the neighborhood of a

particular solution. If applied repeatedly over a population of individuals, we might expect the

resulting population to be indistinguishable from the one created at random.

5-3.2 Components of GA

There are various possible combinations of different components to construct a GA. A

detailed description of different combinations can be found in [Goldberg'89, Davis'91]. Here

we shall give a brief description of the combinations used in this thesis.

a) Solution Representation (Encoding & Decoding)
Binary string representation scheme is used to perform GA evolution. Since we are

required to encode the center matrix ce i?"""., we normalize each element of c in the search

space by the span, i.e., (cfa.n,ax-c*,,mm)» to yield c,^,„or = (ck,-^k,.mm)/(^h.rmx-^h.mm)- The

148

decimal value, decimalyci^^)^ of each element of c, for the binary string of length h, is obtained

from the relation: decimal{cj^2)=^k,.nor/v-'' -^) and the resolution of the binary string is

i^ki.max'^h.mm)/'^''' Now the decimaic^,^) is converted into the binary string by adding

sufficient number of "Os" on the left side of the string in order to complete the specified string

length, i.e. h. With this, the total binary length for each solution (chromosome) is hxmxn. A

fixed binary length h is taken as 10 for each c ,̂. Further, it may be noted that gradient descent

learning takes care of resolution interval, inherited by the genetic coding, if the solution lands in

the region of basin.

The solution must be decoded before it is evaluated. Steps involved in decoding are (i)

separate the string of length h corresponding to each c^,, (ii) convert this string into decimal

value decimalyc^j) and (iii) obtain the value of ĉ , from decima^^,-^) ^y the following

formula:

c, = c .̂..„ +^ec»ma/ (c , , J^^* ' | -Q-^ (5.6)

b) Initialization
A specified number of solution strings of O's and I's is generated randomly as an initial

population.

c) Evaluation function

Each decoded solution represents a model. An evaluation (fitness) fiinction is defined to

evaluate the degree of fitness of all the models with respect to learning data set. Our goal is to

minimize the objective fimction J defined by (2.18). Since, GA is used strictly for the

maximi2ation problems, without loss of generality; fitness fimction is defined as the reciprocal of

149

the objective function J. So, minimization of J and maximization of fitness function are

equivalent.

d) Selection, Crossover, Mutation and Reproduction

Weighted roulette wheels approach is opted for parent selection. In the parent selection

care has to be taken such as two identical parents should not crossover, to prevent the production

of two identical children similar to their parent, whose fitness has already been tested.

The two-point crossover is used for the reproduction of offspring. One point is applied to

the premise part of the rules and one point to the consequent part. The two points for the

crossover in the chromosome string are selected randomly. The probability of crossover is set at

Pc = 0.8.

The number of mutations in a solution is randomly selected with a very small value of

probability, i.e., p„ = 0.02.

The technique of generational replacement without duplication is used for reproduction,

and to test for a new solution. In this technique, all the solutions of one generation are replaced

by the solutions of the next generation.

5-3.3 Gradient Descent learning of parameters

Afler initialization of the learning parameters by GA, we apply gradient descent

technique. Figure 5.2 shows algorithm for initialization by GA and fine tuning of the learning

parameter of the WNF model. The parameter update formulas for/?"' data set are as follows:

ApO-„,(^)=-7„

^pxM = -^-.

dJ

dJ

= -nc

5̂ . = -m
mi

p

p

-1

-1

e-

•e

dY
5o-„,

dY

(5.7)

(5.8)

150

START

zz
Initialize Population

T
Learning
Data Set

Yes ^y^

" '
Select Best Solution

Evaluation of

each
population

Target reached

or ^^
g max* ^^^

T No

GD Technique
Fig. 3.7

' •

STOP

Selection

i
Crossove

1
Mutation

Fig. 5.2. Algorithm for initialized and learning of the learning parameters

A.M^) = - V ^ = 7 - ^ - '"̂ m:^ P-y] dW,'"
(5.9)

21 r

\C {q)=-JJ-— = V•
dY

p-y; 5 c
w

(5.10)

A„C^»wj=-77 = rj --e (5.11)

where e = Y-Y is the error between the plant output, Y, and the model output, Y. By applying

151

chain rule to the above equation , , , and are derived as follows:
m„, da„, dwr 5C^, ac^„

Define;^ = _jfi<lLj_, then

^ = t,«,(x1-^-(l-A)-%^ (5.12)

^ = 4„.(X')-^.(1-A).2±^ (5.13)
mi

dY dY^^ (X')

dY dY^^ (X')
= /g.- Z" (5-15) dC „ dC

'' M . . % ^ (5.,6)

A A A

_jm^ _WNK_ ^^ wNN^ j ^ 5̂ j4^ ^̂ 5̂ jg^ j-^j. ^^^p ^^^gj ^g expressed by (3.24) to

(3.26), respectively.

5-3.4 Learning Convergence theorem

To consider stability of learning procedure Lyapunov stability theorem is applied.

Theorem 5.1 shows convergence condition for proposed neuro-fuzzy models. The proof of this

theorem is derived in Appendix C.

Theorem 5.1; The asymptotic learning convergence is guaranteed if the learning rate for different

learning parameters follows the upper bound as mentioned below:

152

o<%< 2-P-yl

^WNN (X'\

(5.17)

max I (J

0<TJ,< 2-P'yl

^WNN V^ \

(5.18)

mm J

0<TJ^<

0<?7c <

2-P'/r

dw
m

2-P-y]

(5.19)

(5.20)

0<T]c^
2-P-y]

(5.21)

dC,
w

5-4 Simulation Results

In this chapter. Multiplication Sigmoid-Wavelet (MS-W) network with the Morlet

wavelet function is used in consequent part of the neuro-fuzzy model. In this chapter, the weights

between input layer and hidden layer in MS-W neuron model, Cs and Cw in Fig. 3.2 & 3.3, for

all rules are same and only the output weights, W in Fig. 3.2, are changed. Consequent Series-

Parallel (CS-P) configuration that result better performance as mentioned in chapter 4 is selected

to learn the parameters of the WNF model. MMC and GA have been applied to determine the

structure and to initialize the network.

153

Revisited Example 1: Linear regression witti noniinear input

With five rules as mentioned in Revisited Example 1 in section 4-5, we have applied

genetic algorithm with 100 populations. We have fed the initial parameters for GA randomly.

Figure 5.3 shows the maximum fitness of to each generation. The initial solution for GD is

obtained over 250 generation. The value of performance index J, obtained by GA for

initialization of the parameter, is 2.1062x10" .̂
,5

xlO

(A
M

c

50 100 150
Generation number

200 250

Fig. 5.3. Maximum fitness of GA up to each generation for Example 1

The initial fuzzy rules generalized by GA are listed below:

i?': if M(k)isA; A y{k-i)isA\ A j)(k)isA; then y\k + \) is Y^^M

R^: if u{k)isA^^ A Xk-l) isAJ A j)(k)isA3' then y^{k + l) is Y^^{x)

R': if u(k)isAl A X^-l) is A'̂ A y(k)isAl then y'(k + l) is Y^^(x)

i?^ if M(k)isAf A j)(k-l)isA^ A j)(k)isA^ then y'{k + l) is Y^^{x)

/? ' : if M(k)isAf A j)(k-l)isA; A Xk)isA^ then y'{k + i} is Y^^{x)

154

where Y^fj{x), Y^f^{X), ..., Y^,^{x) are the outputs of initialized MS-W neuron models by

GA in consequent parts of R' to R^ respectively. Initialization of the learning parameters Cs, Cw

and W',.... W^, for R' to R^ are as follow:

Q =

w =

0.53891 0.69682

0.12482 0.37344

0.21126 0.33559

w

=

'0.3613 0.0796

0.9821 0.1616

0.9242 0.0984

0.6155 0.2415

0.0079 0.6479

0.62516

0.48868

0.25978

0.6563"

0.9548

0.9061

0.1252

0.9080

c =
0.052127

0.89941

0.30861

0.82934

0.98358

0.34731

0.9143

0.28005

0.77825

Each hidden neuron in MS-W neuron model is conjunction of Sigmoid and Wavelet

activation functions. Rows and column in €$ and C(v are corresponding to the number of hidden

neurons in MS-W neuron model and the number of inputs. The number of rows in Wis equal to

the number of rules whereas number of column is equal to the number of hidden neuron in MS-

W neuron model.

The premise variable membership function -4/-^4]^, A-i-A-i and A^-A-^ for inputs M(A;), ^(^ - l)

and >'(i) are shown in Fig. 5.4. The fuzzy rules corresponding to the learned WNF are listed

below:

if'^: if «(k)isA}^ A j)(k-l)isA^^ A i)(k)isA7 then y (it +1) is 7̂ ^̂ (x)

^V A j)(k-l)isA^^ A j/(k)isA^^ then / (A : + 1) is K^^vW

V̂ (̂ + l) i s S ^ W

F}^ \ if «(k)

i?^^: if w(k)isAf^ A j)(k-l) is Af A Xk) isAf then y\k+ \) is Y^f,{x)

j)(k-l)isAJ^ A i)(k)isA^^ then y*{k + \)\sY^t,(x) R*^: if M(k)isA;^ A

)(k) is AY then y' {k +1) is Y^^ (x) R ''-^r if «(k)isA,'^ A y{k-i)isAY A y{]

155

where Yj^f,{x), Y^f^{x), ..., Y^si^) ^̂ e the outputs of learned MS-W neuron models in

consequent parts of R' to R ,̂ respectively. The learned parameters Cs, Cw and ^,. . . . W^ , for R'

toR^ are as follow.

Cs =

0.30781

0.56248

0.55692

0.72408

0.81377

0.21718

0.39893

0.40816

0.14845

C =
0.75462

0.52688

0.62958

0.58899

0.98164

0.17485

0.83937

022244

0.80545

w =

> ' "

w
w'
w'
w

=

0.1990 0.0922 0.0276'

0.7190 0.8573 0.7294

0.3221 -0.0464 0.4456

0.1704 0.5098 0.9124

-0.3468 0.5898 1.2822

l l l l h III! llwiiii l | n A - '

•A,^

0.4 0.6 0.8
' . . - • " " • ' - • ; • ; • •

Fig. 5.4. Initialized membership functions, learned by GA, of the normalized inputs for Example 1

156

The learned premise variable membership functions A j '-̂ -A\% A-i^ -A-i^ and A-^^ -A^^ for

inputs M(^), > ' (^ - 1) and j)(A:) are shown in Fig. 5.5. Figure 5.6 shows learning pattern of WNF

model by Genetic Algorithm and Gradient Descent.

Figure 5.7 shows the actual output, WNF model output and model error with CS-P

configuration. In this figure, actual output of the plant is solid line and the model output is dot

line. The error also is solid line. The value of performance index J=1.6078xl0'' for the WNF

model obtained by CS-P configuration.

A ^

0 0^ 0.4 u(k} 0.6 0.8

^,„. -
Mtmtum^MmuMmMmiJm

A,4'

02
1

0.5

0

0.4 y(k.1) 0.6 0.8

.....••••*'''^3

02 0.4 y(k) 0.6

Fig. 5.5. Learned membership functions, obtained by GA & GD, of the normalized inputs for

Example 1

157

0 200 400 600 800 1000 1200
Generation epOCh

Fig. 5.6. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for

Example 1

50

•50

Learning Prediction

100 200 300 400 500

Fig. 5.7. Actual output & WNF model output and the error for Example 1

158

Revisited Exampie 2: Non-linear regression with random input

Figure 5.8 shows the maximum fitness up to each generation. With five rules as

mentioned in Revisited Example 2 in section 4-5, the initial solution for GD is obtained over 84

generations. The value of performance index J, initialize by GA, is 3.7761x10'̂ . The initial

fuzzy rules that generalize by GA are listed below;

;?': if M(k)isA; A y(k-\)isA\ A j'(k)isA; then y'{k + \) is Y^^fj{x)

i?^ if w(k)isAf A j)(k-l)isA^ A j)(k)isA^ then / (i t + l) is y^^^(x)

;?^ if M(k)isA? A j)(k-l)isA^2 A 7(k)isA] then y^{k + \) is Y^^{x)

i?*: if w(k)isA; A j)(k-l) is A* A j)(k)isA* then y*(k + l)is Y^;,(x)

where Y^f,{x), Y^f,{x), ..., Y^f,{x) are the outputs of initialized MS-W neuron models by

GA in consequent parts of R ' to R'', respectively. Initialization of the learning parameters Cs, Cw

and W',.... W*, for R' to R^ are as follows.

C.=

0.93219

0.6945

0.62394

0.53891

0.096502

0.71281

0.26576

0.72642

0.85308

0.53226

0.36611

0.18501

0.40402

0.39803

0.75822

0.10993

0.51334

0.64408

C^ —

0.15223

0.091864

0.97296

0.22407

0.73784

0.23561

0.059269

0.5911

0.38809

0.87127

0.78032

0.33492

0.32979

0.50546

0.67765

0.70714

0.64164

0.2195

w =

> ' •

w\
=

0.0896 0.2914 0.1925
0.1087 0.3501 0.1027
0.8718 0.0204 0.3778
0.2809 0.6385 0.1134

0.7222 0.1387 0.5118
0.5249 0.9884 0.8257
0.5875 0.4351 0.2690
0.5698 0.8121 0.6706

The premise variable membership function y î'-̂ î'', A-i-A-i and A-^-Ai for inputs M(A:), j)(^ -1)

and j)(^) are shown in Fig. 5.9.

159

3

2.5

c
ti.

1.5

1

xlO
— 1

.

- f
Y^ i

I ' '••

/ •

1

1 1 •

/

-

-

-

20 40 60
Generation number

80

Fig, 5.8. Maximum fitness of GA up to each generation for Example 2

0.5
^^3 '•"•v..

0.4 y(k-1) 0.6 OJ

4 1
^ 3
...muttl^'-^m

/ > "
>A4 X

JL
^ - . .

0^ 0.4 y(k) 0.6 0.8

Fig. 5.9. Initialized membership functions, learned by GA, of the normalized inputs for Example 2

160

The fuzzy rules corresponding to the learned WNF are listed below:

R'^: if u{k)isAY A y(k'i) is A'/ ^ y{^)isAY then y'{k + i) is Y^M

R'^: if u{k)isA'/ A j;(k-l) is A^^ A i'(k)isA3'^ then y'{k + \) is Y^M

R'^: if u{k)isAY A y{k-l)isAY A y{k)isAY then y'{k + \) is Y^M

i?'^: if «(k)isAf'^ A y{k-i) is A*/ A j/(k)isA*^ then y*{k + l)isY^M

where Y^f,{x), Y^ni^)' •••> ^miui^) ^® ^^ outputs of learned MS-W neuron models in

consequent parts of R' to R'*, respectively. The learned parameters Cs, Cw and W',.... W* ,for R'

to R"*, are as follow:

C.=

0.41275

0.38067

0.73688

0.21594

0.095634

0.31845

0.98765

0.67522

0.55452

0.71215

0.968

0.7872

W =

> ' •

W\

-

0.1203 0.9867

0.5563 1.0486

•0.1189 -0.0259

0.4445 0.9755

0.65899

0.4018

0.83829

0.28372

0.089004

0.38511

0.0945

0.1301

0.3733

0.5684

C =

0.28676

0.13362

0.21895

-0.10607

0.23543

0.90667

0.15502

1.2506

0.50995

0.042429

0.23625

0.6037

0.8781 0.6765 0.8026

0.7541 0.8585 0.9176

0.4619 0.9993 0.0928

0.3725 0.7328 0.1458

1.0851

0.66065

0.90713

0.94806

0.82982

0.4772

The learned premise variable membership function functions A\^-A\^, Ai^-Ar^and A-^^-A-^^

for inputs «(^), y{k -1) and >'(^) are shown in Fig. 5.10. Figure 5.11 shows learning pattern of

WNF model by Genetic Algorithm and Gradient Descent. Figiire 5.12 shows actual output and

model output of the CS-P model. The error for learning and prediction section has been shown in

Fig. 5.12. The value of performance Index 7= 7.9356x10'' is obtained for CS-P configuration.

161

I • • • ' j _ 3 g '

.."•" X
«&l l>w"«<k ._ I

.— .- ' • ,«•*••'' ..•""
/ \ l3 '

A^*f

Fig. 5.10. Learned membership functions, obtained by GA & GD, of the normalized inputs for

Example 2

10̂

-^io'

10̂

c

GA

•

1 200

1 1

GD

1 1

400 000

1

1

800

:

:

•

1

1000
Generation epoch

Fig. 5.11. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for

Example 2

162

500

0.2

= 0.1

lU

-0.1

Prediction

•^^-^^^WHWHW*^^

100 200
Data

300 400 500

Fig. 5.12. Actual output & WNF model output and the error for Example 2

Revisited Exampie 3: Non-Linear Regression wittt Non-Linear input

Figure 5.13 shows the maximum fitness up to each generation. With three rules as

mentioned in Revisited Example 3 in section 4-5, the initial solution for GD is obtained over 120

generations. The value of performance index J after initialization by GA is 6.8541x10" .̂ The

initial fuzzy rules generalized by GA are listed below:

/?': if M(k)isAl A î (k) is A'̂ then y'{k + \) is Yl^,,{x)

R': if u{k)isA^ A j^(k) is AJ' then y'{k + \) is y^f,^{x)

J?^ if w(k)isAf A j)(k)isA'2 then y^{k + i} is Y^^f,{x)

163

where Y^^{x), Y^fj{x) and Ylj^^{x) are the outputs of initialized MS-W neuron models by

GA in consequent parts of R' to R ,̂ respectively. Initialization of the learning parameters Cs, Cw

and W',.... W^, for R ' to R \ are as follow.

4)

40 60 80
Generation number

100 120

Fig. 5.13. Maximum fitness of GA up to each generation for Example 3

Cs =

0.66001

0.95581

0.11402

0.58115

0.6237

0.81176

Cffr —

0.96533

0.74907

0.42654

0,39193

0.82067

0.6591

w =
0.3183 0.1168 0.8820

0.3587 0.7858 0.6068

0.3324 0.9688 0.4925

164

The premise variable membership function Ai^-Ai^ and A-i-Ai for inputs W(A:) and >'(A)

are shown in Fig. 5.14. The fiizzy rules corresponding to the learned WNF are listed below:

i?'^: if «(k)isA;^ A y^\% fs}l then y%+ \) \s Yl/^^{X)

;?'^: if w(k)isAf^ A j)(k) is A^^ then / (i t + l) is y^4(x)

i?'^: if «(k)isAf^ A ^k) is A ' / then / (^ + l) is 7;^;^(^)

where y^^(A'), Y^niX) and Y^u^X) are the outputs of learned MS-W neuron models in

consequent parts of R' to R'', respectively. Initialization of the learning parameters Cs, Cw and

W^,..., W^, for R ' to R^ are as follow:

Q =
'0.65531

0.95526

0.11587

0.58598"

0.62217

0.77571 _

C^ —

1.0845 0.27657

0.76702 0.83148

0.3453 0.37021

W =

0.2809 0.0518 0.8880

0.8177 1.0447 1.1052

•0.0105 0.6968 0.7751

The learned premise variable membership functions A\^-A\^and A-i^-A-i^for inputs

u{f) and j)(^) are shown in Fig. 5.15. Figure 5.16 shows learning pattern of WNF model by

Genetic Algorithm and Gradient Descent. Figure 5.17 shows actual output and model output of

the CS-P model. The error for learning and prediction section is shown in Fig. 5.17. The value of

performance Index J= 2.7545x10"^ is obtained for CS-P configuration.

165

0.4 u(k) 0.6 0.8

0.5-

A 3 .••''
. . • ' * •

/

/
-

,

0.2 0.4 y(k) 0.6 0.8

Fig. 5.14. Initialized membership functions, learned by GA, of the normalized inputs for

Example 3

1

0.5

\ ^

^'1
/ \ , i ' \ I t

, V

• " • * « « . , •

0.2 0.4 u(k) 0.6 0.8

0.5

^^^'' ^f^^

<?"

1

0.2 0.4 y{k} 0.6 0.8 1

Fig. 5.15. Learned membership functions, obtained by GA & GD, of the normalized inputs for

Example 3

166

10
-3

10

10 -5

10

1 1 — 1 -

GA i

^

}\
1 t
1 \

1 V i v..

1 1 _ _ 1

1 1

GD

' •

;

•

;

.

-

'

0 200
Generation

400 600
epoch

800 1000

Fig. 5.16. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for

Example 3

Prediction

100

5*0.02
d.
r 0
o k i

£i -0.02

-0.04

1 Learning

1 WW

1 — . 1 1

]Prexijction

1 ll -
IVili/i i l l / '

\l • ' 1 ^ " ^ ' \ i \ 1

1 l /

1 ^
20 40 « . 60 Data 80 100

Fig. 5.17. Actual output & WNF model output and the error for Example 3

167

Revisited Example 4: Non-linear Regression of Input and output

Figure 5.18 shows the maximum fitness up to each generation. The initial solution for

GD is obtained over 208 generation with three rules as mentioned in Revisited Example 4 in

section 4-5. The value of performance index J after initialization by GA is 4.3790x10" .̂ The

initial fu2zy rules that generalize by GA are listed below:

/?': if M(k)isA| A X ^) is A^ then y\k + \) is Yl^^{x)

i?^ if M(k)isAf A >;(k)isA^ then y^{k + \) is Y^^^{x)

R^: if u{k) is A^ A y{k) is AI then y^{k + i} is Y^^{x)

where Y^^{x), Y^f,{x) and Y^f,{x) are the outputs of initialized MS-W neuron models by

GA in consequent parts of R' to R ,̂ respectively.

0 50 100 150
Generation number

Fig. 5.18. Maximum fitness of GA up to each generation for Example 4

200

168

Initialization of the learning parameters Cs, Cw and W',..., W^ ,for R' to R ,̂ are as follow:

Q =

w =

0.17347 0.25368

0.81066 0.34084

0.63248 0.74944

> ' •

W
W

=

^w ~

"0.6327 0.0317 0.7779"

0.6670 0.5752 0.8146

0.0078 0.5692 0.9209

0.84472

0.33315

0.95483

0.13111

0.83605

0.10688

The premise variable membership function A\-A\ and A2-A2 for inputs u{k) and >'(̂) are

shown in Fig. 5.19. The fuzzy rules corresponding to the learned WNF are listed below:

i?'^: if «(k)isAl^ A yfyi)\s K^ then y(it + l) is 7^;vW

i?'^: if «(k)isAf^ A yi^) \S XY then / (/ t + l) is iS^ (z)

i?^^: if «(k)isAf^ A yfyi)\s \Y then y\k + \)\s Y^f^{x)

where Y^A^), Y^A^) and Y^A^) are the outputs of learned MS-W neuron models in

consequent parts of R ' to R'', respectively.

