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ABSTRACT 

This thesis entitled "On some problems of optimization in sample surveys" 

is submitted to the Aligarh Muslim University, Aligarh, INDIA, to 

supplicate the degree of Doctor of Philosophy in Statistics. It embodies of 

research work carried out by me in the Department of Statistics and 

Operation Research, Aligarh Muslim University, Aligarh, 

In the development of theory underlying statistical methods, one is 

frequently faced with optimization problems. Attempts have therefore been 

made to find optimization techniques that have wider applicability and can 

easily be implemented with the available computing power. One such 

technique that has the potential for increasing the scope of application of 

statistical methodology is mathematical programming. In this thesis an 

attempt has been made to formulate and solve some problems arising in 

sample surveys using classical optimization techniques such as Lagrange 

multipliers technique as well as using mathematical programming 

techniques. 

This thesis consists of five chapters. Chapter-I provides an 

introduction to sample surveys with some basic results in Simple Random 

Sampling, Stratified Sampling, Non-Response and Double Sampling. 

Chapter-II deals with the problem of allocation of a sample to strata 

in multivariate stratified sampling. In this chapter two new compromise 

allocations are proposed and compared with the already available 



compromise allocations in sampling literature As assumed by Cochran 

(1977), here no assumption about the correlation between the different 

characteristics is made It has been shown through numerical illustrations 

that the proposed allocations are more precise than the already existing 

compromise allocations in sampling literature This chapter is based on my 

paper entitled "Allocation of a sample to strata The multivariate case" to 

be presented in the "National Seminar on Recent Development in 

Statistical Methods and Operation Research" organized by Department of 

Statistics, Dibrugarh University, Assam (India), during March 20-21,2003 

In Stratified sampling the sampler has to decide about the sample 

sizes from various strata before drawing a sample In sampling literature 

this problem is known as the problem of allocation The equal, proportional 

and optimum allocations are well known allocations In practice any one 

type of allocation is selected according to the prevailing situation in the 

population and is applied to all strata However, there are practical 

situations in which the prevailing circumstances markedly differ from one 

group of strata to other Hence the use of the same allocation in all the strata 

may not be advisable In such situations it is proposed to divide the group of 

strata into non-overlapping and exhaustive subgroups according to some 

reasonable criterion The use of particular allocation is advised in a 

particular subgroup depending upon the characteristic of the subgroup 

Since different allocations are to be used in different subgroups, the 

proposed allocation is named as a "Mixed allocation" Chapter-Ill of this 



thesis discusses the "Mixed allocation in Stratified Sampling". It is assumed 

that the population mean is of interest. The problems of finding the mixed 

allocation for fixed cost and for fixed variance of the estimator of the 

population mean, based on a stratified sample are formulated and solved as 

nonlinear programming problems. The variance of the estimator under 

mixed allocation is worked out and compared with the variance under the 

overall optimum allocation. The relative increase in the variance due to the 

use of the mixed allocation is studied to decide whether a mixed allocation 

is advisable or not in a given situation. This chapter is based on my research 

paper entitled " Mixed Allocation in Stratified Sampling " to be presented 

in the International Conference on Statistics, Combinatorics and Related 

Areas Organized by Department of Statistics, University of Allahabad 

(India) going to be held during December 21-23, 2002. 

In Chapter-IV the problem of optimum allocation in Double Sampling 

for stratification (DSS) with subsampling the non-respondents is formulated 

as a mathematical programming problem (MPP). When strata weights are 

not known, double sampling technique may be used to estimate them. A 

large simple random sample from the unstratified population is drawn and 

the units belonging to each stratum (in the sample) is obtained. A second 

stratified sample is then obtained from which a simple random subsample is 

drawn out of the previously selected units of the stratum. If the problem of 

non-response is there, then the subsamples are divided into respondents and 

non-respondents respectively. A second sub-sample of non-respondents 
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units is selected out of non-respondents and information is 

obtained on second attempt.The objective of the problem is to find 

the optimum sizes of the subsamples of non-respondents. For this 

in the first phase of solution the optimum values of the sample 

sizes are obtained for which the variance of the estimated 

population mean for double sampling is minimum for a fixed 

sample size. In the second and the final phase of solution, the 

optimum values of subsamples of non-respondents are obtained for 

fixed total cost of the survey. A solution procedure using dynamic 

programming technique is developed to solve the resulting MPP. 

The computational details of the procedure are illustrated through a 

numerical example. 

This chapter is based on my research paper entitled "Double 

sampling for stratification for subsampling the non-respondents" 

published in Aligarh Journal of Statistics (see Najmussehar and 

Abdul Ban (2002)). 

Chapter-V deals with the problem of optimum stratification. For 

stratified sampling to be efficient the strata should be as homogeneous as 

possible with respect to the main study variable. In other words the stratum 

boundaries are so chosen that the stratum variances are as small as possible. 

This could be done effectively when the frequency distribution of the main 

study variable is known. Usually this frequency distribution is unknown but 

it is possible to approximate it from the past experience and prior 
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knowledge about the population. In this chapter the problem of optimum 

stratification and formulated as a Nonlinear Programming Problem (NLPP) 

assuming exponential frequency distribution of the main study variable. The 

formulated NLPP is separable with respect to the decision variables and is 

treated as a multistage decision problem. A procedure is developed using 

dynamic programming technique to work out the optimum stratum 

boundaries. These stratum boundaries are optimum in the sense that they 

minimize the sampling variance of the stratified sample mean under 

Neyman allocation. A computer program in 'Java SDK 2'is also developed 

for the procedure. This computer program is executed to work out the 

optimum strata boundaries for a given exponential distribution to provide a 

numerical example. 

This chapter is based on my research paper entitled "The problem of 

optimum stratification for exponential study variable under Neyman 

allocation: A Mathematical Programming Approach" to be presented in the 

International Symposium on Optimization and Statistics to be held in the 

Department of Statistics and Operations Research, Aligarh Muslim 

University , Aligarh (India), during December 28-30, 2002. 

A comprehensive list of references, arranged in alphabetical order is 

also provided at the end of the thesis. 
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PREFACE 

This thesis entitled "On some problems of optimization in sample surveys" 

IS submitted to the Aligarh Muslim University, Ahgarh, INDIA, to 

supplicate the degree of Doctor of Philosophy in Statistics It embodies of 

research work carried out by me in the Department of Statistics and 

Operation Research, Ahgarh Muslim University, Ahgarh 

In the development of theory underlying statistical methods, one is 

frequently faced with optimization problems Attempts have therefore been 

made to find optimization techniques that have wider applicability and can 

eeisily be implemented with the available computing power One such 

technique that has the potential for increasing the scope of application of 

statistical methodology is mathematical programming In this thesis an 

attempt has been made to formulate and solve some problems arising in 

sample surveys using classical optimization techniques such as Lagrange 

multipliers technique as well as using mathematical programming 

techniques 

This thesis consists of five chapters Chapter-I provides an 

introduction to sample surveys with some basic results in Simple Random 

Sampling, Stratified Sampling, Non-Response and Double Sampling 

Chapter-II deals with the problem of allocation of a sample to strata 

in multivariate stratified sampling In this chapter two new compromise 

allocations are proposed and compared with the already available 



compromise allocations in sampling literature As assumed by Cochran 

(1977), here no assumption about the correlation between the different 

characteristics is made It has been shown through numerical illustrations 

that the proposed allocations are more precise than the already existing 

compromise allocations in sampling literature This chapter is based on my 

paper entitled "Allocation of a sample to strata The multivariate case" to 

be presented in the "National Seminar on Recent Development in 

Statistical Methods and Operation Research" organized by Department of 

Statistics, Dibrugarh University, Assam (India), during March 20-21,2003 

In Stratified sampling the sampler has to decide about the sample 

sizes from various strata before drawing a sample In sampling literature 

this problem is known as the problem of allocation The equal, proportional 

and optimum allocations are well known allocations In practice any one 

type of allocation is selected according to"the prevailing situation in the 

population and is applied to all strata However, there are practical 

situations in which the prevailing circumstances markedly differ from one 

group of strata to other Hence the use of the same allocation in all the strata 

may not be advisable In such situations it is proposed to divide the group of 

strata into non-overlapping and exhaustive subgroups according to some 

reasonable criterion The use of particular allocation is advised in a 

particular subgroup depending upon the characteristic of the subgroup 

Since different allocations are to be used in different subgroups, the 

proposed allocation is named as a "Mixed allocation" Chapter-Ill of this 



thesis discusses the "Mixed allocation in Stratified Sampling" It is assumed 

that the population mean is of interest The problems of finding the mixed 

allocation for fixed cost and for fixed variance of the estimator of the 

population mean, based on a stratified sample are formulated and solved as 

nonlinear programming problems The variance of the estimator under 

mixed allocation is worked out and compared with the variance under the 

overall optimum allocation The relative increase in the variance due to the 

use of the mixed allocation is studied to decide whether a mixed allocation 

IS advisable or not in a given situation This chapter is based on my research 

paper entitled " Mixed Allocation in Stratified Sampling " to be presented 

in the International Conference on Statistics, Combinatorics and Related 

Areas Organized by Department of Statistics, University of Allahabad 

(India) going to be held during December 21-23, 2002 

In Chapter-IV the problem of optimum allocation in Double Sampling 

for stratification (DSS) with subsampling the non-respondents is formulated 

as a mathematical programming problem (MPP) When strata weights are 

not known, double sampling technique may be used to estimate them A 

large simple random sample from the unstratified population is drawn and 

the units belonging to each stratum (in the sample) is obtained A second 

stratified sample is then obtained from which a simple random subsample is 

drawn out of the previously selected units of the stratum If the problem of 

non-response is there, then the subsamples are divided into respondents and 

non-respondents respectively A second sub-sample of non-respondents 
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units IS selected out of non-respondents and information is 

obtained on second attempt The objective of the problem is to find 

the optimum sizes of the subsamples of non-respondents For this 

in the first phase of solution the optimum values of the sample 

sizes are obtained for which the variance of the estimated 

population mean for double sampling is minimum for a fixed 

sample size In the second and the final phase of solution, the 

optimum values of subsamples of non-respondents are obtained for 

fixed total cost of the survey A solution procedure using dynamic 

programming technique is developed to solve the resulting MPP 

The computational details of the procedure are illustrated through a 

numerical example 

This chapter is based on my research paper entitled "Double 

sampling for stratification for subsampling the non-respondents" 

published in Aligarh Journal of Statistics (see Najmussehar and 

Abdul Ban (2002)) 

Chapter-V deals with the problem of optimum stratification For 

stratified sampling to be efficient the strata should be as homogeneous as 

possible with respect to the main study variable In other words the stratum 

boundaries are so chosen that the stratum variances are as small as possible 

This could be done effectively when the frequency distribution of the main 

study variable is known Usually this frequency distribution is unknown but 

It IS possible to approximate it from the past experience and prior 
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knowledge about the population In this chapter the problem of optimum 

stratification and formulated as a Nonlinear Programming Problem (NLPP) 

assuming exponential frequency distribution of the main study variable The 

formulated NLPP is separable with respect to the decision variables and is 

treated as a multistage decision problem A procedure is developed using 

dynamic programming technique to work out the optimum stratum 

boundaries These stratum boundaries are optimum in the sense that they 

minimize the sampling variance of the stratified sample mean under 

Neyman allocation A computer program in 'Java SDK 2'is also developed 

for the procedure This computer program is executed to work out the 

optimum strata boundaries for a given exponential distribution to provide a 

numerical example 

This chapter is based on my research paper entitled "The problem of 

optimum stratification for exponential study variable under Neyman 

allocation A Mathematical Programming Approach" to be presented in the 

International Symposium on Optimization and Statistics to be held in the 

Department of Statistics and Operations Research, Aligarh Muslim 

University , Ahgarh (India), during December 28-30, 2002 

A comprehensive list of references, arranged in alphabetical order is 

also provided at the end of the thesis 
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CHAPTER-I 

INTRODUCTION 

l A : SAMPLING 

lA. l INTRODUCTION TO SAMPLING 

Sampling is used in all kinds of investigations in our every 

day life. It is the selection and study of a part of an aggregate 

material to represent the whole. Deming (1950) describes 

sampling as "The science and art of controlling and measuring 

reliability of useful statistical information through the theory of 

probability". 

A sampling method is a scientific and objective procedure of 

selecting units from a population and provides a sample that is 

representative of the population. 

The sampling procedures discussed in this thesis are 

procedures of random sampling or probability sampling. All 

random sampling procedures satisfy the following properties, 

(i) A set of distinct samples are available which the procedure 

is capable of selecting if applied to a specific population. 
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(ii) Each possible sample has assigned to it known probability of 

selection, 

(iii) A selection procedure is available in which each sample 

receives its assigned probability of selection, 

(iv) The method of constructing the estimate from the sample 

must lead to a unique value for a specified sample. (See 

Cochran (1977)). 

Other sampling procedures that do not possess the above 

properties are called non-random on non-probability sampling 

procedures are out of the scope of this thesis. 

1A.2 USES OF SAMPLING 

Sample surveys are widely in use in all most all walks of 

life in a variety of ways all over the world. The objective of a 

sample survey may be to obtain some measure with respect to the 

characteristic of the whole population under study. For example 

for national planning and socio-economic development the 

governments need information about agricultural production, 

utilization of land and water resources, industrial production, 

unemployment, labor force, whole sale and retail prices of various 

commodities, income and expenditure per household, number of 

literate persons and school going children, health status of people 



etc, which can be obtained efficiently through sample surveys. 

Sampling methods are also used in census or complete 

enumerations. In fact, except for certain basic information, all 

other data in a census are collected on sampling basis, which 

results in much earlier publication of the census report and 

substantial savings in terms of money and time. 

Sampling methods are used extensively in business and 

industry to increase operational efficiency. Market research is 

heavily dependent on sample surveys. Manufacturers and retailers 

can have an idea of the reactions of people to new products, their 

complaint about old products and the reasons for preferring one 

product to another, through sample surveys. 

Sampling methods are also used in experimental 

investigations. For example in determining the quality of milk, 

response of fertilizers to various crops, the composition of the soil 

etc. 

1A.3 SAMPLING DESIGNS 

Various random sampling procedures that can be applied to 

the population under study according to the aims and objectives of 

the survey and the nature and variation in the population are also 

termed as sampling designs. The commonly used sampling designs 



are: 

(i) Simple Random Sampling (SRS) 

(ii) Stratified Sampling 

(iii) Cluster Sampling 

(iv) Systematic Sampling 

(v) Two-Stage Sampling 

(vi) Sub-Sampling or Multistage Sampling etc. 

A sampling procedure or design may be carried out with 

replacement or without replacement. In with replacement (WR) 

sampling the selected unit is replaced before the next draw, 

whereas in without replacement (WOR) sampling the unit once 

selected is not considered for further draws. In a WR sample a 

population unit may appear more than once, while in a WOR 

sample all the selected units are distinct. Obviously a WOR 

sample contains more information about the population as 

compared to a WR sample. In this thesis the discussions are 

limited to WOR sampling. 

Some times the population characteristic under study is 

strongly correlated to another characteristic called the auxiliary 

characteristic. The data on this auxiliary characteristic is either 

available or can be easily collected for all the units in the 

population. This auxiliary information (data on auxiliary 



characteristic) may be used to improve the quality (precision) of 

the estimates of the population parameters obtained from a 

sample. Some methods that uses the auxiliary information are: 

(i) Ratio Method 

(ii) Regression Method 

(iii) Double Sampling or Two-Phase Sampling Method 

Out of the sampling designs pointed out in this section the 

first two namely Simple Random Sampling and Stratified 

Sampling are the most commonly used sampling designs. In the 

following two sections the basic results of these sampling design 

are stated. 

1A.4 SIMPLE RANDOM SAMPLING WITHOUT 
REPLACEMENT (SRSWOR) 

It is the simplest method of random sampling. It is a method 

of selecting n units out of N such that every possible distinct 

sample of size n has an equal chance of being selected. 

Let yj be the value of the characteristic under study for the 

ith unit of the population/ sample. 

Further, let 

1 ^ 
Y = — '^yi the population mean 



^ N _"• 

S = XI w " " ^ ) the population mean square 
^ ~ ^ i=\ 

1 " 
y = —'y'yi the sample mean 

1 n 

s = 'y]{yi~y) the sample mean square 

The following are the basic results in SRSWOR. 

(1) The sample mean y is an unbiased estimate of the 

population mean Y. 

(2) The sample mean square s is an unbiased estimate of the 

population mean square S 

(3) The sampling variance of the sample mean y is 

n N 

(4) v(37)=( )s is an unbiased estimate of V{y). 
n N 

1A.5 STRATIFIED SAMPLING 

It is the most popular and widely used sampling design. In 

this sampling procedure the population is divided in non-

overlapping and exhaustive groups of units. These groups are 

called strata. Independent WOR simple random samples are then 



drawn from each stratum. Let there be L strata. The following 

symbols refer to the stratum h (h=l,2, . . . ,L): 

NPJ number of units in the stratum 

(the stratum size) 

«/j number of units in the sample (the 

sample size) 

yj^j value obtained from the ith unit 

Wh =—^ stratum weight 

1 ^h 
Y = ^yhi stratum mean 

,2 1 "' 
^h yiiyhi ~^h) stratum variance 

Also let 

_ ^ L Nh 

L _ 

~ ^^h^h t^^ 0"̂ ^̂  ^̂ ^ population mean 

L 
yst - ^^hyh *^^ stratified sample mean 

h=\ 

The following are the basic results. 



— 2 — 2 
(1) yp, and Sj^ are the unbiased estimates of F/, and Sj^ 

respectively. 

(2) The sampling variance of >'/, is 

(3) An unbiased estimate of V{yi^) is 

(4) 3̂ 5/ is an unbiased estimate of Y . 

