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ABSTRACT 
In this thesis, application of wavelet functions in wavelet networks and neuro-

fuzzy models are considered. The ability of localized analysis of wavelets jointly in 

frequency and time domain in addition to the learning ability of artificial neural 

network, prompt the Wavelet Neural Network (WNN) a superior system model for 

complex and seismic application. The presented work is an attempt to propose a 

comparative study for three types of wavelet function used in WNN, namely, Mexican 

hat, Morlet and Sine wavelet functions. A conjunction of sigmoid and wavelet 

activation functions, by summation and product operators, is propose to combine the 

localize approximation property of wavelets with functional approximation properties 

of neural network (with sigmoid activation function). 

In describing the behavior of many complex and ill-defined systems, precise 

mathematical models may fail to give satisfactory results. In such cases, fuzzy models 

are used to reflect the uncertainty of the systems in a proper way. In this thesis. 

Wavelet Neuro-Fuzzy (WNF) model is introduced where the consequent part of each 

fuzzy rule corresponds to a sub-WNN consisting of wavelet with the specified dilation 

value. Therefore, a WNF model has the ability to deal with impreciseness and 

uncertainty in a better way than ANFIS because of localizes region property of the 

wavelets. A hybrid learning method of gradient descent and genetic algorithm is 

applied to learn the parameters of the WNF model. A comparative study of the 

Parallel and the Series-Parallel configurations in parameter identification of the TSK 

neuro-fuzzy model is also presented in this work. 

In the series of development of different recurrent network and neuron model, 

the presented work, based on WNN, proposes different types of recurrent neuron 

model to compare sigmoid and wavelet function for incorporating the dynamics inside 

the model of dynamic systems. Due to the dynamic behavior of recurrent network, 

they are suitable in dealing with the modeling of dynamic systems as compared to 

static behavior of feed-forward network. 

A number of theorems cover universal approximation capability of all the 

proposed networks. An adaptive learning rate based of Lyapunov stability theorem is 

also applied to guarantee the convergence and the stability of the parameter learning 

process by determine the upper bound of learning rates. 

The propose networks/models are tested upon six different types of dynamic 

systems and finally is applied to predict the Indian summer monsoon rainfall data. 
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Motivation 

During the nineteen century Fourier transform, solved many problems in 

physics and engineering. This prominence led scientists and engineers to think of 

them as the preferred way to analyze phenomena of all kinds. This ubiquity forced a 

close examination of the method. As a result, through the twentieth century, 

mathematicians, physicists, and engineers came to realize a drawback of the Fourier 

transforms: they have trouble reproducing transient signals or signals with abrupt 

changes, such as the spoken word or the rap of a snare drum. 

At the present scenario, wavelet decomposition emerges as a new powerful 

tool for function approximation due to its multi-resolution property. Recent advances 

have shown the existence of orthonormal wavelet bases, from which follows the 

availability of rates of convergence for approximation by wavelet based networks. 

Several works has been done and so many works are going on for wavelets. Its 

application in neural network and neuro-fuzzy model gives tremendous performance 

for function approximation. However, until this time, selection of parameters and 

support of wavelet properties are mystery. Due to these discrepancies and multi 

resolution property of the wavelets, we have motivated to work with wavelet for 

forecasting and modeling applications of dynamic systems. 



The organization of the thesis is as follows: 

Chapter 2: Wavelet Networks 

A comparative study of two existing wavelet networks namely Wavelet 

Synapses Neural Network (WSNN) and Wavelet Activation Neural Network 

(WANN), based on three different wavelet function is presented in this chapter. Feed­

forward neural networks show the ability to deal with complex problems and 

especially in input-output data systems. In addition, wavelet transformation has the 

ability of representing a function and revealing the properties of the function in the 

localized regions of the joint time frequency space. The chapter covers some basic 

concept of wavelet same as wavelet transform, Continuous Wavelet Transform 

(CWT) and Discrete Wavelet Transform (DWT). Three types of non-orthogonal 

wavelet are introduced in this section. These wavelets when used in feed-forward 

network give wavelet network. 

Chapter 3: Generalized Wavelet Networks 

The main objective of this thesis is to improve existing one layer feed-forward 

network with SAF and WAF. Feed-forward neural networks show the ability to deal 

with complex problems and especially in input-output data systems. In addition, 

wavelet transformation has the ability of representing a function and revealing the 

properties of the function in the localized regions of the joint time frequency space. 

Due to above ability, in this chapter, combination of sigmoid and wavelet activation 

function is proposed. It has shown that a smart combination of these not only 

decreases the size of the network, it also increases the accuracy of the network. Two 

proposed wavelet neural network namely Summation Sigmoid-Wavelet (SS-W) and 

Multiplication Sigmoid-Wavelet (MS-W) neuron model are discussed in details. One 



method for structure identification of the model is introduced. General approximation 

capability of the network has also been presented in this chapter with different 

theorems. 

Chapter 4: Neuro-Fuzzy Model 

This chapter serves as an introduction into the basic concept of parameter 

identification for neuro-fiizzy models. Two parameter identification schemes, namely 

Parallel (P) and the Series-Parallel (S-P) configurations, are described in this chapter. 

A combination of these two configurations is proposed for neuro-fuzzy models. 

Modified mountain clustering is applied to neuro-fiizzy models for structure 

determination and initialization of the neuro-fiizzy models. An algorithm with 

adaptive learning rate is used to learn learning parameters of the model. Convergence 

of the learning procedure is guaranteed by Lyapunov stability theorem. 

Chapter 5: Wavelet Neuro-Fuzzy Model 

This chapter discusses about the wavelet neuro-ftizzy model. The proposed 

network in chapter 3 with better performance is used in the consequent part of each 

fijzzy rule in TSK neuro-fijzzy model that results WNF model. A hybrid of Genetic 

Algorithm and Gradient Descent has been employed to learn the model parameters. 

Chapter 6: Recurrent Wavelet Networks 

In this chapter, recurrent neuron models are introduced. Due to the dynamic 

behavior of recurrent networks, they are suitable in dealing with the modeling of 

dynamic systems as compared to static behavior of feed-forward network. The 

quantitative behavior of the sigmoid and wavelet activation fimctions for dealing with 



and saving the dynamic of systems are considered. The general approximation 

properties of the recurrent neuron models are also evaluated. Since the convergence 

analysis plays an important role in the recurrent networks, the Lyapunov stability 

approach is employed to guarantee the convergence of network. 

Chapter 7: Case study, Indian Monsoon Rain-Fall 

The agricultural economy of India is closely linked to the performance of 

summer monsoon rainfall all over India. The ability to understand and predict 

circulation and rainfall during the Asian summer monsoon on various time-scales is of 

prime importance to the economy of several nations of this region because of its affect 

on agriculture, drinking water, transportation, health, power, and the very livelihood 

of billions people living in the monsoon region. Due to these reason, in this chapter, 

all the proposed networks are tested on rainfall data. 

Chapter 8: Conclusion 

Finally, conclusions of the thesis and suggestions for the future work have 

been covered in chapter 8. 



WAVELET BASED NEURO-FUZZY SYSTEM IN 
FORECASTING OF DYNAMIC SYSTEMS 

SUBMITTED FOR THE AWARD 

Mottor 
< 

T^E DEGREE OF 

ECTItlCAL^NGINEI 

AHMAD BANAKAR 

Rll 

DEPARTMENT OF ELECTRICAL ENGINEERING 
ZAKIR HUSAIN COLLEGE OF ENGINEERING AND TECHNOLOGY 

ALIGARH MUSLIM UNIVERSITY 
ALIGARH (INDIA) 

2007 



T6555 



THESIS APPROVAL SHEET 

The thesis entitled "WAVELET BASED NEURO-FUZZY SYSTEM IN 

FORECASTING OF DYNAMIC SYSTEMS" submitted by Mr. Ahmad Banakar, 

Department of Electrical Engineering, Zakir Husain College of Engineering and 

Technology, Aligarh Muslim University, Aligarh, India, is approved for the award of 

the degree of Doctor of Philosophy (Ph.D.). 

Internal Examiner External Examiner 

Chairman, 
Dept.of Electrical Engg., 

AMU, Aligarh. 



CERTIFICATE 

This is to certify that the thesis entitled "WAVELET BASED NEURO-FUZZY 

SYSTEM IN FORECASTING OF DYNAMIC SYSTEMS", which is being 

submitted by Mr. Ahmad Banakar for the award of the degree of Doctor of 

Philosophy in Electrical Engineering of the Faculty of Engineering and Technology, 

Aligarh Muslim University, Aligarh, India, is entirely based on the work carried out 

by him under my supervision. The work reported, embodies the work of candidate 

himself and is original one, has not been submitted to any other University or 

Institution for the award of any degree or diploma, according to best of my 

knowledge. 

lammadjFazle Azeem) 
Dated: 1^/09/2007 [\_^S^^fi0/J 



ABSTRACT 
In this thesis, application of wavelet functions in wavelet networks and neuro-

fiizzy models are considered. The ability of localized analysis of wavelets jointly in 

frequency and time domain in addition to the learning ability of artificial neural 

network, prompt the Wavelet Neural Network (WNN) a superior system model for 

complex and seismic application. The presented work is an attempt to propose a 

comparative study for three types of wavelet function used in WNN, namely, Mexican 

hat, Morlet and Sine wavelet functions. A conjunction of sigmoid and wavelet 

activation functions, by summation and product operators, is propose to combine the 

localize approximation property of wavelets with functional approximation properties 

of neural network (with sigmoid activation function). 

In describing the behavior of many complex and ill-defined systems, precise 

mathematical models may fail to give satisfactory results. In.such cases, fuzzy models 

are used to reflect the uncertainty of the systems in a proper way. In this thesis. 

Wavelet Neuro-Fuzzy (WNF) model is introduced where the consequent part of each 

fuzzy rule corresponds to a sub-WNN consisting of wavelet with the specified dilation 

value. Therefore, a WNF model has the ability to deal with impreciseness and 

uncertainty in a better way than ANFIS because of localizes region property of the 

wavelets. A hybrid learning method of gradient descent and genetic algorithm is 

applied to learn the parameters of the WNF model. A comparative study of the 

Parallel and the Series-Parallel configurations in parameter identification of the TSK 

neuro-fuzzy model is also presented in this work. 

In the series of development of different recurrent network and neuron model, 

the presented work, based on WNN, proposes different types of recurrent neuron 

model to compare sigmoid and wavelet function for incorporating the dynamics inside 

the model of dynamic systems. Due to the dynamic behavior of recurrent network, 

they are suitable in dealing with the modeling of dynamic systems as compared to 

static behavior of feed-forward network. 

A number of theorems cover universal approximation capability of all the 

proposed networks. An adaptive learning rate based of Lyapunov stability theorem is 

also applied to guarantee the convergence and the stability of the parameter learning 

process by determine the upper bound of learning rates. 

The propose networks/models are tested upon six different types of dynamic 

systems and finally is applied to predict the Indian summer monsoon rainfall data. 
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Chapter 1 

Literature Review 

1-1 Introduction 

Science has evolved from trying to understand and predict the behavior of the universe 

and systems within it. Much of this is based on finding suitable models, which agree with 

observations, and analyzing the results. These models can come in many different forms such as 

regression models. Artificial Neural Networks (ANN) and Fuzzy systems. 

Forecasting is a systematic effort to anticipate future events or conditions. The most well 

known type of forecast may be that of the meteorologist who prepares daily weather forecasts 

that help us decide how to dress each day and whether to take an umbrella when we leave for 

work in the morning. Other common forecasts are those that anticipate fixture economic 

conditions, traffic patterns, and even the size and number of classrooms that will be needed in 

local schools. 

In a prediction fi-amework, the results of a statistical analysis based on data about the past 

are used to speculate about the fiiture and to make decisions. In other way, forecasting and 

decision-making are very closely related. In a prediction context, researchers use data about the 



past with the newest data about actual to speculate about the future and they encourage policy 

makers to act on that statistical vision of the future. 

1-2 Identification 

Forecasting and identification have very close relationship with each other. Hence, better 

identification model results the high precision forecasting. Identification is a process through 

which one ascertains the identity of another person or entity. 

Simulations (and models, too) are abstractions of reality. Often they deliberately 

emphasize one part of reality at the expense of other parts. Whereas models are mathematical, 

logical, or some other structured representation of reality, simulations are the specific application 

of models to arrive at some outcome. 

In order to achieve the mission and goals, more industrial specific properties should be 

needed to enable the sharing and the reusing of semantics of models among different domains, 

territories or countries. 

1-3 Soft Computing 

Soft computing refers to a collection of computational techniques in computer science, 

artificial intelligence, machine learning and some engineering disciplines, which attempt to 

study, model, and analyze very complex phenomena: those for which more conventional 

methods have not yielded low cost, analytic, and complete solutions. Earlier computational 

approaches could model and precisely analyze only relatively simple systems. More complex 

systems arising in biology, medicine, the humanities, management sciences, and similar fields 

often remained intractable to conventional mathematical and analytical methods. That said, it 



should be pointed out that simplicity and complexity of systems are relative, and many 

conventional mathematical models have been both challenging and very productive, i 

Unlike hard computing schemes, which strive for exactness and full truth, soft computing 

techniques exploit the given tolerance of imprecision, partial truth, and uncertainty for a 

particular problem. Another common contrast comes from the observation that inductive 

reasoning plays a larger role in soft computing than in hard computing. 

In effect, the role model for soft computing is the human mind. The guiding principle of 

soft computing is: Exploit the tolerance for imprecision, uncertainty, partial truth, and 

approximation to achieve tractability, robustness and low solution cost. The basic ideas 

underlying soft computing in its current incarnation have links to many earlier influences, among 

them Zadeh's 1965 paper on fiizzy sets; the 1973 paper on the analysis of complex systems and 

decision processes; and the 1979 report (1981 paper) on possibility theory and soft data analysis. 

The inclusion of neural computing and genetic computing in soft computing came at a later 

point. 

1-3.1 What is absorbed in Soft Computing? 

Now, the principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Neural 

Computing (NC), Evolutionary Computation (EC) Machine Learning (ML) and Probabilistic 

Reasoning (PR), with the latter subsuming belief networks, chaos theory and parts of learning 

theory. What is important to note is that soft computing is not a melange. Rather, it is a 

partnership in which each of the partners contributes a distinct methodology for addressing 

problems in its domain. In this perspective, the principal constituent methodologies in SC are 

complementary rather than competitive. Furthermore, soft computing may be viewed as a 

foimdation component for the emerging field of conceptual intelligence. 



1-3.2 Importance of Soft Computing 

The complementarities of FL, NC, GC, and PR have an important consequence: in many 

cases a problem can be solved most effectively by using FL, NC, GC and PR in combination 

rather than exclusively. A striking example of a particularly effective combination is what has 

come to be known as "neuro-fiizzy systems". Such systems are becoming increasingly visible as 

consumer products ranging from air conditioners and washing machines to photocopiers and 

camcorders. Less visible but perhaps even more important are neuro-fiizzy systems in industrial 

applications. What is particularly significant is that in both consumer products and industrial 

systems, the employment of soft computing techniques leads to systems, which have high MIQ 

(Machine Intelligence Quotient). In large measure, the high MIQ of SC-based systems account 

for the rapid growth in the number and variety of applications of soft computing. 

In many ways, soft computing represents a significant paradigm shift in the aims of 

computing - a shift which reflects the fact that the human mind, unlike present day computers, 

possesses a remarkable ability to store and process information which is pervasively imprecise, 

uncertain and lacking in categoricity. 

1-4 Wavelet 

Wavelet analysis is a new development in the area of applied mathematics. They were 

first introduced in seismology to provide a time dimension to seismic analysis that Fourier 

analysis lacked. Wavelet analysis allows researchers to isolate and manipulate specific types of 

patterns hidden in masses of data [Soman'05]. 

Wavelets are mathematical functions that cut up data into different frequency 

components, and then study each component with a resolution matched to its 'scale'. They have 

advantages over traditional Fourier methods in analyzing physical situations where the signal 



contains discontinuities and sharp spikes. Wavelets were developed independently in the fields 

of mathematics, quantum physics, electrical engineering, and seismic geology. Historical 

perspective of wavelets is as follows: 

Historical Perspective: In the history of mathematics, wavelet analysis shows many 

different origins [Meyer'93]. Much of the work was performed in the 1930's, and at that 

time, the separate efforts did not appear to be parts of a coherent theory. 

Pre-1930: Before 1930, the main branch of mathematics leading to wavelet began with 

Joseph Fourier (1807) with his theories of frequency analysis, now often referred to as 

Fourier synthesis. He asserted that any 2;r - periodic function /(/) is the sum of its 

Fourier series. 

QQ + ̂ {a 1^ coskt + b,^ sinkt) (1.1) 

The coefficients a^, a^ and b^ are calculated by 

ao=^)f(t)dt, a, =!]/(/>//, b,=-]f(t)dt (1.2) 
i i / t Q n Q /I Q 

Fourier's assertion played an essential role in the evolution of the ideas mathematicians 

had about the functions. He opened up the door to a new functional universe. 

After 1807, by exploring the meaning of functions, Fourier series convergence, 

and orthogonal systems, mathematicians gradually were led from their previous notion of 

frequency analysis to the notion of scale analysis. That is, analyzing f{x) by creating 

mathematical structures that vary in scale. How? Construct a function, shift it by some 

amount, and change its scale. Apply that structure in approximating a signal. Now repeat 

the procedure. Take that basic structure, shift it, and scale it again. Apply it to the same 



signal to get a new approximation and so on. It turns out that this sort of scale analysis is 

less sensitive to noise because it measures the average fluctuations of the signal at 

different scales. 

Wavelet multi resolution analysis 

The 1930s: In the 1930s, several groups, working independently, researched the 

representation of the functions using scale-varying basis functions. By using scale 

varying basis function, called the Haar basis function, Paul Levy a 1930s physicist, 

investigated Brownian motion, a type of random signal [Meyer'93]. He found that the 

Haar basis function is superior to the Fourier basis functions for studying small-

complicated details in the Brownian motion. 

Another 1930s research effort by Littlewood, Paley, and Stein involved computing the 

energy of the function f{x): 

1 ^^ 
energy = -l\fitfdt (1.3) 

^ 0 

The computation produced different results if the energy was concentrated around 

a few points or distributed over a larger interval. This result disturbed the scientists 

because it indicated that energy might not be conserved. The researchers discovered a 

function that can vary in scale and can conserve energy when computing the functional 

energy. Their work provided Devid Marr with an effective algorithm for numerical image 

processing using wavelets in the early 1980s. 

1960-1980s: During these years a lot of work has been done. Some of the pioneering 

works done by Coifinan and Morlet are given below: 



• Guido Weiss and Ronal R. Coifman (1960-1980): These two mathematicians 

studied the simplest element of a function space, called atoms, with the goal of finding 

the atoms for a common fiinction and finding the "assembly rules" that allows the 

reconstruction of all elements of the function space using these atoms. 

• Grossman andMorlet (1980): A physicist and an engineer, broadly defined wavelets 

in contest of quantum physics. These two researchers provided a way of thinking for 

wavelets based on physical intuition. 

1980-1990s: in these years, the pioneering work of the Stephane Mallat (1985) on 

pyramidal algorithm or muhi-resolution theory gave the new apex in wavelet era. 

• Stephane Mallat (1985): In 1985, Stephane Mallat gave wavelets an additional 

jump-start through his work in digital signal processing. He discovered some relationship 

between quadrature mirror filters, pyramidal algorithms, and orthonormal wavelet bases. 

Y. Meyer constructed the first non-trivial wavelets. Ingrid Daubechies used Mallat's 

work to construct a set of wavelet orthonormal basis ftinctions that are perhaps the most 

elegant, and have become the comer stone of wavelet applications today. 

Post-1990s: During this decade application of wavelets, develop in many branch of 

science, same as signal processing, identifications, numerical analysis and networks. 

1-5 Motivation 

During the nineteen century Fourier transform, solved many problems in physics and 

engineering. This prominence led scientists and engineers to think of them as the preferred way 

to analyze phenomena of all kinds. This ubiquity forced a close examination of the method. As a 

result, through the twentieth century, mathematicians, physicists, and engineers came to realize a 



drawback of the Fourier transforms: they have trouble reproducing transient signals or signals 

with abrupt changes, such as the spoken word or the rap of a snare drum [Soman'05]. 

At the present scenario, wavelet decomposition emerges as a new powerful tool for 

function approximation due to its multi-resolution property. Recent advances have shown the 

existence of orthonormal wavelet bases, from which follows the availability of rates of 

convergence for approximation by wavelet based networks. 

Several works has been done and so many works are going on for wavelets. Its 

application in neural network and neuro-fuzzy model gives tremendous performance for function 

approximation. However, imtil this time, selection of parameters and support of wavelet 

properties are mystery. Due to these discrepancies and multi resolution property of the wavelets, 

we have motivated to work with wavelet for forecasting and modeling applications of dynamic 

systems. 

1-6 Scope of the Thesis 

In recent years, wavelets have become a very active subject in many scientific and 

engineering research areas. Especially, Wavelet Neural Networks (WNN), inspired by both the 

feed forward neural networks and wavelet decompositions, have received considerable attention 

[Q. Zhang'92, Q. Zhang'97, J. Zhang'95] and become a popular tool for function 

approximation. The main characteristic of WNN is that wavelet functions are used as the 

nonlinear transformation function in the hidden layer, instead of the usual sigmoid function. 

Incorporating the time-frequency localization properties of wavelets and the learning ability of 

the Neural Network (NN), WNN has shown its advantages over the regular methods such as NN 

for complex nonlinear system modeling. 



At present, there are two different kinds of WNN structiire. One is with fixed wavelet 

bases, where the dilation and translation parameters of wavelet basis are fixed, and only the 

output layer weights are adjustable. Another type is the variable wavelet bases, where the 

dilation parameters, translation parameters and the output layer weights are adjustable 

[Billings'OS]. For the WNN with fixed wavelets, the main problem is the selection of wavelet 

bases/fi-ames. The wavelet bases have to be selected appropriately since the choice of the wavelet 

basis can be critical to approximation performance. Obviously, to improve the approximation 

accuracy, a large number of wavelet neurons are required for WNN with fixed wavelet bases. 

This will result in a large complex network structure and cause over-fitting problem. 

Since the dilation parameter has explicit physical concept, i.e., resolution, it plays a 

significant role in wavelet analysis and approximation of a given fiinction. In this thesis, for 

selection of the wavelet bases/fi-ames, we have used variable wavelet bases for the better 

accuracy of function approximation though its complexity is increased. In addition, we have 

presented a comparative study for different types of the wavelet fimctions. To used 

approximation of inputs by Sigmoid Activation Function (SAF) and Wavelet Activation 

Functions (WAF), separately, we have proposed two neuron models to combine them. 

In dealing with the modeling of dynamic systems recurrent network have better 

performance as compared to static behavior of feed-forward network based on proposed 

sigmoid-wavelet neuron models different types of recurrent neuron models are introduced. These 

recurrent neurons give us opportunity of comparative study of recurrent neuron models consist of 

SAF and WAF in feed-forward neural network architecture. 

In many complex and ill-defined systems especially with the uncertainty of the systems, 

the fiizzy models have shown high performance. Motivated by both the theory of multi-



resolution analysis of WNN and the traditional Neuro-fuzzy model, Wavelet Neuro- Fuzzy 

(WNF) model is introduced. The goal of introducing the WNN in the fuzzy model is improving 

function approximation accuracy in terms of the dilation and translation parameters of wavelets, 

meanwhile not increasing the number of wavelet bases. In general, the Takagi-Sugeno-Kang 

(TSK) fuzzy models consist of a set of rules, and the consequent of each rule acts like a "local 

model" by using fiizzy set to partition the input space into local fuzzy regions. The consequents 

of these rules are represented by either a constant or a linear equation. In this work, the 

consequent part of each fuzzy rule corresponds to sub-WNNs at different resolution levels and 

used to capture different behaviors (global or local) of the approximated function. Here, the role 

of the fuzzy set is to determine the region for the contribution of the sub-WNNs to the output of 

the WNF. As a result, wavelets with different dilation values under these fuzzy rules are fully 

utilized to capture various essential components of the system. 

In addition, in this work, the series-parallel and parallel configurations, which are used in 

parameter identification of networks\models, are exploited simultaneously for learning the 

parameters of the premise and the consequent part of the neuro-fuzzy model. 

1-7 Organization of Thesis 

The organization of the thesis is as follows: 

Chapter 2: Wavelet Networks 

A comparative study of two existing wavelet networks namely Wavelet Synapses Neural 

Network (WSNN) and Wavelet Activation Neural Network (WANN), based on three different 
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wavelet function is presented in this chapter. Feed-forward neural networks show the ability to 

deal with complex problems and especially in input-output data systems. In addition, wavelet 

transformation has the ability of representing a function and revealing the properties of the 

function in the localized regions of the joint time frequency space. The chapter covers some 

basic concept of wavelet same as wavelet transform, Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT). Three types of non-orthogonal wavelet are introduced in 

this section. These wavelets when used in feed-forward network give wavelet network. 

Chapter 3: Generalized Wavelet Networks 

The main objective of this thesis is to improve existing one layer feed-forward network 

with SAF and WAP. Feed-forward neural networks show the ability to deal with complex 

problems and especially in input-output data systems. In addition, wavelet transformation has 

the ability of representing a function and revealing the properties of the function in the localized 

regions of the joint time frequency space. Due to above ability, in this chapter, combination of 

sigmoid and wavelet activation function is proposed. It has shown that a smart combination of 

these not only decreases the size of the network, it also increases the accuracy of the network. 

Two proposed wavelet neural network namely Summation Sigmoid-Wavelet (SS-W) and 

Multiplication Sigmoid-Wavelet (MS-W) neuron model are discussed in details. One method for 

structure identification of the model is introduced. General approximation capability of the 

network has also been presented in this chapter with different theorems. 
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Chapter 4: Nenro-Fuzzy Model 

This chapter serves as an introduction into the basic concept of parameter identification 

for neuro-fuzzy models. Two parameter identification schemes, namely Parallel (P) and the 

Series-Parallel (S-P) configurations, are described in this chapter. A combination of these two 

configurations is proposed for neuro-fiizzy models. Modified mountain clustering is applied to 

neuro-fuzzy models for structure determination and initialization of the neuro-fiizzy models. An 

algorithm with adaptive learning rate is used to learn learning parameters of the model. 

Convergence of the learning procedure is guaranteed by Lyapunov stability theorem. 

Chapter 5: Wavelet Neuro-Fuzzy Model 

This chapter discusses about the wavelet neuro-fuzzy model. The proposed network in 

chapter 3 with better performance is used in the consequent part of each fuzzy rule in TSK 

neuro-fuzzy model that results WNF model. A hybrid of Genetic Algorithm and Gradient 

Descent has been employed to learn the model parameters. 

Chapter 6: Recurrent Wavelet Networks 

In this chapter, recurrent neuron models are introduced. Due to the dynamic behavior of 

recurrent networks, they are suitable in dealing with the modeling of dynamic systems as 

compared to static behavior of feed-forward network. The quantitative behavior of the sigmoid 

and wavelet activation functions for dealing with and saving the dynamic of systems are 

considered. The general approximation properties of the recurrent neuron models are also 

evaluated. Since the convergence analysis plays an important role in the recurrent networks, the 

Lyapunov stability approach is employed to guarantee the convergence of network. 
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Chapter 7: Case study, Indian Monsoon Rain-Fall 

The agricultural economy of India is closely linked to the performance of summer 

monsoon rainfall all over India. The ability to imderstand and predict circulation and rainfall 

during the Asian summer monsoon on various time-scales is of prime importance to the economy 

of several nations of this region because of its affect on agriculture, drinking water, 

transportation, health, power, and the very livelihood of billions people living in the monsoon 

region. Due to these reason, in this chapter, all the proposed networks are tested on rainfall data. 

Chapter 8: Conclusion 

Finally, conclusions of the thesis and suggestions for the future work have been covered 

in chapter 8. 

1-8 Description of Some Dynamic Systems 

Six different classes of dynamic systems are described in the following examples for 

validation of the proposed work. Among them the selected four dynamic examples are different 

nonlinear differential equations with different order [Narendra'90]. Example five is a general 

benchmark problem of gas furnace data [Box'70], whereas, example six is an action performed 

by the operator at chemical plant [Sugeno'93]. 

Example 1: Linear regression with nonlinear input 

The system is a non-linear second order dynamical model [Narendra'90]. The function 

' / is a polynomial of current input u{k) of degree three whereas the input u{k) is a sum of two 

sinusoids given in (1.6). 
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y(k +1) = 0.3>'(^)+ 0.6y(k - \)+f[u(k)] (1.4) 

Where 

/["W]=[«Wr+0.3[«W] '-0.4«(A:) (1.5) 

u{k) = sin(2;z^/250)+sin(2;z;t/25) (1.6) 

In this example, 500 input-output data are generated. First three hundred data are used for 

learning procedure and remaining 200 data are for prediction. 

Example 2: Non-linear regression with random input 

This system expressed as second order nonlinear function that is presented by (1.7). The 

input u{k) is a random variable uniformly distributed in the interval [-1, 1]. Five hundred input-

output data are generated by the second order difference equation [Narendra'90]: three hundred 

data are used to train the model and remaining two hundred data are used for validation of the 

model. 

y{k+i)=Mk\y{k-i)] +wW (1.7) 

where f\mction / is: 

/{ichAk-i) ^'* 

Example 3: Non-Linear Regression with Non-Linear Input 

A system described by difference equation [Narendra'90] and expressed as (1.9). 
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u{k) = sm{27dcl25) + sin(2;nt/l O) (i . i O) 

This system is having first order nonlinear dynamic. Hundred input-output data are 

produced by input u{k) as given in (1.10). Eighty data is used for training and 20 remaining data 

are used for testing and validation. 

Example 4: Non-linear Regression of Input and output 

hi this example, a nonlinear plant with third delay in output and with two delays in inputs 

has been taken fi-om [Narendra'90, Lee'OO] and describes as: 

y{k +1) = f{y{k\ y{k-\\ y{k-2\ u{k\ u{k-\)) ( i . i D 

Where / i s : 

Uxl^xl <'"' 

The reference [Narendra'90] has used five input to predict next output but [Lee'OO] used 

only u{k) and y\k) to predict next output >'(^ +1}. Here we also used these two variables to 

predict the output >'(^ + l)- One thousand input-output data are produced by using the input 

expressed by (1.12) to identify the models. The input u{k) is selected same as equation (1.12) 

for data! to 1000. 
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u(k) = 

sin — 
125 j 

1.0 

-1.0 

A;<250 

250<yt<500 

500 < A; < 750 

0.3 sin 
(7±\ . (Tdi \ 

+ 0.6 sin 

+ 0.1sin — 
25) l32, 

(7±\ 

(1.12) 

vlOy 
750 < A: < 1000 

Example 5: Gas Furnace data 

A benchmark problem of system identification is considered [Box'70]. The process in 

this example is a gas furnace with single input «(/), i.e., gas flow rate and single o\xVpvXy\t), 

i.e., CO2 concentration. Here we supposed there are three inputs: >'(/-l), "(^-3) and u{f-A) 

to the model [Sugeno'93]. Total 290 data are utilized which can be found in [Box'TO]. First 250 

data are used to train the models and remaining 40 data are used for testing and validation of the 

model. 

Example 6: Human Operation at a Chemical Plant 

We deal with a model of an operator's control action of a chemical plant [Sugeno'93]. 

The plant is for producing a polymer by the polymerization of some monomers. Since the start­

up of the plant is very complicated, a man has to make the manual operation at the plant. As 

shown in Fig. 1.1 there are five input candidates (M, , W2'"'' "5) whom a human operator might 

refer at the start up of chemical plant to take control action y , for production of polymer. 
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«i : monomer concentration. 

" 3 : 

"4 , "5 

y '• 

change in monomer concentration, 

monomer flow rate, 

local temperatures inside the plant, 

set point for monomer flow rate. 

Here w, and u^ are employed to model the control action [Azeen'03]. Out of 70 datf points of 

the above six variable from the actual plant, first 60 data are used for training the model and 

remaining 10 data are used for prediction. 

Input Candidates 

Monomer 
Concentration 

Change of monomer 
concentration 

Monomer flow rate 

Temperature 1 

Temperature 2 

(Output) 

^ 

^ 

Operator 

(5 rules) 

Set point for 
monomer 
flow rate 

" T I ^ — • : Selected input variables. 

Fig. 1.1. Control action of an operator 
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Chapter L 

Wavelet Networks 

2-1 Introduction 

The approximation of general continuous functions by nonlinear networks such as those 

discussed in [Zhang'92, Poggio'90a,b] is very useful for system modeling and identification. 

Such approximation methods can be used for example in black-box identification of non-linear 

systems. Feed Forward Neural Networks (FFNN) has been established as a general approximator 

for fitting nonlinear models from input-output data [Hoiiiic'89, Funahashi'89, Hartman'90, 

and Bluin'91]. 

In addition, wavelet transformation has the ability of representing a function and 

revealing the properties of the function in the localized regions of the joint time frequency space. 

The wavelet with coarse resolution can capture the global (low frequency) behavior easily, while 

the wavelet with fine resolution can capture the local behavior (higher frequency) of the function 

accurately. These distinguished characteristics give wavelet based neural networks with the 

advantages of fast convergence, easy training, and high accuracy [Ho'Ol]. In view of the 

similarity between wavelet transformation and feed-forward neural networks, the idea of 

augmenting both, Zhang and Beneviste [Zhang'92] have proposed Wavelet Neural Networks 
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(WNN). WNN instigate a superior system model for complex and seismic application in 

comparison to Neural Network (NN) with sigmoid activation function. The application of 

wavelet is mostly limited to small dimension [Benveniste'94], though WNN can handle large 

dimension problem [Zhang'97]. 

Basis function networks have been investigated by many researchers, employing various 

kinds of basis function, e.g. hyper basis function [Poggio'90a], splines [Poggio'90, 

Friedman'91], polynomial [Sanger'90, Sanger'91] and radial basis function [Poggio'90b, 

Moody'89]. 

Due to the above advantages of wavelets over other basis functions, Boubez and Peskin 

[Boubez'93] used wavelet functions as basis functions. They adopted orthonormal sets of 

wavelets and verified that network weights can be computed directly and independently. 

Yamakawa [Yamakawa'94] has proposed to adopt the over-complete system of non-orthogonal 

smooth wavelet bases in order to approximate a nonlinear function with a smooth function. He 

proposed two types of neuron models and used a simple cosine function as a compactly 

supported wavelet function. Later some authors used the Yamakawa's models with non-

orthogonal wavelet functions like Mexican [Zhang '95, Ho'Ol]. But none of the reported work 

caters a comparative study for different types of the wavelets. In this chapter, two types of 

wavelet network architectures introduced by Yamakawa [Yamakawa'94], namely, Wavelet 

Synapses Neural Network (WSNN) and Wavelet Activation function Neural Network (WANN) 

are described. Different wavelet activation functions are applied and the networks are tested by 

eight different dynamic examples. 

This chapter is organized as follow: In section 2-2, a brief discussion of artificial neural 

network is presented. In section 2-3, wavelet and wavelet transform are discussed. Section 2-4 
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proposes Wavelet Neural Network (WNN) models and describes their convergence analysis. The 

learning algorithm based on Gradient Descent describes in section 2-5. Experimental results are 

revealed in section 2-6 and, finally conclusions are relegated to section 2-7. 

2-2 Artificial Neural Network 

Artificial Neural Network (ANN) was introduced in the middle of the last century to 

reproduce learning and generalization of the human brain [Bernieri'94, Patterson'96, 

Schalkoff 97]. Ability of ANN to deal with complex problems, generalization of the result from 

known situation to unforeseen situation and ability to carry out classifications of the elements of 

a given set make them one of the most useful technique in functional approximation, nonlinear 

system identification and control, pattern recognition and classification, and optimization. 

The architecture of the single hidden-layer neural network is given in the Fig. 2.1. The 

operation performed by each layer is also described below: 

1. Input Layer: Each node of this layer passes the input signal with its connection 

weights to the hidden layer neurons of the network. 

2. Hidden Layer. Hidden layer perform two operations: in the first operation, all the 

signals coming from the input nodes multiplied with their coimection weights and summed up; 

and in the second operation these summed quantities passes through the activation (logistic 

sigmoid) fimction that maps the signal and gives the output in between the range [-1,1] or [0,1]. 

3. Output Layer. In this layer, the output coming from the hidden layer multiplied 

with its connection weights and finally the linear summation of all the signal, which gives the 

output of the network, takes place. 

The mathematical expression for the output of the neural network is given in (2.1). 
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M n 

y=i:i:<^j{cjr^^+b}wj (2.1) 
j=\ /=i 

Where bj, for j=\,2,...,M, denotes the bias for each hidden neuron, C^,; for y=l,2,...,Mand 

i=\,2,...,n denotes the weight to signal X^ going to the/*' neuron. Wj for j=\,2,...,L is the 

weight to the output of/" neuron for output of the network, O^ is the activation function for the 

/''neuron. 

X, 

X2 

Xi 

X„ 

Input Layer Hidden Layer Output Layer 

Fig. 2.1. Architecture of the single layer neural network 

2-3 Wavelet 

A wave is usually defined as an oscillating function of time or space, such as a sinusoid. 

A wavelet is a "small wave", which has its energy concentrated in time to give a tool for the 

lysis of transient, nonstationary, or time varying phenomena. The function ^ ( v is a wavelet ana 

or mother wavelet if it satisfies these two properties: 
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(2.2) 

(2.3) 

First property is suggestive of a function i.e. oscillatory or that which has a wavy 

appearance and second property implies that most of the energy in it is confined to a finite 

duration. We will take wavelet and use them in a series expansion of signals or functions in the 

same way as Fourier series uses the wave or sinusoid to represent a signal or function. 

2-3.1 Continuous time Wavelet Transform (CWT) 

The Wavelet Transform (WT) in its continuous form provides a flexible time-frequency 

window, which narrows when observing high frequency phenomena and widens when analyzing 

low frequency behavior. Thus, time resolution becomes arbitrarily good at high frequencies, 

while the frequency resolution becomes arbitrarily good at low frequencies. This kind of analysis 

is suitable for signals composed of high frequency components with short duration and low 

frequency components with long duration, which is often the case in practical situations. Here, a 

brief review from the theory of wavelets is described that gives basic idea about the wavelets and 

the related work. Wavelets are divided in the two parts: Continuous Wavelet Transform (CWT) 

and Discrete Wavelet Transform (DWT) [Rao'04, Daubechies'92, Burrus'97, Stark'05, 

Soman'05, Cgui'95]. Historically the CWT was the first studied wavelet transform: 

Let be any square integratable function. The CWT of with respect to a 

wavelet ^y) is defined; as: 
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W{a,b)=jf{t)//:^,{t)dt (2.4) 

Where 

la 

^t-b^ 
n , (2.5) 

H^\t) is the mother wavelet, 'a' is a scaling factor, 'b' is shifting parameter and * denotes complex 

conjugation. The family of functions can be obtained by scaling and shifting of ^ ( 0 - Thus, the 

wavelet transform is a ftmction of two variables. Both f{t) and y/{t) belong toZ,2(9^), the set 

of square integrable fiinction, also called the set of energy signals. 

The signal or fiinction can be expressed as (2.6). 

/(0=JJ^(a,6).^[^^j^6^a (2.6) 

The mother wavelet has the property that the set i^/ ,(t) forms an orthogonal basis in 

Z,^(5R). This implies that the mother wavelet can, in turn, generate any fiinction in Z^C^R). The 

mother wavelet has to satisfy the following admissibility condition: 

y^ L 0) ^ ^ 

— 00 

Where ^{co) is the Fourier transform ofy/{f). 

In practice ^{co) will have sufficient decay, so that the admissibility condition is reduced to: 

c» 
\y,{t)dt = ̂ [0)=0 (2.8) 

- 0 0 
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2-3.2 Discrete time Wavelet Transform (DWT) 

The CWT has the drawbacks of redundancy and impracticability with digital computers. 