Initialization of the learning parameters Cs, Cpf and J^,.... W^, for R ' to R ,̂ are as follow:

Cs =

0.026068 0.63253

0.18761 0.67029

0.076676 0.90617

C^ -

'0.15438

0.19916

0.61996

0.91355

0.71218

0.28396

w =
w
W
w

0.4932 0.0088 0.5814

0.4242 0.8924 0.9438

0.2665 0.2291 1.0572

169

0.5

^^"""/^

^
.... . 1

<

' \

^ 1 '

<

\

\

1

:̂:r

\

^

' • ' - • . ^

fi,z •'-...,

0.2 0.4 u{k) 0.6 0.8

A2 ^-^^ '*X̂ ^

*tmm»»»MK

0.2 0.4 y{k) 0.6 0.8

Fig. 5.19. Initialized membership functions, learned by GA, of the normalized inputs for

Example 4

The learned premise variable membership functions .̂ I'-'̂ -̂ î -̂ and yi2'̂ -^2^^for inputs uik) and

y{k) are shown in Fig. 5.20. Figiire 5.21 shows learning pattern of WNF model by Genetic

Algorithm and Gradient Descent. The models have been learned with all (one thousand) data to

identify output j/(it + l). Figure 5.22 shows actual output and model output of the CS-P model.

The error for learning and prediction section is shown in Fig. 5.22. The value of performance

Index y= 3.3841 x 10"* is obtained for CS-P configuration.

170

0.5 -y

>

S

l_

c"**'

1

» 4 2'

U.
' ^ ^ . .

0.2 0.4 u(k} 0.6 0.8

0.5

' . ^ ^
y

.>- 7 / .^.'-y A^y/

>

A" r^
•s:; X

\ \
\ \

V
1

_.,.„ _.,_,„^,^^_

^ 2 "

1 , ^ ' ^ • • - « — — ,

0.2 0.4 y(k) 0.6 0.8 1

Fig. 5.20. Learned membership functions, obtained by GA & GD, of the normalized inputs for

Example 4

10

\

1 1

- - L
1 1

1 I I

GD

1 1 1

0 200 400 600 800 1000 1200
Generation epOCh

Fig. 5.21. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for

Example 4

171

0.2

0.1

111

•0.1

|mw
Learning

200 400 ^ , 600
Data

1000

800 1000

Fig. 5.22. Actual output & WNF model output and the error for Example 4

Revisited Example 5: Gas Furnace Data

Figure 5.23 shows the maximum fitness up to each generation. With five rules as

mentioned in Revisited Example 5 in section 4-5, the initial solution for GD is obtained over 118

generations. The value of performance index J after initialization by GA is 1.2569x10"'. The

initial fiizzy rules that generalize by GA are listed below:

/?': if M(k-2)isA| A M(k-3) is A^ A j)(k-l)isA; then /(k) is Yl^^{x)

i?^ if M(k-2)isAf A M(k-3)isA^ A j;(k-l)isA^ then y^{k) is Y^^{x)

i?': if M(k-2)isAf A M(k-3) is A'̂ A i)(k-l)isA^ then y'{k) is Y^^{x)

i?': if M(k-2)isA; A M(k-3) is A^ A X^-OisA^ then y'{k) is Y;^^{X)

i?': if M(k-2)isAf A «(k-3)isA^ A Xk-l)isA^ then y'{k) is Yl,„{x)

where Y^fj{x), Y^f,{x), ..., Y^f,{x) are the outputs of initialized MS-W neuron models by

GA in consequent parts of R' to R ,̂ respectively, hiitialization of the learning parameters Cs, Cw

172

and W',.... W^, for R' to R^ are as follow:

Q =

w =

0.84557 0.34688

0.22682 0.52268

0.89416 0.96521

"0.5491 0.7375

0.6525 0.6169

0.1843 0.6985

0.0581 0.1842

0.1355 0.9379

0.21425 '

0.81884

0.022035

0.1560"

0.8344

0.2811

0.6572

0.8700

C =

0.42105

0.76817

0.577

0.19557

0.018312

0.82293

0.09284

0.98541

0.34646

20 30 40
Generation number

Fig. 5.23. Maximum fitness of GA up to each generation for Example 5

The premise variable membership function Ai^-A\^, A2-A2 and A^-Ai for inputs M (^ - 2) ,

W(A: -3) and y{^ -1) are shown in Fig. 5.24. The fuzzy rules corresponding to the learned WNF

are listed below:

173

R .. : if M(k-2)isAj^ A M(k-3)isA'/ A y{k-\)isAY then /(k)isYX^{x)

R^^: if u{k-2)isA^/ A M(k-3)isA^^ A y{k-\)isAY then y^{k) is Y^^{x)

/?^^: if M(k-2)isA[^ A M(k-3)isAf A j)(k-l)isA^^ then y'{k) is Y^^{x)

R*^ : if u{k-2)isA*/ A M(k-3) is A^^ . A y{k-\)isA*/ then / (i t) is 7^^ W

i?'^: if M(k-2)isAf^ A M(k-3)isA^^ A y{k-i)isAY then y'(k) is Y^^(x)

where Y^j^{x), Y^^{x) , ..., Y^fj{x) are the outputs of learned MS-W neuron models in

consequent parts of R' to R ,̂ respectively.

V

- • - . • • - i i — i - . — 1 " t , _ • '

02 0.4 u(k-3) 0.6
«— '-

0.8

Fig. 5.24. Initialized membership functions, learned by GA, of the normalized inputs for

Example 5

Initialization of the learning parameters Cs, Cw and W',..., W\ for R' to R^ are as follow:

Cs =

0.84612

0.22651

0.89424

0.34695

0.52271

0.96529

0.21303

0.81928

0.022302

c =
0.41147

0.76163

0.57856

0.18949

0.014421

0.82369

0.082668

1.0007

0.34636

174

w =

w
w
w'
w*
W

=

'0.5456

0.6521

0.1843

0.0581

0.0994

0.7397

0.6135

0.6985

0.1842

0.9778

0.1621

0.8289

0.2811

0.6572

0.9129

The learned premise variable membership function functions A\^ -A\^, A-i^ -Ai^ and A^^

-A-i^ iQx inputs «(^-2), M(A;-3) and y{^-\) are shown in Fig. 5.25. Figure 5.26 shows

learning pattern of WNF model by Genetic Algorithm and Gradient Descent. The models have

been learned with all (one thousand) data, to identify output >'(̂ + l). Figure 5.27 shows actual

output and model output of the CS-P model. The error for learning and prediction section has

been shown in Fig. 5.27. The value of performance Index J=9.5489xl0"* is obtained for CS-P

configuration.

A.?'

05 . ^^''

0 0.2 0.4 y{k-1) 0.6 0.8 1

Fig. 5.25. Learned membership functions, obtained by GA & GD, of the normalized inputs for

Example 5

175

^ 0 . 200 400 600 800 1000
Generation epOCn

Fig. 5.26. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for

Example 5

Prediction

50 100 150 200 250

50 100 150 200 250
Data

Fig. 5.27. Actual output & WNF model output and the error for Example 5

176

Revisited Example 6: Human Operation at a Chemical Plant

S-P configuration is selected to learn the learning parameters of the WNF model. Figure

5.28 shows the maximum fitness up to each generation. By applying modified mountain

clustering and cluster validity function, three rules are generated. The value of performance

index J is 6.7911x10'̂ after initialization by GA over 135 generations. The initial fu2zy rules

generalized by GA and S-P configuration are listed below:

/?': if «,(k) is Aj A Mj (k) is A^ then >''(^ + l) is Yj,^A^)

i?^ if w,(k)isAf A «3(k) is A2 then y^{k + \) \s Y^^^{x)

R^: if u,{k) is Al A M3(;t) is A^ then y^{k + i} is Y^^^{x)

where Y^t/{x), Y^n^i^) and (̂ww(-̂) are the outputs of initialized MS-W neuron models by

GA in consequent parts of R' to R ,̂ respectively. Initialization of the learning parameters Cs, Cw

and W',.... W^, for R' to R^ are as follow:

Cs =

w =

"0.57029 0.93597"

0.08844 0.50082

0.56852 0.38607

0.60258 0.24153

0.86175 0.34633

0.32271 0.41873

V
W
W

=

'0.1673 0.4499

0.0559 0.3691

0.7635 0.: J202

0.2877

0.4679

0.2123

Lff, —

0.088689

0.66819

0.92346

0.9140

0.31936

0.57572

0.6862 0.8148

0.1667 0.9771

0.5041 0.7642

0.31038

0.47977

0.41842

0.44003

0.34145

0.39694

0.4063"

0.2477

0.7494

The premise variable membership function A\^-Ai^ and A-1-A2 for inputs W,(Â) and u^i^ are

shown in Fig. 5.29. The fuzzy rules corresponding to the learned WNF and S-P configuration are

listed below:

177

i?'^: if M,(k)isAj^ A M3(k) is A^^ then y'{k + \) is Y^^^ix)

R^^ : if u^{k) is A^ A Uj{k) is AY then / (i t + l) is y^^(x)

J?^^: if M,()t)isAf^ A u^{k)isAY then y^(k + \) is r^{,^{x)

where i ^^ (x) , Y^N{^) ^ ^ (̂WAf(-̂) ^^ the outputs of learned MS-W neuron models in

consequent parts of R' to R'', respectively. Initialization of the learning parameters Cs, Cw and

W',.... W^, for R' to R^ are as follow:

C.=

0.57029

0.08844

0.56852

0.60258

0.86175

0.32271

0.93597

0.50083

0.38607

0.24154

0.34634

0.41872

C = 'If

0.088689

0.66819

0.92346

0.9140

0.31936

0.57572

0.31036

0.47974

0.41844

0.44002

0.34149

0.39693

W =

0.1674 0.4500 0.2877 0.6862

0.0813 0.3595 0.4747 0.1559

0.7635 0.3202 0.2123 0.5041

0.8148 0.4062

0.9985 0.2587

0.7642 0.7494

(A
M

a
c

0 20 40 60 80 100 120
Generation number

Fig. 5.28. Maximum fitness of GA up to each generation for Example 6

178

0.6-

0.2 0.4 u1(k) 0.6 0.8

0.5
'^1 ^^ \

^^^n

l-t^
\ H
1 : '•

i
„..,\ f l> 1

" - * - ^ .

0.2 0.4 u3(k) 0.6 0.8

Fig. 5.29. Initialized membership functions, learned by GA, of the normalized inputs for

Example 6

The learned premise variable membership function A\^^ -Ay^ and A2^^ -A2^ for inputs

M,(̂) and u^{^ are shown in Fig. 5.30. Figure 5.31 shows learning pattern of WNF model by

Genetic Algorithm and Gradient Descent. The models have been learned with all (one thousand)

data, to identify output ;/(^ +1). Figure 5,32 shows actual output and model output of the CS-P

model. The error for learning and prediction section is shown in Fig. 5.32. The value of

performance Index J= 6.7658x10'̂ is obtained for CS-P configuration.

179

0.4 u1|k) 0.6

0.5-

0 0.2 0.4

71 i . i .»*-—

1 ^ *
1 f :

I \ w
\ 1 A

u3{k) 0.6 0.8 1

Fig. 5.30. Learned membership functions, obtained by GA & GD, of the normalized inputs for

Example 6

10

10

10

J

10

10

10

-5.12

5.13

-5.14

-5.15

-5.16

-5.17
-

i—1

1
1 j

"t j

GA 1

• 1 1 1 —

GD

1

-

-

_

1

0 200 400 600 800 1000
Generation epOCh

Fig. 5.31. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for

Example 6

180

10000

edSOOO

Learning

ri

Priediction

10 20 30 40 50 60 70

Fig. 5.32. Actual output & WNF model output and the error for Example 6

Table 5.1: Performance Index (J) of MS-W neuron model, NF and WNF models

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

MS-W

Performance Index (J)

7.585x10"

1.145x10''

1.361x10-^

6.394x10-''

1.665x10"

7.479x10""

NF

Performance Index (vO

1.8694x10-^

1.1040x10-*

3.2015x10-''

5.3610x10-*

6.8899X10-"

9.1412x10-^

WNF

Performance Index {J)

1.6078x10'

7.9356x10-'

2.7545x10-*'

3.3841x10-**

9.5489x10-^

6.7658x10-^

181

Table 5.1 shows the performance index J for three models: MS-W neuron model, Neuro-Fuzzy

(NF) and Wavelet Neuro-Fuzzy (WNF) model. In this table, the model with the better

performance, for each example, is Bold.

5-5 Conclusions

In this chapter based on MS-W neuron model that yields better resuh than SS-W neuron

model, as discussed in chapter 2, WNF model is proposed. The consequent parts of each rule in

WNF model is localized by MS-W neuron model. The proposed neuro-fuzzy model is initialized

by GA and to learn learning parameter of the proposed model, CS-P configuration which had

better performance in chapter 3, is applied. The proposed model examine by six dynamic

examples.

Table 5.1 shows that fuzzy models have better performance than MS-W neuron model.

The propose WNF model also mostly yields better performance than TSK neuro-fuzzy model.

182

Chapter 6

Recurrent Wavelet Networks

6-1 Introduction

Science has evolved from trying to understand and predict the behavior of the universe

and systems within it. Much of this owes to the development of suitable models, which is in

conformity with the observations. These models are in symbolic form, which the humans use,

and in mathematical form that are found from physical laws. Most systems are causal, which can

be categorized as either static where the output depends on the current inputs, or dynamic where

the output not only depends on the current inputs, but also on the past inputs and outputs. Many

systems also possess unobservable inputs, which cannot be measured, but they affect the

system's output, i.e., time series system. These inputs are known as disturbances and aggravate

the modeling process.

To cope with the complexity of dynamic systems, there have been significant

developments in the field of Artificial Neural Network (ANN), applied for identification and

modeling, during last three decades [Narendra'90, Zhang'92]. One major application for

proposing the different types of the network is to predict the dynamic behavior of many systems

183

in nature. ANN is a powerful method in approximation of nonlinear system and mapping

between input-output data [Narendra'90].

Due to the dynamic behavior of recurrent network, they are suitable in dealing with the

modeling of dynamic systems as compared to static behavior of feed-forward network [Qin'92,

Li'05]. Owing to the above fact, the presented work proposes different types of recurrent

neurons. Since the proposed neurons are used in feed-forward network making them as recurrent

network. It has already been shown that the recurrent networks are less sensitive to noise v»rith

relatively smaller network size and simpler structure. Their long-term prediction property makes

the recurrent network much powerful in dealing with dynamic systems. Recurrent networks are

less sensitive to noise because, the recurrent network could recognize and generate periodic

waves in spite of the existence of a large number of noises. This means that the network is able

to regenerate the original periodic waves in the process of learning the teachers' signals with

noises [Qm'92]. For unknown dynamic system, recurrent network results in a smaller size

network as compared to feed-forward network [Li'05, Juang'02]. For time-series modeling, it

generates a simpler structure [Lee'OO, Mastorocostas'02, Yoo'06] and gives long-term

prediction [Mastorocostas'02, Barbounis'06]. Because of dynamic behavior of recurrent

networks, they are suitable in dealing with the modeling of dynamic systems as compared to

static behavior of feed-forward network [Serinivasan'94, Lee'OO]. Recurrent network for system

modeling, learn and memorize information in terms of embedded weights [Lee'OO].

Each neuron model in the proposed SS-W and MS-W neuron models, as discussed in

chapter 2, comprise Sigmoid Activation Function (SAF) and Wavelet Activation Function

(WAF). Morlet wavelet function that yield better resuh with both SS-W and MS-W neuron

model is applied to recurrent model. In the series of development of different recurrent network

184

and neuron model, the presented work is an attempt to proposed different type of recurrent

neuron model. Several types of recurrent network can be introduced by combining the output

from SAF and WAF with product operator. In Sigmoid-Recurrent Wavelet (S-RW), the output of

the wavelet function feedbacks to itself When the output of Sigmoid fimction feedbacks to itself,

it results a Recurrent Sigmoid-Wavelet (RS-W). In Feedback to Sigmoid from Wavelet (FS-W)

neuron, the output of wavelet fimction, feedback to sigmoid fimction within a neuron unit. When

output of sigmoid fimction feedbacks to wavelet fimction, within a neuron unit, it is called as

Feedback to Wavelet from Sigmoid (FW-S). A Recurrent Neuron (RN) is also proposed in which

the output of the neuron unit is feedback to itself The idea of using different neuron models is to

introduce recurrent network in modeling of dynamic systems and to perform a comparative study

of recurrent neuron models consist of sigmoid and wavelet activation fimction in feed-forward

neural network architecture. In proposed recurrent neurons, the SAF can administer the system

dynamics by inputting the delayed output of wavelets to it. On the other hand, the delayed output

of SAF feedback to WAF ascertains that dynamic of the system is accumulated in WAF.

However, when the output of the recurrent neurons feedback to both wavelet and SAF, dynamics

of the plant is attributed to SAF and WAF together. Since the convergence analysis plays an

important role in the recurrent networks, the Lyapunov stability approach is employed to

guarantee the convergence of network.

In this chapter, section 6-2, presents structure of the proposed recurrent S-W neuron

models. Universal approximation theories of the proposed recurrent neuron models are described

in section 6-3. Gradient Descent learning of learning parameters is draw up in section 6-3.

Simulation result is given in section 6-5 and finally the conclusions are relegated in section 6-6.

185

6-2 Structures of Recurrent Neuron Models

In this section, based on proposed SS-W and MS-W neuron model (Fig. 2.7, Fig. 2.8 and

Fig. 2.9), five types of recurrent networks are introduced for each SS-W and MS-W neuron

model. In the proposed recurrent networks, outputs of SAF and WAF are fedback. Structure of

the proposed networks is presented in this section.

6-2.1 Sigmoid-Recurrent Wavelet (S-RW) Neuron

In this neuron model, the output of WAF is feedback to itself Parameter Q^ is feedback

weight for first order dynamic of network. The dynamics of WAF is given in (6.1) and output of

SAF is same as given in (3.21). Figure 6.1 and Fig. 6.2 show the architecture of Summation S-

RW (SS-RW) and Multiplication S-RW (MS-RW) neuron models, respectively.

r n ^

I / = 1
(6.1)

*«o

Fig. 6.1. Summation Sigmoid-Recurrent Wavelet (SS-RW) neuron model

186

Fig. 6.2, Multiplication Sigmoid-Recurrent Wavelet (MS-RW) neuron model

6-2.2 Recurrent Sigmoid-Wavelet (RS-W) Neuron

In this neuron model, the output of S AF is feedback to itself with feedback weight Qs.

Equation (6.2) represents the dynamics of SAF while (2.22) represents the output of WAF for

RS-W neuron models. Summation RS-W (SRS-W) and Multiplication RS-W (MRS-W) neuron

models, are shown in Fig. 6.3 and Fig. 6.4, respectively.

f ri ^
yj(k)=OQi'yj{k-i)+ z q . x . W

I /= i
(6.2)

Qi

Fig. 6.3. Summation Recurrent Sigmoid-Wavelet (SRS-W) neuron model

187

'1 O

•

'«6

Qi

Fig. 6.4. Multiplication Recurrent Sigmoid-Wavelet (MRS-W) neuron model

Q-2.3 Feedback to Sigmoid from Wavelet (FS-W) Neuron

In Feedback to Sigmoid from Wavelet (FS-W) neuron model, the weighted single

delayed output of the WAF is feedback as the input to the SAF, Qi^s is the weight to the delayed

output of WAF when feedback as the input to the SAF. The output of the SAF is given in (6.3)

while the outputs of the WAF as (2.22). Figure 6.5 and Fig. 6.6 show the structure of

Summation FS-W (SFS-W) and Multiplication FS-W (MFS-W) neuron models, respectively.

(ri ^

{ /=1
(6.3)

Xi O

"7 O

^ O

Fig, 6.5. Summation Feedback to Sigmoid from Wavelet (SFS-W) neuron model

188

Xj O

H O

'»0

Fig. 6.6. Multiplication Feedback to Sigmoid from Wavelet (MFS-W) neuron model

6-2.4 Feedback to Wavelet from Sigmoid (FW-S) Neuron

In Feedback to Wavelet from Sigmoid (FW-S) neuron model, the weighted single

delayed output of the SAF is feedback as the input to the WAF. Qsiy is the weight to the delayed

output of SAF when feedback as the input to the WAF. The output of the WAF is given in (6.4)

while the output of the SAF is the same as (2.21). Figure 6.7 and Fig. 6.8 show the structure of

Summation FW-S (SFW-S) and Multiplication FW-S (MFW-S) neuron models, respectively.

I / = 1
(6.4)

Cs.

Fig. 6.7. Summation Feedback to Wavelet from Sigmoid (SFW -S) neuron model

189

Fig. 6.8. Multiplication Feedback to Wavelet from Sigmoid (MFW -S) neuron model

6-2.5 Recurrent Neuron (RN)

Figure 6.9 and Fig. 6.10 show the architecture of the Summation RN (SRN) and

Multiplication RN (MRN), respectively. In these neuron models, the weighted delayed output of

hidden neuron is feedback itself It results the feedback of the neuron's delayed output to both

SAF and WAF with weight Qj. The output of the WAF, y"^, and the SAF, y^j ,are given in

equations (6.5-6.6).

f r, \

/•=i ' . V

\ / = 1

(6.5)

(6.6)

Q'

Fig. 6.9. Summation Recurrent Neuron (SKi^)

190

'1 O

Q'

Fig. 6.10. Multiplication Recurrent Neuron (MRN)

6-3 Universal approximation of the proposed recurrent
neuron models

By applying Stone-Weierstrass Theorem, the proposed SS-W & MS-W neuron models

can be shown to be a universal approximate for continuous functions over compact set if it

satisfies a certain condition. Then we have the following theorems. Theorems 6.1 to 6.5, for

different recurrent network. Approve of the Theorems is presented in Appendix A.

Theorem 6.1: Universal approximation theorem of recurrent SS-W neuron models, for any real

function A: 9?" -> 9?" which is continuous on a compact set ificz'ifi" and for any

given e>0 there is an recurrent SS-W network / , for all recurrent SS-W neuron

models, such that sup||/(x)- /i(x| < e. Here ||| can be any norm.

Theorem 6.2: Universal approximation theorem of MS-RW neuron model, for any real function

A: IR"-> 9?" which is continuous on a compact set Acz'^" and for any given

191

£>0, there is an MS-RW neuron model / that satisfies condition (6.7), such that

sup||/(:c)- A(JC)(| < e. Here ||| can be any norm.
xeA

C^X + Q^y'^ (k-l)^b + a(ip +1)| (6.7)

Where c^=]f^^,c^^ C^J, Q^ = {Q^,,Q^^,...,Q^J, y" = {yr,y^,..;y',],

X = {xi,X2,...,x„} and p is any integer value.

Theorem 6.3: Universal approximation theorem of MRS-W neuron model, for any real function

/J:!R" ^9?"' which is continuous on a compact set Acz^l" and for any given

e>0 there is an MRS-W neuron model/that satisfies condition (2.28), such as

sup||/(x)- /z(x)|| < e. Here ||.| can be any norm.
xeA

Theorem 6.4: Universal approximation theorem of MFS-W neuron model, for any real function

/z:5R" ^ 9 ? " which is continuous on a compact set i/̂ c9?" and for any given

£r > 0 there is an MFS-W neuron model / that satisfies condition (2.28), such as

sup||/(x)- /i(x| < s. Here \\ can be any norm,
xeA

Theorem 6.5: Universal approximation theorem ofMFW-S neuron model, for any real function

h-M" ->'iR'" which is continuous on a compact set ift clR" and for any given

e>0 there is an MFW-S neuron model/that satisfies condition (6.8), such that

sup||/(x)- /j(x| < s. Here ||| can be any norm.
xefi

C^X + Qs^y''{lc-\)^b + a{2p + l)^ (6.8)

where C^ =)c^,,C^^,...,C^^}, Qs„, = ^sw^^Qsw,,-^Qsw,}. y" = {yi^yi^-yi]^

X = {x^,x2,...,x„} and p is any integer value. Then we have the following resuh.

