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Introduction

1.1. Summary and structure of the thesis

This doctoral thesis consists of two main parts, which are devoted to the analysis of non-

seasonal and seasonal time series data, respectively. These two parts are then further sub-

divided according to three research articles, where in the first of these articles, presented

in chapter 2, a fully Bayesian approach to model selection in testing regressions for a non-

seasonal unit root with multiple structural breaks is proposed. In the second part of the

thesis the focus is on testing and forecasting of seasonal time series data. Since the reader

might not be so familiar with some of the unit root concepts used in the second research

article presented in chapter 4, the most important concepts related to nonstationarity in

seasonal time series models are introduced as a preliminary in chapter 3. In the second

paper, Bayesian testing approaches for different kinds of unit roots within the class of

periodic autoregressive (PAR) models with a possible mean break are proposed. Further,

since all these approaches assume seasonality of quite general form also two Bayesian

pretests for periodic variation in the mean of a process are considered, respectively. The

third article, presented in chapter 5, is devoted to the prediction of quarterly and monthly

time series. Here a model averaging approach for Bayesian PAR models of unknown

order, number of breaks and break dates is proposed in order to improve forecasting accu-

racy. Moreover the joint posterior predictive distribution for multistep ahead forecasts is

analyzed and a sampling approach to obtain the marginal predictive distributions is pre-

sented. In order to compare the predictive ability of the presented forecasting model with

those of other models, a Bayesian sign test is introduced.

In each of the three presented articles an extensive Monte Carlo study is conducted to

analyze the statistical methods for different data generating processes. Further in the em-

pirical sections of the first two papers (see chapters 2 and 4) the proposed unit root testing
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procedures are used to answer the question if there is empirical evidence for unemploy-

ment persistence or hysteresis in 17 OECD countries after a labor market shock. In the

empirical application of chapter 5 the suggested prediction approach is applied to forecast

the unadjusted monthly unemployment rates of the 16 German federal states and of East-

and West-Germany. Finally, in chapter 6 the major contributions and results of this thesis

are summarized and a short discussion with potential future research is given.

Before proceeding a brief motivation with regard to the focus of this thesis, namely testing

the unit root hypothesis and in particular the chosen Bayesian frame of reference, will be

given. The aim here is not to provide a general discussion of Bayesian and classical (or

frequentist) statistics per se, but to motivate the use of Bayesian methods for the analysis

and prediction of time series data. A review of the various arguments for and against

the use of the Bayesian paradigm in statistical inference can be found in many excellent

textbooks as for example Berger (1980) or Robert (2007), and the references therein.

1.2. Motivation

In the economic and econometric literature the unit root hypothesis has gained much inter-

est since the seminal paper of Nelson and Plosser (1982). Among the economic theories

for which (non)stationarity of the considered dynamic system has important implications

are the permanent income theory (cf. Hall (1978)), the business cycle theory (cf. King

et al. (1988)) or the insider-outsider theory and the theory of unemployment hysteresis

in labor market research (cf. Blanchard and Summers (1986), Blanchard and Summers

(1987)). The latter provides the theoretical background for the empirical analyses pre-

sented in chapters 2 and 4.

In the nineties there was a heated controversy in the literature on classical and Bayesian

unit root testing and in particular on the appropriate prior distribution, starting with Sims

(1988). The main contributions to this debate are summarized in a special issue of the

Journal of Applied Econometrics (1991, volume 6, number 4). A summary of the many

arguments put forward by the involved authors can be found in Maddala and Kim (1998),

chapter 8, Bauwens et al. (1999), chapter 6, also Uhlig (1994). One of the most striking

points of the Bayesian advocates is, that, in contrast to classical theory, Bayesian inference
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in dynamic models is largely unaffected by the presence of a unit root, see Sims (1988),

Sims and Uhlig (1991). As a simple comparison of classical and Bayesian unit root

inference consider the following AR(1) model:1

yt = φyt−1 + εt , y0 = 0, εt
i.i.d.∼ N(0,σ2) (1.1)

with ordinary least squares estimator φ̂ = ∑
T
t=1 ytyt−1/∑

T
t=1 y2

t−1.

It can be shown that the asymptotic distribution of φ̂ has a discontinuity at φ = 1 and thus

is not the usual Gaussian distribution as in the stationary case (see Hamilton (1994), p.475

ff., for details). Kadane et al. (1996) summarize the asymptotic behavior of φ̂ , conditional

on the considered subset of the parameter space of φ , as

(φ̂ −φ )/

√
T

∑
t=1

y2
t−1

d→


N(0,1) , for φ < 1

0.5W (1)2−1
(
∫ 1

0 W (r)2dr)1/2 , for φ = 1

T1(0,1, ν = 1) , for φ > 1

(1.2)

where d→ denotes convergence in distribution as T tends to infinity, T1(.) is the univariate

standard Student-t density with ν = 1 degree of freedom, i.e. a Cauchy distribution, and

W (r) denotes a standard Wiener process with r ∈ [0,1], cf. Banerjee et al. (1993).

From (1.2) it can be seen that the asymptotic sampling distribution f (φ̂ |φ ) is symmetric

around zero in the stationary and the explosive case, but is asymmetric, more precisely

skewed to the left, in the presence of a unit root. Moreover, adding a constant or a trend

to the model complicates the resulting asymptotic distribution in a non-trivial way, see

Hamilton (1994) for details. Since conditional on initial values an AR model can be

treated as an ordinary linear regression model all the analytical results of the conjugate

normal regression case can be utilized in a Bayesian framework. For example, assuming a

Normal-Inverse-Gamma-2 prior on the unknown quantities φ and σ2 in (1.1) the marginal

posterior distribution f (φ |yT , ...,y1,y0) equals a univariate Student-t density or a univari-

ate normal density when σ2 = 1, i.e. known, see Raiffa and Schlaifer (2000), chapter 13,

also Zellner (1971), chapter 7.2 It is important to note that the latter is true irrespective
1In order to keep the notation simple I will not discriminate between a random variable and its realization
in the following.

2Another useful analytical result can be utilized by assuming prior independence of both parameters and
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of the sample size T , nonstationarity of the data generating process or the inclusion of

deterministic components. Another appealing feature of choosing a Bayesian framework

is that one does not only get a point or an interval estimate of the quantity of interest, e.g.

a break date or the number of breaks, but a whole distribution, viz. the posterior distribu-

tion which, for a given data set, is a sound way to capture the uncertainty with regard to

any further inference.

Sims and Uhlig (1991) compute the joint posterior distribution of φ and φ̂ under a flat

prior using Monte Carlo methods and examine the behavior of the conditional densities

f (φ̂ |φ = 1) and f (φ |φ̂ = 1) to compare the Bayesian and the classical approach to unit

root testing. They conclude that classical methods based on the resulting asymmetric

small sample distribution f (φ̂ |φ = 1) of the OLS estimator can be misleading by assign-

ing too much density to large φ values, see ibid. for details. Although hypothesis testing

can also be considered as a point estimation problem (cf. Robert (2007), chapter 5), unit

root testing is a striking example where it is not possible to recover classical results by us-

ing a flat prior, see Bauwens et al. (1999). Moreover the results of classical and Bayesian

unit root tests can differ considerably. Since the unit root hypothesis is a point hypothesis

it is highly controversial to test for this in a Bayesian framework. In the continuous case,

this implies comparing a parameter interval receiving positive probability mass under the

alternative H1 : φ < 1 with a singleton of zero probability mass under the null hypothesis

H0 : φ = 1, see equation (1.1). An extreme illustration of the conflicting outcomes of fre-

quentist and Bayesian testing of a point null, namely rejecting the null almost surely with

an arbitrarily low p-value, while on the other hand obtaining a posterior probability of H0

close to one when the sample size increases, is called the ’Jeffreys-Lindley’s paradox’,

see Berger (1980), p.156, also Shafer (1982) for details. Besides the appropriate choice

of the prior, which becomes less influential when more information is available, the cho-

sen parametrization of the testing regression can play a pivotal role for the performance

of the test. In frequentist unit root testing the distribution theory becomes much more

involved when structural breaks in the model parameters are allowed, cf. Maddala and

Kim (1998) for an overview. Then for testing purposes two additional kinds of unknown

entities have to be selected, viz. the number of breaks and the corresponding break dates.

In a Bayesian context estimation of both entities can be accomplished simultaneously by

then using a Student-t prior on φ and an Inverse-Gamma-2 prior on the variance of the error term, see
Dreze (1977), Richard and Tompa (1980).
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using Monte Carlo techniques, as will be shown in chapter 2, where this task becomes

much more challenging when using classical methods, cf. Bai and Perron (1998), Bai and

Perron (2003). Another useful approach presented in chapter 4, which avoids the selection

of a single testing regression is to use model averaging techniques. It is exactly for these

reasons why a comparison of classical and Bayesian unit root testing procedures can bring

new insights into the analysis of nonstationarity when different Bayesian approaches to

this model uncertainty problem are considered.

Finally, also with regard to the prediction of future values, yT+k, k ≥ 1, Bayesian meth-

ods can provide an interesting alternative to existing frequentist time series methods. In

chapter 5 a model averaging prediction approach for seasonal time series models with

possible breaks is presented. This requires the computation of a mixture of density func-

tions, where in a Bayesian framework the mixture weights are the posterior probabilities

of the different candidate models Mi. In general, model averaging demands the predefini-

tion of a set of candidate models, M = {M1, ...,MI}, where each element Mi represents a

certain (non)nested model specification, which can be indicated by the introduction of a

model index γ ∈ {1, ..., I}, see Raftery et al. (1997).3 Although there also exist frequentist

model averaging approaches that obtain the required model weights as the solutions of an

optimization problem (cf. Hansen (2007)), the majority of the existing literature assumes

a Bayesian frame of reference. One reason for this is that here it is natural to consider

the model indicator γ as an additional random parameter with assigned prior probability

in order to express model uncertainty. Then model averaging implies ’integrating out’

this nuisance parameter by averaging over the support of γ , using the posterior model

probabilities as weights. It is interesting to note that the frequentist estimators of the

model weights can also be obtained by applying a Laplace approximation (see Tierney

and Kadane (1986), Tierney et al. (1989)) to the joint posterior density as in Raftery

(1995), p.130 ff. In this case the posterior probability mass function of model Mi can be

expressed as a function of the Bayesian information criterion (BIC) (see Schwarz (1978)):

f (Mi| y) ≈ exp (−1/2 ·BICi)/
I

∑
j=1

exp (−1/2 ·BIC j)

which is also one of the sampling estimates for the weights used by Hansen (2007) within

3In this respect a model selection problem can also be perceived as a point estimation problem, namely that
of the model indicator γ , see Robert (2007), p.342.
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a classical context.

After this motivation on the topic and the Bayesian framework has been given, next an

approach to test for a nonseasonal unit root in the case of multiple structural breaks is

presented.
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Analysis of nonseasonal time series
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Bayesian model selection for unit

root testing with multiple breaks

2.1. Introduction

There has been a growing literature to unit root testing in economic time series over the

last three decades starting with the seminal papers of Dickey and Fuller (1979) and Nelson

and Plosser (1982). As stressed by many authors the misspecification of the considered

test regressions can lead to substantially biased inferences in the class of autoregressive

integrated moving average (ARIMA) models, see Banerjee et al. (1993), Stock (1994),

Maddala and Kim (1998) for discussions. The specification regards on the one hand the

structure of the stochastic component, i.e. the autoregressive and/or moving average lag

orders (see Hall (1994), Ng and Perron (2001)) and on the other hand the specification

of the deterministic components like the inclusion of time trends, the number of possi-

ble structural breaks and also the timing of these breaks, see Perron (1989), Christiano

(1992), Vogelsang and Perron (1992), inter alia. In the Bayesian unit root literature a

heated controversy was devoted to the adequate prior use, model specification issues and

the proper modeling of initial conditions, see e.g. Sims (1988), Phillips (1991b), Uhlig

(1994), inter alia, and Bauwens et al. (1999) for an overview. In contrast to the classical

literature there are only a few approaches to account for structural breaks when testing

for stochastic trends, see e.g. Zivot and Phillips (1994), Koop and Steel (1994), DeJong

(1996), Marriott and Newbold (2000). Most of these works treat the model order, in

particular the lag order and/or the number of breaks as fixed quantities. In general, the

process of model selection induces uncertainty with respect to any subsequent analysis

and thus should be captured in order to improve statistical inference. Although there exist

many classical approaches to model selection in dynamic models with structural breaks,
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which are mainly based on information criteria, a different approach is chosen here using

a Bayesian framework.

In the following a stochastic model selection approach is presented, which can be used to

determine the optimal specification for unit root testing in the case of multiple structural

breaks. In a nutshell, the proposed sampling scheme can be regarded as an extension of

the approach presented in Wang and Zivot (2000) by estimating the number of structural

breaks, the associated break dates as well as the number of autoregressive lags simulta-

neously with all other unknown model parameters. This is accomplished by the intro-

duction of two discrete valued state variables that indicate certain model combinations

in the space of candidate models. Since the joint distribution of all unknown parameters

is of varying dimension, i.e. depends on the specific model complexity, usual sampling

techniques to generate random draws from this distribution, like Gibbs sampling, can not

be applied without further modifications. For this purpose a flexible Markov chain Monte

Carlo (MCMC) approach is introduced, which enables to jump between parameter spaces

of differing dimensionality. The performance of this method is demonstrated on the ba-

sis of several Monte Carlo (MC) experiments which indicate great reliability in finding

the true values of the data generating process (DGP). Using Bayesian methods for model

selection in structural break models has the advantage that most of these methods are

technically simpler than their classical counterparts, allow for finite-sample inferences

that are optimal given the framework, and also allow for nonnested model comparisons

(see Wang and Zivot (2000)). Furthermore with regard to unit root testing a Bayesian

model framework is appealing, because unlike in classical approaches inference stays the

same here for trending and nontrending data (see Sims and Uhlig (1991)). So far many

approaches to model selection in time series models have been proposed in the Bayesian

literature. Among the works that mainly focus on lag order determination are Huerta and

West (1999), Vermaak et al. (2004), Ehlers and Brooks (2004), Philippe (2006), inter alia.

Many of the existing works that deal with the detection of change points treat the selection

of the number of breaks as a successive problem, which is solved by using information

criteria or Bayes factors, but do not treat the number of change points together with the

number of lags as additional model parameters explicitly in their sampling schemes, see

for example Chib (1998), Wang and Zivot (2000), Koop and Potter (2004).

Therefore the present work aims to provide contributions in the following directions: a
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stochastic model selection approach for multiple structural breaks models is proposed,

where the autoregressive lag order, the break dates and also the number of breaks can be

estimated simultaneously with all other model parameters. As a result the joint posterior

distribution of these model indicators is obtained, which can be used for further inference.

Moreover the model selection approach presented below focuses on the application in unit

root testing problems and the use of Augmented-Dickey-Fuller-type regressions (see Said

and Dickey (1984)) and thus provides an alternative to classical model selection strategies

used in this context. Unlike in standard autoregressive models alternative Bayesian model

selection approaches to lag order determination, as for example the stochastic search vari-

able selection method of George et al. (1993) can be cumbersome to apply here, because

of the special structure of such test regressions. Besides model determination a second

focus lies on testing for a (zero frequency) unit root when there are multiple structural

breaks in the deterministic components of the process. This is done by computing the

posterior probability of a unit root under several prior distributions, which is then used

to construct a Bayesian test. The proposed Bayesian unit root test is then compared with

several classical unit root tests by means of simulated power functions. Monte Carlo ex-

periments indicate a clear superiority of the Bayes test in terms of power especially in

moderate and small samples, i.e. when the asymptotic distribution theory underlying the

classical tests is not valid anymore.

In an empirical application, the unemployment rates of 17 OECD countries for the years

1960 to 2010 are analyzed to answer the question if there is persistent behavior after a

labor market shock. The majority of empirical works to test for persistence effects in

European unemployment rates has been done by using classical methods. Most of these

works apply univariate tests without structural breaks and can not reject the unit root

null hypothesis, see Mitchell (1993), Roed (1996) also Hassler and Wolters (2009). For

the US the results are mostly reverse and therefore no high degree of persistence has

been found in the unemployment rates, see Nelson and Plosser (1982), Blanchard et al.

(1992) also Roed (1996). It is by now well recognized that not allowing for structural

breaks in the test regression can bias the results toward a unit root. Therefore a second

group of studies uses methods that allow for (multiple) structural breaks. Not surprisingly

the results of these studies show a clearer tendency against a unit root, see Arestis and

Biefang-Frissancho Mariscal (1999), Papell et al. (2000), Papell and Prodan (2004) and

also Pascalau (2007). So far only few authors used Bayesian methods to analyze the
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trend characteristics of unemployment rates, exceptions are Summers (2004), Mikhail

et al. (2006) and Berger and Everaert (2008). Since the time span of the data covers

the first financial crisis of the year 2008 it is also possible to capture the impact of this

event. Thereby, besides the main statistical focus, the present work also aims to provide

some new empirical evidence to the question if certain OECD countries are more likely

then others to recover to their natural rate of unemployment after an exogenous shock

or if such an event has a permanent impact on a country’s long run unemployment rate.

As a benchmark the Bayesian estimates of the break numbers and the break points are

compared with the estimates from an application of the classical methods of Bai and

Perron (2003). To gain further insights into the countries’ convergence properties and also

in order to control for uncertainty induced through the model selection step the estimated

model posterior distribution is used to compute the model averaged half life of a shock

for each OECD country.

This chapter is structured as follows: in section 2.2 the statistical model is presented

and in section 2.3 the MCMC sampling algorithm is introduced and its performance is

analyzed in section 2.4. Then in section 2.5 the Bayesian testing approach for a unit root

with multiple structural breaks is presented. Further, in section 2.6, the sensitivity of the

test results with regard to the assumed prior distributions is analyzed and the Bayesian

unit root test is compared with some classical unit root tests. In section 2.7 the presented

methods are applied to annual OECD unemployment rates and section 2.8 concludes.

2.2. Bayesian unit root testing with multiple

breaks

2.2.1. Model and de�nitions

In the following it is assumed that the series of interest yt can be described by an autore-

gressive process of order p together with some deterministic components, i.e.

Ap(L) · yt = µ +β · t + ut with ut
i.i.d.∼ N(0,σ2) , t = 1, ...,T (2.1)
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where the intercept µ and slope β are the coefficients of the deterministic trend function

and Ap(L) is defined in terms of the lag operator xt− j ≡ L j · xt , j ∈Z, i.e.

Ap(L) ≡ 1−φ1L−φ2L2− ...−φpLp (2.2)

The main focus here is to investigate if the autoregressive lag polynomial Ap(L) can

be factorized according to Ap−1(L) · (1− L), where in this case yt is said to exhibit a

(nonseasonal) unit root, i.e. Ap(1) = 0. To test for a root at the zero spectral frequency it

is convenient to rewrite the above polynomial as

Ap(L) = (1−θL)−A?
p−1(L) · (1−L) (2.3)

with θ = ∑
p
s=1 φs the long-run impact coefficient. The polynomial A?

p−1(L) = ψ1 ·L+

... + ψp−1 · Lp−1 is assumed to have all roots outside the complex unit circle with the

coefficients ψ j =−∑
p
s= j+1 φs , j = 1...p−1, measuring transient dynamics (see Hamilton

(1994), p.517). Substituting (2.3) into (2.1) then leads to

yt = µ +β · t +θ · yt−1 +
p−1

∑
j=1

ψ j ·∆yt− j + ut with ut
i.i.d.∼ N(0,σ2) (2.4)

This is an Augmented Dickey-Fuller (ADF) regression for testing the unit root hypothesis

H0 : θ = 1, which implies that (at least) one of the p characteristic roots z j ∈ C of Ap(z)

has modulus equal to unity (see Said and Dickey (1984), also Nelson and Plosser (1982)).

On the other hand the (trend)stationary alternative H1 : |θ | < 1 implies that all roots are

strictly outside the unit circle. Hence the relevant parameter region for this testing prob-

lem is θ ∈ [0;1]. In order to allow for multiple structural breaks in the DGP the above

regression is now extended to (cf. Perron and Vogelsang (1992)):

yt =
m+1

∑
i=1

1{ki−1≤t<ki}(αi+βi ·t)+θ ·yt−1+
p−1

∑
j=1

ψ j ·∆yt− j +ut , ut
i.i.d.∼ N(0,σ2) (2.5)

where ki denotes the i-th break date with 1 < k1 < ... < km ≤ T and 1{A} denotes an

indicator variable that equals 1 if the statement A is true and 0 otherwise. Note that the

effect of an intervention is modeled here as a step function at date t = ki, which is typically

used to represent an instantaneous impact on the level of a series yt . Setting k0 = 1 and
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km+1 = T + 1 for the lower and upper margins, respectively, the T observations can be

separated into m+ 1 regimes, see ?. In contrast to the latter authors I treat the number

of structural breaks m = 0,1, ...,mmax and also the autoregressive lag order p = 1, ..., pmax

as unknown model indicators stacked together in a vector γ ≡ (p,m)′ which has to be

estimated.

The above ADF-type multiple structural breaks model can be written more compactly

in matrix form, where it is convenient to separate the vector of model parameters λ γ ≡
(B′γ ,σ2,k′γ)′ of dimension h(γ) = 3 · (m + 1) + p in the ’drift-and-trend’ case and of

h(γ) = 2 · (m+1)+ p in the ’drift-only’ case from the vector of model indicators denoted

by γ . The model in (2.5) can then be expressed in the usual linear regression form1

y = XγBγ +u (2.6)

with y = (yp+1, ...,yT )′, the first p observations y0 = (y1, ...,yp)′ used as initial values,

u = (up+1, ...,uT )′ the vector of innovations and the matrix Xγ = [xp+1, ...,xT ]′ with row

vectors

xt ≡ [1{k0≤t<k1} , . . . , 1{km≤t<km+1}, 1{k0≤t<k1} · t , . . . , 1{km≤t<km+1} · t,

yt−1, ∆yt−1, . . . ,∆yt−p+1]

of dimension d(γ) = m+1+ p in the ’drift-only’ case or dimension 2 · (m+1)+ p in the

’drift-and-trend’ case.2 The vector of all unknown quantities is thus (B′γ ,σ2,k′γ ,γ ′)′ with

Bγ = (α1, . . . ,αm+1,β1, . . . ,βm+1,θ ,ψ1, . . . ,ψp−1)′ the vector of regimewise regression

coefficients and kγ = (k1, . . . ,km)′ the vector of break dates.3

1Technically speaking the Xγ matrix is of course also dependent on the realizations in kγ . In this sense the
parameters in kγ , i.e. the break dates, could also be considered as further model indicators.

2For notational brevity I will write d = d(p,m) and h = h(p,m) and also for example d? = d(p?,m) in the
sequel.

3Since this is a conditional likelihood approach, rather than an exact (cf. Bauwens et al. (1999), p.135),
the first p observations of the series get lost due to lagging and so the first break can not be detected until
t = p+ 2. This is the reason why kγ is also dependent on the lag order.
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2.2.2. Likelihood and prior speci�cations

Utilizing the first p observations as initial values y0 yields the conditional data density,

which when viewed as a function of the parameters is the approximate likelihood function

f (y|λ γ ,γ;y0) ∝ σ
−(T−p) · exp

{
− 1

2σ2 (y−XγBγ)
′ · (y−XγBγ)

}
(2.7)

Due to the introduction of the model indicators and the break dates this is a mixture

of discrete and continuous distributions. But given values for kγ , p and m, this is the

kernel of the Normal-Inverse-Gamma-2 distribution.4 For the unknown quantities I use

the following prior distributions:

f (Bγ |σ2) = Nd(B0, σ
2 ·M−1) (2.8a)

f (σ2) = IG2(a,b) , a,b > 0 (2.8b)

f (p,m ;T ) ∝ T−
dγ

2 , p ∈N, m ∈N0 (2.8c)

f (ki|ki−1) ∝ 1 , if ki ∈ ]ki−1 ; ki+1[ and 0 otherwise , i = 1...m+ 1 (2.8d)

f (kγ) =
m+1

∏
i=1

f (ki|ki−1) with k0 = p+ 1 and km+1 = T + 1 (2.8e)

The priors in (2.8a) and (2.8b) are the conjugate prior distributions for a Normal linear re-

gression model, namely a multivariate Normal distribution with mean vector B0 ∈Rd and

M a positive definite symmetric d× d matrix5 and the Inverse-Gamma-2 (IG2) density

with scale and shape parameters b and a, respectively. The assumptions (2.8d) and (2.8e)

express lack of prior knowledge with respect to the break dates. As it can be observed

from (2.8c) the two random variables m and p are assumed as stochastically indepen-

dent of each other, for example in the ’drift-and-trend’-case the prior can be factorized

as f (γ) = f (p) · f (m) = T−
p
2 ·T−(m+1). This is a strictly decreasing function in p and

m, which implies that higher lag orders and/or number of breaks are considered to be

4Strictly speaking one could also condition on the upper bounds pmax and mmax, respectively, in the follow-
ing. However in order not to overload the notation this conditioning is omitted.

5Here I choose M = Id/100 and B0 = 0, respectively, to express a lack of knowledge with respect to the
prior location and scaling of B0.
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less likely, given a sample of size T . Furthermore it is a data-dependent6 and informative

prior in the sense that more complex, i.e. higher parameterized models are assigned a

lower prior weight compared to less complex models and thus serves as a penalty factor

in the acceptance ratios below.7 The above priors together with the likelihood function in

(2.7) lead to the following Bayesian hierarchy:

f (λ γ ,γ|y,y0) ∝ f (y|λ γ ,γ;y0) · f (Bγ |σ2,kγ ,γ) · f (σ2|kγ , γ) · f (kγ |γ) · f (γ) (2.9)

which is equal the joint posterior density of the parameters up to a normalizing constant.

Before presenting an MCMC algorithm to generate random draws from the joint poste-

rior distribution (2.9) for ADF-type models of varying dimension, I will first sketch the

general idea of the underlying stochastic model selection scheme. In the following the

conditioning on y0 will be dropped for notational convenience.

2.3. Stochastic model selection via MCMC

The main task in model determination is to find a single parametrization which describes

the data best with respect to goodness of fit criteria. In Bayesian statistics this fit is

measured in probabilistic terms by means of the posterior probability of a certain model

Mi. In accordance with the model selection literature the parameter and the model space

are distinguished in the following, where the former can be viewed as embedded in the

latter, that is each model Mi is represented as a point in the space of candidate models.

In the sequel a sampling scheme to conduct jumps between parameter spaces of varying

dimensionality is proposed, that is to make moves within the model space. For the model

in (2.5) let M = {M1,M2, ...} be a countable set of candidate models each of which is

associated with a likelihood function f (y|λ γ ,γ), with unknown parameter vector λ γ ∈
Λγ = Rd ×R+ ×N

mmax
[p+2; T−1] and a vector of model indicators γ ∈ Γ = N[1; pmax] ×

N[0; mmax]. For example, consider M1 and M2 to be two models indicated by γ1 = (p1,m1)′

and γ2 = (p2,m2)′ of dimensions h1 and h2 within the set of candidate models Γ. Then

for each of these two models three types of model moves can be distinguished when

6This can be considered as an empirical Bayes approach, see Casella (1985).
7Note that this prior trades off the reduction in the residual variance against the inclusion of additional
(regimewise) regressors in the spirit of information criteria, cf. Schwarz (1978).
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moving from one state γ1 to another state γ2. The possible transitions are called ’Birth’

(i.e. upward), ’Death’ (i.e. downward) and ’Life’ moves, where the first two are between-

model moves and the latter are within-model moves. For example in the case of a ’p-

Birth’ move the Markov chain would jump from γ1 to γ2 with p2 > p1, and for the ’Death’

move vice versa. The same applies of course to jumps in the m-dimension. As the name

suggests ’Life’ moves leave the dimension with respect to p and m unchanged, i.e. p2 =

p1 and m2 = m1.

The present approach is most similar to that of Troughton and Godsill (1997a), who

propose a sampling scheme for a lag order selection in autoregressive models, see also

Godsill (2001), Ehlers and Brooks (2002). In accordance to the cited works I generate

new values λ 2 as a full vector directly in the h2-dimensional parameter space leaving the

current value of the error variance σ2 unchanged.8 Conducting ’between’ model moves,

i.e. ’Birth’ and ’Death’ moves, with respect to the number of breaks m? and/or the number

of lags p? is accomplished by Metropolis-Hastings (MH) steps (see Hastings (1970), Chib

and Greenberg (1995)) with acceptance probabilities of a candidate move γ? = (p,m?)′

or γ? = (p?,m)′ depending on the context:

α(γ , γ
?) = min

{
1,

f (Bγ? ,γ?,kγ?|σ2,y)
f (Bγ ,γ ,kγ |σ2,y)

· π(γ
?, γ)

π(γ , γ?)
·

q(uγ |uγ?)

q(uγ?|uγ)

}
(2.10)

Here f (.) denotes the target density, π(.) the proposal density for a model move accord-

ing to γ? and q(.) a proposal density to draw a vector of model parameters uγ? under

the candidate model. Conducting ’Life’ moves is done by leaving the components in γ

unchanged and updating the remaining model parameters via Gibbs sampling steps (see

Casella and George (1992)). This hybrid strategy to sample from the joint posterior dis-

tribution in (2.9) then proceeds as outlined in algorithm (1).