(5) The sampling variance of y^t is 

(6) An unbiased estimate of V{y^^) is 

L 1 1 

h=\ ^h ^h 

The use of stratified sampling design involves the following 

four decision-making design operations. 

(1) The choice of the stratification variable. 

(2) The choice of the number L of strata. 

(3) The choice of the stratum boundaries. 
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(4) The choice of the size «/, of the sample from the hth 

stratum. 

The discussion of all the operations is beyond the scope of 

the thesis. However, the last two operations are discussed in detail 

in the subsequent chapters of this thesis. 

A chapter of this thesis is devoted to the use of double 

sampling to deal with the problem of non-response. In the next 

two sections these topics are introduce in brief. 

1A.6 DOUBLE SAMPLING 

As given in section 1.3, a number of sampling techniques 

use the auxiliary information. Ratio and regression methods 

require knowledge of the population mean X of the auxiliary 

variable x. If the auxiliary variable x is to be used as the 

stratification variable its frequency distribution must be known. 

When such information is not available the technique of double 

sampling (or two-phase sampling) may be used to obtain the 

auxiliary information. In double sampling a large preliminary 

sample is taken in which the auxiliary variable x alone is 

measured and a reasonably good estimate of the auxiliary 

information required is obtained. 

The double sampling may be appropriate when the cost of 



measuring the auxiliary variable is significantly low as compared 

to the main variable. 

1A.7 ERRORS IN SURVEYS 

In sample surveys there will always be a difference between 

the population value and its estimate. This error is due to the 

sampling itself, that is due to the none-enumeration of the entire 

population and thus is called sampling error. 

Other errors in the surveys arising in the collection, 

processing, compiling and analysis of the data are called non-

sampling errors. 

Non-sampling errors can further be classified into response 

error and non-response error. Errors of measurement on a unit due 

to the use of faulty or biased measuring device and errors 

introduced in editing coding and tabulating the results are called 

response errors. Whereas the error due to the failure in measuring 

some units selected in the sample, which results in an incomplete 

sample data, are called non-response error. 

1A.8 NON-RESPONSE 

The non-response refers to the failure to measure some of 

the units selected in the sample. In surveys it is commonly 

experienced that complete data from the sampling units is often 

10 



not obtainable for various reasons. For example, in an opinion 

survey, the selected family might have shifted to some other 

place, selected person might have died. In mailed questionnaire, 

some of the selected addresses may be wrong or they do not reply. 

Such a problem of incomplete sample data is known as the 

problem of non-response in sampling literature. 

One way to deal with the problem of non-response is to 

assume that the population consists of two strata, one of the 

respondents, on which the information is available and the other 

of the non-respondents, on which the information is not available 

at first attempt. A sub sample is drawn out of the sampled units 

falling in non-respondents stratum and a second and extensive 

attempt is made to obtain information on these units. The 

information obtained on the two attempts is then pooled to 

construct the required estimate. 

IB: OPTIMIZATION 

IB.l INTRODUCTION 

Optimization is the act of obtaining the best result under 

given circumstances. The efforts required or the benefits desired 

in any practical situation can often be expressed as a function of 

some decision variables. The ultimate goal of such decision is 
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either to maximize the benefit desired or to minimize the loss or 

cost incurred or efforts required. Mathematically, optimization is 

the maximization or minimization of a function of several 

variables. These variables may be unconstrained or subjected to 

certain constraints in the form of equations or/and inequalities. 

There is no single method available for solving all optimization 

problems. A number of optimization methods are developed for 

solving different types of optimization problems. The constrained 

optimization techniques are also known as mathematical 

programming methods or techniques. 

IB.2 A BRIEF HISTORICAL SKETCH 

The existence of optimization methods can be traced back to 

the days of Newton, Lagrange and Cauchy. But in spite of these 

early contributions very little progress has been made until the 

middle of the nineteenth century, when the high-speed digital 

computers made the implementation of the optimization 

procedures possible and stimulated further research on new 

methods. 

Constrained optimization or mathematical programming has 

developed rapidly during and after World War II as a new field of 

study dealing with applications of the scientific method of 
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business operations and management decision-making. 

Mathematical programming problems can be broadly classified as 

(i) Linear Programming Problems (LPP) when all the involved 

functions are linear and (ii) Nonlinear Programming Problems 

(NLPP), when all the involved functions are not linear. 

In 1947 the United States Air Force team^ SCOOP (Scientific 

Computation of Optimum Programs) started intensive research on 

some optimum resource allocation problem that led to the 

development of the famous simplex method by George B. Dantzig 

for solving a linear programming problem (LPP). The simplex 

method is an iterative procedure, which yields an exact optimal 

solution in a finite number of steps. But the method was not 

available until it was published in the Cowles Commission 

Monograph No. 13 in 1951. 

One of the earliest enterprises undertaken by the exponents 

of mathematical programming grew out of the problems involved 

in the war mobilization program of the 1940's. The problems of 

planning and co-coordinating among various project and optimum 

allocation of limited resources to obtain the desired result were 

emerged as the basic problems. 

Kuhn, H.W. and Tucker, A.W. (1951) derived the necessary 

conditions for the optimal solution of a constrained optimization 
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or mathematical programming problem. These conditions 

(popularly known as K-T conditions) laid the foundation of a great 

deal of later research and development in the area of non-linear 

programming. 

No single technique (like simplex method for solving LPP) 

is available till date for solving NLPP. However different methods 

are available for solving some special types of NLPP. Beale 

(1959) developed a method for solving convex quadratic 

programming problem (CQPP). Wolfe (1959), using the K-T 

conditions, transformed the CQPP into equivalent LPP with an 

additional non-linear restriction to which simplex method could be 

applied. Other authors who gave the technique for solving QPP are 

Markowitz (1956), Hilderth (1957), Houthaker (1960), Lemke 

(1962), Van de Panne and Whisnton (1964a, 1964b, 1966), Graves 

(1967), Fletcher (1971), Aggarwal (1974a, 1974b), Finkbeiner and 

Kail (1978), Arshad, Khan and Ahsan (1981). Ahsan, Khan and 

Arshad (1983), Todd (1985), Fukushima (1986), Yuan (1991), Wei 

(1992), Benzi (1993), Anstreicher, Den Hertog and Terlaky (1994) 

and Several others. 

Rosen (1960, 1961), Kelly (1960), Goldfarb (1969), Du, Wu 

and Zhag (1990), Lai, Gao, and He (1993) developed Gradient 

projection methods for solving NLPP with linear and nonlinear 
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constants. This is an iterative procedure in which at each step we 

move from one feasible solution to another in such a way that the 

value of the objective function is improved. 

A linear fractional programming technique was proposed by 

Charnes and Cooper (1962). The algorithms for solving non-linear 

fractional programming were developed by Dinkelbach (1967) and 

Mangasrian (1969). 

Geometric programming provides a systematic method for 

formulating and solving the class of optimization problems that 

tend to appear mainly in engineering designs. This technique was 

first developed by Duffin, Peterson and Zener (1967). Ermer 

(1971) used geometric programming for optimization of the 

constrained machinery economic problem. His work was further 

extended by Dembo (1982), Kortanek and Hoon (1992), Yeh 

(1993) and several others. 

Dantzig (1959), Charnes and Cooper (1959, 1960) developed 

stochastic programming techniques. Some other authors who 

worked on stochastic programming are Shapiro (1990), Weintraub 

and Vera (1991), Flam and Schult (1993), Schoen (1994) and Bahn 

et al. (1995) etc. 

A technique known as goal programming for solving multi-

objective linear and non-linear programming problems was 
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developed by Charnes and Cooper (1977). Other authors who made 

contribution for solving multiobjective linear and non-linear 

programming problems are Sherali (1982), Roy and Wallenius 

(1992), Arbel (1993, 1994), Bit, Biswal and Alam (1993) and 

Okada (1993) etc. 

Dynamic programming technique, based on the principle of 

optimality, was developed by Richard Bellman (1957). This 

technique is applicable to mathematical programming problems 

having some special features. Several others who contributed 

significantly to this area are Bellman and Dreyfus (1962), Wachs 

(1989), Li (1990), Li and Haimes (1990), Wang (1990a, 1990b) 

Wang and Xing (1990), Lin (1994), Badinelli (2000) etc. 

Developments of new techniques for solving mathematical 

programming are still going on. To cover all of them is beyond the 

scope of this thesis. 

In this thesis dynamic programming technique is used for 

solving some of the optimization problems arising in sampling. 

The following section gives a brief account of the dynamic 

programming technique. 
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IB.3 DYNAMIC PROGRAMMING TECHNIQUE 

The problems requiring sequential decision-making at 

different stages may be called multistage decision problems. The 

problem of making a set of optimal decisions may be formulated 

as an MPP. The dynamic programming technique is a procedure, 

which can handle the problem of optimal decision-making at 

various stages of a multistage decision problem. The general 

nature of the MPP that can be handled by this technique may be 

described as follows, 

(i) The MPP can be treated as a multistage decision problem. At 

each stage the value(s) of one or more decision variables are 

to be determined, 

(ii) The MPP must have the same structure at every stage 

irrespective of the number of stages, 

(iii) At every stage the values of the decision variables and the 

objective function must depend on a specified set of 

parameters describing the state of system. These parameters 

are called the state parameters, 

(iv) Same set of state parameters must describe the state of the 

system irrespective of the number of stages, 

(v) The decision at any stage must have no effect on the 

decisions to be made at the remaining stages except in 
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changing the values of the state parameters. 

In solving an MPP by dynamic programming technique we 

start with a one-stage problem, moving on to a two-stage problem, 

to a three-stage problem and so on until all stages are included. 

The final solution is obtained by adding the nth (final) stage to the 

solution of (n-1) stage. For this a relation between the two 

successive stages is defined. This relation is called the 

"Recurrence Relation" of dynamic programming. 

The computational efficiency of the dynamic programming 

technique as compared to the complete enumeration is very 

impressive. But unfortunately the computational efforts involved 

in solving an MPP by dynamic programming technique multiply 

incredibly fast with the increase in the number of state parameters 

(number of constraints). The number of state parameters is called 

the dimensionality of the MPP. The problem of handling the great 

bulk of computation in dynamic programming technique is termed 

as the "Problem of Dimensionality" or the "Curse of 

Dimensionality" to dynamic programming. 

Bellman and Dreyfus (1962) suggested a procedure to reduce 

the dimensionality of the problem. 

However, as far as the problems discussed in this thesis are 

concerned dimensionality poses no threat to the convergence of 
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computational procedures developed using dynamic programming 

technique. 

IB.4 APPLICATIONS OF OPTIMIZATION TECHNIQUES 

During the last five decades attempts have been made to 

develop suitable and efficient optimization techniques that can be 

easily implemented with the available computing power to solve 

various optimization problems. The early applications of 

optimization techniques were limited to problems involving 

military operations. Later on they are widely used in dealing with 

the optimization problems in almost every walk of life. In recent 

past the optimization or the mathematical programming techniques 

(as they are popularly known) are successfully used in solving a 

variety of constrained optimization problems arising in Planning, 

Business, Industry, Economics, Commerce, Biological and 

Medical Services, Agriculture, Environmental Protection, 

Artificial Intelligence, Space Research, Engineering, Information 

Technology, Statistics etc etc. 

IB.5 OPTIMIZATION TECHNIQUES IN STATISTICS 

According to C.R. Rao (See Arthanari and Dodge (1981)) 

all statistical procedures are, in the ultimate analysis, solutions to 

suitably formulated optimization problems. Whether it is 
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designing a scientific experiment or planning a large scale survey 

for collection of data, or choosing a stochastic model to 

characterize observed data, or drawing inference from available 

data, such as estimation, testing of hypothesis and decision 

making, one has to choose an objective function and minimize or 

maximize it subject to given constraints on unknown parameters 

and inputs such as the cost involved. The classical optimization 

methods based on differential calculus are too restrictive and are 

either inapplicable or difficult to apply in many situations that 

arise in statistical work. This together with the lack of suitable 

numerical algorithms for solving optimizing equations has placed 

several limitations on the choice of objective functions and 

constraints and led to the development and use of some inefficient 

statistical procedures. 

Attempts have therefore been made during the last five 

decades to find other optimization techniques that have wider 

applicability and can be easily implemented with the available 

computing power. One such technique that has the potential for 

increasing the scope for application of efficient statistical 

methodology is mathematical programming. Although endowed 

with a vast literature, this method has not come into regular use in 

statistical practice mainly because of lack of good expositions 
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integrating the techniques of mathematical programming with 

statistical concepts and procedures. 

A few successful applications of optimization or 

mathematical programming techniques to the problems arising in 

statistical analysis are given below. 

Jesen (1969), Rao (1971), Buhler et al (1975), Littschwager 

and Wang (1978) in cluster analysis. 

Foody and Heydayat (1977), Arthanari and Dodge (1978), 

Whitaker, Thriggs and John (1990) in construction of BIB designs. 

Barankin (1951), Dantzig and Wald (1951) Francis and 

Wright (1969), Kraft (1970), Meeks and Francis (1973), 

Pukelshein (1978), Kabe (1989), Ozturk (1991) in testing of 

statistical hypothesis. 

Neauhardt, Bradely and Henning (1973) in optimal design of 

multifactor experiments. 

Chakraborthy (1986, 1988, 1990, 1991), Gosh (1989), Seidel 

(1991), Crowder (1992) in quality control. 

Tillman, Hwang and Kuo (1977) in reliability theory etc etc. 

IB.6 OPTIMIZATION TECHNIQUES IN SAMPLING 

The basic need of present day society is the need of reliable data 

to understand better the world in which we live. Such data can 
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only be collected through sample surveys. The fundamental 

problem in sample surveys is to choose a sampling design that 

either gives the maximum precision within available budget or 

minimizes the cost of survey for a prefix level of tolerance 

regarding the precision. Thus the base of sample survey 

methodology is an optimization problem. The cost of the sample 

survey and the precision of estimates are function of sample size. 

Thus the problem of deriving statistical information on population 

characteristics based on sample data can be formulated as an 

optimization problem. In stratified sampling the problem of 

determining the optimum number of strata, the problem of fixing 

optimum strum boundaries, the problem of obtaining optimum 

allocations to sample sizes from various strata are optimization 

problems that can be formulated and solved as mathematical 

programming problems. 

In multivariate surveys where more than one characteristic 

are to be measured on each and every unit of the selected sample 

the problem of working out optimum sample size (or sizes in case 

of stratified sampling) can be formulated as a multi objective 

optimization problem. 

When two or more sample surveys are conducted on the 

same population, the same population unit may be assigned 
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different probabilities for different surveys. In such situations we 

may want to maximize the expected number of common units in 

the selected sample for different surveys for the given 

probabilities of selection. This is called integration of surveys. 

Thus the problem of optimum integration of surveys is also an 

optimization problem. 

Some successful applications of optimization techniques in 

the problems arising in sample surveys are due to: 

Stock and Frankel (1939), Ghosh (1958), Aoyama (1963), 

Kokan (1963), Folk and Anle (1965), Ericson (1967), Kokan and 

Khan (1967), Kish (1967), Chatterjee (1966, 1967, 1968, 1972), 

Murthy (1967), Raj (1969), Chaddha et al (1971), Ahsan 

(1975,1978), Ahsan and Khan (1977,1982),Cochran (1977), Omule 

(1985), Bethal (1989), McCallion (1992), Sheela and Unnithan 

(1992), Kreinbrock (1993), Rahim and Currie (1993), Jahan et.al. 

(1994), Mandowara (1994), Jahan and Ahsan (1995), Csenki 

(1997), Khan et al (1997, 2002a), Clark and Steel (2002), 

Bretthauer, Ross and Shetty (1999), etc in optimum allocation of 

sample sizes. 

Dalenius and Gurneym (1951), Dalenius and Hodge (1959), 

Ghosh (1963), Sethi (1963), Hartley (1965), Herleker (1967), 

Serfling (1967), Buhler, Aachen and Mannhein (1975), Singh 
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(1977), Unnithan (1978), Jarque (1981), Khare (1987), Miles et al 

(1987), Miles and Robert (1989), Rahim and Jocelyn (1994), 

Chernayak and Starytskyy (1998), Chernayak and Chornous 

(2000), Jahan et al (2001), Khan et.al. (2002b) etc in optimum 

stratification. 

Dalenius (1957), Cochran (1963), Serfling (1968), Khan et 

al (1995) etc in determining optimum number of strata. 

Alldredge and Amstrong (1974) in estimation of overlap size 

created by interlocking sampling process. 

Kefitz (1951), Lahiri (1954), Murthy (1967), Raj (1969), 

Arthanari and Dodge (1981), Mitra and Pathak (1984), Aragon and 

Pathak (1990), Fahim and Pathak (1992) etc in optimum 

integration of surveys. 
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CHAPTER II 

SOME NEW COMPROMISE ALLOCATIONS IN 
MULTIVARIATE STRATIFIED SAMPLING DESIGNS 

2.1 INTRODUCTION 

In stratified random sampling the value of the sample sizes for various 

strata are to be chosen in advance. In sampling literature, the problem of 

selecting the sample sizes for various strata is termed as an allocation problem. 

The sample sizes may be chosen to minimize the variance of the estimate for a 

fixed total cost of the survey or to minimize the total cost of the survey for a 

given precision of the estimate. Equal, proportional and optimum allocations 

are well known in sampling literature. 

When several characteristics (say 'p') are to be measured on each 

selected unit of the sample, the problem of optimum allocation becomes more 

complicated because there is no single optimality criterion through which we 

can attack the allocation problem. In such situations we need a suitable 

compromise criterion to workout a usable allocation which is optimum in some 

sense for all characteristics. This allocation may be called a compromise 

allocation because it is based on a compromise criterion. 