192

Theorem 6.6: Universal approximation theorem of MRN neuron model, for any real function

/i:iR" ->iR'" which is continuous on a compact set iflc5R" and for any given

s>0 there is an RN neuron model / that satisfies condition (6.9), such that

sup|/(x)- /j(x)|| < e. Here |{| can be any norm.
xeA

C^X + Q y{k-l):^ b + a{2p + l)- (6.9)

Where C^ =]f^^,C^^,...,C^J, Q = {Q^,Q2,...,Q,}, >' = {y, ,>'2,•..,>',),

X = {x^,X2,...,x„} and p is any integer value. Then we have the following result.

6-4 Gradient Descent learning of parameters

We apply gradient descent technique as discussed in chapter 2 to modify the parameters

W, Cfy, Cg and delay elements Q^, Qg and Q in different recurrent neuron models. The

parameter update formula for/?* data set is discussed in (2.18). This equation for the parameters

w, Cfy, Cg in different recurrent neuron model is as follows:

^pWj(q) = -rj
dJ

dW..
= j]

1 dy
P-y] dWj

dC

" ^'^^' 'dCs P-y] dCs

(6.10)

(6.11)

(6.12)

193

^ :

dW.
,'m (6.10) for all recurrent neuron models is calculated by (6.13) and (6.14) for SS-W and

MSW, respectively.

dW,

t=yA'^)=yW-y';('^) dW.

(6.13)

(6.14)

y^j{k) and y'^{k) change depend on the different recurrent models as discussed in section 6.2.

dp dy
dWj ' dWj

and delay elements Q^, Q^ and Q in different recurrent neuron models are

calculated as follow:

6-4.1 Sigmoid-Recurrent Wavelet (S-RW) Neuron

In S-RW network, feedback is only in WAF then (6.15) and (6.16) is applied to evaluate

dy{k)

dC
— in SS-RW and MS-RW neuron models, respectively.

(6.15)

(6.16)

By applying chain rule, the following equations are obtained to learn parameters C^y and

Qiy in recurrent (a) SS-RW and (b) MS-RW neuron models:

194

a) S-RW with Summation (SS-RW)

dy{k)_

<
= xXk)'W''if/' n

U = l
(6.17)

(6.18)

b) S-RW with n/lultiplication (MS-RW)

aciW v/=i
(6.19)

(6.20)

6-4.2 Recurrent Sigmoid-Wavelet (RS-W) Neuron

In this network, the output of SAF is feedback to itself with feedback weight Qs.

Therefore (6.21) and (6.22), can be applied to evaluate ^ - ^ in SRS-W and MRS-W,
da

respectively.

^^xM'W^-i;^'
(

dQ w,

n
\

u = i)

(6.21)

m (6.22)

Learning for Q and Qy^ parameters can be achieved by applying chain rule as follows

for recurrent (a) SRS-W and (b) MRS-W neuron models.

195

a) RS-W with Summation (SRS-W)

^-W'-yi(k-\\9\lci.x.(k)^Q^-yi(k-\)
5Q ws \i = \

(6.23)

(6.24)

b) RS-W with iVIultiplication (l\/IRS-W)

|^=xX^)-PF^W->';W.4 iqW-^,W+eiW->';(^-i)
5qW u=i

dQi{k)
^ = ̂ ^W;^rfr-lMW-^' I Ci(k)-x.(k)+Qi(k)-y-{k-\)

(6.25)

(6.26)

6-4.3 Feedback to Sigmoid from Wavelet (FS-W) Neuron

Since there is not any feedback to WAF the updated equation for parameter C^ is

achieved by (6.21) and (6.22) for SFS-W and MFS-W neuron models, respectively. Update

equation for Q and Qf^g is achieved by applying chain rule method as follows for recurrent (a)

SFS-W and (b) MFS-W neuron models:

a) FS-W with Summation (SFS-W)

^=x,{kyw^ 'O'l i ci-x.{k)-,Q^-y,{k-i)
u=i

^ = W^.y:,(k-\y0'\ Z Ci-xikhQis-yiik-^)
oQws \j = \ ')

(6.27)

(6.28)

196

b) FS-W with Multiplication (MFS-W)

dyjk) _
dCiik)

^ ^ = W^(k)-y^(k-l).y^{k)-0'\ Z Ci{kyx{k)+Q^{kyy^{k-\)

(6.29)

(6.30)

6-4.4 Feedback to Wavelet from Sigmoid (FWS) Neuron

Equation (6.15) and (6.16) are applied to update learning parameter Q in SS-RW and

MS-RW neuron models, respectively. Applying the chain rule method results following

equations for Cfy and Q^^ parameters of recurrent (a) SFW-S and (b) MFW-S neuron models:

a) FW-S with Summation (SFW-S)

^ = xXkyW'.J E C^,-x(k)+Q^^-yi{k-\)
'IK U = l

r
^ = W^-yi{k-\yJ Z Ci,^-x{k)+Qi,-yi{k-l)

(6.31)

(6.32)

b) FW-S with Multiplication (MFW-S)

^)=x{kyw'{ky/^{kyJlci,Xkyx.(k)^QU^^^

.^^=w'{kyy%k-\y/^{kyJ I ci,\kyx{kyQUky/,{k-\)

(6.33)

(6.34)

6-4.5 Recurrent Neuron (RN)

The following equations are drawn by applying chain rule method for updating the

parameters C^,, Q and Qg^ for recurrent (a) SRN and (b) MRN neuron models.

197

a) RN with Summation (SRN)

V/ = l

dyik)
dC

n

W
f n ^

U = l

^'
n

(6.35)

(6.36)

(6.37)

b) RN with IVIultiplication (IVIRN)

M^=^x^)-^^w->';w-^(z qw-x.w+e^w.;;,(^-i)

m^^W'(k).y,(k-X).
dQ'(k)

n

U = l
f n ^

>;;W-^' Z Ci\k)-x(k)+Q^(k)-yj(k-\)
U = l

(6.38)

(6.39)

(6.40)

6-4.6 Stability analysis of the recurrent neuron models

A small value of learning rate TJ leads to the lower speed of convergence, while a large

value causes the learning procedure unstable. Therefore learning parameter is selected large

enough so the convergence speed and stability should be guaranteed. To guarantee stability

during the learning procedure, we have applied the Lyapunov stability theorem. The speed of

convergence is guaranteed with selecting adaptive learning rate with the lower and upper bound

198

as mentioned in the stability Theorem (2.1). Following theorems guarantees the convergence

stability of the recurrent neuron models. The proof of the all theorems is derived in Appendix C.

Theorem 6.7; The convergence and stability of the learning procedure, for recurrent SS-RW and

MS-RW neuron models, guaranteed if the upper bound of the learning parameters

^w> Vc ' Vc ^^^ ^QH- fô recurrent (a) SS-RW and (b) MS-RW neuron models

are selected as follows:

a) For recurrent SS-RW neuron model

0<T]„<^^^ (6.42)

^^'^c. < ^ ^ (6.42)

0<T]^^<2-P'y] (6.43)

2-P-v^

b) For recurrent MS-RW neuron model

0<V^<2'P-yl (6.45)

I'P-V^

Q<T]c<2-P-y] (6.47)

2-P-v'^
0 < % < - ^ (6.48)

199

Lemma 6.1: The range of learning parameter T]„ is the same as (6.42) and (6.45) for all

summation and multiplication recurrent neuron models, respectively.

Theorem 6.8.- The convergence and stability of the learning procedure, for recurrent SRS-W and

MRS-W neuron models, guaranteed if the upper bound of the learning parameters

rjc^, rjc^ and T]Q^ for recurrent (a) SRS-W and (b) MRS-W neuron models are

selected as follows:

a) For recurrent SRS-W neuron model

^ ^ ' ^ ^ ' ^ ^ " ^ (6.49)

0<rjc^<2'P-y^ (6.50)

(i<rjQ^<2'P'yl (6.51)

b) For recurrent MRS-W neuron model

2'P'V^
^ < ' 7 c . < - ^ (6.52)

0<?7c,<2'P'y^r (6.53)

{)<T]Q <2'P-yl (6.54)

Theorem 6.9; The convergence and stability of the learning procedure, for recurrent SFS-W and

MFS-W neuron models, guaranteed if the upper bound of the learning parameters

200

rjc^, 7Jc^ and TJ^^ for recurrent (a) SFS-W and (b) MFS-W neuron models are

selected as follows:

a) For recurrent SFS-W neuron model

^^'^^'^^—^ (6.55)

0 < 7 c , < 2 - P - > ' ' (6.56)

^<^Q^<^'^'yr (6.57)

b) For recurrent MFS-W neuron model

2 - P - /
^^^c,< 49 ' (6.58)

0<^Q <'^-P'yl (6.59)

^^^Q^^^-P-y'r (6-60)

Theorem 6.10; The convergence and stability of the learning procedure, for recurrent SFW-S and

MFW-S neuron models, guaranteed if the upper bound of the learning parameters

Tjc^, 77̂ and TJQ^ for recurrent (a) SFW-S and (b) MFW-S neuron models are

selected as follows:

a) For recurrent SFW-S neuron model

2-P-y^
^ ^ ' ^ c , < — ^ (6.61)

201

.2 0<TJc<2-P-y; (6.62)

Q < ^g.>. ^ 49 (6-63)

b) For recurrent MFW-S neuron model

I'P'V^

0 < ^ c , <2-P-y^r (6.65)

^ < ^Qsw < 49 ' (6.66)

Theorem 6.1 \: The convergence and stability of the learning procedure, for recurrent SRN and

MRN neuron models, guaranteed if the upper bound of the learning parameters

7c„,, 7Q and TJQ for recurrent (a) SRN and (b) MRN neuron models are selected

as follows:

a) For recurrent SRN neuron model

2 - P - /
^ < ^ ^ ^ < - ^ (6.67)

0<?7c,<2-P'y^ (6.68)

p . /
0 < ê < -J^ (6.69)

b) For recurrent MRN neuron model

202

.2
0<^C. <^'P'yr (6.71)

0<^e<—5/^ (6.72)

6-5 Simulation Results

The structure of the proposed recurrent S-W neuron models is determined as discussed in

chapter 2. Since this chapter presents a comparative study of different types of recurrent

networks, initialization of all the networks should be the same to compare the results and to

suggest an acceptable network. By keeping the weight Q in the recurrent networks equal to zero

all recurrent networks will reduce to S-W network. Hence, with a given number of hidden

neuron unit, it is possible to initialize all the networks with the same initial weights value excepts

the weights Q. For a given number of hidden layer neuron unit, we initialize the weighted Cfy ,

Cg and W for recurrent SS-W and MS-W neuron models, the same as chapter 3 and the same

initial weights are used for all recurrent network. In all recurrent S-W neuron models, Morlet

activation function that yield better performance in chapter 2 is exploited.

Revisited Exampie 1: Linear regression witii nonlinear input

Figure 6.11 shows the performance index for SS-W neuron model and proposed recurrent

neuron models. In Fig. 13 the learning pattern for the SS-W model is shown by solid blue line,

for SS-RW model it is shown by solid red line, for SRS-W model it is shown by dashed black

line, for SFS-W model it is shown by dotted green line, for SFW-S model it is shown by dashed-

203

dotted magenta line and for SRN model it is shown by solid cyan line. In recurrent SS-W neuron

models, as shown in Fig. 13, S-RW model yield better result with 7=1.185x10" .̂ Next to S-RW,

SRN and SFW-S have better performance. It shows that recurrent models have much better

performance as compared to the feed-forward SS-W model. Table 6.1 shows the performance

index of different recurrent SS-W neuron models.

200 400 ^600 800 1000
epoch

Fig. 6.11. Learning pattern of feed-forward network with recurrent SS-W neuron models for

Example 1

The learning parameter W, Cs, Cw and delay elements Qm 2s» Qsw, Qws and Q in SS-RW, SRS-

W, SFW-S, SFS-W and SRN networks, respectively, are as follow. The columns in Wznd delay

element and the rows in Cs and Cw are equal to the number of hidden neuron from the

204

conjunction of the SAF and WAF that is equal to a-{a +1)/2. The numbers of columns in Cs

and Cw are also equal to the number of inputs.

For recurrent SS-RW neuron model:

H^^=[0.7858 -0.0602 1.2423] ĝ ^ =[-0.2738 0.0797 -0.2738]

0.1215 0.0466 0.92747
0.2044 0.7577 0.53309
0.1819 0.4949 0.33326

0.8857 0.2208 0.1571
0.0519 0.7589 0.9126
0.4286 -0.0114 0.6155

For recurrent SRS-W neuron model:

W^ =[0A955 -0.0874 1.2831] e/=[-0.0147 -0.0057 0.0087]

C^ =

0.1324 0.0559 0.9233

0.2035 0.7569 0.5313

0.1977 0.5108 0.3530

C^ =
1.1292 0.2876 0.0292

0.1041 0.8346 0.9817

0.5324 -0.0762 0.5315

For recurrent SFW-S neuron model:

JT^ =[0.5760 -0.1290 1.2986] g^, =[-0.1631 0.2359 0.0122]

C^ =

0.1314 0.0535 0.9278

0.2034 0.7570 0.5285

0.1972 0.5058 0.3531

C^ =

1.0413 0.3853 0.1459

0.0936 0.8177 0.9555

0.5087 -0.0964 0.5564

For recurrent SFS-W neuron model:

^^=[0.5015 -0.0867 1.2830] e ^ =[-0.0036 0.0098 0.0022]

C^ =

0.1320 0.0553 0.9227

0.2035 0.7567 0.5311

0.1974 0.5106 0.3525

C^ =
1.1322 0.2847 0.0285

0.1060 0.8354 0.9824

0.5325 -0.0754 0.5315

For recurrent SRN neuron model:

PF^=[0.5164 -0.0571 1.2942] ^^ =[-0.2471 0.0869 0.0023]

205

*-5

0.1303 0.0567 0.9299
0.2033 0.7570 0.5324
0.1951 0.5126 0.3623

1.1798 0.2485 0.0588

0.1047 0.8444 0.9911

0.5047 -0.1111 0.5727

Figure 6.12 shows the performance index for MS-W neuron model and proposed

recurrent networks. In Fig. 6.12, the learning pattern for the MS-W network it is shown by solid

blue line, for MS-RW network it is shown by solid red line, for MRS-W network it is shown by

dashed black line, for MFS-W network by dotted green line, for MFW-S network by dashed-

dotted magenta line and for R-N network by solid cyan line. MFW-S network yield better result

with y=4.834xl0"''. Next to MFW-S, MRN and MS-RW have better performance. It shows that

recurrent networks have much better performance as compared to the feed-forward MS-W

network. Table 6.2 shows the performance index of different recurrent MS-W neuron models.

200 400 ^600 800 1000
epoch

Fig. 6.12. Learning pattern of feed-forward network with recurrent MS-W neuron models for

Example 1

206

The learning parameter W, Cs, Cw and delay elements Qw, Qs, Qsw, Qws and Q in MS-

RW, MRS-W, MFW-S, MFS-W and MRN networks, respectively, are as follow. The columns in

W and delay elements and the number of rows in Cs and Cw are equal to the number of the

conjunction of the SAF and WAF that is a-{a +1)/2. The numbers of columns in Cs and Cw are

equal to the number of inputs.

For recurrent MS-RW neuron model:

pr'^= [0.0503 0.5608 1.1975]

0.8186 0.6630 0.3420"

0.6343 0.3432 0.5925

0.8934 0.3332 0.8072

e^=[-0.3649 -0.1212 -0.1803]

'"If

0.7199 0.2217 0.5000

•0.0960 0.4452 -0.0279

0.3855 -0.0782 0.6968

For recurrent MRS-W neuron model:

Hf'̂ =[-0.0637 0.5714 1.1174] e / = [0.0168 0.0435 0.0819]

0.8188 0.6608 0.3416'

0.6343 0.3400 0.5878

0.8847 0.3311 0.8069

0.6078 0.3342 0.5475

-0.1647 0.4310 -0.0904

0.4010 -0.1124 0.6301

For recurrent MFW-S neuron model:

^^=[-0.1116 0.5607 1.0017]

C^ =

0.81963 0.6613 0.3426

0.6402 0.3532 0.6162

0.8849 0.2941 0.7741

e /^=[0.0235 -0.8195 -0.1304]

0.6121 0.2552 0.4587

0.1147 0.6284 0.2643

0.5286 -0.0471 0.6943

For recurrent MFS-W neuron model:

^^=[-0.0651 0.5712 1.1237] ^ 4 =[0-0190 -0.0094 0.0378]

207

'-5

0.8188 0.6609 0.3417

0.6342 0.3405 0.5868

0.8866 0.3325 0.8088

0.6060 0.3335 0.5457

•0.1651 0.4326 -0.0878

0.4018 -0.1115 0.6330

For recurrent MRN neuron model:

^^=[-0.0317 0.5776 1.1715] g^ =[-0.1605 -0.0991 -0.0697]

0.8189 0.6621 0.3423

0.6393 0.3528 0.5980

0.8909 0.3392 0.8152

C^
^w

0.6690 0.3016 0.5397

-0.0829 0.4576 -0.0602

0.3905 -0.0781 0.6354

Figure 6.13 shows the output of system by solid line and output of the network with

MFW-S neuron model by dotted line. The error between them is indicated by solid line.

100 200 300 400 500
Data

Fig. 6.13. Actual output and network output with MFW-S model and the error for Example 1

208

Revisited Exampie 2: Non-linear regression with random input

In the recurrent SS-W networks, SS-RW model with performance index 7=1.302x10'̂

yields better result than other recurrent model as shown in Fig. 6.14 and Table 6.1. Next to SS-

RW, SR-N and SFW-S have better performance. The learning parameters of different recurrent

networks are as follows.

For recurrent SS-RW neuron model:

JT^ =[0.5566 0.4771 -0.3027 1.0627 0.1647 0.4851]

Sî =[-0.1070 -0.3436 -0.1295 0.1571 0.0095 -0.1064]

C^ =

0.7077

0.6543

0.8019

0.9994

0.5487

0.9052

0.1828

1.0056

0.2871

0.2598

0.8794

0.7431

0.0759

-0.0894

0.9134

0.0091

0.2656

0.5793

C^ =

0.2598

1.4870

0.8356

-0.2087

0.7640

0.9763

0.0335

0.9909

0.4410

1.2168

0.7533

0.4307

1.6424

0.8475

0.6125

1.3101

0.2526

0.3870

For recurrent SRS-W neuron model:

Pr^= [0.5269 0.2537 -0.3296 1.0858 0.2574 0.5696]

e/=[-0.0778 -0.0993 0.0253 -0.2476 -0.0329 -0.1260]

C^ =

0.7173

0.6632

0.7978

1.0241

0.5491

0.9138

0.1765

0.9921

0.2849

0.2473

0.8775

0.7426

0.0545

-0.0881

0.9168

-0.0394

0.2550

0.5484

C^ =

' 0.4289

1.4794

0.7144

-0.1423

0.7773

1.1249

-0.0238

0.8287

0.3212

1.0215

0.8884

0.4935

1.5433

0.8646

0.6088

1.3574

0.1715

0.3710

209

For recurrent SFW-S neuron model:

^^=[0.5341 0.3347 -0.3750 1.1418 0.3878 0.5070]

e/„, =[0.3643 0.2995 0.1790 0.2168 -0.2220 -0.1084]

*-5

0.7140

0.6596

0.7942

1.0194

0.5496

0.9089

0.1733

0.9850

0.2819

0.2320

0.8768

0.7335

0.0660

-0.0827

0.9175

-0.0186

0.2416

0.5753

' 0.3739

1.4434

0.7152

-0.1662

0.8440

_ 0.8877

-0.1058

0.7800

0.2892

0.9524

0.9158

0.3338

1.3028

0.6558

0.5277

1.1292

0.0623

0.3423

For recurrent SFS-W neuron model:

fF^= [0.5354 0.2526 -0.3566 1.0641 0.2962 0.5808]

e ^ =[0.01861 -0.1029 0.0232 -0.1035 -0.0507 -0.1212]

C^ =

0.7169

0.6646

0.7976

1.0209

0.5494

0.9146

0.1790

0.9952

0.2839

0.2392

0.8794

0.7486

0.0484

-0.0867

0.9185

-0.0351

0.2484

0.5414

' 0.4461

1.4699

0.7035

-0.1440

0.7792

1.1136

-0.0187

0.8141

0.3190

1.0186

0.9216

0.4745

1.5227

0.8647

0.6063

1.3652

0.1011

0.3424

For rectirrent SRN neuron model:

Fr^=[0.5671 0.1588 -0.3664 1.1152 0.4033 0.5583]

^^=[0.1745 -0.0796 0.1228 0.1530 -0.2681 -0.1929]

210

0.7162

0.6573

0.7947

1.0172

0.5485

0.9117

0.1718
0.9825

0.2834

0.2341

0.8764

0.7383

0.0495

-0.0758

0.9175

-0.0250

0.2418
0.5503

0.5252

1.3068

0.7123

-0.1217

0.8748

1.0153

-0.0829
0.6994

0.3367

1.0799
0.9394

0.4033

1.3926
0.8555

0.5597

1.2495

0.0553

0.3887

10
-4.3

10
-4.5

10
-4.7

10
4.9

• 1

- ^ ^ f c ^

— ss-w
- - - SFW-S

SRN
SS-RW
SFS-W
SRS-W

" ^ j S g a ^ i i ^

^ ^ ^ ' ^

\ ^̂ ^5^^ \ •», ^'it'N.^
\ s ^^^CN^

\ "̂ 'N ^^^5?*»«--*,*_

1 1 1 1

200 400 600 800 1000
epoch

Fig. 6.14. Learning pattern of feed-forward network with recurrent SS-W neuron models for

Example 2

As shown in Fig. 6.16 and Table 6.2, MFW-S neuron model with performance index

J= 1.034x10'̂ yields better resuh than other recurrent model. Next to MFW-S, MS-RW and

MRN have better performance. Figure 6.16 shows the output of system and output of the

network with MS-RW neuron model and the error between them. The learning parameters for

recurrent MS-W neuron models are as follows.