8This is the ’full parameter vector proposal’ approach of (Troughton and Godsill, 1997a, p.5). The same
approach is used by (Ehlers and Brooks, 2002, p.23) for their ’class B moves’.
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Algorithm 1 : Hybrid sampler

Step 1: Set the iteration counter on j = 1 and initialize λ
(0)
γ , p(0),m(0) randomly or de-

terministically.

Step 2: Propose a candidate for the lag order p? from a proposal density π:

• if p? > pmax: set p? = pmax,

• if p? < pmin: set p? = pmin,

• otherwise accept the candidate move p? with probability:

α1(p, p?) = min

{
1,

f (y| p?,m,k(p?,m))

f (y| p,m,k(p,m))
· π(p?, p)

π(p, p?)
· f (p?)

f (p)

}
(2.11)

• Set p( j) = p?( j) if accepted, otherwise p( j) = p( j−1)

Step 3: Propose a new number of structural breaks m? similar to step 2:

• if m? > mmax: set m? = mmax,

• if m? < mmin: set m? = mmin,

• otherwise accept the candidate move m? with probability:

α2(m, m?) = min

{
1,

f (y| m?, p,k(p,m?))

f (y| m, p,k(p,m))
· π(m

?,m)

π(m,m?)
· f (m?)

f (m)

}
(2.12)

• Set m( j) = m?( j) if accepted, otherwise m( j) = m( j−1)

Step 4: Draw the i-th break date ki from the full conditional multinomial posterior dis-

tribution f (k( j)
i | k

( j−1)
i−1 , k( j−1)

i+1 , p( j), m( j), B( j−1)
γ , σ2( j−1), y) on the sample

space ]k( j)
i−1, k( j)

i+1[ , i = 1, ...,m

Step 5: Draw a random vector B( j)
γ from the full conditional multivariate normal

posterior distribution f (B( j)
γ | k( j), p( j), m( j), σ2( j−1), y).

Step 6: Draw σ2( j) from the full conditional inverse gamma posterior distribution

f (σ2( j)| B( j)
γ , k( j), p( j), m( j), y).

Step 7: Set j = j+ 1, return to step 2.
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As a proposal density π(.) for the respective model moves I use a discretized Laplacian

density (see Johnson and Kotz (1970)) centered over the current model as proposed by

Godsill (2001), Ehlers and Brooks (2004) among others. Since this is a Random Walk

proposal most moves are conducted in the neighborhood of the current model and thus

most jumps will be small. However occasionally large jumps are also conducted and this

ensures nice mixing and convergence properties of the corresponding Markov chains of

m and p.9 For example, in the case of a jump from state p to p? I choose a Laplacian

density of the form

π(p, p?) =
1

2τ
exp
{
−|p

?− p|
τ

}
, τ ≥ 0 , p? ∈ [1, pmax] (2.13)

with mean p and variance 2τ2. The same strategy is used in order to model jumps in the

’m’- dimension. To achieve the expressions of the MH acceptance ratios in (2.11) and

(2.12) I use the full conditional posterior distribution of the vector of regression coeffi-

cients (see step 5) as a proposal density:10

uγ? ∼ q(uγ? | kγ? ,γ?,uγ , σ
2; y) = Nd?(µγ? , Σγ?) (2.14a)

with µγ? = σ
−2 ·Σγ? ·X′γ? ·y , (2.14b)

Σγ? = σ
2 · (X′γ?Xγ? +M)

−1 (2.14c)

and d? the dimension of the proposed candidate vector. For example Ehlers and Brooks

(2002) show by applying their ’second order method’ that this constitutes an efficient

proposal, see also Troughton and Godsill (1997b), Dellaportas et al. (2002) among others.

Instead of drawing new values uγ? from the proposal density in (2.14a) and substituting

it together with the likelihood and the priors into equation (2.10), which could lead to

numerical problems in the computation, I follow Troughton and Godsill (1997b) here by

applying the ’Candidate’s identity’ of Besag (1989) to the present context, namely11

f (y|γ ,kγ ,σ2) =
f (y|γ ,kγ ,Bγ ,σ2) · f (Bγ |γ ,kγ ,σ2)

f (Bγ |γ ,kγ ,σ2,y)
(2.15)

9Note that for τ → ∞ the result is the uniform proposal for p? ∈ [1, pmax].
10This approach is sometimes called ’Independent Reversible Jump MCMC sampler’, see Lopes (2006).
11This is the ’basic marginal likelihood identity’ used in Chib (1995).
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so that the density in (2.14a) can equivalently be written as

q(uγ?|uγ) =
f (y|γ?,kγ? ,Bγ? ,σ2) · f (Bγ?|γ?,kγ? ,σ2)

f (y|γ?,kγ? ,σ2)
(2.16)

Now substituting expression (2.16) into (2.10) and integrating out σ2 in both the numer-

ator and the denominator analytically, the acceptance ratio simplifies to:

α(γ ,γ?) = min
{

1,
f (y|γ?,kγ?)

f (y|γ ,kγ)
·

f (γ?,kγ?)

f (γ ,kγ)
· π(γ

?,γ)
π(γ ,γ?)

}
(2.17)

The above acceptance probability thus reduces to the posterior odds ratio in favor of a

model with γ? and kγ? . Given the prior assumptions (2.8c) - (2.8e) the expression in (2.17)

is proportional to the ratio of the marginalized (model-specific) likelihoods times the ratio

of the jump probabilities.12 The model likelihoods in (2.17) have the form of multivariate

Student-t densities, TT−p(µ = XγB0, P = (IT−p + XγM−1X′γ)−1/b, ν = a), with a

degrees of freedom (see appendix G for details), which are given by

f (y|γ ,kγ) =C ·

[
1+(y−XγB0)

′ ·
(
IT−p +XγM−1X′γ

)−1

b
· (y−XγB0)

]− T−p+a
2

(2.18)

with normalizing constant

C ≡ π
− T−p

2 ·
∣∣IT−p +XγM−1X′γ

∣∣− 1
2 ·b

a
2 ·
[

Γ
(

T − p+ a
2

)
/Γ
(a

2

)]
(2.19)

Furthermore in step 5 of the sampling scheme above the random vectors Bγ are drawn

from a multivariate normal distribution with mean vector µγ = σ−2 ·Σγ ·X′γ · y and co-

variance matrix Σγ = σ2 · (M+X′γXγ)
−1. The IG(a?,b?) posterior distribution of step 6

has shape parameter a? ≡ a+ T
2 and scale parameter b? ≡ b+ 1

2(y−XγBγ)′ · (y−XγBγ).

Before turning to the empirical analysis of OECD unemployment rates, it is useful to

evaluate the performance of the outlined sampling algorithm for model selection and also

the power of the Bayesian unit root test.

12A similar result is stated by Dellaportas et al. (2002) in context of their ’Metropolised Carlin and Chib’
approach when using the posterior distribution for each model Mi as a pseudo-prior, see Dellaportas et al.
(2002), p.30 for details.
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2.4. Monte Carlo evidence: MCMC based model

selection

With the stochastic model selection procedure presented in the last section, the (condi-

tional) posterior distributions of the parameters p, m and kγ can be approximated. These

can then be used for further analysis. For example, Koop and Potter (1999) point out,

that in a Bayesian approach no single model has to capture the true DGP, instead we can

weight features of interest (as the long run coefficient θ in the present context) from dif-

ferent models by their respective posterior model probabilities. Working with such model

averaged quantities is particularly attractive in disciplines like economics where theoret-

ical considerations do not always suggest which model specification is best. In contrary

to classical methods where the induced uncertainty of the model selection step can not be

fully captured through the statistical measures, the underlying Bayesian approach allows

a probabilistic representation of this uncertainty through the shape (e.g. multimodality,

platykurtosis) of the corresponding posterior distributions. To get an impression of the

sampler’s performance, especially with regard to model selection, trajectories of mod-

erate lengths (T = 200) are simulated for three ARMA(p,q)-processes without breaks

and also three processes with breaks. Then the above sampler is run for 10000 iterations

omitting the first 1000 random draws due to burn-in. The scale parameter of the Lapla-

cian jump proposal (2.13) and the maximum number of lags are chosen to be τ = 5 and

pmax = 15, respectively. The DGPs considered here are as follows:

• No-break design 1: yt = 0.8yt−1−0.35yt−2 + εt

• No-break design 2: yt = 0.2+ 0.1 · t + 0.5yt−1 + 0.2yt−2−0.3yt−3 + 0.5yt−4

−0.3yt−5−0.21yt−6 + εt

• No-break design 3: yt = 0.7yt−1 + 0.12yt−2 + 0.22yt−3−0.15yt−4−0.5yt−5+

0.4yt−6−0.35yt−7+0.23yt−8+0.21yt−9−0.4yt−10+0.2yt−11−0.2yt−12+εt

each with εt
i.i.d.∼ N(0,σ = 0.25).

Since in the above three examples interest primary is on the identification of the true lag

order, the number of structural breaks is fixed at m = 0 with the exception of simulation
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design 3, where a maximum number of mmax = 5 breaks is allowed. Figures 2.1-2.3 show

simulated trajectories together with the resulting posterior distributions of the lag order

p|(m = 0), the long run coefficient θ |( p̂MAP, m = 0), and in case of design 3 also of

the posterior of the number of breaks m, where p̂MAP denotes the maximum a posteriori

(MAP) estimate of p.13 As is evident from the three examples, the sampler generates
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Figure 2.1.: No-break design 1: trajectory of an AR(2) process together with the posteriors of the lag
order and of the sum of AR coefficients θ .

unimodal distributions with modes equal to the true parameter values so that the MAP

estimator yields consistent results. Next I simulate three series with breaks in the level

and/or trend of the process. The data are generated according to

• Break design 1: yt = at + bt · t + 0.55yt−1 + 0.35εt , εt ∼ N(0,1)

with regime specific trend parameters at = α1 = 1 , bt = β1 = 0.01 for 1≤ t ≤ 33 , at =

α2 =−0.2 , bt = β2 = 0.01 for 33< t ≤ 82 , at = α3 = 0.5 , bt = β3 = 0.015 for 82< t ≤
121 , at =α4 = 1.6 , bt = β4 = 0.02 for 121< t ≤ 151, and at =α5 = 0.4 , bt = β5 = 0.02

for 151 < t ≤ 200, so that the vector of break dates is k = (33,82,121,151)′.

13This point estimator is also called the generalized maximum likelihood estimator, see DeGroot (1970),
p.236.
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Figure 2.2.: No-break design 2: trajectory of an AR(6) process with drift and trend together with the
posteriors of the lag order and of the sum of AR coefficients θ .
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Figure 2.3.: No-break design 3: trajectory of an AR(12) process together with the posterior distributions
of the lag order and the number of breaks.
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• Break design 2: yt = at + yt−1 + 0.55εt , εt ∼ N(0,1)

with regime specific trend parameters at = α1 = 0.15 for 1≤ t ≤ 33 , at = α2 = 0.75 for

33 < t ≤ 151 , and at = α3 = 0.1 for 151 < t ≤ 200, so that the vector of break dates is

k = (33,151)′.

• Break design 3: yt = at +bt ·t+0.95yt−1−0.35yt−2+0.3εt−1+εt , εt ∼N(0,0.1)

with regime specific trend parameters at = α1 = 0.12 , bt = β1 =−0.01 for 1≤ t ≤ 121 ,

and at = α2 = 0.3 , bt = β2 = −0.009 for 121 < t ≤ 200, with the single break date

k1 = 121.

Figures 2.4-2.6 show the simulated paths together with the posterior distributions of p,

m and kγ . From figure 2.4 we observe that the lag order and the number of breaks are
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Figure 2.4.: Break design 1: trajectory of a stationary AR(1) with four breaks in level and trend (dashed
lines for true break dates) together with the posterior distributions of the lag order, the number
of breaks and the break dates ki given the MAP estimate of m.

chosen correctly with p = 1 and m = 4. The corresponding four posterior distributions

of the break dates are all concentrated around a single mass point which coincides with
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Figure 2.5.: Break design 2: trajectory of a Random Walk with two drift breaks (dashed lines for true
break dates) together with the posterior distributions of the lag order, the number of breaks
and the break dates ki given the MAP estimate of m.

the respective true break date.14 In design 2 the DGP is specified to give an impression

of how the model selection procedure performs in the context of nonstationary processes

with structural breaks. Therefore a Random Walk with two drift breaks is simulated for

T = 200. Even in this case the two break points can be identified relatively precisely,

although the posterior distribution of k1 shows more variation compared to that of k2. The

distributions of m and p have the expected modes at the parameter values of the DGP,

i.e. m = 2 and p = 1. The third series allows the investigation of more general ARMA

processes. Figure 2.6 depicts the selection results when the data are generated by an

ARMA(2,1)-process with one level break. The selection of the AR order and the number

of structural breaks are not appreciably influenced by the addition of extra noise due to an

MA(1)-component in this case. In summary, the results of the MC experiments indicate

favorable performance of the proposed MCMC approach in finding the true parameter

values of the DGP. Before turning now to the real data analysis the chosen Bayesian unit

14The lack of variation in the posterior distributions of the ki‘s are due to the choice of the scale parameter
in the Inverse-Gamma prior for σ2 with b = 0.001 (see equation (2.8b)).
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Figure 2.6.: Break design 3: trajectory of a stationary ARMA(2,1) with one level break (dashed line
for true break date) together with the posterior distributions of the lag order, the number of
breaks and the break dates ki given the MAP estimate of m.

root testing approach is introduced.

2.5. Testing the unit root null hypothesis

The Bayesian key device for unit root testing, using the structural breaks model in (2.5),

is the likelihood function f (y|θ ,γ ,kγ) with θ ∈ Θ = [0;1]. Let the parameter set Θ be

partitioned into Θ0 = {1} and Θ1 = Θ\{1}. For testing the sharp null hypothesis of a unit

root H0 : θ ∈ Θ0 against the alternative of a covariance stationary process H1 : θ ∈ Θ1

it is natural to compare the corresponding posterior mass of these two disjoint sets and

to reject the null if P(Θ1|y) > 0.5, see Robert (2007), p.225 for details.15 The above

pair of hypotheses is also the starting point for many other authors to test for a unit root,

see Maddala and Kim (1998) and Bauwens et al. (1999) for overviews concerning other

15Note that in classical terminology 1−P(Θ0|y) plays the role of a test statistic, as a function of the sample.
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Bayesian approaches to unit root testing. In order to give the unit root null more ’weight’,

a mixed prior density as in Kadane et al. (1996) is used that assigns a positive prior prob-

ability π0 ≡ f (θ |H0)> 0 to the singleton Θ0 and uses a continuous density f (θ |H1) with

weight 1− π0 elsewhere, cf. Berger and Delampady (1987), Berger and Sellke (1987)

for details. Note that by assuming a continuous prior on Θ = Θ0
⋃

Θ1 the simple unit

root hypothesis would always be rejected, since Θ0 has zero Lebesgue measure.16 Given

values for γ and kγ the posterior probability of H0 can be expressed as a function of the

conditional Bayes factor (BF) in favor of the null hypothesis.17 The posterior probability

of θ0 = 1 is then obtained analogously to the unconditional case (see Berger and Delam-

pady (1987), also DeGroot (1970), p.238) as

P(H0|γ ,kγ ;y) =
f (y|θ0,γ ,kγ) ·π0

π0 · f (y|θ0,γ ,kγ)+ (1−π0) · f (y|H1,γ ,kγ)
(2.20a)

=

[
1+

1−π0

π0
· 1

BF

]−1

(2.20b)

with BF =
f (y|θ0,γ ,kγ)

f (y|H1,γ ,kγ)
(2.20c)

and f (y|H1,γ ,kγ) =
∫

Θ1

f (y|θ ,γ ,kγ) · f (θ |H1) ·dθ (2.20d)

where the posterior probability of the null, given in (2.20), is abbreviated by P0 henceforth.

To utilize the results from the above sections in order to derive the likelihood function

of θ |(γ ,kγ) simply define B−θ = Bγ\{θ} to be the vector of regression coefficients

without the long run coefficient θ and y(θ ) ≡ y− θy−1 a linear function in θ with

y = (yp+1, ...,yT )′ and y−1 = (yp, ...,yT−1)′. Then the conditional likelihood of θ given

γ and kγ is obtained by integrating out all other parameters B−θ and σ2 from (2.7) and

therefore the derivation of f (y(θ )|γ ,kγ) is the same as for f (y|γ ,kγ). Looking at the

16As point hypotheses can be perceived as approximations to interval hypotheses, the probability π0 can be
thought of as the mass that would have been assigned to the (more realistic) interval hypothesis H0 : θ ∈
[θ0− c, θ0 + c] , c > 0, see Berger (1980), p.150, also Robert (2007), p.230.

17Strictly speaking, this is not a real Bayes factor, because the involved likelihood expressions are not the
marginal likelihoods as in the definition of a Bayes factor (see Kass and Raftery (1995)), since they are
still conditional on γ and kγ , i.e. a particular candidate model.
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integrand of (2.20d) the first of these two densities is then given by

f (y|θ ,γ ,kγ) ∝ |S|−
1
2 ·
{

b+(y−θy−1)
′ ·S−1 · (y−θy−1)

}−(T−p+a)/2
(2.21a)

with S≡
(

IT−p +XγM−1X′γ
)

(2.21b)

As a prior density f (θ ), with θ ∈ Θ, for the computation of (2.20d) I use three different

distributions, namely a conjugate normal prior, as for example advocated by Uhlig (1994),

a simple flat prior as a benchmark and the approximate Jeffreys prior as proposed by

Phillips (1991b), see also Zivot and Phillips (1994), which has the form

fJ(θ ;T ) =


(

1
1−θ 2

[
T − 1−θ 2T

1−θ 2

])1/2
, for θ 6= 1(

T (T−1)
2

)1/2
, for θ = 1,

(2.22)

Figure 2.7 depicts the shapes of these priors, which allocate relatively similar weight over

the stationary region up to, say θ < 0.8. To check the sensitivity of the inferential results
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Figure 2.7.: Prior distributions for the long run coefficient θ for T = 200.

concerning the above prior specifications I compute the corresponding risk functions un-

der squared error loss using the no-break model in (2.4), i.e. with γ = (p,0)′ and kγ = 0′:
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R(δ (y),θ0) =
∫

RT−p
[δ (y)−θ0]

2 · f (y|θ0,γ ,kγ) ·dy (2.23a)

' 1
N

N

∑
i=1

[δ (yi)−θ0]
2 (2.23b)

with δ (yi) ≡ E(θ |γ ,kγ ; yi), (2.23c)

where the vector yi , i = 1...N denotes a draw from f (y|θ0,γ ,kγ) of dimension T − p.

The risk functions are computed as in Bauwens et al. (1999), chapter 6, for the no-break

model (2.4). Here I define a grid of values for θ ∈ [0.1;1.1] and then generate a trajectory

{yt}T=200
t=1 from yt = 0.5+θyt−1 +0.5εt−1 + εt , εt ∼ IN(0,1). Next the conditional pos-

terior expectation18 of θ for the ADF-model in (2.4) without a time trend is computed,

given a lag order of p = bT 1
3 c, with bxc the largest integer not greater than x. Repeating

this for i = 1...1500 and then taking the sample average with respect to the N squared

loss functions in the approximation of (2.23) finally yields the frequentistic risk of the

Bayes estimator (2.23c) under the respective prior.19 Figure 2.8 shows the risk functions

under the three considered prior distributions. As most of the test decisions in this chapter

are based upon the normal prior, a sensitivity analysis of the point estimation is conducted

using different location/scale specifications. To compare the impact of the location param-

eter on the point estimation of θ , I choose a normal prior centered over a Random Walk

and also a normal prior with mean µθ = 0, which is thus not informative with respect to

the long run impact coefficient θ . The prior information gets more accentuated when rep-

resented by densities of moderate dispersion, like for example σ2
θ
= 0.04, and becomes

less influential when considering flat densities using for example σ2
θ
= 40. Consequently

the point estimation under the N(1,0.2) prior performs best when approaching the null

constraint θ = 1. However, for short time series, e.g. T < 50,20 this can be problematic

since the prior weighting then dominates the likelihood and so the posterior will be shifted

18The one-dimensional integration for the posterior expectation in (2.23c) is computed numerically via
Simpson’s rule on 31 points over a grid of values θ ∈ [0.1;1.1] as in Bauwens et al. (1999), p.178. For
the computations all priors are normalized to integrate to one, i.e. to be proper densities.

19Note that the posterior Bayes estimator (2.23c) minimizes the Bayes risk, or equivalently the posterior
expected loss, under a squared loss function for a given prior.

20This situation is frequently encountered when working with annual data, for example most of the OECD
series used in the empirical analysis (see section 2.7) have lengths between T = 25 and T = 45.
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Figure 2.8.: Risk functions for δ under different prior distributions.

towards a Random Walk. For this reason I use a data-dependent N(1,
√

T ) prior, which is

rather flat and hence does not put so much weight on the unit root constraint.

2.6. Power comparison of unit root testing

procedures

To compare the above Bayesian testing procedure under various prior distributions with

some commonly used classical unit root tests, I compute the power functions βT (θ ) for

the Augmented Dickey Fuller (ADF)-test (Dickey and Fuller (1979)), the Phillips and

Perron (1988) (PP)-test and also the Elliot et al. (1996) (ERS)-test.21 The rejection prob-

abilities of the null hypothesis under a specific model are approximated by the average

number of rejections, i.e.

P(’Reject H0’|θ0,γ ,kγ ,y) ≈ 1
N

N

∑
i=1

1{BF<1} (2.24)

21These are readily available in the R package urca, see www.r-project.org.
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where 1{.} is the indicator function and BF denotes the (model-specific) Bayes factor in

favor of H0 as given in (2.20c).22

For the computation I simulate ARMA(1,1) trajectories for different sample sizes accord-

ing to yt = θyt−1 + 0.55εt−1 + εt , εt ∼ IN(0,1) over a grid θ ∈ [0;1.1] of 100 points

and for each of these parameter values I calculate the posterior probability P0 using the

above priors. Further the above three classical unit root tests are applied for a nominal

significance level of 5%. This is repeated M = 5000 times and at each run the rejections

are counted to approximate the above probabilities in (2.24). As can be seen from figure

2.9(a) the PP test is clearly dominated by the two other tests. On the other hand, the

ADF test is strictly dominated by the Bayes test (regardless of the prior) as figure 2.9(b)

illustrates. The addressed dominance of the Bayes test gets more accentuated when the
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Figure 2.9.: Power functions of classical and Bayesian unit root tests without structural breaks.

sample size T increases.23 This can be seen from the results of table 2.1, where the pos-

terior probability of a unit root is shown for different sample sizes T and θ -values in the

DGP. The results suggest that the Bayes test outlined above forms a consistent test in the

sense that the power function βT (θ )→ 1 as T → ∞, for θ ∈ Θ1, which is equivalent to

P0→ 0 as T → ∞, for θ ∈Θ1.
22An equivalent decision rule in terms of the null posterior probability P0 would be to reject the null hy-

pothesis, if 1−P0 > 0.5. Note that the null probability P0 in (2.20) is an increasing function of the Bayes
factor.

23The results are obtained using the conjugate normal distribution. For the other priors similar results are
produced.
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Table 2.1.: Posterior probability of a unit root as a function of T and θ

T θ = 0.75 θ = 0.8 θ = 0.85 θ = 0.9 θ = 0.95 θ = 1.0
20 0.2575 0.3087 0.3443 0.4082 0.4881 0.6521
50 0.1686 0.2403 0.3109 0.4243 0.6034 0.8917

100 0.0722 0.1358 0.2102 0.3645 0.6038 0.9898
150 0.0240 0.0496 0.1382 0.3115 0.6074 0.9998
200 0.0065 0.0194 0.0709 0.2219 0.5472 0.9999
250 0.0016 0.0072 0.0272 0.1416 0.5278 1.0000

Overall the normal prior provides slightly better results than the (’objective’) Jeffreys prior

of Phillips (1991b), see figure 2.9(b), with respect to power and also with respect to fre-

quentistic risk when taking the posterior mean as a point estimator. Looking at the power

functions there seems no evidence against using the Jeffreys prior for testing, although

experience shows that this prior is likely to produce bimodalities when approaching the

nonstationarity region. To draw my conclusions the conjugate normal prior is used in the

following empirical section and the Jeffreys prior is computed for reasons of comparison.

2.7. Empirical application using OECD data

Next the above two-stage procedure is utilized to test for possible unemployment persis-

tence among 17 OECD countries. The data set consists of annual unemployment rates

observed within the time interval from 1960 to 2010.24 The high level of unemploy-

ment in countries of the European union compared to other countries of the OECD has

been an object of investigation for many years. In the economic literature in principal

there are two theoretical explanations for this phenomenon: the non-accelerating inflation

rate of unemployment (NAIRU) and unemployment hysteresis. The former theory im-

plies the unemployment rate to follow a trend stationary process, i.e. after an exogenous

shock the rate will recover to its long run equilibrium. By contrast, hysteresis implies

that temporary shocks have permanent effects on the level of unemployment and thus the

24The data was extracted from OECD online sources. The reported unemployment rates were computed as
the ratio of the number of unemployed persons and the number of persons in the labour force, where the
latter is defined as the sum of employed and unemployed persons.
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underlying stochastic process has a unit root. This ’unit root hysteresis’ definition is the

most common in the literature on the stochastic properties of unemployment rates (see

also Blanchard and Summers (1986)). Persistence can now be regarded as a special case

of the NAIRU concept in the sense that the unemployment rate in fact follows a station-

ary process but also has a stochastic component that is nearly integrated of order one,

for example with the sum of autoregressive coefficients being very close to one (’Quasi

Random Walk’). Structuralist theories of unemployment as described in Phelps (1994)

consider the natural rate of unemployment, as implied by the NAIRU, to be a function of

different macroeconomic variables like the oil price, stock prices or the world real rate of

interest (see Layard et al. (1991)). If the unemployment rate reaches its equilibrium path

after a shock but this path is now higher (lower) than before, then the unemployment rates

can be regarded as being generated by a trend stationary process with breaks. To test for

possible unit root hysteresis in the OECD unemployment rates the corresponding poste-

rior probabilities P0, for π0 = 0.5 are computed (see expression (2.20b)). In addition, the

Bayesian tail probabilities P(θ ≥ 0.975| γ̂ , k̂, y) to test for stochastic nonstationarity, as

in Phillips (1991b), Summers (2004), are calculated.

Before proceeding with the analysis of the OECD unemployment rates one general note

concerning the unit root testing of limited variables is in order. Because unemployment

rates are bounded between zero and one they cannot be generated by a Random Walk pro-

cess, because such a process would (at least theoretically) cross every boundary almost

surely as the sample size increases. Since under the unit root hypothesis the data are pos-

tulated to be generated by a Random Walk, which is a special case of an I(1) process,25

namely linear with (symmetric and nontruncated) normal innovations, the above test re-

gression would be inappropriate to describe the DGP (see also Koop and Potter (1999)).

Cavaliere (2005a) points out that this neglect makes the interpretation of unit root tests

controversial. He argues that given the researcher has rejected the I(1) hypothesis, it is not

clear if this rejection is due to the presence of I(d) dynamics, |d|< 1, or due to the existing

range constraints that have not been considered. In the present context of unemployment

hysteresis this question is important, especially since the Random Walk hypothesis is

usually rejected when applied to limited time series, e.g. unemployment rates or nominal

interest rates, while it is not rejected in the majority of empirical applications to unlimited

time series (see Cavaliere (2005a) for details). There are now two obvious ways to handle
25Here I(d) means integrated of order d, see Banerjee et al. (1993).

32



this problem, namely either to change the test regression (2.5) in order to be able to han-

dle truncated distributions or to make a change of variables that transforms the (double)

truncated distribution of yt to a nontruncated distribution f (y?t ) · 1R(y?t ). Here I choose

the latter route. Following Wallis (1987), the unemployment rates yt are transformed by

means of the logistic transformation f : yt 7→ y?t = ln( yt
1−yt

), i.e. [0;1] 7→ R. Then the

hybrid sampler for the model in (2.5) without a time trend26 is run to get estimates for

the number of structural breaks, the number of lags and the corresponding break dates.