As parameters (a, 6) are of continuous values, the resulting CWT is a very redundant 

representation, and impracticable as well. This impracticability is the result of redundancy. 

Therefore, the scale and shift parameters are evaluated on a discrete grid of time-scale leading to 

a discrete set of continuous basis functions. The continuous inverse wavelet transform (2.6) is 

discretized as: 

/(0=S^,-^."'> 
V «< y 

(2.9) 

To analyze discrete time signals, it is convenient to take integer values for ' ci' and ' b' in 

defining this basis: if a = 2^ and b = n-2^ (where j and n are integers) then, via translations 

and dilations: 

kA')l.-\r"^'^^'-"-'" 9^ 
(2.10) 

Equation (2.10) forms a sparse orthonormal basis of .̂  (9?). This means that the wavelet 

basis induces an orthogonal decomposition of any function in L (5?). 

2-3.3 Types of the wavelet 

The difference between wave (sinusoids) and wavelet is shown in Fig. 2.2. Waves are 

smooth, predictable and everlasting, whereas wavelets are of limited duration, irregular and may 

be asymmetric. Waves are used as deterministic basis functions in Fourier analysis for the 

expansion of the fianctions (signals), which are time invariant, or stationary. 
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(a) (b) 

Fig. 2.2. Representation of (a) a wave and (b) a wavelet 

The important characteristic of wavelets is that they can serve as deterministic or non-

deterministic basis for generation and analysis for the most natural signals to provide better time 

frequency representation, which is not possible with waves using conventional Fourier analysis. 

The selection of basic (or mother) wavelet depends very much on the nature of the signals and 

the goal of the signal processing. These basis vectors have the following important properties. 

• Vanishing moments: The higher the degrees of vanishing moments a basis has, the better 

it models the smooth part of the signal. 

• Regularity: This property is important in signal compression if high ratios are desired; 

the shapes of the basis vectors become "visible" under these circumstances. The larger 

the regularity, the smoother the basis vector becomes. Low regularity might result in 

fractal- like shapes in the reconstructed signals or images. 

• Compact Support: This property is important for efficient and exact numerical 

implementation [Daubechies92]. 

Some wavelets are better than others are for specific applications. In general however, 

because of these properties, wavelet bases generate very efficient and simple representations for 
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piecewise smooth signals and images. The manner in which vanishing moments, regularity and 

compact support affect the wavelet's efficacy as a basis for signal classification is not clear. One 

would expect that a wavelet that "looks like" the elemental components of the signals under 

consideration would be most appropriate. More important however, is the ability of the wavelet 

basis to generate a Time-Frequency Representation (TFR) that clearly distinguishes signals in 

different classes. This requires that the wavelet functions appropriately model the signal, and that 

they be localized and well behaved in the time-frequency plane. 

In this thesis, three types of wavelet function, namely Mexican hat, Morlet and Sine are 

introduced. 

a) Mexican hat wavelet 

This wavelet is derived firom a function, which is proportional to the second derivative 

function of the Gaussian probability density function. It is non-orthogonal, with infinite support 

and has maximum energy around origin with the narrow band. The expression for Mexican hat 

wavelet is given by (2.11) and it is shovm in Fig. 2.3. 

i//(x)=\}-2x^)-exp[-x^) (2.11) 

b) Morlet wavelet 

This wavelet is derived from a function that is proportional to the cosine function and 

Gaussian probability density function. It is non-orthogonal, infinite support and its maximum 

energy lies around origin with the narrow band. The Morlet wavelet is expressed as (2.12) and 

shown in Fig. 2.4. 

i//{x) = exp(- x^j- cos(5x) (2.12) 

27 



Mexican Wavelet Function 

Fig. 2.3. Mexican hat wavelet functions 

Morelet Wavelet Function 

Fig. 2.4. Morlet wavelet functions 
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c) Sine (Shannon) wavelet 

This wavelet is derived from a function that is proportional to the cosine function. This 

wavelet is also non-orthogonal with infinite support and maximum energy occupies wider band 

around origin as compared to the above two wavelets. The Sine wavelet is specified as (2.13) and 

shown in Fig. 2.5. 

i//{x) = sin(;Dc)/(;cc) (2.13) 

SINC Wavelet Function 

Fig. 2.5. Sine wavelet functions 
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2-4 Wavelet Neural Network 

The applications of orthonormal wavelet bases and wavelet frames are usually limited to 

problems of small dimension [Zhang'97]. The main reason is that they are composed of 

regularly dilated and translated wavelet. For practical implementations, infinite basis and frames 

are always truncated. The number of wavelets in a truncated bases or fi-ames drastically increases 

with the dimension, therefore, constructing and storing wavelet bases or frames of large 

dimension are with prohibitive cost. 

In most practical situation of large dimension, the available data are sparse [Zhang'97]. 

If the inverse wavelet transform is discretized according to the distribution of the data, there are 

expectations to reduce the number of wavelets needed in the reconstruction. It is thus possible to 

handle problem of large dimension with such adaptive discretization of the inverse wavelet 

transform. 

The adaptive discretization consists of determining the parameters w,, a, and b in (2.6) 

according to data samg[e\x,y). This problem is very similar to neural network training. In fact, 

formula (2.6) can be viewed as a one hidden layer of neural network with y/ as the activation 

function of the hidden neuron and with a linear neuron in the output layer. For this reason, we 

refer to the adaptively discretized inverse wavelet transform as wavelet network. 

A basic McCulloch and Pitts neuron model is characterized by weighted sum (linear sum) 

of inputs and a sigmoid activation function. Two wavelet neuron models were proposed in 

[Yamakawa'94] by modifying the basic neuron model. We have used wavelet synapses and 

wavelet activation function neuron model of Yamakawa in this chapter, which is shovm in the 

Figure 2.6. 

30 



(a) (b) (c) 

Fig. 2.6: (a) Simple neuron model (b) Wavelet activation fianction neiu-on model and (c) Wavelet 

synapses neuron model 

2-4.1 Wavelet Synapses Neural Network 

The architecture of WSNN is shown in Fig. 2.7. Suppose M is the total number of 

wavelet functions selected. If ^o,/, is used as nonlinear transformation function of A/number of 

hidden units and C^ ^ is the connection weights, then layer wise analysis of the architecture is 

given below: 

Layer 1 (Input layer): In this layer, each input is directly applied to every wavelet 

fianction V^a,b • 

• Layer 2 (Hidden layer): This layer performs two operations. Firstly, the output of 

input layer multiplied with connection weights C^j,, and then linear summation takes 

place in second operation (2.14). 

M a-l 

yi=Y.ll^'a,b^a,t{'^i) 
a=\ b=\ 

(2.14) 

31 



fKS3W 

Layer I Layer 2 Layers 

Fig. 2.7. Wavelet Synapses Neural Network (WSNN) 

• Layer 3 {Output layer): In this layer, the outputs of hidden layer are linearly 

summed that gives the output of the model. The output of WSNN network can be 

calculated by: 

^WSNN ~ 2^ yi 
i=\ 

(2.15) 

Where / = 1,2, • • • ,« ; denotes the number of inputs applied to the network. 

For a WSNN network with scaling factor M, there is M-{M +1)/2 learning parameter C for 

each input. Therefore, the total number of learning parameters is n • M - ( M + 1)/2, where n is the 

number of inputs. 

2-4.2 Wavelet Activation function Neural Network 

In this network, wavelet functions are used as activation function. The architecture of 

WANN is shown in Fig. 2.8. Layer wise description of the network architecture has been given 

below: 
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• Layer 1 {Input layer): In this layer, all the inputs are muhiplied with their 

connection weights C^jj. 

• Layer 2 {Hidden layer): Two operations are performed in this layer. First, output 

of input layer are summed linearly and applied to each wavelet function Wa,b in second 

operation as given in (2.16). 

ya,b=¥a,b\Y^C'abX, (2.16) 

• Layer 3 {Output layer): In this layer, also two operations are performed. The 

outputs of hidden layer multiplied by their connection weights W^j, in first operation, 

and then linear summation takes place in second that gives the output of WANN. The 

mathematical expression for the output of WANN is given in (2.17). 

M a-\ 

^WANN ~ 2^2u '^a,b ' ya,b (2.17) 
a=\ b=\ 

For a WANN network with scaling factor M, there is M-{M + \)I2 hidden neuron. 

Therefore, the total number of learning parameters C in Layer 1 is equal to n-M -{M +1)/2, 

where n is the number of inputs. The number of learning parameters W in Layer 3 is also equal 

to M-{M +1)/2. Therefore, the total number of learning parameter in this model is equal to 

{n + \)-M-{M + \)/2. 

33 



Xi 

X2 

Xi 

x„ 

Layer 1 Layer 2 

Fig, 2.8, Wavelet Activation Function Neural Network (WANN) 

Layers 

2-5 Gradient Descent learning of parameters 

The Gradient Descent (GD) learning can be achieved by minimizing the performance 

index/as follows: 

J = 
1 

2.P.yl 
±[Y(p)-m) (2,18) 

p=\ 

where y = maxr(p)-minl'(p) , Y is output of network and / is actual data, P is the 

number of dataset. The reason for using normalized mean square error is that it provides a 

universal platform for model evaluation irrespective of application and target value specification 

while selecting an input to the model [Azeem'OOa], 

In the batch-learning scheme employing P-data set, change in any parameter is covered 

by the equation 

p 

S 
p.\ 

(2,19) 
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and the parametric update equation is; 

v{q + \) = v{q) + Au{q) (2.20) 

where Au{q)=-dJ/du and u may stand for any of the parameters C'^j, or W^j,, and C'^f, in 

,th 
WSNN or WANN networks, respectively, q is q epoch, a„ is a momentum update coefficient 

in the limits 0 < a„ < 1 (typically a„ = 0.9), //̂  is a decay factor (typically in the range of 10'̂  

to 10-̂ ). 

We apply gradient descent technique to modify the parameter C'„^ in WSNN. The 

,th 
parameter update formula for/7 data set is as follows: 

dJ 
A , C ( ^ ) = - ; 7 T - - = /7 

dY 

dc:. P-/r K, (2.21) 

where rj is adaptive learning rate. By applying gradient descent technique to modify the 

parameters W^ ̂  and C^ ̂  in WANN, the parameter update formulas for p data set are derived 

as follows: 

A,c:.,fe)= 

^wM= 

dJ 
-T] — 

dJ 
-TJ 

= 77 

= 77 

1 

P-y'r 

1 

•e 

•e 

dY 

dC' 

A 

dY 

(2.22) 

(2.23) 

where e = Y-Y is the error between the actual output and the model output. By applying 

ay r^Y P)Y 

chain method to the above equation or and for WSNN or WANN networks 
dc:, dw^, dc:, 

are derived as follows: 
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a) ForWSNN 

^ ^ = W (x) (2.24) 

b) ForWANN 

dY 

dW. 
= ya.b=¥aA 

\ 

a,h /=! J 
(2.25) 

dY 

a,D 

I ' a,b T a,i 

f n 

V/=i 
(2. 26) 

WAF I// for different wavelet function is given in (2.11-2.13). i//' in (2.26) is differential 

functions for the wavelet functions. Derivative for Mexican hat, Morlet and Sine function are 

given in (2.27-2.29), respectively. 

^•J,) = -jj.,.e-''-[24-2-zq (2.27) 

<b{^) = 
- 2 
— z-e ' -008(5-2)-^ '" —sin(5z) 
a a 

, / \ 1 TT-z-cosiTU-z^-smiTr-z) 
¥aA^) = ^ 1 ^ 

a 71 -z 

(2.28) 

(2.29) 

Where z - /=i 

C' -x.-b 

a 
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2-6 Simulation Results 

In this section, different types of dynamic systems tliat are discussed in chapter 1 have 

been considered. WSNN and WANN networks are tested for three different types of wavelet 

functions, namely, Mexican hat wavelet, Sine wavelet and Morlet wavelet function. A 

comparative study of performance index J, for WSNN and WANN networks with different 

wavelet function and scaling factor M, for all examples, is shown in Table 2.1. 

Revisited Example 1: Linear regression witli nonlinear input 

In this example, WSNN with Mexican hat wavelet function and WANN with Morlet 

wavelet function, yield better performance and WSNN network with Mexican hat is the best 

with performance index J=l. 1576x10'̂ . However, WSNN with Sine wavelet function dose not 

converge at all. The learning parameter C of this network is as follows. The number of column in 

learning parameter C shows the number of inputs and the number of rows shows the number of 

hidden neurons in WSNN network. Figure 2.9 shows actual and network output of WSNN 

network with Mexican hat wavelet function. The error also is shown in this figure. 

C = 

0.0036 

0.1986 

0.7855 

0.2880 

0.2875 

0.5777 

0.1967 

0.3233 

0.5139 

0.2669 

0.1192 

0.2816 

0.6003 

0.0883 

0.4213 

-0.2941 

0.1560 

0.0446 

-0.1814 

-0.2797 

0.4240 

0.4679 

-0.2516 

0.3298 

0.2097 

0.1209 

-0.1469 

0.3829 

-0.0911 

0.0687 

0.4620 

-0.1829 

0.3546 

0.3043 

-0.1977 

-0.0771 

-0.4133 

0.0074 

0.2538 

0.0594 

0.3820 

0.3937 

0.6085 

0.6319 

0.6646 
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Prediction 

500 

100 200 ^ 300 
Data 

400 500 

Fig. 2.9. Actual output and network output with WSNN (Mexican hat) network and the error for 

Example 1 

Revisited Example 2: Non-linear regression with random input 

In this example, WSNN and WANN networks with Morlet function have better 

performance and WANN with Morlet function is the best model with performance index 

J=1.147xl0'^ The learning parameters C & ^ of this network are as follows. The number of 

rows in C and the size of W show the number of hidden neuron and the number of column in C 

shows the number of inputs in WANN network. WSNN network with Sine wavelet function, for 

this example, does not converge. Figure 2.10 shows actual output and network output of WANN 

network with Morlet function and the error. 
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c = 

0.3201 

0.6301 

0.8352 

0.0139 

0.2697 

0.6200 

0.5601 

0.1206 

0.8266 

0.3806 

0.8865 

0.6964 

0.5681 

0.9238 

0.1527 

0.2279 

0.6295 

0.5727 

0.7949 

0.4789 

0.0414 

0.3121 

•0.3583 

1.0795 

0.4967 

0.3628 

-0.0012 

0.0387 

0.1711 

0.8065 

0.3832 

0.5978 

0.0735 

1.0723 

0.1077 

0.1698 

0.8287 

1.4104 

0.6907 

0.3247 

0.8807 

0.8033 

0.0777 

0.1124 

0.9189 

W = 

0.1787 

0.0826 

0.1689 

0.6186 

0.4415 

0.4237 

0.0696 

0.8107 

0.5939 

0.8456 
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Fig. 2.10. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 2 
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Revisited Example 3: Non-Linear Regression witfi Non-Linear Input 

In this example, WSNN with Morlet and WANN network with Mexican hat wavelets 

have better performance while WANN network with Mexican hat and performance index 

y=l.436x10"' is the best. WSNN with S inc wavelet function does not convergence. Actual output 

and the output of the WANN network with Mexican hat wavelet function and the error are 

shown in Fig. 2.11. The learning parameters C & Wfor this network are as follows. 

C = 

1.0575 

0.6299 

0.7022 

0.9972 

0.3040 

0.1794 

0.9202 

0.2894 

0.3859 

0.6504 

0.3331 

0.2020 

0.2421 

0.2264 

0.0812 

-0.2304 

0.6032 

0.5383 

0.6570 

0.8453 

-0.0317 

0.6102 

0.4761 

0.6415 

0.6816 

0.7914 

0.5176 

0.3185 

0.0371 

0.2415 

w = 

0.5725 

-0.0644 

0.5778 

0.4333 

0.3929 

0.4022 

•0.3507 

0.5410 

0.3716 

1.0131 

0.5824 

0.1109 

0.2274 

0.3756 

0.5056 
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Fig. 2.11. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 3 

Revisited Example 4: Non-linear Regression of Input and output 

In this example, Morlet and Mexican hat wavelet give better learning pattern for WSNN 

and WANN models, respectively. However, WANN with Mexican hat wavelet function yields 

best performance index with . ^ 1.229x10'̂ . WSNN with Sine function does not converge. Actual 

output and the output of the WANN network with Mexican hat wavelet function and the error are 

shown in Fig. 2.12. The learning parameters C & FT of this network are as follows. 
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c = 

0.2983 

0.8244 

0.7990 

0.5296 

0.5257 

0.6817 

0.0682 

0.6209 

0.0034 

0.3570 

0.3079 

0.8802 

0.0225 

0.7148 

0.9337 

0.9195 

0.8071 

0.5669 

0.5529 

0.1979 

0.5770 

0.3274 

0.9769 

0.6931 

0.3717 

0.7465 

0.2760 

0.4158 

0.9028 

0.6596 

w = 

0.0620 

0.3012 

-0.0032 

0.3721 

0.3190 

0.4128 

-0.0985 

-0.0528 

0.3878 

0.4114 

0.0006 

0.3154 

0.3611 

0.5669 

0.3047 
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Fig. 2.12. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 4 
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Revisited Example 5: Gas Furnace Data 

In this example, Morlet and Mexican hat wavelet give better learning pattern for WSNN 

and WANN models, respectively. However, Mexican hat in WANN is the best with performance 

index 7=2.632x10'̂  while WSNN learning pattern for Sine does not converge. Figure 2.13 shows 

the actual output and WANN network with Mexican hat wavelet output. The error is presented in 

this figure. The learning parameters C & ^ of this network are as follows. 

0.7684 

0.7315 

0.8833 

0.2034 

0.4194 

0.2129 

0.0350 

0.0811 

0.8505 

0.3402 

0.4661 

0.9137 

0.2285 

0.8620 

0.6566 

0.5781 

1.0590 

0.0239 

0.7845 

0.0268 

0.5195 

0.1921 

0.7156 

0.2506 

0.9338 

0.1371 

0.5216 

0.8952 

0.9423 

0.3350 

1.0060 

0.5302 

0.6560 

0.8445 

0.1347 

0.0224 

0.2246 

0.1165 

0.0693 

0.8529 

0.1802 

0.0324 

0.7339 

0.5365 

0.2760 

w = 

0.6476 

0.5161 

0.2141 

0.1751 

0.4582 

0.7032 

0.5793 

0.5092 

0.0742 

0.1932 

0.3796 

0.2764 

0.7708 

0.3139 

0.6381 
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Fig. 2.13. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 5 

Revisited Example 6: Human Operation at a Chemical Plant 

In this example, WSNN and WANN networks with Morlet function yield better 

performance, while WANN with Morlet wavelet function is best with performance index 

J=8.228xl0'^. WSNN network for Sine wavelet function does not convergence. Actual output 

and the output of the WANN with Morlet function and error are shown in Fig. 2.14. The learning 

parameters C & fF of this network are as follows. 
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c = 

0.4057 

0.9355 

0.9166 

0.4103 

0.8934 

0.0579 

0.3529 

0.8131 

0.0097 

0.1389 

0.2028 

0.1986 

0.6036 

0.2721 

0.1988 

0.0235 

0.6898 

0.5639 

0.8558 

0.5141 

0.4043 

0.8283 

0.5315 

0.1842 

0.6628 

0.8312 

0.0096 

0.6847 

0.3739 

0.8302 

w = 

0.8845 
0.0877 
0.6509 
0.3865 

0.8861 

0.8016 

0.3885 

-0.0089 
0.8592 

0.4738 
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0.7564 
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Fig. 2.14. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 6 
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Example 7: Human Operation at a Chemical Plant 
A test signal is generated by the following dynamical system [Yamakawa'94]: 

5X 
'n + l 

\ + x 
2 n n-l n-l (2.30) 

with initial values of A'o = 0.2, A", = 0.3 and A'2 = i.o. This signal is chaotic and difficuh to predict. 

A time series of 120 data are produced. First 100 data are used for training of the model and 

remaining 20 data are used for prediction. 

In this example, WSNN and WANN networks with Morlet and Mexican hat wavelet 

function, respectively, yield better performance. WANN network with Mexican hat is best with 

y=3.4516x10" ,̂ while WSNN network with Sine wavelet function does not convergence. Figure 

2.15 shows system output and the output of the WANN network with Mexican hat function. The 

error also is shown in Fig. 2.15. The learning parameters C & )^ of this network are as follows. 

2 
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Fig. 2.15. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 7 
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c = 

•0.3596 

0.6207 

0.2815 

•0.0350 

1.0787 

0.3849 

0.9713 

•0.1619 

0.4246 

0.0163 

0.7904 

0.7639 

0.9237 

0.0934 

0.4308 

0.9412 

0.1112 

0.1214 

0.9567 

0.9259 

0.9002 

0.8594 

0.6908 

0.6603 

0.2899 

0.2742 

0.6395 

0.2006 

0.9389 

0.6815 

0.6812 

0.0981 

0.0695 

1.2978 

1.2888 

0.5269 

0.0813 

-0.1119 

-0.3032 

0.3584 

0.9736 

0.0283 

0.8169 

0.3422 

0.8273 

0.5225 

-0.5422 

-0.1694 

0.4819 

0.5305 

0.9054 

0.4248 

0.5815 

0.6083 

0.7989 

0.1383 

-0.0108 

0.9756 

-0.4890 

2.7240 

0.2231 

-1.1089 

0.2822 

0.4099 

0.6710 

1.3133 

1.3394 

0.1869 

0.3086 

3.1322 

-0.0579 

0.4453 

0.6658 

0.7317 

1.0359 

0.7421 

0.6735 

-0.1662 

0.7609 

1.9629 

0.4761 

1.0177 

0.2813 

0.3538 

w = 

0.0128 

0.0447 

-1.1800 

2.2251 

-0.2346 

1.3796 

-0.2380 

-0.8916 

0.3217 

1.4936 

0.4532 

0.0418 

-1.6513 

4.3237 

-0.3870 

0.0195 

-1.0231 

-0.1762 

1.6222 

0.8967 

0.3455 

0.6990 

-0.2268 

0.7616 

-0.0580 

0.3231 

0.1512 

0.6458 

Example 8: Human Operation at a Chemical Plant 
The time series used in this example is generated by the chaotic Mackey-Glass 

differential delay equation defined below: 

l + x '" ( / - r ) (2.31) 
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The data of above equation is available in MATLAB (mgdata.dat) and are produced by: 

x(0)=1.2, r = 17 and x(/) = 0 for ^ < 0 . The variablesJc(?-18),x(r-12), x(t-6) and x{t) are 

inputs and x{t + 6) is the output of the model. The number of data set produced for validity test 

of network is 1000. Out of that 500 data are used for training and the remaining 500 are testing 

the networks. 

WSNN network with Morlet and WANN network with Mexican hat wavelet functions 

have better performance whereas WANN with Mexican hat is best with performance 

y=6.2074xl0'^. In this example, WSNN network does not convergence with Sine wavelet 

function. Actual output and the output of the WANN network with Mexican hat are shown in 

Fig. 2.16. The error is presented in this figure. The learning parameters C & W of this network 

are as follows. 

500 

100 200 300 400 500 
Data 

Fig. 2.16. Actual output and network output with WANN (Mexican hat) network and the error 

for Example 8 
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c= 

1.7687 

0.0954 

1.6205 

0.4907 

0.4255 

0.8360 

0.3593 

0.5352 

0.9296 

0.3852 

0.1562 

0.7094 

0.8224 

0.0272 

0.7140 

0.3412 

0.8663 

0.4887 

0.7337 

0.3297 

0.2796 

0.1768 

0.1810 

0.7401 

0.3809 

0.5824 

0.1289 

0.6313 

-2.3279 

-0.0658 

2.4201 

0.2756 

0.4772 

1.3197 

0.6888 

1.0094 

0.9555 

0.4586 

0.2770 

0.2880 

0.1423 

0.2723 

0.7101 

0.2555 

0.8206 

0.4449 

0.3865 

0.4204 

0.5065 

0.4292 

0.6450 

0.7606 

0.9226 

1.0455 

0.4668 

0.7213 

-2.4718 

0.3538 

0.1788 

-0.0730 

0.8384 

0.5969 

0.0098 

0.3123 

1.0148 

0.0748 

0.2386 

0.6958 

0.2983 

0.5418 

0.0809 

0.9391 

0.5403 

0.4361 

0.5506 

0.3151 

0.4061 

0.2114 

0.5559 

0.8463 

0.6033 

0.6702 

0.1988 

0.3652 

-1.9171' 

0.2268 

0.1756 

0.1768 

0.7852 

-0.2602 

0.4698 

0.2134 

0.5380 

0.2369 

0.8289 

0.1025 

0.9269 

1.2093 

0.9921 

0.7334 

0.4366 

0.6267 

0.2544 

0.7794 

0.3002 

0.9432 

0.7471 

0.4224 

0.7688 

0.2624 

0.4574 

0.9892 

W = 

'-1.0867 

0.4760 

0.4742 

-0.0190 

-0.0887 

-0.7065 

-0.0143 

-0.5303 

-0.1470 

0.0951 

0.1671 

0.2572 

0.6524 

0.7984 

0.1243 

-0.0697 

0.4345 

0.5252 

0.1026 

0.7279 

0.0478 

-0.0267 

0.3977 

-0.4437 

-0.1951 

-0.2055 

0.1677 

0.5594 
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Table 2.1: Performance Index of WSNN and WANN networks for different wavelet activation 

functions 

Examples 

Example 1 

Example 2 

Example 3 

Example 4 

Example 5 

Example 6 

Example 7 

Example 8 

Networks 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

WSNN 

WANN 

NN 

N.H. (M) 

15(M=5) 

20 

15(M=5) 

13 

15 (A/=5) 

15 

15 (M=5) 

18 

15 (M=5) 

16 

15 (A^5) 

20 

28 (A^5) 

12 

28 (M=5) 

12 

Performance Index (J) 

Mexican hat 

1.1576x10-* 

2.817x10"*' 

4.3x10-' 

2.762x10-' 

1.508x10"* 

1.436x10-* 

2.6536x10-' 

1.229x10=* 

1.0976x10-' 

2.632x10-^ 

9.0252x10-* 

8.668x10-*" 

7.7x10-^ 

3.4516x10-5 

4.0988x10-' 

6.2074x10-* 

Morlet 

1.339x10-*' 

1.993x10-* 

9.01x10-* 

3.2x10-' 

1.147x10-' 

4.019x10-' 

1.452x10-^ 

3.591x10-^ 

2.769x10-^ 

2.0679x10"' 

9.737x10-' 

4.849x10-' 

2.6546x10-' 

7.530x10-* 

1.04x10-' 

8.3505x10-* 

8.228x10-* 

1.096x10-' 

1.9x10-^ 

3.482x10-' 

8.0x10-^ 

2.3x10"^ 

3.0x10-* 

8.23x10"' 

Sine 

4.388x10"* 

3.319x10"' 

2.042x10"^ 

2.280x10-^ 

6.837x10"* 

2.622x10"' 

9.9988x10-' 

1.1721x10-' 
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In Table 2.1, different networks namely Wavelet Activation function Neural Network 

(WANN), Wavelet Synapses Neural Network (WSNN) and Neural Network (NN) are shown in 

second column. In this column, the network with better performance is Bold. Third column 

shows the Number of Hidden neurons (N.H.). The maximum number of scaling factor (A/) for 

WANN and WSNN is shown in bracket. The last colimm is also shows the performance index J 

for different wavelet functions namely Mexican hat, Morlr\et and Sine. The best performance 

index is Bold. 

2-7 Conclusions 

In this chapter, a comparative study of Wavelet Synapses Neural Network (WSNN) and 

Wavelet Activation Neural Network (WANN) networks is studied. Three types of wavelet 

activation functions, namely Mexican hat, Morlet and Sine are tested in WSNN and WANN 

networks. The comparative result of different wavelets shows that Mexican activation function 

yield better performance in WANN network however in WSNN network most the times Morlet 

activation function is better. WSNN does not convergence with Sine wavelet function. WANN 

network generally yields better performance than WSNN network. 
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Chapter %5 

Generalized Wavelet Networks 

3-1 Introduction 

At the present scenario, wavelet decomposition emerges as a new powerful tool for 

function approximation due to its multi-resolution property. Wavelet Neural Networks (WNN) 

inspired by both the feed forward neural networks and wavelet decompositions have received 

considerable attention [Q. Zhang'92, 97] [J. Zhang'95] and become a popular tool for function 

approximation. 

The main characteristic of WNN is that some kinds of wavelet functions are used as the 

nonlinear transformation function in the hidden layer, instead of the usual sigmoid function. 

Incorporating the time-frequency localization properties of wavelets and the learning of the 

general Neural Network (NN), WNN has shown its advantages over the regular methods such as 

NN for complex nonlinear system modeling. 

In this chapter, two types of WNN namely Summation Sigmoid-Wavelet (SS-W) and 

Multiplication Sigmoid-Wavelet (MS-W) are proposed [Banakar'06a]. Literature survey 

indicates that all studies show the efficacy of wavelets when used in wavelet network. But none 

of the reported work caters a comparative study for different types of the wavelets. The presented 
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work is an attempt to propose a comparative study for three types of wavelet used in WNN, 

namely, Mexican hat, Morlet and Sine wavelet function. The idea of this work is to use 

approximation of inputs by Sigmoid Activation Function (SAF) and Wavelet Activation 

Functions (WAF) separately and then to combine them. The SAF in NN can modulate low 

frequency section of signal and the WAF in WNN can modulate high frequency section 

especially sharp section of signal. Conjunction of SAF and WAF combines the localize 

approximation property of wavelets with functional approximation properties of neural network. 

The temporal change in dynamic system, particularly when the changes are sharp, can be 

acciimulated in wavelets. The output of every neuron in SS-W is summation of SAF and WAF 

and output of each neuron in MS-W is the product of these two. 

The result of these two models are compared with a Localized WNN (LWNN) that 

proposed in [Banakar'06b]. A local model is used in WNN to approximate output of each 

wavelet. It means that localization of wavelet is approximated by a linear function of inputs (i.e., 

local model) then precise output of the WNN hopes to be improved. By LWNN the precision of 

the results increase but complexity of network is increased while in two proposed SS-W and MS-

W networks precision increases where as complexity decreases. 

This chapter is organized as follow: In section 3-2, Localized wavelet Neural Network 

(LWNN) is discussed. Section 3-3 proposes sigmoid-wavelet neuron networks. SS-W & MS-W 

neuron networks are described imder this section. Universal approximation of the proposed SS-

W & MS-W neuron networks are described in section 3-4. The learning algorithm based on 

Gradient Descent describes in section 3-5. Structure determination of the proposed networks is 

derived in section 3-6. Experimental results are revealed in section 3-7 and, finally conclusions 

are relegated to section 3-8. 
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3-2 Localized Wavelet Neural Network (LWNN) 

The structure of LWNN is shown in Fig. 3.1. Same as WANN the network is framed into 

four layers. Layer wise description of the network architecture has been given below: 

• Layer 1 (Input layer): The neurons in this layer only transmit the inputs to the 

hidden neuron. 

• Layer 2: This layer hold two inner sections. First the inputs are weighted with C, 

and then they are passed through wavelet activation function V^a^b • The mathematical 

expression for the output of this layer is given in (3.1). 

0L=y^ a,b (3.1) 

• Layer 3 {Localized Layer): In this layer, the local models ^<,4(x) exert on 

outputs of second layer. It's mean that localization of wavelet is approximated by a local 

function to increase the precision. The local model )^o^(x) expressed as linear function 

of input X as follows: 

Output of nodes in third layer is: 

• Layer 4 (Output Layer): The final output of the network is: 

M a-\ 

y=1.101 (3.4) 
a=l 6=0 

55 



^l 
^ 1 ^ "- U 

^ ^rAA^ 
7 '̂''̂ (̂/XV̂  

1 I I — 

JCS)—* 

KlD—^ 

VE)—* 

n* a',. ^ W 

^^2.1 Oio 

• . .» 
^ a ^ 

* 

TjnM Olj, 

1 L 

WM(X) 

»A 
n ^ 

- « • W2^(X) 

^/<^S 
•vy 
W^i(x) 

» ( ^ 
*yy 

W^^„(x) 

. ^ 

Of. 

J 1 — 

L ^ 
^ t C)-^^ 

I 

Layer 1 Layet 2 

Fig. 3.1. Localized Wavelet Neural Network (LWNN) 

Layer 3 Layer 4 

For a WANN network with scaling factor M, there is M - ( M + 1)/2 hidden neuron. 

Therefore, the total number of learning parameters C in Layer 1 is equal to n-M-(M +1)/2, 

where n is the number of inputs. The number of learning parameters W in Layer 3 is also equal 

to {n + \)-M-{M +1)/2. Therefore, the total number of learning parameter in this model is equal 

to(« + 2>Jl/-(A/ + l)/2. 

3-3 Sigmoid-Wavelet Neuron Networks 

In this section, we introduce a feed-forward network. Each neuron in this network is a 

combination of SAF and WAF. In both network a Sigmoid-Wavelet (S-W) neuron is used in 

hidden layer. If the summation operator combines SAF and WAF, that results a Summation 

Sigmoid-Wavelet (SS-W) neuron. Whereas with a product operator results a Multiplication 

Sigmoid-Wavelet (MS-W) neuron. 
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3-3.1 Feed-forward network 

Feed-forward network with different type S-W neuron in the hidden layer is proposed. 

Figure 3.2, shows a feed-forward network. In the hidden layer, neurons represented by 'G' are S-

W neurons. The output of feed-forward network is given in (3.5) 

(3.5) 

where y, is the output of S-W neurons, W, is the weights between hidden neuron and output 

neurons and L is the number of hidden neuron. 

CW.CN 

Ii^ut Layer Hidideii Layer Ou^ut Layer 

Fig. 3.2. Feed-Forward Neural Network 

3-3.2 Summation Sigmoid-Wavelet (SS-W) Neuron 

The detailed structure of S-W neuron is shown in Fig. 3.3. The output of each S-W 

neuron is summation of the output from SAF and WAF and is given by (3.5). 
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'«0 

Fig. 3.3. Summation Sigmoid-Wavelet (SS-W) neuron network 

yj{k) = y%khyj{k) (3.6) 

.c The function yj and yj are output of SAF and WAF for/ S-W neuron, in the hidden 

layer, respectively. The function yj and yj are expressed as (3.7-3.8) 

\ /=1 
(3.7) 

r n 
y'j{k) = wY^Ci^'xik) 

\i=\ 
(3.8) 

Xf is /* input. C5 and C^ are weights to inputs signal for SAF and WAF, in each hidden 

neuron, respectively. 

3-3.3 Multiplication Sigmoid-Wavelet (MS-W) Neuron 

The detailed structure of MS-W neuron is shown in Fig. 3.4. The output of each S-W 

neuron is product of the output from SAF and WAF and is given by (3.9) 
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Fig. 3.4. Multiplication Sigmoid-Wavelet (MS-W) neuron network 

yj('^) = yj('c)-yJU) (3.9) 

,t^ A The function >'y and yj are outputs of SAF and WAF for / S-W neuron, in the 

0 I// 

hidden layer, respectively. The function yj and yj are expressed as discussed in (3.7-3.8) 

3-4 Universal approximation of tlie S-W neuron networlcs 

For system identification, the Universal Approximation means that for any given 

continuous output trajectory y{t) of any nonlinear dynamic system over any compact time-

interval /e[/o,r] , the output Y{t) of the SS-W and MS-W networks can approximate >'(/) 

uniformly with arbitrarily high precision. The proposed SS-W and MS-W networks can be 

shown to be a universal approximate for continuous functions over compact set if it satisfies 

some certain conditions. The conditions for different wavelet functions are described in 

following theorems. Prove of the theorems have been given in appendix A. 
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Theorem 3.1: Universal approximation theorem of SS-W neuron network, for any real function 

.̂•9?" ->9?" which is continuous on a compact set î  c9?" and for any given 

£• > 0 there is an SS-W network / , with Mexican hat, Morlet or Sine WAF, such 

that sup||/(x)- ̂ (x)|| < E. Here ||| can be any norm. 
xeA 

Theorem 3,2: Universal approximation theorem of MS-W neuron network with Mexican hat 

WAF, for any real function A: 5H" -> 9?" which is continuous on a compact set 

ift c: 1H" and for any given f > 0 there is an MS-W network /,with Mexican hat 

WAF, that satisfies condition (3.10), such that s\xp\f{x)- A(X| < s. Here \l can be 
X6ifl 

any norm. 

•x/2 
CyyX¥^b±a^^ (3.10) 

where C^ =|C^^,C^^,...,C^ j , X = \X\,X2,.:,x„). 

Theorem 3.3: Universal approximation theorem of MS-W neuron network with Morlet WAF, for 

any real function A: 9?" -> 9?" which is continuous on a compact set ift c 9{" and 

for any given e > 0 there is an MS-W network /,with Morlet WAF, that satisfies 

condition (3.11), such that sup||/(x)- A(;C| < e. Here ||| can be any norm. 
xefi 

Cy,X^h-¥a{lp + \)- (3.11) 

where C^ = |C^^,C^^,...,C^ j , X = {x^,X2,...,x„] and p is any integer value. 

Theorem 3.4: Universal approximation theorem of MS-W neuron network with Sine WAF, for 

any real function A: 9t" - • 9?" which is continuous on a compact set Ac.'iR" and 
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for any given ^ > 0 there is an MS-W network / ,with Sine WAF, that satisfies 

condition (3.12), such that sup||/(x)- /j(x| < e. Here {{| can be any norm. 
X6/1 

C„X*h^pa (3.12) 

where C^ =|C^,C^^,.,.,C^ j , X = ^^,x^,...,x^ and p is any integer value. 

3-5 Gradient Descent learning of parameters 

The gradient descent learning can be achieved by minimizing the performance index J 

and using the parametric update equation as given in (2.18) and (2.20), respectively. 

Applying gradient descent technique to modify the parameters W^j^ & C„ ̂  in LWNN 

results the following parameter update formulas for/?"' data set: 

^Wa,Ssi)^-^-::::7-^n' 
dY 

dW„ a,b P'/r ^K a.b 

^pCaM = -^T7^ = V-
dY 

dC. a,b P'/r dQ a,b 

(3.13) 

(3.14) 

where e = y-y is the error between the actual output and the model output. By applying 

A A 

chain method to the above equations, and —z— for LWNN network are derived as 
dW, a,b dC 

follows: 

A. 

dY 
dJV, a,b 

sol 
5Wl aji 

ajt 

f n 

V/=l 
(3.15) 
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8Y _dOl,_dWjx) _^ ,ffr' ' 
3w:, dw:. SK, /=! 

(3.16) 

''-=^=^..{^)^=KXX)-X, • < J Y.C'., • ̂ , 
5Q» 5C,,, a,6 

(3.17) 

where O^j, and Oj ̂  are outputs of second and third layers in LWNN network as shown 

in Fig. 3.1. 

In S-W nexiron networks by applying gradient descent technique to modify the 

parameters W, C^ &-Cg, following parameter update formulas for/?* data set are resulted: 

" ^^^^ ' dWj / P-yl dWj 
(3.18) 

A„C, {q) = -TJ = T] --e 
dC 

(3.19) 

A ^ M ^ 1 ^^ 
A.Q \q) = -V = 7 r-e 

(3.20) 

Applying chain method to - — , and in above equation for SS-W and MS-
dWj a c . dC, 

W neuron networks the following equations are derived: 

a) For SS-W neuron network 

^ = y^.{k) = y^{khyj{k) 
dWj 

(3.21) 

62 



/ 

'»', 

n 
dC/-. ' - ' ^ U = l 

f 

'S, 

n 
^ = xXk\Wre' lci-x.{k) 
dCi -^ ' ^ U = l 

(3.22) 

(3.23) 

b) For MS-W neuron network 

(3.24) 

r 

^ and {̂  in (3.16-3.21) are SAF and WAF, respectively. SAF 9 is given in (3.22). 

e(s)= 
\ + e-

(3. 25) 

(3.26) 

(3.22) 

n 

where s = ^Cg -x.. Differential functions for the SAF is 0' and expressed as follows: 

0'{s) = 0(s)i\-0{s)) (3.23) 

WAF I// and i//' the differential functions of the WAF's, for Mexican hat, Morlet and Sine 

function wavelet functions are given in (2.11-2.13) and (2.27-2.29), respectively. 
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3-6 Structure determination of S-W neuron networks 

There are two methods for selecting the number of hidden layer neurons in feed-forward 

neural network. In one method, initially large numbers of hidden layer neurons are selected. As 

the training progress, the neurons output are monitored to remove the redundant and the inactive 

neurons from the hidden layer. Redundant neurons are those whose output is a linear 

combination of the rest of the two or more neurons for all the data set. Inactive neurons are those 

whose output remains constant for all the data set, they add a bias to the next layer neurons. 