211

For recurrent MS-RW neuron model:

W^ =[0A3ll 0.3929 0.3828 1.0594 0.9677 0.3993]

e ^ = [0.0093 0.1076 0.0165 -0.0962 0.2079 0.1346]

0.6873

0.6161

0.8383

0.9856

0.5984

0.8748

0.2138

0.9781

0.2516

0.1763

0.9089

0.7581

0.1457

0.0473

0.9249

0.2347

0.3798

0.6400

' 0.6497

0.9668

0.7452

-0.0041

0.4751

0.8913

0.0340

0.7472

0.3453

0.8706

0.9872

0.4890

1.2251

0.4461

0.2009

1.0682

-0.2128

0.4386

For recurrent MRS-W neuron model:

^^=[0.3902 0.5236 0.4225 1.1127 1.0827 0.2837]

2/=[0.0065 0.0604 -0.0421 0.0502 -0.0393 -0.0120]

0.6946

0.6292

0.8367

0.9834

0.6054

0.8718

0.2026

0.9859

0.2651

0.1641

0.8865

0.7523

0.1448

0.0477

0.9264

0.2508

0.4574

0.6385

'"If

0.6166

0.9379

0.7151

-0.0121

0.5192

0.8942

0.0096

0.7219

0.3136

1.0353

1.0117

0.4705

1.2631

0.4026

0.3276

0.9956

-0.0977

0.5315

For recurrent MFW-S neuron model:

^-^=[0.3398 0.5024 0.4007 1.0600 1.0523 0.2724]

e/^ =[0.3212 -0.0324 -0.0450 -0.0268 -0.0222 -0.0887]

212

*-5

0.6900

0.6257

0.8372

0.9706

0.6166

0.8714

0.1917

0.9892

0.2793

0.1680

0.8860

0.7500

0.1426

0.0455

0.9156

0.2373

0.4350

0.6404

0.4685

1.0030

0.8335

-0.0717

0.5153

0.8932

-0.1246

0.7672

0.3094

1.0539

1.0234

0.4719

1.1818

0.4588

0.4544

1.0358

-0.0828

0.5240

For recurrent MFS-W neuron model:

PF̂ =[0.3922 0.5125 0.4203 1.1142 1.0943 0.2814]

e 4 =[0.0424 0.0462 0.0097 0.0429 -0.0708 0.0104]

C^ =

0.6945

0.6298

0.8373

0.9895

0.6084

0.8722

0.2019

0.9858

0.2631

0.1632

0.8923

0.7511

0.1433

0.0485

0.9253

0.2436

0.4560

0.6385

C^ =

0.6182

0.9425

0.6996

-0.0071

0.5185

0.8956

0.0175

0.7081

0.3164

1.0423

1.0050

0.4654

1.2642

0.4014

0.3137

0.9892

-0.0886

0.5303

For recurrent MRN neuron model:

PF^= [0.4493 0.4299 0.3876 1.0802 0.9642 0.3774]

e^ =[-0.0497 0.1402 -0.0012 -0.1486 0.1668 0.1778]

C^ =

0.6870

0.6203

0.8381

0.9893

0.6030

0.8736

0.2104

0.9812

0.2540

0.1657

0.9164

0.7564

0.1476

0.0495

0.9263

0.2363

0.3859

0.638

C^ =

'0.6090

0.9576

0.7221

0.0033

0.5098

0.8862

0.0564

0.7774

0.3710

0.8730

1.0019

0.5007

1.2406

0.4294

0.2023

1.0577

-0.1563

0.4449

213

10

I I - r

^ & S

\vK

\

.... ., MS-W
MS-RW
MRS-W

- - - MFW-S
MRN
MFS-W

•

il%||-^ I ' l l! '•! iln»an_„„,

200 400 600
epoch

800 1000

Fig. 6.15. Learning pattern of feed-forward network with recurrent MS-W neuron models for

Example 2

300 350 400 450 500

100 200 300 400 500
Data

Fig. 6.16. Actual output and network output with MFW-S model and the error for Example 2

214

Revisited Example 3: Non-Linear Regression with Non-Linear Input

Figure 6.17 shows that the learning pattern of different recurrent SS-W models and SS-W

neuron model. This figure and Table 6.1 confers that SS-RW model acquiesces better

performance with performance index J=6.780xl0'^. The learning parameters of the different SS-

W recurrent networks are as follows.

For recurrent SS-RW neuron model:

W^ =[0.2024 -0.5754 1.1774]

0.4170 0.1409

0.8930 0.2077

0.0985 0.2266

For recurrent SRS-W neuron model:

fT^ =[-0.1857 -0.6370 1.5149]

gi^ =[-0.3545 0.3830 -0.4477]

C^ =

0.3538 0.9240

0.1336 0.7471

1.5150 0.4963

e(=[-0.0066 -0.0513 0.2438]

C^ =

0.4127 0.1439

0.8858 0.2146

0.1525 0.2266

C^ =

0.6561 0.8826

•0.1428 0.7984

1.4177 -0.0874

For recurrent SFW-S neuron model:

PT̂ =[-0.0612 -0.5232 1.3009] Qsw =[0-0729 0.4031 -0.9716]

C^ =
0.4158 0.1437

0.9004 0.2181

0.0941 0.2066

^

ĉ =
0.5720

-0.2987

1.5651

0.9767

0.7164

0.0971

For recurrent SFS-W neuron model:

215

PF̂ =[-0.1879 -0.6429 1.5074] e4=[0.0519 0.2605 0.2611]

0.4126 0.1440
0.8825 0.2117
0.1524 0.2266

C^ =

0.6641 0.8874

•0.1568 0.7938

1.4336 -0.0770

For recurrent SRN neuron model:

^^=[0.2384 -0.6434 l.OlOl]

0.4129 0.1422

0.8955 0.2035

0.0941 0.2257

e^ =[-0.5980 0.8200 -0.3562]

C^ =
0.7107 0.9037

0.2756 0.8195

1.4850 0.4119

10

rVV 1'̂

-

•

1 1 1

\ \ ^ — -

1 — •• •

— ss-w
SS-RW
SRS-W
SFS-W

..... SFW-S .
SRN

-

1 1 1 1

0 200 400 600 800 1000
epoch

Fig. 6.17. Learning pattern of feed-forward network with recurrent SS-W neuron models for

Example 3

216

Figure 6.18 and Table 6.2 show the learning pattern and performance index of different

recurrent MS-W models and MS-W neuron model. MFW-S model acquiesces better

performance with 7=9.053 xlO"^ Next to MFW-S, MR-N and MS-RW have better performance.

Figure 6.19 illustrate system and network output of MFW-S neuron model as well as the error

between them. The learning parameters of the different recurrent network are given follows.

For recurrent MS-RW neuron model:

PF̂ =[-0.5088 0.5206 0.7630] Si^ =[0.0828 -0.6553 -0.2861]

C^ ^s

0.1866 0.7425

0.7252 0.4753

0.7185 0.5668

C^ =

0.7804 0.1132'

0.5089 0.1940

0.6318 0.3624

For recurrent MRS-W neuron model:

PF̂ =[-0.7121 0.2410 0.7390] 2/=[0.2001 0.1464 0.1617]

C^ =

0.1744 0.6949

0.7310 0.4534

0.6894 0.5671

C^ =

1.0024 -0.0174

0.1262 0.0311

0.6552 0.2242

For recurrent MFW-S neuron model:

F ^ =[-0.5266 0.4847 0.4822] 24, =[-0.6001 -0.3007 -0.0250]

C^ =

0.1260 0.6279

0.7089 0.4955

0.6656 0.5987

C^ =

1.0142

0.2532

0.3081

0.2498

0.0844

0.6824

217

For recurrent MFS-W neuron model:

Pf̂ =[-0.7326 0.2392 0.7448]

0.1734 0.6964'

0.7346 0.4579

0.6911 0.5750

e 4 =[0.2296 0.0009 0.1324]

C^ =
1.0189 -0.0228

0.1288 0.0262

0.6347 0.2358

For recxirrent MRN neuron model;

fT^ =[-0.5290 0.6739 0.8909]

C^ =

0.1685 0.7340

0.7717 0.5126

0.7251 0.5862

e^ =[-0.1352 -1.0723 -0.5520]

C^ =
0.7934 -0.0181

0.4401 0.2042

0.5856 0.2934

200 400 600 800 1000
epoch

Fig. 6.18. Learning pattern of feed-forward network with recurrent MS-W neuron models for

Example 3

218

40 ^ , 60
Data

Prediction

100

Prediction

100

Fig. 6.19. Actual output and network output with SS-RW model and the error for Example 3

Revisited Example 4: Non-linear Regression of Input and output

Figure 6.20 and Table 6.1 show that the SRN model yields better result than other

recurrent models with performance index 7=9.824x10'\ Next to SRN model, SS-RW and SFW-

S models are better. Learning parameters of the recurrent summation network are as follows.

For recurrent SS-RW neuron model:

PF-̂ =[-0.2980 0.2765 1.1226]

0.1673 0.6126
0.2540 0.3389
0.2492 0.3203

gi^=[0.1266 -0.0947 -0.2375]

0.5524 0.5587

0.9275 0.9231

0.4877 0.6794

219

For recurrent SRS-W neuron model:

^^=[-0.2935 0.5270 1.0867]

0.1773 0.6167
0.2257 0.3360
0.1665 0.2765

e / = [0.2318 - 0.4205 - 0.9303]

\^fy —

0.6096

0.9606

0.7749

0.7516'
1.1120

0.4434

For recurrent SFW-S neuron model:

^^=[-0.3127 0.4535 1.0243]

0.1646 0.6139

0.2562 0.3413

0.2534 0.2965

e /^=[0.3264 -0.1772 -0.4966]

0.4005 0.4878

0.9198 1.0168

0.7770 0.5688

For recurrent SFS-W neuron model:

W^ = 1-0.2768 0.4240 Ll04l]

C^ -
^s -

0.1589 0.6148

0.2655 0.3409

0.2752 0.3009

Q^=[0.niO -0.3262 -0.5268]

0.5811 0.7354

1.0302 0.9997

0.6747 0.4743

For recurrent SRN neuron model:

F ^ =[-0.3768 0.3959 1.0940]

0.1541 0.6183

0.2638 0.3289

0.2775 0.2730

Q^ = [0.2964 - 0.1282 - 0.2628]

0.4475 0.6136

1.0185 0.9459

0.6938 0.5948

220

10

1 \
1'- ^ '---.
1 •'--K.....

. ^ ~ ~ - - - - . . . , , , _ _ " • ' • •

\ ^

1 r 1 .

1

— ss-w
SS-RW
SRS-W
SFS-W

- - - SFW-S
SRN

1

200 400 6̂00 800 1000
epoch

Fig. 6.20. Learning pattern of feed-forward network with recurrent SS-W neuron models for

Example 4

Figure 6.21 shows that in recurrent MS-W neuron models, the MFW-S network has

better result than other recurrent networks. As shown in Table 6.2 the performance index of this

model is 7=1.320x10" .̂ Next to MFW-S network, MS-RW and MRN networks are better.

Network output (with SRN neuron model) and the system output with error between them is

shown in Fig. 6.22. Learning parameters of the recurrent MW-S network are as follows.

For recurrent MS-RW neuron model:

PF^= [0.2244 0.6028 1.2509] g,̂ =[-0.0840 -0.1840 -0.0720]

221

0.2641 0.2703'

0.1149 0.6295

0.7313 1.0391

0.4903 0.5522

0.5389 0.4530

0.4755 0.7396

For recurrent MRS-W neuron model:

W^ =lOA6\5 0.7514 2.0308] e/=[0.0662 0.2127 -0.2387]

0.4307 0.4525

0.3826 0.8448

0.3789 0.7182

\^fy —

0.0453 0.6066'

0.6875 0.6239

0.5311 0.6046

For recurrent MFW-S neuron model:

^/=[0.4547 0.7641 1.8686] e/„. =[-0.2560 0.1754 -0.2684]

0.4637

0.3286

0.4899

0.5243

0.8680

0.7130

0.1276

0.6232

0.5051

0.7714

0.3968

0.9219

For recurrent MFS-W neuron model:

PF^= [0.5257 0.7500 1.9448] 2 4 = [0.0712 0.1454 -0.2262]

^ 5

0.4272 0.4572

0.3511 0.8261

0.5446 0.8501

0.0329 0.6211

0.7003 0.6371

0.5227 0.6181

For recurrent MRN neuron model:

fr^= [0.3634 0.5970 1.3249] Qf =1-0.1444 -0.3730 -0.0414]

0.2726 0.2749

0.1143 0.6018

0.7449 1.0679

« ^ ^ —

0.4217 0.5909

0.6335 0.4248

0.4458 0.8089

222

10"

^ 1 1 (1

K
1 *'K —^
l \ ^ -̂H. ^
I ^^" -k.

MS-W
MS-RW

- — MRS-W -
MFS-W

- - - MFW-S
MRN

' •

1 1 1 L Zll

200 400 ^600 800 1000
epoch

Fig. 6.21. Learning pattern of feed-forward network with recurrent MS-W neuron models for

Example 4

> 0

§.-1

-2

1 1

vww
Lear

1 1 — __

— —,— , —

jiliHi^
ning

1 1

200 400 600 800 1000

0.2

•^ 0 l»VM»*»»V^»A**

lU

•0.2

vuW

200

Learning

400 600

-f'VArMvU^tHvW

800 1000

Fig. 6.22. Actual output and network output with SRN model and the error for Example 4

223

Revisited Exampie 5; Gas Furnace Data

From the Fig. 6.23 SS-RW yields better result than other recurrent SS-W neuron models

with performance index, as shown in Table 6.1, y=1.405xl0"^ Next to SS-RW model, SRN and

SFW-S have better performances. Learning parameters of the recurrent SS-W neuron model are

as follows.

For recurrent SS-RW neuron model:

^^=[0.8219 0.1574 0.6369 0.3447 0.6124 0.9757]

e^ =[-0.0703 -0.0791 0.1707 0.1572 0.2236 -0.0063]

0.0995

0.1944

0.1683

0.5875

0.2413

0.1543

-0.0228

0.7387

0.4155

0.9160

0.4361

0.3752

0.8470

0.5276

0.2103

0.6828

0.8471

0.0313

"0.0733

0.0764

0.8380

0.5290

0.6120

0.8808

0.5494

0.7942

0.1956

0.4882

0.9367

1.0045

0.8444

0.8905

-0.3959

0.3944

1.0686

-0.3664

For recurrent SRS-W neuron model:

PF^= [0.9527 -0.0335 0.5899 0.3333 0.6765 1.0553]

e/=[-0.0066 0.0031 -0.0021 -0.00002 -0.0016 -0.0098]

C^ =

0.0899

0.1993

0.1672

0.5852

0.2345

0.1474

-0.0320

0.7434

0.4146

0.9139

0.4296

0.3690

0.8731

0.5275

0.2316

0.6920

0.8660

0.0672

C^ =

0.2004

0.0449

0.7755

0.5264

0.5273

0.9061

0.6780

0.7639

0.1303

0.4848

0.8503

1.0261

0.6519

0.9310

-0.5126

0.3451

0.9611

-0.4920

For recurrent SFW-S neuron model:

^^=[0.9405 0.0007 0.6091 0.3448 0.6692 1.0368]

224

e/^ =[-0.0036 0.0363 -0.1348 0.1009 0.0955 0.0290]

0.0918

0.1982

0.1677

0.5855

0.2359

0.1495

-0.0302

0.7424

0.4150

0.9141

0.4309

0.3709

0.8692

0.5282

0.2285

0.6906

0.8629

0.0610

"0.1825

0.0513

0.7884

0.5308

0.5449

0.8987

0.6602

0.7699

0.1434

0.4892

0.8676

1.0194

0.6793

0.9286

-0.5027

0.3474

0.9571

-0.4705

For recurrent SFS-W neuron model:

^^=[0.9542 -0.0348 0.5881 0.3329 0.6786 1.0550]

2 4 =[-0-0354 0.0078 -0.0181 -0.0088 -0.0304 -0.0680]

0.0902

0.1993

0.1675

0.5854

0.2348

0.1479

-0.0318

0.7434

0.4148

0.9140

0.4298

0.3694

0.8731

0.5276

0.2316

0.6920

0.8659

0.0671

0.2057

0.0448

0.7745

0.5257

0.5273

0.9047

0.6830

0.7638

0.1295

0.4843

0.8503

1.0250

0.6501

0.9309

-0.5087

0.3440

0.9580

-0.4903

For recurrent SRN neuron model:

fF^ =[0.9277 0.0360 0.5890 0.3370 0.6569 1.0244]

e^ =[-0.1518 0.0106 0.0054 0.0456 0.1385 -0.0249]

0.0918

0.1977

0.1678

0.5860

0.2371

0.1494

-0.0295

0.7420

0.4156

0.9149

0.4325

0.3716

0.8638"

0.5280

0.2236

0.6880

0.8581

0.0533

C^ =

0.1274

0.0552

0.7818

0.5265

0.5626

0.8976

0.6110

0.7734

0.1364

0.4839

0.8855

1.0161

0.7297

0.9238

-0.4985

0.3659

0.9937

-0.4478

225

10 '

10

5

6

1 - T • 1

\ \Ŝ

1 1 1 .

^•HHHWM*

'-̂O*̂
'O;''*

ss-w
SRS-W .
SFS-W
SS-RW
SRN
SFW-S

1

200 400 ^600 800 1000
epoch

Fig. 6.23. Learning pattern of feed-forward network with recurrent SS-W neuron models for

Example 5

From the Fig. 6.24 MFW-S yield better learning pattern. The performance index of this model

as shown in Table 6.2 is J=9.738xl0"l Next to MFW-S network, MS-RW has better

performances. Figure 6.25 shows actual and network with MFW-S network as well as error.

Learning parameters of the MFW-S recurrent networks are as follows.

For recurrent MS-RW neuron model:

PF^= [0.8039 0.1272 0.650?]

*-5

0.1331 0.1680 0.6760

0.0681 0.9113 0.2672

0.1288 0.1396 0.3051

e^=[0.0514 0.0022 0.0068]

0.1997 0.2138 -0.0373

0.6465 0.6624 0.6043

0.0566 0.3145 1.0313

226

For MRS-W recurrent network:

W^ = [0.9120 0.0835 0.8625]

0.1151 0.1452 0.7416

0.0677 0.9107 0.2665

0.1156 0.1225 0.4071

e/=[-0.0052 -0.0019 0.0284]

0.3250 0.3746 0.0745

0.6611 0.6803 0.5598

-0.0238 0.2133 0.7597

For recurrent MFW-S network:

^^=[0.9029 0.0812 0.8557]

C/ =

0.1134 0.1454 0.7408

0.0676 0.9107 0.2666

0.1151 0.1236 0.4046

g,4, = [0.2783 - 0.0235 - 0.0680]

' 0.2865

0.6626

-0.0270

0.3188

0.6805

0.2194

-0.1471

0.5600

0.7761

For recurrent MFS-W neuron model:

fr^=[0,9116 0.0880 0.8594]

0.1149 0.1449 0.7415

0.0677 0.9107 0.2667

0.1155 0.1224 0.4055

e ^ =[-0.0228 -0.0029 0.0239]

C^ =

0.3246 0.3743 0.0732

0.6613 0.6807 0.5597

-0.0254 0.2114 0.7591

For recurrent MRN neuron model:

F^̂ =[0.8999 0.1467 0.7803]

C^ =

0.1129 0.1448 0.7214"

0.0678 0.9108 0.2691

0.1128 0.1211 0.3742

e ^ = [0.2818 -0.0196 0.0087]

C^ =

0.3206 0.3603 -0.1192

0.6648 0.6838 0.5724

-0.0265 0.2192 0.7740

227

10
-5

''lO^

10
-7

_ ,— , ,

v\

V, ' h ~

1 1 1

MS-RW :
- — MRS-W

MFS-W .
— - MFW-S .

MRN
MS-W

I'-'UtV ziiiutiti •• J S u S S S S

200 400 6̂00 800 1000
epoch

Fig. 6.24. Learning pattern of feed-forward network with recurrent MS-W neuron models for

Example 5

50

Learning Prlsdjction

100 150 200 250

150
Data

Fig. 6.25. Actual output and network output with MFW-S model and the error for Example 5

228

Revisited Example 6: Human Operation at a Chemical Plant

Figure 6.26 shows that the learning pattern of the recurrent SS-W network with SS-RW

neuron yields better result with performance index 7=7.832x10"^. Table 6.1 show the

performance index of the different recurrent SS-W models. Learning parameters of the SS-W

recurrent networks are as follows.

For recurrent SS-RW neuron model:

PT̂ =[-0.1907 0.0266. 0.8936 0.0965 0.7763 0.3453]

Ql =[0.0247 -0.0414 -0.0684 -0.0485 0.1958 -0.1399]

C^ ^s

0.0150

0.7679

0.9707

0.9900

0.7888

0.4386

0.4910

0.2224

0.6945

0.3306

0.9991

0.7456

0.3797

0.7833

0.6804

0.4611

0.5674

0.7942

0.1124

0.5154

0.3814

0.3790

0.6367

0.9453

For recurrent SRS-W neuron model:

^^=[-0.2109 0.0160 0.9114 0.0659 0.8823 0.2137]

Q{=l-O.OOSO 0.0II7 0.0769 0.0162 0.0550 0.0366]

0.0150

0.7679

0.9707

0.9900

0.7887

0.4386

0.4913

0.2267

0.7162

0.3359

1.0230

0.7516

0.3798

0.7833

0.6805

0.4610

0.5674

0.7942

0.0465

0.5024

0.3709

0.3788

0.8701

0.8780

229

For recurrent SFW-S neuron model:

^^=[-0.1887 0.0224 0.8852 0.0839 0.7864 0.2678]

e/^ =[-0.0059 -0.0157 0.0519 -0.0075 0.2344 0.0122]

"0.0150

0.7679

0.9707

0.9900

0.7887

0.4386

0.4909'

0.2228

0.6967

0.3304

1.0029

0.7447_

'0.3797

0.7833

0.6803

0.4611

0.5673

0.7942

0.0722

0.5227

0.3750

0.3849

0.7241

0.9070

For recurrent SFS-W neuron model:

^^=[-0.2061 0.0172 0.9038 0.0703 0.8761 0.2137]

S 4 =[-0-0007 0.0059 0.0181 0.0055 0.0295 0.0245]

C^ ^s

0.0150

0.7679

0.9707

0.9900

0.7887

0.4386

0.4896

0.2240

0.7146

0.3337

1.0212

0.7522

0.3798

0.7833

0.6804

0.4611

0.5673

0.7942

0.0505

0.5099

0.3761

0.3817

0.8755

0.8826

For recurrent SRN neuron model:

fT^ =[-0.2225 0.0437 0.9071 0.0700 0.8463 0.2475]

e^=[0.0135 -0.0717 0.00004 -0.0497 0.0396 -0.0468]

C^ =

'0.0150

0.7679

0.9707

0.9900

0.7888

0.4386

0.4886"

0.2238

0.7099

0.3323

1.0165

0.7500

C^ =

'0.3797

0.7833

0.6805

0.4610

0.5674

0.7942

0.0773

0.5154

0.3875

0.3822

0.8420

0.8976

230

200 400 ^600 800 1000
epoch

Fig. 6.26. Learning pattern of feed-forward network with recurrent SS-W neuron models for

Example 6

Figure 6.27 shows that the learning pattern of the recurrent MS-W network with MS-RW

neuron yields better result with performance index ^=6.190x10'^ as shown in Table 6.2.

Learning parameters of the MS-W recurrent network are as follows.