As the sampler operates on both the parameter and the model space we get a sample

{γ l , l = 1, ...,L} for the model indicators, where γ denotes a certain (p,m)-combination

in the Γ = N[1; pmax]×N[0; mmax] space. Thus the posterior probabilities f (γ|y) can be

estimated by (cf. Lopes (2006), p.3):

f̂ (γ|y) = 1
L

L

∑
l=1

1{γ=γ l} (2.25)

In order to account for any uncertainty induced through the model selection step the

model probabilities in (2.25) are used as weights to compute a model average θ̂M over

all considered submodels M = {M1, ...,MK}. Utilizing the Bayes estimates θ̂ under the

different priors and also the model averaged estimate θ̂M one can compute the half life

HL≡ ln(0.5)/ ln(θ̂ ) as a measure of persistence (or convergence) for each of the OECD

series. In the present context, the half life means the expected number of years for an un-

employment shock to decay by 50%. To have a classical benchmark I apply the original

ADF test without a break and calculate the half life using the resulting point estimate of

θ . Due to the relatively short series and also for reasons of comparison I allow for a max-

imum number of five level breaks and also for a maximum number of five lags. As can

be seen from the results shown in table A.1 (see appendix A) for each of the 17 OECD

countries at least two structural breaks are identified. In table A.2 the posterior proba-

bilities of the number of lags together with the selected lags according to the AIC and

BIC information criteria are reported.27 The results indicate that for the OECD data one

and two autoregressive lags have the highest posterior probabilities. With regard to the

26This specification is chosen mainly for reasons of comparison with the empirical results of other authors,
in particular the results of Papell et al. (2000) and Summers (2004), where the latter author chooses a
Bayesian frame of reference.

27For the models with break(s) these were calculated using the respective posterior estimates of break points
from the MCMC output.
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lag selection, BIC and an inspection of the sample partial autocorrelation function yield

identical values in about 71% and 77% of all considered cases compared to the MCMC

approach.28 For the number of breaks there is an accordance with BIC in about 41% of all

cases (see table A.1). Next the Bayesian results for the determination of the break num-

bers and also the break dates are compared with those obtained from an application of the

methods described in Bai and Perron (2003).29 A comparison of table A.3 with table A.4

reveals, that for about 41% of all countries there is an accordance of the selected number

of breaks and that the corresponding change points are comparable in location for most

of the countries. Summing up, the Bayesian model selection approach suggests slightly

more parsimonious, i.e. less complex models than its classical competitors, although the

results of the lag order selection are very similar.

Note that the data also cover events of possible structural changes like the two oil crises

of 1973 and 1979 as well as more recent events like the (first) financial crisis of 2008.

From A.3 it can be observed that the years 1973 and 1979 are identified as shocks to

the national labor markets at least for some countries in the OECD. The impacts of these

shocks appear with a lag of one or two years so that the posterior distributions of the

break dates of Australia, Canada, Germany, Netherlands and the US have modes at the

dates 1974, 1980 and 1981. The year(s) of the financial crisis 2008/9 are identified as

break dates mainly for the European countries, viz. for Denmark, Greece, Ireland, Spain,

Sweden and for the UK. Among the Non-European countries only Japan and the US

show level shifts for the year 2008. One obvious feature in the results is that for some

of the series there is much uncertainty concerning the identification of the break points.

Looking for example at Germany (see figure D.7 in appendix D) the sampling results

suggest two breaks, one with mode at 1980, which can be associated with the second

oil crisis of 1979 and the other at 1990, i.e. the year of the German reunification. But

there are also two almost equally likely break dates, namely the years 1992 and 1995,

which suggests multimodality of the posterior distribution of the second change point.

Furthermore there is a trade off between choosing a third break, which could then result

in three unimodal posterior distributions and the use of just two breaks but with some

uncertainty in determining the right timing. This feature can also be recognized when
28For AIC the matches are much lower (30%).
29These are readily available in the R package strucchange. To provide best possible comparability with

the Bayesian results the minimum fraction of observations between two adjacent breaks is set equal to the
smallest possible value depending on the sample size, mostly h = 0.1, see Bai and Perron (2003), p.7.
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looking at the joint posterior mass function of the number of breaks and the number of

lags, depicted in figure D.18. When undertaking a ’Helicopter tour’ around the posterior

surface it can be observed, that a second mode of this model posterior distribution is at

(p,m) = (1,4), see figure D.19.30 Having determined the most likely model specification

the Bayesian approach of section 2.5 is used to test for a unit root. Besides the posterior

probabilities of a unit root, also the classical p-values of the ADF test are calculated along

with their Bayesian analogues, the posterior tail probabilities of the nonstationary region,

i.e. of θ ≥ 1. For the latter I use a N(1,
√

T ) prior and the approximate Jeffreys prior

of Phillips (1991b). Table A.6 shows the results of the unit root tests. From there it can

be observed that the only country, which is likely to exhibit unit root behavior is Greece

with posterior probabilities of 84% and 93%, depending on the prior specification. Note

that one arrives at the same conclusion when consulting the Bayesian ’p-values’ in order

to test the hypothesis of nonstationarity, which are both larger than the usual significance

levels. When looking at the lower posterior density plot of Greece in figure D.8 the impact

of the Jeffreys prior on the posterior shape can be seen, namely that it puts more weight

on the explosive region of θ , compared to a normal prior. In contrast to the classical

ADF test, the null is rejected for almost all of the analyzed countries using the Bayes

test.31 Comparing the posterior means under a normal prior with the corresponding model

averaged point estimates (see table A.5) it can be recognized that for most of the countries

both estimates are quite close to each other. This fact is also reflected in the corresponding

risk functions presented in section 2.5. Interestingly from the model averaged half lives

it can be observed, that when controlling for possible uncertainty induced through the

model selection step, Greece does not have the longest half life with about three years, as

would be expected given the unit root results. In fact Spain and Japan both have longer

half lives with 5.42 and 5.32 years, respectively. The overall OECD country averages are

(standard deviations in brackets): HLNorm = 3.11 (3.64) years, HLM = 2.04 (1.47) years

and HLADF = 4.73 (2.72) years.

In sum, the empirical results neither suggest unit root hysteresis nor pronounced persis-

tence of the annual unemployment rates for the majority of the OECD countries. The em-

pirical findings are also in accordance with those of other authors, as for example Papell

30The figures were constructed as in Klein (2008).
31This can be attributed to the lack of power of the ADF test in small samples and that it does not control

for structural breaks.
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et al. (2000) and Summers (2004), who find no overall evidence of hysteresis or marked

persistence in the unemployment rates of these countries. In the light of economic the-

ory this supports the perception that unemployment rates are best described as transitory

fluctuations around an equilibrium path. Thus the results support structural theories of

unemployment which imply that unemployment rates follow a (trend)stationary process

with possible shifting behavior due to changes in structural factors.

2.8. Summary and conclusion

Most of the existing approaches for model selection in the class of ARMA models with

multiple structural breaks are based on information criteria. However these can be difficult

to implement when the number of autoregressive lags, the number of breaks, and the as-

sociated break dates are unknown and have to be estimated simultaneously. Furthermore,

most of the classical approaches do not capture the possible uncertainty induced through

a model selection step. In contrast, the presented sampling based method provides the

researcher not only with point estimates for the unknown model indicators but with the

whole joint posterior probability distribution of these quantities. Using this distribution

model averaged point estimates of all quantities of interest can be computed. With the

proposed Bayesian approach it is possible to select the most likely model specification

for unit root testing in the case of multiple breaks. This is accomplished by using a mixed

MCMC sampling strategy, which enables to switch between parameter spaces of different

dimensions. The presented simulation results indicate that the sampler performs well in

finding the true parameter values of the underlying data generating process. In a next step

the posterior probability of a unit root is computed using different prior distributions to

construct a Bayesian unit root test. The Bayes test is compared with three classical unit

root tests in terms of test power and shows clear superiority especially in small samples.

In an empirical application, the unemployment rates of 17 OECD countries are analyzed

with respect to possible unemployment hysteresis. The results indicate that the only coun-

try with high posterior probabilities for unit root hysteresis is Greece, whereas Japan and

Spain show slightly increased levels of persistence. However, by applying model av-

eraging techniques, it is found, that although Greece still shows an increased level of

persistence after a shock compared to the OECD average, Spain and Japan both exhibit
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higher levels of persistence than Greece. Overall the empirical analysis suggests that the

majority of the OECD unemployment rates are likely to follow a trend stationary process

with possible level shifts, which is also implied by structuralist theories of employment.

Next attention will be drawn to higher frequency data, namely to quarterly and monthly

time series data. In contrast to the aggregate case with annual data of the last chapter here

different forms of stochastic trends can appear, where each of these forms is associated

with a specific frequency of the power spectrum (cf. Bloomfield (2000), chapter 9). Be-

fore introducing some Bayesian approaches to test for a periodic and a seasonal unit root

in chapter 4, first some general characteristics related to seasonal time series are reviewed

together with two selected frequentist unit root testing procedures as a preliminary.
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Analysis of seasonal time series
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Concepts related to seasonal time

series

3.1. Stochastic seasonality and seasonal

integration

Consider a univariate time series yt , t = 1 . . .T , for s = 1 . . .S seasons, which is observed

during N = bT /Sc years, where bxc denotes the greatest integer part of x. Let the obser-

vations be generated by an autoregressive process of order p (’AR(p)’):

φp(L) · yt = µ + εt (3.1)

where µ is an intercept term and φp(L) = 1−φ1L− . . .−φpLp is a polynomial in the lag

operator of order p, and the εt are generated by a white noise process, i.e. are uncorrelated

with zero mean and constant variance σ2 (cf. Spanos (1999), p.443), henceforth εt ∼
WN(0,σ2).

If the above polynomial φp(L) can be factorized as φp(L) = φ?
p−S(L) · (1−LS), the series

yt is said to be seasonally integrated (see Ghysels and Osborn (2001), p.43). For example,

in the case of quarterly data, i.e. S = 4, the filter (1−L4) can be factorized as (1−L) ·
(1+ L) · (1+ i) · (1− i), with i ≡

√
−1 the imaginary part of a complex number. That

is, the process yt has four unit roots, which are illustrated in figure 3.1 (cf. Hylleberg

et al. (1990)), and are given by a real-valued nonseasonal unit root and three seasonal unit

roots, viz. one real-valued and a conjugate pair of complex-valued roots.

To get the idea of a seasonal unit root consider the following seasonal AR process of order
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Figure 3.1.: Complex unit circle with seasonal unit roots for S = 4.

one for S seasons (’SAR(1)’):

yt = φyt−S + εt , εt ∼WN(0,σ2) (3.2)

with characteristic polynomial φS(z) ≡ 1−φzS , z ∈ C.

A study of the properties of a stochastic process can be conducted on the frequency do-

main by analyzing its spectral density (or power spectrum), cf. Bloomfield (2000), Priest-

ley (2004). Therefore the spectral density of the process (3.2) is considered next in more

detail. Assuming weak stationarity of the SAR(1) process in (3.2) the corresponding

MA(∞) representation is given by

yt = ψ(z) · εt , where ψ(z) ≡
(

1−φzS
)−1

, z ∈ C (3.3)

Recall that any complex number can be expressed as z = R · [cos (ω) + i · sin (ω)] =

R · exp (iω), with angle ω ∈ [0,π ] in radian and R ≡ |z| the modulus of z. Furthermore

the autocovariance-generating function of this stochastic process is given by gy(z) = σ2
ε ·

ψ(z) ·ψ(z−1) and is linked to the spectral density via sy(ω) = gy(z)/2π (see Hamilton
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(1994), chapter 6 for details), which, in the general case of S seasons (assuming R = 1),

is given by

sy(ω) =
σ2

ε

2π
·
(

1−φzS
)−1
·
(

1−φz−S
)−1

(3.4a)

=
σ2

ε

2π
· (1−φ · exp (S · iω))−1 · (1−φ · exp (−S · iω))−1 (3.4b)

=
σ2

ε

2π
· |1−φ · exp (S · iω)|−2 =

σ2
ε

2π
·
(
1+φ

2−2φ · cos (S ·ω)
)−1

(3.4c)

utilizing the fact that |ψ (z)|2 = ψ (z) ·ψ (z), with z≡ exp (−iω) the complex conjugate

number of z (cf. Hamilton (1994), Appendix A.2).

Next the spectral densities of four autoregressive processes of the form (3.2) are com-

pared. In figure 3.2 the power spectrum of a stationary nonseasonal (or annual) AR(1)

process, i.e. with S = 1 and |φ | � 1 (see upper left panel), a nonseasonal integrated

AR(1) process (’ARI(1)’), i.e. with S = 1 and φ = 1 (see upper right panel), a station-

ary quarterly SAR(1), i.e. with S = 4 and |φ | � 1 (see lower left panel), whose spectral

density is given in (3.4), and finally the power spectrum of a seasonally integrated AR(1)

process (’SI(1)’), with S = 4 and φ = 1 (see lower right panel), are depicted.1

What can be observed from the upper and lower right spectra in figure 3.2, is that in case

of an ARI(1) and SI(1) process, i.e. a (non)seasonal Random Walk, the spectrum gets

more concentrated around the frequencies associated with the four unit roots of 1− z4 =

(1− z) · (1+ z) · (1+ z2). These are shown in figure 3.1 and are given by z1 = 1 (=

cos (0) + i · sin (0)), z2 = −1 (= cos (π) + i · sin (π)) and the complex conjugate pair

z3/4 = ±i (= cos (±π

2 ) + i · sin (±π

2 )). Here z1 is the nonseasonal unit root, which is

associated with the zero spectral frequency and is denoted by z1 = (R = 1,ω = 0) in

figure 3.1. z2 is the real semiannual unit root, associated with frequency π , implying that

in the frequency domain yt has a component that gives rise to a half-cycle every period,

or a full cycle every two periods. Last the complex pair z3/4 are the seasonal unit roots,

which are associated with the ω = ±π

2 spectral frequencies, that is the associated unit

root process contains a full cycle every four periods, see figure 3.1.2

1The SI(1) process is also called a seasonal Random Walk, see Ghysels and Osborn (2001).
2However both cycles are indistinguishable in the frequency domain, that is they are aliases, because they
both correspond to four-period cycles, see Ghysels and Osborn (2001), p.22, Bloomfield (2000), p.21.
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Figure 3.2.: Theoretical spectral densities of quarterly (non)stationary (S)AR(1) processes.

Analogously in the monthly case, the characteristic polynomial 1− z12 can be factorized

according to one real nonseasonal unit root, and 11 seasonal unit roots, viz. one real

and five complex conjugate pairs of unit roots (see Beaulieu and Miron (1993) for de-

tails). Seasonal unit roots correspond with stochastic trends at the seasonal frequencies

and therefore allow for strongly changing seasonality. In this respect, it should be noticed

that a seasonal Random Walk implies S separate nonseasonal (annual) Random Walk pro-

cesses, one relating to each season (see Dickey et al. (1984)). To see this, note that the

above SAR(1) process could alternatively be expressed as

ys,n = φys,n−1 + εs,n , where εt = εs,n (3.5)

with s = 1...S seasons and n = 1...N years (see Pagano (1978), Tiao and Grupe (1980),

Ghysels et al. (2006)).

As noted by Ghysels and Osborn (2001), p.26, this form is useful in emphasizing that the

autoregressive relationship for ys,n in season s relates to the same season in the preceding

year. Solving the stochastic difference equation in (3.5) by substituting for lagged y on
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the right-hand side, assuming ys,0 = 0, ∀s, and setting φ = 1, yields

ys,n =
n−1

∑
j=0

εs,n− j (3.6)

Hence each process ys,n ,s = 1...S, is driven only by shocks relating to the specific sea-

son s, see Ghysels and Osborn (2001) for details. The implication of S separate annual

Random Walks has been the basis for a large amount of testing procedures for seasonal

unit roots starting with the work of Dickey et al. (1984), Osborn et al. (1988), Hylleberg

et al. (1990), Franses (1991), inter alia. See Ghysels and Osborn (2001) for a survey of

the related literature.

3.2. Periodic processes and periodic integration

One potential drawback of time series models like the SAR model in (3.2) is that seasonal

movements are assumed to be constant over the year. Although changing seasonality

can simply be modeled in a deterministic fashion, for instance by replacing the intercept

µ in (3.2) by seasonally varying intercepts µs, s = 1 . . .S, the dynamics of yt are still

assumed to be constant over time. A more flexible class of linear models are so called

Periodic Autoregressive Moving Average (’PARMA’) models which can be considered

as a seasonally varying generalization of the class of ARMA models (Box et al. (2008)).

PARMA models have the general form (see Ghysels and Osborn (2001), p.140):

φs(L) · ys,n = µs +θs(L) · εs,n , s = 1 . . .S and n = 1 . . .N, (3.7)

where φs(L) = 1−φs1(L)− . . .−φsp(Lp) and θs(L) = 1−θs1(L)− . . .−θsq(Lq) are the

seasonally varying autoregressive and moving average lag polynomials, respectively, and

εs,n is an i.i.d. process over both season and year, i.e. E(εs,nεk, j) = 0 unless s = k and n =

j. Furthermore heteroscedasticity over the seasons is often permitted, so that E(ε2
s,n) =

σ2
s . Pioneering works related to PAR(MA) models go back to Gladyshev (1961), Pagano

(1978), Troutman (1979), Tiao and Grupe (1980), inter alia, see also Franses and Paap

(2006).
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A widely used member of this class, which will be used in the next to chapters, is a

periodic autoregressive model of order p = maxs{ps}, denoted ’PAR(p)’:

ys,n = µs +φs1 · ys−1,n + . . .+φsp · ys−p,n + εs,n , for s = 1 . . .S (3.8)

which can also be expressed more explicitly as in Boswijk and Franses (1996), Franses

and Koop (1997):

yt =
S

∑
s=1

µs ·Ds,t +
S

∑
s=1

φs1 ·Ds,t · yt−1 + . . .+
S

∑
s=1

φsp ·Ds,t · yt−p + εt (3.9)

with dummy variable Ds,t = 1, if st = s, with st ≡ 1+(t− 1)mod S, for s = 1 . . .S, and

0 otherwise. Here st denotes the season in which observation t falls, assuming that y1 is

observed in season 1 for simplicity.

For example, with monthly data an observation yt at date t = 14 is observed in season

s14 = 1+(14−1)mod 12 = 2, that is in February of year n. The year n in which obser-

vation yt = ys,n falls can be obtained as nt = 1+ int[(t− 1)/S], where ’int’ denotes the

integer part, i.e. for example n14 = 1+ int[13/12] = 2, see Ghysels and Osborn (2001),

p.6.

Dropping the constants µs in (3.8) for the moment, note that the PAR(p) model is a special

case of

yt = φ1,t · yt−1 + . . .+φp,t · yt−p + εt , t = 1...T (3.10)

which is usually called a random-coefficient autoregression of order p (cf. Franses and

Paap (2006), p.7). Assuming φst = φt , with st = 1+(t−1)mod S, then yields a PAR(p)

model. Furthermore the PAR(p) model itself encompasses the nonperiodic AR(p) model

yt = φ1 · yt−1 + . . .+φp · yt−p + εt , t = 1...T (3.11)

by assuming φs = φ , ∀s.

One important aspect of periodic processes like (3.7) is that they are nonstationary by con-

struction, because their autocorrelation function and hence their spectral density varies

with the season (see Troutman (1979), p.222 for more details). This latter observation
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suggests an alternative model representation for an analysis of stationarity, unit roots and

stochastic trends. These issues are analyzed most conveniently in a multivariate model

framework, see Franses (1994), Boswijk and Franses (1996), also Lütkepohl (2007),

p.591.

The idea is to stack the seasonal observations ys,n in the annual sequence of (S×1) vectors

Yn = (y1,n, . . . ,yS,n)
′, where ys,n = yS·(n−1)+s is the observation in season s of year n, for

n = 1 . . .N. This was first proposed by Gladyshev (1961) and adapted by many others in

the sequel, see Franses (2003), Franses and Paap (2006) for an overview.

For illustration purposes, I will write out the univariate model in (3.8) for the simplest

case with p = 1 and S = 4, that is a quarterly PAR(1) process, here explicitly:

y1,n = µ1 +φ11 · y4,n−1 + ε1,n

y2,n = µ2 +φ21 · y1,n + ε2,n

y3,n = µ3 +φ31 · y2,n + ε3,n

y4,n = µ4 +φ41 · y3,n + ε4,n

as ys,n = yS+s,n−1, for s≤ 0.

Following Boswijk and Franses (1996) the above system of equations can be written as a

multivariate model of Yn:


1 0 0 0

−φ21 1 0 0

0 −φ31 1 0

0 0 −φ41 1




y1,n

y2,n

y3,n

y4,n



=


µ1

µ2

µ3

µ4

+


0 0 0 φ11

0 0 0 0

0 0 0 0

0 0 0 0




y1,n−1

y2,n−1

y3,n−1

y4,n−1

+


ε1,n

ε2,n

ε3,n

ε4,n
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or more compactly in matrix notation

Φ0 ·Yn = µ +Φ1 ·Yn−1 +En , n = 1 . . .N (3.12)

where the annual lag operator LSYn ≡ Yn−1 is similarly defined as the usual one-period

lag operator L · ys,n ≡ ys−1,n and µ = (µ1, . . . , µS)
′ is a vector of constants and En =

(E1,n, . . . ,ES,n)
′ follows an S-dimensional Gaussian vector white noise process with Es,n =

εS·(n−1)+s, respectively. In general, Φ0 and Φk, k = 1 . . .P, are S×S coefficient matrices

with elements

Φ0[i, j] =


1 , if i = j

0 , if j > i

−φi− j,i , if i > j

Φk[i, j] = φi− j+S·k,i (3.13)

for i = 1 . . .S, j = 1 . . .S. Here the maximum lag order equals P = 1+ b(p−1)/Sc, see

Franses and Paap (2006), p.32, Ghysels and Osborn (2001), p.145 f. for details.

Now, in contrast with the univariate form in (3.8) and (3.9), respectively, the multivariate

form has constant parameters, which is thus a useful representation to test for the presence

of unit roots (see Franses (1994)). Equation (3.12) can finally be expressed as a vector

autoregressive process of order P (’VAR(P)’) in terms of a matrix polynomial Φ(L) =

Φ0−Φ1LS− . . .−ΦPLPS (here: with P = 1):

Φ(L) ·Yn = µ +En (3.14)

The vector system in (3.14) is stable, iff the roots z of the characteristic polynomial

det(Φ0−Φ1 · zS− . . .−ΦP · zPS) = 0, (3.15)

are outside the complex unit circle (see Hamilton (1994), p.259). In case of a PAR(1)

process the determinant in (3.15) equals

det(Φ0−Φ1 · zS) = 1− (φ11φ21φ31φ41 · . . . ·φS1) · zS = 0 (3.16)

From equation (3.16) it can be seen, that the characteristic polynomial has all solutions
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outside the unit circle, iff

|φ11 · . . . ·φS1|< 1 (3.17)

It should be noticed that the condition |φs1|< 1, ∀s, is sufficient but not necessary for the

stationarity condition in (3.17) to hold. For this reason, a stationary PAR(1) process can

exhibit one or more individual |φs1| ≥ 1. If φ11 · . . . · φS1 = 1, the system of Yn has one

unit root and the univariate process ys,n is said to be periodically integrated (see Franses

(1994), p.135). For higher order PAR processes the nonlinear parameter restrictions for

stationarity become more complicated. For example, in case of a quarterly PAR(2) pro-

cess (Boswijk et al. (1995), Franses (1994), p.98) this can be easily verified to be

φ22φ31φ41 +φ22φ42 +φ12φ21φ31 +φ12φ32 +φ11φ21φ31φ41+

φ11φ21φ42 +φ11φ41φ32−φ12φ22φ32φ42 = 1
(3.18)

Since the Bayesian tests presented in the next chapter are constructed for PAR processes

of order one, the subsequent discussion mainly focuses on these processes. The concept

of first-order periodic integration (PI) can now be formalized according to Ghysels and

Osborn (2001), p.155, as follows:

Definition 1. A nonstationary periodic process ys,,n is said to be periodically integrated

of order 1 if there exist quasi-differences Dsys,n ≡ ys,n−φs1ys−1,n, with ∏
S
s=1 φs1 = 1 and

not all φs1 = 1, such that the VAR representation for the quasi-differences is stationary

and invertible.

The above definition was introduced by Osborn et al. (1988) and is an example of the

time-varying parameter definition as given in Granger (1986). It can also be considered

as a generalization of the (non)seasonal unit root concept within the class of SARMA

models. Following Ghysels and Osborn (2001), p.152, in a PAR context, first-order unit

root nonstationarity arises when the characteristic polynomial in (3.15) contains either

the seasonal factor 1− LS or the nonseasonal factor 1− L, with all other roots having

modulus greater than one. Ghysels and Osborn (2001) distinguish three different types of

integration that can induce first-order unit root nonstationarity:

• yt ∼ I(1): When each periodic autoregressive polynomial φs(L) contains the com-

mon factor ∆1 = (1− L), but the VAR representation for ∆1ys,n is a stationary
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process. This case corresponds to a zero frequency unit root.

• yt ∼ SI(1) : When each periodic autoregressive polynomial φs(L) contains the com-

mon factor ∆S = (1− LS), but the VAR representation for ∆Sys,n is a stationary

process. This type of integration is discussed in section 3.1.

• yt ∼ PI(1) : When the characteristic polynomial det (Φ(L)) contains the factor

∆S = (1−LS), see also equation (3.14), but (1−LS) is not common to each poly-

nomial φs(L), s = 1...S, with the VAR for ∆Sys,n being stationary.

The first two types of integration are the nonseasonal and the seasonal unit root(s) con-

sidered in the ARMA and SARMA framework, respectively (see Box et al. (2008)). The

third case is a specific type, that can arise only in a PARMA context. The definition

of periodic integration indicates that periodic integration nests the nonseasonal (1−L),

and also the seasonal (1+ L) filter, which correspond to the zero and the π-frequency,

respectively (see section 3.1 above). For a PAR(1) model this suggests that one should

first check the nonlinear restriction φ1 · . . . · φS in (3.17) and then test for φs = 1,∀s, and

φs = −1,∀s, see Boswijk and Franses (1996). That is, once it has been established that

the periodic unit root null hypothesis

H0 : φ1 · . . . ·φS = 1 vs. H1 : |φ1 · . . . ·φS|< 1 (3.19)

cannot be rejected, the next step is to test whether the hypotheses

H0 : φs = 1 , for s = 1...S−1 vs. H1 : φs 6= 1 , ∃s (3.20a)

H0 : φs = −1 , for s = 1...S−1 vs. H1 : φs 6= −1 , ∃s (3.20b)

are valid, which also implies that either φS = 1 or φS = −1, given ∏
S
s=1 φs = 1.

Both hypotheses (3.20) postulate that there is no periodic variation in the autoregressive

coefficients, but that the data is generated by a (non)seasonal Random Walk process.

Boswijk and Franses (1996) prove that the corresponding null distributions for a test of

(3.20a) and (3.20b) asymptotically follow a χ2
(3)- distribution (see Boswijk and Franses

(1996), Theorem 2, p.232). When the null in (3.20a) is not rejected the PAR process

is said to contain a nonseasonal (i.e. annual) unit root. In the terminology of Franses

(2003), p.133, the null in (3.20a) results in a PAR process for an I(1) series, which he
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abbreviates as ’PARI’. However when the null in (3.20b) is not rejected, it is said that the

PAR process contains a real-valued seasonal unit root, corresponding to a half-year cycle

(see Ghysels and Osborn (2001)). In case that the hypotheses in (3.20a) and (3.20b) are

both not rejected the PAR model is called a periodically integrated AR model (’PIAR’),

see Franses (2003).

3.3. Two classical testing approaches for a

periodic unit root

In this section two classical testing approaches for a single periodic unit root are outlined.

The first one is based on the vector representation of a PAR process and proceeds within

a cointegration framework (Engle and Granger (1987), Johansen (1988)), whereas the

second is based on the univariate model representation and will be used as a classical

competitor in the next section. More details on periodic unit root and cointegration testing

can be found in Franses (2003), Franses and Paap (2006).

The possibility of analyzing periodic unit roots in a cointegration framework stems from

the fact that periodic integration must imply cointegration of the nonstationary series ys,n

with the seasonally varying differencing filters as the stationary linear combinations (see

also definition 1). Moreover the number of unit roots is linked to the number of cointe-

gration relations between the elements of Yn, see Franses and Paap (2006), p.85.