In this chapter the already existing compromise allocations are 
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discussed and two new compromise allocations are proposed that are more 

precise than their existing counter parts. 

2.2 STRATIFIED SAMPLING 

Let a population of size Â  is be divided into L strata. The following 

symbols refer to stratum h {h= I,2,...,L). 

Nj^ stratum size (number of units in the stratum) 

n^ sample size (number of units selected in the 

sample) 

yi^j value obtained for the ith units 

Wu = —- stratum weight 

Hyhi 
Yh = — stratum mean 

Jlyhi 
y^ = — sample mean 

riu 

si = — stratum variance 

L Nh 

TTyhi ^ 
If the estimation of the population mean per unit Y = '"'̂  -YJ^h^h is of 
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interest then it is well known that the stratified sample mean 

L _ 
y^t - ^Yj^hyh serves as an unbiased estimate of Fwith a sampling variance: 

h=\ 

K x . ) = i ^ ^ - S ^ (2.1) 

The total cost C of the survey may be express as 

L 

0^ C^ =J^c,,ni^ (2.2) 
h=] 

where C^ =C-Cg, c^represents the overhead cost and C;, represents the per 

unit measurement cost for the hth stratum. 

2.3 PROPORTIONAL ALLOCATION 

The allocation in which n^ are proportional to TV/, is called the 

proportional allocation and was originally proposed by Bowley (1926). Under 

proportional allocation 

or yij^ = KN^ 

where K is the constant of proportionality. 

Substituting this value of rij^ in (2.2) 
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L 

h=\ 

o r K = ^ 

h=l 

C N, C Wu 
Thus r,f,=-p^-^ = -f^^-^-h = \,2,...,L (2.3) 

h=\ h=l 

If C;, = c for all h then (2.3) gives 

nf,=nW/^;h = \,2,...,L (2.4) 

C 
where n = —^,is the total sample size. 

c 

Expression (2.4) gives the proportional allocation for fixed total sample size. 

Under proportional allocation fixed cost the sampling variance of y^, is 

given by 

and for fixed total sample size 

L 

K.-.W=^-^-Z^ (2.6) 
'^ h=l ^^h 
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2.4 OPTIMUM ALLOCATION: 

Staurt (1954) used Cauchy-Schwarz inequality to show that the 

expression: nfj=n.— *̂ ;« = 1,2,...,L (2.7) 

h=\ 

gives the values of «;, that minimize (i) V{y^f) when the total cost C is fixed 

and (ii) C when the variance V{yg() is fixed. 

Allocation given in (2.7) is known as optimum allocation. 

If the total cost is fixed then the total sample size n is given by 

(c-cjiK5„/v^) 

The expression (2.8) is obtained by substituting the values of «;,from (2.7) in 

(2.2). On the other hand if the variance is fixed then nis given by 

n = j - ^ (2.8) 

ZWhSh4^\z{^hSj4^) N 
n = -Sl^ Jtl (2.9) 

h=\ 

where V is the fixed value of the variance Viy^^^ 

The expression (2.9) is obtained by substituting the values of «;, from (2.7) in 

(2.1) (See Cochran (1977)). 
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If C;, = c for all h, that is the per unit measurement cost is same in each 

stratum then total cost C given by (2.2) becomes C = c^ + en. In this case the 

optimum allocation for fixed cost reduces to the optimum allocation for fixed 

sample size n and we have the allocation problem as 

"Minimize V{ygi) 

L 

subject to ^n,^ = n" 

Neyman (1934) showed that F(>'̂ ^)is minimum for fixed «if «/,are given by 

r,,=n. 1^''^'' •h = \2,...,L. (2.10) 

h=\ 

Therefore, «;, given by (2.10) is sometimes called the Neyman allocation. 

The variance under Neyman allocation is given as: 

L 
v2 

Usually the total cost of the survey is fixed in advance. Hence here in after by 

an allocation we mean the allocation that minimizes V{y^f) for fixed total cost 

of the survey. 

2.5 PROBLEM OF ALLOCATION: THE MULTIVARIATE CASE 

When several characteristics (say 'p') are to be measured on each 

selected unit of the sample the problem of optimum allocation becomes more 
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complicated. In such cases S/, and Cf, may vary from stratum to stratum as 

well as from characteristic to characteristic and the optimum allocation given 

by (2.5) becomes 

n,j=n ^' "' ^ ' •,h = l,2,...,L;j=l2,:,p. (2.12) 

where 

«/y=sample size for measuring jth characteristic; 7=7,2, ,p in hth stratum; 

h=I,2,..,L 

S/j. = stratum variance of the jth characteristic in the hth stratum. 

C/jj = per unit cost of measuring the jth characteristic in the hth stratum. 

For different characteristics there are different sets of optimum allocations. In 

such cases «̂ ^ given by (2.10) can be arranged as an (L x p) matrix whose jth 

column represents the optimum allocation with respect to the jth characteristic. 

Hence there is no unique set of values of «;, that minimizes all the variances 

V[yjst},J =1,2,...,/? simultaneously, where 

y[yjst)= S - ^ - ^ - S ^ r ^ (2-13) 

In such situations we need a single representative for each row of the matrix 

HJ)-
There are two ways to deal with this situation. One way is to select a single 
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representative for each row according to some reasonable criterion. And the 

other way is to reformulate and solve the problem of allocation in which the 

objective is to find ri/^ that minimize, some function of Viyj^t) for fixed total 

cost. 

In the remaining sections of this chapter the problem of optimum 

allocation in multivariate stiatified random sampling is studied in detail and 

allocations proposed by various authors are discussed. Two new allocations are 

proposed and compared with the already existing allocations in the sampling 

literature through numerical examples. 

2.6 COMPROMISE ALLOCATION BASED ON THE ROW 
REPRESENTATIVES 

Since the optimum allocation with respect to different charactertics are 

different there is no unique set of values of «/,;/j = 1,2,..., L that minimize every 

Vyyjstlj =l,2,...,p, simultaneously. Therefore, for practical purposes some 

compromise must be reached in a multivariable survey regarding the sample 

sizes from various strata. 

An allocation based on some compromise criterion may be called a 

compromise allocation (See Cochran (1977)). If the correlations between the 

characteristics are sufficiently high the individual optimum allocations may 

vary relatively little. In such situations Cochran (1977) proposed the 

compromise allocation based on the averages of the individual optimum 
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sample sizes with respect to different characteristics. If 

nfjj;h = \,2,...,L ,j = l,2,...,p denote the individual optimum allocation for jth 

characteristic in the hth stratum then by formula (2.10). 

nhj=n. ^ '^ •h = \,2, L;J = 1,2,.:.,P (2.14) 

h=\ 

where the optimum allocation is for a fixed total sample size n. As suggested 

in Section 2.5 «/y given by (2.14) can be arranged as an (L x p) matrix whose 

jth column represents the optimum allocation with respect to the jth 

characteristic. 

Let rip^,. denote the compromise allocation based on averages, as 

suggested by Cochran (1977) then 

1 ^ 
^h(a)= -Y.^lj\h = \a,:.,L (2.15) 

P j=i 

where the symbol (a) stands for the average. 

For the jth characteristic using (2.1) and ignoring finite population 

correction (fpc) the variances ^(yy^J under this compromise allocation are 

given by 

^ WuSl 
Vjia)=V\^jst)= Z '-^•J = \X...,P (2.16) 

Using (2.11) the variances ^(j^y.yj under individual optimum allocations 
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ignoring fpc are given by 

L 

K MyjstL^ = ̂ ^^ ;7 = U...,/. (2.17) 

(t^hSly) 2 

Using (2.4) the variances under proportional allocation ignoring fpc are given 

as 

s »-„•?, 
^ l > ^ . « U = * ' ^ - ^ = '-2.-./'- (2.18) 

Using the data given by Jessen (1942), Cochran showed that the average 

allocation gives results almost as precise as if it were possible to use individual 

optimum allocations. 

In working out the compromise allocation he assumed all characteristics 

equally important. The author suggests that a more precise compromise 

allocation may be obtained if weighted averages are used instead of simple 

averages of «/y. As regards the selection of weights for various characteristics 

it would be reasonable to take them proportional to the respective individual 

optimum variances given by (2.17) that is: 

a J cc V] 

or aj=KVj-J = \,2,...,P (2.19) 

where â  >0;j = \,2,...,p denote the weights assigned to the individual 

optimum allocations «/y and K is the constant of proportionality. 
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p 

ox K= ^ = \ (2.20) 
p * V 

p 
(by putting the sum of weights ^ a ^ equal to 1) 

where F = ^(^w/) \J- 12,...,/? are as given in (2.15). 

Substituting the value of K from (2.20) in (2.19) we get 

aj=~l-j^\X....,p (2 21) 

p 
where o", > 0 and ^ <3'̂  = 1 

The weighted averages of W/y; h = l,2,...,L as the proposed compromise 

allocation are thus given as: 

y= l 

* 
A Vj . 

y=i 
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(S '̂X) 
_ ;=i 

-;/i = l ,2 , . . , i 

Now using (2.14) and (2.17) we get 

(2.22) 

«.-
Wi,Shj 

(2.23) 

By (2.22) and (2.23) 

n 
^ J=l ^-1 

n 7=1 h=\ 

n 
0=1 h=\ 

t&hShjY 
7=1 h=\ 

^ ; / j = l,2 L . , # • 1 , ^ , . . . , (2.24) 

The variances ignoring (fpc) under this allocation may be obtained by 

substituting n^.. given by (2.24) for «;, in (2.1) as 
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^hSl 

tit 
7=1 h^l j=l h=l 

f P L 

t(L^hShjy 
]=\ h=\ 

f 

L 

I 

A 

wls\ 

t^hSiyij:w,s,j) 
•,j=],2,-:,P (2.25) 

In practice usually the values of Si,j are not known. In such situations 

their usual unbiased sample estimates Sj^j may be used. All the above 

expressions will be exactly same in this situation except that Sf is replaced by 

'hj 

2.7 THE MINIMUM DEVIATION COMPROMISE ALLOCATION 

Chatterjee (1967) used, the compromise criterion of minimizing the 

total proportional increase in individual optimum variances due to the use of a 

non-optimal allocation for obtaining a compromise allocation. He worked out 

the expression for the sample size «;,for the hth stratum for a fixed total 

sample size nas 

*2 

nhr^\ =n.-

|I«? 
^h{c) 

tit 
r;h = l,2,..,L (2.26) 

*2 
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where the symbol (c) stands for Chatterjee. (see Cochran (1977)). 

The corresponding variances are 

Vjic)=Y-^^-^\J = ^X-.,P (2.27) 
h=\ ^h{c) 

We may obtain a more precise compromise allocation if instead of 

minimizing the total proportional increase in the individual optimum variances 

due to the use of a non-optimal allocation, we minimize the total deviation 'D ' 

from the individual optimum variances. 

Using (2.11) ignoring fpc and (2.17) the total deviation D may be expressed as 

p 

D-tivj-yj) 

f L \ 
2 

P 

n 
(2.28) 

where V • = \ denote the sampling variance of y .-^f under any 

He U 1 

general allocation riu and V.- = -^^^^ denote the sampling variance 

of yj<;i imder optimum allocation for fixed total sample size n ignoring fpc. 

As Vj >Vj ; j = l,2,...,p, the quantity inside ( ) in (2.26) is always positive 

38 



and D = ̂  {^j - V*) will present the true magnitude of the total deviation of 
M 

the sampling variances of yj^j from Vj for not using the individual optimum 

allocations. Thus a reasonable compromise criterion for working out the values 

of the compromise allocation W/, would be to minimize D subject to 

L 

^n^ =n, that is by solving the optimization problem: 

L 

"Minimize D given by (2.28) subject to J ] w,, =n " (2.29) 
h=\ 

The problem (2.29) can be solved easily by using Lagrange multipliers 

technique as follows. Define the Lagrangian function (j) as 

L 

P z 
L ^ 

2 

^ n n 

L 

Differentiating (p with respect to n^;h = \,2,...,L and X and equating 

the partial derivatives thus obtained to zero we get the following L + 1 

simultaneous equations. 

= _ j ; _ A _ ^ + A = 0;/2 = l,2,...,L (2.30) 
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and -^=y\np,-n = 0 (2.32) 

(2.32) gives 

or nl=\Y.WhSlj\h = lX....L 

or nh=-^\Y.wisl-h = \X...,L (2.33) 

Substitution of the value of n^ from (2.33) in (2.32) gives 

0̂  n^^Yll^isl 

or 4 - = , "" (2-34) 

Substituting the value of -j= from (2.34) in (2.33) we get the 

compromise allocation n^(^^^ based on minimum total deviation as 
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«;,(^) = n. '-^p =\h = 1,2,...,L (2.35) 

where the symbol ((i) stands for deviation. 

The variances VjU) (ignoring fpc) under this allocation can be obtained 

by substituting w;, =nh{d) in (2.1). Thus 

'̂ yV) = I - ^ ^ ; . / = ^'2,...,/; (2.36) 

2.8 NUMERICAL COMPARISONS 

Example 1: Data used in the example are from lessen (1942). The state 

of Iowa was divided into five geographic regions, each denoted by its major 

agricultural enterprise. These regions are to be used as strata in survey on dairy 

farming. The three items of most interest are the number of cows milked per 

day, the number of gallons of milk per day, and the total annual cash receipts 

from daily products. From a survey made in 1938, the estimated standard 

deviations s^j within strata are shown in Table 2.1. It has been decided to fix 

the total sample size «as 1000. . 

The proposed compromise allocation given by (2.24) based on weighted 

averages along with the corresponding expected variances given by (2.25) for 

the values given in Table 2.1 are worked out as 
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/7i(^)=236, «2 (M0=246 , « 3 ( ^ ) = 1 9 4 , « 4 ( ^ ) = 1 1 5 and «5(^)=209 

with P̂ i(v̂ ) = 0.0130, K2(»̂ ) = 0.0811, V^^^^ =76.9 respectively. 

Table 2.1 

Standard deviations within strata 

Stiatum 
No. 

h 

1. 
2. 
3. 
4. 
5. 

W, 

0.197 
0.191 
0.219 
0.184 
0.208 

Cows 
Milked 

^^hl 

4.6 
3.4 
3.3 
2.8 
3.7 

Gallons of 
Milk 

'̂ /72 

11.7 
9.8 
7.0 
6.5 
9.8 

Receipts for 
Dairy Products 

'^•/,3 

332 
357 
246 
173 
279 

The proposed compromise allocation based on minimum total deviation 

given by (2.34) and the corresponding expected variances given by (2.33) are 

worked out as: 

«l( j)=236, «2(c/)=246, /73(^)=194, n4(^)=115 and «5(^) =209 

with Fi(^) = 0.0130, V2(d) = 0.0811, V^^^ = 76.9 respectively. 

The sample sizes for a fixed total of 1000 under different allocations 

discussed in Sections 2.3 to 2.7 are suimnarized in Table 2.2. Table 2.3 

shows the expected variances of J-.y, under the allocations given in Table 2.2. 

If r(«)j^ denote the trace of the variance-covariance matrix of 

yjgf-J = \,2,...,p for a given allocation {n)f^ ={^\->^I,-----,^L)K- *̂ ^̂  *̂  ^^ 

noted that this variance-covariance matrix will be a diagonal matrix when the 
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characteristics are mutually uncorrelated. The relative efficiency of the 

allocation {n)f^ with respect to another allocation («)ĵ i =(«i,«2 ' ^ L ) K 

may be defined as the ratio: 

T(n)f^</T{n)j. . (see Sukhatme et.al.(1994)). 

{n)fc ={ni,n2,....,nj^)f. denotes an L-component vector such that 

L 
n^ >0;h = \,2,...,L and ^^n^ =n (the total sample size). 

h=\ 

The last column of Table 2.3 gives the relative efficiencies of various 

allocations with respect to the proportional allocation. 

Table 2.3 

Expected Variances of the estimated mean 

Type of 
allocation 

Optimum n^j 

Average «;,(o) 

Chatterjee «/,((,) 

Proposed «;,(^) 

Proposed «;,(^) 

Proportional «/,(^) 

Cows 

0.0127 

0.0128 

0.0128 

0.0130 

0.0130 

0.0130 

Gallons 

0.0800 

0.0802 

0.0800 

0.0811 

0.0811 

0.0837 

Receipts 

76.9 

77.9 

77.5 

76.9 

76.9 

80.9 

Trace 

76.9927 

77.6930 

77.5928 

76.9941 

76.9941 

80.9968 

R.E. w.r.t. 
Proportional 

allocation 
1.0520 

1.0425 

1.0438 

1.0520 

1.0520 

-

It is observed that all the compromise allocations are more efficient than the 
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proportional allocation. However, the proposed compromise allocation based 

on weighted averages and the minimum deviation are equally good and most 

efficient. The percentage gain in efficiency in using the proposed allocations 

over the proportional allocation is 5.2% where as the corresponding value for 

average allocation is 4.2% and for Chatterjee's allocation is 4.4%). Thus the 

proposed allocations are more precise than other compromise allocations. 

Example 2: The data are from a fann suî vey in Iowa reported by Jessen 

(1942) (see Sukhatme et al., (1984)). The relevant data with respect to three 

characteristics (i) number of hogs bought during the year (ii) number of cattle 

bought during the year and (iii) number of cows milked during the year, are 

shown in Table 2.4 

Table 2.4 

Estimated strata mean squares 

Stratum No. 
h 

1 

2 

3 

4 

5 

w. 