For recurrent MS-RW neuron model:

rr^= [0.1292 0.6108 0.5087 0.2991 0.9034 0.9322]

e;^=[0.0169 -0.1169 -0.1769 -0.0720 -0.0636 -0.0936]

231

0.7035

0.4848

0.1146

0.6648

0.3653

0.1401

0.5454

0.8529

0.6661

1.0111

1.0134

0.0308

0.3717

0.4253

0.5943

0.5657

0.7161

0.5112

0.6686

0.3327

0.3298

0.6159

1.0572

0.9514

For recurrent MRS-W neuron model:

Pr^= [0.1048 0.6058 0.4824 0.3036 0.9293 0.9226]

e/=[-0.0140 0.0428 -0.0186 0.0216 0.0437 -0.0469]

0.7035

0.4848

0.1146

0.6648

0.3653

0.1401

0,5461

0.8514

0.6642

1.0121

1.0193

0.0252

0.3717

0.4254

0.5943

0.5658

0.7160

0.5112

0.6996

0.2656

0.3397

0.6045

1.0946

0.9534

For recurrent MFW-S neuron model:

F ^ =[0.1319 0.5972 0.4949 0.2975 0.9156 0.9215]

^/^=[0.0084 -0.1283 0.0672 -0.0650 0.0761 0.0050]

C^ =

0.7035

0.4849

0.1146

0.6648

0.3653

0.1401

0.5477

0.8525

0.6628

1.0127

1.0073

0.0249

C^ =

0.3716

0.4252

0.5945

0.5657

0.7163

0.7698

0.3133

0.3249

0.6241

1.1123

0.5113 0.9183

For recurrent MFS-W neuron model:

W^=[0.1249 0.6001 0.4934 0.3011 0.9587 0.9189]

e 4 =[-0.0112 0.0111 -0.0033 0.0092 0.0378 -0.0287]

232

0.7035

0.4848

0.1146

0.6648

0.3653

0.1401

0.5487

0.8578

0.6604

1.0154

1.0124

0.0201

0.3717

0.4253

0.5944

0.5657

0.7161

0.5113

0.7456

0.2714

0.3473

0.6087

1.1211

0.9358

For recurrent MRN neuron model:

^^=[0.1110 0.6070

e ^ =[-0.0396 -0.0330

0.4954 0.3041 0.9330 0.9216]

-0.1087 -0.0232 0.0249 0.0255]

0.7035

0.4848

0.1146

0.6648

0.3653

0.1401

0.5456

0.8545

0.6641

1.0126

1.0176

0.0248

0.3717

0.4253

0.5944

0.5657

0.7162

0.5112

0.7407

0.2945

0.3480

0.6094

1.0879

0.9560

10
-5

MS-W
MFS-W
MRN
MFW-S
MRS-W
MRW-S

200 400 ^600 800 1000
epoch

Fig. 6.27. Learning pattern of feed-forward network with recurrent MS-W neuron models for

Example 6

233

Figure 6.28 shows the actual control action of the operator and the network output with

error for MS-RW neuron model.

10000

10 20 30 40 50 60 70

Fig. 6.28. Actual output and network output with MS-RW model and the error for Example 6

Table 6.1: Performance Index for Recurrent SS-W neuron models

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

S. F. (fl)

a=2

a=3

a=2

a=2

a=3

a=3

SS-W

1.734x10'*'

1.648x10"

1.283x10"*

5.814x10-̂

1.676x10''

8.674x10"*

SS-RW

1.185x10-*

1.302x10'̂

6.780x10'̂

1.515x10'*

1.405x10''

7.832x10"*

SRS-W

1.740x10'*

1.626x10''

1.261x10'̂

2.492x10'*

1.576x10''

7.980x10-*

SFS-W

1.733x10'*

1.576x10''

1.225x10'̂

1.985x10'*

/.57;xl0''

8.165x10'*

SFW-S

1.676x10'*

1.400x10''

9.689x10''

1.738x10'*

1.413x10''

8.765x10'*

SRN

1.838x10'*

1.487x10''

7.770x10''

9.824x10''

1.668x10''

7.918x10'*

234

Table 6.2: Performance Index for Recurrent MS-W neuron models

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

S. F. (a)

a=2

a=3

a=2

a=2

a=2

a=3

MS-W

7.585x10''

1.145x10"'

i.seixio-̂
6.394x10-"

1.685x10-'

7.479x10-"

MS-RW

6.112x10-'

1.080x10-="

9.559x10-'

1.428x10-"

1.296x10-'

6.190x10-*

MRS-W

6.150x10-'

1.151x10-'

1.356x10-̂

2.177x10-"

1.560x10-'

7.041x10*"

MFS-W

6.510x10-'

1.145x10-'

1.351x10-̂

1.840x10-"

1.579x10-'

7.344x10-"

MFW-S

4.834x10-'

1.034x10'̂

9.053x10-=*

1.320x10-*

9.738x10-"

7.396x10-"

MRN

6.102x10"'

1.086x10-'

9.405x10"'

1.492x10-"

1.653x10-'

6.895x10-"

Tables 6.1 & 6.2, show the performance index of different recurrent neurons as well as SS-W &

MS-W neuron models, respectively. Scaling Factor (S.F.), a, which calculated in chapter 3, is

shown in second column. In these two tables, the performance index of best model, for each

example is Bold.

6-6 Conclusions

In this chapter, based on proposed SS-W and MS-W neuron models in chapter2, five

recurrent neuron models namely SS-RW, SRS-W, SFW-S, SFS-W, SR-N and MS-RW, MRS-W,

MFW-S, MFS-W, MR-N for SS-W and MS-W neuron models, respectively, are proposed. In

proposed recurrent neuron models, the systems' dynamic is saved in sigmoid or wavelet

activation function. Therefore, they predict the system dynamics well.

One important point should be noted that when the wavelet activation function used as

memory element these recurrent neuron models in the feed-forward network yield better result. It

means that sigmoid activation function do not have the same capability as of wavelet activation

235

function to save the systems' dynamics. Therefore, the dynamic of the system can be predicted

well by recurrent model with feedback to wavelet activation function.

The results show that if the dynamic is accumulated in wavelet section of the recurrent

models, namely SS-RW, SR-N, SFW-S or MS-RW, MR-N, MFW-S, in SS-W or MS-W neuron

models, respectively, the performance will be better than in sigmoid function, i.e., SRS-W, SFS-

W or MRS-W, MFS-W, in SS-W or MS-W, respectively.

Among the recurrent neurons model, in which feedback is to wavelet activation function,

in recurrent SS-W neuron models, SS-RW model has best performance index and in recurrent

MS-W neuron models, MFW-S model has best performance index.

236

Chapter /

CASE STUDY: Indian Summer Monsoon Rainfall

(June-September)

7.1 Introduction

The agricultural economy of India is closely linked to the performance of summer

monsoon rainfall all over India. The ability to understand and predict circulation and rainfall

during the Asian summer monsoon on various time-scales is of prime importance to the

economy of several nations of this region because of its affect on agriculture, drinking water,

transportation, health, power, and the very livelihood of billions of people living in the

monsoon region. To mitigate this and also with increasing population, effective planning and

management of water resources is necessary [Par99, Singhrattnal'04].

Indian summer monsoon is one of the major components of the tropical circulation

and its simulation using numerical models is one of the most challenging aspects because of

its complex interactions between orography, convection and surface processes [Kang'05,

Par99].

The major drought of 2002 [Gadgil'DS, Gadgir02, Kalsi'04, Sikka'03], with the all-

India Summer Monsoon Rainfall (ISMR) (June-September) being 19% less than the long-

237

term average, led to considerable concern in the meteorological community since none of the

predictions had suggested a large deficit in the ISMR. This was irrespective of the

predictions, whether it were based on empirical models used in the country for generating

operational/experimental forecasts, or generated in the different centers in the world using the

atmospheric general circulation models. Fortunately, the unanticipated failure of the Indian

monsoon in the summer of 2002 was followed by the summer monsoon of 2003 for which the

ISMR was 2% more than the average [Rajeevan'04]. However, the relief was short-lived

since the summer monsoon of 2004 has again been a drought (defined as a summer monsoon

season for which the deficit in ISMR is larger than 10% of the long-term average), with the

ISMR being 87% of the average. As in 2002, neither the forecast of the India Meteorological

Department (IMD) for the ISMR nor the predictions from the international centers using

atmospheric General Circulation Models (GCM), suggested that there would be a drought.

Clearly, it is far more important to generate accurate predictions of droughts/excess rainfall

seasons than of fluctuations within 10% of the average.

Different forecasting methods were suggested by researchers [Pal'99, Gowarikar'89,

Krishnamurti'98] and also predictability of monsoon were considered by some researchers

[Kang'05, Palmer'94]. Here our attempt is the prediction of Indian summer monsoon

rainfall, between June to September, by using previous rainfall data. The data used in this

chapter is available in the website of Indian Institute of Tropical Meteorology department

[DTM].

The chapter is organized as follow: In section 7.2 forecasting ability of the Indian

summer rainfall data is considered. Application of the proposed networks and neuro-fuzzy

models in forecasting of rainfall data are presented in section 7.3 and finally conclusions are

derived in section 7.4.

238

7.2 Forecasting Ability of Rainfall Data

One of the main question in time series analysis is the ability of the time series data

(here rainfall data) to predict future change in rainfall data. There are several unknown things,

which have effect on rainfall. During last decades, several methods are developed to analyze,

predict ability of the data in time series, same as Rescaled Range Analysis [Hurst'51],

Correlation Dimension Estimate [Brock'92, Isham'93] and Largest Lyapunov Exponents

[Benettin'80, Oseledec'68].

Rescaled Range (RR) analysis is a robust statistical method used to evaluate the

degree of the presence of noise in a process, which has capability to identify a random series

from a non-random one. It can also be used to determine the average length of non-periodic

cycles. The computation procedure for Rescaled Range is as follows [Hurst'51,

Khaloozadeh'04]:

KA^] - '̂ R^=MaxiX. ., I -Min \N ',l<t<N (7.1)

X^^^ = i:(x^-m) (7.2)
N,
s

where m is the mean value of original time series {X,).N is the number of observations and

R captures the maximum and minimum cumulative deviations of the observations function of

the number of observations X, of the time series from its mean m, and it is a function ofN, R

is defined using the following relation:

^ = N" (7.3)
S

Where S, the standard deviation of X,, and 0<H<\ are given by (7.4) and (7.5),

respectively.

239

s = ZiX.-mf N-\
nV2

. '=1

^ \og{RjS)
\og{N)

(7.4)

(7.5)

H is known as the Hurst exponent, which shows the similarity between two successive

events. An estimate of / /can be obtained by calculating the slope of log{R^/S) versus

log(A)̂. The largest value for i/shows the mean orbital period of the process.

The value of the Hurst exponent for rainfall data is //=0.6436, which denotes long-

memory effect in time series. Validity of the Hurst exponent is tested by randomly

interchanging the order of data points in the original time series and calculating the Hurst

exponent for a new series. In fact, for the long memory effect the order of data is important so

that a new series should have a lower H estimate. The average H estimate obtained is much

lower than the original series (0.4815).

Various log{R^/S) values are regressed on their corresponding log(A)̂ values and

the resulting slope is the estimate for H. Fig. 7.1 shows the /f estimate for original series and

shuffling series versus Â , respectively.

0.8

0.7

0.4

0.3

0.2

Original data H»0.6436

Random data H-0.4815

40 60 80
N

100 120

Fig. 7.1. //estimate for the original and random rainfall data

240

7.3 Simulation Results

The monthly rainfall data from 1871 to 2003 for period June to September has been

taken and their average is considered in this section. There is 133 available rainfall data. Here

we predict the present data, x(t), by using five past inputs, x(t-\), x(t-2), x(t-3), x(t-4) & x(t-5).

Therefore, a time series with 128 data is available. The models \ networks are trained with

100 data and tested by remaining 28 data. In this section, the best-proposed networks in

earlier chapters are applied to predict average of Indian summer monsoon rainfall data

Wavelet Neural Network (WNN):

Figures 7.2, shows the performance index of WNN (WANN in chapter 2) with

different scaling factor 'a'. The structure determination of the networks are started from 'a=l'.

We increase scaling factor one by one. By increasing scaling factor from 6 to 7 in WNN, the

performance index does not improve. So scaling factors 'a=6' is selected for this network. The

performance index for this model, with scaling factor o=6, is J=4,8031 x 10"*.

Fig. 7.2. Performance index of Wavelet Neural Network (WNN) with different scaling factor a

241

Summation & Multiplication Sigmoid-Wavelet (SS_W & MS-W) Neuron networks:

Figures 7.3 and 7.4 show the performance index of feed-forward SS-W and MS-W

neuron networks, respectively, with different scaling factor 'd. The structure determination of

the networks are started from 'a=\\ We increase scaling factor one by one. For every scaling

factor, the model is being learned. By increasing scaling factor from 3 to 4 and from 4 to 5

for SS-W and MS-W neuron models, respectively, the performance index does not improve.

Therefore, scaling factors "a=3" and "a=4" are selected for SS-W and MS-W neuron

networks, respectively. The performance indexes of SS-W and MS-W neuron networks are

equal to ̂ 4.7597x10'^ and J=4.7981xl0'^, respectively.

10
J.1

10

10

1

-3.2

.3.3

1

•

1.5 2

1 1

\\V S
Neuron 6̂+6=12

1 >

> . !
2.5 \ 3 -'

A

^

3.5 4

Fig. 7.3. Performance index of feed-forward SS-W neuron model with different scaling

factor a

IM

Fig, 7,4. Performance index of feed-forward MS-W neuron model with different scaling

factor a

Wavelet Neuro-Fuzzy (WNF) model:

By applying modified clustering and cluster validity function [Azeem'03a, Xie'87],

five rules are obtained. The performance index of different networks for rainfall data has

been listed in Table 7,1, WNF model yields better performance. In this model, we have

applied genetic algorithm with 100 populations. We have fed the initial parameters for GA

randomly. Figure 7,5 shows the maximum fitness of to each generation. The initial solution

for GD is obtained over 30 generation. The value of performance index J, obtained by GA for

initialization of the parameter, is 8.0885x10 .

243

J=-
1

Max(Fitness)
= 8.0885x10 -4

10 15 20
epoch

25 30

Fig. 7.5. Maximum fitness of GA up to each generation for rainfall data

Figure 7.6 shows learning pattern of WNF model, after initialization by Genetic

Algorithm, with Gradient Descent. The performance index after training with 4000 epochs is

7=1.5697x10-^.

»-3.1

1000 2000 3000 4000
epoch

Fig. 7.6. Learning pattern of WNF model by Gradient Descent for rainfall data

244

The learned premise variable membership functions ŷ i'-̂ vij*-'̂ Ai^-Ai^, A^^^-Ay^, A-^^

-A^^zxA A-i^-A-iHox inputs x(t-\), x(t-2), x(t-3), x(t-4) & x(t-5) are shown in Fig. 7.7 to 7.11,

respectively. The fuzzy rules corresponding to the learned WNF are listed below:

R}^ : if ;c(t-l) isAJ^ A jc(t-2) is A^̂ A ;c(t-3) is Aj^ A x(t-4) isA^^

A ;c(t-5) isA;^ then x{i) is Y^^^^{x)

R"^ : if x(t-l) isAf^ A ;c(t-2) is KY A ;c(t-3) isA,'^ A ;c(t-4) isA^^

A ;c(t-5) isAĵ ^ then x{X) is Y^M

R^^ : if x(t-l) is Aj^ A A:(t-2) is A'/ A ;c(t-3) is A^̂ A ;c(t-4) is A'/

A 4 t -5) isAJ-'' then ;c(t) is y ^ (z)

R*^ : if x(t-l) isAi'^A ;c(t-2) is A^̂ A jc(t-3) isAj'^ A A:(t-4) isA*^

A ;c(t-5) isA*^ then ;c(t) is Y^{x)

R'^ : if ;c(t-l) isAf^ A jc(t-2) is A'/ A x(t-3) is A^̂ A x(t-4) is A'/

A ;c(t-5) isA^^ then ;c(t) is y^^(A')

where Y^^{x), Y^f^{x), ..., Y^^{x) are the outputs of learned MS-W neuron models in

consequent parts of R' to R ,̂ respectively. The learned parameters Cs, Cj^and W',..., W ,̂ for

R' to R ,̂ are as follow.

C,=

0.767

0.142

0.830

0.528

0.570
0.987

0.487

0.090

0.114

0.557

0.886

0.298

0.010

0.478

0.542

0.202

0.853

0.202

0.265

0.515

0.050
0.772

0.580

0.301

0.645

0.641

0.526

0.395

0.420

0.903

0.736

0.552

0.444

0.472

0.151

0.073

0.532

0.459

0.347

0.767

0.255

0.209

0.913

0.603

0.236

0.508

0.808

0.664

0.876

0.216

245

L-ur —

0.629
0.332

0.657

0.295

0.756

0.708

0.144

1.015

0.459

0.008

0.682
0.721

0.334

0.112

0.657

1.018

0.706

0.669

0.118

0.752

0.659
0.500

0.318

0.791

0.881

1.052

0.505

0.790

0.024

0.601

0.226
0.826

0.809

0.871

0.421

0.926

0.108

0.817

0.381

0.654

0.542
0.558

0.792

0.994

0.864

0.848

0.737

0.869

0.379

0.204

fV =

0.556 0.351 0.050 0.067 0.833 0.581 0.530 0.882 0.608 0.293

0.581 0.593 0.357 0.528 0.355 0.500 0.602 0.868 0.790 0.569

0.227 0.820 0.025 0.878 0.013 0.651 0.648 0.819 0.679 0.598

0.618 0.822 0.060 0.713 0.979 0.358 0.133 0.875 0.938 0.441

0.538 0.818 0.216 0.367 0.523 0.961 0.131 0.445 0.395 0.396

Each hidden neuron in MS-W neuron model is conjunction of sigmoid and wavelet

function. Rows and column in Cs and Cw are corresponding to the number of hidden neurons

in MS-W neuron model and the number of inputs, respectively. The number of rows in W is

equal to the number of rules whereas number of column is equal to the number of hidden

neuron in MS-W neuron model.

246

0.4 0.6

Fig. 7.7. Learned membership function, obtained by GA & GD, of the normalized input

x(t-l) for rainfall data

0.4 0.6
Xit-2)

Fig. 7.8. Learned membership function, obtained by GA & GD, of the normalized input

x(t-2) for rainfall data

247

i

0.8

0.6

0.4

0.2

A

V'""
\ ^^

jy^
\
\

" 3 \ J
\ ^r

• /
X

X \
X \

\
. . i *

/>5r \ " ^
y^ / ^ X N X

/1 \4 N
/ / V/3^'

/ \
/

\
/

^V \
/

/

0.2 0.4 0.6 0.8

Fig. 7.9. Learned membership function, obtained by GA & GD, of the normalized input

x(t-3) for rainfall data

0.4 0.6

X(M)

Fig. 7.10. Learned membership function, obtained by GA & GD, of the normalized input

x(t-4) for rainfall data

248

0.8

0.6

OA

0.2

' " " • " ^ - ^

.." >"

y j/^ f

^ / % « /

J
/A,'

< * " ' , , (_ , . ..

..'••7

rN

i i^"^vl !^

\ ^

A^^^-A

• • - " ^ ^ ' ^

n
1

A.*''i
! i
i
i

, i

\ \ •'

\ < .

\ {
\ 1

\ /

/• N .

0.2 0.4 0.6 0.8

Fig. 7.11. Learned membership function, obtained by GA & GD, of the normalized input

x(t-5) for rainfall data

Figure 7.12 shows the actual rainfall data and WNF model output and the model error.

In this figure, actual output of the plant is solid line and the model output is dot line. The

error also is solid line. The horizontal-dash line shows the 13 percent of the error.

249

4000
Real rainfall & rainfall prediction by WNF model

Learning i Prediction

60 80
Data

Fig. 7.12. Actual output and model output with WNF model and the error for Indian monsoon

rainfall data

Table 7-1: Performance Index (J) with different networlcs for rainfall data

Model

NN

WNN

ss-w
MS-W

SS-RW

MFW-S

NF

WNF

Number of Hidden

Neuron

25

21 (a=6)

12 (a=3)

20 (a=4)

12 (a=3)

20 (a=4)

M=5

M=5 a=4

Performance Index (J)

(Training)

1.0523X10--*

4.8031x10-^

4.7981x10-^

4.7597x10-^

3.0719x10"*

3.1463 xlO"*

2.3469x10"*

1,5697x10"'

Performance Index (J)

(Prediction)

4.2587x10-'

9.0682x10"*

2.8863x10"*

6.2543x10"*

6.1013x10"*

4.1925x10"'

5.700x10"*

7.6275x10"*

250

Table 7.1 shows the performance index of different model / network for rainfall data.

First column in this table is the name of the models. The second layer presents the number of

hidden layer and rules in the networks and fuzzy models, respectively. For wavelet networks,

the number of scaling factor {a) also is shown. Third and forth columns, are performance

index of rainfall data for training and prediction section. The best result in both columns is

Bold.

7.4 Conclusions

In this chapter, we have considered Indian monsoon rainfall data. In the short term,

this requires a good idea of the upcoming monsoon season rainfall, i.e. good seasonal

forecast. In the long term, it needs realistic projections of scenarios of future variability and

change.

Ability of rainfall data has been checked by rescaled range analysis. By using last five

years rainfalls as inputs and the present data as an output, we have applied the proposed

network / models to predict present data. The results show that Wavelet Neuro-Fuzzy (WNF)

model yields better performance than others do. However, the Multiplication Feedback to

Wavelet from Sigmoid (MFW-S) has better performance with testing data (for prediction).

251

252
252

Chapter 8

Conclusions & Future work

8-1 Conclusions

In this presented work, two types of WNN networks (i.e., SS-W and MS-W neuron

model) are introduced. The application of proposed neuron models in recurrent network and

neuro-fuzzy models also considered. Three wavelet functions namely Mexican hat, Morlet and

Sine wavelet function are tested in present wavelet functions and also proposed wavelet neuron

models network.

SS-W and MS-W neuron models are single hidden layer networks. Each neuron in the

hidden layer comprised of WAF and SAF. When the summation operator is used to combine

them, it results in Summation Sigmoid-Wavelet (SS-W) neuron network, whereas the product

operator results in Multiplication Sigmoid-Wavelet (MS-W) neuron network.

Three types of WAF, namely Mexican, Morlet and Sine are tested in the S-W model. The

comparative result of different wavelets shows that Morlet activation function yields better

performance in either SS-W or MS-W neuron models.

The proposed SS-W or MS-W neuron models, have better performance than WNN

network with WAF only and NN with SAF only, even with fewer number of hidden layer

neurons. MS-W neuron model yields better performance in comparison to SS-W neuron model.

253

Based on MS-W neuron model that yields better result than SS-W neuron model, WNF

model is proposed. The consequent parts of each rule in WNF model is localized by MS-W

neuron model.

Two new configurations, namely CS-P and PS-P, for parameter identification of TSK

neuro-fuzzy model have been compared with two existing configurations, namely P and S-P. The

comparative studies have been performed on five different examples. The result shows that CS-P

configuration yields best results, for all the examples, among all the four configurations. It is

because of the local models of TSK neuro-fiizzy model, obtained fi-om CS-P configuration,

catering the actual dynamics of the system in the space that covers TSK neuro-fiizzy model

dynamics.

GA initializes the proposed WNF model and learning parameter of the proposed model

is learned by CS-P configuration, which has better performance. Result shows that MWNF has

better performance than MS-W neuron model. The propose MWNF model also yields better

result than TSK neuro-fiizzy model.

In this thesis, based on SS-W and MS-W neuron models five recurrent neuron models,

namely S-RW, RS-W, FW-S, FS-W and R-N, have been proposed. These proposed neuron

model are used in the hidden layer of a standard one hidden layered feed-forward network. Their

performance is evaluated by modeling of dynamic system. In proposed recurrent neuron model,

the systems' dynamic is saved in sigmoid or wavelet activation functions. Therefore, they predict

the system dynamics well. The results show that if the dynamic accumulated in wavelet section

of the recurrent models, namely FW-S, S-RW and R-N, the performance are better than in

sigmoid function, i.e., RS-W and FS-W. Among the recurrent neurons model, in which feedback

is to wavelet activation fimction, FW-S model has best performance index.