Premultiplying equation (3.12) with Φ−1
0 yields:

Yn = Φ−1
0 µ +Φ−1

0 Φ1 ·Yn−1 +Φ−1
0 En (3.21)
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with3

Φ−1
0 Φ1 =


0 0 0 φ11

0 0 0 φ11φ21

0 0 0 φ11φ21φ31

0 0 0 φ11φ21φ31φ41

 (3.22)

By subtracting Yn−1 on both sides the model in (3.21) can be written in vector error cor-

rection form (cf. Lütkepohl (2007), p.248) as

∆1Yn = Φ−1
0 µ +(Φ−1

0 Φ1− I4) ·Yn−1 +Φ−1
0 En (3.23a)

= µ
?+Π ·Yn−1 +E?

n (3.23b)

where ∆1 is the first-differencing filter for the annual vector series, that is 1−LS operates

on the annual data Yn (see Franses and Paap (2006), p.65). Hence ∆1Yn corresponds to

∆4yt for S = 4, or in general to ∆Syt . Of primary interest is the matrix Π, which is relevant

for the analysis of longrun equilibria among the elements of Yn:

Π ≡Φ−1
0 Φ1− I4 =


−1 0 0 φ11

0 −1 0 φ11φ21

0 0 −1 φ11φ21φ31

0 0 0 φ11φ21φ31φ41−1

 (3.24)

The matrix Π contains information on the cointegration relations between the S elements

in Yn. It can be written as Π = γ ·φ ′ with loading matrix γ and φ the matrix of cointegra-

tion vectors both of dimension 4× r, see Franses and Paap (2006), p.64. When there are

r stationary linear combinations between the ys,n, the matrix Π has rank r with 0 < r < 4.

3This can easily be verified by direct calculation of Φ−1
0 , for example via Gauss-Jordan elimination.
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In the present case, the cointegration space can be spanned, for example, by

φ
′ =


−φ21 1 0 0

0 −φ31 1 0

0 0 −φ41 1

 (3.25)

When the rank r of the matrix Π in (3.23b) is r = 0, and hence there are no cointegration

relations between the elements of Yn, this implies that the 1−LS filter for ys,n is appropri-

ate. The Yn process is stationary when r equals 4. When φ11φ21φ31φ41 = 1 the rank of Π

equals r = 3, and this implies three cointegrating relationships between the ys,n subseries.

Thus the three stationary linear combinations are: (y2,n− φ21y1,n), (y3,n− φ31y2,n) and

(y4,n−φ41y3,n), which correspond to three quasi-differences (see definition 1). Note that

the fourth stationary variable (y1,n−φ11y4,n−1) is implied by the other three, and thus is

not linearly independent.4 In other words, in case of a single real unit root,5 there ex-

ist S− 1 linear combinations (1− φs1L) · ys,n, that transform the series yt to a stationary

process, see Franses (2003), p.128, for details. Since a test for the rank of the matrix

Π can also be considered as a test for a periodic unit root, Franses (1994) proposes to

use the likelihood-based cointegration test developed in Johansen (1988). However as

can be seen from equation (3.23a) the cointegration approach by Franses (1994) is highly

parameterized6 compared to the univariate approach considered next.

Boswijk and Franses (1996) propose an alternative testing strategy using the univariate

model representation in (3.9) as a starting point (see also Boswijk and Franses (1995)).

For the ease of reference and also because this classical test is compared with one of the

Bayes tests presented in the next chapter, I will briefly outline the basic testing strategy of

the Boswijk and Franses (1996) test.7

In the simplest case of a quarterly PAR(1) process without deterministic terms the authors

4This can be checked by inserting the first and third of the above linear combinations into the second,
imposing the unit root restriction via φ1 = 1/(φ2 ·φ3 ·φ4), and solving for y1,n.

5For the case of multiple unit roots, see Franses and Paap (2006), p.67.
6Here an unrestricted S×S matrix of coefficients has to be estimated.
7This test has been implemented in R by the author.

51



consider estimating the following unrestricted regression under the alternative H1:

yt =
4

∑
s=1

φsDs,tyt−1 + εt (3.26)

Assuming independently normally distributed errors εt , the maximum likelihood (ML)

estimators of the φs are given by the least squares estimators. Under H0 the following

restricted regression is estimated:

yt = φ1D1,tyt−1 +φ2D2,tyt−1 +φ3D3,tyt−1 +(φ1φ2φ3)
−1D4,tyt−1 + εt (3.27)

The authors consider maximizing the restricted log-likelihood via non-linear least squares

(see ibid., p.229). A likelihood ratio test statistic can be constructed as

LR≡ T · ln(RSS0/RSS1)

where RSS0 and RSS1 denote the residual sums of squares from the regressions under H0

and H1, respectively.

A one-sided test may then be constructed from the studentized statistic:

LRτ = sign(ρ̂−1) ·
√

LR (3.28)

Boswijk and Franses (1996), Theorem 1, p.230, show that the statistic in (3.28) has the

following asymptotic distribution under the null hypothesis:

LRτ

d→
{∫ 1

0
W (r)2dr

}− 1
2 ∫ 1

0
W (r) ·dW (r) (3.29)

where W (r) is a standard Wiener process and d→ denotes convergence in distribution.

This statistic has the same asymptotic null distribution as Fuller’s τ statistic for a nonpe-

riodic AR model without drift and trend and thus the tabulated critical values in Fuller

(1996) can be used.

In the next chapter an alternative Bayesian testing approach for a periodic unit root in the

presence of a structural break at unknown time is presented.
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Bayesian analysis of periodic unit

roots with a break

4.1. Introduction

Periodic autoregressive models have been applied to economic time series as an alterna-

tive to constant parameter models like seasonal autoregressive moving average models

or seasonal means models, see Osborn et al. (1988), Osborn and Smith (1989), Franses

(1995), Franses and Koop (1997) among others. PAR processes can for example arise

when modeling seasonal decisions of consumers (Osborn et al. (1988)), whereas Hansen

and Sargent (1993) suggest that they arise from seasonal technology. In the literature such

changing seasonal variation in the data has often been modeled in a deterministic fashion,

e.g. through the inclusion of seasonal dummy variables or so called seasonally integrated

autoregressive models. However, empirical studies have found evidence for periodic vari-

ation in many macroeconomic series. For example, Franses (1995) finds in a business

cycle analysis of quarterly US unemployment rates that seasonal fluctuations are not con-

stant across two business cycle stages and further that shocks to the unemployment rate

are transitory in expansion and persistent in recession periods. Ooms and Franses (1997)

show that quarterly unadjusted OECD unemployment rates of Germany and the US can

best be described by a PAR process with a unit root. Within a periodic error-correction

framework Birchenhall et al. (1989) provide empirical findings that the long-run income

elasticity of consumption and its rate of adjustment to equilibrium both vary seasonally.

They take this as evidence in favor of the hypothesis that consumers have seasonal pref-

erences and also seasonally varying degrees of habit persistence. In such a case, in order

to remove any stochastic trend, the applied differencing filter has to vary with the season,

too. Consequently, this leads to the concept of periodic (co)integration (see Osborn et al.
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(1988)) which can be perceived as a time-varying generalization of the concept of seasonal

(co)integration, see Hylleberg et al. (1990), Beaulieu and Miron (1993), Franses (1994)

and Ghysels and Osborn (2001), Franses (2003) for overviews. Different approaches have

been proposed to test for periodic integration in economic time series, see Franses (1994),

Boswijk et al. (1995), Boswijk and Franses (1996), Franses and Koop (1997), inter alia.

However nearly all of these proceed within a classical (or frequentist) framework. By

contrast there is a vast literature on Bayesian hypothesis testing for a (non-periodic) zero

frequency unit root, see Sims (1988), Phillips (1991b), Sims and Uhlig (1991), Schotman

and van Dijk (1991), inter alia, and the related subsequent discussion on these works, also

Maddala and Kim (1998) for an overview. For a Bayesian adaption of the Hylleberg et al.

(1990) (HEGY) model framework to test for seasonal unit roots, see Franses et al. (1997).

One exception is the paper of Franses and Koop (1997), who present a Bayesian frame-

work to test for different kinds of unit roots, namely (non)seasonal unit roots at the zero

and π-spectral frequency (cf. Ghysels and Osborn (2001)) but most importantly for peri-

odic unit roots. For the latter they propose a sampling based as well as an analytical, i.e.

non-sampling based, testing strategy, whereas for (non)seasonal unit roots they suggest an

approximate Bayesian test based on highest posterior density (HPD) regions. Their tests

assume one structural break at unknown time and are thus conditional on the occurrence

of a break. The authors find widespread evidence for (non)periodic integration using data

of nine major UK macroeconomic time series. Franses and Koop (1997) then apply their

methods to a large set of quarterly UK macroeconomic time series and find great evidence

in favor of periodic integration of order one.

The subsequent analysis aims to extend the work of Franses and Koop (1997) in several

directions. First, the approach presented here allows to capture the uncertainty induced

by conditioning on a structural break model and therefore assigning zero prior probability

to models without a break. This is achieved by using a mixture of discrete and continu-

ous posterior distributions for unit root testing, where the discrete parts are given by the

posterior probabilities of a model with and without a structural break. Thus the presented

approach essentially consists of averaging over the discrete space of candidate models

by using Bayesian model averaging (BMA) techniques (cf. Raftery et al. (1997)). This

BMA strategy is pursued in order test for periodic unit roots and also to test for zero and

π-frequency unit roots. For the latter two cases a Bayesian F-test is proposed. All pre-

sented tests allow a shift to occur in the seasonal means and/or time trends and are applied
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to both quarterly and monthly data. To illustrate the performance of the proposed tests,

the results of Monte Carlo experiments are presented. In contrast to the existing literature

on periodic unit root testing, the Bayesian tests are compared to classical competitors in

terms of test power. The results suggest that the Bayes test for a periodic unit root has

favorable power also in small samples, whereas the Bayesian F-test for a (non)seasonal

unit root has less power in small samples. Overall the Bayes tests outperform their classi-

cal competitors, especially in short time series. In an empirical application the proposed

unit root tests are finally used to test for periodic integration of order one in monthly

unadjusted OECD unemployment rates.

In the economic literature most studies do not consider seasonal forms of non-stationarity

in the data but instead work with seasonally adjusted data. The effect of working with

seasonally adjusted data on the results of unit root tests has been an object of investiga-

tion in the literature. Ghysels and Perron (1993) show that when the data are generated

by a stationary ARMA process there is a positive asymptotic upward bias induced by

an application of the X-11 filter.1 Thus one can expect unit root tests performed with

filtered data to be less powerful against stationary alternatives, because asymptotically

the sample estimate of the AR coefficient for such data is greater than for unfiltered data

(see Ghysels (1990)). The empirical results presented in this chapter suggest, that the

majority of the analyzed monthly OECD unemployment rates are in fact generated by a

nonperiodic unit root process. The presence of periodic variation in the data is further

analyzed by a Bayesian test for parameter-constancy. The latter shows that there is not

much evidence for stochastic periodicity in the unemployment series. In the light of eco-

nomic theory, favoring a nonperiodic unit root process in order to describe most of the

considered OECD unemployment series can be interpreted as supporting the hypothesis

of unemployment hysteresis, namely that labor market shocks have a long-run impact on

the level of unemployment, see for example Blanchard and Summers (1986).

The rest of this chapter is organized as follows: in section 4.2 the model is introduced and

in section 4.3 the proposed Bayesian testing procedures are presented. Then in section

4.4 the results of Monte Carlo experiments to study the power properties of the tests are

described. In section 4.5 the results of an empirical application to OECD unemployment

data are discussed and section 4.6 summarizes the main findings and concludes.

1For a review of seasonal adjustment methods see Ghysels and Osborn (2001).
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4.2. Model and de�nitions

In the following the focus is on PAR models with at most one structural break in the

deterministic component(s) at an unknown point in time. Similar models have been used

for example in Franses and Koop (1997) and Franses (2003). In case of a structural break

in the periodic intercepts and slopes the model has the following general form

yt = (
S

∑
s=1

ps

∑
i=1

φi,s ·Ds,t · yt−i)+λt + εt , εt
i.i.d.∼ N(0,σ2

s ) (4.1a)

λt =
S

∑
s=1

(
(µs +αs · τt) ·Ds,t +(µ?

s +α
?
s · τt) ·D?

s,t
)

(4.1b)

with t = 1, ...,T observations and s = 1, ...,S seasons.

Let st = 1+ [(t− 1)mod S] denote the season of observation t (see section 3.2), and let

TB ∈ ]ps + κ , T − κ ] be the unknown break point, where κ denotes the first and last

ten percent of observations in the sample, which are truncated in order to avoid possible

endpoint problems. Then the seasonal dummy variables in (4.1) are given by Ds,t =

1, if st = s ∧ t ≤ TB, otherwise 0, and D?
s,t = 1, if st = s ∧ t > TB, and 0 otherwise.

Last, τt in (4.1b) denotes the value of the linear time trend at time t. In the case of

no structural break α?
s and µ?

s equal zero for all seasons. In the following, ps = 1 and

σ2 = σ2
s ,∀s, is assumed, i.e. a homogeneous autoregressive lag order of one and no

seasonal heteroscedasticity.

The periodic autoregressive structural break model in (4.1) can be expressed more conve-

niently in matrix form. For this purpose define the following expressions:

y0
p×1

≡ [ y1, y2, . . . , yp ]
′

y
T−p×1

≡ [ yp+1, yp+2, . . . , yT ]′

y(s)−1 ≡ [ Ds,p+1 · yp, Ds,p+2 · yp+1, . . . ,Ds,T · yT−1 ]
′

...

y(s)−p ≡ [ Ds,p+1 · y1, Ds,p+2 · y2, . . . ,Ds,T · yT−p ]
′

56



and

X
T−p × p·S

≡ [ y(1)−1 , . . . ,y(S)−1 , y(1)−2 , . . . ,y(S)−2 , . . . , y(1)−p, . . . ,y(S)−p ]
′

ε
T−p × 1

≡ [ εp+1, εp+2, . . . ,εT ]′

Z
T−p × 4·S

≡ [ (D1, . . . ,DS)(T−p×S) , (D?
1, . . . , D?

S)(T−p×S) ,

(D1,p+1 · τp+1, . . . ,D1,T · τT )
′ , . . . , (DS,p+1 · τp+1, . . . ,DS,T · τT )

′ ,

(D?
1,p+1 · τp+1, . . . ,D?

1,T · τT )
′ , . . . , (D?

S,p+1 · τp+1, . . . ,D?
S,T · τT )

′ ]

φ
p·S×1

≡ [ (φ1,1, φ1,2, . . . ,φ1,S)︸ ︷︷ ︸
≡φ ′1

, . . . , (φp,1, φp,2, . . . ,φp,S)︸ ︷︷ ︸
≡φ ′p

]′

δ
4·S × 1

≡ [

≡µ︷ ︸︸ ︷
µ1, . . . , µS ,

≡µ?︷ ︸︸ ︷
µ
?
1 , . . . , µ

?
S ,

≡α︷ ︸︸ ︷
α1, . . . , αS ,

≡α?︷ ︸︸ ︷
α
?
1 , . . . ,α?

S ]′

Therefore the model in (4.1) can finally be written in more compact form:2

y = X ·φ +Z ·δ + ε =

(
X

... Z
)

T−p × (4+p)·S

·

(
φ

δ

)
(4+p)·S × 1

+ ε = X̃ ·B+ ε (4.2)

where in the following d ≡ (4+ p) ·S.

4.3. Bayesian testing for a periodic unit root

In order to draw inference from a Bayesian PAR model (BPAR) some prior information

with regard to the unknown parameters has to be specified. In contrast to Franses and

Koop (1997) I do not assume an informative prior for the regression parameters and the

innovation variance, but assume the elements of B and logσ2 as independently and uni-

formly distributed, to express prior ignorance with respect to these quantities (cf. Zellner

2In anticipation of the analysis in the next chapter, the model is stated here for a general lag order p.
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(1971), p.66).3 To express also a lack of prior knowledge with respect to the unknown

break date a discrete uniform prior over the set of possible break dates is chosen. These

assumptions lead to the following prior distributions:

f (B,σ2) ∝ σ
−2 , with σ

2 > 0 , B ∈R (4.3a)

f (TB| m = 1, p = 1) =
1

T −1−2κ
·1(κ+1<TB≤T−κ) (4.3b)

where 1(.) denotes an indicator function.

By an application of the Bayes Theorem the joint posterior density function of all un-

known quantities, under a structural change model, is given by4

f (B,σ2,TB|m = 1, y) =
f (y| B,σ2,TB, m = 1) · f (B, σ2| TB, m = 1) · f (TB| m = 1)

f (y| m = 1)
(4.4)

where m denotes the unknown number of structural breaks, restricted to m ∈ {0,1}.

In the subsequent analysis interest focuses on testing the following hypotheses:

HA : φs = 1 against |φs|< 1 , for s = 1...S (4.5a)

HB : φ1 · . . . ·φS = 1 against |φ1 · . . . ·φS|< 1 (4.5b)

HC : φ1 = . . .= φS = 1 against φs 6= 1 , ∃s (4.5c)

HD : φ1 = . . .= φS = −1 against φs 6= −1 , ∃s (4.5d)

where in the following ρ ≡∏
S
s=1 φs.

Testing the null hypothesis HA, i.e. a Random Walk in season s, requires the computation

of the marginal posterior density of φs,∀s, whereas testing the hypothesis HB, i.e. the

presence of a periodic unit root, requires the derivation of the marginal posterior of the

nonlinear parameter restriction in (4.5b). If HB can not be rejected, the process is called

periodically integrated of order one, abbreviated by yt ∼ PI(1) (see Ghysels and Osborn

(2001) for details). Last, the two hypotheses in H(C)D are useful for the analysis of a

3It turned out that the empirical results presented in section 4.5 are largely unaffected by this choice.
4In the following conditioning on X̃ and p = 1 is omitted.
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(non)seasonal unit root, which implies that the series is (seasonally) integrated of order

one, i.e. yt ∼ I(1) and yt ∼ SI(1). That is under HC and HD it is postulated that the

series is generated by a zero and π-frequency unit root process, respectively. Note that

both HC and HD are nested within HB. If the restriction in HB could not be rejected

and a subsequent test shows that either of the nonperiodic unit root null hypotheses HC

and HD can not be rejected, too, such a process is called a PAR process for an I(1)

series (’PARI’). By contrast, if HC and HD could be rejected, but not HB, then the process

is called a periodically integrated AR process (’PIAR’), see section 3.2. Whereas the

required densities for HA and HC(D) can be stated analytically (see appendix G for details),

the analysis of HB is more complex due to the nonlinearity of the null constraint. In order

to circumvent any computationally intensive techniques, like Markov chain Monte Carlo

techniques, Franses and Koop (1997) propose to linearize the restriction ρ = φ1 · . . . ·φS =

1 in HB by taking logs and noting that log(1+ x) ≈ x for small x.5 As pointed out by

the authors and also according to own experience, the φs-coefficients are close to one in

practice, so this should yield a good approximation. The periodic unit root constraint in

HB can therefore be approximated by the following linear restriction

H0 : φ1 + . . .+φS = S against |φ1 + . . .+φS|< S (4.6)

where θ ≡ ∑
S
s=1 φs is written henceforth.

A second approach to test the hypothesis HB is to generate random draws from the poste-

rior distribution of the vector of PAR coefficients φ , which follows a multivariate Student-t

distribution with ν = T − 1− d degrees of freedom (see appendix G.2), say M = 10000

times, and then compute the product ρ for each draw. After utilizing kernel density esti-

mates in order to approximate the posterior ordinates, mean and variance can be computed

as well as the 95%-HPD region by using one-dimensional numerical integration.6 Then a

test of HB can be conducted by rejecting the null hypothesis, if the null restriction ρ = 1

lies outside the HPD region. In the empirical analysis of section 4.5, this testing strategy

is used for comparison with the approximate approach of testing the linear restriction in

(4.6).

In accordance with Franses and Koop (1997), I allow for a single break in the deterministic

5This follows from a first order Taylor series expansion of log(1+ x) around zero.
6Here for example Simpson’s rule could be used, cf. Bauwens et al. (1999), p.69.
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components, but in contrast to the latter authors, I additionally allow a break to occur in

the seasonal time trend so that abrupt changes in the trending behavior of the series can

also be captured. Thus, given the lag order and the specification of deterministics, the set

of candidate models, M , contains only two elements Mi, namely a structural change (SC)

model (m = 1) and a no-structural change (NSC) model (m = 0).7 The key ingredients

for BMA techniques are the model posterior probabilities (see Raftery et al. (1997)):

f (M j|y) =
f (y|M j) · f (M j)

∑
K
i=1 f (y|Mi) · f (Mi)

(4.7)

with f (Mi) the prior probability of model Mi, which are chosen as f (Mi) = 1/K, for ∀i,
and K = 2. The prior predictive density under the SC model is given by

f (y| m = 1) =
T−κ

∑
TB=κ+2

∫
R+

∫
Rd

f (y|B,σ2,TB, m = 1) ·

f (B, σ
2|TB, m = 1) · f (TB| m = 1) ·dB ·dσ

2

(4.8)

where f (TB| m = 1) is given in (4.3b) and B denotes the vector of regression parameters.

Note that the inner two integrations can be solved analytically. As pointed out by Raftery

et al. (1997) all probabilities are implicitly conditional on M , i.e. the set of considered

models. In order to construct tests for the above hypotheses, the model specific posterior

density functions are required. For the analysis of HA we need the marginal8 posterior

distribution of φs, s = 1...S, which can be computed as

f (φs| y) =

[
T−κ

∑
TB=κ+2

f (φs| TB, m = 1, y) · f (TB| m = 1,y)

]
· f (m = 1| y)

+ f (φs| m = 0, y) · f (m = 0| y)

(4.9)

7Of course in the present context another model indicator could be a binary variable, indicating the inclusion
of a time trend (or any other exogenous regressor). Such variable selection issues are however not further
pursued here, although they would be relatively straightforward to implement, see for example George
et al. (1993).

8In this context marginalization refers to the predefined model space.
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Note that the posterior weight for the NSC model used in (4.9) can be calculated as

f (m = 0 | y) ∝

∣∣∣X̃′X̃∣∣∣− 1
2 ·
[
ν · s2]− ν

2 (4.10)

with ν = T −1−d and s2 the usual sampling estimate of the innovation variance.9

Moreover f (m = 1| y) is proportional to (4.8). The posterior distribution f (φs|TB, m =

1, y), s = 1...S, has the form of a univariate Student-t density with ν = T − 1− d de-

grees of freedom (see appendix G.3 for details). Thus the distribution in (4.9) is a model

weighted mixture of t-densities. Here d1 and d2, with d = d1 +d2, denote the dimensions

of the following subvectors:

B ≡
[

B1
′ ... B2

′
]′

=

[
φs

1×1

... (φ ′−s , δ
′)

]′
(4.11)

In appendix G.4 it is shown that the posterior distribution of the linear form θ , under

model Mi, follows a univariate Student-t distribution with ν = T −1−d degrees of free-

dom, mean θ̂ = ι ′ · φ̂ and variance νs2 · cJ/(ν − 2), where cJ = ι ′(X̃11− X̃12 · X̃−1
22 ·

X̃21)
−1ι . The marginal posterior f (θ | y) is then obtained in the same way as f (φs|y) in

(4.9), and therefore is a model weighted mixture of t-densities.

Let the support of θ be Θ = [0, S] in the following. The posterior probability of the null

hypothesis (4.6), i.e. of the singleton Θ0 = {θ0}, is obtained as in Berger and Delampady

(1987), Berger and Sellke (1987), namely by using a mixed prior density, which assigns

positive prior probability mass π0 to Θ0,10 and uses a continuous density f1(θ ), with prior

9This follows from the results of appendix G, by letting B0 and M in (6.35) go to zero.
10Here π0 = 0.5 is used.
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weight 1−π0, on the complementary parameter set Θ1 = {θ : 0≤ θ < S}:11

P(H0| y) =
[

1+
1−π0

π0
· f (y| Θ1)

f (y| θ0)

]−1

(4.12a)

with f (y| Θ1) =
∫

Θ1

f (y| θ ) · f1(θ ) ·dθ (4.12b)

where the integral in (4.12b) is computed by Simpson’s rule (cf. Bauwens et al. (1999),

p.69).

Under a ’0-1’ loss function then an optimal Bayesian decision rule ϕ(y) is given by (see

Robert (2007), proposition 5.2.2, p.225.):

ϕ(y) =

{
0 , if P(H0|y) ≥ 0.5

1 , otherwise
(4.13)

where 1 means rejection of the null hypothesis and P(H0|y) denotes the posterior prob-

ability of the latter, which is abbreviated by P0 henceforth. Further, since the decision

rule (4.13) is based on a Student-t posterior density it is called the ’Bayesian t-test’ in the

following, in order to discriminate it from the F-test introduced next.

Consider testing the linear hypotheses Rφ = r in (4.5c) and (4.5d), with R a J×S matrix

of zeros and ones and r a J-vector of constants. In the present context, the identity matrix

can be used for R and thus J = S. Franses and Koop (1997) propose an approximate Wald-

type test of HC, where they approximate the multivariate Student-t posterior distribution

of φ by a Normal distribution. Consequently HC can be tested using the inner product

of standardized normal random variables, which follows a χ2
(S)- distribution (see ibid.,

p.515). However the authors focus in their analysis on quarterly models where there are

usually much more degrees of freedom available than in the case of more parameter-

intensive monthly PAR models. Since for monthly time series of moderate length, i.e.

T = 100−150, such an approximation can be problematic, implying ν = T− p−d < 100

11Note that in this approach the sets Θ0 and Θ1 are treated in a different way, since otherwise Θ0 would
have zero Lebesgue measure. Instead of changing the nature of Θ0, by assigning positive probability
mass to it, Pereira et al. (2008) pursue a different strategy by looking for the ’tangential set’, T , of points
having posterior density values higher than any in Θ0. Then H0 would not be rejected if the posterior
probability of T , the Bayesian evidence value against H0, is small, see Pereira and Stern (1999), Pereira
et al. (2008) for details.
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degrees of freedom, with d = (4+ p) · S, an exact Bayesian F-test is used instead. For

this purpose define the following standardized inner product:

Q(r|Mi, y) ≡
[
R(φ − φ̂ )

]′
·
[
R(X̃11− X̃12 · X̃−1

22 · X̃21)
−1R′

]−1
·
[
R(φ − φ̂ )

]
/(S · s2)

= (r−Rφ̂ )′ ·
[
R(X̃11− X̃12 · X̃−1

22 · X̃21)
−1R′

]−1
· (r−Rφ̂ )/(S · s2)

(4.14)

In appendix G.5 it is shown that the quadratic form follows an F(ν1 = S, ν2 = T −1−d)

posterior distribution, with S and T − 1− d degrees of freedom. A simple decision rule

based on Bayesian ’p-values’, pv, for testing the linear hypotheses HC and HD, with Rφ =

r0 = ±1, respectively, is to reject the null, whenever

pv(r0|Mi, y) ≡ 1−PF(Q(r0|Mi, y)) (4.15)

is smaller than a nominal level of significance, where PF(.) denotes the cumulative distri-

bution function of the F(ν1 = S, ν2 = T −1−d) posterior distribution.

Since for a selected null hypothesis, i.e. for r0 = ±1, the quadratic form Q(r0, TB| m =

1, y) under a structural break model is only a function of the integer-valued break date

TB, the model averaged quadratic form, denoted by QBMA, can be obtained from

QBMA(r0| y) = Q(r0| m = 0, y) · f (m = 0 | y)+[
T−κ

∑
TB=κ+2

Q(r0,TB| m = 1, y) · f (TB| m = 1, y)

]
· f (m = 1| y)

(4.16)

with f (m| y) the posterior probability mass function of a break occurrence with normal-

izing constant given by

f (y) =
1

∑
m=0

T−κ

∑
TB=κ+2

f (y |m, TB) · f (TB| m) · f (m) (4.17)

In order to compute the corresponding posterior tail probabilities, the marginalized poste-

rior cumulative distribution function of Q is required. For this purpose, the model specific
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F(ν1 = S, ν2 = T −1−d) posterior ordinates are averaged over the two candidate mod-

els, i.e.

f (Q| y) = f (Q | m = 0, y) · f (m = 0 | y) +[
T−κ

∑
TB=κ+2

f (Q | m = 1, TB, y) · f (TB| m = 1, y)

]
· f (m = 1| y)

(4.18)

The corresponding Bayesian p-values, i.e. the right tail probabilities of (4.18), and highest

posterior density regions can then be obtained by numerical integration.