0.197 

0.191 

0.219 

0.184 

0.208 

Hogs bought 

12 

80 

1,113 

84 

247 

Cattle bought 
o2 

56 

2,132 

565 

655 

68 

Cows Milked 

41.3 

23.1 

10.9 

11.5 

38.8 

It has been decided to fix the total sample size as « = 1000 
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The proposed compromise allocation based on weighted averages given 

by (2.24) and the corresponding expected variances given by (2.25) are: 

«i(w)=69, «2(w)=318, «3(,^)=328, «4(^)=150 and «5(^)=135 

with Fi(v̂ ) =0.2766, F2(„,) = 0.4606 and K3(,̂ ) = 0.0424 respectively. 

The proposed compromise allocation based on minimum deviation 

given by (2.34) and the conesponding expected variances given by (2. 35) are 

«i(^)=73, «2(rf)=323, «3(^)=323, n4^^^=]4\ and W5(^)=140 

with Fi(^) =0.2772, F2(̂ ) =0.4607 and ^3(̂ 3 =0.0409 respectively. 

Table 2.5 gives the different allocations. The optimum expected 

variances under various allocations are shown in Table 2.6. The last column 

shows the relative efficiency of different allocations with respect to 

proportional allocation based on the ratio of traces of the variance-covariance 

matrices of yj^^ under different allocations. 

It is observed that, all the compromise allocations are more efficient 

than the proportional allocation. However the two proposed compromise 

allocations are more efficient than other compromise allocations. The 

compromise allocation based on minimum deviation is the most efficient. The 

percentage gain in efficiency is about 24.4% where as the same figure 

corresponding to average allocation is only 11.7% and for Chatterjee's 

allocation is merely 5.9%. 
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Table2.6 

Expected variances of the estimated mean 

Type of 
allocation 

Optimum n*y 

Average «;,(«) 

Chatterjee W/,̂ )̂ 

Proposed «/,(„,-) 

Proposed «/,(-̂ ) 

Proportional W/ĵ ^̂  

Hog 

0.2147 

0.2694 

0.2739 

0.2768 

0.2772 

0.3260 

Cattle 

0.4277 

0.5291 

0.5314 

0.4607 

0.4607 

0.6180 

Milk 

0.0233 

0.0293 

0.1097 

0.0408 

0.0409 

0.0250 

Trace 

0.6657 

0.8278 

0.9150 

0.7783 

0.7788 

0.9690 

R.E. w.r.t. 
Proportional 

allocation 
1.4556 

1.1170 

1.0590 

1.2450 

1.2442 

-

2.9 ALLOCATION WITH VARIABLE COST OF 
MEASUREMENT 

Let Cfjj;h = l,2,...,L;j = l,2,...,p, denote the per unit cost of measuring 

the jth characteristic in hth stratum. Also let, out of the total budget 'C ', «/,(^), 

denote the cost allocated for measuring the jth characteristic. The individual 

optimum allocations using (2.7) are given as 

n^^ = „ _ •,h = l,2,....,L;j = 1,2,. . . . ,p (2.36) 

where n given by (2.8) is 
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(2.37) 

L 

h=\ 
L 

Z 

Substitution of the value of n from (2.37) in (2.36) gives 

n,y = -~ ^-^^-^;/2 = l,2,....,/z;y = 1,2, p (2.38) 

h=\ 

where overhead cost c^ is ignored, that is the cost functions for individual 

allocations are taken as 

L 

^j = Ta^hjnhj-J = l2,...,p (2.39) 
h=\ 

The optimum value of the variance v{yj^^) (ignoring fpc) of the 

estimate yj^i of the population mean Yj of the jth characteristic under the 

optimum allocation is given by 

(see Cochran (1977)). 

For working out a compromise allocation we have to restructure the cost 

setup as below. 

p 
Let c;, = Y^hj ' denote the per unit cost of measuring all the 'p' 
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characteristics in the hth stratum. Then for any compromise allocation 

/7 = («i,«2v,Wz,)' we have 

C = io,^;, (2.41) 
h=l 

P 
as the cost constraint, where C = ^ C^ is the total fixed budget. The 

variances Vj-j = l,2,...,p (ignoring fpc) under a compromise allocation 

n^\h = \,2,...,L can be worked out directly by using 

^ WHSI 
y^^Y-^^^;j = \X:.,P (2.42) 

h=l "h 

Due to this restructured cost setup it is not advisable to use the 

Cochran's average allocation or the allocation based weighted averages 

proposed in Section 2.6 because these compromise allocations either do not 

utilize the cost fully or become infeasible by violating the cost constraint in 

(2.41). 

Chatterjee's allocation discussed in Section 2.7 can be used to work out 

compromise allocation for fixed total cost. It gives the compromise allocation 

as: 

«;,(,) = ^ L = ; / 7 = 1,2,...,L (2.43) 

h=l h=l 
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The corresponding variances can be obtained by putting n^ = n^^^^ in (2.42) 

Thus 

r 2 o 2 

h=\ "hie) 

(2.44) 

where the symbol (c) stands for Chatterjee. hi fact Chatterjee's allocation given 

in Section 2.7 is a special case (c^ =c) of his general allocation given in (2.43) 

2.11 THE MINIMUM DEVIATION COMPROMISE 
ALLOCATION FOR FIXED COST 

As discussed in Section 2.9 the total deviation Dfor fixed cost is given 

as D=i{vj-v;) 
7=1 

P 

I 
7=1 h=\ "h Cj 

(2.45) 

where Vj is given by (2.40) .The problem of allocation thus become to find 

«/,;/? = 1,2,...,L that minimize D given by (2,45 )subject to the cost constraint 

in (2.41) 

Defining the Lagrangian function as 

f L ^ 

V/7=l 

(2.46) 
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and equating the partial derivatives and — equal to zero and 

solving the 

(L + 1) simultaneous equations thus obtained we get the minimum deviation 

compromise allocation n^(^^^ as 

c\f,w,sl 
n^^d) = '^'T ;̂  = U....,L (2.47) 

where the symbol {d) indicates that the compromise allocation is based on 

minimum deviation. 

The corresponding variances can be obtained by using 

^yV) = Z ^ - ^ ; > = l '2v,/ ' (2.48) 
h=[ ^h{d) 

2.11 A NUMERICAL ILLUSTRATION 

The data of this example are from Jahan, N. et al (1994). In a two-

variate survey {p=2) the population is stratified into two strata (1=2). The 

following information are available. 

Also 

h h i ' ' ! l - ((^.)) = (24,27) 
'^J'^' ^5 22, 
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((Cy))= (400,2000) => C = 2400 

Table 2.7 

Data for two strata and two characteristics 

Stratum No. 
h 
1 

2 

^h 

0.4 

0.6 

^hi 

4.6 

2.8 

^h2 

332 

173 

as 

The individual optimum allocations are worked out using formula (2.36) 

49 55 

40 41 

with Fi =0.1384 and V2 =584.0261 

The average allocation is given as 

(k(«)))=L 

The cost associated with this allocation is 

52x24 + 41 X 27 = 2355 

which is less than the available cost 2400 and hence it is not advisable to use 

this allocation. However, for the sake of comparison the variances under this 

allocation are worked out as 

Ki(̂ ) =0.1339 and |/2(«) =601.9420. 

The weighted average allocation proposed by author in Section 2.6 is 

53 



given as {(ni,^^^))=l 

The cost associated with this allocation is 

55x24 + 41x27 = 2427 

which is more than the available cost 2400. Hence this allocation is infeasible 

and cannot be used. However, for the sake of comparison the variances under 

this allocation are worked out as 

Fi(^) =0.1315 and |/2(w) =589.38308 , 

after adjusting the «/,(w) to maintain the feasibility by multiplying it by an 

adjustment factor of 2400/2427=0.9889 . 

Thus the adjusted \\n^(,^;) j)= 

Compromise allocation given by Chatterjee's, using formula (2.43) is 

53^ 
(k(c)))=,4j with corresponding variances 

Ki(c) =0.1327 and ¥2(^0) =595.5429 . 

The proposed minimum deviation allocation using formula (2.47) is 

(v̂ /2(c/))) = with corresponding variances 

Fi(^) =0.1322 and K2(̂ ) =590.0126. 

The proportional allocation for a fixed cost C is given by 
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n KP) - T 

h=l 

(see Sukhatme et al (1984)). 

For C = 2400, W^^OA, W2=0.6, Ci=24, C2=27 

The proportional allocation «/,(p);/? = 1,2 is worked out as 

n 
2400x0.4 

HP) 0.4x24 + 0.6x27 
= 37.2093 s 37 

and n 
2400x0.6 

2ip) 0.4x24 + 0.6x27 
55.8139s56 

ThUs((/7;,( ))) 
'37 

56 
The corresponding variances are 

j/j(^) =0.1419 and V2(p) =669.0450 . 

Where the symbol (p) stands for proportional. 

These results arranged in a tabular form are given in Tables 2.8 and 2.9 

Table 2.8 

Sample sizes w îthin strata 

Stratum 
No. 
h 

1 

2 

Compromise allocations («;,) 
Average 

«A(a) 

52 

41 

Weighted 
average 

55 

40 

Chatterjee's 

«//(c) 

53 

41 

Proposed 

55 

40 

Proportional 

37 

56 
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Table 2.9 

Variances under different compromise allocations 

Allocations 

Average «;,(a) 

Chatterjee's«/,(-^) 

Proposed «;,̂ „) 

Proposed «/,(^) 

Proportional/7/,(p) 

V, 

0.1339 

0.1327 

0.1315 

0.1322 

0.1419 

Vi 

601.9420 

595.5429 

589.3808 

590.0126 

669.0450 

Trace 

602.0359 

595.6756 

589.5123 

590.1448 

669.1869 

R.E. w.r.t. 
Proportional 

1.1115 

1.1234 

1.1351 

1.1339 

-

The last column of Table 2.9 shows the relative efficiencies with respect to the 

proportional allocation based on the ratio of traces of the variance-covariance 

matrices. 

It is observed that all the compromise allocations are more efficient than 

the proportional allocation. However, both the proposed allocations are more 

efficient than other compromise allocations. The compromise allocation based 

on weighted averages is the most efficient allocation for this example with the 

percentage gain in efficiency over proportional allocation as 13.5%. 

2.12 CONCLUSION 

The three numerical examples worked out in Sections 2.9 and 2.12 

indicate that the compromise allocations based on (i) weighted averages (the 

weights a J-; proportional to individual optimum variances Vj -J = \,2,...,p) 
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and (ii) minimizing total deviation D = X v y ~^j) ^ ^ "^^^^ efficient than 
y=i 

other compromise allocations existing in the sampling literature. The criterion 

for working out the relative efficiency is the ratio of the trace of the variance-

covariance matrix of yj^f-J = \,2,--;P under proportional allocation to the 

trace under a given compromise allocation. Thus the proposed compromise 

allocations are an improvement over the compromise allocations already 

existing in the sampling literature. 
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MIXED ALLOCATION IN 
STRATIFIED SAMPLING 



CHAPTER - III 

MIXED ALLOCATION IN STRATIFIED SAMPLING 

3.1 INTRODUCTION 

It is stratified sampling where the population of size N is divided into L 

L 
Strata of sizes Â ,̂ N2, ,N2 {^Nj^ = A/̂ )the variance of the stratified sample 

h=\ 

L _ 
mean y^^ = Yj^h^h is given by 

h=\ 

h=\ ^h /7=1 ^h 

The total cost ' C of the survey may be given as 

L 

h=\ 

L 

or C-c^=c^^Y,^h^h = Q (say) (3.2) 
h=\ 

where all the symbols have the same meaning as defined in Section 2, Chapter 

2 of this thesis. The cost structure of the survey may be more complicated than 

given in (3.2) (See Hansen et .al. (1953) and Groves (1989)). For example the 

cost function may be of the form 
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L 

where ip, denote the traveUng cost between the selected units of the hth 

stratum. Csenki (1977) used the cost function of the form 

L 

h=\ 

where 6 > 0 is a known constant. 

In spite of all the above discussed cost functions the cost function given 

in (3.2) is often serves as an adequate approximation for practical purposes. 

The fixed cost allocation that minimizes V{y^() is well known in 

sampling literature as optimum allocation is given as 

WuSu / Jc7 
n^=n " " ^ " ;h = ],2 L (3.3) 

h=\ 

where the total sample size n for fixed cost C is given as 

L 

n = C^^ ;/7 = ;,2,...,L (3.4) 

h=l 

where C^ =C-c^ 

Using (3.3) and (3.4), we get 
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HU =Cr 
[w,s,/4^) 

;h = l,2,..,L (3.5) 

Substituting n^ given by (3.5) in (3.1) the value of the variance Viy^t) under 

optimum allocation comes out to be 

V* = V{y) 

f L >2 

U=i J 
opt c. h=\ ^h 

(3.6) 

(see Cochran (1977)). 

The optimum allocation can also be worked out to minimize the cost for 

fixed variance. Using Cauchy -Schwarz inequality Stuart (1945) showed that in 

terms of total sample size n the expression of the sample sizes w;,;/? = 1,2,..., L 

that minimize the cost for fixed variance J^(j7^;)can also be given by (3.3). The 

value of n, the total sample size, in this case is given by 

f L 
1LW^,S 

Y L 
hi'-h 

n = 
\h=\ 

Z^hShNch 
Ah=l 

1 L 
(3.7) 

^,.,,y-_y^^^,yi^-_i^i^l 
- , Â ^ h=\ h=\ "h 

, is fixed 

Substituting the value of n form (3.7) in (3.3) we get 
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n,, = ^ •,h = \,2,...,L (3.8) 
1 ^ 

The resulting minimum cost is 

Copt = Co+-^ J (3.9) 

obtained by substituting n^ given by (3.8) in (3.2) ( see also Kish (1967)). 

The practical difficulty in using optimum allocation is that usually S/^ 

are not known, thus we can only approximate this allocation by using 

estimated values of 5"̂  . They may be the values computed on some previous 

occasion or values obtained by a pilot survey. Other allocations that are less 

precise than optimum allocation are proportional and equal allocations. In 

proportional allocation the sample sizes n^ from various strata are proportional 

to the corresponding stratum weights PF/,. This gives 

or n^, =KWf,. (3.10) 

where K is the constant of proportionality. 

The proportional allocation may be worked out for fixed cost or for 

fixed total sample size. For fixed cost, under proportional allocation 
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C WL 
r^h= i^" \h = \X:.,L (3.11) 

' ,2- ' 

With V{y,,)^,„p = ^ - ^ - Z ^ (3.12) 

for fixed total sample size, under proportional allocation 

r,^,=nW^,•h = \,2,••.,L (3.13) 

L 

T^hSh ^ 2r,2 

withFfcV,^=^=^- 1 ^ (3.14) 

(see Section 2.2, Chapter 2). 

Practical implementation of proportional allocation is easy because usually 

the strata sizes N^ and thus strata weights ff/, are known. In case W^ are 

unknown they can also be estimated from a pilot survey. 

In the absence of the true value of ff/,, if other situations permit one can 

use equal allocation. To implement equal allocation only knowledge of the 

total sample size n and the number strata L are required. The sample sizes n^ 

are given by 

n^-j;h=I,2,...,L (3.15) 

The variance V(y^f) under equal allocation is given as: 

62 



y(yA^, = ̂ ^ „ ^ ^ ^ ^ (3.16) 

In this chapter the problem of allocation of a sample to strata is 

discussed in general conditions. There are sometimes valid reasons due to 

which only a particular type of allocation is advisable in a particular part of 

a stratified population. Under this situation it would be reasonable to divide 

the group of strata into subgroups and use a particular type of allocation in 

one group. Clark and Steel (2000) used a similar idea in two-stage stratified 

sampling. 

Such an allocation, which uses different type of allocations for different 

subgroups of stiata, may be called a "Mixed allocation". 

3.2.THE MIXED ALLOCATION 

Let the group of L strata is divided into k subgroups G^,G2,--;G^, 

k 

where the group G, consists of Lj;j - 1,2,...,/: strata such that XI ̂ ; ~ •̂ • 

Without loss of generality we can assume that the first Lj strata 

constitute the first subgroup Gy, the next L^ strata constitute the second 

subgroup G-i, and so on and the last L^ strata constitute the last subgroup 

G^. Under this scheme, the jth subgroup G,; y = 1,2,..., k will consists of 
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y-1 y-i y-1 J 
(X;L,+ l ) th , (X:4+2) th , . . . , and (2]L, + L -̂) = (^Z^/)//? strata., 

Further let due to the prevailing circumstances in a particular subgroup a 

particular type of allocation is to be used. This could be done by letting 

Hh =aj/3,,;hG Ij;J = 1,2,...,k (3.17) 

where Ij;j = \,2,...,k is the set of indices of the strata that constitute the jth 

subgroup Gj, 

fi^;h& I,;] = \,2,...,k are known constants depending upon the type of 

allocation to be used in the jth subgroup, 

and aj;j = \,2,...,k are to be determined. 

For example if in any particular subgroup, say Gp, equal allocation is 

to be used then 

Proportional allocation in the qth subgroup Gq is characterized by 

To use optimum allocation in the rth subgroup G^, J3j^ is given as 

W.Su 
p^ = —p=- ,he If. and so on. 

Two other allocations that are used sometimes are allocation 

proportional to W^^Y^ and allocation proportional to W^R^ , where 
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Rl^;h = 1,2,...,L denote the range of the hth stratum (see Murthi (1967)). If 

any of the above allocations is to be introduced in a subgroup we may take 

Ph=WpJj^ox p^ ^W^Rh accordingly. 

It can be seen that 

/ - I / - I y-i ] 

;=1 /=1 /=1 /=1 

k 

where /^f|/^ = ^ ; r ^ 5 and (J/y ={1,2 . . . ,L} 

y=i 

The mixed allocation defined in (3.17) may be computed for minimizing 

K(J7^^)given by (3.1) for a fixed cost or for minimizing the total cost given 

by (3.2) for a fixed value of V{y^^. 