254

In this thesis, application of proposed network \ models in forecasting of Indian summer

monsoon is considered. WNF model has better performance in training whereas the MFW-S

recurrent neuron yields better performance in forecasting of the rainfall data.

8-2 Future work

In the present work, we supposed that the wavelet parameters scaling factor and shifting

are fixed. It is research topic to work on adaptive wavelet network, which wavelet parameters

and weights are tuning.

In the wavelet neuro-fuzzy models, the procedure of the learning is already sleepy. This

is because of initialization of the consequent part is based on the GA. If the GA method does not

convergence to a good solution, it will take huge time. Therefore, an initialization method based

on the wavelet parameters and fuzzy models is necessary.

Forecasting of rainfall data not only depends on last behavior of data, it also depends of

another parameters same as pressure, humidity, etc. It is a complete work if we used those data

also in prediction of rainfall. In this thesis, we have used previous rainfall data to predict future

rainfall. For an accurate long-range prediction, Multi-step forecasting can be extended to this

work. It is an ideal work if it predicts monthly rainfall and then applies this local's model to

predict all data. In this work, we have selected the five last data to predict the present rainfall

data. A methodology of input selection can be applied to find out best-input candidate.

255

Appendix A

Universal Approximation Theory

Definition A-1: A sequence of functions {/̂ }, « = 1,2,3,.-. convergence uniformly on K to a

function/if for every e > 0 there is an integer N such that n>N implies

| / „ W - / W ^ ^ f o r a l l x e K .

In order to prove universal approximation of proposed neuron models the Stone-Weierstrass

Theorem is applied.

Universal Approximation Theorem: (Stone-Weierstrass Theorem)

Let K be a set of real continues functions on a compact set K . The uniform closure of

K consists of all real continuous function on K , if:

(a) K is an algebra

(b) K separates point on K

(c) K vanishes at no point of K

Definition A'2: A real functions family ^ defined on a set K is an algebra if: (i) / + g e K

(ii) / g e K and (iii) c/eK are satisfied, where feA, geic, and c is a

complex constant, i.e., K is closed under addition, multiplication, and scalar

multiplication. For example, the set of all polynomials is an algebra.

Definition A-3: A family K is uniformly closed if / e K whenever f„eA , n = 1,2,... and

f„^f uniformlyonK .

Definition A-4: The uniform closure of K , denoted by B is the set of all functions that are

limits of uniformly convergent sequences of members of K . By the Stone-

257

Weierstrass theorem, it is icnown that the set of continuous function on [a, b] is

the uniform closure of the set of polynomials on [a, b].

Definition A-5: K separates points on a set K if for every x, y in K ,x^y, there is a

function / in K such that f{x)^ f{y).

Definition A-6: K vanishes at no point of K if for each x in K , there is a function / in

A such that/(x) 9^0.

By applying conditions (a) to (c) in Stone-Weierstrass Theorem and using definitions A-2 to

A-5 the universal approximation of the proposed networks is achieved.

A-1 Proof of Universal Approximation Tfteorems of SS-W and l\/IS-W
neuron models

Suppose function in (3.5) been the output of feed-forward network. (3.6) and (3.9)

evaluate the output of each neuron in SS-W and MS-W neuron model, respectively.

Lemma A-1: Let F" be the family of Y defined in (3.5). ThenF" c k , where K is a

compact set.

Proof, the output of the SAF (3.7) is bounded by (A.l).

0<y'j(s)= ^ <l (A.l)
'' 1 + exp(5)

n

where 5 = J^C^ •;c.. The outputs of the WAF (3.8) for Mexican hat, Morlet
/-I

and Sine wavelet functions are also bounded by (A.2) to (A.4), respectively.

iZ-b]
Suppose Z = ^C^-x. and G =

258

Mexican hat wavelet function'. To find lower and upper bounded of the y^.{z)

for Mexican hat function differential of the y^.{z)=e~^ fl-2G^1 is talcen

equal zero.

dG J
-2Ge~^ G ' + 2 G e " ^ ' = 0

(G = 0

G •4
The upper bounded of the y'^{z) is known by G = Oand lower bounded by

'4
-0AA63 = e-^^(l-2G^\<e-'" [.-2.f]<.J(Z)<. (A.2)

Morlet wavelet Junction: Since 0 < e"'̂ < 1 and -1 < cos G < 1 therefore

- l < > ' J (z) = e-^ c o s G < l (A.3)

Sine wavelet Junction: Since lim —^—- = 0 and lim "'"V"'' = \, therefore
sin(nG) _

this function is bounded between [0, 1], but this function in G = 0 should be

stated equal 1.

0 < ;'J (z) = sin(;zG)/(;zG) < 1 (A.4)

From (A.2) to (A.4), the continuous function ^y •(>'y(5)+>'J(z)) or

^i •3'y(s).>;J(z) in (3.5) for SS-W and MS-W neuron models, respectively,

with the Mexican hat, Morlet and Sine wavelet functions is closed. That is,

lemma k-l: Let F" be the family of Y defined in (3.5). ThenF" is an algebra.

259

Proof, let f,geF" as shown in (3.5). Then we can write

A^) = t^l-y] (A.5)

gi^) = t^'-yj (A.6)

where Wj and Wj e SR, Vj. Therefore for SS-W neuron model we have:

Since Wj^'Si, then/ + g € F " , That is, F" is closed under addition.

Similarly for MS-W neuron model,

= w[Y, w;y, = w^ (7, • Y, y , = w^ ((r; • y;). (y/ • y;))v, (A.8)
= PF/ ((y" • y ;) . (y; • y ; j ^ ^ = w^ (y; • y ;)v^ = W^YW^

where ^, =[>v,' ... wJ^feW'^, PF2=[wf ... w^f e<R''. Since, the

product of SAF or WAF is neither also SAP nor WAF, thus/• g e F" . That

is, F" is closed under multiplication. Finally, for arbitrary c 6 iR

c-f = ^[c-W')-y)=j;^W'^-y] (A.9)

Since FT/ = c •)̂ '̂ e iR, V/" thus c-f&F". That is, F" is closed under scalar

multiplication.

From Definition A-2 and above discussion, we conclude that F" in both SS-

W and MS-W neuron models, is algebra.

260

Lemma A-3: F" separates points on K .

Proof. From Definition A-3 we show that for \f x°,y° e F"if x*^ T^ y°, there is a

function fsF" such that f(x°):^ f{y°).

7-1

L

1
y-1

/(>'°)=t^. •>'>")

(A.10)

(A.ll)

Suppose Z'" =Y,C^^-x°i & 5^" = j ; q - x » / a n d Z °̂ = j;Cj^_ • / / &
/.i ' 1=1 /=i

S^" = Z<^i, •JJ'"/ • From (2.11-2.13) for SS-W and MS-W neuron model with
/-I

different wavelet function we have:

SS-W neuron model with Mexican wavelet Junction:

1

1 + e~'

l + e"*

1̂
/• 0 ^

Z' -b

MS-W neuron model with Mexican wavelet Junction

1
^ .0 ^

Z ' -A

>';(-")• ;'j(^°)=
l + e - S '

0

0 \
Z' -b^

^ ^r' -b^^
1-2

a J)

A^'\rM)-
l + e •S'

(A. 12)

(A. 13)

(A.14)

(A. 15)

Thus, from (A. 12) to (A. 15), it is easy to verify that for SS-W and MS-W neuron

models with Mexican hat wavelet function,

SS-W neuron model with Morlet wavelet function:

261

/j{^'hyl(^')=—^-^'

f 0 \

\ / COS
^Z'° -b'^

l + e- V ^ y

yM^y:;(y')=—^ • + e

0 \
Z' - A *

COS
^zy°-b^

\ + e V « y

(A.16)

(A.17)

MS-W neuron model with Morlet wavelet function:

(0
' Z " -b

COS
^Z^"-6^

1 + e- V ^ /

1 • ^-S'

^ 0 "1
2 ' -6

V / COS ̂
Z^'-h^

1 + e V « y

(A.18)

(A.19)

Thus, from (A.16) to (A.19), it is easy to verify that for SS-W and MS-W neuron

models with Morlet wavelet function /(x")?^ /(y°) if ;e° ^̂ >'".

SS-W neuron model with Sine wavelet function:

sm
^ ^Z'"-b^^

/ji^^hy^i-')-
n

V « y

1 + e-
71

^Z' - 6 ^
(A.20)

sm

V " J

((r'-h^^

;^;()'")+>'r(v°)=-
n

a

1 + e -S'

n
(z^'-h'

(A.21)

V ^ y

MS-W neuron model with Sine wavelet function:

sm
^ ^Z'-h^^

y][AfM)=
n

V '^ Jj

1 + e -S'

;r
^Z^"-^>^

(A.22)

V « y

262

sin n
\ "" J

1 + e
n ̂

r'-h
(A.23)

V « J

Thus, from (A.20) to (A.23), it is easy to verify that for SS-W and MS-W neuron

models with Sine wavelet function

From above discussion and Definition A-3, F" , in both proposed SS-W and MS-W

neuron models, separates points on K .

Lemma 4; F" vanished at no point of K .

Proof, if we choose Wj^Q (/-I. 2, . . . ,L) in (3.5) then f{x) = Y ^0 unless in those

point that y, are equal zero. In SS-W neuron model y, = yf + yf. Since

yf{x)^0 for all x, f{x) = Y:AO. In MS-W neuron model network

y,=yf-y^. Since y^j{x)>0 the condition is limited to y'^{x)^0. In

following we consider this condition for different wavelet function.

Mexican waveletfitnction:

1-2
Z-b

a

V^
? ' l ' ' ^ ^ 0 ^ 1 - 2 f ^ - ^ | ^0 (A.24)

Then Z should be selected as:

Z^bta
V2

(A.25)

Morlet wavelet fiinction:

cosi I ^ 0

Then Z should be selected as:

cos
Z-b

^ 0 (A.26)

263

Z:^b + a{2k + i)^ (A.27)

Sine wavelet Junction:

sin 7r\ r / W

[a)

TTien Z should be selected as:

Z*b + ka (A.29)

From above discussion and Stone-Weierstrass Theorem, we can easily approve the

following Universal Approximation Theorems.

Theorem 3.1: Universal approximation theorem of SS-Wneuron model, for any real function

//: 9?" -> 9?" which is continuous on a compact set ifl c 9?" and for any given

e>0 there is an SS-W network / , with Mexican hat, Morlet or Sine WAF,

such that sup||/(x)- /z(x| < e. Here ||| can be any norm.

Proof: From Lemma 1 to 4, it is easy to show that SS-W neuron model is universal

approximation.

Theorem 3.2: Universal approximation theorem of MS-W neuron model with Mexican hat

WAF, for any real function A: 9?" -> 9?" which is continuous on a compact set

^ c 9?" and for any given f > 0 there is an MS-W network /,with Mexican

hat WAF that satisfies condition (A.30), such that sup||/(jc)-A(X)(| <S. Here |||

can be any norm.

C^X^b±a— (A.30)

where C^ = |C^^,C(p^,...,C,^^j, A =|X|,X2,...,x^j.

264

Proof: MS-W neuron model with Mexican hat is universal approximation if satisfy A.25 that

is (A.30).

Theorem 3.3: Universal approximation theorem of MS-W neuron model with Morlet WAF,

for any real function A: 91" -> 91" which is continuous on a compact set

irtc9?" and for any given e>Q there is an MS-W network /,with Morlet

WAF that satisfies condition (A.31), such that sup||/(x)- h{x\ < e. Here | j | can

be any norm.

C^^,X^b + a{lp + \)- (A.31)

where C„ = |C^_, Cy^^,..., C„^], X = {x^,X2,...,x„] and p is any integer value.

Proof: MS-W neuron model with Morlet is universal approximation if satisfy A.27 that is

(A.31).

Theorem 3.4: Universal approximation theorem of MS-W neuron model with Sine WAF, for

any real function /i:9?" -^9?'" which is continuous on a compact set ifl c 91"

and for any given s>Q there is an MS-W network/,with Sine WAF that

satisfies condition (A.32), such that sup||/(x)-/j(x)||<e. Here ||| can be any

norm.

C^X^b + pa (A.32)

where C„ = |C^^, C^^,..., Ĉ _ \> ^ = {̂ p*2'—»-"f»} ^"^ p is any integer value.

Proof: MS-W neuron model with Sine is universal approximation if satisfy A.29 that is

(A.32).

265

A-2 Proof of Universal Approximation Theorems of Recurrent SS-W
and MS-Wneuron models with Morlet wavelet function

Theorem 6.1: Universal approximation theorem of recurrent SS-W neuron models, for any

real function /J:5R" ->5R'" which is continuous on a compact set ;Ac5R" and

for any given e>0 there is an recurrent SS-W network / , for all recurrent SS-

W neuron models, such that sup||/(;c)- A(X| < e. Here ||| can be any norm.

Proof: From Lemma 1 to 4, it is easy to show that all recurrent SS-W neuron models are

universal approximation.

Theorem 6.2: Universal approximation theorem of MS-RW neuron model, for any real

function /i: 91" -> 9?" which is continuous on a compact set ;^ c 9?" and for

any given e>0, there is an MS-RW neuron model / that satisfies condition

(A.33), such that sup||/(x)- h{x^ < e. Here ||| can be any norm.

C„X + Q„y''{k-\)^b + a{2p + \)- (A.33)

Where C^ = |c^.,C^^,...,C^J, Q^ =[Q^^,Q^^,...,Q^X f=\yry2,-yX

X = \x^,X2,...,x„} and p is any integer value.

Proof: The variable Z in (A.27) in MS-RW neuron model is Z = C,^X+ Q^y''{k-\).

Therefore (A.33) is draw out.

Theorem 6.3: Universal approximation theorem of MRS-W neuron model, for any real

function A: 9?" -> 9?" which is continuous on a compact set ^cz'Si" and for

any given s>0 there is an MRS-W neuron model / that satisfies condition

(A.30), such that sup||/(x)- /J(X| < e. Here ||| can be any norm.

266

Proof: The variable Z in (A.27) in MRS-W neuron model is same as (A.27) or (A.30).

Theorem 6.4: Universal approximation theorem of MFS-W neuron model, for any real

function h'.'iR" -^SR" which is continuous on a compact set iftc9t" and for

any given e>0 there is an MFS-W neuron model / that satisfies condition

(A.30), such that sup||/(jf)-/»(x)|| <s. Here ||| can be any norm.

Proof: The variable Z in <A.27) in MFS-W neuron model is same as (A.27) or (A.30).

Theorem 6.5: Universal approximation theorem of MFW-S neuron model, for any real

function A:9?" ->9?'" which is continuous on a compact set irtc JR" and for

any given ^ > 0 there is an MFW-S neuron model / that satisfies condition

(A.34), such that sup||/(x)- /j(x)(| < e. Here ||| can be any norm.

C^X + Qs^y'' {k-\)^b + a{2p + 1) | (A.34)

where C^ = ^^^, C^^,..., C^_}, Q^^ = IQSW, >QSW, >->QSW, }. y" = W.^'r.->'?}>

X = {x,,X2,...,x,} and p is any integer value. Then we have the following result.

Proof: The variable Z in (A.27) in MFW-S neuron model is Z = C^X + Qs^y'^{k-\).

Therefore (A.34) is draw out.

Theorem 6.6: Universal approximation theorem ofMRN neuron model, for any real function

/ j : 91" ->• 9?" which is continuous on a compact set ;R c 91" and for any given

£>0 there is an RN neuron model/that satisfies condition (A.35), such that

sup||/(x)- /j(x)|| < e. Here |{| can be any norm.

267

C^X + Qy{k-i)^b + a{2p + \)^ (A.35)

Where C„, = |c^,, C^^,..., C^J, Q = {Q^,Q2,...,Q,], y = \)>^,y2,••^,y^,

X = {x^,X2,...,x„] and p is any integer value. Then we have the following

result.

Proof: The variable Z in (A.27) in MRN neuron model is Z = C^X+ Qy{k-\). Therefore

(A.35) is draw out.

268

Appendix B

Modified Mountain Clustering

The purpose of clustering is to do natural grouping of large set of data,

producing a concise representation of system's behavior. {Azeem'OSa] have proposed

a, simple and easy to implement, mountain clustering algorithm for estimating the

number and location of cluster centers. The proposed modified mountain clustering in

unit hypercube (normalized space of data) is as follows:

We assume that each data point has potential to become a cluster center and

calculate its potential by:

Ql =l;exp(-a||x, -xjf] . / = l,2,.--,« (B.l)
y-i

Where a=-^ and n is number of data.

II denote the Euclidian distance and r^ is a positive constant, which defines the

neighborhood of datum. A data point with many neighboring data points will have a

high potential value and data points outside radial distance r^ have a little influence

on the potential. After the potential of every data point has been evaluated, the data

with highest potential is selected as first center:

x;<=e;=m"ax(e;) (B.2)

269

For the selection of second cluster center, the potential value of each datum is revised

in order to deduce the effect of mountain function around the first cluster center as

follows:

a'=a'-e;exp(-4,-^;f] (B.3)

A

Where yff =—and second cluster center will be:

n-\
xl^Ql=m^(gf) (B.4)

fi, is a positive constant, which defines the neighborhood of cluster center. Thus, we

subtract an amount of potential from each data point as a function of its distance fi-om

the first cluster center. It is evident fi"om the above equation that the data points near

the first cluster center have greatly reduced potential value and are unlikely to be

selected as the next cluster center. After revision of the potential value of each datum,

second cluster center is selected with highest remaining potential. Similarly, for the

selection of A* cluster center, revision of the potential value for each datum is done

by:

r
Qr-Qr-QU^^p -P\\x,-x„_^ (B.5)

Where :cj_| is location of {k-\)'th cluster center and P^ is its potential value and the

k'lh cluster will be:

x;<=fi;=mS[fo*) (B.6)

To stop the procedure we use the criterion Ql/Qi <d (S is a small fraction).

Number of resulting cluster centers and distance between them are highly dependent

upon the mountain clustering parameters, i.e., the neighborhood of datum or radius of

270

influencer^, neighborhood of clusters'A , gray region parameter d. A brief analysis

of their choice is presented as follows:

a) Neighborhood of datum r„

Smaller the value of r^, smaller the values of potential value of first centers

and ff, which result in the large number of cluster centers and vice versa. The number

of cluster centers approaches the number of data points thereby defeating the purpose

of clustering. The maximum value for r^ is half of the principal diagonal of unit

hypercube, i.e., r^^ =^J{n+l)/2 and the minimum value may be taken as

b) Neighborhood of cluster centers

The spaces among the resulting clusters are highly depending upon the value

of fjj. To avoid obtaining closely spaced cluster centers, set '"̂ to be somewhat

greater than r„.

c) Gray region of parameters S„ and S,

The number of cluster centers is also depends upon the position and range of

gray region. Small value of S results in a large number of cluster centers vice versa.

It is difficult to establish a single value for S that works well for all data. A good

choice of the upper and lower limits is to take <5„ = 0.15 and Sj = 0.0.

The number of optimum clusters for the data set \xp,yp}'', is decided by the

validity function S which is the ratio of compactness to separation, [Xie'87]

TTB' \X -C

5 = ^"=^ ,, _ ,,, ; foreach M=M„,„, ...,M^ (B.7)
P-mm\c^-cJ\

271

where p „= 1^*" • The membership function //^^ represents the degree of

association of/?* data to the /«* cluster canter and is defined as:

>"^^=expi (B.8)

(B.8) assures the most valid fuzzy clustering of the data set.

Denoting the optimal candidate at each A/by Q̂^̂ the solution to the following

minimization problem

min min s\ /R g\

is ensured to yield the most valid fuzzy clustering of the data set. 5 has a tendency to

decrease eventually when A/is very large. So, the values of S are meaningless when

A/gets close to P. Since in practice the feasible number of clusters A/is much smaller

than the number of data points P, we apply two heuristic methods for the

determination of A/„„ for both small and large values of P.

In the first method, we plot the optimal values of 5 for A/ = M„,„ to P -1

when P takes small values, and select the starting point of monotonically decreasing

tendency of 5 at A/,^.

In the second method, we need not compute S for very large A/when P takes

large values. It is almost always the case that A/at the stop-value is « P. We can

choose A/,^ a priori, e.g., say A/,^ = y^ which is not likely to reach the starting

point of the decreasing tendency.

272

Appendix C

Stability and Convergence Analysis of Gradient Descent Learning

Algorithm

C-1 Lyapunov method in analysis of stability

Consider a dynamic system, which satisfies:

x = f{x,t) x{to) = x, xeR (C.l)

The equilibrium point x' =0 is stable (in the sense of Lyapunov) at / = /„ if for any e>0

there exists a S{tQ,e) > 0 such that

IW'o|<'^ => IW1<^. V/>/o (C.2)

C-1.1 Lyapunov Stability Ttieorem

Let V{x,t) be a non-negative function with derivative V along the trajectories of the

system, then

• The origin of the system is locally stable (in the sense of Lyapunov) if V{x,t) is

locally positive definite and -V{x,t)^0 locally in x and for all/.

• The origin of the system is globally uniformly asymptotically stable if V{x,t) is

positive definite and excrescent, and -V{x,t) is positive definite.

To approve stability analysis based on GD learning algorithm we can define discreet

function as:

V{k) = E{k) = ^-[e{k)Y (C.3)

273

Change of Lyapunov function is:

AV{k) = V{k +1) - V{k) = i.[e'{k + \)- e' {k)] (C.4)

From

Then

e{k +1) = e{k)+Ae{k) =>e^{k + l) = e^{k)+A^k)+2 • e{k) • Ae{k) (C.5)

AV{k) = Ae{k)- "eW+: -.Ae{k)

ifference of error is:

Ae(it) = e(;t + l)--e{kh
\de{k)r

do

(C.6)

•Au (C.7)

where 0 is learning parameter and e{]i)=^y{^)-y{k) is error between output of plant and

present output of network.

As discussed in section 2-5:

Av = -r^
a/
do

By using equations (C.7,2.18) and putting them in (C.6):

AV{k) = dejk)
du

-\T

•Au- e(A)+i-
dejk)
du

-iT

•Au]

(C.8)

Or AV{k) =

or Ay{k)=

dejk)
do ,-,.^].U)4, de{k)

do
•\-iT

dE{k)']
do

or

M)r.(_,)._jL_.,(,).ML).U).i

-w-'wf[f^i'7^f^4{f^r

dejk)
du

du

•i-rj)
P-y, dv

1 m)\
[p.yff I do)

-«-^=«T7^{f^J-f-7^{f^J (C.9)

274

where y^ = max >'(/?)- min y{p) ,

Therefore

^V{k) = -A,-e^{k) (CIO)

Where ;i = l . ^ . M . j z - ^ - W

From the Laypunov stability theorem, the stability is guarantied if V{k) be positive and V{k)

be negative. From (C.3), V{k) is already positive. The condition of stability is depending on

V{k) to be negative. Therefore, we consider A>0 for all models.