4.4. Monte Carlo evidence: periodic unit root tests

In this section the results of several Monte Carlo (MC) experiments to study the perfor-

mances of the Bayes tests of HB and H(C)D, i.e. of a periodic and a real (non)seasonal unit

root, are presented. For a test of HB, or its linear approximation in (4.6), the Bayesian

t-test in (4.13) is used, where in (4.12a) the conditional or the model averaged posterior

distribution of the linear form θ is utilized. For a test of the hypothesis H(C)D the Bayesian

F-test, using the conditional p-value (4.15) or the corresponding model averaged p-value

on the basis of (4.18), is computed. In the following simulation study, first the power

properties of the conditional tests are compared to those of classical competitors. Then

also some simulation evidence concerning the model averaged versions of the Bayes tests

is presented.

In the first simulation experiment the Bayesian t-test of HB, given a PAR(1) model without

a break, is compared with a classical competitor, namely the test of Boswijk and Franses

(1996) (abbreviated ’BF’, see section 3.3 for some details) in terms of test power. For

this purpose, trajectories of the following quarterly PAR(1) process without a break are

generated:

yt =
4

∑
s=1

Ds,t · (µs +φs · yt−1)+ εt , εt
i.i.d.∼ N(0,1) , t = 1...150 (4.19)

with seasonal intercepts µs = 1, ∀s.

In order to estimate the empirical power functions for a given sample size, I generate
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trajectories for each (φ1,φ2,φ3,φ4)′- combination in the [0.8,1.1]4-space. Here for each

φs, s = 1...4, a grid of six values is used, which results in 64 = 1296 parameter constella-

tions. The rejection probabilities of the null hypothesis are approximated by the average

number of rejections, i.e.

f (’Reject H0’| ρ0, y) ≈ 1
N

N

∑
i=1

1(P0<0.5) (4.20)

where 1(.) denotes an indicator function, N is the number of replications, and ρ0 denotes

a particular value of this parameter.

Note that (φ1,φ2,φ3,φ4) 7→ ρ = φ1 · φ2 · φ3 · φ4 is not a bijection and thus different φs-

combinations can lead to the same ρ values and hence to similarly persistent processes.

For this reason, if there are any ties in the sequence of ρ’s at a value ρ0, the associated

rejection frequencies are averaged and this average is taken as the value of the power

function at ρ0.12 In figure 4.1 the resulting power function for N = 100 replications and

a sample size of T = 150 is shown.13 It is evident that with the exception of seven ρ-
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Figure 4.1.: Power functions of the Bayesian t-test and the BF-test for quarterly periodic data (T = 150)

12Franses (1995) considers a similar MC experiment to analyze the empirical power properties of the BF-
test and some other related tests. However the author only simulates two specific data generating pro-
cesses in order to compute the empirical sizes and powers of the tests. In contrast, computation of the
whole power function allows to draw a more comprehensive picture of the test characteristics.

13Similar power functions are obtained using larger sample sizes T .
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values, the Bayes test outperforms the classical BF-test in terms of power. This is most

pronounced if ρ lies in the stationary parameter region. When approaching the null, i.e.

ρ → 1, both procedures perform almost equally in terms of power.

In the second MC experiment the power function of the Bayesian F-test of the hypothesis

HD, i.e. a seasonal (biannual) unit root, is simulated.14 As a classical competitor the

test of Hylleberg et al. (1990) (HEGY) for a (real-valued) seasonal unit root at the π-

frequency is chosen. The HEGY testing approach uses a t-statistic to test the point null of

a real seasonal unit root against a left-sided alternative (see ibid., also Ghysels and Osborn

(2001), p.60, for details). For the subsequent results the finite sample critical values in

Hylleberg et al. (1990), p.226, have been utilized.15

For the computations of the power functions N = 200 trajectories of the following simple

AR(1) process without a break are generated:

yt = µ +φyt−1 + εt , εt
i.i.d.∼ N(0,1) , t = 1...100 (4.21)

with −1≤ φ < 0 with µ = 0.

Figure 4.2 shows a realization of the process (4.21) under the null HD, i.e. for φ =−1, to-

gether with the sample (partial) autocorrelation function (S(P)ACF) and the periodogram.

Note that for φ = −1 the system in (4.21) implies a ’bounce back’ and hence exhibits

a half-cycle every period. This oscillating behavior induced by an alternating sign can

also be observed when solving the stochastic difference equation for yt recursively, which

yields16

yt =

 −y0 + µ +∑
t−1
j=0(−1) j · εt− j , for t odd

y0 +∑
t−1
j=0(−1) j · εt− j , for t even

(4.22)

From figure 4.2 it is obvious that most of the variation in yt can be attributed to the

biannual frequency π since the periodogram has its maximum at two observations.17 As
14The simulation results for a nonseasonal unit root (HC) are nearly identical and are therefore omitted to

save space.
15All classical tests are conducted on a 5% nominal level of significance.
16Note that the intercept does not translate into a linear time trend here as in the case of a nonseasonal

Random Walk process.
17The periodogram is computed only over the range of [0, S/2] observations, because of the aliasing effect,

cf. Bloomfield (2000).
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Figure 4.2.: AR(1) trajectory together with S(P)ACF and estimated power spectrum for T = 100
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Figure 4.3.: Comparison of power functions for quarterly nonperiodic data (T = 100)

can be seen from figure 4.3 the Bayesian F-test for a unit root at the π-frequency, given

a PAR(1) model without a break, outperforms the classical HEGY test in terms of power.

The increasing rejection frequencies of the F-test for φ < −1 are due to its two-sided
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alternative region, whereas the HEGY t-test has a one-sided alternative.18 Observing

the actual sizes of the Bayesian and classical procedure reveals that the former exhibits

a rejection frequency of 3.5% under the null, whereas the latter test with 5.5% almost

exactly follows its nominal significance level.

Summing up, the two Bayesian unit root tests for a PAR(1) model without a break perform

favorable in terms of power when compared to classical competitors. Since the previous

results have been obtained for a given model specification Mi, next also some simulation

evidence for the model averaged versions of the two Bayes tests is presented. These are

used to test the hypothesis HC, i.e. of a nonseasonal unit root. With regard to the empirical

analysis in the next section, the subsequent simulation experiments are conducted using

monthly data (S = 12). As a DGP, a nonperiodic AR(1) process with a break in the

seasonal intercepts at TB = T /2 and without a break is used, where the process with a

break has the following form:

yt =
12

∑
s=1

(µsDs,t + µ
?
s D?

s,t)+φ · yt−1 + εt , εt
i.i.d.∼ N(0,1) , t = 1...T (4.23)

with µs = 1.5, µ?
s = 0.2,∀s, and the dummy variables Ds,t and D?

s,t are defined as in section

4.2. In case of no structural break µ?
s = 0,∀s.

For the simulation of the power functions a grid of φ -values, with φ ∈ [0.4,1.05], is

used.19 In order to examine the small sample performance of the two Bayes tests, trajec-

tories of length T = 100 are generated from (4.23). This is repeated N = 100 times and

the rejection probabilities are then approximated by the average rejection frequencies. In

figures 4.4(a) and 4.4(b) the power functions of the two tests are shown for a DGP with

and without a structural break.

From there it is evident that the BMA F-test exhibits quite distinct test properties com-

pared to the BMA t-test in this simulation experiment. The latter test has favorable power

in case of a break and also in case of no break. In particular, the F-test shows an overrejec-

tion (with≈ 20%) under the null hypothesis HC, i.e. an increased type 1 error, in contrary

to the t-test (with ≈ 0%). The results of other simulation experiments, which are omitted

here to save space, indicate that these overrejections can be attributed to a biased estima-

18As a consequence rejection of yt ∼ SI(1) does not necessarily imply stationarity.
19In order to save computing time the power functions are approximated at seven φ -values.
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Figure 4.4.: Power functions of the BMA F- and t-test for PAR(1) processes with(out) a break (T = 100).

tion of the model probabilities, f (Mi|y), in small samples. This bias mainly depends on

the size of the innovation variance σ2 and to some extent also on the specification of the

deterministics in the DGP. To get an impression of this small sample bias, table 4.1 shows

the estimated posterior probabilities for the DGP in (4.23) with m = 1 and m = 0, i.e.

with and without a break.

Table 4.1.: Posterior model probabilities

DGP No Break (T = 100) Break (T = 100) No Break (T = 300)

φ m = 0 m = 1 m = 0 m = 1 m = 0 m = 1

0.40 0.34 0.66 0.19 0.81 0.72 0.28
0.60 0.27 0.73 0.17 0.83 0.77 0.23
0.70 0.38 0.72 0.14 0.86 0.79 0.21
0.80 0.38 0.72 0.15 0.85 0.80 0.20
0.90 0.26 0.74 0.08 0.92 0.75 0.25
0.95 0.24 0.76 0.04 0.96 0.71 0.29
1.00 0.01 0.99 0.01 0.99 0.46 0.54

From table 4.1 it can be observed that the estimated posterior probabilities of m = 0 are

biased towards a model with break when the sample size is small (T = 100), but this bias
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is reduced when the sample size increases (T = 300).20 What can also be recognized from

the results is that for φ → 1, a process without a break resembles a process with a break,

and thus it becomes harder to discriminate between both. In order to analyze the effect

of the estimated model weights on the outcome of the BMA F-test, the power function is

simulated for the same DGPs as above (see (4.23)), but now a conditional F-test, given

the true model specification, is used. In figures 4.5(a) and 4.5(b) the resulting power

functions for T = 100 and T = 200 are shown. The figures suggest that the conditional
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Figure 4.5.: Power functions of the F-test for PAR(1) processes with(out) a break.

Bayesian F-test has favorable power and size properties and that its power increases with

the sample size.

To sum up, the model averaged Bayesian t-test shows favorable power and size properties

compared to classical competitors, and is less affected by a (possibly) biased estimation

of the model weights in small samples. In contrast, the BMA F-test can have serious size

problems in the case of short time series. The latter finding should be kept in mind when

interpreting the results of the subsequent empirical analysis.

20For larger sample sizes this effect becomes even more pronounced.
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4.5. Empirical application to monthly

unemployment data

In this section the unit root tests presented above are applied to answer the question, if

there is persistent behavior in the unemployment rates of selected OECD countries. Here

the harmonized monthly unemployment rates21 of 17 OECD countries from January 1999

to March 2012 (T = 159) are used.22 The high level of unemployment in countries of the

European union compared to other countries of the OECD has been an object of inves-

tigation for many years. In the economic literature in principal there are two theoretical

explanations of this phenomenon: the non-accelerating inflation rate of unemployment

(NAIRU) and unemployment hysteresis. The former theory implies the unemployment

rate to follow a trend stationary process, i.e. after an exogenous shock the rate will re-

cover to its long run equilibrium. By contrast hysteresis implies that temporary shocks

have permanent effects on the level of unemployment and thus the underlying stochastic

process has a unit root. This ’unit root hysteresis’ definition is the most common in the

literature on the stochastic properties of unemployment rates (cf. Blanchard and Sum-

mers (1986)). Persistence can be regarded as a special case of the NAIRU concept in the

sense that the unemployment rate follows a stationary process but also has a stochastic

component that is nearly integrated of order one, for example in the present case with the

product of autoregressive coefficients being close to one (’Quasi Random Walk’).

As a preliminary step of the empirical analysis diagnostic tests are applied to check for the

presence of periodic variation in the level of the series. Here I follow a similar strategy as

used in Boswijk and Franses (1996), p.231, within a classical context. Therefore, first a

Bayesian PAR(1) model with seasonal intercepts and without a break is estimated, using

the respective posterior means as point estimates and then the null of no periodicity, i.e.

H0 : φs = φ , ∀s, is tested against the alternative of periodicity H1 : φs 6= φ , ∃s. This test can

readily be conducted by using the conditional Bayesian F-test23 for the linear hypothesis

21All series are analyzed in logarithmic form.
22The harmonized unemployment rates give the numbers of unemployed persons as a percentage of the

labor force. The labor force consists of employees, the self-employed, unpaid family workers and the
unemployed. The used data set was extracted from OECD sources, see www.oecd.org.

23Note that in a similar manner one could also construct a Bayes test in order to test for periodicity in the
variance of the series, i.e. for seasonal heteroscedasticity, see Franses and Paap (2006), p.40 for a classical
approach.

71



R ·φ = 0 introduced above, with R = [IS−1 , −ι ] an S− 1× S matrix of contrasts, IS−1

the identity matrix, and ι an S−1 vector of ones. Hence a Bayesian F-test of H0, denoted

FPAR, can be based on an F(ν1 = S− 1, ν2 = T − 1− d) distribution when S seasonal

intercepts are included in the model, see also Franses (2003), p.104, and Boswijk and

Franses (1996) for a similar result using a classical framework.

Table B.1 (see appendix B) shows the results for the FPAR-test together with the corre-

sponding ’Bayesian p-values’. The results indicate that, even by assuming a liberal sig-

nificance level of 10%, for only 6 out of 17 countries the null of no periodic variation can

be rejected. According to this test there seems to be not much evidence for periodicity in

the OECD unemployment series. In order to check the robustness of the results, I pursue

a strategy similar to the classical approach in Franses (2003), p.116, by using a recursive

testing strategy. Therefore, the Bayesian FPAR-test is computed for rolling subsamples of

the original data. The corresponding F-tests when one year of data is added and removed

successively are called a Bayesian forward and backward recursive FPAR-test, respec-

tively. Figures E.20 to E.28 (see appendix E) show the evolution of the corresponding

Bayesian p-values. Note that for the forward recursive tests the first time window reaches

from 1/1999 to 12/2002 and the final window from 1/1999 to 3/2012, i.e. the whole

time period. In contrast, for the backward recursive tests the first time window is from

1/1999 to 3/2012, where the last window includes the period from 1/2008 to 3/2012. The

plots indicate that for most countries the sequence of F-tests exhibits some time windows

where there seems to be significant periodicity in the estimated coefficients on the 5%

significance level with the exception of France, Japan, Norway, Spain and the US.24 On

the grounds of these results the application of a flexible PAR model seems justifiable.

Note that there is some analytical as well as empirical evidence (cf. Franses (2003)) for

starting with a PAR model, which includes the possibility of having S− 1 seasonal unit

roots as well as the zero frequency unit root, instead of first transforming the data, e.g. by

applying a seasonally differencing filter ∆S, since this already assumes a certain number

of unit roots.

In table B.3 the test results for a periodic unit root are shown for each OECD country.

In the second column of table B.3 the deterministic model specification is indicated. The

inclusion of seasonal intercepts (’Drift’) or the inclusion of seasonal intercepts together

24In these five cases a more parsimonious SARMA model could also be fitted.
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with a seasonal time trend (’Both’) is suggested on the grounds of visual inspection of

the data. In columns three and four of table B.3 the posterior probabilities, P0, of H0 :

θ = ∑
12
s=1 φs = 12, using a PAR model with a break and using the BMA version of the

t-test are given, respectively. Columns five and six show the posterior means and the HPD

regions of ρ = ∏
12
s=1 φs, given the structural change model with the break date set equal

to the posterior mode T MAP
B of f (TB| m = 1, p = 1,y).25 The posterior modes are given

in table B.2. In table B.3 it can be seen that for 10 out of 17 of the OECD countries

the null hypothesis of a periodic unit root can not be rejected on the basis of the BMA

posterior probabilities (P0). Among the four countries having the highest probabilities

are Greece, Ireland, Spain and the UK. Almost the same conclusions can be drawn when

using the HPD regions of ρ . Here for 11 countries the null constraint (4.5b) lies within

the 95%-HPD region, which implies that for these countries the null can not be rejected

when assuming a 5% level of significance.26 The last column also shows the empirical

results from an application of the classical BF test. It is obvious that with the exception of

Finland the null can not be rejected. This finding can be attributed to the relatively lower

power of the test in small samples as noted in section 4.4, and also to the fact that the test

does not control for a possible structural break.

Given the results of the periodic unit root tests, I test for a possible unit root at the zero

and π-frequency using the model averaged F-test. The results are shown in table B.4 and

suggest that for most of the series for which the hypothesis of a periodic unit root could

not be rejected also the null of a nonseasonal unit root can not be rejected, namely for

France, Germany, Norway, UK and the US. For Belgium, Canada and the series of Japan

the null of a zero frequency unit root can not be rejected when assuming the usual levels

of significance. For the latter two also a relatively high posterior probability of a periodic

unit root can be seen from table B.3 although these probabilities are still below 50%.27

With the exception of Belgium the findings of table B.4 are in accordance with those in

table B.3 and imply that the unemployment series of the mentioned countries are best

described by a PARI process, i.e. a PAR process for an I(1) series.

25That is, first the estimate of the break date is computed and then the sampling approach of section 4.3 is
applied, conditional on the estimated break date.

26Note that for Japan the upper bound is only 1.01.
27For Belgium the findings are not clear. However given the above MC evidence, i.e. that for short series

the F-test exhibits lower power than the test based on P0, it seems justifiable to draw the inferences using
only the latter approach. Then it could be concluded that the series of Belgium is (trend)stationary.
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The test results are also supported when analyzing each period separately by means of

the HPD regions of the φs-coefficients given in tables B.5 and B.6, respectively.28 An

examination of these tables reveals widespread evidence for hypothesis HA : φs = 1, i.e.

a Random Walk in season s (see (4.5a)), since most series yield posterior densities of φs

that include the null restriction in their 95% confidence regions. Finally, as can be seen

from the results of the π-frequency unit root tests (see table B.4), there seems to be no

evidence for seasonal integration in the data.

Summing up, indication of a periodic unit root has been found for the unemployment rates

of Denmark, Greece, Ireland, Netherlands and Spain, which means that these series are

driven by a PIAR process, i.e. a periodically integrated AR process. Note that a periodic

unit root implies that the dynamic response of the unemployment rate to a shock also

depends on the season. Furthermore, for the series of Canada, France, Germany, Norway,

UK and the US the results suggest the existence of a nonseasonal unit root (’PARI’). For

Japan there seems to be some evidence for a stochastic trend, too. For the remaining

series, i.e. those of Australia, Finland, Italy and Sweden no evidence for a (non)periodic

unit root is found. Hence it can be concluded that most of the unadjusted monthly OECD

unemployment rates are most likely (in terms of posterior probability) driven by a unit

root process. More precisely, the empirical results suggest that this process is in most

of the cases associated with a nonseasonal, i.e. zero frequency unit root, which is also

in accordance with the estimates of the spectral densities of the series. This suggests

that the corresponding time series should be modeled by taking (non)periodic first order

differences (see Ghysels and Osborn (2001), p.153). In the light of economic theory, this

supports theories of unemployment hysteresis, which imply that labor market shocks have

a permanent impact on the level of unemployment.

4.6. Summary and concluding remarks

In this chapter Bayesian testing strategies to test for a periodic unit root with a possible

break at an unknown point in time have been presented. On these grounds also an exact

Bayesian F-test has been proposed in order to test for a unit root at the zero and the π-

28The HPD regions are computed on basis of the model averaged Student-t posterior densities of the φs
coefficients.
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spectral frequency. All tests have been based on model averaging techniques so that it

is possible to combine evidence from a model with and without a structural break. The

results of simulation experiments to study the performance of the tests indicate that the

model averaged Bayesian F-tests for a zero and a π-frequency unit root can have low

power and increased size in small samples. This feature has been attributed to a small

sample bias of the estimated model posterior probabilities, i.e. the weights of the BMA

tests. In contrast, the test for a periodic unit root has shown to be less sensitive with respect

to the sample size and had better power properties throughout all conducted simulation

experiments. In practice the true data generating process is usually unknown and hence

conditioning on the true parametrization is not possible. Here one either has to select a

particular specification for the analysis or has to resort to model averaging techniques.

With the latter approach it is possible to capture the uncertainty induced through a model

selection step.

In an empirical application these methods have been used to test for unemployment hys-

teresis effects in the monthly unadjusted unemployment rates series of 17 OECD coun-

tries. The results show that in fact most of the analyzed unemployment rates exhibit unit

root behavior. Among the four countries having the highest posterior probabilities of a pe-

riodic unit root are Greece, Ireland, Spain and the UK. Moreover many of these series are

driven by a nonperiodic stochastic trend, which is implied by a zero frequency unit root.

This is also in accordance with a conducted Bayesian pretest for periodicity, which has

shown that there is not much periodic variation in the unemployment series. Moreover no

evidence for (real-valued) seasonal unit roots has been found. With regard to further infer-

ence, e.g. prediction of future data, these empirical findings suggest that the seasonality

in the monthly OECD unemployment data should in most cases be modeled by seasonal

nonperiodic models, after having applied the relevant differencing filters. In the light of

economic theory this suggests that there is evidence for unemployment hysteresis in the

respective countries, which implies that labor market shocks have a permanent impact on

the level of unemployment. In future research the Bayesian periodic unit root test could

be extended to allow for heterogeneity in the lag orders ps and the residual variances σ2
s .

Another interesting branch of future work would be to extend the above testing procedure

in order to capture also skewness and leptokurtic behavior in the data.

In the next chapter the focus will be on forecasting seasonal time series data. For this

75



purpose, a Bayesian prediction approach based on model averaging will be presented in

the following.
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Forecasting seasonal time series.

A Bayesian model averaging

approach

5.1. Introduction

Many time series used in economic research exhibit some form of stochastic or determin-

istic seasonality. There are two principal ways to deal with such sort of variation, i.e. to

adjust the data or to model the variation explicitly using seasonal time series models. In

this chapter the latter strategy is pursued with a focus on the prediction of future data. In

the nonseasonal time series literature a large number of alternative models has been pro-

posed for this task, see Ghysels and Osborn (2001), Ghysels et al. (2006) for overviews.

A distinguishing feature of seasonal time series models is the way in which seasonal-

ity is represented. The latter can be modeled to be constant over the different seasons,

s = 1...S, i.e. quarters, months and so on. Another possibility is to allow for seasonal

heterogeneity or periodicity in the stochastic and/or deterministic parts of the data gener-

ating process. As noted by Osborn and Smith (1989) many empirical applications give no

reason for assuming the model parameters to be constant over the seasons, beyond par-

simony and convention. The class of periodic autoregressive moving average (PARMA)

models provides a flexible alternative to other seasonal linear time series models, like sea-

sonal autoregressive moving average (SARMA) models, by allowing the coefficients to

vary with the seasons, see Ghysels and Osborn (2001), Franses and Paap (2006). In most

economic applications periodic models are assumed to take an autoregressive form and

are known as periodic autoregressive (PAR) models. The latter can be useful in capturing

economic situations where agents show distinct characteristics over the seasons, such as
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seasonally varying utilities of consumption, see for example Osborn et al. (1988). Im-

portant contributions to the research on PARMA models have been made by Gladyshev

(1961), Pagano (1978), Tiao and Grupe (1980), Vecchia (1985), Osborn (1991), Franses

(1994), Boswijk and Franses (1996), inter alia.

Nearly all works on PARMA models use a classical frame of reference with the exception

of Andel (1983) and Franses and Koop (1997) who choose a Bayesian framework. The

latter authors present a Bayesian approach for prediction and unit root testing in PAR(p)

models. In the subsequent analysis the forecasting approach of Franses and Koop (1997)

is extended in several directions. First, the authors treat the autoregressive lag order p as

fixed and known. In contrast, I treat the lag order as a discrete random variable to which

a prior probability mass is assigned. Because the required number of autoregressive coef-

ficients is in general p ·S, lag order selection may be more crucial in the context of PAR

models than in constant-parameter AR models, see also Ghysels et al. (2006). Second,

Franses and Koop (1997) allow for the possibility of one structural break in the seasonal

intercepts at unknown time and then average out this nuisance parameter. In the subse-

quent analysis I allow for one structural break in the seasonal intercepts and/or seasonal

time trends, but treat the occurrence of a break, or the number of breaks m = 0,1, as an

additional random parameter. Then the autoregressive lag order and the number of struc-

tural breaks are used as model indicators in order to identify different candidate models,

Mi, in the model space. Most importantly, instead of resorting to a model selection ap-

proach by picking out a single model for inference, as for example in Franses and Koop

(1997), a prediction approach for PAR models with an unknown number of lags and an

unknown number of structural breaks based on model averaging is presented.

There is a growing literature concerned with model averaging. Seminal contributions

to Bayesian model averaging are Madigan and Raftery (1994), Draper (1995), Raftery

et al. (1997), and for a review of the literature Hoeting et al. (1999), Raftery and Zheng

(2003). Some econometric BMA applications include Fernandez and Steel (2001), Hong

and Preston (2012), inter alia. See for example Hjort and Claeskens (2003), Hansen

(2007) for frequentist approaches and additional references. As argued by some authors

(cf. Raftery et al. (1996)) model selection procedures ignore the uncertainty induced

through a model selection step and thus underestimate uncertainty about the quantities of

interest, as for example future observations. Hence accounting for model uncertainty by
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using a model averaging approach may improve out-of-sample predictive accuracy. With

regard to forecasting this seems to be a natural approach to capture model uncertainty by

including all models Mi under consideration into a (super) model.

Further, in appendix H it is shown that the joint posterior predictive distribution of a PAR

model is given by the product of Student-t densities, viz. the one-step ahead posterior

predictive distributions given the preceding forecasts. Since no analytical expressions for

the required marginal posterior predictive distributions of the yT+k, k = 1...K, exist, and

further since the possibility of a structural break at an unknown point in time introduces

an additional nuisance parameter, which can not be integrated out analytically, a Markov

chain Monte Carlo approach based on data augmentation (see Tanner and Wong (1987))

is presented. By using the model posterior probabilities as weights in order to capture un-

certainty a model averaged posterior predictive distribution is computed to forecast future

data. The empirical results presented in this chapter indicate that the BMA prediction

approach is able to improve forecasting accuracy when compared to a model selection

approach.

After having introduced the Bayesian PAR (BPAR) model in section 5.2 the Gibbs sam-

pling algorithm for parameter estimation and sampling future values is presented in sec-

tion 5.3. In order to examine the forecasting performance under different data generating

processes the results of a simulation study are given in section 5.4. Here also a Bayesian

test is introduced in order to compare the predictive ability of different forecasting models.

In section 5.5 an empirical application of the proposed prediction approach is presented.

Here the monthly unemployment rates of the 16 federal states of Germany and of East-

and West-Germany are predicted 12-months ahead. Finally, section 5.6 then summarizes

the results and concludes.

5.2. Periodic autoregressive models with one break

In the following I focus on PAR models with at most one structural break in the deter-

ministic component(s) at an unknown point in time. Similar models have been used for

example in Franses and Koop (1997) and Franses (2003). In case of a structural break in

the periodic intercepts and time trends the model has the following general form, which
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is reproduced here from section 4.2 for the ease of reference:

yt = (
S

∑
s=1

ps

∑
i=1

φi,s ·Ds,t · yt−i)+λt + εt , εt
i.i.d.∼ N(0,σ2

s ) (5.1a)

λt =
S

∑
s=1

(
(µs +αs · τt) ·Ds,t +(µ?

s +α
?
s · τt) ·D?

s,t
)

(5.1b)

with t = 1, ...,T observations and s = 1, ...,S seasons.

As in the analysis of section 4.2, let st = 1+ [(t − 1)mod S] denote the season of ob-

servation t, and let TB ∈ ]ps + κ , T −κ ] be the unknown break point, where κ denotes

the first and last ten percent of observations in the sample, which are truncated in or-

der to avoid possible endpoint problems in the identification of TB. Then the seasonal

dummy variables in (5.1) are given by Ds,t = 1, if st = s ∧ t ≤ TB, otherwise 0, and

D?
s,t = 1, if st = s ∧ t > TB, and 0 otherwise. Last, τt in (5.1b) denotes the value of the

linear time trend at time t. Further it is assumed that p = ps and σ2 = σ2
s , ∀s, i.e. a homo-

geneous autoregressive lag order across the seasons and no seasonal heteroscedasticity.

The above periodic autoregressive structural break model can be expressed more conve-

niently in matrix form (see section 4.2 for definitions):

y = X ·φ +Z ·δ + ε =

(
X

... Z
)

T−p × (4+p)·S

·

(
φ

δ

)
(4+p)·S × 1

+ ε = X̃ ·B+ ε (5.2)

where in the following d ≡ (4+ p) ·S.

In order to draw any inference within a Bayesian framework, the specification of prior

distributions for the unknown parameters is required. These are introduced in the next

section.

5.2.1. Speci�cation of prior distributions

Within a Bayesian frame of reference a priori knowledge with respect to the quantities of

interest can be imposed. For the analysis below I assume a conjugate normal prior for the
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regression coefficients and express prior ignorance with respect to all other parameters,

i.e.

f (B | σ2) = Nd(B0 , σ
2V) (5.3a)

f (σ2) ∝ 1/σ
2 , with σ

2 > 0 (5.3b)

f (TB) ∝
1

T − p−2κ
, with κ + p < TB ≤ T −κ (5.3c)

with prior hyperparameters B0 = (φ ′0, δ ′0)
′ and V. For the covariance matrix of the re-

gression coefficients

V =

(
c1 · Id1 0

0 c2 · Id2

)
(5.4)

is chosen, where c1 and c2 are fixed scalars and Id j , j = 1,2, denote identity matrices

of dimensions conformable with the matrices X and Z in (5.2), cf. Franses and Koop

(1997).1 Further δ0 = 0 is imposed to express ignorance with respect to the prior means

of the seasonal dummy and trend coefficients. For the prior means of the autoregressive

parameters φ0 = ι is assumed, with ι a vector of ones, since experience shows that in

many practical applications of PAR models the estimated autoregressive coefficients are

close to one. A similar observation has been made by other authors, cf. Franses and

Koop (1997). However it should be noticed that for long time series this prior constraint

is dominated by the sample information.