Second method employs, in the begirming, a fewer number of neurons in the hidden layer, as the 

learning progresses the nimiber of hidden layer neuron is increased. While increasing the number 

of neurons in the hidden layer, redimdancy and inactiveness should be checked. 

In this thesis, method for structure determination of the network is devised for feed­

forward S-W neuron network. Each SS-W and MS-W neuron is a parallel combination of WAF 

and SAF; it means that the number of WAF and SAF is the same. Since wavelet parameter is 

highly dependent on the nature of the input-output signal, initially the scaling parameter is 

selected with the minimum possible value (a=l for normalize I/O signal) and shifting parameter 

is chosen by appropriate positioning of wavelet (i.e., b=0). This results in a single hidden layer 

neuron. Later on, by gradually increasing the scaling factor and appropriate positioning of 

wavelets the number of neuron in the hidden layer goes on increasing, resulting in the growth of 

network. A criterion is specified to stop the growth of the network. The decomposition of the 

input signal space by the wavelets is shown in Fig. 3.5. As shown in Fig. 3.5, we select minimum 

number of WAF by using scaling factor ci=l and shifting b=0. Therefore, the number of sigmoid 

activation function is one. In total, for a=l there is only one neuron constituting one WAF and 

SAF. In the next step the WAF with scaling factor a=2 is added to previous network. For a=2 
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shifting parameter b is change from 0 to 1. Therefore, in this stage there are three WAF along 

with three SAF. In this stage the numbers of neuron increase to 3. In the same way for a=3 

shifting parameter b is change from 0 to 2 and the number of neurons increase to 6. In this 

manner, the network grows itself imtil the specified criterion, for stopping of this growth, is 

accomplished. 

Fig. 3.5. Wavelet with different scaling factor and shifting 

Various methods for correct selection of these parameters, in more effective way, have 

been proposed in [Zhang*95, Oussar'OO]. Since the data are normalized, the number of wavelet 

fimction with scale 'a' needed to cover normalized range is no more than a +1. Let a the value 

for scaling factor, the value of shifting parameter b change from 0 to a-1. Here, in proposed 

method, firstly, the number of WAF is to be fixed and then the same number of SAF is added. To 

select the number of WAF, we increase scaling factor from one to higher value, in step of one, 

until we obtain the desired accuracy. For a value of scaling factor a, the nimiber of hidden S-W 

neurons in network is equal toa(a +1)/2. Therefore, the total number of learning parameters in 

this model is equal to a{a +1)- (2« +1)/2. 
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For every scaling factor a, the network is initialized and trained. The number of scaling 

factor and therefore number of hidden neurons continued to be increased until this increase in 

hidden neurons improves the model performance index 7 expressed in (2.18). Figure 3.6 shows 

the algorithm of structure determination. 

3-7 Simulation Results 

In this section, different types of dynamic systems that are discussed in chapter 1 have 

been considered. The proposed SS-W and MS-W neuron networks in feed-forward network have 

been tested with three different types of wavelet functions, namely, Mexican hat wavelet. Sine 

wavelet and Morlet wavelet function. 

Revisited Exampie 1: Linear regression witti noniinear input 

Figures 3.7 and 3.37, show the procedure of structure determination for SS-W neuron network. 

The scaling factor 'a' has been increased one by one. For 'a=l' there is only one WAF with one 

SAF that constitutes one neuron. The performance of this model is shown in Fig. 3.7 with solid 

line. For 'a=2' there is three WAF. First wavelet is for 'a=V and the rest two are corresponds to 

'af=2' with shifting parameter '6=0 & 1'. Therefore, three SAF are also added to form three SS-

W neuron networks in the hidden layer of feed-forward network. In Fig. 3.7 the performance of 

the model with 'a=2' is shown with dashed line. In the next step increasing the scaling factor is 

increased to '0=3' the number of neuron in the hidden layer is increased to six. This increase is 

due to addition of three WAF with shifting "6=0, 1, & 2". In Fig. 3.7 the learning pattern of the 

model with 'a=y is shown with dotted black color line. Since the performance reduces due to this 

increase of'a' from 2 to 3, fiirther increase of its value is stopped so the model with 'a=2' is to be 

considered as model with best performance. 
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Table 3.1 shows performance index J for Mexican hat, Morlet and Sine wavelet 

activation functions. In this table, number of Hidden Neuron (H.N.) for each model also has been 

shown, hiitialization of the learning parameters W, Cs and Cw for all wavelet and the learning 

parameters for Mexican hat, Morlet and Sine wavelet function corresponding to the learned SS-

W neuron network are as follows: 

Initialization of the learning parameters: 

W = 

0.1934 

0.6822 

0.3027 

Cs = 

0.8216 

0.6449 

0.8179 

0.6602 

0.3419 

0.2897 

0.3411 

0.5340 

0.7271 
^w ~ 

0.5416 0.3783 0.5935 

0.1508 0.8600 0.4965 

0.6979 0.8536 0.8997 

For SS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.7254 

•0.5889 

1.1855 

0.4502 

0.7798 

0.3642 

0.4534 

0.5004 

0.4942 

0.9474 

0.0121 

0.4880 

/ _ 
0.5796 0.0727 0.3838 

0.6658 0.2252 0.4201 

0.4610 0.1697 1.1744 

For SS-W neuron network with Morlet wavelet function: 

W^ = 

0.4984 

-0.0850 

1.2565 

0.1321 

0.2035 

0.1970 

0.0556 

0.7568 

0.5095 

0.9209 

0.5316 

0.3451 
'W 

1.1391 0.2984 0.0283 

0.1046 0.8329 0.9810 

0.5440 -0.0482 0.5068 

For SS-W neuron network with Sine wavelet function: 

W^ = 

0.7805 

-0.6753 

0.8946 

0.5208 

0.0287 

0.0940 

0.2643 

0.4157 

0.5112 

0.9944 

0.5242 

0.4782 

0.0416 0.4875 0.4077 

1.0471 0.9260 0.4550 

0.6568 0.5245 0.7591 

In this example, Morlet wavelet yields better resuh with J=l.734x10"^. Figure 3.8 shows learning 

pattern of SS-W neuron network with different types of wavelet fimction. 
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START 

a=0 

~F 
a=a+1 

b=Q^.a-^ 
Set structure of the Network 

With a&b 

Initialization 
q=0 

i 
q=q+1 

GD Algorithm for parameter learning and 
Evaluation of performance J 

Yes 

Select a&b 
Structure Determination with a&b 

STOP & Save the learning Parameter 

Fig. 3.6. Algorithm for Structure Determination 

68 



400 ^600 
epoch 

800 1000 

Fig. 3.7. Learning pattern of feed-forward network with SS-W neuron network using Morlet 

activation function with scaling factor a=l, 2 & 3 for Example 1 
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Fig. 3.8. Learning pattern of SS-W neuron network with all wavelet functions for Example 1 
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Figures 3,9 and 3.38, show the procedure of structure determination for MS-W neuron 

network. The scaling factor 'a' has been increased one by one. For 'a=V there is only one WAF 

with one SAF that constitutes one neuron. The performance of this network is shown in Fig. 3.9 

with solid line. For 'a=2' there is three WAF. First wavelet is for 'a=r and the rest two 

corresponds to 'a=2' with shifting parameter '6=0 & V. Therefore, three SAF are also added to 

form three MS-W neuron networks in the hidden layer of feed-forward network. In Fig. 3.9 the 

performance of the network with 'a=2' is shown with dashed line. Further increasing the scaling 

factor, i.e., 'a=3' the number of neuron in the hidden layer increased to six. This increase is due 

to addition of three WAFs with shifting "b=0, 1, & 2". In Fig. 3.9 the learning pattern of the 

network with 'a=y is shown with dotted black color line. Since the performance reduces due to 

this increase of'a' from 2 to 3, ftuther increase of its value is stopped so the network with 'a=2' is 

to be considered as network with best performance. In this example, MS-W network has three 

hidden neuron. Initialization of the learning parameters W, Cs and Cw for all wavelet fimctions is 

same as SS-W neuron network. Figure 3.10 shows learning pattern of MS-W neuron network 

with different type of wavelets. Learning parameters for Mexican hat, Morlet and Sine wavelet 

fimction corresponding to the learned MS-W neuron network are as follows. 

For MS-W neuron network with Mexican hat wavelet fimction: 

W^ = 

1.2325' 

0.3809 

0.1769 

0.5197 

0.8730 

0.9363 

0.3334 

0.1681 

0.8708 

0.3799 

0.6703 

0.9645 

0.7042 -0.1224 0.6061 

0.4457 0.4127 0.2055 

0.3613 0.4217 0.1096 

For MS-W neuron network vdth Morlet wavelet fimction: 
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lyf 
-0.0602 
0.5548 
1.1146 

0.8185 
0.6340 
0.8862 

0.6608 
0.3407 
0.3314 

0.3415 
0.5837 
0.8063 

0.6088 0.3229 0.5377 

•0.1648 0.4196 -0.0864 

0.4203 -0.0865 0.6054 

For MS-W neuron network with Sine wavelet function: 

W^ = 

0.9520 

0.2201 
0.7252 

0.4317 
0.1141 

0.8605 

0.9389 
0.4661 

0.9715 

0.3218 
0.8700 
0.8332 

0.4475 -0.4184 0.7518 

0.8709 0.7142 -0.0132 

0.6003 0.7018 0.7514 

10 

10 

10' 
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Fig. 3.9. Learning pattern of feed-forward network with MS-W neuron network using Morlet 

activation function with scaling factor a=l, 2 & 3 for Example 1 
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Fig. 3.10. Learning pattern of MS-W neuron network with all wavelet functions for Example 1 

Table 3.1 shows performance index with different network. For each network. Wavelet 

function with the better performance is Bold and the best is Bold-Italic. MS-W neuron network 

with Morlet activation function yields better performance. Actual output & network output for 

MS-W with Morlet wavelet function and error between them have been shown in Fig. 3.11. 

Table 3.1: Performance index (J) with different networks and wavelet functions for Example 1 

Model -> 

H.N. -> 

Mexican hat 

Morlet 

Sine 

SS-W 

6 

2.763 xlQ-*" 

1.734x10-* 

5.566x10-* 

MS-W 

6 

1.505x10-* 

ZSSS^lOr' 

1.714x10-* 

WNN 

15 

2.817x10-* 

1.993x10-* 

4.388x10-* 

LWNN 

15 

1.843X10-* 

5.806x10-* 

6.750x10-* 

NN 

20 

9.01x10-* 
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50 

•50 

Learning Prediction 

100 200 300 400 500 

Fig. 3.11. Actual output and network output with MS-W (Morlet) neuron network and the error 
for Example 1 

Revisited Example 2: Non-linear regression witti random input 

The structure determination of the SS-W neuron network is started from 'CF=V. We 

increase scaling factor one by one. For every scaling factor the model is being learned. Figures 

3.12 and 3.37 show that an increase in scaling factor decreases the performance index. In Fig. 

3.12, the performance of the network with 'a=4' is shown with dashed-dot line. By increasing 

scaling factor from 3 to 4 the performance index does not improve. So scaling factor "a=3" is 

selected. Table 3.2 shows that SS-W model with Morlet wavelet fimction yield better result with 

performance index ^=1.648x10"'. Figure 3.13 shows the Learning pattern of SS-W neuron 

network with all wavelet fimctions. SS-W neuron network with Morlet wavelet fimction yields 

better result. Initialization of the learning parameters fV, Q and Cw for all wavelet fimctions and 

learning parameters for Mexican hat, Morlet and Sine wavelet fimction corresponding to the 

learned SS-W neuron network are as follows. 
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Initialization of the learning parameters: 

W = 

0.2844 

0.4692 

0.0647 

0.9883 

0.5827 

0.4235 

Cc = 

0.6945 

0.6213 

0.7948 

0.9568 

0.5225 

0.1729 

0.9797 

0.2714 

0.2523 

0.8757 

0.1365 

0.0117 

0.8939 

0.1991 

0.2987 

0.8801 0.7373 0.6614 

C = 

0.4965 

0.8997 

0.8216 

0.6449 

0.8179 

0.6602 

0.3419 

0.2897 

0.3411 

0.5340 

0.7271 

0.3092 

0.8385 

0.5680 

0.3704 

0.7027 

0.5465 

0.4448 

For SS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.5873 

0.7124 

1.1610 

0.0349 

0.6710 

0.16116 

0.2910 

0.3976 

0.8655 

0.7986 

0.3401 

0.0450 

0.5654 

0,6184 

0.6638 

0.9035 

0.9343 

0.3517 

0.663 r 
0.6739 

0.0673 

0.8843 

0.6251 

0.6497 

-0.6071 

0.9502 

1.4262 

0.7930 

0.4494 

0.8773 

0.1894 

0.6577 

-0.1030 

0.3450 

1.1507 

0.0386 

0.9035 

-0.3634 

1.0077 

0.5887 

1.1337 

0.5877 

For SS-W neuron network with Morlet wavelet function: 

W^ = 

0.5257" 

0.2387 

0.3102 

1.1563 

0.1041 

0.5969 

0.7220 

0.6647 

0.7962 

1.0360 

0.5490 

0.9188 

0.1751 

0.9902 

0.2844 

0.2470 

0.8723 

0.7393 

0.0541 

-0.0926 

0.9160 

-0.0480 

0.2637 

0.5517 

0.4195 

1.4692 

0.6935 

-0.0476 

0.7678 

1.2763 

-0.0524 

0.8091 

0.3470 

1.0244 

0.7572 

0.6754 

1.5715 

0.8285 

0.6080 

1.2828 

0.3325 

0.3700 

For SS-W neuron network with Sine wavelet function: 

W^ = 

1.0267 

0.5687 

0.6634 

0.6977 

0.0858 

1.0382 

0.5016 

0.5665 

0.9160 

1.3856 

0.6364 

1.1642 

0.3292 

1.0474 

0.2490 

0.0917 

0.8915 

0.6049 

0.4022 

0.2288 

0.9086 

-0.1136 

0.2880 

0.4129 

-0.2107 

0.8408 

1.3764 

0.6284 

0.9498 

1.5183 

0.7048 

0.7642 

0.4185 

0.2844 

0.7066 

0.3564 

0.7356 

0.7181 

0.3031 

0.6090 

0.4947 

0.1966 
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Fig. 3.12. Learning pattern of feed-forward network with SS-W neuron network using Morlet 

activation function with scaling factor a=l, 2, 3 & 4 for Example 2 
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Fig. 3.13. Learning pattern of SS-W neuron network with all wavelet functions for Example 2 
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The structure determination of the MS-W neuron network is shown in Fig. 3.14 and 

3.38. We increase scaling factor one by one. For every scaling factor, the model is being 

learned. Figure 3.14 shows that an increase in scaling factor from 3 to 4 decreases the 

performance index. So scaling factor "a=3" is selected. Figure 3.15 shows MS-W neuron 

network with Morlet wavelet function and performance index J= 1.14x10'̂  yields better result 

than other wavelet function. Initialization of the learning parameters W, Cs and Cw for all 

wavelet functions is the same as SS-W neuron network. Learning parameters for Mexican hat, 

Morlet and Sine wavelet function corresponding to the learned MS-W neuron network are as 

follows. 

For MS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.3663 

0.3697 

1.2722 

0.0115 

0.3907 

0.3525 

0.8239 

0.6466 

0A086 
0.7272 

0.4846 

0.1493 

0.4427 

0.7398 

0.6310 

0.9670 

0.8960 

0.0599 

0.3504 

0.4643 

0.4287 

0.5741 

-0.0742 

0.5516 

0.4605 

0.8790 

1.4699 

0.4654 

0.8827 

1.0165 

1.4307 

0.2679 

0.2401 

0.5797 

0.4866 

0.3759 

1.3181 

0.3782 

0.0996 

0.7328 

0.9822 

0.6195 

For MS-W neuron network with Morlet wavelet function: 

^ ^ = 

0.3819 

0.5532 

0.4300 

1.1513 

1.0745 

0.3216 

0.6968 

0.6278 

0.8312 

0.9930 

0.6058 

0.8711 

0.2118 

0.9899 

0.2727 

0.1459 

0.8981 

0.7548 

0.1425 

0.0559 

0.9200 

0.2559 

0.4131 

0.6410 

K^ff, — 

0.5980 

0.9313 

0.7562 

0.0433 

0.5472 

0.9107 

-0.0123 

0.7336 

0.2912 

0.9934 

0.9982 

0.4966 

1.2977 

0.4126 

0.3371 

0.9832 

-0.0975 

0.5188 

76 



For MS-W neuron network with Sine wavelet function: 

W^ 

0.8328 

0.1318 

0.4229 

1.2157 

0.0080 

0.8076 

0.6599 

0.5568 

0.8306 

1.5580 

0.5983 

0.9680 

0.3699 

1.0286 

0.2402 

-0.0885 

0.8568 

0.7346 

0.3790 

0.1483 

0.9583 

-0.3822 

0.2690 

0.6711 

C^ — 

0.0662 

0.8341 

1.1880 

0.7968 

0.8891 

1.2417 

0.8344 

0.4317 

0.4777 

0.2937 

0.6864 

0.0826 

0.7076 

0.5897 

0.2306 

0.9282 

0.4932 

0.0906 

Table 3.2 shows SS-W and MS-W neuron networks with Morlet wavelet function have better 

performance index than WNN and NN. Actual output & predicted output of MS-W neuron 

network, that has best performance, and error are shown in Fig. 3.16. 

400 600 
epoch 

1000 

Fig. 3.14. Learning pattern of feed-forward network with MS-W neuron network using Morlet 

activation function with scaling factor a=l, 2, 3 & 4 for Example 2 
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Fig. 3.15. Learning pattern of MS-W neuron network with all wavelet fimctions for Example 2 

Table 3.2: Performance index (J) with different networks and wavelet functions for Example 2 

Model -> 

H.N. -^ 

Mexican hat 

Morlet 

Sine 

SS-W 

12 

2.838x10'' 

1.648x10-' 

3.457x10-' 

MS-W 

12 

2.861x10-' 

LUS^lff^ 

3.131x10-' 

WNN 

15 

2.762x10-' 

1.147x10-5 

3.319x10"' 

LWNN 

15 

1.425x10-* 

2.730x10-' 

1.403x10-̂  

NN 

13 

4.019x10"^ 
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Fig. 3.16. Actual output & predicted output of MS-W (Morlet) neuron network and the error for 

Example 2 

Revisited Example 3: Non-Linear Regression with Non-Linear input 

To determine structure of the SS-W model scaling factor is increased. As shown in Fig. 

3.17 and 3.37 scaling factor 'a=2' is a good selection for this model because there is a decrease 

in performance index by further increasing the scaling factor from 'a=2' to 'a=3'. Figure 3.18 

shows the learning pattern of SS-W neuron network with all wavelet functions. Morlet wavelet 

function with performance index J= 1.2831x10'̂  yields better result. Initialization of the 

learning parameters for all wavelet functions and learning parameters for Mexican hat, Morlet 

and Sine wavelet function corresponding to the learned SS-W neuron network are as follows. 

Initialization of the learning parameters: 

W = 

0.0575 
0.3675 
0.6314 

Cs = 

0.1536 
0.6756 

0.6992 

0.7275 
0.4783 
0.5548 

C^ — 
0.7176 
0.6926 
0.0840 

0.4543 
0.4418 
0.3532 
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For SS-W neuron network with Mexican hat wavelet function: 

fV^ = 

1.4043 

1.1737 

0.8438 

0.5219 

0.8660 

0.0877 

0.3848 

0.0500 

0.7753 

1.1255 

0.6189 

1.1825 

0.1423 

0.6988 

0.7516 

For SS-W neuron network with Morlet wavelet function: 

W^ = 

0.1404 

0.6101 

1.4617 

0.4138 

0.8885 

0.1535 

0.1439 

0.2143 

0.2371 

0.6539 

-0.1573 

1.4455 

0.9401 

0.8090 

-0.0524 

For SS-W neuron network with Sine wavelet function: 

W^ = 
1.6235 

1.2487 

0.4890 

0.6378 

0.6725 

0.6619 

0.8295 

0.4529 

1.0008 

1.2126 

1.4398 

0.7364 

0.0908 

1.0214 

0.8657 
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Fig. 3.17. Learning pattern of feed-forward network with SS-W neuron network using Morlet 

activation function with scaling factor a=l, 2 & 3 for Example 3 
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epoch 

1000 

Fig. 3.18. Learning pattern of SS-W neuron network with all wavelet functions for Example 3 

To determine structure of the MS-W neuron network, scaling factor is increased. As 

shown in Fig. 3.19 and 3.38 scaling factor 'fl=2' is a good selection for this model because there 

is a decrease in performance index by further increasing the scaling factor from 'a=2' to 'a=3'. 

Figure 3.20 shows MS-W neuron network with Morlet wavelet function yields better result. 

Initialization of the learning parameters for all wavelet functions is the same as SS-W neuron 

network. Learning parameters for Mexican hat, Morlet and Sine wavelet function corresponding 

to the learned MS-W neuron network are as follows. 

For MS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.9291 

0.0907 

0.7180 

0.4274 

0.8978 

0.7241 

0.6136 

0.3487 

0.1487 

1.2520 

0.6861 

0.8687 

0.0636 

0.1496 

0.7700 
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For MS-W neuron network with Morlet wavelet function: 

W^ = 

0.7266 

0.2420 

0.7478 

0.1789 

0.7362 

0.6930 

0.7075 

0.4613 

0.5831 

1.0280 

0.1226 

0.6264 

-0.0306 

0.0151 

0.2613 

For MS-W neuron network with Sine wavelet function: 

W^ = 

0.8351 

-0.7163 

1.4378 

0.4455 

0.5390 

0.4525 

0.6482 

0.7465 

1.1529 

1.0189 

0.9876 

1.4656 

-0.1066 

0.3791 

0.5487 

Table 3.3 shows that MS-W neuron network have better performance with J=l.361x10"^. The 

actual output & output of MS-W model with Morlet function and error are shown in Fig. 3.21. 
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Fig. 3.19. Learning pattern of feed-forward network with MS-W neuron network with scaling 

factor a=l, 2 & 3 for Example 3 
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Fig. 3.20. Learning pattern of MS-W neuron network with all wavelet ftmctions for Example 3 

Table 3.3: Performance index (J) with different networks and wavelet functions for Example 3 

Model -> 

H.N. -> 

Mexican hat 

Morlet 

Sine 

SS-W 

6 

1.415x10"̂  

1.283^ ICr^ 

1.553x10"* 

MS-W 

6 

1.381x10"̂  

1.361x10"̂  

1.418x10"' 

WNN 

15 

1.436x10-̂  

3.591x10"̂  

2.042x10"^ 

LWNN 

15 

1.412x10"* 

1.753x10-' 

1.403x10"* 

NN 

15 

2.769x10"* 
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Fig. 3.21. Actual output & predicted output of MS-W (Morlet) neuron network and the error for 

Example 3 

Revisited Example 4: Non-linear Regression of input and output 

The number of hidden neuron for SS-W neuron network is selected by evaluating the 

performance index of the model in each step with an increase in scaling factor. Figures 3.22 and 

3.37 show the performance index J for scaling factor 'a=V, 'a=2' and 'o=3' with one, three and 

six WAF, respectively. Scaling factor 'a=3' is selected and therefore in SS-W neuron network 

there is six WAF in parallel vnth six SAF. Figure 3.23 shows that Morlet wavelet function yield 

better result than Mexican hat and Sine wavelet function. The performance index of SS-W 

neuron network with Morlet function is 7=5.8144x10"*. Initialization of the learning parameters 

W, Cs and Cfv for all wavelet functions and the learning parameters for Mexican hat, Morlet and 

Sine wavelet function corresponding to the learned MS-W neuron network are as follows. 
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Initialization of the learning parameters 

W = 

"0.4057" 

0.9354 

0.9169 
Q = 

"0.1388 

0.2027 

0.1987 

0.6037" 

0.2721 

0.1988 

c = 
"0.4102 

0.8936 

0.0578 

0.3528 

0.8131 

0.0098 

For SS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.5871" 

0.1212 

0.5307 

"0.5852 

0.9196 

0.2273 

1.0646" 

0.3019 

0.3373 

0.6828 

0.4357 

0.7960 

0.5328 

0.7834 

1.0929 

For SS-W neuron network with Morlet wavelet function: 

W^ = 

-0.2472' 

0.3717 

0.9206 

"0.2047 

0.2612 

0.2491 

0.6295" 

0.3877 

0.4202 

0.7202 

1.1281 

0.8534 

0.9475 

1.3045 

0.4250 

For SS-W neuron network with Sine wavelet function: 

W^ = 

1.1042 

0.6174 

0.4585 

0.3352 

0.2803 

0.7303 

0.4900 

0.3633 

0.8005 

0.7244 

0.3401 

0.6166 

0.4270 

0.7207 

0.6950 

The number of hidden neuron for MS-W neuron network is selected by evaluating the 

performance index of the network in each step vA\h an increase in scaling factor. Figures 3.24 

and 3.38 show the performance index J for scaling factor 'a=l', 'a=2' and 'a=3' with one, three 

and six WAF, respectively. For this example scaling factor 'a=2' is selected and therefore in 

MS-W network there is six WAF in conjimction with six SAF. 
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Fig, 3.22. Learning pattern of feed-forward network with SS-W neuron network using Morlet 

activation function with scaling factor a=l, 2 & 3 for Example 4 
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Fig. 3.23. Learning pattern of SS-W neuron network with all wavelet functions for Example 4 
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The learning pattern for different wavelet function is shown in Fig. 3.25. Morlet wavelet 

function with performance J=6.394xl0'^ is better. Initialization of the learning parameters for all 

wavelet functions is the same as SS-W neuron network. Learning parameters for Mexican hat, 

Morlet and Sine wavelet function corresponding to the learned MS-W neuron network are as 

follows. 

For MS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.2633" 

0.9345 

0.2150 

'0.4207 

0.5962 

0.7877 

0.9500 

0.8587 

0.1882 

C' = 

0.4913 

1.1295 

0.7792 

0.5861 

0.2060 

0.9338 

For MS-W neuron network with Morlet wavelet function: 

W^ = 

0.4836" 

0.7579 

1.8742 

"0.4960 

0.4507 

0.3975 

0.4889 

0.8517 

0.9263 

0.1344 

0.7711 

0.5809 

0.6227 

0.7040 

0.6553 

For MS-W neuron network with Sine wavelet function: 

W^ = 

0.4035" 

0.1384 

0.5889 

"0.6582 

0.5010 

0.4738 

0.6469 

0.2651 

0.2669 

0.7281 

1.0474 

0.9093 

0.5289 

0.3279 

1.1550 

From Table 3.4, SS-W neuron network with Morlet wavelet function is the best. Figure 3.26 

shows its actual output & identify output and the error between them. 
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Fig. 3.24. Learning pattern of feed-forward network with MS-W neuron network with scaling 
factor a=l, 2 & 3 for Example 4 
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Fig. 3.25. Learning pattern of MS-W neuron network with all wavelet functions for Example 4 
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Table 3.4: Performance index (J) with different networks and wavelet functions for Example 4 

Model ->• 

H.N. -> 

Mexican hat 

Morlet 

Sine 

SS-W 

6 

8.709x10-̂  

5.814x10-" 

9.673 xlQ-" 

MS-W 

6 

6.772x10'*' 

6.394x10-* 

8.349x10-*' 

WNN 

15 

1.229x10-̂  

9.737x10'* 

2.280x10-̂  

LWNN 

15 

2.933x10'=* 

1.973x10''* 

9.372x10'" 

NN 

18 

4.849x10-* 

Learning 
• • • • • • • • • 'WHIfT 

400 600 800 1000 

200 400 600 800 1000 
Data 

Fig. 3,26. Actual output & predicted output of SS-W (Morlet) neuron network and the error for 

Example 4 
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Revisited Example 5: Gas Furnace Data 

For structure determination of the SS-W neuron network, scaling factor increased one by 

one. Figures 3.27 show learning pattern for network with scaling factor equal ^a=V, 'a=2' and 

'fl=3'. From Fig. 3.27 and 3.37 the model with scaling factor '^=3' is selected. Figures 3.28, 

shows learning patterns for SS-W model with different wavelet functions. As shown in Table 

3.5, Morlet wavelet function has better resuh wdth 7=1.676x10"'. Initialization of the learning 

parameters W, Cs and Cw for all wavelet functions and the learning parameters for Mexican hat, 

Morlet and Sine wavelet function corresponding to the learned SS-W neuron network are as 

follows. 

Initialization of the learning parameters: 

JV = 

0.9501 

0.2311 

0.6068 

0.4859 

0.8913 

0.7621 

Q = 

0.1388 

0.2027 

0.1987 

0.6037 

0.2721 

0.1988 

0.0152 

0.7467 

0.4451 

0.9318 

0.4659 

0.4186 

0.8462 

0.5251 

0.2026 

0.6721 

0.8381 

0.0196 

c = 

0.4564 

0.0185 

0.8214 

0.4447 

0.6154 

0.7919 

0.9218 

0.7382 

0.1762 

0.4057 

0.9354 

0.9169 

0.4102 

0.8936 

0.0578 

0.3528 

0.8131 

0.0098 

For SS-W neuron network v^th Mexican hat wavelet function: 

W^ = 

0.0497 

0.6125 

1.2767 

0.3384 

0.4341 

0.8267 

-0.0064 

0.7804 

0.3359 

0.8861 

0.4079 

0.3213 

0.8239 

0.5592 

0.0917 

0.6255 

0.7789 

-0.0793 

0.7241 

0.3090 

0.9981 

0.6050 

0.8239 

0.6170 

0.7798 

0.8278 

-0.0892 

0.3719 

0.8370 

0.8309 

0.2648 

0.9842 

-0.2117 

0.3185 

0.7128 

-0.0775 

0.1917 

-0.0306 

0.9923 

0.6285 

0.4825 

0.3643 
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For SS-W neuron network with Morlet wavelet function: 

W^ = 

0.7503 

0.6885 

0.2407 

0.2820 

0.1944 

0.9577 

0.5363 

0.7994 

0.6606 

0.9880 

0.9439 

0.0198 

0.3312 

0.5259 

0.2490 

0.5863 

0.0322 

0.5337 

0.7165 

0.9740 

0.7564 

0.7473 

0.4417 

0.6517 

C^ -

0.0515 

0.6862 

0.5112 

0.6421 

0.6189 

0.5659 

0.4726 

0.7400 

0.1053 

0.7742 

0.8886 

0.8577 

0.9382 

0.4478 

0.0084 

0.6421 

0.4937 

-0.2022 

For SS-W neuron network with Sine wavelet function: 

W^ = 

0.5029 

0.6198 

0.3330 

0.2710 

0.2038 

0.6084 

0.8742 

0.5390 

0.2309 

0.9098 

0.6723 

0.1571 

0.6873 

0.5749 

0.1239 

-0.0485 

0.2953 

0.0407 

0.0355 

1.0030 

0.2185 

0.1770 

0.6804 

0.6745 

0.2194 

0.5954 

0.2222 

0.8815 

0.1997 

0.3975 

0.9243 

0.8175 

0.3052 

0.3829 

0.5362 

0.0198 

0.0115 

0.7418 

0.8288 

0.5185 

0.2375 

0.5854 
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Fig. 3.27. Learning pattern of feed-forward network with SS-W neuron network using Morlet 

activation function with scaling factor a=l, 2, 3 & 4 for Example 5 
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Fig, 3.28. Learning pattern of SS-W neuron network with all wavelet functions for Example 5 

Figure 3.29 shows learning pattern for MS-W neuron network with scaling factor 'a=l\ 

'0=2' and 'a=3'. From this figure and Fig. 3.38, MS-W neuron network with scaling factor 'fl=2' 

is selected. Learning pattern of MS-W neuron network with different types of wavelet function is 

shown in Fig. 3.30. Morlet wavelet function yields better result with performance 7=1.5258x10" .̂ 

Initialization of the learning parameters for all wavelet functions and the learning parameters for 

Mexican hat, Morlet and Sine wavelet function corresponding to the learned MS-W neuron 

network are as follows. 

Initialization of the learning parameters 

W = 

0.5364" 

0.1632 

0.2109 
Cs = 

"0.1311 
0.0682 

0.1252 

0.1661 
0.9114 

0.1362 

0.6170 

0.2689 

0.2206 
r = 

0.2168 
0.6517 

0.0527 

0.2292 
0.6674 

0.3109 

0.3066 
0.7206 

0.9544 
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For MS-W neuron network with Mexican hat wavelet function: 

W^ = 
0.5263 
1.0675 

0.9779 

0.3676 
0.8084 

0.5864 

0.2345 

0.3898 

0.5886 

0.2319 

1.0246 

1.0055 

0.4345 0.4230 0.9894 

•0.0158 0.3467 0.6899 

•0.0097 -0.1890 0.9405 

For MS-W neuron network with Morlet wavelet function: 

W^ = 
0.5364 
0.1632 

0.2109 

0.1311 
0.0682 

0.1252 

0.1661 
0.9114 

0.1362 

0.6170 
0.2689 

0.2206 

0.2168 0.2292 0.3066 
0.6517 0.6674 0.7206 
0.0527 0.3109 0.9544 

For MS-W neuron network with Sine wavelet function: 

W^ = 
0.6745 
0.4021 
0.7322 

0.2838 
-0.0343 
0.7817 

0.3909 
0.2040 
0.3056 

1.1315 
0.6045 
0.2442 

0.5535 0.5946 0.8460 

0.1973 0.0426 0.7206 

-0.0816 0.6083 0.7539 

Table 3.5 shows comparative study of the different neuron networks. In this example, 

MS-W neuron network with Morlet wavelet function is better. Actual output and output of MS-

W (with Morlet) model and error between them are shown in Fig. 3.31. 

Table 3.5: Performance index (J) with different networks and wavelet functions for Example 5 

Model -> 

H.N. -^ 

Mexican hat 

Morlet 

Sine 

SS-W 

12 

1.208x10'" 

1.676x10' 

1.343x10'" 

MS-W 

6 

2.384x10"" 

1.665^ la' 

6.641x10'" 

WNN 

15 

2.632x10-' 

7.530x10'" 

6.837x10'" 

LWNN 

15 

8.065x10'" 

3.719x10'' 

6.837x10"" 

NN 

16 

1.04x10'̂  
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Fig. 3.29. Learning pattern of feed-forward network with MS-W neuron network with scaling 

factor a=l, 2 & 3 for Example 5 
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Fig. 3.30. Learning pattern of MS-W neuron network with all wavelet functions for Example 5 
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Fig. 3.31. Actual output & output of MS-W (Morlet) neuron network and the error for Example 5 

Revisited Example 6: Human Operation at a Chemical Plant 

Figure 3.32 shows the structure determination of the SS-W neuron network for scaling 

factor '0=1,2 and 3'. From Fig. 3.32 and 3.37, scaling factor 'fl=3' is selected. The SS-W model 

is analyzed for three types of wavelet and the result is presented in Fig. 3.33 and Table 3.6. It 

illustrates that Sine wavelet function is better among different types of the WAF with 

performance index 7=8.1898x10'^. Initialization of the learning parameters W, Cs and Cw for all 

wavelet functions and the learning parameters for Mexican hat, Morlet and Sine wavelet 

function corresponding to the learned MS-W neuron network are as follows. 
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Initialization of the learning parameters: 

W = 

"0.6273" 

0.6990 

0.3971 

0.4136 

0.6552 

0.8375 

Cs = 

"0.7035 

0.4849 

0.1146 

0.6648 

0.3653 

0.1400 

0.5667 

0.8230 

0.6739 

0.9994 

0.9616 

0.0588 

r = 'PC 

0.3716 

0.4252 

0.5946 

0.5657 

0.7165 

0.5113 

0.7764 

0.4893 

0.1859 

0.7006 

0.9827 

0.8066 

For SS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.6597 
1.3802 
0.2992 
0.3615 
0.3513 
0.7515 

0.6509 
0.4109 
0.7211 
0.7308 
0.2305 
0.1848 

0.7900 
1.1331 
0.9197 
0.1477 
0.2504 
0.9317 J 

"0.8098 

0.0132 

0.3258 

0.1742 

0.3722 

0.0117 

0.5226 

1.0989 

0.4514 

0.7838 

0.8198 

0.2220 

For SS-W neuron network with Morlet wavelet function: 

•0.0321' 

•0.1086 

0.8564 

0.0344 

0.8818 

0.2789 

W^ = 

"0.4881 

0.9926 

0.3732 

0.5313 

0.1812 

0.5019 

0.4232' 

0.6592 

0.6998 

0.9587 

0.2151 

0.1214_ 

"0.4194 

0.2129 

0.0352 

0.0811 

0.8501 

0.3402 

0.4511 

0.9437 

0.3523 

0.8552 

0.9246 

0.8864 

For SS-W neuron network with Sine wavelet function: 

W^ = 

0.6629 

0.3057 

0.9393 

0.9553 

0.9507 

0.0336 

0.5588 

0.4870 

0.3973 

0.4930 

0.9685 

0.8270 

0.2374 

0.8123 

0.9421 

0.1563 

1.0416 

0.1172 

0.8016 

0.4330 

0.2408 

0.6348 

0.3667 

0.4314 

0.6799 

0.3736 

1.1871 

0.3802 

1.3521 

0.2705 
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Fig. 3.32. Learning pattern of feed-forward network with SS-W neuron network using Morlet 

activation function with scaling factor a=l, 2 & 3 for Example 6 
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Fig. 3.33. Learning pattern of SS-W neuron network with all wavelet functions for Example 6 
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Figure 3.34 shows the structvire determination of the MS-W neuron network for scaling 

factor 'fl=l, 2, 3 and 4'. From this figure and Fig. 3.38, scaling factor 'a=3' is selected. Figure 

3,35 shows the learning pattern for different wavelet fimction. Mexican hat wavelet function 

yields better resuh with performance index J= 6.9712x10" .̂ Initialization of the learning 

parameters for all wavelet functions is the same as SS-W neuron network. Learning parameters 

for Mexican hat, Morlet and Sine wavelet function corresponding to the learned MS-W neuron 

network are as follows. 

For MS-W neuron network with Mexican hat wavelet function: 

W^ = 

0.8574 

0.0283 

0.7642 

0.4525 

0.0369 

0.7375 

0.4001 

0.1544 

0.0644 

0.1204 

0.0293 

0.8650 

0.4904 

0.8003 

0.8871 

0.3581 

0.8250 

0.4208 

0.2342 

0.1279 

0.4124 

0.6348 

0.1815 

0.4031 

0.9645 

0.3487 

1.0744 

0.7235 

0.4005 

0.2550 

For MS-W neuron network with Morlet wavelet function: 

W f _ 

0.1239 

0.6012 

0.4934 

0.3015 

0.9614 

0.9189 

0.7035 

0.4848 

0.1146 

0.6648 

0.3653 

0.1401 

0.5486 

0.8584 

0.6605 

1.0156 

1.0146 

0.0199 

0.3717 

0.4253 

0.5944 

0.5658 

0.7161 

0.5112 

0.7282 

^Idei 
0.3501 

0.6061 

1.1179 

0.9401 

For MS-W neuron network with Sine wavelet function: 

W^ = 

0.8472 

0.6839 

0.4283 

0.4333 

0.0034 

0.8511 

0.6508 

0.4108 

0.7211 

0.7309 

0.2305 

0.1847 

0.8391 

1.0945 

0.9377 

0.0715 

0.2547 

0.9729 

0.8095 

0.0133 

0.3257 

0.1743 

0.3722 

0.0116 

0.9633 

0.5405 

0.5015 

0.6810 

0.7700 

0.2802 
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As shown in Table 3.6, MS-W neuron network has best performance index. Figiire 3.36 shows 

system output and the output of the MS-W neuron network with the error between them. 