Because ~r • ^ ' > 0 then the convergence condition is limited to:
2 P-y] Vdo }

P-yl [dv) P-y] \dv) ' ^ "̂ '7 I do)
(C.ll)

.2 Maximum of learning rate TJ changes in a fixed range. Since 2-P-yr is not depending of

the model, the value of 7^„ guarantees the convergence can be found out by minimizing the

dy{k)
term of Therefore,

do,

0<^<rjs,^ (C.12)

where 7 . „ = (2 - P - > ' . y A / a x [^ J

C-2 (Chapter 4): Convergence theorems of TSK neuro-
fuzzy model

Theorem 4.1: The asymptotic learning convergence of S-P and CS-P configurations are

guaranteed if the learning rate for different learning parameters follows the

upper bound as mentioned below:

275

0<tj„<2-P-y',

0<rj,< l^P.y]

r ^ \

(C.I3)

(C.14)

0 < 7 j <

maxIwfA'll •
m ' '

I'P-y]

V, nun /

max vvl ̂Xf
f -, \

V,^min J

(C.15)

Proof: (C.12) for NF models can be written as:

2-P-yl
0<%<]

ar.
(C.I6)

NF

du

Because B„ = • '*'^ ^ < \ for all m and since local models have same variables i.e. X,

therefore, from (4.26-4.29), equations (C.13 to C.15) easily can be derived.

Theorem 4.2: The asymptotic learning convergence of P and PS-P configurations are

guaranteed if the learning rate for different learning parameters follows the

upper bound as mentioned below:

0<rj„<2-P-yl (C.17)

0<rj,<
1-P-y]

f -^ \
(C.18)

0 < 7 j <

max \w{X'y •

l-P-y]

K^'^J

maxiwi
m

{x'X
(O >^

(C.19)

\^mm J

276

Proof: Because B„ = ., '̂ ' < 1 and since local models have same variables i.e. X',

m-l

therefore, from (4.26-4.29), equations (C.17 to C.19) easily can be derived.

C-3 (Chapter 5): Convergence theorems of WNF model

Theorem 5.1: The asymptotic learning convergence is guaranteed if the learning rate for

different learning parameters follows the upper bound as mentioned below:

0<%<-
r ^ \^

^WSN
\ ^ J \ mm /

0<7x-<
2-P-yl
W 2 Y

WNN - . 2

0<7w<
2-P- .

'^^WNN

dw

y]
2

max

0<ric<
l-P-y]

dY, WNN

dC.

2-P-

^^WNN

dC^

y'r
2

max

0<7c, <

Proof: (C.12) for WNF models can be written as:

1-P.y]
Q<%<-

dYu WNF

do

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

277

where v in consequent part of the rules isW, C^j or C^ and in premise part of the rules is

cr or 3c. For the parameters W, C^ and C^ by applying the partial derivatives to (5.5), we

have:

(C.26)

(C.27)

(C.28)

<, 1 for all m, therefore (C.22 to C.24) easily is derived.

dw

A

dC„

use /?

" ^ ' " dw

A

A

^̂ dc„

/^..(x)

From (5.5, 4.4,

do-

, 4,7) for parameters

A

m

A

• ^^ .(1-

A/

i (7 or ;c there is:

•>^J-

2-fe
/Tif

ml

(C.29)

m=l

~ ^WNN„ ' V Hmf' 7

^-Pm) 2- (x , -x^,) (C.30)
= Y

m •.—, (J
mi

m=l

and therefore (C.20 to C.21) is derived:

278

C-4 (Chapter 6): Convergence theorems of Recurrent SS-W
and MS-W neuron models

To prove convergence of the recurrent networks these facts are needed:

Fact 1: Let g{y) = ye^~^'\ Then \g{y} < \yye^

Fact2:let/(y) = >'V"^'lThen|/(y)| < l,Vye9?

Fact 3: let ^W = "j — a sigmoid function. Then \Oiy} < 1, V>' e 5R

y " J nr^<, < g Morlet wavelet function. Then Fact 4: let ¥a,bh') = ̂ ^ ° ' cos
\ a J

0-4.1 Stability analysis of the Recurrent SS-W neuron models

In this section. Theorems (6.7) to (6.11) for convergence analysis of the SS-RW,

SRS-W, SFS-W, SFW-S, SRN, respectively, are presented.

a) Summation Sigmoid-Recurrent Wavelet (SS-RW)

Suppose Z= I q -xik) and S= Z Ĉ , -xM+Qi-yiik-l)
i=\ ' /=1

From the facts 3 and 4:

For parameter W in all models:

^=yj<\yi'^y'e\<^^^=2 (c.3i)

Therefore 0<TJ^ < ^ 2.P-y] _P-yl
2^ 2

279

Differential of output of the model for another learning parameter is:

U = l

11.

f 2

zi.^,/(^r.„/,£zii./(")'.5
a a

•cosi 5 \-e •sm
a

.S-b
I

-.1.1 + - ^ . U < 7

(C.32)

2-P-yl 2-P-yl
Therefore 0 < n̂ . ^ ,

M-^(z)-(l-^(z))<M = l

(C.33)

Therefore 0 < 7c, < " ' 2''' ='^-P-y]

^ = W' .yl,{k-\)-Al Cl,^.x.{kyQi,.yl,[k-\)

II-

{ -

U = l

coa 5-
-2 S-b -(^r r,5-6l -(̂)̂ 5 . , ,
a a

-e
.S-b

a)

.l.l + ^ - . U < 7
min J

(C.34)

TT. ^ ^ 1-P-y) l-P-yl
Therefore 0<7Q, < ^ r ^ = — ^

/?; Summation Recurrent Sigmoid-Wavelet (SRS-W)

Suppose Z= I Ci .A:(A:)+ei-:Fi(*-l)and5= I Q -xik)
i=\ i=\

By using the facts 1 to 4 and differential of network output to learning parameters:

280

dy{k)_
dC,

M

!^ = x,{k)-W'.v^' IC^^x.ik)
w* \i = 1

_ , ..S-b] i^J 5 . f^S-b
e ^ ' -cos 5 \-e ^ '̂ ---sin 5

a a \ a) a \ a
i - . l . l . J - . l <7

(C.35)

Therefore 0 < /7f- < '•̂ '' = ——-̂
49

M-^(z)-(l-^(z))<M<l

Therefore 0<T}(, ^kI;A = 2.p.^ yr

(C.36)

^ = PF'.;;;(̂ -l).̂ ' I q.;c.(^)+aV>';(^-0

M-^(z)-(l-^(z))<ll<l

Therefore 0<^g^ < ^ - ^ ^ = 2-P-y^,

c) Summation Feedback to Sigmoid from Wavelet (SFS-W)

Suppose Z= Z Ci^-x(*)+ei^->',^(A:-l)and5'= I a-x.{k)

By calculating the maximum value of the difference of the network output to the learning

parameter:

281

^ = x,{k).W'.Jici^-x.{k)
\i = l

11 U.^./(^r..j,^v.-(v)'.i
a a

•COS! 5 \-e ^ ' ' — s i n
a) a

S-b

^ . 1 . 1 . ^ . 1 < 7
a a •

I. ''inin mm

(C.38)

Therefore 0<;7Q < ^ - ^ = ^ - ^
49

^s, l/ = l '
M-^(z)-(l-^(z))<M<l

(C.39)

Therefore 0<7c, < r ^ = '^-P-yl

^ = W'-yi{k-\).e\ I Ci-x{k)+Qi^-yi{k-\)

\\-e{z){\-e{z))<\-\<\
(C.40)

Therefore 0</7g.,< ^'^'-^^ =2-P-yl

d) Summation Feedback to Wavelet from Sigmoid (SFW -S)

Suppose Z= I C4 •x{k)+Q^^-yi{k-\) and 5= I Q^ x (A)
/=1 /=!

282

dC,

M • cos 5
a a a J

-e ^ ' —sin 5
a \ a)

^.l.uJ-.l<7
L min *^min

(C.41)

Therefore 0<7c
2-P-yl _2-P-yl

,2 49

M-^(z) - (l -^ (z))< l l< l

(C.42)

Therefore 0 < ^̂ .̂ < 2 r yr

¥

11
-2 5-6 -(^r r,5-6^ -[^] 5 . f,5-6
a a

•cos D i -e
^ a

i-.l.uJ-.l<7
1 "min "min

2'P-v^ 2-P-v^
Therefore 0<)7o < / ^ = - ^

e) Summation Recurrent Neuron (SRN)

Suppose Z= I Cî •;e,.W+ei->'j(^-l) and 5= I C^^ -xfi)
/=1 /=1

(C.43)

283

dC{,

II-

I-
- l . ^ . , M . „ „ / , 5 - M /(v)' 5.,

•COS

a a
5- l -e — sin

a \ a)

•.1.1 + ^ ^ . U < 7

(C.44)

Therefore 0<n^ < i l ^ = 2 i ^
49

S/ M" = 1

M - ^ (z) (l - ^ (z)) < M < l

2 . P . v^
Therefore 0<77^̂ < j-=^ = 2-P-y]

(C.45)

^ = pr>.y(;t-i).

¥' I Ci^,.x.(*)+e^.y(^-i) + '̂ I ci-x.{k)+Q^.y{k-\)
U = i

- 2

. P ^ " ' . e n s S -<? ^ " -' s in 5

a a

.1.1—^.1 + M
mm "mm

•cosi 5 \-e

<6

•s in 5
a y a J

•d{z).{}-0{z)i

(C.46)

Therefore 0<rjo< ^'^'/'- = -^^^
'^ 6^ 18

C-4.2 Stability analysis of tiie Recurrent l\/IS-W neuron models

In this section, Theorems (6.7) to (6.11) for convergence analysis of the MS-RW,

MRS-W, MFS-W, MFW-S, MRN, respectively, are presented.

284

a) Multiplication Sigmoid-Recurrent Wavelet (MS-RW)
From fact 3 and 4:

n
I Suppose Z= I Q •jc.(it)and 5= I Cly-x.{k)+Qyy'^{k-\)

For parameter W in all networks:

7 = > 'y=J^> ' i< l - l< l
dW

Therefore 0<;7„, <^^^^^^<2-P-y)

(CM)

^••', U = l) \i = \)

1.1.1
-2 5 - i -f^T f^S-b) - (v j 5 . r^5-fc^ J 2 , , 5 ,, ,

e '' " ^ -cos 5 -e "- " ^ •-•sin| 5 |<^ .1.1 + .U<7
a a \ a J a

(C.48)

•'I I ^ m i n ' ' inio

Therefore 0 < 7^̂ <
2-P-y] _2-P-yl

{if 49

^ i , l/=i ; u=i ;
M-^(Z)-(1-^(Z))-1<1.1<1

Therefore 0<TJCS< fvi'^' ='^-P-yl

(C.49)

1.1.1

I Ci-x.{k) -if,' Z ^•;c.(A)+e^;.;(*-!)
V/ = l >/ l/ = l

zi.^.,-(¥)'.45s^i,-(";.i,j5^jj^,,,j_,) <7

Therefore 0 <
^Q.

2.P-yl _2-P-y]

(If 49

(C.50)

285

b) Multiplication Recurrent Sigmoid-Wavelet (MRS-W)

SupposeZ= £ Ci-x{k)+Qi-yi{k-\)andS= I C> •;c(*)
i=\ /=1

M l

U = l

•g ' ' -co;
a a {'̂]-< -•sin 5 ^ <.^-^. l .I+-^^.U<7

a \ a A |a„.. o mm *'̂ min

2-P-v^ 2-P-v^
Therefore 0<7c < fj' =^ ^ yr

M)-
5Ĉ

^̂ = ;c,(*)-»'̂ -^ Z Ci,-;c.(A)+0i-:.'i(*-l)U Z Q •;t.(*)
/=1 U = l

I1-^(Z)(1-(9(Z))1<11<1

Therefore 0<7c, <^^^^^2Pyl

(C.51)

(C.52)

^Qs \i = \ J Ki = \ J
\-\-d{z)-{\-0{z))i<\-\<\

Therefore 0<7^^ < ^ ^ j ^ = 2-P-yj

(C.53)

c) Multiplication Feedback to Sigmoid from Wavelet (MFS-W)

Suppose Z= Z Ci •x.(*)+0i^->'^(*-l)and 5 = Z C^ xXk)

^ Ki=i J U=i ;

a a \ a J a ^ a J [a,

dCi^

^ 1.1+—.U<7
mm " m m

(C.54)

286

1-P-v^ 2-P-v^
Therefore 0< 7c < , J ' ^^ "^ yr

M-6'(Z)(1-^(Z))1<I1<1

Therefore 0<nc <'^-P-yl

(C.55)

^ = W'-yi{k-\)-e{ I Ci-x{k)^Qi,,-yi{k-\)\y\ I ^ -x W

M-^(Z)(1-^(Z))1<11<1

(C.56)

Therefore 0<7Q^ <2-P-yl

d) Multiplication Sigmoid Feedback to Wavelet (MS-FW)

Suppose Z= I Cl-x.{k)+Q^^-y',{k-l)&ndS= I Ci^-x{k)
/=1 /=1

dy{k). (n
W = ̂ Xk)-W'V i:C{,^-xik)^Q's„-yi{k-\)-d i:Ci-x{k)
^^, l/=i ' ; U=i ' J

-2 S-b - (v j f^S-b) -(^J 5 . f.S-b e "• " ^ -cos 5 - e ^ " ^ —Sin 5
a a

•cosi 5 \-e
5 . f.S-b)

•—•sin 5
a \ a J

l<i—A.\+—.n<7
mm mm

(C.57)

2-P-v^ 2-P-v^
Therefore 0 < 7^, < ^ /' = ±-LJl.

{If 49

9vW. Y = xXkyW^-W I C;,.x.W+0,.>;i(*-l) •^' Z Ci-x.{k)

l-M-^(z)-(l-e(z))<M<l
U = l

(C.58)

Therefore 0 < 7^ < 2 • P • >',̂

287

i : 2 . 5 ^ . . - (^] \ . „ / , 5 - 6 V „ - (^] \ 5 . , J , 5 - A l , I J _ J ,^ J _
(C.59)

a a
-e^ - ' •—•sin 5-

a \ a

Therefore 0 < 7Q^ <
2-P-yl J.p.yl

[ly 49

e) Multiplication Recurrent to Sigmoid and Recurrent to Wavelet (MRN)

Suppose Z = I C^ • ;c.(^)+ Q^ • y'g{k -1) and S = I Cĵ ^ • x.(ifc)
/ = 1 ' ' /• = ! ' '

X,,'

\\

(n \ (n \

U = l) \i = \)

(C.60)

-2 S-h icf\ {^S-h\ -(^y 5 . (R-b e ^ ' • cos 5 I - e ^ ' Sin 5
a a

•1<.| — . 1 . 1 + — . U < 7

2-P-v^ 2-P-v^
Therefore 0< 7c < , , / ^ = ^ ^ -̂ ^

5q :,(A:)-»'^

«
^̂ I.Ci^-x.{k)+Q^-yJ{k-l) -0' Y.Ci-x.{k)+Q'-y^{k-\)

M-1-^(Z)^(1-^(Z))<M<1

Therefore 0<7^ <'^-P-yl

(C.61)

288

l / = l) {i = \ J
n ^ f n
I Ci^x.{k)+Q^-y^{k-l)l0' I Cix.{k)+Q^y^{k-\)

dQ

n
Z

(C.62)

e ^ ̂ -coa 5 - e ---sin 5 —
a a {'^) ' • ' 1

—.1.1—^.1+ 1-U<|-2-5 + 11 < 6

^)
l + l-^(Z)(l-6'(Z))

Therefore 0 < ^^ < ^ - ^ 5 ^ = l l ^ l ^
^ 6' 36

289

References

[Azeem*00a]

[Azeem'OOb]

[Azeem'OSa]

[Azeem'OSb]

[Azeem'06]

[Banakar'06a]

[Banakar'06bl

[Barbounis'06]

[Benettin'80]

[Benveniste'94]

M. F. Azeem, Soft Computing Based Modeling of Dynamic
Systems, Ph.D Thesis, Electrical Engineering Department, Indian
Institute of Technology, Delhi, 2000

M. F. Azeem, M, Hanmandlu, N. Ahmad, "Generalization of
Adaptive Neuro-Fuzzy Inference Systems", IEEE Trans. On
Neural Networks, vol. 11, no. 6, 2000

M. F. Azeem, M. Hanmandlu, N. Ahmad, "Structure Identification
of Generalized Adaptive Neuro-Fuzzy Inference Systems", IEEE
Trans. On Fuzzy Systems, vol. 11, no. 5,2003

M. F. Azeem, M. Hanmandlu, N. Ahmad, "Evolutive Learning
Algorithms for Fuzzy Modeling", International Journal of Smart
Engineering System Design, vol. 5, no. 4,2003

M. F. Azeem, A. Banakar, V. Kumar, "Comparative Study of
Different Types of Wavelet Functions in Neural Network",
International Joint Conference on Neural Networks (UCNN2006),
Vancouver, EC, Canada, 2006

A. Banakar, M. F. Azeem, "Generalised Wavelet Neural Network
Model and its Application in Time Series Prediction", International
Joint Conference on Neural Networks (UCNN2006), Vancouver, EC,
Canada, 2006

A. Banakar, M. F. Azeem, "A New Artificial Wavelet Neural
Network and its Application in Wavelet Neuro-Fuzzy", IEEE IS'06;
3rd IEEE Conference On Intelligent Systems, University of
Westminster, London, UK, 2006

T. G. Barbounis et al., "Long-Term Wind Speed and Power
Forecasting Using Local Recurrent Neural Network Model", IEEE
Trans. Energy Conversion, vol. 21, no. 1, pp. 273-284,2006

G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, "Lyapunov
Characteristic Exponents for smooth dynamical systems and for
Hamiltonian systems; A method for computing all of them",
Meccanica, Springer Netherlands, vol. 15, pp. 21-30,1980

A. Benveniste, A. Juditsky, B. Delyon, Q. Zhang, P. Y. Glorennec,
"Wavelets in identification", inProc. SYSID'94, lOthlFACSymp.
Syst. Identification, Copenhagen, Denmark, 1994

[Bernieri'94] A. Bemieri, M. D. Apuzzo, L. Sansone, M. Savastano, "A Neural
Network Approach for Identification and Fault Diagnosis on
Dynamic Systems", IEEE Trans. On Instrumentation and
Measurement, vol. 43, no. 6, pp. 867-873, 1994

291

[BiIIiDgs'05]

[BIuin'91]

IBoubez<93]

[Box'70]

[Brock'92]

[Burrus'97]

[Cao'03 a]

[Cao'03 b]

[Cgui'95]

[Chakraborty'04]

[Chen'94]

[Chiu'96]

[Daubechies'92]

[Davis'89J

[Farag'98]

S. A. Billings, H. L. Wei, "A New Class of Wavelet Networks for
Nonlinear System Identification", IEEE Transactions on Neural
Networks, vol. 16, no. 4, pp. 862 - 874,2005

E. K. Blum, L. K. Li, "Approximation theory and feedforward
networks", Neural Networks, vol. 4, pp. 511-515, 1991

T. I. Boubez, R. L. Peskin, "Wavelet Neural Networks and
Receptive Field Partitioning", IEEE Int. Conf. Neural Networks,
pp. 1544-1549,1993

G. E. P. Box, G. M Jenkins, G. C. Reinsel, Time Series Analysis,
Forecasting and Control, San Francisco: Holden Day, 1970

W. A, Brock, D. A. Hsieh, B. Lebaron "Nonlinear Dynamics
Chaos and Instability Statistical and Economic Theory", MIT
press, Massachusetts, 1992

C. S. Burrus, R. A. Gopinath, H. Guo, Introduction to wavelets
and wavelet transforms, Prentice Hall, 1997

J. Cao, J. Wang, X. Liao, "Novel stability criteria of delayed
cellular neural networks". Int. J. Neural Syst., vol. 13, no. 5, pp.
367-375,2003

J. Cao, J. Wang, "Global asymptotic stability of a general class of
recurrent neural networks with time-varying delays", IEEE Trans.
Circuits Syst. /, vol. 50, no. 1, pp. 34-44, 2003

C. K. Chui, K. I. Ramachandran, Wavelet Analysis and Its
Applications, i4cacfe/w/c Prew, 1995

D. Chakraborty, N. R. Pal, "A neurofuzzy scheme for
simultaneous feature selection and fuzzy rule-based
classification", IEEE Trans, on Neural Network, vol. 15, no. 1, pp.
110-123,2004

D. S. Chen, R. C. Jain, "A robust back propagation learning
algorithm for fuunction approximation", IEEE Trans. Neural
Networks, vol. 5, pp. 467-479,1994

S. Chiu, "Method and Software for Extracting Fuzzy
Classification rules by Subtractive Clustering", 1996 NAFIPS
CO/7/:, pp. 461-465,1996

I. Daubechies, Ten Lecture on Wavelets, CBMS series. SIMA,
1992

L. Davis, "Adapting operator probabilities in genetic algorithms",
Proc. of the third International Conference on Genetic Algorithms,
pp. 60-69,1989

W. A. Farag, V. H. Quintana, G. L. Torres, "A genetic-based neuro
-fuzzy approach for modeling and control of dynamical systems",
IEEE Trans. Neural Network, vol. 9, no. 5, pp. 756-767,1998

292

[Forti'94]

[Forti'951

[Funahashi'891

[Frasconi'92]

[Frasconi'96]

[Friedinan'91]

[Gadgir02]

[Gadgil'05]

[Gebhardt'94]

[Goldberg'91]

[Gowarikar«891

[Hartman'90]

[ffinton'87]

[Ho'Ol]

[Hoiiiic'89]

M. Forti, "On global asymptotic stability of a class of nonlinear
systems arising in neural network theory", J. Differential
Equations, vol. 113, pp. 246-264,1994
M. Forti, A. Tesi, "New conditions for global stability of neural
networks with application to linear and quadratic programming
problems", IEEE Trans. Circuits Syst. I, vol. 42, no. 7, pp. 354-
366, 1995

K. Funahashi, "On the approximate realization of continuous
mappings by neural networks". Neural Networks, vol. 2, pp. 183-
192, 1989

Frasconi, P., Gori, M., Soda. G., "Local feedback multilayered
networks". Neural Computation, vol. 4, issue 1, pp. 120-130, 1992

P. Frasconi, M. Gori, "Computational capabilities of local-
feedback recurrent networks acting as finite-state machines", IEEE
Trans, on Neural Networks (Letters), vol. 7, no. 6, pp. 1521-1525,
1996

J. H. Friedman, "Multivariate Adaptive Regression Splines", The
Annals of Statistics, 19:1, pp. 1-141,1991

S. Gadgil, et al., "On forecasting the Indian summer monsoon: The
intriguing season of 2002", Current Science, vol. 83, pp. 394-403,
2002

S. Gadgil, M. Rajeevan, R. Nanjundiah, " Monsoon prediction -
Why yet another failure?". Current Science, vol. 88, no. 9,2005

J. E. Gebhardt, R. Kruse, F. Klawonn, Foundations of Fuzzy
Systems, Wiley, 1994

D. E. Goldberg, "Real-coded genetic algorithms, virtual alphabets,
and blocking", Complex Systems, vol. 5, ppl39-167,1991

V. Gowarikar, V. Thapliyal, R. P. Sarkar, C. S. Mandal, D. R.
Sikka, "Parametric and power regression models: New approach
for long range forecasting of monsoon rainfall in India", Mausam,
40,pp. 115-122, 1989