These optimization problems can be formulated as the following two 

nonlinear programming problems (NLPP) 

NLPPl: (Minimizing V{y^^ for fixed cost) 

Minimize F(«/ , ) = 2^ ^ ^ (3.19) 
h=l "h 

L 
subject to ^Cf^rifj =0^ (3.20) 

n^ =a J jS^lhe I J-, J = 1,2,..., k (3.21) 

«;, >0;/? = l,2,...,L (3.22) 

where from the expression (3.1) of V(y^,) the terms independent of «;, are 

65 



dropped and C^ =C-c^ (3.23) 

NLPP2: (Minimizing the cost for fixed value of Viy^^) ) 

L 
Minimize C(w/,)= ^c^Hj^ (3.24) 

h = l 

subject to 2] =v (3.25) 
h=i ^h 

ti/, = a jj3,,;h = 1,2,...,k (3.26) 

and «/, >0;/2 = l,2,...,L (3.27) 

where from the expression (3.2) of C the term CQ which is independent of n^ 

is dropped 

and v = F + y -JLJL ; V being the fixed value of V{v,t) • 

Using constraints rifj = ajfiij;he Ij;J =\,2,...,k the expression ^ 

L 
and ^ c^Hfj in NLPP 1 and 2 may be expressed as : 

h=\ 

L W?S} k Wisl 
Y^^JLJL ^ Y ^ Y - ^ (3.28) 
h=l ^h J=\helj ^jPh 

L k 
and J ] c;,«;, = j ; 2^ a J c^, p^ (3.29) 

h=y J=lhelj 

respectively, where / , ; 7=1,2,...,/: are given by (3.18) 
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Using (3.24) and (3.25) the two NLPP can thus be restated as: 

, . k k J^^S^ 

NLPP 1: Minimize F^{aj)=J] J ] —^_A (3 30) 
j=\helj ^jPh 

k 

subjectto YjH^^j^hPh'^Co P-31) 

J=lhelj 

and a. > 0;; = 1,2,...,A; (3.32) 

NLPP2: Minimize F2(a^ )= ^ Y^^j^hPh (3-33) 

k u/2 ri2 

subject to X Z - ^ ^ = ^ (3-34) 
?, - " y=l/?67, ^y /^ /7 

and a J >0;j = l,2,-,k (3.35) 

Ignoring restiictions aj >0;j = \,2,...,k both the NLPPl and 2 can be 

solved by using Lagrange multipliers technique. If the solutions thus obtained 

satisfy the restrictions a , >0;y = l,2,...,^and thus nf^>0;h = l,2,...,L also 

then the NLPPl and 2 are solved completely, otherwise some nonlinear 

programming technique may be used to solve them. 

3.3 THE SOLUTION 

The NLPPl after ignoring restrictions in (3.32) can be described as 

"Find aj\j = 1,2,...,k that minimize F\\(x.j] given by (3.30) subject to the 

constramt (3.31)". 
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The Lagrangian function ^j(a^ ,/l]) for this problem is 

* IV^S^ 

j=\helj ^jHh j=\helj 
(3.36) 

where X\ is the Lagrange multipher. 

Differentiating <;̂i with respect to aj and X| and equating the partial 

derivatives equal to zero we get the following {k+I) simultaneous equations 

S^i wisl 
= - S - f - ^ + ̂ ii:^/r-^/.=0;/ = 1̂ 2,...,yt 

^«y hel, a.p,, hel 'J ^J 

(3.37) 

a n d — ^ = X Y.^jChPh-Co=^ (3.38) 

1 v^ W?:Sl 
From(3.37)A, X 0 , > ^ / , = - V S ^ 

h&I, a, hel, f^h 

(because a .,j = \,2,...,k is constant within a particular subgroup) 

2 c 2 
T^hS'h/^h 

or af = 
^1 Y^'^hPh 

hel, 

or (2 y 

Z^/T'̂ 'A^/y^/. 
/ ? £ / , 

hel, 

J=l,2,...,k (3.39) 

Substituting the value of a , from (3.39) in (3.38) we get 
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j=lhelj i ^ \ 

hel, 

helj 

-<^hPh - ^ o 

or 

k 

s 
hel, 

V 

or 
1_ 

^1 

C, 

hel, 

From (3.39) and (3.40) 

(Z^hS^//3,)/(j:cf,/3,) 

a, =C 
hel. hel, 

J o k 
••,j=l,2,-,k 

Z iHWj^St/fi.X-Zc./S,) 
7=1 V /^e/, hel, 

(3.40) 

(3.41) 

The values of the sample sizes «/, for the strata belonging to a particular 

subgroup sayG^, that is fovhe I^ can be obtained by substituting the value of 

a J given by (3.41) for j=p, in (3.17), where p e {l,2,...,k} 

The resulting variance (ignoring fpc) is 

V _sr ^ ^h^h 
•̂  (mixed) 2-1 2-1 

j=\ hel J ^jPh 
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^"' '^'^ Cot lilwiWiJ^MljM 
J=q helj heli 

(3.42) 

where the symbol '(mixed)' corresponds to the mixed allocation. 

The NLPP2 after ignoring restrictions in (3.31) may be described as: 

"Find aj;j = \,2,...,k that minimize F2\C(jj given by (3.33) subject to be 

constraint (3.34)". 

To solve this problem, define the Lagragian fimction ^2 \^j, ^^2) ̂ ^ 

MhBlj 

where X^ is the Lagrange multiplier. 

w^sl 
Z I - V 

As before we have the (k+1) equations as 

d(t)2 
r 2 o 2 

5 « ; h^Ij h&ij ajph 
= 0; 7 = 1,2,..., A; 

(3.43) 

(3.44) 

and ^ - i E w^sl 
^h y=l hGlj ^jPh 

- v = 0;7 = l,2,...,A: (3.45) 

From (3.44) 
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a J =V^2 

.2o2 

hel, 

hel, 

-•,j = l,2,-;k (3.46) 

Substituting the value of a, from (3.46) in (3.45) we get 

^ 0 = 
hel, 

V 
(3.47) 

From (3.46) and (3.47) 

a = — 
V 

\/ 

(i:^i;sf;/^,)/(Z'h^h) 
V \f ' ^ ' j hel, 

Z (i:w,'s',/M(^c,/3,) 
J=^ hel, hel, 

1 = 1,2, ..,k (3 48) 

The values of the sample sizes n/^ for the strata belonging to a particular 

subgroup say Gg, that is for hel^ can be obtained by substituting the value of 

a J given by (3.48) for j=p in (3.17), where q e {l,2,...,k} 

The resulting cost is 

^{mixed)-Yj a ^j^hPh 
j=\ hel J 

-X 
hel, 

\ 

yihelj hel, 

X 

A 

hel. V i ̂ ^h 
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(3.49) 
V 

The results obtained in this section can also be obtained by 

using Cauchy- Schwarz inequality. 

3.4 THE INEFFICIENCY OF THE MIXED ALLOCATION 

It is well known that the optimum allocation given by (3.5) is the most 

efficient allocation for fixed cost. But there are certain limitations to the use of 

optimum allocation in practice. The most severe of all the limitations is the 

absence of the knowledge of strata variances S^. In such situations in the 

formula (3.5) sl may be replaced by its sample estimate 

1 "h 

H =—7L(yh,-yh) 

The values of the sample allocations in this case will be 

n^ = — •h = 1,2,...,L 

h=\ 

where h^ are called the modified optimum allocadon. Unfortunately, in general 

there is no guarantee that this modified optimum allocation is really optimum. 

At times it proved to be less efficient than a proportional allocation. So that 

even if an estimate of S^ is available it is not always advisable to use the 
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modified optimum allocation (see Sukhatme et al (1984)). As an alternative the 

use of the proposed mixed allocation is advised. 

The relative efficiency (R.E.) of the optimum allocation for fixed cost as 

compared to the corresponding mixed allocation is given by 

,„,-,> '^ mixed ~''^opt .„ _^. 
(^•J')opt= ~ ~ (3.50) 

where {R.E.)„pi, stands for the relative efficiency of optimum allocation as 

compared to the mixed allocation. 

The quantity on the R.H.S. of (3.50) can also be called the inefficiency 

of the mixed allocation as compared to the optimum allocation. 

T h u s ( R / X ) „ , „ , = ^ " ' " ; ; ' ' ^ ° ^ ' (3^51) 
^opt 

where (/?./.£.)^„^g^, stands for the relative inefficiency of the mixed allocation 

as compared to the optimum allocation. 

In the expression (3.50) and (3.51) V^^y.Q^ is given by (3.42) and Vopf 

(ignoring fpc) is given by 

L 
' ,2 ii:w,s,4c,) 

Vopt--^^^^ (3.52) 

The contribution towards the total relative inefficiency of a particular 

allocation applied to the subgroup G^can be assessed by the term 
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y ^hSh y W^Sl 

help ^jPh help ^h{opt) 

Vopt 

in the RHS of (3.51), where «/,(cî /) denote the sample sizes under optimum 

allocation for help. 

The expression (3.53) will help in deciding whether to use any 

particular allocation in a particular subgroup or not. If a particular allocation 

results in a large contribution towards the total relative inefficiency when 

applied to a particular, subgroup of strata, then the reasons for applying it may 

be reviewed. 

3.5 A NUMERICAL ILLUSTRATION 

In stratification with seven strata the values of N^, s^ and c^ are given 

in Table 3.1. It assumed that the total available budget of the survey in C = 

4500 units which includes an overhead cost CQ = 500 units. The data are 

artificially constructed to illustrate the use mixed allocation. 

We have Q =C-Co = 4500-500 = 4000 units of cost available for 

measurements. 

In Table 3.1 the strata are so arranged that 

(i) Strata 1,2 & 3 constitute sub group Gj in which equal allocation is 

to be used. 
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(ii) Strata 4 & 5 constitute subgroup G2 in which proportional 

allocation is to used. 

(iii) Strata 6 & 7 constitute subgroup G3 in which optimum allocation is 

to be used. 

Table 3.1 

Values of N}^, s^ and C;, for seven strata 

Stratum 
No 

h 

1 

2 

3 

4 

5 

6 

7 

Stratum 
size 

All 

559 

425 

218 

233 

328 

265 

Stratum 
S.D. 

5.237 

5.821 

5.238 

25.528 

22.232 

15.129 

40.125 

Per units of 
measurement 

6 

8 

7 

12 

11 

10 

15 

Thus, / ; = {1,2,3} 

/2={4,5} 

13 = (6,7} 

It can be see that/ '7 =1,2,3 are mutually exclusive and exhaustive as 

h[]h =An^3 -h[]h =^ and [jlj ={1,2,3,4,5,6,7} 
7=1 
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The reason for using equal allocation to strata 1,2 and 3 is that these 

strata are relatively more homogeneous as compared to other strata since their 

corresponding estimated strata S.D.(Sh) are small. Proportional allocation is 

used in strata 4 and 5 because they have relatively smaller size (Njj) among 

the remaining four strata. The above set up will help in reducing the variance 

V(yst) under mixed allocation. 

Table 3.2 

Sample sizes under over all optimum allocation 

h 

1 

2 

3 

4 

5 

6 

7 

W, 

0.189 

0.224 

0.170 

0.087 

0.093 

0.131 

0.106 

^h 

5.237 

5.821 

5.238 

25.528 

22.232 

15.129 

40.125 

^h 

6 

8 

7 

12 

11 

10 

15 

^hH 

0.990 

1.304 

0.890 

2.221 

2.067 

1.982 

4.253 

WhShl4^ 

0.404 

0.461 

0.336 

0.641 

0.623 

0.627 

1.098 

z 

WhSh4^ 

2.425 

3.688 

2.355 

7.694 

6.855 

6.268 

16.472 

45.757 

^h{opt) 

(rounded) 
35 

40 

29 

56 

55 

55 

96 

Table 3.2 gives the sample sizes when as gives overall optimum 

allocation is used. 
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The estimated variance v{y^f) under optimum allocafioh ignoring fpc is 

r L ^̂  

^opt 
c o 

_ (45.757)^ 

4000 

= 0.5234 (3.54) 

The application of the mixed allocation to the various subgroups of the 

strata according to the given scheme may be characterized by letting 

where n^..;h = 1,2,...,L denote the sample sizes under mixed allocation and 

/3jj are defined as below. 

In subgroup Ĝ  for applying equal allocation 

/?;, = 1 for /z e /i = {1,2,3} 

In subgroup G2 for applying proportional allocation 

/3^=lfor hel2= {4,5} 

In subgroup G3 for applying optimum allocation 

^h = {Wh^H^^) forheI^={6,7} 

9 0 

In Table 3.3 the values of Wj^s^lp^ and c^f3^ are tabulated. These 

values are to be used in the calculation of a .; / = 1,2,3. 
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Table 3.3 

r2ri Values of Wj^ S}^ I pj^ and Cj^fi^ 

h 

1 

2 

3 

WhSh 

0.990 

1.304 

0.890 

Wisl 

0.980 

1.700 

0.792 

^h 

6 

8 

7 

/^h 

1 

1 

1 

Subtotal for ^ € /^ 

4 

5 

2.221 

2.067 

4.933 

4.272 

12 

11 

0.087 

0.093 

Sub total for he: 12 

6 

7 

1.982 

4.253 

3.928 

18.088 

10 

15 

0.627 

1.098 

Subtotal for/je 73 

WhliPh 

0.980 

1.700 

0.792 

3.472 

56.701 

45.935 

102.636 

6.270 

16.470 

22.740 

ChPh 

6 

8 

7 

21.000 

1.044 

1.023 

2.067 

6.270 

16.470 

22.740 

Table 3.4 gives the values oi a f\,j = 1,2,3 

78 



Table 3.4 

Calculation of a 
J 

Subgroup 
No. 
7 h&I, 

(B) 

hel, 

(C) 
Mm a 

4000 X (c) 
ZW 

1 

2 

3 

3.472 

102.636 

22.740 

21.000 

2.067 

22.740 

0.407 

7.047 

1 

8.539 

14.565 

22.740 

35.512 

614.868 

87.252 

Eisy 45.844 

The values of /?;, from Table 3.3 and values of aj from Table 3.4 when 

substituted in the formula (3.55) gives the mixed allocation n^\;h = \,2,...,l 

as 

For y = 1, that is /? e /^ = {1,2,3} 

«i(m) = « i A =35.512x1 = 35.512 = 35 

n 2(OT) ayP2 =35.512x1 = 35.512^35 35 

«3(m) =«iy^3 =35.512x1 = 35.512 = 35 35 

For 7 = 2, that is hel2= {4,5} 

«4(m) = «2 A = 614.868 X 0.087 = 53.493 = 54 

«5(m) =«2>^5 =614.868x0.093 = 57.183 s 57 

For 7 = 3, that in /2 e /g = {6,7} 

"6(m) = «3ŷ 6 = 87.252X 0.627 = 54.707 s 55 
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^i{m) = «3ŷ 7 = 87.252 x 1.098 = 95.803 = 96 

The estimated variance v{y^f) (ignoring fpc) under mixed allocation is 

given as 

v . w = Z ^ ^ ^ ^ ^ = 0.5356 

3.6 CONCLUSION 

The estimated relative inefficiency of the mixed allocation as compared 

to the overall optimum allocation is given by (3.51) is 

( ^ • / • ^ L w = '"^'^^'"'"^^100o/o 
^opt 

0.5253-0.5234 ,„^„, 
= X100% 

0.5234 

= 0.363% 

The estimated relative inefficiency of equal and proportional allocations 
are given as 

{^•I-E)equal ' 
_ Ae/i ^h(m) hell ^K^) 

^opt 

_ 0.0992-0.0978 ^^^^^„,̂  

100% 

0.5234 

= 0.267% 
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^opt 

0.1663-0.1658^^^^„/^ 

0.5234 

= 0.096% respectively. 

It can be seen that 

{RJ.E)rnixed = {^•^•E)equal +{R-^-E)prop • 

Since the RLE. in using mixed allocation is only 0.363% we conclude 

that we used mixed allocation safely instead of overall optimum allocation. 
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CHAPTER IV 

DOUBLE SAMPLING FOR STRATIFICATION 
WITH SUBSAMPLING THE NONRESPONDENTS: A 

DYNAMIC PROGRAMMING APPROACH 

4.1 INTRODUCTION 

In stratified sampling, the population is divided into L strata which are 

homogeneous within themselves and whose means are widely different The 

stratum weights are used in estimating unbiasedly the mean or the total of 

the character under study 

If these weights are not known, the technique of double sampling can be 

used, which consists of selecting a preliminary sample of size n' by simple 

random sampling, without replacement (SRSWOR), to estimate the stratum 

weights and then selecting the subsample of n units with riy, units from the 

h-th stratum, to collect information on the characteristic under study, such 

L 
that ^n^ =n 

Rao (1973) proposed the method of double sampling for stratification 

(DSS) for the estimation of the population mean Y, of the variate y, using 

the values of the auxiliary vanate collected at the first phase for 

stratification only 
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Ige and Tripathi (1987) used the information collected at the first phase 

for stratification as well as in constructing ratio and difference estimators of 

the population mean Y 

One of the sources of error in surveys is non-contact or refusals In a 

household survey the selected family may not be available at home when 

the interviewer calls The selected person may refuse to cooperate, saying 

that he has not time to answer question or that he consider the purpose of 

the survey to be senseless Persuasion and further recalls are therefore 

necessary for achieving complete coverage of the sample But it is 

expensive to call and call again At the same time we cannot afford to 

neglect the non-response Results based on response alone will not apply to 

the entire population from which the sample was selected Experience from 

different surveys show that non-response generally differs from the 

response in several respects and neglecting them will introduce a bias in the 

results Under these circumstances, one solution is to take a small 

subsample of the non-respondents and use all the persuasion, ingenuity and 

other resources at our command to get a response from them The two 

samples can then be combined suitably to get a better estimate of the 

population parameter 

Hansen and Hurwitz (1946) discussed a method of tackling total non-

response in mail interviews Rao (1986) applied this method of subsampling 
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the non-respondents for the ratio estimation of the mean when the 

population mean of the auxihary character is knovm 

Using an auxihary variable Okafor (1994) derived the DSS estimator 

based on the subsampling of the non-respondents, when there is total 

response on the auxiliary variable and incomplete response on the main 

character 

For practical application of any allocation integer values of the sample 

sizes are required This could be done by simply rounding off noninteger 

sample sizes to their nearest integral values When the sample sizes are 

large enough and (or) the measurement cost in various strata are not too 

high, the rounded off sample allocation may work well 

However in situations other than described above the rounded off 

sample allocations may become infeasible and (or) non optimal This means 

that the rounded off values may violate some of the constraint of the 

problem and (or) there may exist other sets of integer sample allocations 

with a better value of the objective function of the formulated NLPP In 

such situations we have to use some integer programming technique to 

obtain an optimum integer solution In this chapter the problem of obtaining 

an optimum allocation in DSS, when there is incomplete response on the 

main character and total response on the auxiliary character, is considered 

as an all integer nonlinear programming problem (AINLPP) A solution 
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procedure is developed using the dynamic programming technique. A 

numerical example is also presented to illustrate the computational details. 