Table 3.6: Performance index (J) with different networks and wavelet functions for Example 6 

Model -> 

H.N. -> 

Mexican hat 

Morlet 

Sine 

SS-W 

12 

9.277x10"" 

8.674x10-" 

S.lSPxlO-" 

MS-W 

12 

6.971x10-* 

7.479x10-" 

8.739x10-" 

WNN 

15 

8.668x10'" 

8.228x10-" 

2.622x10'' 

LWNN 

15 

8.360x10"" 

8.506x10-" 

1.129x10-' 

NN 

20 

1.096x10-^ 

Figures 3.36 and 3.37 show the change of performance index with increasing scaling factor 'a' for 

all examples with SS-W & MS-W neuron model, respectively. The number of hidden neuron is 

increased if the performance index improved. 
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Fig. 3.34, Learning pattern of feed-forward network with MS-W neuron network with scaling 

factor a=l, 2, 3 & 4 for Example 6 
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Fig. 3.35. Learning pattern of MS-W neuron network with all wavelet functions for Example 6 
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Fig. 3.36. Actual output & output of MS-W (Mexican hat) neuron network and the error for 

Example 6 
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Fig. 3.37. Performance index of feed-forward SS-W neuron network with different scaling 
factor 'a' for all examples 
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Fig. 3.38. Performance index of feed-forward MS-W neuron network with different scaling 
factor 'a' for all examples 
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3-8 Conclusions 

In this chapter, S-W neuron network has been proposed. Each S-W neuron network is a 

combination of SAF and WAF. The S-W neuron networks have advantage over either SAF or 

WAF separately applied to feed-forward networks. The proposed neuron networks are used in 

the hidden layer of a standard single hidden layered feed-forward network. Their performances 

are evaluated by modeling of dynamic system. They have been tested on six different examples. 

Three types of wavelet activation functions, namely Mexican, Morlet and Sine are tested 

in the S-W neuron network. The comparative results of different wavelets show that Morlet 

activation function yields better performance in either SS-W or MS-W neuron networks. 

The proposed SS-W or MS-W neuron networks have better performance than WNN 

network with WAF only and NN with SAF only, even with fewer mmiber of hidden layer 

neurons. The S-W neuron networks have better performance in comparing to LWNN network. 

MS-W neuron network yields better performance in comparison to SS-W neuron network. 
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Chapter 4 

Neuro-Fuzzy Model 

4-1 Introduction 

Control theory deals with the analysis and synthesis of dynamical systems in which one 

or more variables are kept within prescribed limits. Many real worid applications need to 

describe models for unknown systems [Narendra'90]. In the past few decades, system modeling 

and identification attracted the attention of a considerable number of researchers [Narendra'90, 

Qiii'92, Mastorocostas'02, Xu'87, Sugeno'93, Takagi'85, Azeem'OOb, Lee'OO], the reason is 

its extensive application in practical life. 

System identification plays a principal role In Input-Output data analysis, such that a 

better result can be obtained from better model. System identification includes two parts: 

Structure identification and parameter identification. In structure identification, input variables 

and input-output relations are found. In parameter identification, the parameters of the model are 

adjusted by optimizing a performance index [Narendra'90, Sugeno'93j. 

The Parallel (P) and the Series-Parallel (S-P) configurations are the two common 

methods to identify parameters for the unknown model of dynamic systems [Narendra'90, 

Qin'92- Bemieri'94]. In Series-Parallel configuration, the output of the system (plant) is fed into 
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the model. Since there is no feedback of the model output to itself, a static learning algorithm is 

applied. In this configuration, the parameter learning will converge if the outputs are bounded for 

bounded inputs [Narendra'90]. 

In the Parallel configuration, the output of the model is fedback as inputs to the model. 

Identification using parallel configuration, the model feedback introduces dynamics to the 

model; but it can learn the system dynamics without assuming much knowledge about the 

structure of the system under consideration [Qin'92]. This model is suitable for long-term and 

multi-step prediction in forecasting problem. When information about system is less, this 

configuration is better; however, the learning convergence is not guaranteed [Narendra'90]. 

Since the output of the model can be carried out on-line, the Parallel configuration can be used 

for on-line learning approach [Bemieri'94]. 

Recently fuzzy system identification has attracted the researchers involved with systems 

modeling [Jang'93, Sugeno'93, Yager'94, Gebhardt'94, Wu'OO, Azeem'03a, KIir'03]. In 

describing the behavior of many complex and ill-defined systems, precise mathematical models 

may fail to give satisfactory results. In such cases, fuzzy models are used to reflect the 

uncertainty of the systems in a proper way. Takagi and Sugeno introduced Takagi-Sugeno-Kang 

(TSK) fuzzy model [Takagi'85, Sugeno'88]. The basic idea in this approach is to decompose the 

complicated input space into subspaces and then approximate the system in each subspace by a 

linear/non-linear regression model called local model. The resulting fuzzy model is the 

aggregation of these local models. Later Shing and Jang proposed Adaptive Neuro-Fuzzy 

Inference System (ANFIS) as a powerful method for mapping input-output system modeling 

based on fuzzy inference system [Jang'93, Nauck'97]. 

In these application models, it is possible to use both parallel and parallel-series 
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configuration for estimation of unknown parameters of the model. The present work proposes an 

implementation of combining parallel and series-parallel configuration on TSK fuzzy model. It 

has advantages over both parallel and series-parallel configuration. Premise and consequent part 

of the rules in TSK models are learned by parallel and series-parallel configuration respectively, 

or vice versa. If the output of plant is feedback to premise part and output of the model feedback 

to consequent part, it results a Premise Series-Parallel (PS-P) configuration. In the same way if 

model output feedback to premise part and the plant output feedback to consequent part, we have 

a Consequent Series-Parallel (CS-P) configuration. Therefore in this way the advantage of both 

configuration, i.e. tracking the real output of the plant by series-parallel configuration and long-

term or multi step prediction with less knowledge about the plant by parallel configuration are 

exploited together. Consequently, we obtain the best model that follow real output for long time 

prediction with less knowledge about the plant. 

A lot of learning algorithm has been developed for recurrent models. Two specific 

algorithm that are based on GD are Back-Propagation Through Time (BPTT) [Rumelhart'86-

Werbos'88] and Real Time Recurrent Learning (RTRL) [Williams'89]. However, these 

algorithms have two main problems: stability and slow rate of the convergence during learning 

procedure. The problem is that for stability, learning rate should be small but when that is small 

the speed of the convergence become low. To eradicate these two discrepancies large number of 

studied has been done for improving the speed of convergence [Wu'OO, Yu'95a, Barbounis'06] 

in addition to incorporating the stability [Yu'Ola, Yu'Olb, Chen'94, Wang'97, Yu'95b, Li'06, 

Jin'99, Yi'06] to the parameter learning procedure. In [Yu'Olb], the passivity theory has been 

applied to analyze the stability of the dynamic neural network for identification problem. Yi, 

etal., (Yi'06] carried out a comparative study for output convergence [Yi'Ol, Liu'04, Li'04] and 
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the state convergence [Cao'03 a, Cao'03 b, Forti'94, Forti'95, Liang'Ol] of a recurrent neural 

network. Yu, etal. [Yu'95b] have shown that the neuro-fiizzy model under certain condition is 

stable by applying the Lyapunov stability theorem and passivity theory. However, they have not 

ascertained any boundary for learning parameter. Based on Lyapunov-Krasovskii functional 

method, Li and Liao [Li'06] have proposed a robust learning algorithm for recurrent neural 

network under noise disturbance while Chen and Jain [Cheii'94] have proposed a robust BP 

algorithm and shown that by improving the learning rate the algorithm is stable under noise 

effect. Wang etal. [Wang'97] have introduced a robust and fast learning algorithm for B-spline 

membership function using robust objective function and gradient descent method. Using 

Lyapunov stability theorem a mathematical way to calculate the upper bound of the learning rate 

for recurrent wavelet neural network [Yoo'06] and a mamdani fuzzy model [Lee'OO], based on 

the parameter of the network, have been introduced, respectively. Azeem, etal., [Azeem'OSa] 

used an easy and imderstandable way for adaptive learning rate to increase speed of convergence 

rate. In this chapter, presented studies guarantee the stability and the speed of the learning 

procedure by applying the Lyapunov stability theorem and the adaptive learning rate to the 

learning procedure of neuro-fuzzy model. 

The chapter spread over six sections: Brief discussion about neuro-fuzzy model is given 

in section 4-2. In section 4-3, parameter identification configurations are devised. Section 4-4 

deals with the learning algorithm and convergence analysis of S-W neuron models. Section 4-5 

consists of simulation results and discussions. Finally, the conclusions are relegated to section 4-

6. 
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4-2 Neuro-Fuzzy model 

Each rule of a fuzzy model based on TSK fuzzy model mapped the input space A" c R" 

to a Imear function in the output space w" czR, and has the form: 

/?" : if x^ is A" A XJ is A" A . . . A X„ is A" then y is w^ix) (4.1) 

with m = \...M,M being the number of rules. Each rule is premised on its own input 

vector A" e 9?", A" is linguistic labels of fuzzy sets describing the qualitative nature of the input 

variable A:,-, A and is a fiizzy conjunction operator (usually of T-norm), 

The TSK model was introduced in [Takagi'85, Sugeno'88] as a hybrid model, which 

integrates the fuzzy conditions in the input space with the functional relationships in the output 

space. TSK-model has a linear or nonlinear relationship of inputs w^ix) in the output space. 

Rules of TSK model are in the following form: 

R" : if \ is A*" then ;; is w^ix) (4.2) 

A linear form of w^^x) in (4.1 & 4.2) is as follows: 

w*" {X) = ŵ  + w^j +... + wy„ (4.3) 

where, w"(x) defines a locally valid model on the support of the Cartesian product of fuzzy sets 

constituting the premise parts. The normalized firing strength for the normalized calculation or 

non-normalized firing strength for the non-normalized calculation is then multiplied with the 

output function >!''"( A-). By taking Gaussian membership function and equal number of fuzzy sets 

to rules with respect to the inputs, firing strength of rules (4.2) is written as: 

107 



»=i V 

I mi 

y ^mi J 
(4.4) 

where x„, and <7„, are the center and the standard deviation of the Gaussian membership 

functions. Applying T-norm (product operator) of the membership functions of the premise parts 

of the rule and the weighted average gravity method for defuzzification, the output of the TSK 

model is defined as: 

| ; / i^„(x)->v'"(x) 
Y _ m~\ 

M (4.5) 

The functionally equivalent neuro-fiizzy model of TSK model is shown in Fig. 4.1. In the 

follov^ng description, ŵ  denotes the input to they'"' node in the f^ layer; 0\ denotes the/'' node 

output in layer /. 

Layer 1: Nodes in layer 1 represent input variable. Every node accepts input values and transmits 

it to the next layer. 

^ 1 = "m = /̂ (4.6) 

Layer 2: Nodes in this layer represent the terms of the respective linguistic variables. Every node 

operates on incoming signal with Gaussian membership function expressed by (4.7). 

The parameters to be learned in this layer are x„, and <7„,. Corresponding to each rule 

the learning parameter are expressed in vector form as x„ = Fmi»̂ m2»—'̂ mnl ^<^ 
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La^rl Layer 2 Layer 3 Layer 4 Layers 

Fig. 4.1. Neuro-Fuzzy model 

^i=/^.™(x) = exp (4.7) 

Layer 3: Each node in layer 3 represents a fuzzy rule. The output from the nodes in layer 2, 

specified for a fuzzy rule, is being input to the nodes, specified for that rule, in layer 3. 

The output of each node in layer 3 is the product of all inputs; it represents the firing 

strength of that rule. Thus, the firing strength of the m^ rule is specified as (4.4,4.8). 

Ol=YlOi=juA^) (4.8) 
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Layer 4: Nodes in layer 4 are called consequent nodes. Two inputs are applied to each node in 

this layer, namely the output from the layer 3 node and the output from its corresponding 

local model approximated by (4.3). The output of each node is the product of both input 

and given by (4.9). Where X' is input for local model either from the system or from the 

model depending upon the configuration. 

O: =7" = w'"(X')-0^ =w'"(X')-//,.(X) (4.9) 

Layer 5: Three nodes in this layer constitute the aggregation and deftizzification of frizzy rules. 

The output of all nodes from layer 4 is the input to the first node and its output is the sum 

of all inputs and expressed as (4.10). The output of all nodes from layer 3 is the input to 

the second node and its output is the sum of all inputs and expressed as (4.11). Inputs to 

the third node in this layer are the output from first and second node. The output of the 

third node in the ratio of these two inputs is given in (4.12). 

''=Eo»=i;(»''(x')-/'..(x)) (4.10) 
m=l m=l 

M M 

m=\ m=\ 
^=Z^« =!>"." W (4.11) 

5̂ " a 0^=Y =-NF=T (4.12) 

4-3 Configurations for Parameter Identification 

The problem of identification consists of selecting a suitable model and algorithm for 

learning its parameter. In this section, two well-known parameter identification methods, series-
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parallel and parallel configurations are discussed to optimize the learning parameter of the neuro-

fuzzy model. Two new configurations, which are combination of series-parallel and parallel 

configurations, applicable to TSK model are proposed. 

4-3.1 Parallel Configuration 

Parallel configuration for system identification is shown in Fig. 4.2. A Linear/nonlinear 

dynamic system models may be represented by mapping fi-om the input space to the output 

space, which we call as fimction approximation. To construct a neuro-fuzzy model for a Multi-

Input and Single-Output (MISO) system using parallel configiiration, consider a Non-linear 

Auto-Regressive Moving Average (NARMA) model representing a MISO system. 

^'^ = \y{t-i),y(t-2Uy{t-T^) (4.13) 

where u^;{q=\,...,r) and y denote the inputs and model outputs respectively, r,, and r̂  are 

the corresponding delays. Fimction ' / in (4.13) may be linear or non-linear. Here it is supposed 

to be a neuro-fuzzy model. The output of model in parallel configuration is a fimction of the past 

output of the model as well as input delays. The premises of the rules, which represent delays as 

well as the order of dynamic systems, for a NARMA model of a complex system, are denoted 

by: 

A = (;'l^ivs.^(r^,+...+r(,+r)'-'''(r„+.,.+r„+r+l)'"'j^„J 

= {«,(0 , . . . ,« , ( / - r , ) ,«2(4- ,w.(^-^J , i^(^- l )v . , i^(f - rJ} '̂̂ •̂ '̂ ^ 

where n = r,, +...+r,, + r„ + r 

In Parallel configuration, input to the consequent part is X' = X. 
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Fig. 4.2. Parallel configuration 

A-Z.2 Series-Parallel configuration 

In the series-parallel configuration, output of the model is a function of the input delays 

and past values of the plant output as shown in Fig. 4.3. Plant is a system that should be 

identified with neuro-fuzzy model. 
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Fig. 4.3. Series-parallel configuration 

We shall assume that output of unknown model in series-parallel configuration, which 

should be identified is as follows: 

y(t)=g [y{t-l),y(t-2Uy{t-T,) 

\ 

(4.15) 

Function 'g' in (4.15), represented by neuro-fuzzy model. Where u^;{q = l,...,r) and y denote 

the inputs and model outputs, respectively. 7̂^ and r„ are the corresponding delays. The premise 

inputs in this configuration are denoted by: 

= {«, ( 4 . . . , M, (t - r,.,), U2 (/),..., M, (/ - r,,), y{t -1),..,;;(/ - r,)} 
(4.16) 

where n = r„ +... + r,, + r̂  + r 

In S-P configuration, input to the consequent part is X' = X. 

4-3.3 Proposed Configurations 

In the proposed configuration, output of the model depends upon the system history as 

well as the present and past output of the model as shown in the Fig. 4.4. System history means 

present and past input and output of the system. Our objective is that the model should track the 

actual system output. It means that the error between plant and model output decrease and results 

in an improved performance of the model. In S-P configuration, the main problem is selecting a 

model fi:om a class of models and its structure determination. After selecting the model and 

deciding about its structure, the problem is reduced to parameter learning of the model. One 

important problem in S-P configuration is that model output is of no use during learning 

procedure except calculating the error. By using output of the model to learn the learning 
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parameter the significance of the model in learning procedure can be acquired. Parallel 

configuration has advantage that without much information about the system, it can learn the 

parameter of the model. In this configuration, the model output tracks the plant output by 

minimizing the error between them. If the convergence of the learning procedure is guaranteed 

the parallel configuration, is most suitable for long-term prediction. 

Since, a neuro-fuzzy model is divided into two parts; i.e. premise and consequent parts, 

either the system output feedback to the premise part and the model output to the consequent part 

or vice versa. If the output of the system is feedback to the premise part and the output of the 

model feedback to the consequent part of the neuro-fiizzy system, it results a Premise Series-

Parallel (PS-P) configiiration. In the same way, if the output of the model feedback to the 

premise part, and the output of the plant feedback to the consequent part, we have a Consequent 

Series-Parallel (CS-P) configuration. 

Learning 
Algorithm 

Fig. 4.4. Proposed parallel and Series-parallel configuration 
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This configurations can be used in special cases that model is combination of two part. 

Especially, as discussed before, fuzzy models are divided into two parts; premise and consequent 

parts. For the proposed configuration, the output of the model is written as: 

y(t) = h y{t-\\y{t-2\.,y{t-T^\ 
^y{t-\\y(t-2Uy{t-T:) 

(4.17) 

Function'/i' in(4.17)hereisrepresentedbyneuro-fuzzy model. Where u^\{q = \,...,r) denote the 

inputs, y and y are model and system outputs, respectively, r,̂  and r^ are the corresponding 

delays. 

a) Consequent Series-Parallel configuration (CS-P) 

In CS-P, the output of the model is fedback to the premise part as it is for parallel 

configuration and the output of the plant is fedback to the consequent part as it is for series-

parallel configuration, which is shown in Fig. 4.5. It is a well-established fact that the premise 

part of each rule in fuzzy models exemplifies a local region in the input space in which 

consequent part act as a local model for the output space [Sugeno'93, Takagi'85- Sugeno'88, 

Zeng'94- Zeng'95], These local models in the output space are approximated by linear or non­

linear function of the premise variables. In CS-P configuration, the plant inputs and output with 

its delays are employed to approximate the local models in the consequent part of the TSK 

model, whereas the inputs and the delays of the model output are utilized to comprehend the 

input space region. The premise inputs in this configuration are denoted by: 

•^ — ri>"'>^(r„+,..+r^+r)»-'''(r;,+...+r;^+''+0'*""''^''i 

= M\'--yuXt-T^^\u^{t\...,uXt-ri,\y{t-\\..,y[t-Tj^ 

where input to the consequent part in CS-P configuration is: 

(4.18) 
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Fig. 4.5. Output of the plant feedback to the consequent part and the output of model feedback to 

the premise part 

b) Premise Series-Parallel configuration (PS-P) 

In PS-P, the output of the model feedback to the consequent part and the plant output is 

used for the premise part as shown in Fig. 4.6. In PS-P configuration, the model inputs and 

output with its delays are employed to approximate local models in the consequent part of the 

TSK model whereas the inputs and the plant output with their delays are utilized to comprehend 

the input space region. The premise inputs in this configuration are denoted by: 

(4.20) 

and input to the consequent part in PS-P configuration is 

= {«,(4...,M,(/-r„),K2(/),...,«,(/-rJj)(/-li..,i)(/-rJ} 
(4.21) 
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Fig. 4.6. Output of the plant feedback to the premise and the output of model feedback to the 

consequent part 

4-4 Learning procedure 

In this section, structure determination and initialization of the neuro-fiizzy model are 

presented. Discussion of different configurations in parameter learning of the neuro-fu2zy 

models also is including. In this section, an adaptive learning algorithm is introduced to learn the 

parameters of the model. 

4-4.1 Structure determination and Initialization 

Structure determination in neuro-fuzzy models means determination of the number of 

rules and input membership function. Initialization of the neuro-fuzzy models means that 

initializes center and standard deviation of membership function and initializes each linear 

function in consequent parts. In present work, Gaussian membership function is used. To 

determine number of necessary rules Modified Mountain Clustering (MMC) is applied 

[Azeem'OSa, Yager'94, Chiu'96]. The purpose of clustering is to do natural grouping of large 

set of data, producing a concise representation of system's behavior. Azeem et.al., [Azeem'OSa] 

have proposed a simple and easy way to implement, MMC for estimating the number and 

location of cluster centers. A brief discussion about MMC and its parameter is covered in 

Appendix B. 
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4-4.2 Training 

To adjust the learning parameter of the model, the performance index J as given in (2,18) 

is minimized by Gradient Descent (GD) algorithm. In this section, the GD based algorithm is 

applied. Since the parallel, CS-P and PS-P configurations include external recurrent to the model 

during learning procedure; criterion for learning stability and convergence has been evolved. To 

learn the parameters of the recvurent network, based on the gradient descent, different methods 

are presented in literature. All learning methods are the same as of back-propagation-through-

time [Rumelhart'86- Werbos'88] or real-time recurrent learning algorithm [Williams'89] and it 

can be applied to adjust parameters of the recurrent network. In this work, by applying Lyapunov 

theorem, the learning stability and the convergence of learning procedure is guaranteed. To 

guarantee the speed of the convergence an adaptive learning rate with upper boimd is applied. 

a) Gradient Descent Technique of tfie parameters 
For fine-tuning of initialized model/network parameters, a GD technique with momentum 

update and forgetting factor, as discussed in chapter 2, is applied to modify the parameters x ,(X 

and W in (4.4 - 4.5). The parameter update formula for/?'*" data set is as follows: 

a r 1 a y 

dW" "^ P-y; dW" 

/ s dj 1 ay 

^CTmi P-yr dOTmi 

, - f ^ dJ 1 dY 

(4.23) 

(4.24) 

(4.25) 

where e = y-y is the error between the plant output and the model output. By applying the 
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r^Y f^Y r^Y 

chain rule to the above equation,—^, -^^^ and —— for different configurations are derived 

as follows: Define B = ^' then, 

M 

E .̂.W 
m=\ 

^ = P. (4.26) 

^ = x,./?„ (4.27) 
mi 

§ ^ = w „ ( X ' ) - ^ - ( l - > 5 j . i : i ^ (4.28) 

£^=„.(v).^.(i-^.).2:(i^ (4.29) 

X and X' in above equation are determined by (4.14) and (4.16) for P and S-P configurations, 

respectively. In CS-P configurations, X and X' are obtained by (4.18) and (4.19), respectively. 

With PS-P configuration, (4.20) and (4.21) are used to extract X andZ', respectively. Fig. 4.7 

shows the learning algorithm for TSK Neuro-Fuzzy model with different configuration. Using 

performance indexes J as in (2.18) convergence theorem of the learning procedure is stated as 

follows: 

b) Learning Convergence theorems 
Small value of learning rate 77 results in slower speed of convergence. Large value of 7 

causes the learning procedure non-stable. Therefore learning rate should be chosen in such a way 

that the stability and convergence be guaranteed. To guarantee the stability during the learning 

procedure, Lyapunov stability theorem is applied. This formulates the appropriate range of 
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learning rate. Following Theorems guarantees the convergence stability of the neuro-fiizzy 

models: 

Theorem 4.1: The asymptotic learning convergence of S-P and CS-P configurations (since local 

models have same variables i.e. X ) are guaranteed if the learning rate for 

different learning parameters follows the upper bound as mentioned below: 

0<Tj„<2-P'y'^ 

0<%< 
2-P-y'r 

(4.30) 

(4.31) 

max \w{xj 
\ min / 

0 < ; 7 J < 
1-P-y] 

max w {xX 
( -, Y 

(4.32) 

V^min J 

Theorem 4.2: The asymptotic learning convergence of P and PS-P configurations (since local 

models have same variables i.e.X' ) are guaranteed if the learning rate for 

different learning parameters follows the upper bound as mentioned below: 

0<Tj,<2-P-yj 

0<7a < 
2-P-y'r 

,\2 r ^ \ 

(4.33) 

(4.34) 

max lw(X')| 
m 

\ mm / 

0 < ; 7 J < 
2-P-yl 

max\w{X'X 
ftt 

r 1 \ 
(4.35) 

V.'̂ 'min J 

Stability analysis and convergence is carried out in Appendix C. 
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c) Adaptive learning rate 

The learning rate is adaptive with the lower and upper bounds as mentioned in the above 

stated Theorem. Whether the learning rate (7) is increased or decreased, it depends on the 

change in the value of performance index J. A two-phase adaptive scheme, to make the learning 

rate adaptive, is used in the GD technique. The initial value of learning rate is kept at 0.1 for all 

applications. In the first phase either it increases or decreases by a factor of "10". When it 

reaches within bounds, in a very few epochs (i.e. < 10), then the second phase starts. This 

increase or decrease is dependent upon the acceptance or rejection, respectively, for updating the 

parameters. In the second phase, involving the operation7 <- ;^ ; we choose y = \.Q5 for the 

acceptance of parameter updates and y = 0-7 for the rejection of the same. In the first phase, if 

the learning rate is continuously decreasing due to the rejection for update of the parameter, and 

the learning rate reaches v^th in a bound, the update of the parameter is accepted. This 

acceptance forces the learning rate to increase according to the second phase. If the learning rate 

is continuously increasing, in the first phase due to the acceptance for update of the parameter, 

and this increase in learning rate goes beyond the upper bound, the update of the parameter is 

rejected. This rejection forces the learning rate to decrease according to the second phase. Once 

first phase finishes learning rate follows the rule of second phase until the learning last. 
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Fig. 4.7. Leaming algorithm for Neuro-Fuzzy model 

122 



4-5 Simulation Results 

In this section, different types of dynamic systems that have been discussed in chapter 1 

is considered. The selected dynamic examples are different nonlinear equation with different 

dynamic order. First 4 example are dynamical equations and Example 5 is a general benchmark 

problem. 

Revisited Example 1: Linear regression with noniinear input 

By applying modified clustering and cluster validity function [Azeem'OSa, Xie'87], five 

rules are obtained. Figure 4.8 illustrates the learning pattern and Table 4.1 shows the value of 

performance index of models obtained for all configurations. In this figure, the parallel-series 

category has shown by solid-blue, parallel with dot-black, PS-P with dot-slash & green and CS-P 

with slash-dot. The S-P and the CS-P configurations have better performance and CS-P is the 

best. It means that when the actual output of the system feedback to consequent part it yield 

better result. The mitial fu22y rules for the models are listed below: 

R': if u(k) is Al A y{k-l)isAl A y{k) is AI then y'{k + l) is w\X) 

R': if u{k)isAf A y{k-l)isA^ A y{k)isAl then y'{k+\) is w'{X) 

R': if uik)isAf A y{k-l)isAl A y{k)isA^ then y'{k + \) is w'{X) 

R': if u(k)isA* A y(k-\)isA^ A y{k)isAt then y\k+\)is w'{X) 

R': if u{k)isA^ A y{k-\)isAl A yik)isAl then /{k + l) is w'{X) 

where, 

w'(A') = 0.0200 - 0.0356M(A:)-0.7385 ;;(^ -1)+1.7168:);(A:) 

W ' ( Z ) = - 0 . 2 1 2 7 + 0.5018«(A:)-0.7315>'(A:-1)+1.7663:);(A:) 

w'(x) = 0.0727 + 0 .0387«(A: ) - 0.9743;;(A: -1)+1.8446;;(^) 

w'(;i^)=-1.4026+ 3.6808M(yt)-0.13761>'(A:-l)+1.0485>;(A:) 

w' (X) = 0.4522 - 0.6490«(yt)-1 .0283>;(A: - 1 )+ 1 M07y(k) 
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The premise variable membership functiony4l'-y4l^^2'-^2' andAi-A3^ for inputs u{k), y{k-i) 

and y{k) are shown in Fig. 4.9. The fuzzy rules corresponding to the learned network are listed 

below: 

R'^: if uik) is Al^ A y(k-i) is AY A Kk)is^]^ then y'(k + l) is w'^{X) 

R^^: if u(k)isA^^ A y{k-i} is A^^ A yik)isA^^ then y'ik + l) is w^^(X) 

R^^: if u{k)isA,^^ A Xk-l) is ^2^ A y{k)isA^^ then / ( * + !) is ^'^(.r) 

^ '^: if M(k)is/4y A y{k-l) is A*^ A ^k) is/l,'^ then / ( ^ + l) is ^^^(X) 

R'^: if u(k)isA^^ A Xk-l) is ^2^ A y{k)isAl^ then / f r + l ) is w'^(^) 

where, 

w'-̂  (X) = 0.0246 - 0.0248«(jt)- 0.7424:);(A: - 1)+1.71 56;;(A:) 

w^^ (X) = -0.2026 + 0.5045«(A:) - 0.7499;;(yt -1)+1.74S4y(k) 

W^^(X) = 0.0757 + 0.0399w(A:)- 0.976 1;;(A: - l)+l.B3S5y{k) 

w'^(x) = -lA054 + 3.6797u{k)-0A360y(k-l)+L049Sy{k) 

w^^(x)=0A420-0.6545u{k)-l.020ly{k-l)+l.S430y{k) 

The learned premise variable membership functions A\^-A\^, A%^-A^^9xA A^^-A^^fox 

inputs i/(jfc), X ^ ~ 0 ^"^ K^) "̂̂  shown in Fig. 4.10. Figure 4.11 shows the actual output, 

model output and model error with CS-P configuration. In this figure, actual output of the plant 

is solid-blue and the model output is dot-red. The error is solid-blue. The value of performance 

index 7=1.8694x10'̂  for the model obtained for CS-P configuration. 
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Revisited Example 2: Non-linear regression with random input 

Figure 4.12 and Table 4.1, show the performance index for different identification 

configuration. The CS-P configuration model yields better result with five rules, obtained by 

MMC and cluster validity fimction. The initial fiizzy rule of the CS-P configuration is listed 

below: 

R': if u(k)isAl A y{k-\)isA\ A y(k)isAl then y'(k+\) is w'{X) 

R^: if u{k)isA^ A y{k-i)isA^ A y{k)isA^ then y^{k + }) is w\X) 

R': if u(k)isA^ A ^k - l ) is ^ A j)(k) i s ^ then / ( ^ + l) is w'(^) 

R*: if u{k)isA* A y{k-i}isA^ A j^(k) is^j' then / ( A : + 1) is w'(^) 

where, 

w' [X) = 0.3527 + 0 .6184M(A: ) - 0.5301;;(A: - 1 ) + 0.5573>;(A:) 

W ' ( Z ) = 0 . 3 3 0 8 + 0 . 7 1 6 0 M ( A : ) - 0 . 3 0 6 3 : ) ; ( A : - 1 ) - 0 . 1 1 9 4 > ; ( A ; ) 

w^ (X) = 0.6575 + 0.6492u{k)- 0.371 ly{k - 1 ) - 0.2846>'(A:) 

w' (X) = 0.5092 + 0.705 lu(k) - 0.6106;;(^ -1 ) - 0AS^9y(k) 

The premise variable membership fimction A\^-A\^, A-i-A-i and A-^-A^ for inputs M(A;), y{^ -1) 

and ^(A) are shown in Fig. 4.13. The fiizzy rules corresponding to the learned non-normalized 

network are listed below: 

/?'^: if M(k)is^;^ A j ) (k- l ) i s4^ A y^isA^-^ then y(it + l) is w'^C^) 

R^^ \ if u{^isA]f A y{^-'i)isAY A y^isA\f then / ( A : + 1) is >v'̂ (;sr) 

/?^^: if M(k)is/lf^ A j)(k-l)is ^2'̂  A y^isA^/ then /(ifc + l) is w'^C^) 

i?'^: if «(k)is/4,''^ A y^^-'i)is A\f A j)(k)is/43'^ then y% + '^\sw'^{X) 
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where, 

W^ {X) = 0.4130 + 0.7532«(A:)- QAl%6y{k -1)+ 0M29y{k) 

W^^(A^) = 0.3017 + 0.7805W(A:)-0.3881>;(/t -1)-0.1744>;W 

W^^{X) = 0.6266 + 0.5967w(A:)- 0.112l7(;t - 1 ) - 0.2307^^:) 

w'^{x) = 0.5018 + 0.81 16M(A:)- 0.4932j(A: - 1 ) - 0.6007;/(A:) 

The learned premise variable membership function functions A\^^-Ai"^^, A^^-A-^^znd. A^^ 

-A^'^^for inputs u{k), y{k~i) and y{k) are shown in Fig. 4.14. Figure 4.15 shows actual output 

and model output of the CS-P model. The error for learning and prediction section is shown in 

Fig. 4.15. The value of performance Index 7= 1.1040x10''̂  is obtained for CS-P configuration. 
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Fig. 4.12. Learning pattern of all configurations for Example 2 
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Fig. 4.15. Actual output & model output with CS-P configuration and the error for Example 2 

Revisited Example 3: Non-Linear Regression witli Non-Linear input 

By applying MMC and cluster validity, three rules are generated. Figure 4.16 and Table 

4.1, show performance index for different configuration of the identification models. CS-P 

configuration model yield better resuh with performance Index 7=3.2015x10" .̂ Next on S-P 

model is better. The initial fiizzy rule of the CS-P configuration is listed below: 

R': if u{k)isAl A y{k) is A \ then y'{k + \)is w'{X) 

R^: if u{k)isA^ A y{k) is A^ then y^{k + \) is w^{X) 

R': if u{k)isAf A y{k) is A^ then / ( ^ + l) is w'(^) 

where. 

TV 

W 

W 

-1.3762 + 2.5888M(̂ )-h 1.0779:);(A:) 

-3.8700 + 7J564u{k)- 0.0247:);(A:) 

-2.9392 + 8.0787M(A:)+ 0.0428J;(A:) 
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algorithms have been proposed [Davis'89, Shaefer'87, Whitley'95, Lobo'97, Azeem'OSb]. 

Azeem etal. [Azeem'03b] introduced a hybrid method based on GD and GA. They have applied 

GA in each epoch of GD to increase the convergence and also to maximize the possibility of 

localizing in the region of global minimum. In this work we applied GA to initialization the 

proposed WNF models. Later by using GD we tune the learning parameters of the WNF model. 

The organization of this chapter is as follows: Wavelet Neuro-Fuzzy model is introduced 

in Section 5-2. Section 5-3 envelops the initialization of the learning algorithm based on genetic 

algorithm and fine tuning of the WNF parameter by gradient descent. Examples and simulation 

are discussed in section 5-4 followed by the conclusion in section 5-5. 

5-2 Wavelet Neuro-Fuzzy 

In this section, based on MS-W neuron model, which has yield better performance as 

discussed in chapter 3, WNF model is proposed. The antecedent part of each fuzzy rule in the 

proposed neuro-fiazzy model represents input space in which a local model operates. These local 

models are estimated by MS-W neuron model, see chapter 3: Fig. 3.2 and Fig. 3.3. 

5-2.1 Architecture of Proposed Wavelet Neuro-Fuzzy 

Figure 5.1 shows a wavelet neuro-fiizzy model. This model can be described by a set of 

following fuzzy rules: 

m m m ^ '. 
R : IF xi is A^ and - and x„ is A^ THEN y^ = 7 ^ ^ ^ ^ ^^^^ 

Where i?" is the w* rule; x^ is the /* input variable; y„ is the output of the m"* local model for 

rule/?"; %AW„ is output of local, MS-W neuron network, model; and A-, is the linguistic 

term of the premise part with Gaussian membership function given by (4.7). From the Fig. 5.1, 

structure of WNF is described as follows: 
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Layer 1: Nodes in layer 1 represent input variable. Every node accepts input values and transmits 

it to the next layer. 

Layer 2: Nodes in this layer represent the terms of the respective linguistic variables. Every node 

operates on incoming signal with Gaussian membership function expressed by (4,7). 

The parameters to be learned in this layer are x„, and <j„,. Corresponding to each rule 

the learning parameter are expressed in vector form as x„={x„j,x„2,-,x„„} 

ando-„={a„„<T„2 a„„}. 

Layer 3: Each node in layer 3 represents a fuzzy rule. The output from the nodes in layer 2, 

specified for a fuzzy rule, is being input to the nodes, specified for that rule, in layer 3. 

The output of each node in layer 3 is the product of all inputs; it represents the firing 

strength of that rule. Thus the firing strength of the /w"' rule is specified as (4.4). 

Layer 4: Nodes in layer 4 are called consequent nodes. Two inputs are applied to each node in 

this layer, namely the output from the layer 3 node and the output from its corresponding 

local model approximated by MS-W neuron network. The output of each node is the 

product of both input and given by (5.2). 

ymF„ = /"^" (X)- W „ (X') (5.2) 

Layer 5: There are three nodes in this layer that constitutes the aggregation and defuzzification of 

fuzzy rules. The output of all nodes from layer 4 is the input to the first node and its 

output is the summation of all inputs and expressed as (5.3). The output of all nodes from 

layer 3 is the input to the second node and its output is the summation of all inputs and 

expressed as (5.4). Inputs to the third node in this layer are the output from first and 

second node. The output of the third node is the ratio of these two input and given in 

(5.5). The output of the third node in this layer is the output of WNF. 
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Fig. 5.1. Proposed Wavelet Neuro-Fuzzy Model 
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In these equations n is the number of inputs and M is number of rules and the number of 

fuzzy sets for each input is supposed to be equal to the number of rules. To determine number of 

necessary rules Modified Mountain Clustering (MMC) is applied. The purpose of clustering is to 

do natural grouping of large set of data, producing a concise representation of system's behavior. 

The description of MMC can be found in Appendix B. 

5-3 Genetic Algorithm and Gradient Descent 

In this section a hybrid algorithm based on GA and GD introduced for learning of the parameter. 

We use the GA for initialization of the learning parameter. After that by applying GD technique 

the learning parameters are adjusted. In this chapter we have applied CS-P configuration that 

yield better performance as discussed in chapter 4. In CS-P configuration, the plant inputs and 

output vydth its delays are employed to approximate local models in consequent part of the fiizzy 

rules, whereas inputs and delays of the model output are utilized to comprehend the input space 

region. The premise and the consequent inputs in this configuration are denoted by (4.18) and 

(4.19), respectively. 

5-3.1 Basic of the Genetic Aigoritiim 

The basic theory of GA can be found in [Goldberg'89], and in this Section we will 

discuss in brief what are the components of GA and how they fimction in the solution process. 

Suppose we are seeking to find a solution to a problem. To apply a genetic algorithm to 

that problem, the first thing to do is to encode the problem into artificial chromosomes. These 

artificial chromosomes can be the strings of I's and O's, or the parameter lists, or even the 

complex computer codes, but the key thing to keep in mind is that the genetic machinery wdll 

manipulate a finite representation of the solutions, not the solutions themselves. The second 
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thing to do to solve a problem is to have some means of discriminating good solutions from bad 

ones. This can be as simple as having a human intuitively choose better solutions, or it can be an 

elaborate computer simulation or a model that helps to determine the quality of a solution. But 

the idea is to ascertain a solution's relative fitness to purpose by some means. The genetic 

algorithm will use these very means to guide the evolution of future generations. 

Having encoded the problem in terms of chromosomes and having devised a means of 

discriminating good solutions from bad ones, we prepare to evolve solutions to our problem by 

creating an initial population of encoded solutions. The population can be created randomly or 

by using prior knowledge of possible good solutions, but either way GA will search from a 

population, not from a single point. 