Let mmax and pmax denote the maximum number of structural breaks and the maximum

number of autoregressive lags, respectively. In the subsequent analysis the number of

breaks, which for simplicity is restricted to m = {0,1}, and the number of autoregressive

lags are used as model indicators in order to identify different candidate models, Mi =

(p,m).2 Thus the discrete space of possible models, denoted by Γ in the following, is

given by the cartesian product Γ = {1, ..., pmax}×{0,1}. In order to express ignorance

with respect to the model complexity, i.e. the size of the model, I use the following joint

1In the empirical analysis below c1 and c2 in (5.4) are both set equal to 100 in order to express lack of prior
knowledge with regard to the variation of the regression coefficients.

2In principle, the break location, TB, could also be included in the definition of Mi. Instead it is treated as a
nuisance parameter here and is averaged out.
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prior distribution for the model indicators

f (Mi) ∝ 1/#Γ (5.5)

where #Γ denotes the cardinality of the set Γ.

One could argue that imposing a flat prior over the space of admissible models is in fact

informative, since more complex models are assigned the same prior weight as simpler

models and thus one should use a prior that assigns less weight to more complex models,

see for example Phillips (1991b), Phillips (1991a) for a discussion of this issue in the

context of unit root testing. However for the analysis below I restrict the model space to

mmax = 1 and pmax = 12, which implies putting zero prior weight to more complex model

combinations. Note that pmax = 12 implies considering also annual lag structures.

As a specific model Mi can be identified by its (p,m)-combination, and a corresponding

break date in case of m = 1, I condition on Mi in the following to indicate inference

under a particular model specification. Combining the above prior distributions with the

likelihood function according to Bayes’ Theorem, it is straightforward to show that the

joint posterior density function of all unknown quantities, given the break date TB, has the

form of a Normal-Inverse-Gamma-2 distribution, see Bauwens et al. (1999). However,

when not conditioning on the discrete-valued break point, the joint posterior becomes a

mixture of discrete and continuous densities. Of course this case only arises when m = 1.

5.2.2. Model augmentation for prediction

The main objective in a Bayesian approach to forecasting is to derive the predictive den-

sity function, f (ỹK|y), which does not depend on the unknown parameters, and contains

all information about the unobserved (’missing’) future values in ỹK , given knowledge of

the past observations y (see Zellner (1971), Judge et al. (1985)). In order to predict future

values yT+k, k = 1...K, I define a K-vector of ỹK-values and their corresponding lags for
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s = 1...S and k = 1...K:

ỹK ≡ [ yT+1 , . . . ,yT+K ]′

ε̃K ≡ [ εT+1 , . . . ,εT+K ]′

ỹ(s)K−1 ≡ [ Ds,T+1 · yT , Ds,T+2 · yT+1, . . . ,Ds,T+K · yT+K−1 ]
′

...

ỹ(s)K−p ≡ [ Ds,T+1 · yT+1−p, Ds,T+2 · yT+2−p, . . . ,Ds,T+K · yT+K−p ]
′

XK ≡ [ ỹ(1)K−1, . . . , ỹ(1)K−p, . . . , ỹ(12)
K−1, . . . , ỹ(12)

K−p ]

ZK ≡ [ DK , D?
K , DK · τK , D?

K · τK ]

Finally, stacking all stochastic and deterministic future components as

W̃K
K × (4+p)·S

≡ [ XK
... ZK ] (5.6)

yields the following prediction equations

ỹK = W̃K ·B+ ε̃K , ε̃K
i.i.d.∼ NK(0, σ

2IK) (5.7)

where it is assumed that future observations are generated by a similar process as the

observed data.

The joint probability density function (pdf) of all unknown quantities, given the data, can

be factorized as follows:3

3In the following the first p observations are used as initial values y0. Thus I work with the approximate
instead of the exact likelihood function, see Bauwens et al. (1999), p.134 f. The conditioning on y0 is
suppressed subsequently.
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f (ỹK ,B,σ2,TB|Mi, X̃, W̃K , y) = f (B,σ2,TB|Mi, X̃, y) · f (ỹK|Mi,B,σ2,TB,W̃K , y)

∝ f (B| σ2,TB, Mi) · f (σ2) · f (TB|Mi) ·

f (y|Mi,B,σ2,TB, X̃) · f (ỹK|Mi, B,σ2,TB,W̃K , y)

(5.8)

Henceforth conditioning on X̃ and W̃K is omitted. As already noted, the major task here is

to obtain the marginal predictive posterior distributions f (yT+k| Mi, y) for conducting k-

step ahead forecasts, k = 1...K. Let for convenience be ξ k ≡ (B′, σ2, TB, ỹK \{ yT+k})′ ∈
Ξ, with Ξ = Rd ×R+×N]κ+p; T−κ ]×RK−1. Then the posterior predictive density of

the scalar random variable yT+k, k = 1...K, under Mi, is obtained by integrating out all

other parameters ξ k from the joint posterior (see Geweke and Whiteman (2006)):4

f (yT+k |Mi, y) =
∫

Ξ
f (ξ k|Mi, y) · f (yT+k | ξ k, Mi, y) ·dξ k (5.9)

As a point estimator of the unknown future value yT+k, k = 1...K, the posterior predic-

tive mean of (5.9), E(yT+k| Mi, y), is chosen. At this point it should be noted that the

joint posterior predictive density of a periodic autoregressive model is not the standard

K-variate Student-t density as in the case of a normal (nonrecursive) linear regression

model, discussed in Zellner (1971), p.73, also Judge et al. (1985), p.123. This has been

emphasized by Broemeling and Land (1984) for the case of a nonperiodic autoregressive

model of order p. Moreover, the latter authors establish that for K ≥ 1 the joint poste-

rior predictive density is given by the product of K univariate t-densities, viz. a marginal

for yT+1 and K− 1 conditional t-densities. In appendix H it is shown that this fact also

applies to the more general case of periodic autoregressive models of order p. Further

the marginal posterior predictive densities (5.9) are not known analytically for K > 1 (see

Broemeling and Land (1984), p.1319, Koop et al. (1995), Bauwens et al. (1999), p.138).

This essentially follows from the fact that the joint posterior predictive density of ỹK , after

integrating out all other parameters, is not a multivariate Student-t density (see Broemel-

4In case of the discrete break date TB the corresponding integration is in fact a summation.
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ing and Land (1984), p.1319). Since allowing for a structural break at an unknown point

in time introduces an additional nuisance parameter in the likelihood function, which can

not be integrated out analytically, an MCMC approach in order to obtain these densities

and also to get point estimates for the unknown parameters is presented in the following.

5.3. Markov chain Monte Carlo approach

Generating multistep forecasts by means of Markov chain Monte Carlo techniques al-

lows to directly exploit the structure of the recursive prediction equations (5.7). In the

following a Gibbs sampler for generating random draws from (5.8) and for obtaining the

predictive densities in (5.9) is presented. Since the future values yT+k are treated as la-

tent variables (or missing data), the subsequent MCMC algorithm can be perceived as a

data augmentation approach, see Tanner and Wong (1987). The basic sampling scheme is

outlined in the following.
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Algorithm 2 : Data augmentation

Step 1: Set iterations on j = 1 and initialize T (0)
B ,B(0),σ2(0), ỹ(0)K randomly or

deterministically.

Step 2: Draw a new break date T ( j)
B from a multinomial posterior distribution

f (T ( j)
B | B( j−1),σ2( j−1), ỹ( j−1)

K , Mi, y) on the sample space TB ∈ ]κ + p, T −κ ]

Step 3: Draw a new random vector B( j) from a multivariate normal posterior

distribution f (B( j) | T ( j)
B ,σ2( j−1), ỹ( j−1)

K , Mi, y)

Step 4: If stationarity should be imposed, accept a candidate draw φ
( j) in B( j),

if |det(Φ0−Φ1 · z)|> ω for z = 1 , ω > 0, otherwise return to step 3

Step 5: Draw new σ2( j) from an inverse gamma posterior distribution

f (σ2( j) | T ( j)
B , B( j), ỹ( j−1)

K , Mi, y)

Step 6: Draw a new yT+k
( j) from a univariate normal posterior distribution

f (y( j)
T+k | σ

2( j), T ( j)
B , B( j), ỹ( j−1)

K \{yT+k}, Mi, y) , k=1...K

Step 7: Compute the marginal posterior predictive densities

f (y(g)T+k |Mi, y) ' 1
J ∑

J
j=1 f (y(g)T+k | ξ

( j)
k , Mi, y) , k = 1...K, g = 1...G

Step 8: Set j = j+ 1, return to step 2.

with j = 1, ...,J Gibbs runs and ξ
( j)
k ≡ (B′( j), σ2( j), TB

( j), ỹ( j)
K \{yT+k})′.

The sampling scheme shows how to draw from the joint posterior distribution (5.8). In

step 1, initial values for the Markov chain have to be chosen, where for B and σ2, the

corresponding least squares estimates could be used; for the break date TB an initial

value can be drawn from the uniform prior distribution and the unknown future val-

ues, yT+k, k = 1...K, could be initialized with the sample mean of y. In step 2, gen-

erate a new break date from a full conditional multinomial posterior distribution M(n =
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T − p−2κ; θp+κ+1, ...,θT−κ) with n classes and class probabilities given by

θt =
exp
{
− 1

2σ2 (yt− x̃t ·B)2
}

∑
T−κ

t=p+1+κ
exp
{
− 1

2σ2 (yt− x̃t ·B)2
} , for t = p+κ + 1, ...,T −κ

where x̃t and yt denote the t-th row of the matrix X̃ and the t-th element of the vector y,

respectively.

Then in the next step, given a new break date TB, a new candidate vector B is generated

from a full conditional multivariate normal distribution with mean vector µB = R−1(X̃′ ·
y+V−1B0 + W̃′

K · ỹK) and covariance matrix ΣB = σ2 ·R−1, where R ≡ V−1 + X̃′X̃+

W̃′
KW̃K . It is important to note here that since the matrix X̃ and also some parts of the

matrix W̃K depend on the unknown break point through their deterministic components,

these matrices have to be updated accordingly after having drawn a new break date in

sampling step 2.

Next in step 5, the innovation variance σ2 is updated by drawing from a full conditional

IG2(a?,b?) density, given all other parameters, with shape parameter a? = T − p+ d +

K + 2 and scale parameter b? = (y− X̃ ·B)′ · (yK − X̃ ·B) + (ỹK − W̃K ·B)′ · (ỹ− W̃K ·
B)+(B−B0)

′V−1(B−B0). After having drawn a new value for the innovation variance,

a new trajectory {yT+1, ...,yT+K} is generated. Therefore, in step 6, new candidates for the

unknown future values yT+k, k = 1...K, are successively drawn from the K full conditional

univariate normal distributions, with mean µ̃k =W(k) ·B, and variance σ2 given from step

5, where W(k) denotes the k-th row of the matrix W̃K .

In order to facilitate the integrations in (5.9) additional Monte Carlo integration steps, for

k = 1...K, using the Gibbs sampling draws ξ
( j)
k , j = 1...J, are conducted. For this purpose

first define a grid of {y(g)T+k, g= 1...G} values over the support of yT+k, for k = 1...K. Then

the posterior ordinates can be approximated as in step 7 above, see Chib (1995). Note that

the marginalized posterior ordinates are needed for the subsequent model averaging.

Next consider a finite set of candidate models M = {M1, . . . ,MI}. As already noted, each

candidate model Mi is associated with a vector of model indicators (p,m). Attaching prior

probability mass, f (Mi), to each candidate model we can average over the model space
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as (see Hong and Preston (2012)):

f (yT+k| y) =
I

∑
i=1

f (yT+k |Mi, y) · f (Mi| y) , k = 1...K (5.10)

with (5.10) being approximated on the same grid of y(g)T+k values, g = 1...G, as used in

sampling algorithm 2.

Further if one wants to impose stationarity on the PAR(p) model in (5.2), the posterior

draws of the subvector φ in B can be constrained by using an additional accept-reject

step in step 4. Note, that although PAR models are nonstationary by construction,5 a

stationarity condition can be stated by using a multivariate model representation as in

Tiao and Grupe (1980). By writing the univariate PAR(p) model (5.2) as an S-dimensional

vector autoregressive model of order P (’VAR(P)’), with P = 1+ b(p−1)/Sc, the usual

stability condition of VAR models in terms of the characteristic polynomial with roots z,

can be used (see section 3.2, also Hamilton (1994), p.259, for details). By restricting the

lag order to pmax = S in the following, the stationarity condition of a VAR(1) model is

given by

det(Φ0−Φ1 · zS) 6= 0 for |z| ≤ 1 (5.11)

see section 3.2 for the definition of the Φ matrices.

Since for a unit root process, i.e. with z = 1, the determinant in step 4 will be close to

zero in practice, an arbitrarily small value ω > 0, e.g. ω = 0.05 can be chosen here as a

benchmark value.

The major focus of the presented forecasting approach lies on the model averaged predic-

tive distributions in (5.10). It can be shown that the means of these mixture distributions

minimize the prediction mean squared error and are in this sense optimal, see Raftery and

Zheng (2003), Theorem 4, p.5. In order to compute the BMA predictive distributions in

(5.10) the posterior probability of model Mi, i = 1...I, is needed, which can be obtained

5This can easily be checked from the first two moments of a PAR process, see Ghysels and Osborn (2001),
Franses and Paap (2006) for details.
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from Bayes’ Theorem:

f (Mi| y) = f (y|Mi) · f (Mi)/ f (y) (5.12)

In case of a structural change model, i.e. with Mi = (pi, mi = 1), the first expression in

(5.12) is the marginal likelihood under model Mi:

f (y|Mi) =
T−κ

∑
TB=p+κ+1

∫
. . .
∫

f (y| B,σ2,TB, Mi) · f (B, σ
2,TB|Mi) ·dB ·dσ

2

(5.13)

and the normalizing constant in (5.12) is equal to

f (y) =
I

∑
i=1

f (Mi) · f (y|Mi) (5.14)

Note that all d + 1 integrals in (5.13) can be solved analytically due to the conjugate

framework. In case of a model without a structural break, i.e. with Mi = (pi, mi = 0),

the summation over all possible change points in (5.13) can of course be omitted and

the marginal likelihood, under model Mi, then has the well-known form of a multivariate

Student-t density of dimension T− p, see Judge et al. (1985), p.128, also Hamilton (1994),

p.368.

5.4. Monte Carlo analysis

Next the results of four Monte Carlo (MC) experiments are presented in order to compare

the forecasting performance of a conditional BPAR model with other candidate forecast-

ing models. In order to save computing time the computations are conducted for a specific

model Mi and are in this sense conditional. To infer if the reported differences in predic-

tive accuracy are also statistically significant, a simple Bayesian test is presented. The

simulated out-of-sample forecasts of the BPAR model are compared to a nonseasonal AR

model, a seasonal AR (SAR) model (see Box et al. (2008), Ghysels and Osborn (2001))
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and a seasonal (or periodic) means model (abbreviated by ’PMEANS’ in the following).6

A nonseasonal AR model is chosen, because PAR models can be perceived as seasonally

varying generalizations of AR models. In this sense an AR model serves as a benchmark

with constant parameters. Similarly, a PMEANS model serves as a benchmark for the

case of deterministic seasonality in the following, cf. Osborn and Smith (1989).

The comparison of forecasting models is usually done on the basis of a risk function

(see Diebold and Mariano (1995), Inoue and Kilian (2006), also Geweke and Whiteman

(2006), p.20). The most prominent measures of forecasting accuracy in this context are

the prediction mean squared error (PMSE), assuming a quadratic loss structure, and the

mean absolute percentage error (MAPE),7 assuming an absolute valued loss function, see

Meese and Rogoff (1983), Stock and Watson (1999), among others, for applications. As

a Bayesian forecasting rule the posterior predictive expectation, ŷT+k ≡ E(yT+k| Mi, y),
is used in the following. When expressed as a function of the forecasting horizon the

(cumulated) PMSE and MAPE of a simulated out-of-sample K-step ahead forecast are

given by

PMSE(K) =
K

∑
k=1

E (ŷt+k− yT+k)
2 (5.15a)

MAPE(K) =
K

∑
k=1

E (|(ŷt+k− yT+k)/yT+k|) (5.15b)

Here yT+k is the actual realization of the process at time T + k, the k-step ahead forecast

is denoted by ŷT+k, and the expectation is taken with respect to y.

5.4.1. A Bayesian sign test for comparing predictive accuracy

To be able to test if the realized loss differences measured by a loss function g(yt , ŷt),

e.g. a quadratic loss function g(yt , ŷt) = (ŷt − yt)2, are also statistically significant some

authors propose tests to evaluate predictive accuracy, cf. Diebold and Mariano (1995),

Giacomini and White (2006), Clark and West (2007). To be consistent here, a Bayesian
6Here the variable of interest is simply regressed on a set of S dummy variables Ds,t , which equal one if
observation t is associated with season s.

7Note that the MAPE for a specific horizon k does not depend on the scale or dimension.
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analogue to the sign test proposed in Diebold and Mariano (1995) is introduced. For this

test the latter authors report favorable power and size properties on the basis of MC ex-

periments. Furthermore this test is applicable not only in case of quadratic loss structures,

but also to non-quadratic and relative loss functions as assumed for the calculation of the

MAPE in (5.15) and thus matches the requirements here. Given a realized sequence of

loss-differentials, dt ≡ [g(ε̂it)−g(ε̂ jt)], under forecasting model i, j = 1...3, with predic-

tion error ε̂it = yt − ŷit under model i, a test for comparing predictive accuracy can be

constructed on the signs of a sequence of loss-differentials {dt}T
t=1, with 1(dt>0)(dt) = 1

in case of a positive sign, and 0 otherwise. Therefore the null hypothesis of a zero median

loss-differential, i.e.

H0 : Med(g(ε̂it)−g(ε̂ jt)) = 0 (5.16)

can be tested, which implies P(g(ε̂it) > g(ε̂ jt)) = P(g(ε̂it) < g(ε̂ jt)) or equivalently

P(1(dt>0)(dt) = 1) = 0.5, see Diebold and Mariano (1995).8

A Bayesian analogue can be constructed by assuming that each observation 1(dt>0)(dt),

t = 1...T , is generated according to a Bernoulli distribution with unknown (’success’)

probability for a positive loss-differential sign, π ≡ P(1(dt>0)(dt) = 1), and that π has

a Beta prior density, π ∼ Be(α , β ), with prior mean equal to α/(α + β ). Let x ≡
∑

T
t=1 1(dt>0)(dt) denote the number of positive signs in the sequence,9 which is a suffi-

cient statistic for π , therefore conditioning on x instead of the data does not change the

validity of the subsequent probability statements, see Monahan and Boos (1992), p.272.

By conjugation it immediately follows that the posterior density of π , that is the proba-

bility for a positive loss-differential sign, also behaves according to a Beta distribution,

i.e. π|x∼ Be(α + x; β +T − x), with posterior mean equal to (α + x)/(α +β +T ). Of

course the null could also be tested against more informative alternatives like H1 : π > 0.5,

which postulates the dominance of model j over model i in dt ≡ [g(ε̂it)−g(ε̂ jt)], and vice

versa.10

8Note that the sign test presumes i.i.d. observations, an assumption that needs to be checked in practice.
9This is the S2-test statistic of Diebold and Mariano (1995), p.255, which follows a Binomial distribution
with parameters T and π = 0.5 under the null hypothesis.

10A more elaborated Bayesian approach for the analysis of regression errors is presented by Zellner (1975)
(see also Chaloner and Brant (1988) for a similar approach), which has been adopted by Lubrano (2001)
in order to test for ARCH(1) effects and non-linearities in time series.
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Note that in the subsequent computations of the multistep ahead forecasts, the considered

prediction horizons are at most two years. Thus we have to deal with quite short loss-

differential sequences.11 For this reason the hyperparameters of the Beta prior have to

be chosen with some care, see Robert (2007), p.124. Therefore four different parame-

terizations of the Beta prior are stated next, which will be used throughout the following

simulation study in order to check the robustness of the posterior results with respect to

the prior specification.

If prior ignorance with respect to the unknown probability π should be expressed, nonin-

formative priors can be chosen. Here, for example, Haldane’s prior f (π) ∝ [π ·(1−π)]−1

can be used, which appears to be the limit of an unnormalized Beta prior when α and β

go to zero.12 The latter choice then leads to a Be(x, T − x) posterior distribution with

mean x/T , which is also the maximum likelihood estimator of π . Another popular non-

informative prior is the Jeffreys prior f (π) ∝
√

I(π), with I(π) the Fisher information,

which in the present case can be shown to be f (π) ∝ [π · (1−π)]−1/2, i.e. proportional

to a Be(0.5,0.5) density. The third prior, used in the following, is the ’Bayes’ or ’Bayes-

Laplace’ prior, f (π) = Be(1,1), which assigns a density of one to each value of π , cf.

Berger (1980), p.89, Robert (2007), p.127. These priors are shown in figure F.29 of ap-

pendix F. As can be observed from figure F.29, Jeffreys’ and Haldane’s prior both assign

the largest density values to the end points zero and one. However, since we are interested

in testing H0 : π = 0.5, this could lead to an increase in the type I or type II error of the test

and therefore in addition a more informative Be(1.01,1.01) prior is used (see the lower

right panel in figure F.29), which gives more weight to moderate π values.13 Note that

the null restriction is imposed a priori by choosing α = β , which implies a prior mean of

π equal to 0.5. Now an optimal Bayesian decision rule ϕ(x) under a ’0-1’ loss function

(see Robert (2007), proposition 5.2.2, p.225.) is given by

ϕ(x) =

{
0 , if P(H0|x) ≥ 0.5

1 , otherwise
(5.17)

11For example, in the MC experiments presented below, 2-years ahead forecasts using quarterly data are
conducted and thus T = 8, whereas in the empirical application of section 5.5, 1-year ahead forecasts
using monthly data are considered and thus the length of the realized loss-differential sequences is T = 12.

12Here for all computations α = β = 10−10 is used.
13Note that in general according to the Bernstein von Mises theorem the posterior distribution for an un-

known quantity is effectively independent of the prior distribution once the amount of information sup-
plied by the data is large enough, see van der Vaart (1998), p.140.
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where 1 means rejection of the null hypothesis and P(H0|x) denotes the posterior proba-

bility of the latter.

Since the hypothesis of interest is a precise hypothesis, i.e. with zero prior probabil-

ity mass, the continuous Beta prior has to be modified in order to assign positive prior

probability mass to the singleton under H0 (see Berger and Sellke (1987), Berger and De-

lampady (1987), also Pereira and Stern (1999) for a different approach). Therefore the

following mixed prior is utilized

f (π) = ω0 ·1H0(π)+ (1−ω0) · f1(π) , (5.18)

with ω0 > 0, 1H0(π) an indicator function and f1(π) one of the priors discussed above.14

By an application of Bayes’ Theorem using the mixed prior in (5.18) the posterior proba-

bility of the null hypothesis can be calculated as

P(H0|x) =
f (x|π0) ·ω0∫ 1

0 f (x|π) f (π)dπ
=

f (x|π0) ·ω0

ω0 · f (x|π0)+ (1−π0) ·m1(x)
(5.19a)

with m1(x) =
∫
{π :π 6=0.5}

f (x|π) · f1(π) ·dπ (5.19b)

In order to check the performance of the Bayes test in (5.17) the posterior probability

P(H1|x) = 1−P(H0|x) is computed for each of the four Beta priors. To examine fur-

ther the influence of the sample size T on the subsequent posterior results, P(H1|x) is

calculated for a sequence of x ∈ {0, ...,T} values, assuming T = 8 and T = 60.

For a given sample size T the posterior probability P(H1|x) can be represented as a func-

tion in x, or x/T , i.e. p(x0) ≡ P(H1|x = x0;T ), for x0 = 0, ...,T . Under H0 : π0 = 0.5

we would expect that, for given T , the posterior probability of H1 would decrease when
x
T → π0 and increase otherwise. The results shown in figures F.30 and F.31 (see appendix

F) confirm that this is the case for most of the considered priors. The figures suggest that,

with the exception of the results under Haldane’s prior, all specifications yield quite com-

parable results. Moreover even for sequences of length T = 60 the posterior probabilities

of H1 using Haldane’s prior are still equal to 0 within a large subset of the domain of p(x),

which would lead us to favor the null even for extreme, i.e. very small (or large) numbers

14Here ω0 = 0.5 is chosen.
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of positive signs, x, implying a large type II error. Therefore, in the applications below all

conclusions are drawn on the basis of one of the other three posteriors.

As pointed out by Diebold and Mariano (1995) comparing the predictive accuracy of

different models constitutes a multiple hypotheses testing problem. In the frequentist

case the overall size of the test, α?, has to be adjusted by a Bonferonni correction, α?/n,

where n denotes the number of tests. However the Bayesian sign test has not been derived

under the assumption of a fixed type I error, as in a Neyman-Pearson testing framework,

hence another strategy is pursued in the following. Note that in the subsequent analysis

interest mainly centers on testing joint hypotheses of the form

H0 : π1,2 = π1,3 = 0.5 (5.20)

given that model 1 has exhibited the lowest relative loss among, for example, three com-

peting models.

Here πi, j denotes the parameter of interest in a pairwise comparison of the models i and

j, respectively. Hence first the model with the lowest PMSE is detected (’Model 1’) and

then (5.20) is tested accordingly. This a union-intersection testing problem (see Casella

and Berger (2002), p.380) and therefore (5.20) is rejected, if any of the single hypotheses

H0,γ : πγ = 0.5, with γ ∈ {(1,2), (1,3)}, is rejected using the decision rule (5.17). This

testing strategy is pursued to evaluate the results of the following MC experiments and

also the empirical results of the next section.

5.4.2. Simulation evidence

For the subsequent simulation study four Monte Carlo experiments using different data

generating processes (DGP) are conducted. Here the predictive performances of seasonal

models in 2-years ahead forecasts are examined using quarterly data. In order to reduce

computing times, the BPAR predictions are conducted using the conditional posterior

predictive densities, i.e. given values for the autoregressive lag order p and the number

of breaks m, instead of the model averaged predictive densities. Further, because the

posterior expectation is used as a Bayesian forecasting rule, I focus on the PMSE in the

analysis. The corresponding MAPE values are reported for reasons of comparison.
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In the first two experiments the predictive accuracies of the considered models are exam-

ined, when the DGP is a stationary PAR(1) and a periodically integrated AR(1) (abbre-

viated by ’PIAR(1)’) process, respectively. Here the forecasting accuracy of a PAR(1)

model is compared with those of an AR(1) model, both having seasonally varying inter-

cepts, and with those of a deterministic PMEANS model. In the third and fourth sim-

ulation design the forecasting performances of a SAR(1) and a SARMA(1,0)× (1,1)

process both with seasonally varying intercepts are analyzed, given that the data are gen-

erated by a nonperiodic stochastic process. In the latter two experiments the forecasting

models are: a PAR(4) model, a quarterly SAR(1) and a SARMA(1,0)× (1,1) model, re-

spectively, all three having periodically varying intercepts, and finally a PMEANS model.

Note, that all considered PAR and (S)ARMA models encompass the PMEANS model.

In the first simulation experiment (’design 1’) trajectories are generated from a stationary,

quarterly PAR(1) process without a break:

yt =
4

∑
s=1

Ds,t · (µs +φs · yt−1 + ut) , ut
i.i.d.∼ N(0,1) , t = 1...T (5.21)

with φ = (0.85, 0.67, 0.92, 1.1)′ and µ = (0.85, 0.95, 0.92, 1)′.

For the second experiment (’design 2’) the same parametrization as in design 1 is used, but

a periodic unit root is imposed by setting φ4 = 1/(φ1 ·φ2 ·φ3), see Osborn et al. (1988),

Boswijk et al. (1995), Franses and Paap (2006) for details on periodic integration. Note,

that for φ1,φ2 and φ3 values close to one, which is often the case in practice, this kind of

integration coincides with a (nonseasonal) unit root at the zero spectral frequency.