4.2 T H E PROBLEM 

From a population of N units a large sample of size n' is selected by 

simple random sampling without replacement (SRSWOR). Information on 

the auxiliary variable x is collected with which an unbiased estimate 

w^ = n'l^ In' of the true stratum weight Wf^ = N^l N is computed. 

where «;, is the number of units in the initial sample that falls in stratum h, 

L 

I (/?=1,2,...,L), with X«;,=«' 

In each stratum a subsample of size /?;, = V;, «),, (0 < V;, < 1), v^ is 

prefixed, is selected from ii'^ by SRSWOR. The main character y is then 

observed on these /?;, units, h = \,2,...,L. 

The DSS estimator of the population mean for the total response is 

L 

ycis = T^hyh (41) 

where y^ = —'Y.yhi ^ sample mean 
nh ,=1 

The variance of y^^ is 
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n n.9 i^„. fi ,̂  
r(y,s)= -J-T; SU-^J:W, ri N " A=i 

- 1 5 2 (4.2) 

1 ^ ^ / > ^x2 

1 ^ 
and 5y, = Zjiyhi ~ ^/i) > variance of ;; in h-th stratum. 

Let 

«iy,: unit respond at the first call from the ri/j units selected in stratum h. 

n2fj: units do not respond. 

Thus the subsample of size «;, is again subdivided into respondent and 

non-respondent subsamples of sizes «]/, and n2/j respectively, where 

^\h + "2A =f^h- •^ subsample of size ^2/, out of the «2/i non-respondents of 

h-th stratum is selected and interviewed with improved methods, where 

^2h - Ki^2h (0 < /̂j < 1), k*^ is prefixed. 

^ 

An unbiased, estimator y^ for Y based on the sample means from 

respondents and non-respondents (in second attempt) is given as 

-* ^ -* , -* n\hy\h'^ ^2hy m2h / . o x 
yds = L^hyh^ where yy, = ^ (4.3) 

y\y, - sample mean for respondents based on «)/, units 

y^ = sample mean for the non-respondents based on W2/, units 
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The variance of y^ is 

* 
V{yl) = Viy^,) + - ^ Z f F 2 , ^ s l y , (4.4) 

W2h = N2h IN, population proportion of the non-respondents in stratum h. 

S2yh, is the population variance among the non-respondents in stratum h. 

(see Hansen and Hurwitz (1946) and Rao (1986)). 

The problem now is to find the optimum sizes of the subsamples m2/,, 

h = l,2,...,L for which V(y^^) given by (4.4) is minimum for a fixed cost. 

This problem may be divided into two phases. 

Phase I: In this phase the optimum values of rif,, h = l,2,...,L are 

obtained for which V(yds) is minimum for a fixed sample size n-2_,n, . 
h=\ 

Phase II: In this phase the optimum values of nijh', h = l,2,...,L are 

obtained for a fixed total cost of the survey. 

4.3 FORMULATION OF THE PHASE-I PROBLEM 

Using (4.2) and (4.4) the problem of first phase can be formulated as 

/ I 1 \ - 1 i f ] ^ 

_L_1 Minimize V{f,,) . -L - 1 1 ^ ^ + -L ^ ^ ^ 
\n N) ^ n ;,̂ , Syh 
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+ - ^ 1 ^ 2 / , 
n h=\ 

S 2yh (4.5) 

subject to ^^h -^ 
h=\ 

\<n^,<Nh 

and ;?/, are integers; h = 1,2,...,L 

(4.6) 

(4.7) 

(4.8) 

Ignoring the terms independent of n^ the objective function in (4.5) can 

be expressed as 

1 ^ 
Z ( « I , « 2 V . « L ) = — Z 

h=\ 

*\ /; *•. ../ o2 ^ Whn'HS'yh +W2H{(l-k;)/k,}n',Siy, 

rii 

^h 
L 

where ay^ 
Whn'hS^ +W2,{(\-k;)/k;}n',Siy, 

n' 
(4.9) 

The problem (4.5)-(4.8) may be simplified as 

«/, 
Minimize Z(«i,n2,---,«L) = Z — (4.10) 

subject to ^n^ =n 

l<n^, <Nh 

(4.11) 

(4.12) 
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and n^ are integers; h = 1,2,...,L (4.13) 

The restriction (4.12) are imposed to avoid over sampling, that is, the 

situation where «;, > Nj^ and to have the representation of every stratum in 

the sample. 

4.4 SOLUTION OF THE PHASE! PROBLEM 

Ignoring restrictions in (4.12) and (4.13) and using Lagrangians 

multipHers technique, the optimum value of «/, that minimize (4.10) subject 

to (4.11) may be obtained as given below. 

+z 
\ 

differentiating if partially w.r.t. n^ and equating to zero we get 

d(t) «/, 
dni 

+ A = 0; /z = 12,...,Z, J * - , . . , , . 

n^ 

or a/, = Arifj; h = 1,2,...,L 

ni 

VI 
/2 = U,...,Z, , * - J . . . , J 

Taking summation on both the sides we get 

L 1 L 

•si/I h=\ 

L \ ^ I 

h=\ 

L 

•4^ h= h=\ 
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1 n 

which gives 

nJau 
^h=-r-'^; h = l2,...,L (4.14) 

If the above values of itf, satisfies (4.12) also the non-linear 

programming problem (NLPP) (4.10)-(4.12) is solved. 

In case either some or all of the n^ given by (4.14) violates (4.12) or to 

get an integer solution restricted by (4.13) the Lagrange multipliers 

technique could not provide the solution and some other constrained 

optimization technique is to be used. In the next section a computational 

procedure to obtain integer values of n^ is developed using dynamic 

programming technique. 

4.5 SOLUTION OF THE P H A S E ! PROBLEM USING THE 
DYNAMIC PROGRAMMING TECHNIQUE 

The problem (4.10)-(4.13) can be restated as 

Minimize Z(n^,n2,...,n2^)--^ + — + ... + -^ (4.15) 

subject to n^+n2+... + n[^=n (4.16) 

l<«i<A^i , . . . , l<«£,<A^i , (4.17) 
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and fij^arQ integers; h=I,2,...,L 

(4.18) The objective function and the constraints of the AINLPP 

(4.15)-(4.18) are the sum of independent functions of «;,, h = 1,2, ...,L 

The AINLPP, which is an L -stage decision problem, can be decomposed 

into Z-stage single variable decision problems. 

In the following a solution procedure for solving the formulated 

AINLPP using dynamic programming technique is developed. 

Consider the sub-problem called the k-th sub-problem, involving the first 

(k<L) strata and let f(k,r) be the minimum value of the objective 

function for the first k strata with total sample size r , i.e. 

/(^,r) = mmX— (4.19) 

k 
subject to ^ « ; , = r (4.20) 

h=\ 

l<n^,<Nh (4.21) 

and «;,are integers, h = \,2,...,k (4.22) 

Thus the problem (4.15)-(4.18) is equivalent to the problem of finding 

f(L,n). f{L,n) is found recursively by finding f(k,r) for/: = 1,2,...,/. 

and r = 0,\,...,n 

Now f(k, r) = min ^k ^Y^ 
"k h^X^h 
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subject to ^ nfj=r-ni^ 

!<«;, <Nh 

and rif^ are integers, h = 1,2,...,^ 

For fixed integer value of HI^, 1 < n̂ t - niin[r, Nj^ ], f(k, r) is given by 

k-i 

^k I h=\ ^k 

/(*.r) = 2tJ„,„|;ft k-\ 

\<n^ <N^\ n^ are integers, where h = 1,2,...,k-\ 

But by definition the terms in {} above is equal to f(k -\,r-nj^). 

Suppose we assume that for a given k, f(k - 1 , r) is known for all 

possible r = 0,1,...,«. Then 

f{k,r)= min 
«;t=l,2,...,M 

ai 

f^k 
• + f{k-\,r-nk) (4.23) 

This is the required dynamic programming recursive formula. Using the 

relation (4.23) for each ^ = 1,2,...,Z, and r = 0,l , . . . ,n, /(Z,,n)can be 

calculated. 

Initially we set f{k,r) = ao,ifr<k since we wish to have «;, > 1, for 

each h = 1,2, ...,k, r must be at least equal to k. 

Also / ( I , r) - min [a^^ I n^, subject to n^ =r, 1 < Wj < TV̂j ] 
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Thus f{\,r) 
[oo for r > Ni or r <\ 

[aj / r for \<r<Ni 

We tabulate the value of f(k,r) and the optimal ni^, for each k, 

systematically. Then from/(Z-,A2), optimal n^ can be found, from 

f(L-\,n-ni) optimal ni_i can be found and so on until finally we find 

optimal «! .(see Arthenari and Dodge (1981)). 

4.6 FORMULATION OF THE PHASE-II P R O B L E M 

For the second phase of the solution consider the variance function 

given in (4.5) 

Viyds)- J___L 
n' N 

\ sl.l^iw. 1 , ^2 

7 l^: 2h 
h=\ 

^2yh (4.24) 

Assuming the cost ftinction [see Okafor (1994)] 

C = Cin' + ^C2h nh +EC21/2 n^h +ZC22/, ^2h ^l 
h k h 

where 

Cj : cost of getting information on the first phase sample. 

C2h • cost of first attempt on the main character in stratum h. 

93 



^2ih- cost of processing the results on the main character from the 

respondent at the first attempt sample in the stratum h. 

C22h '• cost of getting and processing results on the main character from the 

sub sample of the non-respondents at the second phase sample in 

stratum h. 

We also must have 1 < ̂ 2/, < «2/2 

Ignoring the terms independent of m2/, in the R.H.S. of (4.24) and 

putting k]^ = m2h /«2/i and Vh=n^,/n'f^ . 

The problem becomes 

Minimize Z(m2i, ^22, • • •, m2L) = — Z ^; 
J L r.. \ 

"^ h=\ 
2h 

ym2hj 
— Slyh (4.25) 

L 
subject to X C22h f^ih ^ Co (4.26) 

and 1<W2;, <n2h (4.27) 

^2/, are integers, h -1,2,...,L. 

And Co =Qn' + Y,C2hnh+Y.C2\hnih 
h h 

Let 

h=^W2,n2,'^Slyy, (4.28) 

The AINLPP (4,25)-(4.27) may be restated as 
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Minimize Z(m2i,m22,...,AW2^) = X 
k b. 

h=\^2h 

(4.29) 

subject to Y.C22h^2h^CQ 

and 1 < m2h ^ ^2;? 

where m2/, are integers, h = \,2,...,L 

(4.30) 

(4.31) 

(4.32) 

4.7 SOLUTION OF THE PHASE-II PROBLEM 

Like phase-I applying Lagrangian multipliers technique, with equality 

m (4.30) and ignoring (4.31) and (4.32) we get. 

^ b, ^^ 
(j){m2h,X) = Y. + '^ Ya^nhmih-Co 

h=\^2h \h=\ 

Differentiating (j) with respect to m2h and X and equating to zero we get 

d<j) 

dm 
- + AC22/,=0 

2h m 
Ih 

'Z7-Yj^22h^2h - Q - 0 

Solving the above equations we get the optimum value of m^h as 
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i^hh = Co L 
(4.33) 

4.8 SOLUTION OF THE PHASE-II PROBLEM USING THE 
DYNAMIC PROGRAMMING TECHNIQUE 

Let/(^,/ ') be the minimum value of the objective function of the 

problem (4.29)-(4.32), the first A: strata with Q = ̂  i.e. 

fik, r) = ] mm £ 
m-h=\ '^'2/7 

1 < m2h ^ njh, m2h are integer, h = 1,2,...,k (4.34) 

with the above definition off(k,r) the problem is equivalent to the 

problem of finding / (L,Co). f(L,CQ) is found recursively by using 

(4.34) for A =1 ,2 , . . . , ! and r = 0,\,...,CQ-

Now f{k, r) - min 

k-l 

subject to ^ C22/1/W2/! =>'- Ciik^ik 
h=i 

and l<m2h <n2h, 

where m2h are integers, h = 1,2,...,k-\ 
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min 
A : - l 

and.. 1 < m2^ < n2h, 1^2^ are integers h = l,2,...,k-1 

and \<m2h ^n^h, f^2h are integers h = l,2,...,k-l} 

For a fixed integer value of W2(t, 1 ^ WJ2A- -[''^'^ikli'fi^'^) ' "-s given by 

^ b, ^^' h, ^ ^-' 
or { min — ^ + 5 ] - i L _ 1 ^ C22m2b=r-C22k'^hk 

V'"2A- h=\"^2h J 

1 <m2;, <«2/j' '̂̂ '̂  ^^2/!̂ ^^ integers h = ],2,...,k-l) (4.35) 

By definition the terms in the braces is equivalent to/(A'-l,r) is known 

for all possible r = 0,1,..., CQ • Then 

f{k, r) = min 
»i2yt=l,2,...,Co f^2k 

- + f{k-l,r-C22hfn2k) (4.36) 

Using the relation (4.36) for each k = ],2,...,L and r = 0,l,...,Co, 

/ (Z,Co) can be calculated. Initially we set f(k,r) = 00, if r<k. Since we 

wish to have m2/, ^ I for each h = 1,2,...,k;r must be at least equal to k . 

Also / ( l , r ) = min[Z'i /W21 Subject to ^21 = r, 1 < m2i < «2i] 

Thus / ( l , r ) 
00 _^r r >n2i or r<l 

[bi /r for l < r < « 2 i 

We tabulate the value of f{k, r) and the optimal m2k, for each k, 

systematically. Then from/(Z,Co) optimal m2i can be found from 
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f(L-l,CQ - / ^ I L ) - Optimal ntji-x can be found and so on, until finally 

we find optimal OT21. 

4.9 NUMERICAL EXAMPLE 

The following numerical example demonstrates the use of the solution 

procedure. The data used in this example is from Murthy (1967). Here DSS 

is used to estimate the mean area under cultivation. The area of each village 

and the area cultivated in the village are converted to hectares and grouped 

into three strata. Within each stratum, the population was again subdivided 

into respondent and non-respondent groups. Villages with larger area 

considered in non-respondent group. 

Table 4.1 and 4.2 gives the population parameters obtained from the 

data as given in Okafor (1994). 