There are various types of operators that are used in GA, but quite often (i) selection, (ii) 

recombination and (iii) mutation. The selection and genetic operators can process the population 

iteratively to create a sequence of populations that will hopefiilly contain more and more good 

solutions to our problem over a period of time. 

To cite briefly, selection operator allocates greater survival to better individuals. This is 

what is known as the survival of the fittest mechanism, which we impose on our solutions. This 

can be accomplished in a variety of ways. Weighted roulette wheels can be spun, local 

tournaments can be held, various ranking schemes can be invoked, but whatever we do, the main 

task is to seek better solutions over worse ones. Of course, if we were to only choose better 

solutions repeatedly from the original database of initial solutions, we would expect the 

population to contain the best solution of the first generation. However, simply selecting the best 

is not enough, and some means of creating new, possibly better individuals must be found. This 

is where the mechanisms like recombination and mutation emerge. 
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Recombination is a genetic operator that combines bits and pieces of parental solutions to 

form new, possibly better offspring. Again, there are many ways of accomplishing this. 

Achieving desirable performance does depend on getting the recombination mechanism designed 

properly; but the primary concern is to see that the offspring under recombination will not be 

identical to any particular parent, so we combine the parental traits in a novel manner. 

Recombination by itself is not very useful, because a population of individuals processed under 

repeated recombination alone will undergo what amounts to a random shuffling of existing traits. 

As against recombination, which creates a new individual by combining the traits of two 

or more parents, mutation acts by simply modifying a single individual. There are many 

variations of mutation, but the main constraint is that the offspring must have traits identical to 

the individual parental traits except that the operator may make one or more changes to an 

individual's traits. Mutation by itself represents a ''random walk" in the neighborhood of a 

particular solution. If applied repeatedly over a population of individuals, we might expect the 

resulting population to be indistinguishable from the one created at random. 

5-3.2 Components of GA 

There are various possible combinations of different components to construct a GA. A 

detailed description of different combinations can be found in [Goldberg'89, Davis'91]. Here 

we shall give a brief description of the combinations used in this thesis. 

a) Solution Representation (Encoding & Decoding) 
Binary string representation scheme is used to perform GA evolution. Since we are 

required to encode the center matrix ce i?"""., we normalize each element of c in the search 

space by the span, i.e., (cfa.n,ax-c*,,mm)» to yield c,^,„or = (ck,-^k,.mm)/(^h.rmx-^h.mm)- The 
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decimal value, decimalyci^^)^ of each element of c, for the binary string of length h, is obtained 

from the relation: decimal{cj^2)=^k,.nor/v-'' -^) and the resolution of the binary string is 

i^ki.max'^h.mm)/'^''' Now the decimaic^,^) is converted into the binary string by adding 

sufficient number of "Os" on the left side of the string in order to complete the specified string 

length, i.e. h. With this, the total binary length for each solution (chromosome) is hxmxn. A 

fixed binary length h is taken as 10 for each c ,̂. Further, it may be noted that gradient descent 

learning takes care of resolution interval, inherited by the genetic coding, if the solution lands in 

the region of basin. 

The solution must be decoded before it is evaluated. Steps involved in decoding are (i) 

separate the string of length h corresponding to each c^,, (ii) convert this string into decimal 

value decimalyc^j) and (iii) obtain the value of ĉ , from decima^^,-^) ^y the following 

formula: 

c, = c .̂..„ +^ec»ma/ (c , , J^^* ' | -Q-^ (5.6) 

b) Initialization 
A specified number of solution strings of O's and I's is generated randomly as an initial 

population. 

c) Evaluation function 

Each decoded solution represents a model. An evaluation (fitness) fiinction is defined to 

evaluate the degree of fitness of all the models with respect to learning data set. Our goal is to 

minimize the objective fimction J defined by (2.18). Since, GA is used strictly for the 

maximi2ation problems, without loss of generality; fitness fimction is defined as the reciprocal of 

149 



the objective function J. So, minimization of J and maximization of fitness function are 

equivalent. 

d) Selection, Crossover, Mutation and Reproduction 

Weighted roulette wheels approach is opted for parent selection. In the parent selection 

care has to be taken such as two identical parents should not crossover, to prevent the production 

of two identical children similar to their parent, whose fitness has already been tested. 

The two-point crossover is used for the reproduction of offspring. One point is applied to 

the premise part of the rules and one point to the consequent part. The two points for the 

crossover in the chromosome string are selected randomly. The probability of crossover is set at 

Pc = 0.8. 

The number of mutations in a solution is randomly selected with a very small value of 

probability, i.e., p„ = 0.02. 

The technique of generational replacement without duplication is used for reproduction, 

and to test for a new solution. In this technique, all the solutions of one generation are replaced 

by the solutions of the next generation. 

5-3.3 Gradient Descent learning of parameters 

Afler initialization of the learning parameters by GA, we apply gradient descent 

technique. Figure 5.2 shows algorithm for initialization by GA and fine tuning of the learning 

parameter of the WNF model. The parameter update formulas for/?"' data set are as follows: 

ApO-„,(^)=-7„ 

^pxM = -^-. 

dJ 

dJ 

= -nc 

5̂ . = -m 
mi 

p 

p 

-1 

-1 

e-

•e 

dY 
5o-„, 

dY 

(5.7) 

(5.8) 
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Fig. 5.2. Algorithm for initialized and learning of the learning parameters 

A.M^) = - V ^ = 7 - ^ - '"̂  m:^ P-y] dW,'" 
(5.9) 

21 r 

\C {q)=-JJ-— = V• 
dY 

p-y; 5 c 
w 

(5.10) 

A„C^»wj=-77 = rj --e (5.11) 

where e = Y-Y is the error between the plant output, Y, and the model output, Y. By applying 
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chain rule to the above equation , , , and are derived as follows: 
m„, da„, dwr 5C^, ac^„ 

Define;^ = _jfi<lLj_, then 

^ = t,«,(x1-^-(l-A)-%^ (5.12) 

^ = 4„.(X')-^.(1-A).2±^ (5.13) 
mi 

dY dY^^ (X') 

dY dY^^ (X') 
= /g.- Z" (5-15) dC „ dC 

'' M . . % ^ (5.,6) 

A A A 

_jm^ _WNK_ ^^ wNN^ j ^ 5̂ j4^ ^̂  5̂ jg^ j-^j. ^^^p ^^^gj ^g expressed by (3.24) to 

(3.26), respectively. 

5-3.4 Learning Convergence theorem 

To consider stability of learning procedure Lyapunov stability theorem is applied. 

Theorem 5.1 shows convergence condition for proposed neuro-fuzzy models. The proof of this 

theorem is derived in Appendix C. 

Theorem 5.1; The asymptotic learning convergence is guaranteed if the learning rate for different 

learning parameters follows the upper bound as mentioned below: 
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o<%< 2-P-yl 

^WNN (X'\ 

(5.17) 

max I (J 

0<TJ,< 2-P'yl 

^WNN V^ \ 

(5.18) 

mm J 

0<TJ^< 

0<?7c < 

2-P'/r 

dw 
m 

2-P-y] 

(5.19) 

(5.20) 

0<T]c^ 
2-P-y] 

(5.21) 

dC, 
w 

5-4 Simulation Results 

In this chapter. Multiplication Sigmoid-Wavelet (MS-W) network with the Morlet 

wavelet function is used in consequent part of the neuro-fuzzy model. In this chapter, the weights 

between input layer and hidden layer in MS-W neuron model, Cs and Cw in Fig. 3.2 & 3.3, for 

all rules are same and only the output weights, W in Fig. 3.2, are changed. Consequent Series-

Parallel (CS-P) configuration that result better performance as mentioned in chapter 4 is selected 

to learn the parameters of the WNF model. MMC and GA have been applied to determine the 

structure and to initialize the network. 
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Revisited Example 1: Linear regression witti noniinear input 

With five rules as mentioned in Revisited Example 1 in section 4-5, we have applied 

genetic algorithm with 100 populations. We have fed the initial parameters for GA randomly. 

Figure 5.3 shows the maximum fitness of to each generation. The initial solution for GD is 

obtained over 250 generation. The value of performance index J, obtained by GA for 

initialization of the parameter, is 2.1062x10" .̂ 
,5 

xlO 

(A 
M 

c 

50 100 150 
Generation number 

200 250 

Fig. 5.3. Maximum fitness of GA up to each generation for Example 1 

The initial fuzzy rules generalized by GA are listed below: 

i?': if M(k)isA; A y{k-i)isA\ A j)(k)isA; then y\k + \) is Y^^M 

R^: if u{k)isA^^ A Xk-l) isAJ A j)(k)isA3' then y^{k + l) is Y^^{x) 

R': if u(k)isAl A X^-l) is A'̂  A y(k)isAl then y'(k + l) is Y^^(x) 

i?^ if M(k)isAf A j)(k-l)isA^ A j)(k)isA^ then y'{k + l) is Y^^{x) 

/? ' : if M(k)isAf A j)(k-l)isA; A Xk)isA^ then y'{k + i} is Y^^{x) 
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where Y^fj{x), Y^f^{X), ..., Y^,^{x) are the outputs of initialized MS-W neuron models by 

GA in consequent parts of R' to R^ respectively. Initialization of the learning parameters Cs, Cw 

and W',.... W^, for R' to R^ are as follow: 

Q = 

w = 

0.53891 0.69682 

0.12482 0.37344 

0.21126 0.33559 

w 

= 

'0.3613 0.0796 

0.9821 0.1616 

0.9242 0.0984 

0.6155 0.2415 

0.0079 0.6479 

0.62516 

0.48868 

0.25978 

0.6563" 

0.9548 

0.9061 

0.1252 

0.9080 

c = 
0.052127 

0.89941 

0.30861 

0.82934 

0.98358 

0.34731 

0.9143 

0.28005 

0.77825 

Each hidden neuron in MS-W neuron model is conjunction of Sigmoid and Wavelet 

activation functions. Rows and column in €$ and C(v are corresponding to the number of hidden 

neurons in MS-W neuron model and the number of inputs. The number of rows in Wis equal to 

the number of rules whereas number of column is equal to the number of hidden neuron in MS-

W neuron model. 

The premise variable membership function -4/-^4]^, A-i-A-i and A^-A-^ for inputs M(A;), ^(^ - l ) 

and >'(i) are shown in Fig. 5.4. The fuzzy rules corresponding to the learned WNF are listed 

below: 

if'^: if «(k)isA}^ A j)(k-l)isA^^ A i)(k)isA7 then y (it +1) is 7̂ ^̂  (x) 

^V A j)(k-l)isA^^ A j/(k)isA^^ then / ( A : + 1) is K^^vW 

V̂ (̂  + l ) i s S ^ W 

F}^ \ if «(k) 

i?^^: if w(k)isAf^ A j)(k-l) is Af A Xk) isAf then y\k+ \) is Y^f,{x) 

j)(k-l)isAJ^ A i)(k)isA^^ then y*{k + \)\sY^t,(x) R*^: if M(k)isA;^ A 

)(k) is AY then y' {k +1) is Y^^ (x) R ''-^r if «(k)isA,'^ A y{k-i)isAY A y{] 
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where Yj^f,{x), Y^f^{x), ..., Y^si^) ^̂ e the outputs of learned MS-W neuron models in 

consequent parts of R' to R ,̂ respectively. The learned parameters Cs, Cw and ^,. . . . W^ , for R' 

toR^ are as follow. 

Cs = 

0.30781 

0.56248 

0.55692 

0.72408 

0.81377 

0.21718 

0.39893 

0.40816 

0.14845 

C = 
0.75462 

0.52688 

0.62958 

0.58899 

0.98164 

0.17485 

0.83937 

022244 

0.80545 

w = 

> ' " 

w 
w' 
w' 
w 

= 

0.1990 0.0922 0.0276' 

0.7190 0.8573 0.7294 

0.3221 -0.0464 0.4456 

0.1704 0.5098 0.9124 

-0.3468 0.5898 1.2822 

l l l l h III! llwiiii l | n A - ' 

•A,^ 

0.4 0.6 0.8 
' . . - • " " • ' - • ; • ; • • 

Fig. 5.4. Initialized membership functions, learned by GA, of the normalized inputs for Example 1 
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The learned premise variable membership functions A j '-̂  -A\% A-i^ -A-i^ and A-^^ -A^^ for 

inputs M(^), > ' ( ^ - 1 ) and j)(A:) are shown in Fig. 5.5. Figure 5.6 shows learning pattern of WNF 

model by Genetic Algorithm and Gradient Descent. 

Figure 5.7 shows the actual output, WNF model output and model error with CS-P 

configuration. In this figure, actual output of the plant is solid line and the model output is dot 

line. The error also is solid line. The value of performance index J=1.6078xl0'' for the WNF 

model obtained by CS-P configuration. 

A ^ 

0 0^ 0.4 u(k} 0.6 0.8 

^,„. -
Mtmtum^MmuMmMmiJm 

A,4' 

02 
1 

0.5 

0 

0.4 y(k.1) 0.6 0.8 

.....••••*'''^3 

02 0.4 y(k) 0.6 

Fig. 5.5. Learned membership functions, obtained by GA & GD, of the normalized inputs for 

Example 1 
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Fig. 5.6. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for 

Example 1 

50 

•50 

Learning Prediction 
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Fig. 5.7. Actual output & WNF model output and the error for Example 1 
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Revisited Exampie 2: Non-linear regression with random input 

Figure 5.8 shows the maximum fitness up to each generation. With five rules as 

mentioned in Revisited Example 2 in section 4-5, the initial solution for GD is obtained over 84 

generations. The value of performance index J, initialize by GA, is 3.7761x10'̂ . The initial 

fuzzy rules that generalize by GA are listed below; 

;?': if M(k)isA; A y(k-\)isA\ A j'(k)isA; then y'{k + \) is Y^^fj{x) 

i?^ if w(k)isAf A j)(k-l)isA^ A j)(k)isA^ then / ( i t + l) is y^^^(x) 

;?^ if M(k)isA? A j)(k-l)isA^2 A 7(k)isA] then y^{k + \) is Y^^{x) 

i?*: if w(k)isA; A j)(k-l) is A* A j)(k)isA* then y*(k + l)is Y^;,(x) 

where Y^f,{x), Y^f,{x), ..., Y^f,{x) are the outputs of initialized MS-W neuron models by 

GA in consequent parts of R ' to R'', respectively. Initialization of the learning parameters Cs, Cw 

and W',.... W*, for R' to R^ are as follows. 

C.= 

0.93219 

0.6945 

0.62394 

0.53891 

0.096502 

0.71281 

0.26576 

0.72642 

0.85308 

0.53226 

0.36611 

0.18501 

0.40402 

0.39803 

0.75822 

0.10993 

0.51334 

0.64408 

C^ — 

0.15223 

0.091864 

0.97296 

0.22407 

0.73784 

0.23561 

0.059269 

0.5911 

0.38809 

0.87127 

0.78032 

0.33492 

0.32979 

0.50546 

0.67765 

0.70714 

0.64164 

0.2195 

w = 

> ' • 

w\ 
= 

0.0896 0.2914 0.1925 
0.1087 0.3501 0.1027 
0.8718 0.0204 0.3778 
0.2809 0.6385 0.1134 

0.7222 0.1387 0.5118 
0.5249 0.9884 0.8257 
0.5875 0.4351 0.2690 
0.5698 0.8121 0.6706 

The premise variable membership function y î'-̂ î'', A-i-A-i and A-^-Ai for inputs M(A:), j)(^ -1) 

and j)(^) are shown in Fig. 5.9. 
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Fig, 5.8. Maximum fitness of GA up to each generation for Example 2 
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Fig. 5.9. Initialized membership functions, learned by GA, of the normalized inputs for Example 2 
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The fuzzy rules corresponding to the learned WNF are listed below: 

R'^: if u{k)isAY A y(k'i) is A'/ ^ y{^)isAY then y'{k + i) is Y^M 

R'^: if u{k)isA'/ A j;(k-l) is A^^ A i'(k)isA3'^ then y'{k + \) is Y^M 

R'^: if u{k)isAY A y{k-l)isAY A y{k)isAY then y'{k + \) is Y^M 

i?'^: if «(k)isAf'^ A y{k-i) is A*/ A j/(k)isA*^ then y*{k + l)isY^M 

where Y^f,{x), Y^ni^)' •••> ^miui^) ^® ^^ outputs of learned MS-W neuron models in 

consequent parts of R' to R'*, respectively. The learned parameters Cs, Cw and W',.... W* ,for R' 

to R"*, are as follow: 

C.= 

0.41275 

0.38067 

0.73688 

0.21594 

0.095634 

0.31845 

0.98765 

0.67522 

0.55452 

0.71215 

0.968 

0.7872 

W = 

> ' • 

W\ 

-

0.1203 0.9867 

0.5563 1.0486 

•0.1189 -0.0259 

0.4445 0.9755 

0.65899 

0.4018 

0.83829 

0.28372 

0.089004 

0.38511 

0.0945 

0.1301 

0.3733 

0.5684 

C = 

0.28676 

0.13362 

0.21895 

-0.10607 

0.23543 

0.90667 

0.15502 

1.2506 

0.50995 

0.042429 

0.23625 

0.6037 

0.8781 0.6765 0.8026 

0.7541 0.8585 0.9176 

0.4619 0.9993 0.0928 

0.3725 0.7328 0.1458 

1.0851 

0.66065 

0.90713 

0.94806 

0.82982 

0.4772 

The learned premise variable membership function functions A\^-A\^, Ai^-Ar^and A-^^-A-^^ 

for inputs «(^), y{k -1) and >'(^) are shown in Fig. 5.10. Figure 5.11 shows learning pattern of 

WNF model by Genetic Algorithm and Gradient Descent. Figiire 5.12 shows actual output and 

model output of the CS-P model. The error for learning and prediction section has been shown in 

Fig. 5.12. The value of performance Index 7= 7.9356x10'' is obtained for CS-P configuration. 
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Fig. 5.10. Learned membership functions, obtained by GA & GD, of the normalized inputs for 

Example 2 
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Fig. 5.11. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for 

Example 2 
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Fig. 5.12. Actual output & WNF model output and the error for Example 2 

Revisited Exampie 3: Non-Linear Regression wittt Non-Linear input 

Figure 5.13 shows the maximum fitness up to each generation. With three rules as 

mentioned in Revisited Example 3 in section 4-5, the initial solution for GD is obtained over 120 

generations. The value of performance index J after initialization by GA is 6.8541x10" .̂ The 

initial fuzzy rules generalized by GA are listed below: 

/?': if M(k)isAl A î (k) is A'̂  then y'{k + \) is Yl^,,{x) 

R': if u{k)isA^ A j^(k) is AJ' then y'{k + \) is y^f,^{x) 

J?^ if w(k)isAf A j)(k)isA'2 then y^{k + i} is Y^^f,{x) 
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where Y^^{x), Y^fj{x) and Ylj^^{x) are the outputs of initialized MS-W neuron models by 

GA in consequent parts of R' to R ,̂ respectively. Initialization of the learning parameters Cs, Cw 

and W',.... W^, for R ' to R \ are as follow. 

4) 

40 60 80 
Generation number 

100 120 

Fig. 5.13. Maximum fitness of GA up to each generation for Example 3 

Cs = 

0.66001 

0.95581 

0.11402 

0.58115 

0.6237 

0.81176 

Cffr — 

0.96533 

0.74907 

0.42654 

0,39193 

0.82067 

0.6591 

w = 
0.3183 0.1168 0.8820 

0.3587 0.7858 0.6068 

0.3324 0.9688 0.4925 
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The premise variable membership function Ai^-Ai^ and A-i-Ai for inputs W(A:) and >'(A) 

are shown in Fig. 5.14. The fiizzy rules corresponding to the learned WNF are listed below: 

i?'^: if «(k)isA;^ A y^\% fs}l then y%+ \) \s Yl/^^{X) 

;?'^: if w(k)isAf^ A j)(k) is A^^ then / ( i t + l) is y^4(x) 

i?'^: if «(k)isAf^ A ^k ) is A ' / then / ( ^ + l) is 7;^;^(^) 

where y^^(A'), Y^niX) and Y^u^X) are the outputs of learned MS-W neuron models in 

consequent parts of R' to R'', respectively. Initialization of the learning parameters Cs, Cw and 

W^,..., W^, for R ' to R^ are as follow: 

Q = 
'0.65531 

0.95526 

0.11587 

0.58598" 

0.62217 

0.77571 _ 

C^ — 

1.0845 0.27657 

0.76702 0.83148 

0.3453 0.37021 

W = 

0.2809 0.0518 0.8880 

0.8177 1.0447 1.1052 

•0.0105 0.6968 0.7751 

The learned premise variable membership functions A\^-A\^and A-i^-A-i^for inputs 

u{f) and j)(^) are shown in Fig. 5.15. Figure 5.16 shows learning pattern of WNF model by 

Genetic Algorithm and Gradient Descent. Figure 5.17 shows actual output and model output of 

the CS-P model. The error for learning and prediction section is shown in Fig. 5.17. The value of 

performance Index J= 2.7545x10"^ is obtained for CS-P configuration. 
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Fig. 5.14. Initialized membership functions, learned by GA, of the normalized inputs for 

Example 3 
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Fig. 5.15. Learned membership functions, obtained by GA & GD, of the normalized inputs for 

Example 3 
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Fig. 5.17. Actual output & WNF model output and the error for Example 3 
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Revisited Example 4: Non-linear Regression of Input and output 

Figure 5.18 shows the maximum fitness up to each generation. The initial solution for 

GD is obtained over 208 generation with three rules as mentioned in Revisited Example 4 in 

section 4-5. The value of performance index J after initialization by GA is 4.3790x10" .̂ The 

initial fu2zy rules that generalize by GA are listed below: 

/?': if M(k)isA| A X ^ ) is A^ then y\k + \) is Yl^^{x) 

i?^ if M(k)isAf A >;(k)isA^ then y^{k + \) is Y^^^{x) 

R^: if u{k) is A^ A y{k) is AI then y^{k + i} is Y^^{x) 

where Y^^{x), Y^f,{x) and Y^f,{x) are the outputs of initialized MS-W neuron models by 

GA in consequent parts of R' to R ,̂ respectively. 

0 50 100 150 
Generation number 

Fig. 5.18. Maximum fitness of GA up to each generation for Example 4 

200 
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Initialization of the learning parameters Cs, Cw and W',..., W^ ,for R' to R ,̂ are as follow: 

Q = 

w = 

0.17347 0.25368 

0.81066 0.34084 

0.63248 0.74944 

> ' • 

W 
W 

= 

^w ~ 

"0.6327 0.0317 0.7779" 

0.6670 0.5752 0.8146 

0.0078 0.5692 0.9209 

0.84472 

0.33315 

0.95483 

0.13111 

0.83605 

0.10688 

The premise variable membership function A\-A\ and A2-A2 for inputs u{k) and >'(̂ ) are 

shown in Fig. 5.19. The fuzzy rules corresponding to the learned WNF are listed below: 

i?'^: if «(k)isAl^ A yfyi)\s K^ then y(it + l) is 7^;vW 

i?'^: if «(k)isAf^ A yi^) \S XY then / ( / t + l) is iS^ (z ) 

i?^^: if «(k)isAf^ A yfyi)\s \Y then y\k + \)\s Y^f^{x) 

where Y^A^), Y^A^) and Y^A^) are the outputs of learned MS-W neuron models in 

consequent parts of R ' to R'', respectively. 

Initialization of the learning parameters Cs, Cpf and J^,.... W^, for R ' to R ,̂ are as follow: 

Cs = 

0.026068 0.63253 

0.18761 0.67029 

0.076676 0.90617 

C^ -

'0.15438 

0.19916 

0.61996 

0.91355 

0.71218 

0.28396 

w = 
w 
W 
w 

0.4932 0.0088 0.5814 

0.4242 0.8924 0.9438 

0.2665 0.2291 1.0572 
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Fig. 5.19. Initialized membership functions, learned by GA, of the normalized inputs for 

Example 4 

The learned premise variable membership functions .̂ I'-'̂ -̂ î -̂ and yi2'̂ -^2^^for inputs uik) and 

y{k) are shown in Fig. 5.20. Figiire 5.21 shows learning pattern of WNF model by Genetic 

Algorithm and Gradient Descent. The models have been learned with all (one thousand) data to 

identify output j/(it + l). Figure 5.22 shows actual output and model output of the CS-P model. 

The error for learning and prediction section is shown in Fig. 5.22. The value of performance 

Index y= 3.3841 x 10"* is obtained for CS-P configuration. 
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Fig. 5.20. Learned membership functions, obtained by GA & GD, of the normalized inputs for 

Example 4 
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Fig. 5.21. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for 

Example 4 
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Fig. 5.22. Actual output & WNF model output and the error for Example 4 

Revisited Example 5: Gas Furnace Data 

Figure 5.23 shows the maximum fitness up to each generation. With five rules as 

mentioned in Revisited Example 5 in section 4-5, the initial solution for GD is obtained over 118 

generations. The value of performance index J after initialization by GA is 1.2569x10"'. The 

initial fiizzy rules that generalize by GA are listed below: 

/?': if M(k-2)isA| A M(k-3) is A^ A j)(k-l)isA; then /(k) is Yl^^{x) 

i?^ if M(k-2)isAf A M(k-3)isA^ A j;(k-l)isA^ then y^{k) is Y^^{x) 

i?': if M(k-2)isAf A M(k-3) is A'̂  A i)(k-l)isA^ then y'{k) is Y^^{x) 

i?': if M(k-2)isA; A M(k-3) is A^ A X^-OisA^ then y'{k) is Y;^^{X) 

i?': if M(k-2)isAf A «(k-3)isA^ A Xk-l)isA^ then y'{k) is Yl,„{x) 

where Y^fj{x), Y^f,{x), ..., Y^f,{x) are the outputs of initialized MS-W neuron models by 

GA in consequent parts of R' to R ,̂ respectively, hiitialization of the learning parameters Cs, Cw 
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and W',.... W^, for R' to R^ are as follow: 

Q = 

w = 

0.84557 0.34688 

0.22682 0.52268 

0.89416 0.96521 

"0.5491 0.7375 

0.6525 0.6169 

0.1843 0.6985 

0.0581 0.1842 

0.1355 0.9379 

0.21425 ' 

0.81884 

0.022035 

0.1560" 

0.8344 

0.2811 

0.6572 

0.8700 

C = 

0.42105 

0.76817 

0.577 

0.19557 

0.018312 

0.82293 

0.09284 

0.98541 

0.34646 

20 30 40 
Generation number 

Fig. 5.23. Maximum fitness of GA up to each generation for Example 5 

The premise variable membership function Ai^-A\^, A2-A2 and A^-Ai for inputs M ( ^ - 2 ) , 

W(A: -3) and y{^ -1) are shown in Fig. 5.24. The fuzzy rules corresponding to the learned WNF 

are listed below: 
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R .. : if M(k-2)isAj^ A M(k-3)isA'/ A y{k-\)isAY then /(k)isYX^{x) 

R^^: if u{k-2)isA^/ A M(k-3)isA^^ A y{k-\)isAY then y^{k) is Y^^{x) 

/?^^: if M(k-2)isA[^ A M(k-3)isAf A j)(k-l)isA^^ then y'{k) is Y^^{x) 

R*^ : if u{k-2)isA*/ A M(k-3) is A^^ . A y{k-\)isA*/ then / ( i t ) is 7^^ W 

i?'^: if M(k-2)isAf^ A M(k-3)isA^^ A y{k-i)isAY then y'(k) is Y^^(x) 

where Y^j^{x), Y^^{x) , ..., Y^fj{x) are the outputs of learned MS-W neuron models in 

consequent parts of R' to R ,̂ respectively. 

V 

- • - . • • - i i — i - . — 1 " t , _ • ' 

02 0.4 u(k-3) 0.6 
«— '-

0.8 

Fig. 5.24. Initialized membership functions, learned by GA, of the normalized inputs for 

Example 5 

Initialization of the learning parameters Cs, Cw and W',..., W\ for R' to R^ are as follow: 

Cs = 

0.84612 

0.22651 

0.89424 

0.34695 

0.52271 

0.96529 

0.21303 

0.81928 

0.022302 

c = 
0.41147 

0.76163 

0.57856 

0.18949 

0.014421 

0.82369 

0.082668 

1.0007 

0.34636 
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w = 

w 
w 
w' 
w* 
W 

= 

'0.5456 

0.6521 

0.1843 

0.0581 

0.0994 

0.7397 

0.6135 

0.6985 

0.1842 

0.9778 

0.1621 

0.8289 

0.2811 

0.6572 

0.9129 

The learned premise variable membership function functions A\^ -A\^, A-i^ -Ai^ and A^^ 

-A-i^ iQx inputs «(^-2), M(A;-3) and y{^-\) are shown in Fig. 5.25. Figure 5.26 shows 

learning pattern of WNF model by Genetic Algorithm and Gradient Descent. The models have 

been learned with all (one thousand) data, to identify output >'(̂  + l). Figure 5.27 shows actual 

output and model output of the CS-P model. The error for learning and prediction section has 

been shown in Fig. 5.27. The value of performance Index J=9.5489xl0"* is obtained for CS-P 

configuration. 

A.?' 

05 . ^^'' 

0 0.2 0.4 y{k-1) 0.6 0.8 1 

Fig. 5.25. Learned membership functions, obtained by GA & GD, of the normalized inputs for 

Example 5 
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Fig. 5.26. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for 

Example 5 
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Fig. 5.27. Actual output & WNF model output and the error for Example 5 
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Revisited Example 6: Human Operation at a Chemical Plant 

S-P configuration is selected to learn the learning parameters of the WNF model. Figure 

5.28 shows the maximum fitness up to each generation. By applying modified mountain 

clustering and cluster validity function, three rules are generated. The value of performance 

index J is 6.7911x10'̂  after initialization by GA over 135 generations. The initial fu2zy rules 

generalized by GA and S-P configuration are listed below: 

/?': if «,(k) is Aj A Mj (k) is A^ then >''(^ + l) is Yj,^A^) 

i?^ if w,(k)isAf A «3(k) is A2 then y^{k + \) \s Y^^^{x) 

R^: if u,{k) is Al A M3(;t) is A^ then y^{k + i} is Y^^^{x) 

where Y^t/{x), Y^n^i^) and (̂ww(-̂ ) are the outputs of initialized MS-W neuron models by 

GA in consequent parts of R' to R ,̂ respectively. Initialization of the learning parameters Cs, Cw 

and W',.... W^, for R' to R^ are as follow: 

Cs = 

w = 

"0.57029 0.93597" 

0.08844 0.50082 

0.56852 0.38607 

0.60258 0.24153 

0.86175 0.34633 

0.32271 0.41873 

V 
W 
W 

= 

'0.1673 0.4499 

0.0559 0.3691 

0.7635 0.: J202 

0.2877 

0.4679 

0.2123 

Lff, — 

0.088689 

0.66819 

0.92346 

0.9140 

0.31936 

0.57572 

0.6862 0.8148 

0.1667 0.9771 

0.5041 0.7642 

0.31038 

0.47977 

0.41842 

0.44003 

0.34145 

0.39694 

0.4063" 

0.2477 

0.7494 

The premise variable membership function A\^-Ai^ and A-1-A2 for inputs W,(Â ) and u^i^ are 

shown in Fig. 5.29. The fuzzy rules corresponding to the learned WNF and S-P configuration are 

listed below: 
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i?'^: if M,(k)isAj^ A M3(k) is A^^ then y'{k + \) is Y^^^ix) 

R^^ : if u^{k) is A^ A Uj{k) is AY then / ( i t + l) is y^^(x) 

J?^^: if M,()t)isAf^ A u^{k)isAY then y^(k + \) is r^{,^{x) 

where i ^^ (x ) , Y^N{^) ^ ^ (̂WAf(-̂ ) ^^ the outputs of learned MS-W neuron models in 

consequent parts of R' to R'', respectively. Initialization of the learning parameters Cs, Cw and 

W',.... W^, for R' to R^ are as follow: 

C.= 

0.57029 

0.08844 

0.56852 

0.60258 

0.86175 

0.32271 

0.93597 

0.50083 

0.38607 

0.24154 

0.34634 

0.41872 

C = 'If 

0.088689 

0.66819 

0.92346 

0.9140 

0.31936 

0.57572 

0.31036 

0.47974 

0.41844 

0.44002 

0.34149 

0.39693 

W = 

0.1674 0.4500 0.2877 0.6862 

0.0813 0.3595 0.4747 0.1559 

0.7635 0.3202 0.2123 0.5041 

0.8148 0.4062 

0.9985 0.2587 

0.7642 0.7494 

(A 
M 

a 
c 

0 20 40 60 80 100 120 
Generation number 

Fig. 5.28. Maximum fitness of GA up to each generation for Example 6 
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Fig. 5.29. Initialized membership functions, learned by GA, of the normalized inputs for 

Example 6 

The learned premise variable membership function A\^^ -Ay^ and A2^^ -A2^ for inputs 

M,(̂ ) and u^{^ are shown in Fig. 5.30. Figure 5.31 shows learning pattern of WNF model by 

Genetic Algorithm and Gradient Descent. The models have been learned with all (one thousand) 

data, to identify output ;/(^ +1). Figure 5,32 shows actual output and model output of the CS-P 

model. The error for learning and prediction section is shown in Fig. 5.32. The value of 

performance Index J= 6.7658x10'̂  is obtained for CS-P configuration. 
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Fig. 5.30. Learned membership functions, obtained by GA & GD, of the normalized inputs for 

Example 6 
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Fig. 5.31. Learning pattern of WNF model by Genetic Algorithm and Gradient Descent for 

Example 6 

180 



10000 

edSOOO 

Learning 

ri 

Priediction 

10 20 30 40 50 60 70 

Fig. 5.32. Actual output & WNF model output and the error for Example 6 

Table 5.1: Performance Index (J) of MS-W neuron model, NF and WNF models 

Example 1 

Example 2 

Example 3 

Example 4 

Example 5 

Example 6 

MS-W 

Performance Index (J) 

7.585x10" 

1.145x10'' 

1.361x10-^ 

6.394x10-'' 

1.665x10" 

7.479x10"" 

NF 

Performance Index (vO 

1.8694x10-^ 

1.1040x10-* 

3.2015x10-'' 

5.3610x10-* 

6.8899X10-" 

9.1412x10-^ 

WNF 

Performance Index {J) 

1.6078x10' 

7.9356x10-' 

2.7545x10-*' 

3.3841x10-** 

9.5489x10-^ 

6.7658x10-^ 
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Table 5.1 shows the performance index J for three models: MS-W neuron model, Neuro-Fuzzy 

(NF) and Wavelet Neuro-Fuzzy (WNF) model. In this table, the model with the better 

performance, for each example, is Bold. 

5-5 Conclusions 

In this chapter based on MS-W neuron model that yields better resuh than SS-W neuron 

model, as discussed in chapter 2, WNF model is proposed. The consequent parts of each rule in 

WNF model is localized by MS-W neuron model. The proposed neuro-fuzzy model is initialized 

by GA and to learn learning parameter of the proposed model, CS-P configuration which had 

better performance in chapter 3, is applied. The proposed model examine by six dynamic 

examples. 

Table 5.1 shows that fuzzy models have better performance than MS-W neuron model. 

The propose WNF model also mostly yields better performance than TSK neuro-fuzzy model. 
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Chapter 6 

Recurrent Wavelet Networks 

6-1 Introduction 

Science has evolved from trying to understand and predict the behavior of the universe 

and systems within it. Much of this owes to the development of suitable models, which is in 

conformity with the observations. These models are in symbolic form, which the humans use, 

and in mathematical form that are found from physical laws. Most systems are causal, which can 

be categorized as either static where the output depends on the current inputs, or dynamic where 

the output not only depends on the current inputs, but also on the past inputs and outputs. Many 

systems also possess unobservable inputs, which cannot be measured, but they affect the 

system's output, i.e., time series system. These inputs are known as disturbances and aggravate 

the modeling process. 

To cope with the complexity of dynamic systems, there have been significant 

developments in the field of Artificial Neural Network (ANN), applied for identification and 

modeling, during last three decades [Narendra'90, Zhang'92]. One major application for 

proposing the different types of the network is to predict the dynamic behavior of many systems 
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in nature. ANN is a powerful method in approximation of nonlinear system and mapping 

between input-output data [Narendra'90]. 

Due to the dynamic behavior of recurrent network, they are suitable in dealing with the 

modeling of dynamic systems as compared to static behavior of feed-forward network [Qin'92, 

Li'05]. Owing to the above fact, the presented work proposes different types of recurrent 

neurons. Since the proposed neurons are used in feed-forward network making them as recurrent 

network. It has already been shown that the recurrent networks are less sensitive to noise v»rith 

relatively smaller network size and simpler structure. Their long-term prediction property makes 

the recurrent network much powerful in dealing with dynamic systems. Recurrent networks are 

less sensitive to noise because, the recurrent network could recognize and generate periodic 

waves in spite of the existence of a large number of noises. This means that the network is able 

to regenerate the original periodic waves in the process of learning the teachers' signals with 

noises [Qm'92]. For unknown dynamic system, recurrent network results in a smaller size 

network as compared to feed-forward network [Li'05, Juang'02]. For time-series modeling, it 

generates a simpler structure [Lee'OO, Mastorocostas'02, Yoo'06] and gives long-term 

prediction [Mastorocostas'02, Barbounis'06]. Because of dynamic behavior of recurrent 

networks, they are suitable in dealing with the modeling of dynamic systems as compared to 

static behavior of feed-forward network [Serinivasan'94, Lee'OO]. Recurrent network for system 

modeling, learn and memorize information in terms of embedded weights [Lee'OO]. 

Each neuron model in the proposed SS-W and MS-W neuron models, as discussed in 

chapter 2, comprise Sigmoid Activation Function (SAF) and Wavelet Activation Function 

(WAF). Morlet wavelet function that yield better resuh with both SS-W and MS-W neuron 

model is applied to recurrent model. In the series of development of different recurrent network 
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and neuron model, the presented work is an attempt to proposed different type of recurrent 

neuron model. Several types of recurrent network can be introduced by combining the output 

from SAF and WAF with product operator. In Sigmoid-Recurrent Wavelet (S-RW), the output of 

the wavelet function feedbacks to itself When the output of Sigmoid fimction feedbacks to itself, 

it results a Recurrent Sigmoid-Wavelet (RS-W). In Feedback to Sigmoid from Wavelet (FS-W) 

neuron, the output of wavelet fimction, feedback to sigmoid fimction within a neuron unit. When 

output of sigmoid fimction feedbacks to wavelet fimction, within a neuron unit, it is called as 

Feedback to Wavelet from Sigmoid (FW-S). A Recurrent Neuron (RN) is also proposed in which 

the output of the neuron unit is feedback to itself The idea of using different neuron models is to 

introduce recurrent network in modeling of dynamic systems and to perform a comparative study 

of recurrent neuron models consist of sigmoid and wavelet activation fimction in feed-forward 

neural network architecture. In proposed recurrent neurons, the SAF can administer the system 

dynamics by inputting the delayed output of wavelets to it. On the other hand, the delayed output 

of SAF feedback to WAF ascertains that dynamic of the system is accumulated in WAF. 

However, when the output of the recurrent neurons feedback to both wavelet and SAF, dynamics 

of the plant is attributed to SAF and WAF together. Since the convergence analysis plays an 

important role in the recurrent networks, the Lyapunov stability approach is employed to 

guarantee the convergence of network. 

In this chapter, section 6-2, presents structure of the proposed recurrent S-W neuron 

models. Universal approximation theories of the proposed recurrent neuron models are described 

in section 6-3. Gradient Descent learning of learning parameters is draw up in section 6-3. 

Simulation result is given in section 6-5 and finally the conclusions are relegated in section 6-6. 
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6-2 Structures of Recurrent Neuron Models 

In this section, based on proposed SS-W and MS-W neuron model (Fig. 2.7, Fig. 2.8 and 

Fig. 2.9), five types of recurrent networks are introduced for each SS-W and MS-W neuron 

model. In the proposed recurrent networks, outputs of SAF and WAF are fedback. Structure of 

the proposed networks is presented in this section. 