For all simulations T = 800 draws from the respective processes are generated, discarding

the first 500 draws due to burn-in and then the remaining T = 300 draws are used to

conduct k-step ahead forecasts for k = 1, ...,8.15 This procedure is repeated N = 100

times in order to approximate the expectations in (5.15). For each of the 100 trajectories

the above sampling algorithm is run 5500 times, discarding the first 500 draws, and then

the respective posterior predictive means of yT+k, k = 1...K are calculated.16 For the

classical forecasts of the (S)AR model and the PMEANS model the Kalman filter and the

15All initial values are chosen to be fixed and equal to zero.
16The MC integration steps to obtain the marginal posterior predictive distributions of the yT+k, k = 1...8,

are conducted on a grid of 100 points.
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least squares projections are used, respectively.

In figure 5.1 the (cumulated) PMSEs for each of the three models are shown for de-

sign 1 (left panel) and design 2 (right panel). As can be recognized from the left panel
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Figure 5.1.: (Cumulated) PMSEs for 2-years ahead forecasts (Design 1 and 2).

the PAR(1) model slightly dominates the AR(1) model and clearly beats the PMEANS

model for each considered forecasting period. The associated average PMSEs (with av-

erage MAPEs in parentheses) of the three models are 1.73 (0.20) for the PAR(1) model,

1.76 (0.21) for the AR(1) model and 1.94 (0.23) for the PMEANS model. To check if

the median loss-differentials are significantly different from zero the Bayesian sign test

is applied using the prior distributions discussed in section 5.4.1. Further the classical

sign test and the classical Wilcoxon-Signed Rank (WSR) test as proposed in Diebold and

Mariano (1995), are applied here for reasons of comparison with the Bayesian testing

results.17 Table 5.1 shows that the median loss-differentials of the PAR-AR and AR-

PMEANS comparisons are not significantly different from zero according to the Bayesian

sign tests and also according to the classical tests shown in the last two columns of table

5.1. For the latter two tests a 10% nominal level of significance is assumed due to the

short loss-sequences (T = 12).18 In contrast, the PAR-PMEANS differentials are always

17Where it is shown in Diebold and Mariano (1995) that the latter test has slightly more power in small
samples than the former.

18For each loss differential series a Runs test for randomness is conducted, where rejection of the null of
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significant. However the classical sign test indicates the weakest evidence against the null,

which could be a consequence of its lack of power as reported by Diebold and Mariano

(1995). Looking at the results of the Bayes tests we recognize a similar behavior of the

test in terms of power as described in section 5.4.1, i.e. that the results under the three

prior distributions are quite comparable if not identical.19

Further the joint hypothesis H0 : π1,2 = π1,3 = 0.5 is tested, i.e. a multiple comparison of

models is conducted, see Berry and Hochberg (1999). Following the strategy outlined in

section 5.4.1, the overall null is rejected if at least one of the single tests rejects the null.

According to the results of simulation experiment 1 it can be concluded that in case of

a stationary PAR(1) process, the three models differ significantly in terms of forecasting

accuracy. However there is no significant deterioration in accuracy when using a more

parsimonious AR model instead of a PAR model.20

Table 5.1.: Test results - Design 1 / DGP: PAR(1)

Comparisons Jeffreys’ Bayes’ Be(1.01,1.01) Sign test (pv.) WSR test (pv.)

1-2 0.7852 0.7110 0.7110 1.0000 0.3125
1-3 0.2298 0.2195 0.2195 0.0703 0.0546
2-3 0.5638 0.4961 0.4961 0.2891 0.1094

’1’: PAR(1), ’2’: AR(1), ’3’: PMEANS, ’pv.’: p-value

Next we turn our attention to the results of simulation experiment 2 in which the forecast-

ing performances in case of nonstationary PAR(1) data are analyzed. From the right panel

of figure 5.1 it can be recognized that in case of PIAR(1) data, the PAR(1) model clearly

dominates the other two competitors. Note that the PMEANS model can not be seen in

figure 5.1 due to very large PMSE values. The associated average PMSEs (and MAPEs)

of the three models in this case are: 2.18 (0.42) for the PAR(1) model, 2.47 (0.42) for the

AR(1) model and 9.58 (1.48) for the PMEANS model.

In table 5.2 the test results for comparing predictive accuracy are summarized. All loss-

’randomness’ would be problematic with regard to the iid-assumption of the used tests, see Diebold and
Mariano (1995). Here no further evidence for nonrandomness of the sequences has been found.

19Under Haldane’s prior all posterior probabilities are equal to one.
20Similar results have been obtained for other parameterizations of the DGP in (5.21) and also for a periodic

moving average process of order one as DGP. The average PMSEs in the latter case are 1.22 for a PAR(1)
model, 1.23 for an AR(1) model and 1.26 for a PMEANS model.
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differentials of the pairwise comparisons are significant.21 Hence the results suggest, that

in contrast to the results of design 1, there is a significant deterioration in forecasting

accuracy when incorrectly using a nonperiodic AR model or a deterministic PMEANS

model in the case of periodic nonstationarity.

Table 5.2.: Test results - Design 2 / DGP: PIAR(1)

Comparisons Jeffreys’ Bayes’ Be(1.01,1.01) Sign test (pv.) WSR test (pv.)

1-2 0.0195 0.0339 0.0342 0.0078 0.0078
1-3 0.0195 0.0339 0.0342 0.0078 0.0078
2-3 0.0195 0.0339 0.0342 0.0078 0.0078

’1’: PAR(1), ’2’: AR(1), ’3’: PMEANS, ’pv.’: p-value

In simulation design 3 trajectories are generated according to a quarterly SAR(1) process

in order to simulate also annual lag structures. Finally, with regard to the empirical anal-

ysis of the next section also more general dynamics, given by a SARMA(1,0)× (1,1)

process, are simulated in design 4. In design 3 and 4 the nonperiodic SAR(MA) models

are identically specified as the respective DGPs and compared with a PAR(4) model and

a PMEANS model. The stochastic process used in design 4 is parameterized as follows:

yt =
4

∑
s=1

µsDs,t +φ1yt−1 +φ4yt−4 + ut−θ4ut−4 , ut
i.i.d.∼ N(0,1) (5.22)

with φ1 = 0.35, φ4 = 0.45, θ4 = 0.35 and µs = 0.5, ∀s, where for simulation design 3 the

same specification is chosen except that φ1 and θ4 are set equal to zero.

For the simulation experiments 3 and 4 the corresponding PMSEs are shown in figure

5.2. From there it can be observed that in case of quarterly data, generated by a constant-

parameter SAR(1) process, a PAR(4) predicts the data almost equally well as the (true)

SAR(1) model. The PMSEs (MAPEs) of experiment 3 are 1.22 (0.81) for the PAR(4)

model, 1.21 (0.83) for the SAR(1) model, and 1.35 (0.93) for the PMEANS model. Table

5.3 summarizes the test results. The test findings are similar to those of design 1, namely

that there is no significant deterioration in predictive accuracy when estimating a PAR(4)

model instead of the (correct) quarterly SAR(1) model. However estimating a purely

21The corresponding results under Haldane’s prior are 0.0077 for all three comparisons.
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Figure 5.2.: (Cumulated) PMSEs for 2-years ahead forecasts (Design 3 and 4).

Table 5.3.: Test results - Design 3 / DGP: SAR(1)

Comparisons Jeffreys’ Bayes’ Be(1.01,1.01) Sign test (pv.) WSR test (pv.)

1-2 0.5638 0.4961 0.4953 0.2890 0.1953
1-3 0.0195 0.0339 0.0343 0.0078 0.0078
2-3 0.0195 0.0339 0.0343 0.0078 0.0078

’1’: PAR(4), ’2’: SAR(1), ’3’: PMEANS, ’pv.’: p-value

deterministic model and thus neglecting the stochastic structure of the data results in a

significant loss in accuracy, which would lead to a rejection of the overall null of predictive

concordance of the three models. Finally, from the right panel of figure 5.2, it can be

recognized that if the data are generated by a quarterly SARMA(1,0)× (1,1) process,

a PAR(4) model produces slightly higher mean squared losses than the true SARMA

model. However the median loss differences between the PAR and the SARMA model

are not significant. The corresponding average PMSEs (MAPEs) of this experiment are

1.29 (2.24) for the PAR model, 1.26 (2.09) for the SARMA model and 1.64 (3.25) for the

PMEANS model.

In sum, both a PAR model and a constant-parameter SAR(MA) model perform similarly

in terms of squared error loss. Both clearly outperform a deterministic PMEANS model
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Table 5.4.: Test results - Design 4 / DGP: SARMA(1,0)× (1,1)

Comparisons Jeffreys’ Bayes’ Be(1.01,1.01) Sign test (pv.) WSR test (pv.)

1-2 0.5638 0.4961 0.4953 0.2890 0.2500
1-3 0.0195 0.0339 0.0343 0.0078 0.0078
2-3 0.0195 0.0339 0.0343 0.0078 0.0078

’1’: PAR(4), ’2’: SARMA(1,0)× (1,1), ’3’: PMEANS, ’pv.’: p-value

when the data exhibit stochastic seasonality. In the context of periodically integrated data

a PAR model provides significantly more accurate forecasts than its competitors. So far,

this suggests the usefulness of the proposed periodic forecasting model even in the case

of nonperiodic data.

In the next section the model averaged PAR (BMA-PAR) model with a possible break is

used to predict monthly unadjusted unemployment rates of Germany.

5.5. Forecasting German monthly unemployment

data

Next the simulated out-of-sample forecasts using the three candidate models of the last

section are conducted to evaluate the accuracy in predicting monthly unemployment rates

of the 16 German federal states and of East- and West-Germany. Furthermore the pre-

dictive performance of a BPAR model, using the model averaged predictive distribution

in (5.10) for prediction, is compared to a BPAR model using the conditional predictive

distribution (5.9), where Mi is obtained through a model selection step. Finally the BMA-

PAR model is used to conduct 12-months ahead out-of-sample forecasts of these series.

In brief, for the German monthly unemployment rates the empirical results show that the

BPAR model outperforms a SARMA and a PMEANS model in terms of squared and ab-

solute error loss. Furthermore, the subsequent findings suggest superiority of the BMA

approach over a (conditional) model selection approach and are thus in accordance with

the theoretical results in the literature, cf. Raftery and Zheng (2003).

The data set consists of monthly unadjusted unemployment rates of the 16 federal states
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of Germany as well as the aggregated series for West and East Germany for the sample

period 01/1991 to 02/2013. As in the simulation exercises of the last section the Bayesian

forecasting results are compared to a seasonal AR model and seasonal (or periodic) means

model. The untransformed series together with their sample (partial) autocorrelation func-

tions and spectral densities are depicted in figures F.32-F.49 (see appendix F). From there

it can be observed that most of the series exhibit strong autocorrelation, which for some

series declines periodically, or shows up seasonally varying swings. Further, when look-

ing at the periodograms in the lower right panels, it can be recognized that for most series

a great amount of variation can be attributed to the zero spectral frequency, which indi-

cates the existence of a nonseasonal stochastic trend component. Also for many of the

series we observe clear peaks in the spectral density around monthly frequencies, which

in addition suggests the existence of a seasonal component. Due to these results and the

results of unreported unit root tests, the original series are transformed by applying first

differences. In order to get a clearer picture of the seasonal variation in the data, the

monthly boxplots for each country given in figures F.50-F.58 are examined (see appendix

F). From a visual inspection of the boxplots it can be concluded that most of the con-

ditional, i.e. monthly, sampling distributions are relatively homogenous, which would

advocate the use of constant-parameter models. As counterexamples the series of Lower

Saxony and of Bavaria can be considered.

In order to check the data for the presence of periodic forms of serial dependency of order

one, the Bayesian forward and backward recursive F-tests for no periodicity, introduced

in section 4.5, are applied. For an ease of reference these procedures are restated in

the following.22 First estimate an unrestricted PAR(1) model with seasonal intercepts,

using the respective posterior means23 as point estimates and then use these estimates to

test the null of no periodicity, i.e. H0 : φs = φ ,∀s, against the alternative of periodicity

H1 : φs 6= φ ,∃s. Note that the null hypothesis implies a nonperiodic AR(1) model, whereas

under the alternative a PAR(1) model is assumed. The null can equivalently be tested by

considering H0 : R ·φ = 0, with R = [IS−1, −ι ] an (S−1)×S matrix of linear contrasts,

IS−1 the identity matrix and ι an (S− 1)-vector of ones, where d = dim(B). Given

normality of the innovations and the prior assumptions stated in section 5.2.1, a Bayesian

test can be conducted based on an F(ν1 = S−1, ν2 = T − p−d) posterior distribution,

22See also Boswijk and Franses (1996) for a similar strategy within a classical framework.
23These can be obtained analytically.
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see appendix G.5 for details. To check the robustness of the results a recursive testing

procedure is adopted, using the Bayesian F-test, denoted by FPAR, for rolling subsamples

of the original data. The F-test when one year of data is added and removed successively

is then called a Bayesian forward and backward recursive FPAR test, respectively. Note

that for the forward recursive test the first time window reaches from 1/1991 to 12/1994

and the final window from 1/1991 to 2/2013, i.e. the whole time period. In contrast, for

the backward recursive test the first time window is from 1/1991 to 2/2013, where the last

window includes the period from 1/2009 to 2/2013. The corresponding test results for

each region are shown in table C.1. The null of no periodicity is rejected in the majority

of cases. In contrast to the descriptive results from the boxplots, these findings suggest

the appropriateness of a periodic model for the prediction of German unemployment data.

In the MCMC algorithm used to generate the forecasts of the model averaged BPAR(p)

model the admissible parameter region of the model indicators are restricted to mmax =

1 and pmax = 12, where the latter is chosen in order to capture also annual dynamics.

Analogously to the BPAR models, one structural break in the deterministic components of

the SARMA and the periodic means model is allowed. The identification of the break date

is accomplished by computing the Bayesian information criterion (BIC) (see Schwarz

(1978)) for all possible break points omitting the first and last ten percent of the sample

in order to preclude possible end point problems, and then the minimizing date is used as

a change point.

What becomes evident from a first visual inspection of the original series (see figures

F.32-F.49) is an instantaneous increase in the level of most of the series around the year

2005. This shift is a consequence of the so called ’Hartz IV’ labor market reform, which

took effect by January 2005.24 A fixed step-dummy variable in order to control for this

event is not used here, because the considered models only allow for one structural break

and it could be possible, and in fact this has been the case for some series, that there

is another date that is associated with a lower information criterion. However for the

majority of the federal states the date 01/2005 minimizes the BIC and hence is taken as

the final break date. The order specification of the SARMA(p, q)× (P, Q)12 model

24This reform brought together the former unemployment benefits for long term unemployed (’Arbeit-
slosenhilfe’) and the former welfare benefits (’Sozialhilfe’). That is, since January 2005 these two groups
have both been considered as ’unemployed’. This simple change in ’measurement’ of the unemployment
rate induced the instantaneous level shift for most of the series.
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is conducted by computing the BIC for all possible model combinations (p, q, P, Q),

where pmax = qmax = Pmax = Qmax = 2 is chosen in order to obtain more parsimonious

specifications. For the SARMA model specifications the usual iterative three-stage strat-

egy: identification, estimation, diagnostic checking is employed. Estimation is done by

conditional maximum likelihood and the multistep forecasts are conducted by using the

Kalman filter.

In table C.2 and C.3 (see appendix C) the average PMSEs and MAPEs of the 1-year

ahead in-sample predictions are reported. For the computations the last 12 observations

are saved for comparison and the preceding observations are then used to calculate the

forecasts for each model. The results support the PAR model in terms of forecasting ac-

curacy. More precisely, for 9 (10) out of the 18 series the BMA-PAR model has the lowest

average loss in terms of the PMSE (MAPE). In only 4 (4) out of the 18 series the more par-

simonious SARMA model is superior, whereas the deterministic periodic means model in

only 4 (3) cases provides more accurate forecasts with respect to the PMSE (MAPE) than

the other forecasting models. In order to check if the loss-differentials are significantly

different from each other, the Bayesian sign test of section 5.4.1 with a Be(1.01,1.01)

prior is used. Here for each of the 18 series pairwise comparisons using the Bayesian sign

test are conducted. Given model 1 has exhibited the lowest average loss, the overall null

H0 : π1,2 = π1,3 = π1,4 = 0.5 is rejected, if at least one of the three pairwise comparisons

is rejected. In advance a Runs test for randomness and also a Box-Ljung test for serial

correlation of order one are applied. Here for most of the considered loss-differential

sequences the iid-assumption of the sign test is invalidated. For this reason, the strategy

outlined in Diebold and Mariano (1995), p.255, is adopted, namely to partition the loss-

differential sequence of two models i and j into k subsequences {di j,1,di j,1+k,di j,1+2k, ...},
{di j,2,di j,2+k,di j,2+2k, ...}, ...,{di j,k,di j,2k,di j,3k, ...} and then to conduct the sign test on

each of these subsequences. In the present case of four competing models, H0 : πi j = 0.5

is rejected if any of the three (sub-) tests could reject the null. In the case of serial de-

pendence of order (k−1) these ’thinned out’ subsequences should not exhibit any further

serial correlation. For the German unemployment data k = 2 has shown to be sufficient

to achieve this goal.

As already emphasized at the beginning of this section, interest centers here on capturing

the effect of model averaging on the forecasting accuracy compared to a model selection
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strategy. Therefore, in the last columns of tables C.2 and C.3, also the PMSE and MAPE

values of a conditional BPAR model, which is selected by using BIC, are shown.25 From

the tables it can be observed that for 6 (6) out of the 18 series a conditional BPAR model

is superior, however only if the model averaged BPAR model is not considered.26 When

the BMA-PAR model is also taken as a competitor, the model selected BPAR model

has only in 1 (1) out of the 18 cases the (statistically significant) lowest average loss

compared to the other three forecasting models. Hence this finding is in accordance with

the theoretical results stated in the BMA literature, cf. Raftery and Zheng (2003), namely

that BMA point estimates minimize the predictive MSE.

Finally, the BMA-PAR model is used to conduct 12-months ahead out-of-sample predic-

tions for the period 03/2013 - 02/2014. In appendix C the BMA posterior means of yT+k,

for k = 1...12, together with the corresponding Bayesian standard errors and the 95%

HPD prediction error intervals are shown (see tables C.4-C.12). For illustration purposes,

the original unemployment series of West-Germany together with the predicted values

(denoted by ’ỹT+k’) is shown in figure F.59. What can be seen from the figure is that the

predicted values as well as the HPD intervals favorably render the seasonal variation in

the data. Furthermore in figures F.60-F.62 the underlying model averaged marginal poste-

rior predictive densities of yT+k, k = 1...12, for West-Germany are depicted, where these

densities are computed on a grid of {y(g)T+k, g = 1...100} values. For the prediction first

differences are applied to the original series in order to remove any (stochastic or deter-

ministic) trends, and then the predicted values are transformed back to levels. It should

be noted, that for nearly all federal states the corresponding model posterior probability

mass function, f (Mi|y), assigns decreasing posterior weight to models with higher lag

orders, with or without a structural break.27 This is in accordance with the results of other

authors, see Osborn and Smith (1989), Franses and Koop (1997), inter alia, and also with

own experience, namely that PAR models of low order often provide a good fit to many

economic data sets.

25In this context, note the following useful approximate relationship between the BIC and the posterior
probability mass function of model Mi: f (Mi| data) ≈ exp (−1/2 BICi)/∑

I
j=1 exp (−1/2 BIC j), which

can be derived by applying a Laplace approximation (see Tierney and Kadane (1986), Tierney et al.
(1989)) to the joint posterior density.

26Most of these six loss-differences are however not statistically significant.
27The results for the 18 series are omitted here.
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5.6. Concluding remarks

A Bayesian forecasting approach for the class of periodic autoregressive models has been

presented. Since the model admits one structural break in the process mean at an unknown

point in time, this introduces an additional nuisance parameter in the posterior distribu-

tion, which can not be integrated out analytically. Therefore an MCMC approach, based

on data augmentation, is proposed in order to sample from the joint posterior predictive

density, under a specific model. Where the latter can be characterized by the number

of autoregressive lags and the number of structural breaks. In order to capture possi-

ble uncertainty induced through a model selection step, a model averaging approach for

prediction has been presented. Instead of working with conditional, i.e. model-specific,

predictive distributions, the model posterior probability mass function has been utilized to

obtain model averaged posterior predictive densities. Where the posterior means of these

mixture distributions have been used as point forecasts of the unknown future values.

In a Monte Carlo study, Bayesian PAR models have been compared with SARMA and

seasonal means models in terms of forecasting accuracy. In particular, the simulation

results lend support to the use of PAR models in the case of periodic unit roots. In or-

der to test if two competing forecasting models differ significantly with respect to their

predictive accuracy, a Bayesian sign test has been proposed. In an empirical application

the model averaged BPAR model has been used to forecast monthly unemployment rates

of the 16 federal states of Germany and of East- and West-Germany for one year ahead.

In simulated-out-of-sample forecasts the BMA-PAR model has clearly outperformed a

SARMA and a periodic means model. In addition, a comparison of the forecasting accu-

racy of the BMA-PAR model and a model-selected BPAR model has demonstrated how

model averaging can improve predictive accuracy.

Overall the results suggest that periodic autoregressive models provide a flexible alter-

native to commonly used seasonal models like SARMA and seasonal means models,

particularly in the case of periodic unit roots, i.e. when seasonality might change over

time. Moreover it has been demonstrated that combining evidence from different fore-

casting models by means of a mixture posterior predictive distribution helps to improve

forecasting accuracy. However here the predefinition of the model space, i.e. the choice

of pmax and mmax, might be crucial. One drawback of PAR(MA) models is their great
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number of parameters, which gets more inflated when choosing a model averaging ap-

proach. For future work the above model specification could be made more parsimonious

by allowing for heterogenous autoregressive lag orders ps, s = 1...S. Further, by treating

each individual lag Ds,t · yt−i, s = 1...S, i = 1..ps, as a variable whose inclusion is con-

trolled, for example by a stochastic search variable selection approach (cf. George et al.

(1993), So et al. (2006), Chen et al. (2011)), the number of parameters could substan-

tially be reduced. Since the inclusion of irrelevant lags introduces additional noise into

the forecasting process (cf. Clark and West (2007)), this approach might not only reduce

the number of parameters but also increase the forecasting accuracy.
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6. Final summary and discussion

This dissertation presents new evidence on the use of Bayesian methods for unit root test-

ing and forecasting of (non)seasonal time series data. In the context of nonseasonal data

(see chapter 2), a Bayesian unit root testing approach for the case of multiple structural

breaks is presented. Here the number of structural breaks, their location, and also the

number of autoregressive lags in the test regression are treated as random variables. The

Bayes test proceeds by first identifying the most likely model, and then unit root infer-

ence is drawn conditional on this model specification. For the model selection a mixed

MCMC sampling approach is proposed, which allows to jump between parameter spaces

of varying dimension. As a sensitivity check with respect to the prior choice, the frequen-

tist risk functions for the posterior Bayes estimator of the long-run impact coefficient,

are simulated using different prior specifications. With the presented model selection

approach it is possible to identify the most likely candidate model through the approx-

imated joint posterior distribution of the number of autoregressive lags and the number

of structural breaks. This distribution captures the uncertainty induced by picking out

a particular model for inference and can further be utilized to compute model averaged

point estimates of the parameters of interest, e.g. the half lives of a shock. The results of

an empirical application, using annual unemployment rates of 17 OECD countries, indi-

cate that the only country with high posterior probability for unemployment hysteresis is

Greece, whereas Japan and Spain show slightly increased levels of persistence. Overall

the empirical analysis suggests that the majority of the considered OECD unemployment

rates are likely to follow a trend stationary process with possible level shifts.

In the second part of the thesis the focus is on unit root testing and forecasting of seasonal

time series data. Since in practice often time series of higher than annual frequency are

used, seasonal forms of nonstationarity can occur, and thus testing procedures for seasonal

unit roots are required. In this regard, a flexible class of seasonal time series models, able
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to capture changing seasonality, is the class of periodic autoregressive models. In chapter

4, a Bayesian testing strategy to test for a periodic unit root with a possible mean break

at an unknown point in time is presented. For this test the posterior density of the prod-

uct of periodic autoregressive coefficients is required. Here an approximation, based on

a first order Taylor series expansion, and a direct sampling approach, based on the joint

posterior density of the PAR coefficients, are presented. Further the marginal posterior

densities of the PAR(1) coefficients, φs, s = 1...S, are derived and used to test the hypoth-

esis of a Random Walk in season s. In addition, in order to test for a real-valued seasonal

and a nonseasonal unit root, a Bayesian F-test is proposed. All unit root tests presented in

chapter 4 are based on model averaging techniques so that it is possible to combine evi-

dence from different models, here: a PAR(1) model with and without a structural break.

As a pretest a Bayesian recursive F-test to test for the presence of periodic variation of

order one in the data is proposed. In an empirical analysis these methods are applied to

test for unemployment hysteresis in the monthly unadjusted unemployment rates of the

17 OECD countries used in the empirical section of chapter 2. The results show that most

of the monthly unemployment rates exhibit unit root behavior. Among the four countries

having the highest posterior probabilities of a periodic unit root are Greece, Ireland, Spain

and the UK. Moreover many of these series are driven by a nonperiodic stochastic trend,

which is implied by a zero frequency unit root.

In contrast to the results of chapter 2, the empirical results of chapter 4 suggest the pres-

ence of a stochastic trend in the OECD unemployment rates. However it should be noted

that although the same countries have been considered, the analysis of chapter 4 has been

performed with monthly data, whereas in chapter 2 yearly data have been used. More

importantly, the statistical models in both chapters are quite different, since in chapter 2

nonperiodic autoregressive models of possibly high order and multiple breaks have been

considered, whereas in chapter 4 periodic autoregressive models of order one with at

most one break have been used. In this respect, there is a trade-off often experienced

in practice between allowing for a (possibly large) number of structural breaks and the

unit-root-evidence found in the data. In other words, by allowing for breaks in the de-

terministic part of a stochastic process some of the sample variation is captured by the

additional deterministic terms and thus the variation attributed to the stochastic part of the

process is reduced.
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In chapter 5, a novel Bayesian forecasting approach for the class of periodic autoregres-

sive models is presented. For this class the joint posterior predictive distribution of the

multistep ahead forecasts is derived. Similar to the testing approach of chapter 2, the

periodic forecasting model in chapter 5 treats the number of autoregressive lags, the oc-

currence of a break and the corresponding break date as unknown random parameters.

However, instead of working with conditional, i.e. model-specific, predictive distribu-

tions, the model posterior probability distribution is utilized to obtain model averaged

posterior predictive densities. The posterior means of these mixture distributions are

used as point forecasts of the unknown future values. In an empirical application, using

monthly unadjusted unemployment rates of the 16 federal states of Germany and of East-

and West-Germany, it is demonstrated that model averaging helps to improve forecasting

accuracy compared to a conditional approach. To test if two forecasting models differ

significantly with respect to their predictive accuracy, a Bayesian sign test, using several

prior specifications as a sensitivity check, is proposed. Since the model admits one struc-

tural break at an unknown point in time, this introduces an additional nuisance parameter

in the joint posterior distribution which can not be integrated out analytically. Therefore

an MCMC approach, based on data augmentation, is proposed in order to sample from

the joint posterior predictive density, under a specific model.

In each of the three articles the presented Bayesian methods have been compared with

classical competitors using simulated and real data. Overall the results suggest that

Bayesian methods may often provide useful alternatives to classical methods, as for ex-

ample in the case of unit root testing with an unknown number of structural breaks and

associated break dates. This may particularly be the case when some regularity conditions

under which the classical tests are derived become invalid, e.g. due to short time series,

whereas Bayesian probability statements stay the same irrespective of the sample size.

For example, under a flat prior the marginal posterior distribution of the long-run impact

coefficient in an Augmented Dickey-Fuller regression is a Student-t density, irrespective

of the sample size. Moreover, as discussed in section 1.2, this distribution stays the same

for stationary and also nonstationary data. By using a Bayesian frame of reference it is

straightforward to assign positive prior probabilities to the members of a predefined set of

candidate models and then to obtain the (approximate) model posterior probability distri-

bution. The latter can then be used for model selection or model averaging. With regard to

the prediction of future data, using monthly unemployment data of Germany, it is shown
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that model averaging can improve forecasting accuracy.

In a Bayesian framework the influence of the prior distribution becomes more pronounced

in small samples and thus problems of prior elicitation have to be taken more seriously.

Throughout this dissertation normally distributed innovations have been assumed in or-

der to utilize some analytical results based on conjugate prior distributions. This might

be restrictive for many types of data, as for example financial data, which exhibit some

well known stylized facts like heavy tails, leptokurtosis and volatility clustering. Another

critical assumption concerns the functional form of the considered models, namely the

linearity, and also the assumed form of the structural breaks. In this thesis only breaks

in the process mean have been allowed. However controlling for breaks in the variance

may also be important in the context of unit root testing (cf. Kim et al. (2002), Cavaliere

(2005b)).