Table 4.1 

Overall stratum population parameters 

Stratum 

0-930 

931-1700 

1701-4300 

^h 

0.336 

0.352 

0.313 

92 

39974.81 

61455.48 

172425.05 

^h 

0.4 

0.5 

0.6 

kl 

0.5 

0.6 

0.7 

It is assumed that Â  = 200, n' = 100, « = 50 
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Using proportional allocation n'l^ may be obtained as 

n[ = 33.6 s 34, «2 =35.2 = 35, and n'j, =31.3 = 31 

Table 4.2 

Class stratum population parameters 

Stratum 

0-930 

931-1700 

1701-4300 

Class 

Respondent 

Non Respondent 

Respondent 

Non Respondent 

Respondent 

Non Respondent 

^ 2 
Oyh 

7162.51 

14549.99 

19564.45 

17386.54 

5042.50 

71175.11 

W, 

0.188 

0.148 

0.219 

0.133 

0.188 

0.125 

For L=3 the Phase-I problem (4.15)-(4.18) can be expressed as 

Mmmiize Z = —!- + - ^ H- - ^ 
«! n-, «o 

subject to «i +«2 +"3 =50 

(4.37) 

(4.38) 

1</?1 <34 

1<«2 ^35 

l</73 <31 

(4.39) 

where «;, are integers; /? = 1,2,3 (4.40) 
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Table (4 3) gives the optimum values of «;, using formula (4 14) These 

values of n^ satisfy (4 39) also, hence they will solve NLPP (4 37)-(4 40) 

completely 

Table 4.3 

Calculation of «;, using formula (4 14) 

h 

1 

2 

3 

Gf, 

5236 5381 

8157 2253 

18085 764 

Z^/^ 

v ^ 
72 363928 

90 317359 

134 48332 

= 297 16461 

n ^ 

3618 1964 

4515 868 

6724 1661 

rih 

12 176312 = 12 

15 197245 = 15 

22 627748 = 23 

The optimal value of the objective function is Z =1766 09 

For the sake of illustration, the dynamic programming approach to find 

the integer optimum allocation in Phase-I is also applied to the same 

problem Execution of the computer program (in C language, given in 

Appendix-I) for the procedure given in Section 4 5 for solving the AINLPP 

(4 19)-(4 22) gives the following solution to the Phase I problem 

«1 =12, «2 =15, nj, =23 

The corresponding value of the objective function is Z =1766 5308 
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It can be seen that this solution is same as given in Table 4 3 except for 

a negligible change in the value of the objective function 

For formulating the Phase-II problem, let C22h =10,12,8 for h = 1,2,3 

respectively and CQ =100 

Since IVy, and ^2/? ^^^ known for /2 = 1,2,3 they are used to work out 

the expected values of rij^, h-\,2,3 as n2h =nyj¥2h l(W\h +^2h) These 

values are tabulated in Table 4 4 

Table 4.4 

Calculation of «2/i 

h 

1 

2 

3 

^ 1 / , 

0 188 

0219 

0 188 

Wih 

0 148 

0 133 

0 125 

i^'h 

33 60 

35 20 

3120 

^h 

12 

15 

23 

92 

14549 99 

17386 54 

71175 11 

^22/2 

10 

12 

8 

^ 2 / , 

5 2857 = 5 

5 6676 s 6 

9 1853=9 

For L = 3, the Phase-II problem as given in (4 29) to (4 32) is 

A;r 'T ^1 ^2 ^3 

Minimize Z = —— + —^^ + —— ^21 ^22 ^^23 
(4 41) 

subject to C221W2I + ^222^22 + <^223'^23 ^ Q (4 42) 

1 <W2i ^ « 2 1 

1 < m22 < «22 

1 < ^ 2 3 < «23 J 

(4 43) 
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where ^2^ are integers,/2 = 1,2,3 (4 44) 

Table 4 5 gives the optimum values of W2;, using formula (4 35) 

These values of nijh are mfeasible, since they violate the restriction 

S ^22h'^2h -^0 I"' (4 37), hence as an alternative, the dynamic 

programming approach given in Section 4 8 may be used 

Table 4.5 

Calculation of m2f, using formula (4 35) 

h 

1 

2 

3 

h 

318 70212 

307 54977 

1108 5576 

4h 

17 85223 

17 537097 

33 295009 

4^h 1 C22h 

5 6453708 

5 0625238 

11 771563 

Z A/O/Z Cllh 

4^hC22h 

56 453708 

60 750286 

94 172506 

= 211 3765 

n^ih 

26707656S3 

2 3950268 = 2 

5 5690027 = 6 

Execution of the computer program (in C language, given in Appendix-II of 

this chapter) for the procedure developed in Section 4 8 for solving the AINLPP 

(4 29)-(4 32) gives the following results 

m-,, =3 , m-,-) -2, m^'i-S '21 '22 23 

The optimum value of the objective function (4 41) is Z =481 72045 
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APPENDIX-I 

#include<stdio.h> 
#define K_MAX 3 
#define R_MAX 50 
#define INF 9999999.0 

main( ) 
{ 
int 1,n[4][51],k,r,i,m,nk; 
float f[4][51],min; 
float a[4]={1,5236.5381,8157.2253,18085.764 
float Nk[4]={l,34,35,31}; 
FILE *op; 
op-fopen("resultl.dat","w+"); 
f[0][0]=0.0; 
f [1] [0]=INF; 
f [2] [0]=INF; 
f [3] [0]=INF; 
1 = 0; 

/^Initialization of zero point functions */ 
for{i=l;i<=50;i++) 
f [1] [i]=INF; 

/^-Starting with k */ 
for ( k=l; k<=K_M7\X; k++) 

{ 
/*Starting with r */ 

for(r=l;r<=R_MAX;r++) 
{ 

if (r<k) 
f [k] [r]=INF; 
min=INF; 
for(nk=l;nk<=r;nk++) 
{ 

if(nk>=l && nk<=Nk[k]) 
/* Implementing the recursion function */ 

f[k][r]=a[k]/nk+f[k-1][r-nk]; 
if(f[k][r]<min) 
{ 
min=f[k][r]; 
n[k][r]=nk; 
} /* End of if */ 

} /* End of nk loop */ 
f[k][r]=min; 

} /* End of r loop */ 
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} /* End of K loop */ 
/* Saving Output in a file */ 
fprintf(op,"I 

I \n") ; 
f p r i n t f ( o p , " r f [ l , r ] n l f [ 2 , r ] n2 

f [ 3 , r ] n 3 \ n " ) ; 
f p r i n t f (op , " I 

I \ n " ) ; 
f o r ( r = l ; r<=R_M7\X; r++) 

f o r ( k = l ; k<=K_M7\X; k++) 
{ 

i f (f [k] [ r ]==INF) 
{ 
f [k] [ r ] - 0 ; 
n [ k ] [ r ] = 0 ; 
} 
i f ( k = = l ) 

f p r i n t f ( o p , " %d %10.4f 
% d \ t " , r , f [ k ] [ r ] , n [ k ] [ r ] ) ; 

i f ( k > l ) 
f p r i n t f ( o p , " %10.4f % d \ t " , f [ k ] [ r ] , n [ k ] [ r ] ) ; 

i f ( k = = 3 ) 
f p r i n t f ( o p , " \ n " ) ; 
} 

/* Appending the result to the output file */ 
m=R_MAX; 
for (k=K_MJ\X; k>=l; k--) 
{ 

fprintf(op,"\nThe value of n[%d]=%d",k,n[k][m]); 
m=m-n[k][m]; 

} 
fprintf (op, "\n| --END 
I\n"); 
getch( ); 
return; 
} 
/* End of Program */ 
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APPENDIX-II 

#include<stdio.h> 
#define K_MAX 3 
#define R_MAX 100 
#define INF 9999999.0 

main( ) 
{ 

int l,m2 [4] [101] , k, j , r, i,m,m2k; 
double f[4][101],min; 
double 

b[4]={1,318.70212,307.54977, 1108.5576}; 
double n2k[4]={l,5, 6, air-
double c22k[4]={l,10,12,8}; 

FILE *op; 
op=fopen("result4.dat","w+"); 

f[0][0]=0.0; 
f [1] [0]=INF; 
f [2] [0]=INF; 
f [3] [0 ]=INF; 
1=0; 

f o r ( i = l ; i < = 1 0 0 ; i + + ) 
f [ 1 ] [ i ] = 0 . 0 ; 

for(k=l;k<=K_MAX; k++) 
{ 

f o r ( r = l ; r < = R _ M A X ; r + + ; 
{ 

i f ( r < k ) 

f [k] [ r ] = I N F ; 
min=INF; 

fo r (m2k=l ;m2k<=r ;m2k++) 
{ 

i f ( r < c 2 2 k [ k ] * m 2 k ) 
f [ k - 1 ] [ r - c 2 2 k [ k ] * m 2 k ] = I N F ; 

i f ( m 2 k > = l 
&&m2k<=n2k[k] ) 

f [ k ] [ r ] = b [ k ] / m 2 k + f [ k - 1 ] [ r - c 2 2 k [ k ] * m 2 k ] ; 

i f ( f [ k ] [ r ] < m i n ) 

m i n = f [ k ] [ r ] ; 
m2[k] [ r ]=m2k; 
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} /* End 
of if */ 

} /* End of m2k loop 

} /* End of r loop 
*/ 

} /* End of K loop */ 
/* Saving output in a file */ 

fprintf (op, " I •— 
— I \ n " ) ; 

f p r i n t f ( o p , " r f [ l , r ] m21 f [ 2 , r ] 
m22 f [ 3 , r ] i n 2 3 \ n " ) ; 

f p r i n t f (op, " I • — 
I \ n " ) ; 

f o r ( r - 1 ; r < ^ R _ M A X ; r + + ) 
for(k=l ;k<=K_MAX;k++) 

{ 
i f ( f [ k ] [ r ] = = I N F ) 
{ 
f [ k ] [ r ] = 0 ; 
m 2 [ k ] [ r ] = 0 ; 
} 
i f ( k = = l ) 

f p r i n t f ( o p , " %d %10.4f 
% d \ t " , r , f [k] [ r ] ,m2[k] [ r ] ) ; 

i f ( k > l ) 
f p r i n t f ( o p , " % 1 0 . 4 f % d \ t " , f [ k ] [ r ] , m 2 [ k l [ r U ; 

i f ( k = = 3 ) 
f p r i n t f ( o p , " \ n " ) ; 

} 
/* Appending the result to the output 

file */ 
m=R_MAX; 
for (k=K_Ml\X; k>=l; k—) 
{ 

fprintf(op,"\n The value of 
m2[%d]=%d",k,m2[k][m]); 

in=m-m2 [k] [m] ; 
} 

fprintf (op, " • END 
l\n"); 

getch() ; 
return; 

} 
/* END OF PROGRAM */ 
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CHAPTER-V 

THE POBLEM OF OPTIMUM STRATIFICATION 
UNDER NEYMAN ALLOCATION: A MATHEMATICAL 

PROGRAMMING APPROACH 

5.1 INTRODUCTION 

As given in chapter 1, Section I A. 5, the use of stratified sampling involves 

the solution of four carefully formulated optimization problems according to 

the objective and available resources to the sample survey. These four 

optimization problems are related to the optimum choice of the 

(i) Stratification variable 

(ii) Number of strata 

(iii) Stratum boundaries 

(iv) Sample size allocations 

In this chapter the problem of selecting tire optimum strata boundaries is 

discussed as anMPP and a solution procedure is proposed that uses dynamic 

programming technique. This chapter is based on my research paper entitled 

"Optimum Stratification for exponential study variable under Neyman 

Allocation" accepted for presentation in the 5th International Symposium on 

Optimization and Statistics, to be held in this department during December 28-

30, 2002. 

107 



The basic consideration involving in the formation of strata is that the strata 

should be internally as homogenous as possible, that is stratum variances S^ 

are as small as possible. If the distribution of the study variable is available the 

strata would be created by cutting this distribution at suitable points. 

Given the number of strata, Dalenius and Gruney (1951) suggested that the 

strata boundaries be so deteimined that W/^S^ remain constant. 

Maholanobis (1952) and Hansen, Hurwitz and Madow (1953) have 

suggested that strata boundaries be so determined that W^Yh remain 

constraint. Dalenius and Hodges (1959) have supported the work of Dalenius 

and Gruney (1951). 

Dalenius (1957) has worked out the best stratum boundaries under 

proportional and Neyman allocation. Ekman (1959) has suggested 

approximation to compHcated theoretical solutions. Cochran (1961) has 

examined the applications of these approximations through the empirical 

studies. Sethi (1963) has showed that the above suggestions fail to provide 

optimum strata boundaries for certain types of populations. He derived the 

solutions for optimum stratification points for certain populations. Hess, Sethi 

and Balakrishnan (1966) have applied these solutions to some empirical studies 

and made a comparison of various approximations. Singh and Sukhatme 

(1969) have suggested several approximate methods to obtain optimal points of 

stratification. Singh & Sukhatme (1973) have suggested certain rules for 
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obtaining optimal stratification points based on auxiliary information. Some 

others who worked on this problem are Singh (1977), Unnithan (1978), Yadav 

and Singh (1984) etc. 

Khan et al (2002b) have formulated the problem of optimum 

stiatification as a mathematical programming problem and developed a 

solution procedure using dynamic prograrrmiing technique. They have applied 

their procedure to work out optimum strata boundaries to populations having 

uniform and right tiiangular distributions. 

Most of the authors who worked on this problem obtained minimal 

equations for optimum strata boundaries. Unfortunately these equations are 

difficult to solve for exact solutions. So that only approximate solution can be 

obtained. Some authors suggested iterative procedures that are very slow even 

to obtain a local minimum of the objective function. Moreover, the iterative 

procedures may oscillate and there is no guarantee that they will provide us 

with the approximate global minimum. 

In this chapter the approach of KJian et al (2002b) is extended to work 

out optimum strata boundaries for an exponential population under Neyman 

allocation. 

5.2 THE PROBLEM 

Let the population under study is to be stratified into L strata and the 

estimation of the population mean is of interest. Let XQ and x^ be the smallest 
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and largest values of the study variable X in the population. The problem of 

optimum stratification can be described as to fmd the intermediate stratum 

boundaries A : ; ,X2 , . . . , ^£_ / such that the variance of the stratified sample 

mean x^t under Neyman (1934) allocation is minimum. 

The variance of the stratified sample mean 

^st=i:wh^h (5-1) 
h=\ 

under Neyman allocation is given as 

f L \^ L 

V{x..t)=^ -'-^h— (5-2) 
n N 

where the symbols have the same meaning as described in Section 1A.4 of 

Chapter I except that the study variable is denoted by x. 

If the finite population correction is ignored, minimizing expression on 

the right hand side of (5.2) is equivalent to minimizing 

t^hS, (5.3) 

Let f(x) denotes frequency function of the study variable 

X, XQ <x<Xi^. The problem of determining the strata boundaries is 

equivalent to cut up the range 

x^-XQ=d{say) (5.4) 
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at points Xj <X2 <...,<x^_j such that (5.3) is minimum. Where the values of 

W^ and Spj are obtained by 

WH = Q_^ f{x)dx (5 5) 

where ju,, = —- ^ xf(x)dx (5 7) 

and (x/,_j, X/j) are the boundaries of hth the stratum. 

When the frequency function f{x) is known, using (5.5), (5.6) and (5.7), 

W^S^ could be expressed as a function of x^ and Xi^_y only. 

^^^ fh(^h^Xh-\) = WhSh 

Then the problem of determining the optimum strata boundaries (OSB) 

can be expressed as: 

L 

"Find Xi,X2,...,x^_i that minimize ^fhi^h^^h-x)^ subject to the constraints 

Define 

yh =Xh -^h-i ; h = i,2,--;L 

where >'/j ^ 0 denotes the width of the hth stratum. 

With the above definition of y^ (5.4) can be expressed as 
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h=\ h=\ 

The kth stratification point x^ ; k=l,2,...,L-l can then be given as 

Xk =^0+3^1+3^2+ + yk 

Then the problem of determining optimum strata boundaries can be 

considered as the problem of determining optimum strata widths and can be 

expressed as the following Mathematical Programming Problem (MPP): 

L 

Minimize Yfh{yh^x^_{) 
h=\ 
L 

subject to ^yh=d^ } (5.8) 
• h=i 

and y^ >0; h = \,2,...,L 

For h=l the term /j{yi,XQ) in the objective function of (5.8) is a function of 

yi alone, as XQ is known for h=2 the term /2{y2,^i) = A iyi^^Q +y\) will 

become a function of 3̂ 2 alone once y^ is known. Thus, we may rewrite the 

MPP (5.8) expressing the objective function a function of y^ alone as: 

Minimize Y.fh{yh) 
h=\ 
L 

subject to ^yh=d 

and y^ >0; h = l,2,...,L 

(5.9) 

Let X follows an exponential frequency function: 

112 



f{x) = e-\x>0 (5.10) 

In practice the actual populations are often finite, assuming the largest 

value of X in the population as D, (5.10) can be rewritten as 

f{x) = e-'' ; 0<x<D 

= 0 ;otherwise 

r5> Xg = 0 and Xi = D 

From (5.5) 

- • 

= 

= g-^A-1 -Q-iyh+^h-^) 

or Wh=e-''^'^[\~e-yf') 

(because X;, = >';, + X/j_y) 

(5.11) 

From (5.7) 
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w. 
xe ^ + 

Wu 
-xe ^ -e ^ \xh-\ 

W,' 

Wu 
.-/,-! (I + ;,^^_^)_,-U+-;M)(I +yh+^h-x)\ 

w,. 
•e-'"-'\\ + x,_xye-''(\ + yH+H-i). 

-^^-^lx^x,_,%-e-y^\y,e-y' 

Wu 

Therefore /Up^ 
e-'^-^l\^x,_{)[\-e-y')-y„e-y^' 

e-''h-\(i-e-y^) 

or lup, = 
_{l + ,,_,)(l-e-y')-y,e-y'^ 

l-e -yh 
(5.12) 

2 _ 1 m+^A-l ^2 From (5.6)^^2 ^ ^ r̂ /. /,-, ^ 2 ^ ( ^ ) ^ _ ^2 
Wu ^^h-\ 

l . | 3 ^ . - l + - . - , ^ 2 ^ - x ^ _ ^ 2 

1^;, •'^/.-l 

Wu^ 
-x'e-^^ •\2x.e-''ckf' 

X/j. 

W, 
l-[-x'e-^-2xe--2e-^-2e-)li:''-^-4 
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1 

-e-^(x^+2x-,2)t::'-^-Ml , - X / „ 2 

«/!-! 

Wu 

,--<•/<-! 

W, 

1 

xl^^ +2x;,_; +2)-g-^^' (xj i +2x;,_i + 2)-;/;,g->^^' fa +2x;,_i + 2)J 

2 

fe-i+2x; ,_i+2 1-e 
-.y/, 

->^/,^"^' 'U+2^/^-1+2) 

(l-e--^'') 

( l-x,_i)(l-e-^^')-; ;„( -yu 

\-e -yh 
(using (5.12)) 

Putting ay^ = 1̂ - e •̂ '' j we get 

, _ \^Vi + 2x;,_i + 2)^;, - ;;;,g~^^ fa + 2x;,_t + 2) 

2 
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al 

7. 

a^ -

2 

-yle-y^a.-yle-'y'' 

al 

•yle-y'\a,+e-yh) 

al 

-yle-'" 
ai 

or by, 

Which gives 

Si, — 

[l-e-y^J -yle-y^ 

[i-e-y^] 

1/2 

Using (5.11) we get 

{^-e-y^J -yie-yh \n 
(5.13) 

Using (5.11), (5.12) and (5.13) the MPP (5.9), can be restated as: 

Minimize ^ e ^^-i 
h=l 

[l-e-y^f-yle-yf 
1/2 

L 
subject to ^yf, =d 

and y^ ^ 0 ; h = \,2,...,L 

(5.14) 
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where x follows the exponential distribution as defined in (5.10). 