6-2.1 Sigmoid-Recurrent Wavelet (S-RW) Neuron 

In this neuron model, the output of WAF is feedback to itself Parameter Q^ is feedback 

weight for first order dynamic of network. The dynamics of WAF is given in (6.1) and output of 

SAF is same as given in (3.21). Figure 6.1 and Fig. 6.2 show the architecture of Summation S-

RW (SS-RW) and Multiplication S-RW (MS-RW) neuron models, respectively. 

r n ^ 

I / = 1 
(6.1) 

*«o 

Fig. 6.1. Summation Sigmoid-Recurrent Wavelet (SS-RW) neuron model 
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Fig. 6.2, Multiplication Sigmoid-Recurrent Wavelet (MS-RW) neuron model 

6-2.2 Recurrent Sigmoid-Wavelet (RS-W) Neuron 

In this neuron model, the output of S AF is feedback to itself with feedback weight Qs. 

Equation (6.2) represents the dynamics of SAF while (2.22) represents the output of WAF for 

RS-W neuron models. Summation RS-W (SRS-W) and Multiplication RS-W (MRS-W) neuron 

models, are shown in Fig. 6.3 and Fig. 6.4, respectively. 

f ri ^ 
yj(k)=OQi'yj{k-i)+ z q . x . W 

I /= i 
(6.2) 

Qi 

Fig. 6.3. Summation Recurrent Sigmoid-Wavelet (SRS-W) neuron model 
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'1 O 

• 

'«6 

Qi 

Fig. 6.4. Multiplication Recurrent Sigmoid-Wavelet (MRS-W) neuron model 

Q-2.3 Feedback to Sigmoid from Wavelet (FS-W) Neuron 

In Feedback to Sigmoid from Wavelet (FS-W) neuron model, the weighted single 

delayed output of the WAF is feedback as the input to the SAF, Qi^s is the weight to the delayed 

output of WAF when feedback as the input to the SAF. The output of the SAF is given in (6.3) 

while the outputs of the WAF as (2.22). Figure 6.5 and Fig. 6.6 show the structure of 

Summation FS-W (SFS-W) and Multiplication FS-W (MFS-W) neuron models, respectively. 

( ri ^ 

{ /=1 
(6.3) 

Xi O 

"7 O 

^ O 

Fig, 6.5. Summation Feedback to Sigmoid from Wavelet (SFS-W) neuron model 
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Xj O 

H O 

'»0 

Fig. 6.6. Multiplication Feedback to Sigmoid from Wavelet (MFS-W) neuron model 

6-2.4 Feedback to Wavelet from Sigmoid (FW-S) Neuron 

In Feedback to Wavelet from Sigmoid (FW-S) neuron model, the weighted single 

delayed output of the SAF is feedback as the input to the WAF. Qsiy is the weight to the delayed 

output of SAF when feedback as the input to the WAF. The output of the WAF is given in (6.4) 

while the output of the SAF is the same as (2.21). Figure 6.7 and Fig. 6.8 show the structure of 

Summation FW-S (SFW-S) and Multiplication FW-S (MFW-S) neuron models, respectively. 

I / = 1 
(6.4) 

Cs. 

Fig. 6.7. Summation Feedback to Wavelet from Sigmoid (SFW -S) neuron model 
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Fig. 6.8. Multiplication Feedback to Wavelet from Sigmoid (MFW -S) neuron model 

6-2.5 Recurrent Neuron (RN) 

Figure 6.9 and Fig. 6.10 show the architecture of the Summation RN (SRN) and 

Multiplication RN (MRN), respectively. In these neuron models, the weighted delayed output of 

hidden neuron is feedback itself It results the feedback of the neuron's delayed output to both 

SAF and WAF with weight Qj. The output of the WAF, y"^, and the SAF, y^j ,are given in 

equations (6.5-6.6). 

f r, \ 

/•=i ' . V 

\ / = 1 

(6.5) 

(6.6) 

Q' 

Fig. 6.9. Summation Recurrent Neuron (SKi^) 
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'1 O 

Q' 

Fig. 6.10. Multiplication Recurrent Neuron (MRN) 

6-3 Universal approximation of the proposed recurrent 
neuron models 

By applying Stone-Weierstrass Theorem, the proposed SS-W & MS-W neuron models 

can be shown to be a universal approximate for continuous functions over compact set if it 

satisfies a certain condition. Then we have the following theorems. Theorems 6.1 to 6.5, for 

different recurrent network. Approve of the Theorems is presented in Appendix A. 

Theorem 6.1: Universal approximation theorem of recurrent SS-W neuron models, for any real 

function A: 9?" -> 9?" which is continuous on a compact set ificz'ifi" and for any 

given e>0 there is an recurrent SS-W network / , for all recurrent SS-W neuron 

models, such that sup||/(x)- /i(x| < e. Here ||| can be any norm. 

Theorem 6.2: Universal approximation theorem of MS-RW neuron model, for any real function 

A: IR"-> 9?" which is continuous on a compact set Acz'^" and for any given 
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£>0, there is an MS-RW neuron model / that satisfies condition (6.7), such that 

sup||/(:c)- A(JC)(| < e. Here ||| can be any norm. 
xeA 

C^X + Q^y'^ (k-l)^b + a(ip +1)| (6.7) 

Where c^=]f^^,c^^ C^J, Q^ = {Q^,,Q^^,...,Q^J, y" = {yr,y^,..;y',], 

X = {xi,X2,...,x„} and p is any integer value. 

Theorem 6.3: Universal approximation theorem of MRS-W neuron model, for any real function 

/J:!R" ^9?"' which is continuous on a compact set Acz^l" and for any given 

e>0 there is an MRS-W neuron model/that satisfies condition (2.28), such as 

sup||/(x)- /z(x)|| < e. Here ||.| can be any norm. 
xeA 

Theorem 6.4: Universal approximation theorem of MFS-W neuron model, for any real function 

/z:5R" ^ 9 ? " which is continuous on a compact set i/̂  c9?" and for any given 

£r > 0 there is an MFS-W neuron model / that satisfies condition (2.28), such as 

sup||/(x)- /i(x| < s. Here \\ can be any norm, 
xeA 

Theorem 6.5: Universal approximation theorem ofMFW-S neuron model, for any real function 

h-M" ->'iR'" which is continuous on a compact set ift clR" and for any given 

e>0 there is an MFW-S neuron model/that satisfies condition (6.8), such that 

sup||/(x)- /j(x| < s. Here ||| can be any norm. 
xefi 

C^X + Qs^y''{lc-\)^b + a{2p + l)^ (6.8) 

where C^ = )c^,,C^^,...,C^^}, Qs„, = ^sw^^Qsw,,-^Qsw,}. y" = {yi^yi^-yi]^ 

X = {x^,x2,...,x„} and p is any integer value. Then we have the following resuh. 
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Theorem 6.6: Universal approximation theorem of MRN neuron model, for any real function 

/i:iR" ->iR'" which is continuous on a compact set iflc5R" and for any given 

s>0 there is an RN neuron model / that satisfies condition (6.9), such that 

sup|/(x)- /j(x)|| < e. Here |{| can be any norm. 
xeA 

C^X + Q y{k-l):^ b + a{2p + l)- (6.9) 

Where C^ =]f^^,C^^,...,C^J, Q = {Q^,Q2,...,Q,}, >' = {y, ,>'2,•..,>',), 

X = {x^,X2,...,x„} and p is any integer value. Then we have the following result. 

6-4 Gradient Descent learning of parameters 

We apply gradient descent technique as discussed in chapter 2 to modify the parameters 

W, Cfy, Cg and delay elements Q^, Qg and Q in different recurrent neuron models. The 

parameter update formula for/?* data set is discussed in (2.18). This equation for the parameters 

w, Cfy, Cg in different recurrent neuron model is as follows: 

^pWj(q) = -rj 
dJ 

dW.. 
= j] 

1 dy 
P-y] dWj 

dC 

" ^'^^' 'dCs P-y] dCs 

(6.10) 

(6.11) 

(6.12) 
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^ : 

dW. 
,'m (6.10) for all recurrent neuron models is calculated by (6.13) and (6.14) for SS-W and 

MSW, respectively. 

dW, 

t=yA'^)=yW-y';('^) dW. 

(6.13) 

(6.14) 

y^j{k) and y'^{k) change depend on the different recurrent models as discussed in section 6.2. 

dp dy 
dWj ' dWj 

and delay elements Q^, Q^ and Q in different recurrent neuron models are 

calculated as follow: 

6-4.1 Sigmoid-Recurrent Wavelet (S-RW) Neuron 

In S-RW network, feedback is only in WAF then (6.15) and (6.16) is applied to evaluate 

dy{k) 

dC 
— in SS-RW and MS-RW neuron models, respectively. 

(6.15) 

(6.16) 

By applying chain rule, the following equations are obtained to learn parameters C^y and 

Qiy in recurrent (a) SS-RW and (b) MS-RW neuron models: 
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a) S-RW with Summation (SS-RW) 

dy{k)_ 

< 
= xXk)'W''if/' n 

U = l 
(6.17) 

(6.18) 

b) S-RW with n/lultiplication (MS-RW) 

aciW v/=i 
(6.19) 

(6.20) 

6-4.2 Recurrent Sigmoid-Wavelet (RS-W) Neuron 

In this network, the output of SAF is feedback to itself with feedback weight Qs. 

Therefore (6.21) and (6.22), can be applied to evaluate ^ - ^ in SRS-W and MRS-W, 
da 

respectively. 

^^xM'W^-i;^' 
( 

dQ w, 

n 
\ 

u = i ) 

(6.21) 

m (6.22) 

Learning for Q and Qy^ parameters can be achieved by applying chain rule as follows 

for recurrent (a) SRS-W and (b) MRS-W neuron models. 
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a) RS-W with Summation (SRS-W) 

^-W'-yi(k-\\9\lci.x.(k)^Q^-yi(k-\) 
5Q ws \i = \ 

(6.23) 

(6.24) 

b) RS-W with iVIultiplication (l\/IRS-W) 

|^=xX^)-PF^W->';W.4 iqW-^,W+eiW->';(^-i) 
5qW u=i 

dQi{k) 
^ = ̂ ^W;^rfr-lMW-^' I Ci(k)-x.(k)+Qi(k)-y-{k-\) 

(6.25) 

(6.26) 

6-4.3 Feedback to Sigmoid from Wavelet (FS-W) Neuron 

Since there is not any feedback to WAF the updated equation for parameter C^ is 

achieved by (6.21) and (6.22) for SFS-W and MFS-W neuron models, respectively. Update 

equation for Q and Qf^g is achieved by applying chain rule method as follows for recurrent (a) 

SFS-W and (b) MFS-W neuron models: 

a) FS-W with Summation (SFS-W) 

^=x,{kyw^ 'O'l i ci-x.{k)-,Q^-y,{k-i) 
u=i 

^ = W^.y:,(k-\y0'\ Z Ci-xikhQis-yiik-^) 
oQws \j = \ ' ) 

(6.27) 

(6.28) 
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b) FS-W with Multiplication (MFS-W) 

dyjk) _ 
dCiik) 

^ ^ = W^(k)-y^(k-l).y^{k)-0'\ Z Ci{kyx{k)+Q^{kyy^{k-\) 

(6.29) 

(6.30) 

6-4.4 Feedback to Wavelet from Sigmoid (FWS) Neuron 

Equation (6.15) and (6.16) are applied to update learning parameter Q in SS-RW and 

MS-RW neuron models, respectively. Applying the chain rule method results following 

equations for Cfy and Q^^ parameters of recurrent (a) SFW-S and (b) MFW-S neuron models: 

a) FW-S with Summation (SFW-S) 

^ = xXkyW'.J E C^,-x(k)+Q^^-yi{k-\) 
'IK U = l 

r 
^ = W^-yi{k-\yJ Z Ci,^-x{k)+Qi,-yi{k-l) 

(6.31) 

(6.32) 

b) FW-S with Multiplication (MFW-S) 

^)=x{kyw'{ky/^{kyJlci,Xkyx.(k)^QU^^^ 

.^^=w'{kyy%k-\y/^{kyJ I ci,\kyx{kyQUky/,{k-\) 

(6.33) 

(6.34) 

6-4.5 Recurrent Neuron (RN) 

The following equations are drawn by applying chain rule method for updating the 

parameters C^,, Q and Qg^ for recurrent (a) SRN and (b) MRN neuron models. 
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a) RN with Summation (SRN) 

V/ = l 

dyik) 
dC 

n 

W 
f n ^ 

U = l 

^' 
n 

(6.35) 

(6.36) 

(6.37) 

b) RN with IVIultiplication (IVIRN) 

M^=^x^)-^^w->';w-^( z qw-x.w+e^w.;;,(^-i) 

m^^W'(k).y,(k-X). 
dQ'(k) 

n 

U = l 
f n ^ 

>;;W-^' Z Ci\k)-x(k)+Q^(k)-yj(k-\) 
U = l 

(6.38) 

(6.39) 

(6.40) 

6-4.6 Stability analysis of the recurrent neuron models 

A small value of learning rate TJ leads to the lower speed of convergence, while a large 

value causes the learning procedure unstable. Therefore learning parameter is selected large 

enough so the convergence speed and stability should be guaranteed. To guarantee stability 

during the learning procedure, we have applied the Lyapunov stability theorem. The speed of 

convergence is guaranteed with selecting adaptive learning rate with the lower and upper bound 
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as mentioned in the stability Theorem (2.1). Following theorems guarantees the convergence 

stability of the recurrent neuron models. The proof of the all theorems is derived in Appendix C. 

Theorem 6.7; The convergence and stability of the learning procedure, for recurrent SS-RW and 

MS-RW neuron models, guaranteed if the upper bound of the learning parameters 

^w> Vc ' Vc ^^^ ^QH- fô  recurrent (a) SS-RW and (b) MS-RW neuron models 

are selected as follows: 

a) For recurrent SS-RW neuron model 

0<T]„<^^^ (6.42) 

^^'^c. < ^ ^ (6.42) 

0<T]^^<2-P'y] (6.43) 

2-P-v^ 

b) For recurrent MS-RW neuron model 

0<V^<2'P-yl (6.45) 

I'P-V^ 

Q<T]c<2-P-y] (6.47) 

2-P-v'^ 
0 < % < - ^ (6.48) 
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Lemma 6.1: The range of learning parameter T]„ is the same as (6.42) and (6.45) for all 

summation and multiplication recurrent neuron models, respectively. 

Theorem 6.8.- The convergence and stability of the learning procedure, for recurrent SRS-W and 

MRS-W neuron models, guaranteed if the upper bound of the learning parameters 

rjc^, rjc^ and T]Q^ for recurrent (a) SRS-W and (b) MRS-W neuron models are 

selected as follows: 

a) For recurrent SRS-W neuron model 

^ ^ ' ^ ^ ' ^ ^ " ^ (6.49) 

0<rjc^<2'P-y^ (6.50) 

(i<rjQ^<2'P'yl (6.51) 

b) For recurrent MRS-W neuron model 

2'P'V^ 
^ < ' 7 c . < - ^ (6.52) 

0<?7c,<2'P'y^r (6.53) 

{)<T]Q <2'P-yl (6.54) 

Theorem 6.9; The convergence and stability of the learning procedure, for recurrent SFS-W and 

MFS-W neuron models, guaranteed if the upper bound of the learning parameters 
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rjc^, 7Jc^ and TJ^^ for recurrent (a) SFS-W and (b) MFS-W neuron models are 

selected as follows: 

a) For recurrent SFS-W neuron model 

^^'^^'^^—^ (6.55) 

0 < 7 c , < 2 - P - > ' ' (6.56) 

^<^Q^<^'^'yr (6.57) 

b) For recurrent MFS-W neuron model 

2 - P - / 
^^^c,< 49 ' (6.58) 

0<^Q <'^-P'yl (6.59) 

^^^Q^^^-P-y'r (6-60) 

Theorem 6.10; The convergence and stability of the learning procedure, for recurrent SFW-S and 

MFW-S neuron models, guaranteed if the upper bound of the learning parameters 

Tjc^, 77̂  and TJQ^ for recurrent (a) SFW-S and (b) MFW-S neuron models are 

selected as follows: 

a) For recurrent SFW-S neuron model 

2-P-y^ 
^ ^ ' ^ c , < — ^ (6.61) 
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.2 0<TJc<2-P-y; (6.62) 

Q < ^g.>. ^ 49 (6-63) 

b) For recurrent MFW-S neuron model 

I'P'V^ 

0 < ^ c , <2-P-y^r (6.65) 

^ < ^Qsw < 49 ' (6.66) 

Theorem 6.1 \: The convergence and stability of the learning procedure, for recurrent SRN and 

MRN neuron models, guaranteed if the upper bound of the learning parameters 

7c„,, 7Q and TJQ for recurrent (a) SRN and (b) MRN neuron models are selected 

as follows: 

a) For recurrent SRN neuron model 

2 - P - / 
^ < ^ ^ ^ < - ^ (6.67) 

0<?7c,<2-P'y^ (6.68) 

p . / 
0 < ê < -J^ (6.69) 

b) For recurrent MRN neuron model 
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.2 
0<^C. <^'P'yr (6.71) 

0<^e<—5/^ (6.72) 

6-5 Simulation Results 

The structure of the proposed recurrent S-W neuron models is determined as discussed in 

chapter 2. Since this chapter presents a comparative study of different types of recurrent 

networks, initialization of all the networks should be the same to compare the results and to 

suggest an acceptable network. By keeping the weight Q in the recurrent networks equal to zero 

all recurrent networks will reduce to S-W network. Hence, with a given number of hidden 

neuron unit, it is possible to initialize all the networks with the same initial weights value excepts 

the weights Q. For a given number of hidden layer neuron unit, we initialize the weighted Cfy , 

Cg and W for recurrent SS-W and MS-W neuron models, the same as chapter 3 and the same 

initial weights are used for all recurrent network. In all recurrent S-W neuron models, Morlet 

activation function that yield better performance in chapter 2 is exploited. 

Revisited Exampie 1: Linear regression witii nonlinear input 

Figure 6.11 shows the performance index for SS-W neuron model and proposed recurrent 

neuron models. In Fig. 13 the learning pattern for the SS-W model is shown by solid blue line, 

for SS-RW model it is shown by solid red line, for SRS-W model it is shown by dashed black 

line, for SFS-W model it is shown by dotted green line, for SFW-S model it is shown by dashed-
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dotted magenta line and for SRN model it is shown by solid cyan line. In recurrent SS-W neuron 

models, as shown in Fig. 13, S-RW model yield better result with 7=1.185x10" .̂ Next to S-RW, 

SRN and SFW-S have better performance. It shows that recurrent models have much better 

performance as compared to the feed-forward SS-W model. Table 6.1 shows the performance 

index of different recurrent SS-W neuron models. 

200 400 ^600 800 1000 
epoch 

Fig. 6.11. Learning pattern of feed-forward network with recurrent SS-W neuron models for 

Example 1 

The learning parameter W, Cs, Cw and delay elements Qm 2s» Qsw, Qws and Q in SS-RW, SRS-

W, SFW-S, SFS-W and SRN networks, respectively, are as follow. The columns in Wznd delay 

element and the rows in Cs and Cw are equal to the number of hidden neuron from the 
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conjunction of the SAF and WAF that is equal to a-{a +1)/2. The numbers of columns in Cs 

and Cw are also equal to the number of inputs. 

For recurrent SS-RW neuron model: 

H^^=[ 0.7858 -0.0602 1.2423] ĝ ^ =[-0.2738 0.0797 -0.2738] 

0.1215 0.0466 0.92747 
0.2044 0.7577 0.53309 
0.1819 0.4949 0.33326 

0.8857 0.2208 0.1571 
0.0519 0.7589 0.9126 
0.4286 -0.0114 0.6155 

For recurrent SRS-W neuron model: 

W^ =[0A955 -0.0874 1.2831] e/=[-0.0147 -0.0057 0.0087] 

C^ = 

0.1324 0.0559 0.9233 

0.2035 0.7569 0.5313 

0.1977 0.5108 0.3530 

C^ = 
1.1292 0.2876 0.0292 

0.1041 0.8346 0.9817 

0.5324 -0.0762 0.5315 

For recurrent SFW-S neuron model: 

JT^ =[0.5760 -0.1290 1.2986] g^, =[-0.1631 0.2359 0.0122] 

C^ = 

0.1314 0.0535 0.9278 

0.2034 0.7570 0.5285 

0.1972 0.5058 0.3531 

C^ = 

1.0413 0.3853 0.1459 

0.0936 0.8177 0.9555 

0.5087 -0.0964 0.5564 

For recurrent SFS-W neuron model: 

^^=[0.5015 -0.0867 1.2830] e ^ =[-0.0036 0.0098 0.0022] 

C^ = 

0.1320 0.0553 0.9227 

0.2035 0.7567 0.5311 

0.1974 0.5106 0.3525 

C^ = 
1.1322 0.2847 0.0285 

0.1060 0.8354 0.9824 

0.5325 -0.0754 0.5315 

For recurrent SRN neuron model: 

PF^=[0.5164 -0.0571 1.2942] ^^ =[-0.2471 0.0869 0.0023] 
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*-5 

0.1303 0.0567 0.9299 
0.2033 0.7570 0.5324 
0.1951 0.5126 0.3623 

1.1798 0.2485 0.0588 

0.1047 0.8444 0.9911 

0.5047 -0.1111 0.5727 

Figure 6.12 shows the performance index for MS-W neuron model and proposed 

recurrent networks. In Fig. 6.12, the learning pattern for the MS-W network it is shown by solid 

blue line, for MS-RW network it is shown by solid red line, for MRS-W network it is shown by 

dashed black line, for MFS-W network by dotted green line, for MFW-S network by dashed-

dotted magenta line and for R-N network by solid cyan line. MFW-S network yield better result 

with y=4.834xl0"''. Next to MFW-S, MRN and MS-RW have better performance. It shows that 

recurrent networks have much better performance as compared to the feed-forward MS-W 

network. Table 6.2 shows the performance index of different recurrent MS-W neuron models. 

200 400 ^600 800 1000 
epoch 

Fig. 6.12. Learning pattern of feed-forward network with recurrent MS-W neuron models for 

Example 1 
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The learning parameter W, Cs, Cw and delay elements Qw, Qs, Qsw, Qws and Q in MS-

RW, MRS-W, MFW-S, MFS-W and MRN networks, respectively, are as follow. The columns in 

W and delay elements and the number of rows in Cs and Cw are equal to the number of the 

conjunction of the SAF and WAF that is a-{a +1)/2. The numbers of columns in Cs and Cw are 

equal to the number of inputs. 

For recurrent MS-RW neuron model: 

pr'^= [0.0503 0.5608 1.1975] 

0.8186 0.6630 0.3420" 

0.6343 0.3432 0.5925 

0.8934 0.3332 0.8072 

e^=[-0.3649 -0.1212 -0.1803] 

'"If 

0.7199 0.2217 0.5000 

•0.0960 0.4452 -0.0279 

0.3855 -0.0782 0.6968 

For recurrent MRS-W neuron model: 

Hf'̂  =[-0.0637 0.5714 1.1174] e / = [0.0168 0.0435 0.0819] 

0.8188 0.6608 0.3416' 

0.6343 0.3400 0.5878 

0.8847 0.3311 0.8069 

0.6078 0.3342 0.5475 

-0.1647 0.4310 -0.0904 

0.4010 -0.1124 0.6301 

For recurrent MFW-S neuron model: 

^^=[-0.1116 0.5607 1.0017] 

C^ = 

0.81963 0.6613 0.3426 

0.6402 0.3532 0.6162 

0.8849 0.2941 0.7741 

e /^=[ 0.0235 -0.8195 -0.1304] 

0.6121 0.2552 0.4587 

0.1147 0.6284 0.2643 

0.5286 -0.0471 0.6943 

For recurrent MFS-W neuron model: 

^^=[-0.0651 0.5712 1.1237] ^ 4 =[0-0190 -0.0094 0.0378] 
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'-5 

0.8188 0.6609 0.3417 

0.6342 0.3405 0.5868 

0.8866 0.3325 0.8088 

0.6060 0.3335 0.5457 

•0.1651 0.4326 -0.0878 

0.4018 -0.1115 0.6330 

For recurrent MRN neuron model: 

^^=[-0.0317 0.5776 1.1715] g^ =[-0.1605 -0.0991 -0.0697] 

0.8189 0.6621 0.3423 

0.6393 0.3528 0.5980 

0.8909 0.3392 0.8152 

C^ 
^w 

0.6690 0.3016 0.5397 

-0.0829 0.4576 -0.0602 

0.3905 -0.0781 0.6354 

Figure 6.13 shows the output of system by solid line and output of the network with 

MFW-S neuron model by dotted line. The error between them is indicated by solid line. 

100 200 300 400 500 
Data 

Fig. 6.13. Actual output and network output with MFW-S model and the error for Example 1 
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Revisited Exampie 2: Non-linear regression with random input 

In the recurrent SS-W networks, SS-RW model with performance index 7=1.302x10'̂  

yields better result than other recurrent model as shown in Fig. 6.14 and Table 6.1. Next to SS-

RW, SR-N and SFW-S have better performance. The learning parameters of different recurrent 

networks are as follows. 

For recurrent SS-RW neuron model: 

JT^ =[0.5566 0.4771 -0.3027 1.0627 0.1647 0.4851] 

Sî  =[-0.1070 -0.3436 -0.1295 0.1571 0.0095 -0.1064] 

C^ = 

0.7077 

0.6543 

0.8019 

0.9994 

0.5487 

0.9052 

0.1828 

1.0056 

0.2871 

0.2598 

0.8794 

0.7431 

0.0759 

-0.0894 

0.9134 

0.0091 

0.2656 

0.5793 

C^ = 

0.2598 

1.4870 

0.8356 

-0.2087 

0.7640 

0.9763 

0.0335 

0.9909 

0.4410 

1.2168 

0.7533 

0.4307 

1.6424 

0.8475 

0.6125 

1.3101 

0.2526 

0.3870 

For recurrent SRS-W neuron model: 

Pr^= [0.5269 0.2537 -0.3296 1.0858 0.2574 0.5696] 

e/=[-0.0778 -0.0993 0.0253 -0.2476 -0.0329 -0.1260] 

C^ = 

0.7173 

0.6632 

0.7978 

1.0241 

0.5491 

0.9138 

0.1765 

0.9921 

0.2849 

0.2473 

0.8775 

0.7426 

0.0545 

-0.0881 

0.9168 

-0.0394 

0.2550 

0.5484 

C^ = 

' 0.4289 

1.4794 

0.7144 

-0.1423 

0.7773 

1.1249 

-0.0238 

0.8287 

0.3212 

1.0215 

0.8884 

0.4935 

1.5433 

0.8646 

0.6088 

1.3574 

0.1715 

0.3710 
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For recurrent SFW-S neuron model: 

^^=[0.5341 0.3347 -0.3750 1.1418 0.3878 0.5070] 

e/„, =[0.3643 0.2995 0.1790 0.2168 -0.2220 -0.1084] 

*-5 

0.7140 

0.6596 

0.7942 

1.0194 

0.5496 

0.9089 

0.1733 

0.9850 

0.2819 

0.2320 

0.8768 

0.7335 

0.0660 

-0.0827 

0.9175 

-0.0186 

0.2416 

0.5753 

' 0.3739 

1.4434 

0.7152 

-0.1662 

0.8440 

_ 0.8877 

-0.1058 

0.7800 

0.2892 

0.9524 

0.9158 

0.3338 

1.3028 

0.6558 

0.5277 

1.1292 

0.0623 

0.3423 

For recurrent SFS-W neuron model: 

fF^= [0.5354 0.2526 -0.3566 1.0641 0.2962 0.5808] 

e ^ =[0.01861 -0.1029 0.0232 -0.1035 -0.0507 -0.1212] 

C^ = 

0.7169 

0.6646 

0.7976 

1.0209 

0.5494 

0.9146 

0.1790 

0.9952 

0.2839 

0.2392 

0.8794 

0.7486 

0.0484 

-0.0867 

0.9185 

-0.0351 

0.2484 

0.5414 

' 0.4461 

1.4699 

0.7035 

-0.1440 

0.7792 

1.1136 

-0.0187 

0.8141 

0.3190 

1.0186 

0.9216 

0.4745 

1.5227 

0.8647 

0.6063 

1.3652 

0.1011 

0.3424 

For rectirrent SRN neuron model: 

Fr^=[0.5671 0.1588 -0.3664 1.1152 0.4033 0.5583] 

^^=[0.1745 -0.0796 0.1228 0.1530 -0.2681 -0.1929] 
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0.7162 

0.6573 

0.7947 

1.0172 

0.5485 

0.9117 

0.1718 
0.9825 

0.2834 

0.2341 

0.8764 

0.7383 

0.0495 

-0.0758 

0.9175 

-0.0250 

0.2418 
0.5503 

0.5252 

1.3068 

0.7123 

-0.1217 

0.8748 

1.0153 

-0.0829 
0.6994 

0.3367 

1.0799 
0.9394 

0.4033 

1.3926 
0.8555 

0.5597 

1.2495 

0.0553 

0.3887 

10 
-4.3 

10 
-4.5 

10 
-4.7 

10 
4.9 

• 1 

- ^ ^ f c ^ 

— ss-w 
- - - SFW-S 

SRN 
SS-RW 
SFS-W 
SRS-W 

" ^ j S g a ^ i i ^ 

^ ^ ^ ' ^ 

\ ^̂  ^5^^ \ •», ^'it'N.^ 
\ s ^^^CN^ 

\ "̂ 'N ^^^5?*»«--*,*_ 

1 1 1 1 

200 400 600 800 1000 
epoch 

Fig. 6.14. Learning pattern of feed-forward network with recurrent SS-W neuron models for 

Example 2 

As shown in Fig. 6.16 and Table 6.2, MFW-S neuron model with performance index 

J= 1.034x10'̂  yields better resuh than other recurrent model. Next to MFW-S, MS-RW and 

MRN have better performance. Figure 6.16 shows the output of system and output of the 

network with MS-RW neuron model and the error between them. The learning parameters for 

recurrent MS-W neuron models are as follows. 
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For recurrent MS-RW neuron model: 

W^ =[0A3ll 0.3929 0.3828 1.0594 0.9677 0.3993] 

e ^ = [ 0.0093 0.1076 0.0165 -0.0962 0.2079 0.1346] 

0.6873 

0.6161 

0.8383 

0.9856 

0.5984 

0.8748 

0.2138 

0.9781 

0.2516 

0.1763 

0.9089 

0.7581 

0.1457 

0.0473 

0.9249 

0.2347 

0.3798 

0.6400 

' 0.6497 

0.9668 

0.7452 

-0.0041 

0.4751 

0.8913 

0.0340 

0.7472 

0.3453 

0.8706 

0.9872 

0.4890 

1.2251 

0.4461 

0.2009 

1.0682 

-0.2128 

0.4386 

For recurrent MRS-W neuron model: 

^^=[0.3902 0.5236 0.4225 1.1127 1.0827 0.2837] 

2/=[0.0065 0.0604 -0.0421 0.0502 -0.0393 -0.0120] 

0.6946 

0.6292 

0.8367 

0.9834 

0.6054 

0.8718 

0.2026 

0.9859 

0.2651 

0.1641 

0.8865 

0.7523 

0.1448 

0.0477 

0.9264 

0.2508 

0.4574 

0.6385 

'"If 

0.6166 

0.9379 

0.7151 

-0.0121 

0.5192 

0.8942 

0.0096 

0.7219 

0.3136 

1.0353 

1.0117 

0.4705 

1.2631 

0.4026 

0.3276 

0.9956 

-0.0977 

0.5315 

For recurrent MFW-S neuron model: 

^-^=[0.3398 0.5024 0.4007 1.0600 1.0523 0.2724] 

e/^ =[0.3212 -0.0324 -0.0450 -0.0268 -0.0222 -0.0887] 
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*-5 

0.6900 

0.6257 

0.8372 

0.9706 

0.6166 

0.8714 

0.1917 

0.9892 

0.2793 

0.1680 

0.8860 

0.7500 

0.1426 

0.0455 

0.9156 

0.2373 

0.4350 

0.6404 

0.4685 

1.0030 

0.8335 

-0.0717 

0.5153 

0.8932 

-0.1246 

0.7672 

0.3094 

1.0539 

1.0234 

0.4719 

1.1818 

0.4588 

0.4544 

1.0358 

-0.0828 

0.5240 

For recurrent MFS-W neuron model: 

PF̂  =[0.3922 0.5125 0.4203 1.1142 1.0943 0.2814] 

e 4 =[0.0424 0.0462 0.0097 0.0429 -0.0708 0.0104] 

C^ = 

0.6945 

0.6298 

0.8373 

0.9895 

0.6084 

0.8722 

0.2019 

0.9858 

0.2631 

0.1632 

0.8923 

0.7511 

0.1433 

0.0485 

0.9253 

0.2436 

0.4560 

0.6385 

C^ = 

0.6182 

0.9425 

0.6996 

-0.0071 

0.5185 

0.8956 

0.0175 

0.7081 

0.3164 

1.0423 

1.0050 

0.4654 

1.2642 

0.4014 

0.3137 

0.9892 

-0.0886 

0.5303 

For recurrent MRN neuron model: 

PF^= [0.4493 0.4299 0.3876 1.0802 0.9642 0.3774] 

e^ =[-0.0497 0.1402 -0.0012 -0.1486 0.1668 0.1778] 

C^ = 

0.6870 

0.6203 

0.8381 

0.9893 

0.6030 

0.8736 

0.2104 

0.9812 

0.2540 

0.1657 

0.9164 

0.7564 

0.1476 

0.0495 

0.9263 

0.2363 

0.3859 

0.638 

C^ = 

'0.6090 

0.9576 

0.7221 

0.0033 

0.5098 

0.8862 

0.0564 

0.7774 

0.3710 

0.8730 

1.0019 

0.5007 

1.2406 

0.4294 

0.2023 

1.0577 

-0.1563 

0.4449 
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Fig. 6.15. Learning pattern of feed-forward network with recurrent MS-W neuron models for 

Example 2 
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Fig. 6.16. Actual output and network output with MFW-S model and the error for Example 2 
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Revisited Example 3: Non-Linear Regression with Non-Linear Input 

Figure 6.17 shows that the learning pattern of different recurrent SS-W models and SS-W 

neuron model. This figure and Table 6.1 confers that SS-RW model acquiesces better 

performance with performance index J=6.780xl0'^. The learning parameters of the different SS-

W recurrent networks are as follows. 

For recurrent SS-RW neuron model: 

W^ =[0.2024 -0.5754 1.1774] 

0.4170 0.1409 

0.8930 0.2077 

0.0985 0.2266 

For recurrent SRS-W neuron model: 

fT^ =[-0.1857 -0.6370 1.5149] 

gi^ =[-0.3545 0.3830 -0.4477] 

C^ = 

0.3538 0.9240 

0.1336 0.7471 

1.5150 0.4963 

e( =[-0.0066 -0.0513 0.2438] 

C^ = 

0.4127 0.1439 

0.8858 0.2146 

0.1525 0.2266 

C^ = 

0.6561 0.8826 

•0.1428 0.7984 

1.4177 -0.0874 

For recurrent SFW-S neuron model: 

PT̂  =[-0.0612 -0.5232 1.3009] Qsw =[0-0729 0.4031 -0.9716] 

C^ = 
0.4158 0.1437 

0.9004 0.2181 

0.0941 0.2066 

^ 

ĉ  = 
0.5720 

-0.2987 

1.5651 

0.9767 

0.7164 

0.0971 

For recurrent SFS-W neuron model: 
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PF̂  =[-0.1879 -0.6429 1.5074] e4=[0.0519 0.2605 0.2611] 

0.4126 0.1440 
0.8825 0.2117 
0.1524 0.2266 

C^ = 

0.6641 0.8874 

•0.1568 0.7938 

1.4336 -0.0770 

For recurrent SRN neuron model: 

^^=[0.2384 -0.6434 l.OlOl] 

0.4129 0.1422 

0.8955 0.2035 

0.0941 0.2257 

e^ =[-0.5980 0.8200 -0.3562] 

C^ = 
0.7107 0.9037 

0.2756 0.8195 

1.4850 0.4119 
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Fig. 6.17. Learning pattern of feed-forward network with recurrent SS-W neuron models for 

Example 3 
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Figure 6.18 and Table 6.2 show the learning pattern and performance index of different 

recurrent MS-W models and MS-W neuron model. MFW-S model acquiesces better 

performance with 7=9.053 xlO"^ Next to MFW-S, MR-N and MS-RW have better performance. 

Figure 6.19 illustrate system and network output of MFW-S neuron model as well as the error 

between them. The learning parameters of the different recurrent network are given follows. 

For recurrent MS-RW neuron model: 

PF̂  =[-0.5088 0.5206 0.7630] Si^ =[0.0828 -0.6553 -0.2861] 

C^ ^s 

0.1866 0.7425 

0.7252 0.4753 

0.7185 0.5668 

C^ = 

0.7804 0.1132' 

0.5089 0.1940 

0.6318 0.3624 

For recurrent MRS-W neuron model: 

PF̂  =[-0.7121 0.2410 0.7390] 2/=[0.2001 0.1464 0.1617] 

C^ = 

0.1744 0.6949 

0.7310 0.4534 

0.6894 0.5671 

C^ = 

1.0024 -0.0174 

0.1262 0.0311 

0.6552 0.2242 

For recurrent MFW-S neuron model: 

F ^ =[-0.5266 0.4847 0.4822] 24, =[-0.6001 -0.3007 -0.0250] 

C^ = 

0.1260 0.6279 

0.7089 0.4955 

0.6656 0.5987 

C^ = 

1.0142 

0.2532 

0.3081 

0.2498 

0.0844 

0.6824 
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For recurrent MFS-W neuron model: 

Pf̂  =[-0.7326 0.2392 0.7448] 

0.1734 0.6964' 

0.7346 0.4579 

0.6911 0.5750 

e 4 =[0.2296 0.0009 0.1324] 

C^ = 
1.0189 -0.0228 

0.1288 0.0262 

0.6347 0.2358 

For recxirrent MRN neuron model; 

fT^ =[-0.5290 0.6739 0.8909] 

C^ = 

0.1685 0.7340 

0.7717 0.5126 

0.7251 0.5862 

e^ =[-0.1352 -1.0723 -0.5520] 

C^ = 
0.7934 -0.0181 

0.4401 0.2042 

0.5856 0.2934 

200 400 600 800 1000 
epoch 

Fig. 6.18. Learning pattern of feed-forward network with recurrent MS-W neuron models for 

Example 3 
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Fig. 6.19. Actual output and network output with SS-RW model and the error for Example 3 

Revisited Example 4: Non-linear Regression of Input and output 

Figure 6.20 and Table 6.1 show that the SRN model yields better result than other 

recurrent models with performance index 7=9.824x10'\ Next to SRN model, SS-RW and SFW-

S models are better. Learning parameters of the recurrent summation network are as follows. 