E. J. Hartman, J. D. Keeler, J. M. Kowalski, "Layered neural
networks with Gaussian hidden units as universal
approximations". Neural Computation, vol. 2, pp. 210-215,1990

G. E. Hinton, S. J. Nowlan, "How learning can guide evolution",
Complex Systems, vol. 1, pp. 495-502, 1987

D. W. C. Ho, P.A. Zhang, J. Xu, "Fuzzy wavelet networks for
function learning", IEEE Transactions on Fuzzy Systems, vol.
9, Issue 1, pp. 200-211,2001

K. Homic, "Multilayer feedforward neural networks are universal
approximator", Neural Networks, vol. 2,1989

293

[HursfSl]

[Ihara'80]

[HTM]

[Isham'93]

[Kalsi'04]

[Kang'05]

[Khaloozadeh'04]

IKlir'031

[Krishnaniurti'98]

[Jacobs'91]

[Jang'93]

[Jin'99]

[Juang'02]

(Lee'OOl

H. E. Hurst, "Long-term storage of reservoirs", Transaction of the
American Society of Civil Engineering, vol. 116, pp. 770-808,
1951

J. Ihara, "Group method of data handling towards a modeling of
complex systems-IV", Systems and Control (in Japanese), vol. 24,
pp. 158-168,1980

http://vyvyw.tropmet.res.in/
Indian Institute of Tropical Meteorology, Pune, India, 411008

V. Isham, "Statistical Aspects of Chaos, A review in : Networks
and Chaos Statistical and Probabilistic Aspects", Chamann &
Hall, London, 1993

S. R. Kalsi, et al., "Various aspects of unusual behaviour of
monsoon 2002, 2004", IMD Met. Monograph, Synoptic
Meteorology 2/2004, pp. 97,2004

I. S. Kang, "Dynamical seasonal prediction and predictability of
monsoon". Review topic Blc: Numerical Modeling-Predictability,
Climate Environment System Research Center, Seoul National
University, 2005

H. Khaloozadeh, A. K. Sedigh., "On the Predictability of Tehran
Price Index, TEPIX", /// International Conference on System
Identification and Control Problems, Moscow, pp. 1279-1287,
2004

G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic; Theory and
Application, Prentice Hall, 2003

T. N. Krishnamurti, C, M. Kishtawal, D. R. LaRow, Z. Zhang, C.
E. Willford, S. Gadgil, S. Surendran, "Improved weather and
seasonal climate prediction forecasts from multimodel
superensemble", Science, 285, pp. 1548-1550,1998

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton, "Adaptive
mixtures of local experts". Neural Computation, vol. 3, pp. 79-87,
1991

J. S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference
system", IEEE Tran. on Sys., Man and Cybernetics, vol. 23, issue
3, pp. 665-685, 1993

L. Jin, M. M. Gupta, "Stable Dynamic Backpropagation Learning
in Recurrent Neural Networks", IEEE Trans. Neural Networks,
vol. 10, no. 6, pp. 1321-1334,1999

C. F. Juang, "A TSK-Type Recurrent Fuzzy Network for Dynamic
Systems Processing by Neural Network and Genetic Algorithms",
IEEE Trans, on Fuzzy Systems, vol. 10, No. 2, pp. 155-170, 2002

C. H. Lee, C. C. Teng, "Identification and control of dynamic
systems using Recurrent Fuzzy Neural Networks", IEEE Trans, on
Fuzzy Systems, vol. 8, no. 4, pp. 349-366,2000

294

http://vyvyw.tropmet.res.in/

[Li'04] X. Li, L. Huang, J. Wu, "A new method of lyapunov functionals
for delayed cellular neural networks", IEEE Trans. Circuits Syst. I,
vol. 51, no. 11, pp. 2263-2270, 2004

[Li'05] X. D. Li, J. K. L. Ho, T. W. S Chow, "Approximation of
Dynamical Time-Variant Systems by Continues-Time Recurrent
Neural Networks", IEEE Trans, on Circuits and systems, vol. 52,
no. 10, pp. 656-660, 2005

C. Li, X. Liao, "Robust Stability and Robust Periodicity of
Delayed Recurrent Neural Networks With Noise Disturbance",
IEEE Trans. Circuits Syst. I, vol. 53, no. 10, pp. 2265-2273,2006

X. B. Liang , J. Si, "Global exponential stability of neural
networks with globally Lipschitz continuous activations and its
application to linear variational inequality problem", IEEE Trans.
NeuralNetw., vol. 12, no. 2, pp. 349-359, 2001

C. J. Lin, C. C. Chin, C. L. Lee, "A wavelet based neuro-fuzzy
system and its applications", Proceedings of the Int. Joint
Conference on Neural Networks, vol. 3, pp. 1921-1926, 2003

C. J. Lin, C. C. Chin, "Prediction and Identification Using
Wavelet-Based Recurrent Fuzzy Neural Network", IEEE Trans,
on Sys. Man and Cybem. Part B, vol. 34, no.5, pp.2144-2154,
2004

„ . ,jjg, C. K. Lin, "Nonsingular Terminal Sliding Mode Control of Robot
' ' Manipulators Using Fuzzy Wavelet Networks", IEEE Trans, on

Fuzzy Systems, vol. 14, no. 6, pp. 849-859, 2006

„ . ,^., D. Liu, S. Hu, J. Wang, "Global output convergence of a class of
^ ' continuous-time recurrent neural networks with time-varying

thresholds" , IEEE Trans. Circuits Syst. II, vol. 51, no. 4, pp. 161-
167,2004

[Lobo'97] F. Lobo, D. E. Goldberg, "Decision making in a hybrid genetic
algorithm", Proc. of IEEE Ml Conf on Evolutionary
Computation, pp. 121-125, 1997

[Li'061

[Liang'Ol]

[Lin'03]

[Lin'04]

[Mastorocostas'02] P. A. Mastorocostas, J. B. Theocharis, "A Recurrent Fuzzy-
Neural Model for Dynamic system Identification", IEEE
Transaction on System, Man and Cybernetics-Part B: Cybernetics,
vol. 32, no. 2, pp. 176-190,2002

[Moody'89] J. Moody, C. Darken, "Fast Learning in Networks of Locally-
Tuned Processing Units", Neural Computation, vol. 1, pp. 281-
294,1989

rNarendra'901 ^ ' *̂ Narendra, K. Parthasarathy, "Identification and control of
^ dynamical systems using neural networks", IEEE Trans, on

Neural Networks, vol. 1, no. 1, 1990

[Nauck'97] D. Nauck, R. Kruse, F. Klawonn, Foundations of Neuro-Fuzzy
Systems, John Wiley & Sons Inc, 1997

295

[Oseledec'68]

[Oussar'OO]

[Par991

[Palmer'94]

IPatra'99]

[Patterson'961

[Pedrycz'04]

[Piche'OO]

[Poggio'90a]

[Poggio'90b]

(Qin'92]

[Quang'05]

[Rajeevan'04]

[Rao'04]

V, I. Oseledec, "A Multiplication Ergodic Theorem, Lyapunov
Characteristic Numbers for Dynamical Systems", Trudy Moskov.
Mat. Obsc, 19, pp.197-221,1968

Y. Oussar, G. Dreyfus, "Initialization by Selection for Wavelet
Network Training", Neurocomputing, vol.34, pp. 131-143,2000

P. K. Pal, W. J. Prakash, P. K. Thapliyal, C. M. Kishtawal, "A
Technique of Rainfall Assimilation for Dynamic Extended Range
Monsoon Prediction", Meteorology and Atmospheric Physics,
Printed in Austria, pp. 157-168, 1999

T. N. Palmer, D. L. T. Anderson., "The prospects for seasonal
forecasting: A review paper". Quart. J. Roy. Meteor. Soc.,120, p.p.
755-793, 1994

J. C. Patra, R. N. Pal, B. N. Chatterji, G. Panda, "Identification of
Nonlinear Dynamic Systems Using Functional Link Artificial
Neural Networks", IEEE Tms. on System, Man and Cybernetics-
Part B: Cybernetics, vol. 29, no. 2, pp. 254-262, 1999

D. W. Patterson, Artificial Neural Network; Theory and
AppWcsAons, Prentice Hall, 1996

W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets; Analysis
and Design, Prentice Hall of India, 2004

S. Piche, "Steepest Descent Algorithm for neural network
controllers and filters", IEEE Trans. Neural Networks, vol. 5, no.
2,pp. 198-221, 1994

T. Poggio, F. Girosi, "Networks for approximation and learning",
Proceedings of the IEEE, vol. 78, Issue 9, pp. 1481 - 1497, 1990

T. Poggio, F. Girosi, "Regularization Algorithm for Limiting That
Are equivalent to multilayer Networks", Science, vol. 247, pp.
978-982,1990

S. Z. Qin, H. T. Su, T. J. McAvoy, "Comparison of Four Neural
Net Learning Methods for Dynamic System Identification", IEEE
Trans. On Neural Networks, vol. 3, no. 1, pp. 122-130,1992

C. S. Quang, W. J. Lee, S. J. Lee, "A TSK-Type Neuro-fuzzy
Network Approach to System Modeling Problems," IEEE Trans,
on Sys. Man and cybernetics, part-B cybernetics, vol. 35, no. 4,
2005

M. Rajeevan, D. S. Pai, S. K Dikshit, R. R. Kelkar, "IMD's new
operational models for long range forecast of southwest monsoon
rainfall over India and their verification for 2003", Current
Science, vol. 86, pp. 422-431,2004

R. M. Rao, A. S. Bopardikar, Wavelet Transform: Introduction to
theory and applications, Pearson education, 2004

296

[Rumelhart'86]

[Sanger'90]

lSanger'91]

[Schalkofr97]

[Serinivasan'94]

[Shaefer'87]

[Sikka'03]

[Singhrattnal'04]

[Soman'05]

[Stark'05]

[Sugeno'88]

[Sugeno'93]

[Takagi'85]

ITing'99]

D. E. Rumelhart, et.al. , "Learning Internal Representations by
Error Propagation", In D. E. Rumelhart and J. L. McClelland
(Eds.). Parallel Distributed Processing /, Cambridge: MIT Press,
pp. 675-695,1986

T. D. Sanger, "Basis-Function Trees for Approximation in high
Dimensional Spaces," Proc. 1990, Connectionist Models Summer
School, Morgan Kaufhann, 1990

T. D. Sanger, R. S. Sutton, C. J. Matheus, "Iterative Construction
Sparse Polynomial Approximations," 1991 NIPS Conference,
1991

R. J. Schalkoff, Artificial Neural Networks, Afc Graw-Hill, 1997

B. Serinivasan, U. R. Prasad, N. J. Rao, "Back Propagation
Through Adjoints for the Identification of Nonlinear Dynamic
Systems Using Recurrent Neural Models", IEEE Trans, on Neural
Networks, vol. 5, no. 2, pp. 213-227, 1994

C. G. Shaefer, "The ARGOT strategy: Adaptive representation
genetic optimizer technique". Genetic Algorithms and Their
Applications: Proc. of the Second Intl Conf. on Genetic
Algorithms, pp. 50-58, 1987

D. R. Sikka, "Evaluation of monitoring and forecasting of summer
monsoon rainfall over India and a review of monsoon drought of
2002", Proc. Indian Natl. Sci. Acad, vol. 69, pp. 479-504, 2003

N. Singhrattnal, B. Rajagopalan, M. Clark, K. K. Kumar,
"Seasonal Forecasting of Thailand Summer Monsoon Rainfall",
IntemationalJoumal of Climatology, 2004

K. P. Soman, K. I. Ramachandran, Insight into Wavelets from
Theory to Practice, Prentice Hall, 2005

H. G. Stark, Wavelets and Signal Processing; An Application-
Based Introduction, Springer, 2005

M. Sugeno, G. T. Kang, "Structure Identification of Fuzzy
Model", Fuzzy Sets and Systems, vol. 28, pp. 15-33,1988

M. Sugeno, T. Yasukawa, "A Fuzzy logic based approach to
qualitative modeling", IEEE Trans, on Fuzzy Systems, vol. 1, no.l,
pp.7-31,1993

T. Takagi, M. Sugeno, "Fuzzy identification of systems and its
applications to modeling and control", IEEE Tran. on Sys., Man
and Cybernetics, \o\. IS.pp.l 16-132, 1985

W. Ting, Y. Sugai, "A wavelet neural network for the
approximation of nonlinear multivariable function", IEEE Int.
Conf on Systems, Man, and Cybernetics, vol. 3, pp. 378-383, 1999

297

[Xie'87]

[Xu'87]

[Wang'97]

[Wang'05]

[Wang'06]

IWerbos'88]

[Whitley'95]

[Wniiams'89]

[Wu'OO]

[vinod'06]

[Yabuta'91]

[Yager'94]

[Yamakawa'94]

X. L. Xie, G. Beni, "A Validity Measure for Fuzzy Clustering",
IEEE Trans, on Pattern Anal. Machine Intell, vol. 13, no. 8, pp.
841-847, 1987

C. W. Xu, Y. Z. Lu, "Fuzzy model Identification and Self-
Learning for Dynamic System", IEEE Trans. On System, Man and
Cybernetics, vol.17, no. 4, pp. 683-689, 1987

W. Y. Wang, T. T. Lee, C. L. Liu, C. H. Wang, "Function
approximation using fuzzy neural networks with robust learning
algorithm", IEEE Trans. Syst., Man, Cybem. B, vol. 27, pp. 740-
747, 1997

D. Y. Wang, H. C. Chuang, Y. J. Xu, C. J. Lin, "A Novel
Evolution Learning for Recurrent Wavelet-Based Neuro-Fuzzy
Networks", IEEE Int. Conf. Fuzzy Systems, pp. 1092-1096,2005

Z. Wang, H. Peng, J. Wang, "Research for a Dynamic Recurrent
Fuzzy Wavelet Network", Sixth Int. Conf. on Intelligent Systems
Design and Applications, 2006

P. Werbos, "Generalization of Backpropagation with Application
to a Recurrent Gas Markov Model", Neural networks, vol. 1, pp.
339-356,1988

D. Whitley, "Modeling hybrid genetic algorithms". In G. Winter,
J. P'eriaux, M. Gal'an, and P. Cuesta (Eds.), Genetic algorithms in
engineering and computer science, pp. 191-201, Chichester John
Wiley, 1995

R. J. Williams, D. Zipser, "A Learning Algorithm for Continually
Running Fully Recurrent Networks", Neural Computation, vol. 1,
pp. 270-280,1989

S. Wu, M. J. Er, "Dynamic fuzzy neural networks- a novel
approach to function approximation", IEEE Trans. Syst., Man,
Cybem. B, vol. 30, pp. 358-364, 2000

V. Kumar, Wavelet Based Adaptive Fuzzy Inference System and
its Application, M.Tech. Thesis, Dept. of Elec. Eng., Z.H. College
of Eng, & Tech., Aligarh Muslim University, Aligarh, India, 2006

T. Yabuta, T. Yamada, "Learning Control using neural Networks",
IEEE Int. Conf. Robot. Automat., Sacramento, CA, pp. 740-745,
1991

R. Yager, D. Filev, "Generation of fuzzy rules by mountain
clustering", J. Intelligent Fuzzy Systems, vol. 2, pp. 209-219, 1994

T. Yamakawa, E. Uchino, T. Samatsu, "Wavelet Neural Networks
Employing Over-Complete Number of Compactly Supported Non-
Orthogonal Wavelets and Their Applications", Neural Networks,
IEEE World Congress on Computational Intelligence, vol. 3, pp.
1391-1396,1994

298

[Yi'Ol]

[Yi'06]

[Yoo'06]

[Yu'95a]

[Yu'95b]

[Yu'Ola]

[Yu'Olb]

[Zhang'92]

[Zhang'95]

[Zhang'97]

[Zeng'94]

[Zeng'951

Z. Yi, P. A. Heng, K. S. Leung, "Convergence analysis of cellular
neural networks with unbounded delay", IEEE Trans. Circuits
Syst. I, vol. 48, no. 6, pp. 680-687,2001

Z. Yi, J. C. Lv, L. Zhang, "Output Convergence Analysis for a
Class of Delayed Recurrent Neural Networks With Time-Varying
Inputs", IEEE Trans. Syst., Man, Cybem. B, vol. 36, no. 1, pp. 87-
95,2006

S. J. Yoo, Y. H. Choi, J. B. Park, "Generalized Predictive Control
Based on Self-Recurrent Wavelet Neural Network for Stable Path
Tracking of Mobile Robots: Adaptive Learning Rates Approach",
IEEE Trans, on Circuits and systems, vol. 53, no. 6, pp. 1381-
1394,2006

X. H. Yu et al., "Dynamic learning rate optimization of the
backpropagation algorithm", IEEE Trans. Neural Networks, vol. 6,
pp. 669-677,1995

W. Yu, X. Li, "Fuzzy Identification Using Fuzzy Neural Networks
With Stable Learning Algorithms", IEEE Trans, on Fuzzy
Systems, vol. 12, no. 3, pp. 411-420,1995

W. Yu, X. Li, "Some stability properties of dynamic neural
networks", IEEE Trans. Circuits Syst. I, vol. 48, pp. 256-259,
2001

W. Yu, X. Li, "Some new results on system identification with
dynamic neural networks", IEEE Trans. Neural Networks, vol. 12,
pp. 412-417,2001

Q. Zhang, A. Benveniste, "Wavelet networks", IEEE Transactions
on Neural Networks, vol. 3, issue 6, pp. 889 - 898,1992

J. Zhang, G. G, Walter, Y. Miao, W. Ue, "Wavelet neural
networks for function learning", IEEE Transactions on Signal
Processing, vol. 43, issue 6, pp. 1485-1497,1995

Q. Zhang, "Using Wavelet Network in Nonparametric
Estimation", IEEE Trans, on Neural Networks, vol. 8, no. 2, pp.
227-236,1997

X. J. Zeng, M. S. Singh, "Approximation Theory of Fuzzy
Systems-SISO Case", IEEE Tram, on Fuzzy fystems, vol. 2, no. 2,
pp. 162-176,1994

X, J. Zeng, M. S. Singh, "Approximation Theory of Fuzzy
Systems-MIMO Case", IEEE Trans, on Fuzzy Systems, vol. 3, no.
2, pp.162-176, 1995

'U^ Ji-

299

Name
Date of Birth

Bio-Data
: Ahmad Banakar
: 14*, April, 1977

Academic Qualifications:

1. B. Tech. degree in Electronic, Department of Electrical Engineering, Shiraz
University, Iran, 1999

2. M. Tech. degree in Control, Department of Electrical Engineering, Ferdusi
Mashad University, Iran, 2002

Research Publications during the Ph.D. Program

(a) Conference Papers

1. M. F. Azeem, Ahmad Banakar, "Recurrent Slgmoid-Wavelet Neurons for

Forecasting of Dynamic Systems", IEEE International Conference, on Information

Reuse and Integration, Hilton Hotel, Las Vegas, USA, August 2007, pp. 556-562.

2. Ahmad Banakar, M. F. Azeem, "A Comparison Study of Different Types of Non-

Orthogonal Wavelet in Neuro-Fuzzy Model based on Time Series Forecasting",

International Conference on Intelligent Systems & Networks IISN-2007,

COMPUTATIONAL INTELLIGENCE LAB (CI-LAB), SOCIETY FOR EDUCATION AND

RESEARCH (SER), Jagadhri-135003, Distt. Yamuna Nagar, Haryana (INDIA), February

2007

3. Ahmad Banakar, M. F. Azeem, "Parameter Estimation of Neuro-Fuzzy Model

by Parallel and Series-Parallel Identification Configurations", FUZZ-IEEE 2007,

London, UK, July 2007

4. M.F. Azeem, Ahmad Banakar, Vinod Kumar, "Comparative Study of Different

Types of Wavelet Functions in Neural Network", International Joint Conference

Neural Networks (IJCNN2006), Vancouver, BC, Canada, July 2006, pp. 1061-1066.

5. Ahmad Banakar, M. F. Azeem, "Generalized Wavelet Neural Network Model

and its Application in Time Series Prediction", International Joint Conference

Neural Networks (IJCNN2006), Vancouver, BC, Canada, July 2006, pp. 882-886.

6. Ahmad Banakar, M. F. Azeem, "Generalized Wavelet Neuro-Fuzzy Model and

its Application in Time Series Forecasting", 2nd Symposium on Evolving Fuzzy

Systems, Ambelside, Lake Discrict, UK, September 2006, pp. 253-258.

7. Ahmad Banakar, M.F. Azeem," Input Selection Based on TSK Fuzzy Model and

Modified Mountain Clustering", 3rd IEEE Conference on Intelligent Systems,

University of Westminster, London, UK, September 2006, pp. 295-299.

301

8. Ahmad Banakar, M.F. Azeem, "Identification and prediction of nonlinear

dynamical plants Based on TSK fuzzy model and Wavelet Neuro-Fuzzy model",

3rd IEEE Conference on Intelligent Systems, University of Westminster, London,

UK, September 2006, pp. 617-620.

9. Ahmad Banakar, M.F. Azeem, "A New Artificial Neural Network and its

Application in Wavelet Neural Network and Wavelet Neuro-Fuz2y Case study:

Time Series Prediction", 3rd IEEE Conference on Intelligent Systems, University of

Westminster, London, UK, September 2006, pp. 621-625.

10. Ahmad Banakar, M.F. Azeem, "Comparative Study of Different Type of Wavelet

in Artificial Wavelet Neuro-Fuzzy Model", 2006 IEEE Mountain Workshop on

Adaptive and Learning Systems (SMCals/06), USA, July 2006, pp. 165-170.

(b) Papers Communicated

1- Ahmad Banakar, M.F. Azeem, Vinod Kumar, "Comparative Study of Wavelet

Based Neural Network and Neuro-Fuzzy Systems", International Journal of

Wavelets, Multiresolution and Information Processing, World Scientific (Accepted,

November 2007).

2- Ahmad Banakar, M. F. Azeem, "Artificial Wavelet Neuro-Fuzzy Model based on

parallel Wavelet Network and Neural Network", Journal of Soft Computing -

Springer, (Accepted)

3- Ahmad Banakar, M. F. Azeem, "Artificial Wavelet Neural Network and Its

Application in Neuro-Fuzzy Models", Applied Soft Computing - Elsevier, (Revised

Accepted)

4- Ahmad Banakar, M. F. Azeem, "Recurrent Sigmoid-Wavelet Neurons in

Feedforward Network for Identification of Dynamic Systems", IEEE Transaction

on Neural Network, (Revised Accepted)

5- Ahmad Banakar, M. F. Azeem, "A Comparative Study of Parameter

Identification Configurations for TSK Neuro-Fuzzy Model of Dynamic

Systems", IEEE Transactions on Fuzzy Systems (Submitted)

6- Ahmad Banakar, M. F. Azeem, "Local Recurrent Sigmoidal-Wavelet Neurons in

Feed-Forward Neural Network for Forecasting of Dynamic Systems", IEEE

Transaction on System, Cybernetics, and Man Part-B (Submitted)

7- Ahmad Banakar, M. F. Azeem, "Wavelet Neuro-Fuzzy Model Based on Sigmoid-

Wavelet Neuron", Applied Soft Computing - Elsevier (Ready for submission)

302