5.3 THE SOLUTION 

Consider the following subproblems of (5.9) for first k (<L) strata 

Minimize ^.fhiyh) 

L 
subject to ^y^ -^k ^ 

and yjj >0; h = 1,2,...,k 

(5.15) 

where dj^ <d is the total width available for division into k strata. 

Note that d,. =d ior k - L. 

We then have 

dk=y\+y2+-+yk 

4 - 1 =y\-^y2 +-+yk-\ =dk-yk 

dk-2 =yi+y2 +--+yk-2 = 4 - i -yk-\ 

^2 =yi +y2 = 4 - . V 3 

and di =d2 - >'2 

Let f{k,dj^) denotes the minimum value of objective function of (5.15), that 

is , / (^ ,^^) = min 
^ k k 

Jlfhiyh)\Tyh=dk andyf,>0;h = l,2,...,k 

The recurrence relation of the Dynamic Programming thus be given as 
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f{k,d^)= min [fk{yk)^f{k-Uk-yk)lk^2 (5.16) 

For the first stage (i.e. k=l): 

(5.17) 

From/(L, d) the optimum width of Lth stratum, y^, is obtained ; 

from/(z, -l,d~yij the optimum width of (L-1) th stratum y*i_[, is obtained 

and so on until yi is obtained. 

Using (5.16) and (5.17) we get for first stage (k=l) 

f{ld,) = \l-e-'^if-dfe-'^ 
-ll/2 

at ^1 =<ij 

because x^_i =XQ =0 when K = 1 

For the stage k>2 

f{Kdu)-
min 

0<yk<dk 
A'^-ykU-e-y'^]~yle-y^ 

+ f(k-\,dk-yk) 

1/2 

(5.18) 

(5.19) 

where Xj,_^ =^o+>^l+J'2+ + yk-\ =dk~yk 

5.4 A NUMERICAL EXAMPLE 

Relation (5.18) and (5.19) are the required relations of the dynamic 

programming. Execution of the computer program in 'Java SDK 2', given in 
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Appendix, of this chapter, gives the optimum stratum boundaries for the 

exponential study variable with density function 

f{x) = e 
0 

-X x>0 1 
elsewhere j 

(5.20) 

for 2, 3, 4 and 5 strata. The results are presented in a tabular form in Table 5.1 

along with the values of "^j^h^h • 

Table 5.1 

Optimum strata boundaries for 2, 3, 4 and 5 strata 

No. of 
strata 

L 

2 

3 

4 

5 

Strata widths 

* 
y/7 

yl= 1.2610 
yl=^ 18.7390 

y\-- 0.7678 
yl= 1.2501 
;;;= 17.9821 

;;;= 0.5509 
yl= 0.7638 
;;;= 1.2513 
yl= 17.4340 

yl= 0.4393 
>;;= 0.5610 

y]= 0.7569 
;;;= 1.2688 
;;;= 16.9740 

Strata boundary 
points 

* * * 

X* = Xg +y\= 1.2610 

x' = XQ +yl= 0.161% 

X* = X* + yl= 2.0179 

x; = Xo+;;,*= 0.5509 
X* = X* +yl= 1.3147 
x* = X* + yl=^ 2.5650 

xl=x,+y;=0A^93 

^l = A+yl= 10003 
x* =xl+yl= 1.7572 

< = ^3*+K= 2.0260 

Optimum value of the 
objective function 

h=\ h=l 

0.5341 

0.3648 

0.2770 

0.2233 
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The total width available for cutting stratum boundaries is taken as 20 

units, that is x^ = D = 20, because the area above x = 20 for exponential 

distribution given in (5.20) is almost zero. 

5.5 CONCLUSION 

Unnithan (1978) showed that the iterative procedure by Dalenius and 

Hodge (1959) is slow even to obtain a local minimum; also it does not suggests 

any stopping rule and may oscillate. He also suggested an iterative solution 

procedure using modified Newton's method. Both these procedures require 

initial approximate solutions. Also there is no guarantee that these procedures 

will provide a global optimum. The advantage of the proposed solution 

procedure is that it provides a global minimum. 
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APPENDIX 

import java.io.*; 
import java.util.*; 

public class OptimumNew 
{ 

private RandomAccessFile randReader[] = null; 
private double e=2.718281828; 
private double increment = 0.10; 
private int intPreci = 1; 
private int intStage = 1; 
private int Dk = 999; 
DataOutputStream outputstream[]; 
double storedFk[]; 

public static void main(String args[]) 

{ 
new OptimumNewQ; 

} 

public OptimumNew() 
{ 

System.out.println("enter the Stage value (1 to 9 only):"); 
String str = Readline.readLineQ; 
intStage = Integer.parselnt(str); 

System.out.println("enter the summation Yk ( Dk ) value (integer 
only):"); 

str = Readline.readLineO; 
Dk = Integer.parselnt(str); 
System.out.println("enter the desired precesion 1-9 (integer 

only):"); 
str = Readline.readLineO; 
intPreci = Integer, parselnt(str); 

try 
{ 

randReader = new RandomAccessFile[intStage]; 
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for(int i =0; i < intStage; i++) 
{ 

File file = new File("./Stage"+(i+l)+".txt"); 
randReader[i] - new RandoniAccessFile(file, "r"); 

} 
FileOutputStream fos[] = new 

FileOutputStream[intStage]; 
outputstream = new DataOutputStream[intStage]; 

for(int i =0; i < intStage; i++) 
{ 

File file = new File("./Stage"+(i+l)+".txt"); 
fos[i] = new FileOutputStream(file); 
outputStream[i] = new DataOutputStieam(fos[i]); 

} 
funPlDIO ; 
for(int i = 1; i < intStage; i++) 

funFkDk(i) ; 
backWardCalculation(); 

} 
catch(Exception ex) 
{ 

ex. printStackTraceO; 

} 

intPreci)+l)]; 

voidfunFlDlO 

{ 
storedFk = new double[(inl)(Dk*Math.pow(10, 

double Y1=0; 
double dblTmpl = 0; 
double fx= 0; 
double dl = 0; 
long dlCount=0; 
int count - 0; 
String strDl = "", strFx="", strYl=""; 
increment = Math.pow(10, -intPreci); 
//System, out.println(increment); 
while(dl <= Dk) 
{ 
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Y l = d l ; 
fx = (1 - Math.pow(e, -Yl))*(l - Math.pow(e, -

Yl)) - Yl*Yl*Math.pow(e, -Yl); 
if(fx<0.0) 
{ 

System.out.printlnC'SQRT OF THE -VE 
QUANTITY in funFkDk_"); 

System.out.println("dl="+dl+", 
Yl="+Yl+", fx= "+fx+"\n"); 

System. exit(O); 
} 
else 

dbITmpl=Math.sqrt(fx); 

fx=Math.pow(e, -(dl-Yl))*dblTmpl; 
storedFk[count] = fx; 
count++; 
strFx = Double.toString(fx); 
while(strFx.length() < 25) 
{ 

StrFx = "0" + strFx; 
} 
strYl = Double.toString(Yl); 
while(strYl.length() < 25) 
{ 

strYl = "0" + strYl; 
} 
strDl = Double.toString(dl); 
while(strDl.length() < 25) 
{ 

StrDl = "0" +StrDl; 
} 
try 
{ 

outputStream[0].writeBytes(strDl+" " + 
strYl+"" + strFx+"\n"); 

} 
catch(Exception ex) 
{ 

ex.printStackTrace(); 
} 
//dl += increment; 
dlCount++; 
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dl = dlCount*Math.pow(10, -
intPreci) ;//increment; 

} 

} 

double readFkDkl(int K, double Dk) 
{ 

double tmpDk = Dk*Math.pow(10, intPreci); 
long IDk = (long)Dk; 
long nl = (long)tmpDk; 

//Math.round(Dk*Math.pow(10, intPreci)); 
String str= ""; 
double ret=0, datal -0, data2 =0; 
nl =nl*78; 
try 
{ 

if(nl < 0 II nl > randReader[K].length()) return 0; 
randReader [K]. seek(n 1); 
str = randReader[K].readLine(); 
datal = Double.parseDouble(str.substring(51)); 
if(str != null && str.lengthQ >= 75) 
( 

data2 = 
Double.parseDouble(str.substring(26, 51)); 

} 
else 
data2 = datal; 
ret = datal+ (data2-datal)*(Dk*100 -

IDk* 100)/100; 
//System.out.println( "fkdk- Dk passed =" + Dk + ", 

line = "+nl/78+", Fx=" + ret); 

} 
catch(Exception ex) 
{ 

System.out.println( "fkdk- Dk passed =" + Dk + ", 
line = "+nl/78+", str=" + str ); 

ex.printStackTraceQ; 
System.exit(O); 

} 
return ret; 
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intPreci)); 

double readFkDk(int K, double Dk) 

{ 
double tmpDk = Dk*Math.pow(10, intPreci); 
long IDk = (long)Dk; 
int nl = (int)tmpDk; //Math.round(Dk*Math.pow(10, 

String str= ""; 
double ret=0, data I =0, data2 =0; 
try 
{ 

datal = storedFk[nl]; 
if(nl < storedFk. length-1) 
{ 

data2 = storedFk[nl+l]; 
} 
else 
datal = datal; 
ret = datal+ (data2-datal)*(Dk*100 -

lDk*100)/100; 
//System.out.println( "fkdk- Dk passed =" + Dk + ", 

line = "+nl/78 +", Fx=" + ret); 
} 
catcli(Exception ex) 
{ 

System.out.println( "readFkDk- Dk passed =" + Dk 
+ ", line = "+nl/78 +", str=" + str); 

ex.printStackTraceQ; 
System. exit(0); 

} 
return ret; 

} 

void funFkDk(int K) 
{ 

if(K > 1) 
readStoredFk(K); 

double Yk=0; 
double dblTmp 1 = 0; 
long multi = (long)Math.pow(lO, intPreci+1); 
double fx= 0; 
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double dk = increment; 
long dkCount=l; 
String strDl = "", strFx="", strYl=""; 
//for 0<= Yk<= Dk 
double increL = increment/10; 
double minFx =999999; 
double minYk = 45667; 
try 
( 

outputStream[K].writeBytes("0000000000000000000000000 
0000000000000000000000000 OOOOOOOOOOOOOOOOOOOOOOOOOVn"); 

} 
catch(Exception ex) 
{ 

ex.printStackTrace(); 
} 
double lowLimit = 0, upperLimit = 0, increTmp =0; 
while(dk <= Dk) 
{ 

//find min 
minFx = 999999; 
minYk = 999999; 
lowLimit = 0; 
upperLimit = dk; 
if(increL <= .01) increTmp = . 1; 
if(UpperLimit >= 20) increTmp = 1; 
if(upperLimit > 200) increTmp = 10; 
if(upperLimit <= 20*increL) increTmp = increL; 
whiie(increL <= increTmp) 
{ 

minFx = 999999; 
Yk = lowLimit; 
//while(Yk<=dk) 
int count =0; 
while(Yk<=upperLimit) 
{ 

count++; 
//calculateFkDkO; 
dblTmpl = (1 - Math.pow(e, -

Yk))*(l - Math.pow(e, -Yk)) - Yk*Yk*Math.pow(e, -Yk); 
if(dblTmpl<0.0) 
{ 

126 



-ve quantity in fun2_"); 
System.out.println("Sqrt of the 

System.out.println("Yk="+Yk+" ,increTmp="+increTmp+" ,dk="+dk+" 
,dblTmpl="+dblTmpl+" \n"+Math.pow(e, -Yk)); 

System. exit(O); 
} 
else 

Math.sqrt(dblTmpl); 

dblTmpl + readFkDk(K-l, dk-Yk); 

dblTmpl 

} 

fx = Math.pow(e,-(dk-Yk)) * 

if(minFx > fx) 
{ 

minFx = fx; 
minYk = Yk; 

} 
Yk += increTmp; 

} 
lowLimit = minYk-increTmp; 
upperLimit = minYk + increTmp; 
if(upperLimit > dk ) upperLimit = dk; 
if(lowLimit < 0 ) lowLimit = 0; 
increTmp = increTmp/10; 

strFx = Double.toString(minFx); 
wliile(strFx.length() < 25) 
{ 

StrFx = "0" + StrFx; 
} 
strYl = Double.toString(minYk); 
while(strYl.length() < 25) 
{ 

strYl = "0" +StrYl; 
} 
strDl = Double.toString(dk); 
while(strDl.length() < 25) 
{ 

StrDl = "0" + strDl; 
} 
try 
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{ 
outputStream[K].writeBytes(strDl+" " + 

strYl+" " + strFx+"\n"); 
} 
catch(Exception ex) 
{ 

ex.printStackTraceO; 
} 
Yk = dk; 
dkCount++; 
dk = dkCount*Math.pow(10, -

intPreci) ;//mcrement; 
} 
try 
{ 

System.out.println(K+" file-
"+randReader[K]. lengthQ); 

} 
catch(Exception ex) 
{ 

ex.printStackTraceO; 
} 

} 

void backWardCalculation() 
{ 

try 
( 
File tmpFile = new File("./resultNew.txt"); 
RandomAccessFile rand = new 

RandomAccessFile(tmpFile, "rw"); 
rand. seek(rand. lengthQ); 
double fxx[] = new double[intStage]; 
double fyy[] = new double[intStage]; 
double fdd[] = new double [intStage]; 
intkk = intStage-1; 
fxx[kk] = readFkDkl(kk, Dk); 
fyy[kk] = readYk(kk, Dk); 
fdd[kk]= Dk; 
rand.writeBytes("\n Date: " + new Date() + "\nNumber of 

stage = "+ intStage +", Dk = " + Dk + ", Precision = "+ intPreci 
); 
//System.out.println( "Yk- Dk =" + Dk); 
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for(inti=kk-l;i>=0;i-) 
( 

fdd[i]= fdd[i+l] - fyy[i+l]; 
fxx[i] = readFkDkl(i, fdd[i+l]-fyy[i+l]); 
fyy[i] = readYk(i, fdd[i+l]-fyy[i+l]); 
//System.out.println(fdd[i+l] + ", fdd=" + fdd[i]); 

} 

for( int i =0; i <= kk ; i++) 
{ 

rand.writeBytes("\nY" + (i+1) + " = " + fyy[i] +", 
D"+(i+l) + " = " + fdd[i]); 

} 
rand.writeBytes("\nfx" + (kk+1) + " = " + fxx[kk]+ 

"\n\n\n\n"); 
} 
catch(Exception ex) 
{ 

ex. prints tackTrace(); 
} 
} 

intPreci); 

double readYk(int K, double Dk) 
{ 

double tmpDk = Dk*Math.pow(10, 

long IDk = (long)Dk; 
long nl = (long)tmpDk; 

//Math.round(Dk*Math.pow(10, intPreci)); 
double ret=0, datal =0, data2 =0; 
String str= ""; 
n l=n l*78 ; 
try 
{ 

i f ( n l < 0 | | n l > 
randReader[K].length()) return 0; 

randReader[K]. seek(n 1); 
str= randReader[K].readLine(); 
datal = 

Double.parseDouble(str.substring(26,51)); 
str= randReader[K].readLine(); 
if(str != null && str.lengthQ >= 75) 
{ 
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data2 = 
Double.parseDouble(str.substring(26, 51)); 

} 
else 
data2 = datal; 
ret = datal+ (data2-datal)*(Dk*100 

-lDk*100)/100; 
//System.out.println( "Dk passed =" + 

Dk + ", line = "+nl/78 +", Fx=" + ret); 
} 
catch(Exception ex) 
{ 

System.out.println( K+",Dk passed 
=" + Dk + ", line = "+nl/78 +", str=" + str); 

ex.printStackTraceQ; 

} 
return ret; 

} 

void readStoredFk(int k) 
{ 

k-; 
try 
{ 

File file = new File("./Stage"+(k+l)+".txt"); 
RandomAccessFile randTmp = new 

RandomAccessFile(file, "r"); 
// randReader[k].seek(0); 

System.out.println( "filelength read= " 
+randReader[k].length()); 

String str = null; 
int line = 0; 
System.out.println( "filelength= " 

+randTmp.length() + ", arrays" + storedFk.length); 

while((str = randTmp.readLineQ) != null 
&& line < storedFk.length) 

{ 
storedFk[line] = 

Double.parseDouble(str.substring(51)); 
line++; 
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line); 

} 
System.out.println( "k= " +k + ", line=" + 

} 
catch(Exception ex) 
( 

ex.printStackTrace(); 
} 

Static class Readline 
{ 

public static void main(String args[]) 
{ 

try( 
/ / 1 . Create an InputStreamReader using the 

standard input stream 
InputStreamReader isr - new InputStreamReader( 

System, in ); 

// 2. Create a BufferedReader using the 
InputStreamReader created. 

BufferedReader stdin = new BufferedReader( isr); 

" ) ; 

from the user. 

that you need to. 

// 3. Don't forget to prompt the user 
System.out.print( "Type some data for the program: 

// 4. Use the BufferedReader to read a line of text 

String input = stdin.readLineQ; 

// 5. Now, you can do anything with the input string 

// Like, output it to the user. 
System.out.println( "input = " + input); 

} catch(Exception ex) {ex. printStackTraceQ;} 
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public static String readLine() 
{ 

String input = "0"; 
try{ 

/ / 1 . Create an InputStreamReader using the 
standard input stream 

InputStreamReader isr = new InputStreamReader( 
System.in); 

// 2. Create a BufferedReader using the 
InputStreamReader created. 

BufferedReader stdin = new BufferedReader( isr); 

// 4. Use the BufferedReader to read a line of text 
from the user. 

input = stdin.readLineQ; 

}catch(Exception 
ex){ex.printStackTrace();System.exit(0);} 

finally 
{ 

} 
return input; 
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