For recurrent SS-RW neuron model: 

PF-̂  =[-0.2980 0.2765 1.1226] 

0.1673 0.6126 
0.2540 0.3389 
0.2492 0.3203 

gi^=[0.1266 -0.0947 -0.2375] 

0.5524 0.5587 

0.9275 0.9231 

0.4877 0.6794 

219 



For recurrent SRS-W neuron model: 

^^=[-0.2935 0.5270 1.0867] 

0.1773 0.6167 
0.2257 0.3360 
0.1665 0.2765 

e / = [ 0.2318 - 0.4205 - 0.9303] 

\^fy — 

0.6096 

0.9606 

0.7749 

0.7516' 
1.1120 

0.4434 

For recurrent SFW-S neuron model: 

^^=[-0.3127 0.4535 1.0243] 

0.1646 0.6139 

0.2562 0.3413 

0.2534 0.2965 

e /^=[ 0.3264 -0.1772 -0.4966] 

0.4005 0.4878 

0.9198 1.0168 

0.7770 0.5688 

For recurrent SFS-W neuron model: 

W^ = 1-0.2768 0.4240 Ll04l] 

C^ -
^s -

0.1589 0.6148 

0.2655 0.3409 

0.2752 0.3009 

Q^=[0.niO -0.3262 -0.5268] 

0.5811 0.7354 

1.0302 0.9997 

0.6747 0.4743 

For recurrent SRN neuron model: 

F ^ =[-0.3768 0.3959 1.0940] 

0.1541 0.6183 

0.2638 0.3289 

0.2775 0.2730 

Q^ = [0.2964 - 0.1282 - 0.2628] 

0.4475 0.6136 

1.0185 0.9459 

0.6938 0.5948 
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Fig. 6.20. Learning pattern of feed-forward network with recurrent SS-W neuron models for 

Example 4 

Figure 6.21 shows that in recurrent MS-W neuron models, the MFW-S network has 

better result than other recurrent networks. As shown in Table 6.2 the performance index of this 

model is 7=1.320x10" .̂ Next to MFW-S network, MS-RW and MRN networks are better. 

Network output (with SRN neuron model) and the system output with error between them is 

shown in Fig. 6.22. Learning parameters of the recurrent MW-S network are as follows. 

For recurrent MS-RW neuron model: 

PF^= [0.2244 0.6028 1.2509] g,̂  =[-0.0840 -0.1840 -0.0720] 
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0.2641 0.2703' 

0.1149 0.6295 

0.7313 1.0391 

0.4903 0.5522 

0.5389 0.4530 

0.4755 0.7396 

For recurrent MRS-W neuron model: 

W^ =lOA6\5 0.7514 2.0308] e/=[0.0662 0.2127 -0.2387] 

0.4307 0.4525 

0.3826 0.8448 

0.3789 0.7182 

\^fy — 

0.0453 0.6066' 

0.6875 0.6239 

0.5311 0.6046 

For recurrent MFW-S neuron model: 

^/=[0.4547 0.7641 1.8686] e/„. =[-0.2560 0.1754 -0.2684] 

0.4637 

0.3286 

0.4899 

0.5243 

0.8680 

0.7130 

0.1276 

0.6232 

0.5051 

0.7714 

0.3968 

0.9219 

For recurrent MFS-W neuron model: 

PF^= [0.5257 0.7500 1.9448] 2 4 = [0.0712 0.1454 -0.2262] 

^ 5 

0.4272 0.4572 

0.3511 0.8261 

0.5446 0.8501 

0.0329 0.6211 

0.7003 0.6371 

0.5227 0.6181 

For recurrent MRN neuron model: 

fr^= [0.3634 0.5970 1.3249] Qf =1-0.1444 -0.3730 -0.0414] 

0.2726 0.2749 

0.1143 0.6018 

0.7449 1.0679 

« ^ ^ — 

0.4217 0.5909 

0.6335 0.4248 

0.4458 0.8089 
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Fig. 6.21. Learning pattern of feed-forward network with recurrent MS-W neuron models for 

Example 4 
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Fig. 6.22. Actual output and network output with SRN model and the error for Example 4 
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Revisited Exampie 5; Gas Furnace Data 

From the Fig. 6.23 SS-RW yields better result than other recurrent SS-W neuron models 

with performance index, as shown in Table 6.1, y=1.405xl0"^ Next to SS-RW model, SRN and 

SFW-S have better performances. Learning parameters of the recurrent SS-W neuron model are 

as follows. 

For recurrent SS-RW neuron model: 

^^=[0.8219 0.1574 0.6369 0.3447 0.6124 0.9757] 

e^ =[-0.0703 -0.0791 0.1707 0.1572 0.2236 -0.0063] 

0.0995 

0.1944 

0.1683 

0.5875 

0.2413 

0.1543 

-0.0228 

0.7387 

0.4155 

0.9160 

0.4361 

0.3752 

0.8470 

0.5276 

0.2103 

0.6828 

0.8471 

0.0313 

"0.0733 

0.0764 

0.8380 

0.5290 

0.6120 

0.8808 

0.5494 

0.7942 

0.1956 

0.4882 

0.9367 

1.0045 

0.8444 

0.8905 

-0.3959 

0.3944 

1.0686 

-0.3664 

For recurrent SRS-W neuron model: 

PF^= [0.9527 -0.0335 0.5899 0.3333 0.6765 1.0553] 

e/=[-0.0066 0.0031 -0.0021 -0.00002 -0.0016 -0.0098] 

C^ = 

0.0899 

0.1993 

0.1672 

0.5852 

0.2345 

0.1474 

-0.0320 

0.7434 

0.4146 

0.9139 

0.4296 

0.3690 

0.8731 

0.5275 

0.2316 

0.6920 

0.8660 

0.0672 

C^ = 

0.2004 

0.0449 

0.7755 

0.5264 

0.5273 

0.9061 

0.6780 

0.7639 

0.1303 

0.4848 

0.8503 

1.0261 

0.6519 

0.9310 

-0.5126 

0.3451 

0.9611 

-0.4920 

For recurrent SFW-S neuron model: 

^^=[0.9405 0.0007 0.6091 0.3448 0.6692 1.0368] 
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e/^ =[-0.0036 0.0363 -0.1348 0.1009 0.0955 0.0290] 

0.0918 

0.1982 

0.1677 

0.5855 

0.2359 

0.1495 

-0.0302 

0.7424 

0.4150 

0.9141 

0.4309 

0.3709 

0.8692 

0.5282 

0.2285 

0.6906 

0.8629 

0.0610 

"0.1825 

0.0513 

0.7884 

0.5308 

0.5449 

0.8987 

0.6602 

0.7699 

0.1434 

0.4892 

0.8676 

1.0194 

0.6793 

0.9286 

-0.5027 

0.3474 

0.9571 

-0.4705 

For recurrent SFS-W neuron model: 

^^=[0.9542 -0.0348 0.5881 0.3329 0.6786 1.0550] 

2 4 =[-0-0354 0.0078 -0.0181 -0.0088 -0.0304 -0.0680] 

0.0902 

0.1993 

0.1675 

0.5854 

0.2348 

0.1479 

-0.0318 

0.7434 

0.4148 

0.9140 

0.4298 

0.3694 

0.8731 

0.5276 

0.2316 

0.6920 

0.8659 

0.0671 

0.2057 

0.0448 

0.7745 

0.5257 

0.5273 

0.9047 

0.6830 

0.7638 

0.1295 

0.4843 

0.8503 

1.0250 

0.6501 

0.9309 

-0.5087 

0.3440 

0.9580 

-0.4903 

For recurrent SRN neuron model: 

fF^ =[0.9277 0.0360 0.5890 0.3370 0.6569 1.0244] 

e^ =[-0.1518 0.0106 0.0054 0.0456 0.1385 -0.0249] 

0.0918 

0.1977 

0.1678 

0.5860 

0.2371 

0.1494 

-0.0295 

0.7420 

0.4156 

0.9149 

0.4325 

0.3716 

0.8638" 

0.5280 

0.2236 

0.6880 

0.8581 

0.0533 

C^ = 

0.1274 

0.0552 

0.7818 

0.5265 

0.5626 

0.8976 

0.6110 

0.7734 

0.1364 

0.4839 

0.8855 

1.0161 

0.7297 

0.9238 

-0.4985 

0.3659 

0.9937 

-0.4478 

225 



10 ' 

10 

5 

6 

1 - T • 1 

\ \Ŝ  
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Fig. 6.23. Learning pattern of feed-forward network with recurrent SS-W neuron models for 

Example 5 

From the Fig. 6.24 MFW-S yield better learning pattern. The performance index of this model 

as shown in Table 6.2 is J=9.738xl0"l Next to MFW-S network, MS-RW has better 

performances. Figure 6.25 shows actual and network with MFW-S network as well as error. 

Learning parameters of the MFW-S recurrent networks are as follows. 

For recurrent MS-RW neuron model: 

PF^= [0.8039 0.1272 0.650?] 

*-5 

0.1331 0.1680 0.6760 

0.0681 0.9113 0.2672 

0.1288 0.1396 0.3051 

e^=[0.0514 0.0022 0.0068] 

0.1997 0.2138 -0.0373 

0.6465 0.6624 0.6043 

0.0566 0.3145 1.0313 
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For MRS-W recurrent network: 

W^ = [0.9120 0.0835 0.8625] 

0.1151 0.1452 0.7416 

0.0677 0.9107 0.2665 

0.1156 0.1225 0.4071 

e/=[-0.0052 -0.0019 0.0284] 

0.3250 0.3746 0.0745 

0.6611 0.6803 0.5598 

-0.0238 0.2133 0.7597 

For recurrent MFW-S network: 

^^=[0.9029 0.0812 0.8557] 

C/ = 

0.1134 0.1454 0.7408 

0.0676 0.9107 0.2666 

0.1151 0.1236 0.4046 

g,4, = [ 0.2783 - 0.0235 - 0.0680] 

' 0.2865 

0.6626 

-0.0270 

0.3188 

0.6805 

0.2194 

-0.1471 

0.5600 

0.7761 

For recurrent MFS-W neuron model: 

fr^=[0,9116 0.0880 0.8594] 

0.1149 0.1449 0.7415 

0.0677 0.9107 0.2667 

0.1155 0.1224 0.4055 

e ^ =[-0.0228 -0.0029 0.0239] 

C^ = 

0.3246 0.3743 0.0732 

0.6613 0.6807 0.5597 

-0.0254 0.2114 0.7591 

For recurrent MRN neuron model: 

F^̂  =[0.8999 0.1467 0.7803] 

C^ = 

0.1129 0.1448 0.7214" 

0.0678 0.9108 0.2691 

0.1128 0.1211 0.3742 

e ^ = [0.2818 -0.0196 0.0087] 

C^ = 

0.3206 0.3603 -0.1192 

0.6648 0.6838 0.5724 

-0.0265 0.2192 0.7740 
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Fig. 6.24. Learning pattern of feed-forward network with recurrent MS-W neuron models for 

Example 5 
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Fig. 6.25. Actual output and network output with MFW-S model and the error for Example 5 
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Revisited Example 6: Human Operation at a Chemical Plant 

Figure 6.26 shows that the learning pattern of the recurrent SS-W network with SS-RW 

neuron yields better result with performance index 7=7.832x10"^. Table 6.1 show the 

performance index of the different recurrent SS-W models. Learning parameters of the SS-W 

recurrent networks are as follows. 

For recurrent SS-RW neuron model: 

PT̂  =[-0.1907 0.0266. 0.8936 0.0965 0.7763 0.3453] 

Ql =[0.0247 -0.0414 -0.0684 -0.0485 0.1958 -0.1399] 

C^ ^s 

0.0150 

0.7679 

0.9707 

0.9900 

0.7888 

0.4386 

0.4910 

0.2224 

0.6945 

0.3306 

0.9991 

0.7456 

0.3797 

0.7833 

0.6804 

0.4611 

0.5674 

0.7942 

0.1124 

0.5154 

0.3814 

0.3790 

0.6367 

0.9453 

For recurrent SRS-W neuron model: 

^^=[-0.2109 0.0160 0.9114 0.0659 0.8823 0.2137] 

Q{=l-O.OOSO 0.0II7 0.0769 0.0162 0.0550 0.0366] 

0.0150 

0.7679 

0.9707 

0.9900 

0.7887 

0.4386 

0.4913 

0.2267 

0.7162 

0.3359 

1.0230 

0.7516 

0.3798 

0.7833 

0.6805 

0.4610 

0.5674 

0.7942 

0.0465 

0.5024 

0.3709 

0.3788 

0.8701 

0.8780 
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For recurrent SFW-S neuron model: 

^^=[-0.1887 0.0224 0.8852 0.0839 0.7864 0.2678] 

e/^ =[-0.0059 -0.0157 0.0519 -0.0075 0.2344 0.0122] 

"0.0150 

0.7679 

0.9707 

0.9900 

0.7887 

0.4386 

0.4909' 

0.2228 

0.6967 

0.3304 

1.0029 

0.7447_ 

'0.3797 

0.7833 

0.6803 

0.4611 

0.5673 

0.7942 

0.0722 

0.5227 

0.3750 

0.3849 

0.7241 

0.9070 

For recurrent SFS-W neuron model: 

^^=[-0.2061 0.0172 0.9038 0.0703 0.8761 0.2137] 

S 4 =[-0-0007 0.0059 0.0181 0.0055 0.0295 0.0245] 

C^ ^s 

0.0150 

0.7679 

0.9707 

0.9900 

0.7887 

0.4386 

0.4896 

0.2240 

0.7146 

0.3337 

1.0212 

0.7522 

0.3798 

0.7833 

0.6804 

0.4611 

0.5673 

0.7942 

0.0505 

0.5099 

0.3761 

0.3817 

0.8755 

0.8826 

For recurrent SRN neuron model: 

fT^ =[-0.2225 0.0437 0.9071 0.0700 0.8463 0.2475] 

e^=[0.0135 -0.0717 0.00004 -0.0497 0.0396 -0.0468] 

C^ = 

'0.0150 

0.7679 

0.9707 

0.9900 

0.7888 

0.4386 

0.4886" 

0.2238 

0.7099 

0.3323 

1.0165 

0.7500 

C^ = 

'0.3797 

0.7833 

0.6805 

0.4610 

0.5674 

0.7942 

0.0773 

0.5154 

0.3875 

0.3822 

0.8420 

0.8976 
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200 400 ^600 800 1000 
epoch 

Fig. 6.26. Learning pattern of feed-forward network with recurrent SS-W neuron models for 

Example 6 

Figure 6.27 shows that the learning pattern of the recurrent MS-W network with MS-RW 

neuron yields better result with performance index ^=6.190x10'^ as shown in Table 6.2. 

Learning parameters of the MS-W recurrent network are as follows. 

For recurrent MS-RW neuron model: 

rr^= [0.1292 0.6108 0.5087 0.2991 0.9034 0.9322] 

e;^=[0.0169 -0.1169 -0.1769 -0.0720 -0.0636 -0.0936] 
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0.7035 

0.4848 

0.1146 

0.6648 

0.3653 

0.1401 

0.5454 

0.8529 

0.6661 

1.0111 

1.0134 

0.0308 

0.3717 

0.4253 

0.5943 

0.5657 

0.7161 

0.5112 

0.6686 

0.3327 

0.3298 

0.6159 

1.0572 

0.9514 

For recurrent MRS-W neuron model: 

Pr^= [0.1048 0.6058 0.4824 0.3036 0.9293 0.9226] 

e/=[-0.0140 0.0428 -0.0186 0.0216 0.0437 -0.0469] 

0.7035 

0.4848 

0.1146 

0.6648 

0.3653 

0.1401 

0,5461 

0.8514 

0.6642 

1.0121 

1.0193 

0.0252 

0.3717 

0.4254 

0.5943 

0.5658 

0.7160 

0.5112 

0.6996 

0.2656 

0.3397 

0.6045 

1.0946 

0.9534 

For recurrent MFW-S neuron model: 

F ^ =[0.1319 0.5972 0.4949 0.2975 0.9156 0.9215] 

^/^=[0.0084 -0.1283 0.0672 -0.0650 0.0761 0.0050] 

C^ = 

0.7035 

0.4849 

0.1146 

0.6648 

0.3653 

0.1401 

0.5477 

0.8525 

0.6628 

1.0127 

1.0073 

0.0249 

C^ = 

0.3716 

0.4252 

0.5945 

0.5657 

0.7163 

0.7698 

0.3133 

0.3249 

0.6241 

1.1123 

0.5113 0.9183 

For recurrent MFS-W neuron model: 

W^=[0.1249 0.6001 0.4934 0.3011 0.9587 0.9189] 

e 4 =[-0.0112 0.0111 -0.0033 0.0092 0.0378 -0.0287] 
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0.7035 

0.4848 

0.1146 

0.6648 

0.3653 

0.1401 

0.5487 

0.8578 

0.6604 

1.0154 

1.0124 

0.0201 

0.3717 

0.4253 

0.5944 

0.5657 

0.7161 

0.5113 

0.7456 

0.2714 

0.3473 

0.6087 

1.1211 

0.9358 

For recurrent MRN neuron model: 

^^=[0.1110 0.6070 

e ^ =[-0.0396 -0.0330 

0.4954 0.3041 0.9330 0.9216] 

-0.1087 -0.0232 0.0249 0.0255] 

0.7035 

0.4848 

0.1146 

0.6648 

0.3653 

0.1401 

0.5456 

0.8545 

0.6641 

1.0126 

1.0176 

0.0248 

0.3717 

0.4253 

0.5944 

0.5657 

0.7162 

0.5112 

0.7407 

0.2945 

0.3480 

0.6094 

1.0879 

0.9560 

10 
-5 

MS-W 
MFS-W 
MRN 
MFW-S 
MRS-W 
MRW-S 

200 400 ^600 800 1000 
epoch 

Fig. 6.27. Learning pattern of feed-forward network with recurrent MS-W neuron models for 

Example 6 
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Figure 6.28 shows the actual control action of the operator and the network output with 

error for MS-RW neuron model. 

10000 

10 20 30 40 50 60 70 

Fig. 6.28. Actual output and network output with MS-RW model and the error for Example 6 

Table 6.1: Performance Index for Recurrent SS-W neuron models 

Examples 

Example 1 

Example 2 

Example 3 

Example 4 

Example 5 

Example 6 

S. F. (fl) 

a=2 

a=3 

a=2 

a=2 

a=3 

a=3 

SS-W 

1.734x10'*' 

1.648x10" 

1.283x10"* 

5.814x10-̂  

1.676x10'' 

8.674x10"* 

SS-RW 

1.185x10-* 

1.302x10'̂  

6.780x10'̂  

1.515x10'* 

1.405x10'' 

7.832x10"* 

SRS-W 

1.740x10'* 

1.626x10'' 

1.261x10'̂  

2.492x10'* 

1.576x10'' 

7.980x10-* 

SFS-W 

1.733x10'* 

1.576x10'' 

1.225x10'̂  

1.985x10'* 

/.57;xl0'' 

8.165x10'* 

SFW-S 

1.676x10'* 

1.400x10'' 

9.689x10'' 

1.738x10'* 

1.413x10'' 

8.765x10'* 

SRN 

1.838x10'* 

1.487x10'' 

7.770x10'' 

9.824x10'' 

1.668x10'' 

7.918x10'* 
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Table 6.2: Performance Index for Recurrent MS-W neuron models 

Examples 

Example 1 

Example 2 

Example 3 

Example 4 

Example 5 

Example 6 

S. F. (a) 

a=2 

a=3 

a=2 

a=2 

a=2 

a=3 

MS-W 

7.585x10'' 

1.145x10"' 

i.seixio-̂  
6.394x10-" 

1.685x10-' 

7.479x10-" 

MS-RW 

6.112x10-' 

1.080x10-=" 

9.559x10-' 

1.428x10-" 

1.296x10-' 

6.190x10-* 

MRS-W 

6.150x10-' 

1.151x10-' 

1.356x10-̂  

2.177x10-" 

1.560x10-' 

7.041x10*" 

MFS-W 

6.510x10-' 

1.145x10-' 

1.351x10-̂  

1.840x10-" 

1.579x10-' 

7.344x10-" 

MFW-S 

4.834x10-' 

1.034x10'̂  

9.053x10-=* 

1.320x10-* 

9.738x10-" 

7.396x10-" 

MRN 

6.102x10"' 

1.086x10-' 

9.405x10"' 

1.492x10-" 

1.653x10-' 

6.895x10-" 

Tables 6.1 & 6.2, show the performance index of different recurrent neurons as well as SS-W & 

MS-W neuron models, respectively. Scaling Factor (S.F.), a, which calculated in chapter 3, is 

shown in second column. In these two tables, the performance index of best model, for each 

example is Bold. 

6-6 Conclusions 

In this chapter, based on proposed SS-W and MS-W neuron models in chapter2, five 

recurrent neuron models namely SS-RW, SRS-W, SFW-S, SFS-W, SR-N and MS-RW, MRS-W, 

MFW-S, MFS-W, MR-N for SS-W and MS-W neuron models, respectively, are proposed. In 

proposed recurrent neuron models, the systems' dynamic is saved in sigmoid or wavelet 

activation function. Therefore, they predict the system dynamics well. 

One important point should be noted that when the wavelet activation function used as 

memory element these recurrent neuron models in the feed-forward network yield better result. It 

means that sigmoid activation function do not have the same capability as of wavelet activation 
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function to save the systems' dynamics. Therefore, the dynamic of the system can be predicted 

well by recurrent model with feedback to wavelet activation function. 

The results show that if the dynamic is accumulated in wavelet section of the recurrent 

models, namely SS-RW, SR-N, SFW-S or MS-RW, MR-N, MFW-S, in SS-W or MS-W neuron 

models, respectively, the performance will be better than in sigmoid function, i.e., SRS-W, SFS-

W or MRS-W, MFS-W, in SS-W or MS-W, respectively. 

Among the recurrent neurons model, in which feedback is to wavelet activation function, 

in recurrent SS-W neuron models, SS-RW model has best performance index and in recurrent 

MS-W neuron models, MFW-S model has best performance index. 
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Chapter / 

CASE STUDY: Indian Summer Monsoon Rainfall 

(June-September) 

7.1 Introduction 

The agricultural economy of India is closely linked to the performance of summer 

monsoon rainfall all over India. The ability to understand and predict circulation and rainfall 

during the Asian summer monsoon on various time-scales is of prime importance to the 

economy of several nations of this region because of its affect on agriculture, drinking water, 

transportation, health, power, and the very livelihood of billions of people living in the 

monsoon region. To mitigate this and also with increasing population, effective planning and 

management of water resources is necessary [Par99, Singhrattnal'04]. 

Indian summer monsoon is one of the major components of the tropical circulation 

and its simulation using numerical models is one of the most challenging aspects because of 

its complex interactions between orography, convection and surface processes [Kang'05, 

Par99]. 

The major drought of 2002 [Gadgil'DS, Gadgir02, Kalsi'04, Sikka'03], with the all-

India Summer Monsoon Rainfall (ISMR) (June-September) being 19% less than the long-
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term average, led to considerable concern in the meteorological community since none of the 

predictions had suggested a large deficit in the ISMR. This was irrespective of the 

predictions, whether it were based on empirical models used in the country for generating 

operational/experimental forecasts, or generated in the different centers in the world using the 

atmospheric general circulation models. Fortunately, the unanticipated failure of the Indian 

monsoon in the summer of 2002 was followed by the summer monsoon of 2003 for which the 

ISMR was 2% more than the average [Rajeevan'04]. However, the relief was short-lived 

since the summer monsoon of 2004 has again been a drought (defined as a summer monsoon 

season for which the deficit in ISMR is larger than 10% of the long-term average), with the 

ISMR being 87% of the average. As in 2002, neither the forecast of the India Meteorological 

Department (IMD) for the ISMR nor the predictions from the international centers using 

atmospheric General Circulation Models (GCM), suggested that there would be a drought. 

Clearly, it is far more important to generate accurate predictions of droughts/excess rainfall 

seasons than of fluctuations within 10% of the average. 

Different forecasting methods were suggested by researchers [Pal'99, Gowarikar'89, 

Krishnamurti'98] and also predictability of monsoon were considered by some researchers 

[Kang'05, Palmer'94]. Here our attempt is the prediction of Indian summer monsoon 

rainfall, between June to September, by using previous rainfall data. The data used in this 

chapter is available in the website of Indian Institute of Tropical Meteorology department 

[DTM]. 

The chapter is organized as follow: In section 7.2 forecasting ability of the Indian 

summer rainfall data is considered. Application of the proposed networks and neuro-fuzzy 

models in forecasting of rainfall data are presented in section 7.3 and finally conclusions are 

derived in section 7.4. 
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7.2 Forecasting Ability of Rainfall Data 

One of the main question in time series analysis is the ability of the time series data 

(here rainfall data) to predict future change in rainfall data. There are several unknown things, 

which have effect on rainfall. During last decades, several methods are developed to analyze, 

predict ability of the data in time series, same as Rescaled Range Analysis [Hurst'51], 

Correlation Dimension Estimate [Brock'92, Isham'93] and Largest Lyapunov Exponents 

[Benettin'80, Oseledec'68]. 

Rescaled Range (RR) analysis is a robust statistical method used to evaluate the 

degree of the presence of noise in a process, which has capability to identify a random series 

from a non-random one. It can also be used to determine the average length of non-periodic 

cycles. The computation procedure for Rescaled Range is as follows [Hurst'51, 

Khaloozadeh'04]: 

KA^] - '̂ R^=MaxiX. ., I -Min \N ',l<t<N (7.1) 

X^^^ = i:(x^-m) (7.2) 
N, 
s 

where m is the mean value of original time series {X,).N is the number of observations and 

R captures the maximum and minimum cumulative deviations of the observations function of 

the number of observations X, of the time series from its mean m, and it is a function ofN, R 

is defined using the following relation: 

^ = N" (7.3) 
S 

Where S, the standard deviation of X,, and 0<H<\ are given by (7.4) and (7.5), 

respectively. 
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s = ZiX.-mf N-\ 
nV2 

. '=1 

^ \og{RjS) 
\og{N) 

(7.4) 

(7.5) 

H is known as the Hurst exponent, which shows the similarity between two successive 

events. An estimate of / /can be obtained by calculating the slope of log{R^/S) versus 

log(A )̂. The largest value for i/shows the mean orbital period of the process. 

The value of the Hurst exponent for rainfall data is //=0.6436, which denotes long-

memory effect in time series. Validity of the Hurst exponent is tested by randomly 

interchanging the order of data points in the original time series and calculating the Hurst 

exponent for a new series. In fact, for the long memory effect the order of data is important so 

that a new series should have a lower H estimate. The average H estimate obtained is much 

lower than the original series (0.4815). 

Various log{R^/S) values are regressed on their corresponding log(A )̂ values and 

the resulting slope is the estimate for H. Fig. 7.1 shows the /f estimate for original series and 

shuffling series versus Â , respectively. 

0.8 

0.7 

0.4 

0.3 

0.2 

Original data H»0.6436 

Random data H-0.4815 

40 60 80 
N 

100 120 

Fig. 7.1. //estimate for the original and random rainfall data 
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7.3 Simulation Results 

The monthly rainfall data from 1871 to 2003 for period June to September has been 

taken and their average is considered in this section. There is 133 available rainfall data. Here 

we predict the present data, x(t), by using five past inputs, x(t-\), x(t-2), x(t-3), x(t-4) & x(t-5). 

Therefore, a time series with 128 data is available. The models \ networks are trained with 

100 data and tested by remaining 28 data. In this section, the best-proposed networks in 

earlier chapters are applied to predict average of Indian summer monsoon rainfall data 

Wavelet Neural Network (WNN): 

Figures 7.2, shows the performance index of WNN (WANN in chapter 2) with 

different scaling factor 'a'. The structure determination of the networks are started from 'a=l'. 

We increase scaling factor one by one. By increasing scaling factor from 6 to 7 in WNN, the 

performance index does not improve. So scaling factors 'a=6' is selected for this network. The 

performance index for this model, with scaling factor o=6, is J=4,8031 x 10"*. 

Fig. 7.2. Performance index of Wavelet Neural Network (WNN) with different scaling factor a 
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Summation & Multiplication Sigmoid-Wavelet (SS_W & MS-W) Neuron networks: 

Figures 7.3 and 7.4 show the performance index of feed-forward SS-W and MS-W 

neuron networks, respectively, with different scaling factor 'd. The structure determination of 

the networks are started from 'a=\\ We increase scaling factor one by one. For every scaling 

factor, the model is being learned. By increasing scaling factor from 3 to 4 and from 4 to 5 

for SS-W and MS-W neuron models, respectively, the performance index does not improve. 

Therefore, scaling factors "a=3" and "a=4" are selected for SS-W and MS-W neuron 

networks, respectively. The performance indexes of SS-W and MS-W neuron networks are 

equal to ̂ 4.7597x10'^ and J=4.7981xl0'^, respectively. 

10 
J.1 

10 

10 

1 

-3.2 

.3.3 

1 

• 

1.5 2 

1 1 

\\V S 
Neuron 6̂+6=12 

1 > 

> . ! 
2.5 \ 3 -' 

A 

^ 

3.5 4 

Fig. 7.3. Performance index of feed-forward SS-W neuron model with different scaling 

factor a 
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Fig, 7,4. Performance index of feed-forward MS-W neuron model with different scaling 

factor a 

Wavelet Neuro-Fuzzy (WNF) model: 

By applying modified clustering and cluster validity function [Azeem'03a, Xie'87], 

five rules are obtained. The performance index of different networks for rainfall data has 

been listed in Table 7,1, WNF model yields better performance. In this model, we have 

applied genetic algorithm with 100 populations. We have fed the initial parameters for GA 

randomly. Figure 7,5 shows the maximum fitness of to each generation. The initial solution 

for GD is obtained over 30 generation. The value of performance index J, obtained by GA for 

initialization of the parameter, is 8.0885x10 . 
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J=-
1 

Max(Fitness) 
= 8.0885x10 -4 

10 15 20 
epoch 

25 30 

Fig. 7.5. Maximum fitness of GA up to each generation for rainfall data 

Figure 7.6 shows learning pattern of WNF model, after initialization by Genetic 

Algorithm, with Gradient Descent. The performance index after training with 4000 epochs is 

7=1.5697x10-^. 

»-3.1 

1000 2000 3000 4000 
epoch 

Fig. 7.6. Learning pattern of WNF model by Gradient Descent for rainfall data 
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The learned premise variable membership functions ŷ i'-̂ vij*-'̂  Ai^-Ai^, A^^^-Ay^, A-^^ 

-A^^zxA A-i^-A-iHox inputs x(t-\), x(t-2), x(t-3), x(t-4) & x(t-5) are shown in Fig. 7.7 to 7.11, 

respectively. The fuzzy rules corresponding to the learned WNF are listed below: 

R}^ : if ;c(t-l) isAJ^ A jc(t-2) is A^̂  A ;c(t-3) is Aj^ A x(t-4) isA^^ 

A ;c(t-5) isA;^ then x{i) is Y^^^^{x) 

R"^ : if x(t-l) isAf^ A ;c(t-2) is KY A ;c(t-3) isA,'^ A ;c(t-4) isA^^ 

A ;c(t-5) isAĵ ^ then x{X) is Y^M 

R^^ : if x(t-l) is Aj^ A A:(t-2) is A'/ A ;c(t-3) is A^̂  A ;c(t-4) is A'/ 

A 4 t -5) isAJ-'' then ;c(t) is y ^ ( z ) 

R*^ : if x(t-l) isAi'^A ;c(t-2) is A^̂  A jc(t-3) isAj'^ A A:(t-4) isA*^ 

A ;c(t-5) isA*^ then ;c(t) is Y^{x) 

R'^ : if ;c(t-l) isAf^ A jc(t-2) is A'/ A x(t-3) is A^̂  A x(t-4) is A'/ 

A ;c(t-5) isA^^ then ;c(t) is y^^(A') 

where Y^^{x), Y^f^{x), ..., Y^^{x) are the outputs of learned MS-W neuron models in 

consequent parts of R' to R ,̂ respectively. The learned parameters Cs, Cj^and W',..., W ,̂ for 

R' to R ,̂ are as follow. 

C,= 

0.767 

0.142 

0.830 

0.528 

0.570 
0.987 

0.487 

0.090 

0.114 

0.557 

0.886 

0.298 

0.010 

0.478 

0.542 

0.202 

0.853 

0.202 

0.265 

0.515 

0.050 
0.772 

0.580 

0.301 

0.645 

0.641 

0.526 

0.395 

0.420 

0.903 

0.736 

0.552 

0.444 

0.472 

0.151 

0.073 

0.532 

0.459 

0.347 

0.767 

0.255 

0.209 

0.913 

0.603 

0.236 

0.508 

0.808 

0.664 

0.876 

0.216 
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L-ur — 

0.629 
0.332 

0.657 

0.295 

0.756 

0.708 

0.144 

1.015 

0.459 

0.008 

0.682 
0.721 

0.334 

0.112 

0.657 

1.018 

0.706 

0.669 

0.118 

0.752 

0.659 
0.500 

0.318 

0.791 

0.881 

1.052 

0.505 

0.790 

0.024 

0.601 

0.226 
0.826 

0.809 

0.871 

0.421 

0.926 

0.108 

0.817 

0.381 

0.654 

0.542 
0.558 

0.792 

0.994 

0.864 

0.848 

0.737 

0.869 

0.379 

0.204 

fV = 

0.556 0.351 0.050 0.067 0.833 0.581 0.530 0.882 0.608 0.293 

0.581 0.593 0.357 0.528 0.355 0.500 0.602 0.868 0.790 0.569 

0.227 0.820 0.025 0.878 0.013 0.651 0.648 0.819 0.679 0.598 

0.618 0.822 0.060 0.713 0.979 0.358 0.133 0.875 0.938 0.441 

0.538 0.818 0.216 0.367 0.523 0.961 0.131 0.445 0.395 0.396 

Each hidden neuron in MS-W neuron model is conjunction of sigmoid and wavelet 

function. Rows and column in Cs and Cw are corresponding to the number of hidden neurons 

in MS-W neuron model and the number of inputs, respectively. The number of rows in W is 

equal to the number of rules whereas number of column is equal to the number of hidden 

neuron in MS-W neuron model. 
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0.4 0.6 

Fig. 7.7. Learned membership function, obtained by GA & GD, of the normalized input 

x(t-l) for rainfall data 

0.4 0.6 
Xit-2) 

Fig. 7.8. Learned membership function, obtained by GA & GD, of the normalized input 

x(t-2) for rainfall data 
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Fig. 7.9. Learned membership function, obtained by GA & GD, of the normalized input 

x(t-3) for rainfall data 
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X(M) 

Fig. 7.10. Learned membership function, obtained by GA & GD, of the normalized input 

x(t-4) for rainfall data 
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Fig. 7.11. Learned membership function, obtained by GA & GD, of the normalized input 

x(t-5) for rainfall data 

Figure 7.12 shows the actual rainfall data and WNF model output and the model error. 

In this figure, actual output of the plant is solid line and the model output is dot line. The 

error also is solid line. The horizontal-dash line shows the 13 percent of the error. 
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Real rainfall & rainfall prediction by WNF model 

Learning i Prediction 

60 80 
Data 

Fig. 7.12. Actual output and model output with WNF model and the error for Indian monsoon 

rainfall data 

Table 7-1: Performance Index (J) with different networlcs for rainfall data 

Model 

NN 

WNN 

ss-w 
MS-W 

SS-RW 

MFW-S 

NF 

WNF 

Number of Hidden 

Neuron 

25 

21 (a=6) 

12 (a=3) 

20 (a=4) 

12 (a=3) 

20 (a=4) 

M=5 

M=5 a=4 

Performance Index (J) 

(Training) 

1.0523X10--* 

4.8031x10-^ 

4.7981x10-^ 

4.7597x10-^ 

3.0719x10"* 

3.1463 xlO"* 

2.3469x10"* 

1,5697x10"' 

Performance Index (J) 

(Prediction) 

4.2587x10-' 

9.0682x10"* 

2.8863x10"* 

6.2543x10"* 

6.1013x10"* 

4.1925x10"' 

5.700x10"* 

7.6275x10"* 
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Table 7.1 shows the performance index of different model / network for rainfall data. 

First column in this table is the name of the models. The second layer presents the number of 

hidden layer and rules in the networks and fuzzy models, respectively. For wavelet networks, 

the number of scaling factor {a) also is shown. Third and forth columns, are performance 

index of rainfall data for training and prediction section. The best result in both columns is 

Bold. 

7.4 Conclusions 

In this chapter, we have considered Indian monsoon rainfall data. In the short term, 

this requires a good idea of the upcoming monsoon season rainfall, i.e. good seasonal 

forecast. In the long term, it needs realistic projections of scenarios of future variability and 

change. 

Ability of rainfall data has been checked by rescaled range analysis. By using last five 

years rainfalls as inputs and the present data as an output, we have applied the proposed 

network / models to predict present data. The results show that Wavelet Neuro-Fuzzy (WNF) 

model yields better performance than others do. However, the Multiplication Feedback to 

Wavelet from Sigmoid (MFW-S) has better performance with testing data (for prediction). 
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Chapter 8 

Conclusions & Future work 

8-1 Conclusions 

In this presented work, two types of WNN networks (i.e., SS-W and MS-W neuron 

model) are introduced. The application of proposed neuron models in recurrent network and 

neuro-fuzzy models also considered. Three wavelet functions namely Mexican hat, Morlet and 

Sine wavelet function are tested in present wavelet functions and also proposed wavelet neuron 

models network. 

SS-W and MS-W neuron models are single hidden layer networks. Each neuron in the 

hidden layer comprised of WAF and SAF. When the summation operator is used to combine 

them, it results in Summation Sigmoid-Wavelet (SS-W) neuron network, whereas the product 

operator results in Multiplication Sigmoid-Wavelet (MS-W) neuron network. 

Three types of WAF, namely Mexican, Morlet and Sine are tested in the S-W model. The 

comparative result of different wavelets shows that Morlet activation function yields better 

performance in either SS-W or MS-W neuron models. 

The proposed SS-W or MS-W neuron models, have better performance than WNN 

network with WAF only and NN with SAF only, even with fewer number of hidden layer 

neurons. MS-W neuron model yields better performance in comparison to SS-W neuron model. 
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Based on MS-W neuron model that yields better result than SS-W neuron model, WNF 

model is proposed. The consequent parts of each rule in WNF model is localized by MS-W 

neuron model. 

Two new configurations, namely CS-P and PS-P, for parameter identification of TSK 

neuro-fuzzy model have been compared with two existing configurations, namely P and S-P. The 

comparative studies have been performed on five different examples. The result shows that CS-P 

configuration yields best results, for all the examples, among all the four configurations. It is 

because of the local models of TSK neuro-fiizzy model, obtained fi-om CS-P configuration, 

catering the actual dynamics of the system in the space that covers TSK neuro-fiizzy model 

dynamics. 

GA initializes the proposed WNF model and learning parameter of the proposed model 

is learned by CS-P configuration, which has better performance. Result shows that MWNF has 

better performance than MS-W neuron model. The propose MWNF model also yields better 

result than TSK neuro-fiizzy model. 

In this thesis, based on SS-W and MS-W neuron models five recurrent neuron models, 

namely S-RW, RS-W, FW-S, FS-W and R-N, have been proposed. These proposed neuron 

model are used in the hidden layer of a standard one hidden layered feed-forward network. Their 

performance is evaluated by modeling of dynamic system. In proposed recurrent neuron model, 

the systems' dynamic is saved in sigmoid or wavelet activation functions. Therefore, they predict 

the system dynamics well. The results show that if the dynamic accumulated in wavelet section 

of the recurrent models, namely FW-S, S-RW and R-N, the performance are better than in 

sigmoid function, i.e., RS-W and FS-W. Among the recurrent neurons model, in which feedback 

is to wavelet activation fimction, FW-S model has best performance index. 
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In this thesis, application of proposed network \ models in forecasting of Indian summer 

monsoon is considered. WNF model has better performance in training whereas the MFW-S 

recurrent neuron yields better performance in forecasting of the rainfall data. 

8-2 Future work 

In the present work, we supposed that the wavelet parameters scaling factor and shifting 

are fixed. It is research topic to work on adaptive wavelet network, which wavelet parameters 

and weights are tuning. 

In the wavelet neuro-fuzzy models, the procedure of the learning is already sleepy. This 

is because of initialization of the consequent part is based on the GA. If the GA method does not 

convergence to a good solution, it will take huge time. Therefore, an initialization method based 

on the wavelet parameters and fuzzy models is necessary. 

Forecasting of rainfall data not only depends on last behavior of data, it also depends of 

another parameters same as pressure, humidity, etc. It is a complete work if we used those data 

also in prediction of rainfall. In this thesis, we have used previous rainfall data to predict future 

rainfall. For an accurate long-range prediction, Multi-step forecasting can be extended to this 

work. It is an ideal work if it predicts monthly rainfall and then applies this local's model to 

predict all data. In this work, we have selected the five last data to predict the present rainfall 

data. A methodology of input selection can be applied to find out best-input candidate. 
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Appendix A 

Universal Approximation Theory 

Definition A-1: A sequence of functions {/̂ }, « = 1,2,3,.-. convergence uniformly on K to a 

function/if for every e > 0 there is an integer N such that n>N implies 

| / „ W - / W ^ ^ f o r a l l x e K . 

In order to prove universal approximation of proposed neuron models the Stone-Weierstrass 

Theorem is applied. 

Universal Approximation Theorem: (Stone-Weierstrass Theorem) 

Let K be a set of real continues functions on a compact set K . The uniform closure of 

K consists of all real continuous function on K , if: 

(a) K is an algebra 

(b) K separates point on K 

(c) K vanishes at no point of K 

Definition A'2: A real functions family ^ defined on a set K is an algebra if: (i) / + g e K 

(ii) / g e K and (iii) c/eK are satisfied, where feA, geic, and c is a 

complex constant, i.e., K is closed under addition, multiplication, and scalar 

multiplication. For example, the set of all polynomials is an algebra. 

Definition A-3: A family K is uniformly closed if / e K whenever f„eA , n = 1,2,... and 

f„^f uniformlyonK . 

Definition A-4: The uniform closure of K , denoted by B is the set of all functions that are 

limits of uniformly convergent sequences of members of K . By the Stone-
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Weierstrass theorem, it is icnown that the set of continuous function on [a, b] is 

the uniform closure of the set of polynomials on [a, b]. 

Definition A-5: K separates points on a set K if for every x, y in K ,x^y, there is a 

function / in K such that f{x)^ f{y). 

Definition A-6: K vanishes at no point of K if for each x in K , there is a function / in 

A such that/(x) 9^0. 

By applying conditions (a) to (c) in Stone-Weierstrass Theorem and using definitions A-2 to 

A-5 the universal approximation of the proposed networks is achieved. 

A-1 Proof of Universal Approximation Tfteorems of SS-W and l\/IS-W 
neuron models 

Suppose function in (3.5) been the output of feed-forward network. (3.6) and (3.9) 

evaluate the output of each neuron in SS-W and MS-W neuron model, respectively. 

Lemma A-1: Let F" be the family of Y defined in (3.5). ThenF" c k , where K is a 

compact set. 

Proof, the output of the SAF (3.7) is bounded by (A.l). 

0<y'j(s)= ^ <l (A.l) 
'' 1 + exp(5) 

n 

where 5 = J^C^ •;c.. The outputs of the WAF (3.8) for Mexican hat, Morlet 
/-I 

and Sine wavelet functions are also bounded by (A.2) to (A.4), respectively. 

iZ-b] 
Suppose Z = ^C^-x. and G = 
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Mexican hat wavelet function'. To find lower and upper bounded of the y^.{z) 

for Mexican hat function differential of the y^.{z)=e~^ fl-2G^1 is talcen 

equal zero. 

dG J 
-2Ge~^ G ' + 2 G e " ^ ' = 0 

(G = 0 

G •4 
The upper bounded of the y'^{z) is known by G = Oand lower bounded by 

'4 
-0AA63 = e-^^(l-2G^\<e-'" [.-2.f]<.J(Z)<. (A.2) 

Morlet wavelet Junction: Since 0 < e"'̂  < 1 and -1 < cos G < 1 therefore 

- l < > ' J ( z ) = e-^ c o s G < l (A.3) 

Sine wavelet Junction: Since lim —^—- = 0 and lim "'"V"'' = \, therefore 
sin(nG) _ 

this function is bounded between [0, 1], but this function in G = 0 should be 

stated equal 1. 

0 < ;'J (z) = sin(;zG)/(;zG) < 1 (A.4) 

From (A.2) to (A.4), the continuous function ^y •(>'y(5)+>'J(z)) or 

^i •3'y(s).>;J(z) in (3.5) for SS-W and MS-W neuron models, respectively, 

with the Mexican hat, Morlet and Sine wavelet functions is closed. That is, 

lemma k-l: Let F" be the family of Y defined in (3.5). ThenF" is an algebra. 
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Proof, let f,geF" as shown in (3.5). Then we can write 

A^) = t^l-y] (A.5) 

gi^) = t^'-yj (A.6) 

where Wj and Wj e SR, Vj. Therefore for SS-W neuron model we have: 

Since Wj^'Si, then/ + g € F " , That is, F" is closed under addition. 

Similarly for MS-W neuron model, 

= w[Y, w;y, = w^ (7, • Y, y , = w^ ((r; • y;). (y/ • y; ))v, (A.8) 
= PF/ ((y" • y ; ) . (y; • y ; j ^ ^ = w^ (y; • y ; )v^ = W^YW^ 

where ^, =[>v,' ... wJ^feW'^, PF2=[wf ... w^f e<R''. Since, the 

product of SAF or WAF is neither also SAP nor WAF, thus/• g e F" . That 

is, F" is closed under multiplication. Finally, for arbitrary c 6 iR 

c-f = ^[c-W')-y)=j;^W'^-y] (A.9) 

Since FT/ = c • )̂ '̂ e iR, V/" thus c-f&F". That is, F" is closed under scalar 

multiplication. 

From Definition A-2 and above discussion, we conclude that F" in both SS-

W and MS-W neuron models, is algebra. 
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Lemma A-3: F" separates points on K . 

Proof. From Definition A-3 we show that for \f x°,y° e F"if x*^ T^ y°, there is a 

function fsF" such that f(x°):^ f{y°). 

7-1 

L 

1 
y-1 

/(>'°)=t^. •>'>") 

(A.10) 

(A.ll) 

Suppose Z'" =Y,C^^-x°i & 5^" = j ; q - x » / a n d Z °̂ = j;Cj^_ • / / & 
/.i ' 1=1 /=i 

S^" = Z<^i, •JJ'"/ • From (2.11-2.13) for SS-W and MS-W neuron model with 
/-I 

different wavelet function we have: 

SS-W neuron model with Mexican wavelet Junction: 

1 

1 + e~' 

l + e"* 

1̂ 
/• 0 ^ 

Z' -b 

MS-W neuron model with Mexican wavelet Junction 

1 
^ .0 ^ 

Z ' -A 

>';(-")• ;'j(^°)= 
l + e - S ' 

0 

0 \ 
Z' -b^ 

^ ^r' -b^^ 
1-2 

a J) 

A^'\rM)-
l + e •S' 

(A. 12) 

(A. 13) 

(A.14) 

(A. 15) 

Thus, from (A. 12) to (A. 15), it is easy to verify that for SS-W and MS-W neuron 

models with Mexican hat wavelet function, 

SS-W neuron model with Morlet wavelet function: 
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/j{^'hyl(^')=—^-^' 

f 0 \ 

\ / COS 
^Z'° -b'^ 

l + e- V ^ y 

yM^y:;(y')=—^ • + e 

0 \ 
Z' - A * 

COS 
^zy°-b^ 

\ + e V « y 

(A.16) 

(A.17) 

MS-W neuron model with Morlet wavelet function: 

( 0 
' Z " -b 

COS 
^Z^"-6^ 

1 + e- V ^ / 

1 • ^-S' 

^ 0 "1 
2 ' -6 

V / COS ̂
Z^'-h^ 

1 + e V « y 

(A.18) 

(A.19) 

Thus, from (A.16) to (A.19), it is easy to verify that for SS-W and MS-W neuron 

models with Morlet wavelet function /(x")?^ /(y°) if ;e° ^̂  >'". 

SS-W neuron model with Sine wavelet function: 

sm 
^ ^Z'"-b^^ 

/ji^^hy^i-')-
n 

V « y 

1 + e-
71 

^Z' - 6 ^ 
(A.20) 

sm 

V " J 

( (r'-h^^ 

;^;()'")+>'r(v°)=-
n 

a 

1 + e -S' 

n 
(z^'-h' 

(A.21) 

V ^ y 

MS-W neuron model with Sine wavelet function: 

sm 
^ ^Z'-h^^ 

y][AfM)= 
n 

V '^ Jj 

1 + e -S' 

;r 
^Z^"-^>^ 

(A.22) 

V « y 
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sin n 
\ "" J 

1 + e 
n ̂

r'-h 
(A.23) 

V « J 

Thus, from (A.20) to (A.23), it is easy to verify that for SS-W and MS-W neuron 

models with Sine wavelet function 

From above discussion and Definition A-3, F" , in both proposed SS-W and MS-W 

neuron models, separates points on K . 

Lemma 4; F" vanished at no point of K . 

Proof, if we choose Wj^Q (/-I. 2, . . . ,L) in (3.5) then f{x) = Y ^0 unless in those 

point that y, are equal zero. In SS-W neuron model y, = yf + yf. Since 

yf{x)^0 for all x, f{x) = Y:AO. In MS-W neuron model network 

y,=yf-y^. Since y^j{x)>0 the condition is limited to y'^{x)^0. In 

following we consider this condition for different wavelet function. 

Mexican waveletfitnction: 

1-2 
Z-b 

a 

V^ 
? ' l ' ' ^ ^ 0 ^ 1 - 2 f ^ - ^ | ^0 (A.24) 

Then Z should be selected as: 

Z^bta 
V2 

(A.25) 

Morlet wavelet fiinction: 

cosi I ^ 0 

Then Z should be selected as: 

cos 
Z-b 

^ 0 (A.26) 
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Z:^b + a{2k + i)^ (A.27) 

Sine wavelet Junction: 

sin 7r\ r / W 

[ a ) 

TTien Z should be selected as: 

Z*b + ka (A.29) 

From above discussion and Stone-Weierstrass Theorem, we can easily approve the 

following Universal Approximation Theorems. 

Theorem 3.1: Universal approximation theorem of SS-Wneuron model, for any real function 

//: 9?" -> 9?" which is continuous on a compact set ifl c 9?" and for any given 

e>0 there is an SS-W network / , with Mexican hat, Morlet or Sine WAF, 

such that sup||/(x)- /z(x| < e. Here ||| can be any norm. 

Proof: From Lemma 1 to 4, it is easy to show that SS-W neuron model is universal 

approximation. 

Theorem 3.2: Universal approximation theorem of MS-W neuron model with Mexican hat 

WAF, for any real function A: 9?" -> 9?" which is continuous on a compact set 

^ c 9?" and for any given f > 0 there is an MS-W network /,with Mexican 

hat WAF that satisfies condition (A.30), such that sup||/(jc)-A(X)(| <S. Here ||| 

can be any norm. 

C^X^b±a— (A.30) 

where C^ = |C^^,C(p^,...,C,^^j, A =|X|,X2,...,x^j. 
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Proof: MS-W neuron model with Mexican hat is universal approximation if satisfy A.25 that 

is (A.30). 

Theorem 3.3: Universal approximation theorem of MS-W neuron model with Morlet WAF, 

for any real function A: 91" -> 91" which is continuous on a compact set 

irtc9?" and for any given e>Q there is an MS-W network /,with Morlet 

WAF that satisfies condition (A.31), such that sup||/(x)- h{x\ < e. Here | j | can 

be any norm. 

C^^,X^b + a{lp + \)- (A.31) 

where C„ = |C^_, Cy^^,..., C„^ ], X = {x^,X2,...,x„] and p is any integer value. 

Proof: MS-W neuron model with Morlet is universal approximation if satisfy A.27 that is 

(A.31). 

Theorem 3.4: Universal approximation theorem of MS-W neuron model with Sine WAF, for 

any real function /i:9?" -^9?'" which is continuous on a compact set ifl c 91" 

and for any given s>Q there is an MS-W network/,with Sine WAF that 

satisfies condition (A.32), such that sup||/(x)-/j(x)||<e. Here ||| can be any 

norm. 

C^X^b + pa (A.32) 

where C„ = |C^^, C^^,..., Ĉ _ \> ^ = {̂ p*2'—»-"f»} ^"^ p is any integer value. 

Proof: MS-W neuron model with Sine is universal approximation if satisfy A.29 that is 

(A.32). 
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A-2 Proof of Universal Approximation Theorems of Recurrent SS-W 
and MS-Wneuron models with Morlet wavelet function 

Theorem 6.1: Universal approximation theorem of recurrent SS-W neuron models, for any 

real function /J:5R" ->5R'" which is continuous on a compact set ;Ac5R" and 

for any given e>0 there is an recurrent SS-W network / , for all recurrent SS-

W neuron models, such that sup||/(;c)- A(X| < e. Here ||| can be any norm. 

Proof: From Lemma 1 to 4, it is easy to show that all recurrent SS-W neuron models are 

universal approximation. 

Theorem 6.2: Universal approximation theorem of MS-RW neuron model, for any real 

function /i: 91" -> 9?" which is continuous on a compact set ;^ c 9?" and for 

any given e>0, there is an MS-RW neuron model / that satisfies condition 

(A.33), such that sup||/(x)- h{x^ < e. Here ||| can be any norm. 

C„X + Q„y''{k-\)^b + a{2p + \)- (A.33) 

Where C^ = |c^.,C^^,...,C^J, Q^ =[Q^^,Q^^,...,Q^X f=\yry2,-yX 

X = \x^,X2,...,x„} and p is any integer value. 

Proof: The variable Z in (A.27) in MS-RW neuron model is Z = C,^X+ Q^y''{k-\). 

Therefore (A.33) is draw out. 

Theorem 6.3: Universal approximation theorem of MRS-W neuron model, for any real 

function A: 9?" -> 9?" which is continuous on a compact set ^cz'Si" and for 

any given s>0 there is an MRS-W neuron model / that satisfies condition 

(A.30), such that sup||/(x)- /J(X| < e. Here ||| can be any norm. 
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Proof: The variable Z in (A.27) in MRS-W neuron model is same as (A.27) or (A.30). 

Theorem 6.4: Universal approximation theorem of MFS-W neuron model, for any real 

function h'.'iR" -^SR" which is continuous on a compact set iftc9t" and for 

any given e>0 there is an MFS-W neuron model / that satisfies condition 

(A.30), such that sup||/(jf)-/»(x)|| <s. Here ||| can be any norm. 

Proof: The variable Z in <A.27) in MFS-W neuron model is same as (A.27) or (A.30). 

Theorem 6.5: Universal approximation theorem of MFW-S neuron model, for any real 

function A:9?" ->9?'" which is continuous on a compact set irtc JR" and for 

any given ^ > 0 there is an MFW-S neuron model / that satisfies condition 

(A.34), such that sup||/(x)- /j(x)(| < e. Here ||| can be any norm. 

C^X + Qs^y'' {k-\)^b + a{2p + 1 ) | (A.34) 

where C^ = ^^^, C^^,..., C^_}, Q^^ = IQSW, >QSW, >->QSW, }. y" = W.^'r.->'?}> 

X = {x,,X2,...,x,} and p is any integer value. Then we have the following result. 

Proof: The variable Z in (A.27) in MFW-S neuron model is Z = C^X + Qs^y'^{k-\). 

Therefore (A.34) is draw out. 

Theorem 6.6: Universal approximation theorem ofMRN neuron model, for any real function 

/ j : 91" ->• 9?" which is continuous on a compact set ;R c 91" and for any given 

£>0 there is an RN neuron model/that satisfies condition (A.35), such that 

sup||/(x)- /j(x)|| < e. Here |{| can be any norm. 
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C^X + Qy{k-i)^b + a{2p + \)^ (A.35) 

Where C„, = |c^,, C^^,..., C^J, Q = {Q^,Q2,...,Q,], y = \)>^,y2,••^,y^, 

X = {x^,X2,...,x„] and p is any integer value. Then we have the following 

result. 

Proof: The variable Z in (A.27) in MRN neuron model is Z = C^X+ Qy{k-\). Therefore 

(A.35) is draw out. 
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Appendix B 

Modified Mountain Clustering 

The purpose of clustering is to do natural grouping of large set of data, 

producing a concise representation of system's behavior. {Azeem'OSa] have proposed 

a, simple and easy to implement, mountain clustering algorithm for estimating the 

number and location of cluster centers. The proposed modified mountain clustering in 

unit hypercube (normalized space of data) is as follows: 

We assume that each data point has potential to become a cluster center and 

calculate its potential by: 

Ql =l;exp(-a||x, -xjf] . / = l,2,.--,« (B.l) 
y-i 

Where a=-^ and n is number of data. 

II denote the Euclidian distance and r^ is a positive constant, which defines the 

neighborhood of datum. A data point with many neighboring data points will have a 

high potential value and data points outside radial distance r^ have a little influence 

on the potential. After the potential of every data point has been evaluated, the data 

with highest potential is selected as first center: 

x;<=e;=m"ax(e;) (B.2) 
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For the selection of second cluster center, the potential value of each datum is revised 

in order to deduce the effect of mountain function around the first cluster center as 

follows: 

a'=a'-e;exp(-4,-^;f] (B.3) 

A 

Where yff =—and second cluster center will be: 

n-\ 
xl^Ql=m^(gf) (B.4) 

fi, is a positive constant, which defines the neighborhood of cluster center. Thus, we 

subtract an amount of potential from each data point as a function of its distance fi-om 

the first cluster center. It is evident fi"om the above equation that the data points near 

the first cluster center have greatly reduced potential value and are unlikely to be 

selected as the next cluster center. After revision of the potential value of each datum, 

second cluster center is selected with highest remaining potential. Similarly, for the 

selection of A* cluster center, revision of the potential value for each datum is done 

by: 

r 
Qr-Qr-QU^^p -P\\x,-x„_^ (B.5) 

Where :cj_| is location of {k-\)'th cluster center and P^ is its potential value and the 

k'lh cluster will be: 

x;<=fi;=mS[fo*) (B.6) 

To stop the procedure we use the criterion Ql/Qi <d (S is a small fraction). 

Number of resulting cluster centers and distance between them are highly dependent 

upon the mountain clustering parameters, i.e., the neighborhood of datum or radius of 
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influencer^, neighborhood of clusters'A , gray region parameter d. A brief analysis 

of their choice is presented as follows: 

a) Neighborhood of datum r„ 

Smaller the value of r^, smaller the values of potential value of first centers 

and ff, which result in the large number of cluster centers and vice versa. The number 

of cluster centers approaches the number of data points thereby defeating the purpose 

of clustering. The maximum value for r^ is half of the principal diagonal of unit 

hypercube, i.e., r^^ =^J{n+l)/2 and the minimum value may be taken as 

b) Neighborhood of cluster centers 

The spaces among the resulting clusters are highly depending upon the value 

of fjj. To avoid obtaining closely spaced cluster centers, set '"̂  to be somewhat 

greater than r„. 

c) Gray region of parameters S„ and S, 

The number of cluster centers is also depends upon the position and range of 

gray region. Small value of S results in a large number of cluster centers vice versa. 

It is difficult to establish a single value for S that works well for all data. A good 

choice of the upper and lower limits is to take <5„ = 0.15 and Sj = 0.0. 

The number of optimum clusters for the data set \xp,yp}'', is decided by the 

validity function S which is the ratio of compactness to separation, [Xie'87] 

TTB' \X -C 

5 = ^"=^ ,, _ ,,, ; foreach M=M„,„, ...,M^ (B.7) 
P-mm\c^-cJ\ 
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where p „= 1^*" • The membership function //^^ represents the degree of 

association of/?* data to the /«* cluster canter and is defined as: 

>"^^=expi (B.8) 

(B.8) assures the most valid fuzzy clustering of the data set. 

Denoting the optimal candidate at each A/by Q̂^̂  the solution to the following 

minimization problem 

min min s\ /R g\ 

is ensured to yield the most valid fuzzy clustering of the data set. 5 has a tendency to 

decrease eventually when A/is very large. So, the values of S are meaningless when 

A/gets close to P. Since in practice the feasible number of clusters A/is much smaller 

than the number of data points P, we apply two heuristic methods for the 

determination of A/„„ for both small and large values of P. 

In the first method, we plot the optimal values of 5 for A/ = M„,„ to P -1 

when P takes small values, and select the starting point of monotonically decreasing 

tendency of 5 at A/,^. 

In the second method, we need not compute S for very large A/when P takes 

large values. It is almost always the case that A/at the stop-value is « P. We can 

choose A/,^ a priori, e.g., say A/,^ = y^ which is not likely to reach the starting 

point of the decreasing tendency. 
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Appendix C 

Stability and Convergence Analysis of Gradient Descent Learning 

Algorithm 

C-1 Lyapunov method in analysis of stability 

Consider a dynamic system, which satisfies: 

x = f{x,t) x{to) = x, xeR (C.l) 

The equilibrium point x' =0 is stable (in the sense of Lyapunov) at / = /„ if for any e>0 

there exists a S{tQ,e) > 0 such that 

IW'o|<'^ => IW1<^. V/>/o (C.2) 

C-1.1 Lyapunov Stability Ttieorem 

Let V{x,t) be a non-negative function with derivative V along the trajectories of the 

system, then 

• The origin of the system is locally stable (in the sense of Lyapunov) if V{x,t) is 

locally positive definite and -V{x,t)^0 locally in x and for all/. 

• The origin of the system is globally uniformly asymptotically stable if V{x,t) is 

positive definite and excrescent, and -V{x,t) is positive definite. 

To approve stability analysis based on GD learning algorithm we can define discreet 

function as: 

V{k) = E{k) = ^-[e{k)Y (C.3) 
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Change of Lyapunov function is: 

AV{k) = V{k +1) - V{k) = i.[e'{k + \)- e' {k)] (C.4) 

From 

Then 

e{k +1) = e{k)+Ae{k) =>e^{k + l) = e^{k)+A^k)+2 • e{k) • Ae{k) (C.5) 

AV{k) = Ae{k)- "eW+: -.Ae{k) 

ifference of error is: 

Ae(it) = e(;t + l)--e{kh 
\de{k)r 

do 

(C.6) 

•Au (C.7) 

where 0 is learning parameter and e{]i)=^y{^)-y{k) is error between output of plant and 

present output of network. 

As discussed in section 2-5: 

Av = -r^ 
a/ 
do 

By using equations (C.7,2.18) and putting them in (C.6): 

AV{k) = dejk) 
du 

-\T 

•Au- e(A)+i-
dejk) 
du 

-iT 

•Au] 

(C.8) 

Or AV{k) = 

or Ay{k)= 

dejk) 
do ,-,.^].U)4, de{k) 

do 
•\-iT 

dE{k)'] 
do 

or 

M)r.(_,)._jL_.,(,).ML).U).i 

-w-'wf[f^i'7^f^4{f^r 

dejk) 
du 

du 

•i-rj) 
P-y, dv 

1 m)\ 
[p.yff I do ) 

-«-^=«T7^{f^J-f-7^{f^J (C.9) 
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where y^ = max >'(/?)- min y{p) , 

Therefore 

^V{k) = -A,-e^{k) (CIO) 

Where ;i = l . ^ . M . j z - ^ - W 

From the Laypunov stability theorem, the stability is guarantied if V{k) be positive and V{k) 

be negative. From (C.3), V{k) is already positive. The condition of stability is depending on 

V{k) to be negative. Therefore, we consider A>0 for all models. 

Because ~r • ^ ' > 0 then the convergence condition is limited to: 
2 P-y] Vdo } 

P-yl [ dv ) P-y] \dv ) ' ^ "̂ '7 I do ) 
(C.ll) 

.2 Maximum of learning rate TJ changes in a fixed range. Since 2-P-yr is not depending of 

the model, the value of 7^„ guarantees the convergence can be found out by minimizing the 

dy{k) 
term of Therefore, 

do, 

0<^<rjs,^ (C.12) 

where 7 . „ = ( 2 - P - > ' . y A / a x [ ^ J 

C-2 (Chapter 4): Convergence theorems of TSK neuro-
fuzzy model 

Theorem 4.1: The asymptotic learning convergence of S-P and CS-P configurations are 

guaranteed if the learning rate for different learning parameters follows the 

upper bound as mentioned below: 
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0<tj„<2-P-y', 

0<rj,< l^P.y] 

r ^ \ 

(C.I3) 

(C.14) 

0 < 7 j < 

maxIwfA'll • 
m ' ' 

I'P-y] 

V, nun / 

max vvl ̂Xf 
f -, \ 

V,^min J 

(C.15) 

Proof: (C.12) for NF models can be written as: 

2-P-yl 
0<%<] 

ar. 
(C.I6) 

NF 

du 

Because B„ = • '*'^ ^ < \ for all m and since local models have same variables i.e. X, 

therefore, from (4.26-4.29), equations (C.13 to C.15) easily can be derived. 

Theorem 4.2: The asymptotic learning convergence of P and PS-P configurations are 

guaranteed if the learning rate for different learning parameters follows the 

upper bound as mentioned below: 

0<rj„<2-P-yl (C.17) 

0<rj,< 
1-P-y] 

f -^ \ 
(C.18) 

0 < 7 j < 

max \w{X'y • 

l-P-y] 

K^'^J 

maxiwi 
m 

{x'X 
( O >^ 

(C.19) 

\^mm J 

276 



Proof: Because B„ = ., '̂ ' < 1 and since local models have same variables i.e. X', 

m-l 

therefore, from (4.26-4.29), equations (C.17 to C.19) easily can be derived. 

C-3 (Chapter 5): Convergence theorems of WNF model 

Theorem 5.1: The asymptotic learning convergence is guaranteed if the learning rate for 

different learning parameters follows the upper bound as mentioned below: 

0<%<-
r ^ \^ 

^WSN 
\ ^ J \ mm / 

0<7x-< 
2-P-yl 
W 2 Y 

WNN - . 2 

0<7w< 
2-P- . 

'^^WNN 

dw 

y] 
2 

max 

0<ric< 
l-P-y] 

dY, WNN 

dC. 

2-P-

^^WNN 

dC^ 

y'r 
2 

max 

0<7c, < 

Proof: (C.12) for WNF models can be written as: 

1-P.y] 
Q<%<-

dYu WNF 

do 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

(C.24) 

(C.25) 
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where v in consequent part of the rules isW, C^j or C^ and in premise part of the rules is 

cr or 3c. For the parameters W, C^ and C^ by applying the partial derivatives to (5.5), we 

have: 

(C.26) 

(C.27) 

(C.28) 

<, 1 for all m, therefore (C.22 to C.24) easily is derived. 

dw 

A 

dC„ 

use /? 

" ^ ' " dw 

A 

A 

^̂  dc„ 

/^..(x) 

From (5.5, 4.4, 

do-

, 4,7) for parameters 

A 

m 

A 

• ^^ .(1-

A/ 

i (7 or ;c there is: 

•>^J-

2-fe 
/Tif 

ml 

(C.29) 

m=l 

~ ^WNN„ ' V Hmf' 7 

^-Pm) 2- (x , -x^, ) (C.30) 
= Y 

m •.—, (J 
mi 

m=l 

and therefore (C.20 to C.21) is derived: 
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C-4 (Chapter 6): Convergence theorems of Recurrent SS-W 
and MS-W neuron models 

To prove convergence of the recurrent networks these facts are needed: 

Fact 1: Let g{y) = ye^~^'\ Then \g{y} < \yye^ 

Fact2:let/(y) = >'V"^'lThen|/(y)| < l,Vye9? 

Fact 3: let ^W = "j — a sigmoid function. Then \Oiy} < 1, V>' e 5R 

y " J nr^<, < g Morlet wavelet function. Then Fact 4: let ¥a,bh') = ̂  ^ ° ' cos 
\ a J 

0-4.1 Stability analysis of the Recurrent SS-W neuron models 

In this section. Theorems (6.7) to (6.11) for convergence analysis of the SS-RW, 

SRS-W, SFS-W, SFW-S, SRN, respectively, are presented. 

a) Summation Sigmoid-Recurrent Wavelet (SS-RW) 

Suppose Z= I q -xik) and S= Z Ĉ , -xM+Qi-yiik-l) 
i=\ ' /=1 

From the facts 3 and 4: 

For parameter W in all models: 

^=yj<\yi'^y'e\<^^^=2 (c.3i) 

Therefore 0<TJ^ < ^ 2.P-y] _P-yl 
2^ 2 
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Differential of output of the model for another learning parameter is: 

U = l 

11. 

f 2 

zi.^,/(^r.„/,£zii./(")'.5 
a a 

•cosi 5 \-e •sm 
a 

.S-b 
I 

-.1.1 + - ^ . U < 7 

(C.32) 

2-P-yl 2-P-yl 
Therefore 0 < n̂ . ^ , 

M-^(z)-(l-^(z))<M = l 

(C.33) 

Therefore 0 < 7c, < " ' 2''' ='^-P-y] 

^ = W' .yl,{k-\)-Al Cl,^.x.{kyQi,.yl,[k-\) 

II-

{ -

U = l 

coa 5-
-2 S-b -(^r r,5-6l -(̂ )̂  5 . , , 
a a 

-e 
.S-b 

a ) 

.l.l + ^ - . U < 7 
min J 

(C.34) 

TT. ^ ^ 1-P-y) l-P-yl 
Therefore 0<7Q, < ^ r ^ = — ^ 

/?; Summation Recurrent Sigmoid-Wavelet (SRS-W) 

Suppose Z= I Ci .A:(A:)+ei-:Fi(*-l)and5= I Q -xik) 
i=\ i=\ 

By using the facts 1 to 4 and differential of network output to learning parameters: 
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dy{k)_ 
dC, 

M 

!^ = x,{k)-W'.v^' IC^^x.ik) 
w* \i = 1 

_ , ..S-b] i^J 5 . f^S-b 
e ^ ' -cos 5 \-e ^ '̂  ---sin 5 

a a \ a ) a \ a 
i - . l . l . J - . l <7 

(C.35) 

Therefore 0 < /7f- < '•̂ '' = ——-̂  
49 

M-^(z)-(l-^(z))<M<l 

Therefore 0<T}(, ^kI;A = 2.p.^ yr 

(C.36) 

^ = PF'.;;;(̂ -l).̂ ' I q.;c.(^)+aV>';(^-0 

M-^(z)-(l-^(z))<ll<l 

Therefore 0<^g^ < ^ - ^ ^ = 2-P-y^, 

c) Summation Feedback to Sigmoid from Wavelet (SFS-W) 

Suppose Z= Z Ci^-x(*)+ei^->',^(A:-l)and5'= I a-x.{k) 

By calculating the maximum value of the difference of the network output to the learning 

parameter: 
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^ = x,{k).W'.Jici^-x.{k) 
\i = l 

11 U.^./(^r..j,^v.-(v)'.i 
a a 

•COS! 5 \-e ^ ' ' — s i n 
a ) a 

S-b 

^ . 1 . 1 . ^ . 1 < 7 
a a • 

I. ''inin mm 

(C.38) 

Therefore 0<;7Q < ^ - ^ = ^ - ^ 
49 

^s, l/ = l ' 
M-^(z)-(l-^(z))<M<l 

(C.39) 

Therefore 0<7c, < r ^ = '^-P-yl 

^ = W'-yi{k-\).e\ I Ci-x{k)+Qi^-yi{k-\) 

\\-e{z){\-e{z))<\-\<\ 
(C.40) 

Therefore 0</7g.,< ^'^'-^^ =2-P-yl 

d) Summation Feedback to Wavelet from Sigmoid (SFW -S) 

Suppose Z= I C4 •x{k)+Q^^-yi{k-\) and 5= I Q^ x (A) 
/=1 /=! 
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dC, 

M • cos 5 
a a a J 

-e ^ ' —sin 5 
a \ a ) 

^.l.uJ-.l<7 
L min *^min 

(C.41) 

Therefore 0<7c 
2-P-yl _2-P-yl 

,2 49 

M-^(z) - ( l -^ (z ) )< l l< l 

(C.42) 

Therefore 0 < ^̂ .̂  < 2 r yr 

¥ 

11 
-2 5-6 -(^r r,5-6^ -[^] 5 . f,5-6 
a a 

•cos D i -e 
^ a 

i-.l.uJ-.l<7 
1 "min "min 

2'P-v^ 2-P-v^ 
Therefore 0<)7o < / ^ = - ^ 

e) Summation Recurrent Neuron (SRN) 

Suppose Z= I Cî  •;e,.W+ei->'j(^-l) and 5= I C^^ -xfi) 
/=1 /=1 

(C.43) 

283 



dC{, 

II-

I-
- l . ^ . , M . „ „ / , 5 - M /(v)' 5., 

•COS 

a a 
5- l -e — sin 

a \ a ) 

•.1.1 + ^ ^ . U < 7 

(C.44) 

Therefore 0<n^ < i l ^ = 2 i ^ 
49 

S/ M" = 1 

M - ^ ( z ) ( l - ^ ( z ) ) < M < l 

2 . P . v^ 
Therefore 0<77^̂  < j-=^ = 2-P-y] 

(C.45) 

^ = pr>.y(;t-i). 

¥' I Ci^,.x.(*)+e^.y(^-i) + '̂ I ci-x.{k)+Q^.y{k-\) 
U = i 

- 2 

. P ^ " ' . e n s S -<? ^ " -' s in 5 

a a 

.1.1—^.1 + M 
mm "mm 

•cosi 5 \-e 

<6 

•s in 5 
a y a J 

•d{z).{}-0{z)i 

(C.46) 

Therefore 0<rjo< ^'^'/'- = -^^^ 
'^ 6^ 18 

C-4.2 Stability analysis of tiie Recurrent l\/IS-W neuron models 

In this section, Theorems (6.7) to (6.11) for convergence analysis of the MS-RW, 

MRS-W, MFS-W, MFW-S, MRN, respectively, are presented. 
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a) Multiplication Sigmoid-Recurrent Wavelet (MS-RW) 
From fact 3 and 4: 

n 
I Suppose Z= I Q •jc.(it)and 5= I Cly-x.{k)+Qyy'^{k-\) 

For parameter W in all networks: 

7 = > 'y=J^> ' i< l - l< l 
dW 

Therefore 0<;7„, <^^^^^^<2-P-y) 

(CM) 

^••', U = l ) \i = \ ) 

1.1.1 
-2 5 - i -f^T f^S-b) - ( v j 5 . r^5-fc^ J 2 , , 5 ,, , 

e '' " ^ -cos 5 -e "- " ^ •-•sin| 5 |<^ .1.1 + .U<7 
a a \ a J a 

(C.48) 

•'I I ^ m i n ' ' inio 

Therefore 0 < 7^̂  < 
2-P-y] _2-P-yl 

{if 49 

^ i , l/=i ; u=i ; 
M-^(Z)-(1-^(Z))-1<1.1<1 

Therefore 0<TJCS< fvi'^' ='^-P-yl 

(C.49) 

1.1.1 

I Ci-x.{k) -if,' Z ^•;c.(A)+e^;.;(*-!) 
V/ = l >/ l/ = l 

zi.^.,-(¥)'.45s^i,-(";.i,j5^jj^,,,j_,) <7 

Therefore 0 < 
^Q. 

2.P-yl _2-P-y] 

(If 49 

(C.50) 
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b) Multiplication Recurrent Sigmoid-Wavelet (MRS-W) 

SupposeZ= £ Ci-x{k)+Qi-yi{k-\)andS= I C> •;c(*) 
i=\ /=1 

M l 

U = l 

•g ' ' -co; 
a a {'̂ ]-< -•sin 5 ^ <.^-^. l .I+-^^.U<7 

a \ a A |a„.. o mm *'̂ min 

2-P-v^ 2-P-v^ 
Therefore 0<7c < fj' =^ ^ yr 

M)-
5Ĉ  

^̂  = ;c,(*)-»'̂ -^ Z Ci,-;c.(A)+0i-:.'i(*-l)U Z Q •;t.(*) 
/=1 U = l 

I1-^(Z)(1-(9(Z))1<11<1 

Therefore 0<7c, <^^^^^2Pyl 

(C.51) 

(C.52) 

^Qs \i = \ J Ki = \ J 
\-\-d{z)-{\-0{z))i<\-\<\ 

Therefore 0<7^^ < ^ ^ j ^ = 2-P-yj 

(C.53) 

c) Multiplication Feedback to Sigmoid from Wavelet (MFS-W) 

Suppose Z= Z Ci •x.(*)+0i^->'^(*-l)and 5 = Z C^ xXk) 

^ Ki=i J U=i ; 

a a \ a J a ^ a J [a, 

dCi^ 

^ 1.1+—.U<7 
mm " m m 

(C.54) 
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1-P-v^ 2-P-v^ 
Therefore 0< 7c < , J ' ^^ "^ yr 

M-6'(Z)(1-^(Z))1<I1<1 

Therefore 0<nc <'^-P-yl 

(C.55) 

^ = W'-yi{k-\)-e{ I Ci-x{k)^Qi,,-yi{k-\)\y\ I ^ -x W 

M-^(Z)(1-^(Z))1<11<1 

(C.56) 

Therefore 0<7Q^ <2-P-yl 

d) Multiplication Sigmoid Feedback to Wavelet (MS-FW) 

Suppose Z= I Cl-x.{k)+Q^^-y',{k-l)&ndS= I Ci^-x{k) 
/=1 /=1 

dy{k). ( n 
W = ̂ Xk)-W'V i:C{,^-xik)^Q's„-yi{k-\)-d i:Ci-x{k) 
^^, l/=i ' ; U=i ' J 

-2 S-b - (v j f^S-b) -(^J 5 . f.S-b e "• " ^ -cos 5 - e ^ " ^ —Sin 5 
a a 

•cosi 5 \-e 
5 . f.S-b) 

•—•sin 5 
a \ a J 

l<i—A.\+—.n<7 
mm mm 

(C.57) 

2-P-v^ 2-P-v^ 
Therefore 0 < 7^, < ^ /' = ±-LJl. 

{If 49 

9vW. Y = xXkyW^-W I C;,.x.W+0,.>;i(*-l) •^' Z Ci-x.{k) 

l-M-^(z)-(l-e(z))<M<l 
U = l 

(C.58) 

Therefore 0 < 7^ < 2 • P • >',̂  
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i : 2 . 5 ^ . . - ( ^ ] \ . „ / , 5 - 6 V „ - ( ^ ] \ 5 . , J , 5 - A l , I J _ J ,^ J _ 
(C.59) 

a a 
-e^ - ' •—•sin 5-

a \ a 

Therefore 0 < 7Q^ < 
2-P-yl J.p.yl 

[ly 49 

e) Multiplication Recurrent to Sigmoid and Recurrent to Wavelet (MRN) 

Suppose Z = I C^ • ;c.(^)+ Q^ • y'g{k -1) and S = I Cĵ ^ • x.(ifc) 
/ = 1 ' ' /• = ! ' ' 

X,,' 

\\ 

( n \ ( n \ 

U = l ) \i = \ ) 

(C.60) 

-2 S-h icf\ {^S-h\ -(^y 5 . (R-b e ^ ' • cos 5 I - e ^ ' Sin 5 
a a 

•1<.| — . 1 . 1 + — . U < 7 

2-P-v^ 2-P-v^ 
Therefore 0< 7c < , , / ^ = ^ ^ -̂ ^ 

5q :,(A:)-»'^ 

« 
^̂  I.Ci^-x.{k)+Q^-yJ{k-l) -0' Y.Ci-x.{k)+Q'-y^{k-\) 

M-1-^(Z)^(1-^(Z))<M<1 

Therefore 0<7^ <'^-P-yl 

(C.61) 
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l / = l ) {i = \ J 
n ^ f n 
I Ci^x.{k)+Q^-y^{k-l)l0' I Cix.{k)+Q^y^{k-\) 

dQ 

n 
Z 

(C.62) 

e ^ ̂  -coa 5 - e ---sin 5 — 
a a {'^) ' • ' 1 

—.1.1—^.1+ 1-U<|-2-5 + 11 < 6 

^ ) 
l + l-^(Z)(l-6'(Z)) 

Therefore 0 < ^^ < ^ - ^ 5 ^ = l l ^ l ^ 
^ 6' 36 
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