One route for future work is to focus on Bayesian unit root testing in nongaussian, nonlin-

ear time series models. Here the multi-regime heteroscedastic SETAR(1) model presented

in So et al. (2006) and used in Chen et al. (2012) in order to test for local nonstationarity

could be extended to capture higher order dynamics in the mean equation. Moreover the

presented methods could be extended to allow for variance breaks at unknown points in

time and their effects on the outcomes of Bayesian unit root tests could be examined. In

this dissertation point hypotheses have been tested by using a mixed prior distribution,

which assigns a positive prior probability to the singleton under the null (cf. Berger and

Delampady (1987)). As a robustness check of the presented results, the Full Bayesian

Significance Test introduced by Pereira and Stern (1999) (see also Pereira et al. (2008))

for testing precise hypotheses could be used.
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A. Tables - chapter 2

Table A.1.: Posterior probabilities of the number of structural breaks

Number of breaks
Country Years 0 1 2 3 4 5 AIC BIC
Australia 1966-2010 0.194 0.077 0.117 0.238 0.254 0.120 4 4
Belgium 1983-2010 0.047 0.214 0.136 0.173 0.308 0.122 4 4
Canada 1976-2010 0.098 0.165 0.136 0.178 0.266 0.158 5 3

Denmark 1983-2010 0.091 0.050 0.124 0.254 0.325 0.156 5 4
Finland 1963-2010 0.051 0.041 0.360 0.217 0.221 0.111 5 4
France 1983-2010 0.062 0.043 0.405 0.254 0.171 0.066 5 4

Germany 1970-2010 0.188 0.109 0.259 0.241 0.142 0.062 4 3
Greece 1983-2010 0.061 0.143 0.203 0.255 0.239 0.101 4 4
Ireland 1983-2010 0.096 0.037 0.145 0.305 0.286 0.132 5 5
Italy 1970-2010 0.018 0.035 0.191 0.416 0.260 0.080 3 3
Japan 1968-2010 0.041 0.115 0.187 0.425 0.055 0.181 4 5

Netherlands 1971-2010 0.086 0.037 0.367 0.239 0.171 0.101 4 3
Norway 1972-2010 0.121 0.070 0.234 0.258 0.219 0.100 4 4
Spain 1972-2010 0.039 0.089 0.144 0.244 0.316 0.168 4 4

Sweden 1963-2010 0.034 0.070 0.167 0.366 0.218 0.145 4 3
UK 1984-2010 0.053 0.086 0.090 0.211 0.355 0.206 4 5
US 1960-2010 0.155 0.117 0.106 0.300 0.232 0.090 4 3

’AIC’ and ’BIC’: Akaike’s and Schwarz’s information criterion.
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Table A.2.: Posterior probabilities of the autoregressive lag order

Number of lags
Country 1 2 3 4 5 AIC BIC PACF
Australia 0.816 0.081 0.031 0.019 0.054 2 2 1
Belgium 0.699 0.128 0.047 0.027 0.099 1 1 2
Canada 0.196 0.323 0.194 0.188 0.099 1 2 2

Denmark 0.809 0.044 0.031 0.032 0.084 5 1 1
Finland 0.151 0.368 0.207 0.069 0.205 3 2 2
France 0.825 0.069 0.030 0.017 0.059 2 1 1

Germany 0.158 0.421 0.172 0.103 0.147 4 2 1
Greece 0.769 0.052 0.032 0.028 0.119 5 1 1
Ireland 0.719 0.084 0.046 0.025 0.126 1 1 1
Italy 0.835 0.041 0.027 0.022 0.075 1 1 1
Japan 0.719 0.076 0.045 0.026 0.134 4 1 1

Netherlands 0.201 0.422 0.201 0.071 0.105 5 2 2
Norway 0.474 0.238 0.097 0.066 0.126 2 2 2
Spain 0.094 0.319 0.235 0.237 0.116 2 2 2

Sweden 0.631 0.144 0.072 0.043 0.110 3 2 2
UK 0.663 0.070 0.080 0.077 0.111 5 1 1
US 0.612 0.195 0.071 0.035 0.087 2 2 2

’AIC’, ’BIC’ and ’PACF’: Akaike’s and Schwarz’s information criterion and
the (sample) partial autocorrelation function.
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Table A.3.: Bayesian break date estimates

Break dates
Country T 1st 2nd 3rd 4th 5th
Australia 45 1974 1981 1990 1993 -
Belgium 28 1988 1992 1999 2001 -
Canada 35 1981 1985 1990 1997 -

Denmark 28 1988 1993 2005 2008 -
Finland 48 1990 1993 - - -
France 28 1992 1999 - - -

Germany 41 1980 1990 - - -
Greece 28 1992 1999 2008 - -
Ireland 28 1994 2008 2009 - -
Italy 41 1976 1982 1999 - -
Japan 43 1992 2002 2008 - -

Netherlands 40 1980 1983 - - -
Norway 39 1987 1993 2005 - -
Spain 39 1991 1993 2007 2009 -

Sweden 48 1991 1997 2008 - -
UK 27 1987 1990 1993 2008 -
US 51 1974 1983 2008 - -

Maximum a-posteriori (MAP) point estimator of TB used.
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Table A.4.: Classical Bai and Perron (2003) break date estimates

Break dates
Country T 1st 2nd 3rd 4th 5th
Australia 45 1974 1981 1990 1998 -
Belgium 28 1988 1993 1999 2001 -
Canada 35 1981 1986 1991 1997 -

Denmark 28 1985 1988 1993 1996 2008
Finland 48 1975 1991 1998 - -
France 28 1992 1999 - - -

Germany 41 1975 1981 1992 - -
Greece 28 1992 1997 2000 2005 2008
Ireland 28 1994 1998 2006 - -
Italy 41 1976 1983 2001 - -
Japan 43 1974 1992 1998 2004 -

Netherlands 40 1981 1987 1996 - -
Norway 39 1981 1988 1996 2005 -
Spain 39 1978 1981 1992 1998 2007

Sweden 48 1991 1998 - - -
UK 27 1987 1991 1994 1997 2008
US 51 1974 1986 2006 - -
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Table A.5.: Posterior point estimates θ̂ and half lives under different priors

Country θ̂Je f f θ̂Norm θ̂M HLNorm HLM HLADF

Australia 0.59 0.59 0.65 1.30 1.63 5.05
Belgium 0.36 0.36 0.43 0.67 0.83 1.36
Canada 0.51 0.51 0.43 1.03 0.82 2.21

Denmark 0.60 0.60 0.61 1.35 1.41 2.89
Finland 0.77 0.76 0.78 2.58 2.78 6.58
France 0.33 0.32 0.36 0.61 0.67 3.14

Germany 0.72 0.71 0.70 2.05 1.94 2.64
Greece 1.07 0.96 0.81 15.43 3.33 2.92
Ireland 0.80 0.80 0.65 3.02 1.61 5.87
Italy 0.43 0.43 0.44 0.82 0.85 4.73
Japan 0.89 0.88 0.88 5.60 5.32 12.44

Netherlands 0.88 0.87 0.79 5.11 2.93 4.83
Norway 0.60 0.60 0.47 1.34 0.93 5.84
Spain 0.91 0.90 0.88 6.58 5.42 7.06

Sweden 0.62 0.61 0.61 1.41 1.41 7.49
UK 0.76 0.76 0.64 2.48 1.54 3.15
US 0.64 0.63 0.56 1.50 1.20 2.25

’Jeff’: Jeffreys prior, ’Norm’: Normal prior, ’M’: Model averaged,
’ADF’: Classical ADF test.
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Table A.6.: Posterior probabilities of a unit root and tail probabilities

P(θ = 1|γ̂ , k̂,y) P(θ ≥ 0.975|γ̂ , k̂,y) P(T ≤ tad f |θ = 1)
Country Normal Jeffreys Normal Jeffreys ADF test
Australia 0.00 0.00 0.00 0.00 0.92
Belgium 0.00 0.00 0.00 0.00 0.39
Canada 0.00 0.00 0.00 0.00 0.22

Denmark 0.00 0.00 0.00 0.00 0.43
Finland 0.01 0.01 0.00 0.00 0.55
France 0.00 0.00 0.00 0.00 0.60

Germany 0.00 0.00 0.00 0.00 0.47
Greece 0.84 0.93 0.45 0.81 0.33
Ireland 0.03 0.03 0.00 0.01 0.97
Italy 0.00 0.00 0.00 0.00 0.74
Japan 0.25 0.25 0.02 0.05 0.35

Netherlands 0.19 0.19 0.02 0.03 0.33
Norway 0.00 0.00 0.00 0.00 0.57
Spain 0.05 0.05 0.01 0.01 0.48

Sweden 0.00 0.00 0.00 0.00 0.32
UK 0.01 0.01 0.00 0.00 0.57
US 0.00 0.00 0.00 0.00 0.43
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B. Tables - chapter 4

Table B.1.: Testing for no periodicity

Country FPAR - stat. p - val.

Australia 0.90 0.54
Belgium 0.96 0.48
Canada 1.16 0.32

Denmark 2.07 0.03
Finland 0.51 0.90
France 0.67 0.77

Germany 1.71 0.08
Greece 3.62 0.00
Ireland 0.67 0.77
Italy 7.90 0.00
Japan 1.01 0.44

Netherlands 1.73 0.07
Norway 0.86 0.58
Spain 1.16 0.32

Sweden 2.02 0.03
UK 1.07 0.39
US 0.54 0.87

’FPAR’: F-statistic to test the null of no periodicity,
i.e. H0 : φs = φS, for s = 1...S−1.
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Table B.2.: Posterior probabilities of the number of breaks and the break dates

Number of breaks Number of breaks
Country f (m = 0|y) f (m = 1|y) T MAP

B BIC (m = 0) BIC (m = 1)

Australia 0.57 0.43 2009(1) -2.72 -2.35
Belgium 0.99 0.01 2001(7) -2.12 -1.79
Canada 0.99 0.01 2008(12) -2.31 -1.93

Denmark 0.99 0.01 2008(11) -2.65 -2.35
Finland 0.38 0.62 2009(1) -0.75 -0.41
France 1.00 0.00 2005(3) -3.19 -2.94

Germany 0.01 0.99 2006(12) -2.35 -2.08
Greece 0.03 0.97 2010(8) -0.62 -0.25
Ireland 0.00 1.00 2008(4) -2.31 -2.06
Italy 0.00 1.00 2003(11) -1.13 -0.82
Japan 1.00 0.00 2011(1) -3.08 -2.71

Netherlands 0.99 0.01 2005(7) -3.25 -2.93
Norway 1.00 0.00 2006(5) -3.51 -3.18
Spain 0.00 1.00 2008(3) -1.85 -1.64

Sweden 0.87 0.13 2000(12) -1.06 -0.76
UK 0.99 0.01 2008(4) -3.69 -3.36
US 0.99 0.01 2009(5) -2.64 -2.29

’ f ()’: Posterior probability of a model with(out) break. ’BIC’: Bayesian information criterion.
’TB’: Maximum a-posteriori (MAP) point estimate of the break date.
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Table B.3.: Bayesian and classical test results for a periodic unit root

Country Determ. P0 cond. P0 BMA Post. mean ρ ρ - 95% HPD τBF - stat.

Australia Both 0.47 0.43 0.20 [0.02 ; 0.64] -1.73
Belgium Drift 0.23 0.18 0.36 [0.17 ; 0.66] -2.37
Canada Both 0.52 0.47 0.40 [0.15 ; 0.85] -2.37

Denmark Drift 0.86 0.78 1.09 [0.84 ; 1.40] 0.67
Finland Both 0.01 0.00 0.15 [0.02 ; 0.40] -3.66
France Drift 0.72 0.58 0.74 [0.54 ; 1.01] -1.90

Germany Drift 0.82 0.86 0.84 [0.71 ; 1.00] 0.46
Greece Drift 0.94 0.95 0.70 [0.33 ; 1.23] 1.97
Ireland Drift 0.99 0.99 1.16 [1.04 ; 1.28] 2.87
Italy Drift 0.25 0.33 0.47 [0.23 ; 0.80] -2.53
Japan Drift 0.33 0.32 0.60 [0.31 ; 1.01] -1.85

Netherlands Both 0.80 0.79 0.90 [0.66 ; 1.19] -0.83
Norway Drift 0.66 0.62 0.79 [0.55 ; 1.13] -1.37
Spain Drift 0.99 0.99 1.23 [1.09 ; 1.38] 3.76

Sweden Drift 0.15 0.14 0.37 [0.13 ; 0.81] -2.56
UK Drift 0.98 0.98 1.13 [0.95 ; 1.35] 1.55
US Drift 0.88 0.86 0.96 [0.79 ; 1.15] -0.48

Notations: ’Determ.’ denotes the deterministic specification of the seasonal components included in the
model, i.e. periodic drifts, trends or both. ’P0 cond.’: denotes the posterior probability of the periodic unit
root null (conditional on a certain model). ’P0 BMA’: denotes the BMA result of the posterior probability
of the periodic unit root null (given the MAP estimate T MAP

B for the break point). ’ρ - 95% HPD’: denotes
the HPD interval of the sampled ρ-values. ’τBF -stat.’: denotes the τ test statistic of the classical Boswijk

and Franses (1996) test with -2.86 the 5% critical value.
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Table B.4.: Results of (non)seasonal unit root tests

Country F - stat. (+1) F - stat. (-1) p - val. (+1) p - val. (-1)

Australia 1.99 373.62 0.03 0.00
Belgium 1.30 512.10 0.22 0.00
Canada 1.28 807.19 0.23 0.00

Denmark 1.94 2759.99 0.04 0.00
Finland 4.44 43.62 0.00 0.00
France 0.93 1512.57 0.51 0.00

Germany 1.57 2030.56 0.11 0.00
Greece 4.20 541.72 0.00 0.00
Ireland 2.06 6929.18 0.03 0.00
Italy 4.58 490.83 0.00 0.00
Japan 1.17 570.45 0.30 0.00

Netherlands 1.64 2485.01 0.09 0.00
Norway 0.93 1394.06 0.51 0.00
Spain 1.95 9594.88 0.04 0.00

Sweden 2.36 280.79 0.01 0.00
UK 1.14 6094.98 0.33 0.00
US 0.52 5861.31 0.89 0.00

The reported F-statistics and corresponding p-values are obtained from BMA versions
of the tests. ’+1’ and ’-1’ denote the tests for a unit root at the zero and π-frequency, respectively.
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Table B.5.: 95% HPD intervals of the φs coefficients

Country φ1 φ2 φ3 φ4 φ5 φ6

Australia [0.77; 1.32] [0.73; 1.23] [0.47; 1.14] [0.65; 1.01] [0.82; 1.29] [0.77; 1.19]
Belgium [0.81; 1.23] [0.91; 1.26] [0.83; 1.15] [0.76; 1.08] [0.80; 1.14] [0.69; 1.04]
Canada [0.86; 1.17] [0.84; 1.13] [0.91; 1.18] [0.83; 1.10] [0.93; 1.20] [0.73; 0.98]

Denmark [1.04; 1.21] [0.87; 1.03] [0.97; 1.13] [0.88; 1.05] [0.88; 1.06] [0.93; 1.10]
Finland [0.55; 1.30] [0.40; 1.15] [0.35; 1.10] [0.45; 1.25] [0.30; 1.00] [0.20; 0.95]
France [0.92; 1.15] [0.89; 1.08] [0.86; 1.06] [0.82; 1.03] [0.83; 1.04] [0.84; 1.07]

Germany [0.81; 0.99] [0.97; 1.17] [0.95; 1.13] [0.93; 1.14] [0.93; 1.13] [0.86; 1.06]
Greece [0.85; 1.10] [0.86; 1.21] [0.65; 1.09] [0.84; 1.22] [1.04; 1.35] [0.71; 1.01]
Ireland [0.75; 1.15] [0.75; 1.10] [0.75; 1.05] [0.80; 1.00] [0.85; 1.05] [0.90; 1.05]
Italy [0.55; 1.00] [0.95; 1.35] [0.95; 1.30] [0.70; 1.05] [0.55; 0.95] [0.80; 1.25]
Japan [0.73; 1.09] [0.67; 1.06] [0.97; 1.36] [0.89; 1.22] [0.87; 1.18] [0.84; 1.14]

Netherl. [0.98; 1.16] [0.92; 1.08] [0.96; 1.12] [0.84; 1.00] [0.89; 1.06] [0.93; 1.10]
Norway [0.83; 1.06] [0.83; 1.06] [0.88; 1.12] [0.91; 1.15] [0.90; 1.13] [0.88; 1.10]
Spain [0.90; 1.12] [0.90; 1.06] [0.88; 1.06] [0.88; 1.02] [0.92; 1.02] [0.92; 1.04]

Sweden [0.56; 1.04] [0.64; 1.16] [0.64; 1.14] [0.90; 1.36] [0.72; 1.16] [0.66; 1.12]
UK [0.97; 1.09] [0.98; 1.12] [0.92; 1.04] [0.96; 1.09] [0.97; 1.09] [0.94; 1.07]
US [0.95; 1.08] [0.93; 1.05] [0.94; 1.06] [0.89; 1.02] [0.95; 1.08] [0.95; 1.08]

All HPD regions were computed using the respective model averaged posteriors of the φs coefficients.
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Table B.6.: 95% HPD intervals of the φs coefficients (Cont.)

Country φ7 φ8 φ9 φ10 φ11 φ12

Australia [0.73; 1.14] [0.83; 1.24] [0.81; 1.18] [0.80; 1.17] [0.62; 0.98] [0.71; 1.12]
Belgium [0.73; 1.11] [0.77; 1.13] [0.72; 1.09] [0.53; 0.92] [0.74; 1.20] [0.80; 1.25]
Canada [0.86; 1.14] [0.84; 1.12] [0.70; 0.98] [0.83; 1.16] [0.75; 1.07] [0.84; 1.17]

Denmark [0.83; 1.01] [0.91; 1.09] [0.96; 1.14] [0.95; 1.12] [0.93; 1.10] [0.92; 1.08]
Finland [0.51; 1.25] [0.40; 1.15] [0.15; 0.95] [0.50; 1.35] [0.40; 1.25] [0.25; 1.10]
France [0.83; 1.07] [0.92; 1.16] [0.81; 1.04] [0.87; 1.12] [0.92; 1.16] [0.84; 1.07]

Germany [0.87; 1.06] [0.95; 1.15] [0.99; 1.18] [0.94; 1.12] [0.86; 1.03] [0.86; 1.04]
Greece [0.89; 1.22] [1.02; 1.34] [0.76; 1.02] [0.94; 1.25] [1.05; 1.37] [0.77; 1.04]
Ireland [0.90; 1.10] [0.90; 1.05] [0.90; 1.00] [0.90; 1.05] [0.90; 1.05] [0.90; 1.10]
Italy [0.75; 1.25] [0.60; 0.90] [0.25; 1.15] [0.70; 1.20] [0.70; 1.15] [0.75; 1.20]
Japan [0.79; 1.09] [0.74; 1.04] [0.82; 1.14] [0.71; 1.02] [0.79; 1.13] [0.71; 1.06]

Netherl. [0.80; 0.97] [0.93; 1.11] [0.91; 1.09] [0.92; 1.09] [0.93; 1.11] [0.88; 1.06]
Norway [0.94; 1.16] [0.90; 1.11] [0.77; 0.98] [0.83; 1.06] [0.88; 1.12] [0.87; 1.10]
Spain [0.94; 1.06] [0.94; 1.04] [0.96; 1.06] [0.90; 1.04] [0.91; 1.04] [0.86; 1.06]

Sweden [0.38; 0.90] [0.66; 1.18] [0.68; 1.22] [0.62; 1.12] [0.52; 1.04] [0.88; 1.36]
UK [0.92; 1.04] [0.94; 1.07] [0.97; 1.10] [0.93; 1.05] [0.91; 1.03] [0.97; 1.10]
US [0.92; 1.05] [0.94; 1.07] [0.92; 1.05] [0.93; 1.06] [0.91; 1.04] [0.96; 1.09]

All HPD regions were computed using the respective model averaged posteriors of the φs coefficients.
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C. Tables - chapter 5

Table C.1.: Testing for no periodicity

Series FPAR - stat. p - val.

East-Germany 2.69 0.00
West-Germany 2.34 0.00

Baden-Wuerttemberg 0.93 0.51
Bavaria 6.22 0.00
Berlin 1.17 0.31

Brandenburg 1.79 0.06
Bremen 0.48 0.91

Hamburg 0.38 0.96
Hesse 2.48 0.01

Lower Saxony 2.93 0.00
Mecklenburg-Western Pomerania 2.15 0.02

North Rhine-Westphalia 1.76 0.06
Rhineland-Palatinate 2.64 0.00

Saarland 1.97 0.03
Saxony 2.89 0.00

Saxony-Anhalt 2.72 0.00
Schleswig-Holstein 2.11 0.02

Thuringia 2.03 0.03

’FPAR’: F-statistic to test the null of no periodicity,
i.e. H0 : φs = φS, for s = 1...S−1.
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Table C.2.: Evaluation of 12-months ahead forecasts

BMA-PAR SARMA(p, q)× (P, Q)12 PMEANS BPAR
Series PMSE PMSE Model order PMSE PMSE

East-Germany 0.3238 0.2932 (2, 0)× (2, 0) 0.2497 0.2586
West-Germany 0.1995? 0.3173 (2, 0)× (1, 0) 0.3547 0.3207

Baden-Wuerttemberg 0.2205 0.2451 (2, 1)× (1, 0) 0.1883 0.1370?

Bavaria 0.3035? 0.4067 (1, 1)× (2, 0) 0.7351 0.3958
Berlin 0.3835 0.3652? (1, 1)× (1, 0) 0.7728 0.3982

Brandenburg 0.2021 0.3349 (1, 1)× (2, 0) 0.2514 0.3336
Bremen 0.2833? 0.4024 (2, 0)× (1, 0) 0.3497 0.3367

Hamburg 0.0965? 0.2436 (1, 1)× (1, 0) 0.1393 0.1484
Hesse 0.2897 0.3830 (1, 1)× (1, 0) 0.2217? 0.2537

Lower Saxony 0.2826? 0.4021 (1, 1)× (1, 0) 0.3944 0.3934
Mecklenburg-Western Pom. 0.2348 0.1408? (1, 1)× (1, 0) 0.5287 0.3998

North Rhine-Westphalia 0.3141? 0.3758 (1, 1)× (1, 0) 0.3611 0.3557
Rhineland-Palatinate 0.1034? 0.4190 (1, 1)× (1, 1) 0.4069 0.4026

Saarland 0.6974 0.6813 (1, 1)× (1, 0) 0.5794? 0.5906
Saxony 0.2835 0.5534 (1, 1)× (2, 0) 0.2822? 0.3013

Saxony-Anhalt 0.4367 0.2162? (1, 0)× (2, 0) 0.2446 0.2591
Schleswig-Holstein 0.1282 0.1165? (2, 0)× (1, 0) 0.2021 0.2117

Thuringia 0.4691? 0.7103 (1, 0)× (2, 1) 0.6316 0.6545

’PMSE’: Predictive Mean Squared Error , ’?’: significant
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Table C.3.: Evaluation of 12-months ahead forecasts (Cont.)

BMA-PAR SARMA(p, q)× (P, Q)12 PMEANS BPAR
Series MAPE MAPE Model order MAPE MAPE

East-Germany 0.0203 0.0220 (2, 0)× (2, 0) 0.0153 0.0180
West-Germany 0.0229? 0.0452 (2, 0)× (1, 0) 0.0510 0.0454

Baden-Wuerttemberg 0.0427 0.0461 (2, 1)× (1, 0) 0.0379 0.0248?

Bavaria 0.0648? 0.0784 (1, 1)× (2, 0) 0.1683 0.0877
Berlin 0.0240 0.0239? (1, 1)× (1, 0) 0.0498 0.0251

Brandenburg 0.0121 0.0266 (1, 1)× (2, 0) 0.0133 0.0183
Bremen 0.0149? 0.0305 (2, 0)× (1, 0) 0.0259 0.0232

Hamburg 0.0088? 0.0259 (1, 1)× (1, 0) 0.0140 0.0151
Hesse 0.0429 0.0574 (1, 1)× (1, 0) 0.0330? 0.0379

Lower Saxony 0.0312? 0.0517 (1, 1)× (1, 0) 0.0480 0.0479
Mecklenburg-Western Pom. 0.0149 0.0077? (1, 1)× (1, 0) 0.0377 0.0271

North Rhine-Westphalia 0.0337? 0.0407 (1, 1)× (1, 0) 0.0392 0.0385
Rhineland-Palatinate 0.0139? 0.0692 (1, 1)× (1, 1) 0.0652 0.0635

Saarland 0.0816 0.0809 (1, 1)× (1, 0) 0.0683? 0.0702
Saxony 0.0176 0.0486 (1, 1)× (2, 0) 0.0209 0.0228

Saxony-Anhalt 0.0299 0.0159? (1, 0)× (2, 0) 0.0166 0.0179
Schleswig-Holstein 0.0149 0.0132? (2, 0)× (1, 0) 0.0241 0.0249

Thuringia 0.0456? 0.0691 (1, 0)× (2, 1) 0.0630 0.0655

’MAPE’: Mean Absolute Percentage Error, ’?’: significant
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Table C.4.: Bayesian one-year ahead forecasts (1)

East Germany West Germany
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 12.49 (0.29) [11.92; 13.10] 6.99 (0.20) [6.61; 7.39]
2013(4) 11.92 (0.32) [11.25; 12.54] 6.79 (0.23) [6.35; 7.27]
2013(5) 11.34 (0.40) [10.52; 12.15] 6.49 (0.22) [6.06; 6.95]
2013(6) 11.02 (0.42) [10.18; 11.89] 6.38 (0.22) [5.94; 6.85]
2013(7) 11.36 (0.49) [10.34; 12.39] 6.61 (0.28) [6.06; 7.16]
2013(8) 11.23 (0.33) [10.57; 11.90] 6.62 (0.27) [6.11; 7.17]
2013(9) 10.78 (0.43) [9.91; 11.66] 6.38 (0.32) [5.73; 7.03]

2013(10) 10.47 (0.43) [9.62; 11.33] 6.30 (0.44) [5.44; 7.21]
2013(11) 10.50 (0.40) [9.68; 11.31] 6.36 (0.44) [5.46; 7.29]
2013(12) 11.11 (0.68) [9.71; 12.48] 6.64 (0.52) [5.56; 7.74]
2014(1) 12.89 (0.72) [11.42; 14.35] 7.37 (0.52) [6.19; 8.45]
2014(2) 13.05 (0.47) [12.10; 14.00] 7.44 (0.49) [6.39; 8.59]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.5.: Bayesian one-year ahead forecasts (2)

Baden-Wuerttemberg Bavaria
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 4.66 (0.19) [4.29; 5.03] 4.89 (0.26) [4.37; 5.38]
2013(4) 4.53 (0.22) [4.11; 4.96] 4.49 (0.28) [3.96; 5.08]
2013(5) 4.30 (0.22) [3.87; 4.72] 4.08 (0.27) [3.58; 4.64]
2013(6) 4.18 (0.27) [3.64; 4.73] 3.94 (0.27) [3.42; 4.49]
2013(7) 4.34 (0.32) [3.70; 4.99] 4.05 (0.32) [3.43; 4.69]
2013(8) 4.47 (0.27) [3.92; 5.02] 4.27 (0.28) [3.73; 4.83]
2013(9) 4.26 (0.26) [3.74; 4.79] 4.08 (0.34) [3.38; 4.78]

2013(10) 4.16 (0.34) [3.49; 4.85] 3.98 (0.45) [3.13; 4.94]
2013(11) 4.16 (0.36) [3.43; 4.93] 4.11 (0.51) [3.10; 5.21]
2013(12) 4.30 (0.36) [3.56; 5.04] 4.56 (0.77) [2.95; 6.22]
2014(1) 4.71 (0.34) [3.95; 5.37] 5.60 (0.73) [3.92; 7.04]
2014(2) 4.71 (0.37) [3.93; 5.51] 5.62 (0.52) [4.59; 6.85]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.6.: Bayesian one-year ahead forecasts (3)

Berlin Brandenburg
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 14.17 (0.27) [13.62; 14.71] 11.80 (0.33) [11.16; 12.49]
2013(4) 14.05 (0.31) [13.44; 14.66] 11.24 (0.40) [10.42; 12.04]
2013(5) 13.62 (0.30) [12.99; 14.21] 10.56 (0.41) [9.73; 11.39]
2013(6) 13.30 (0.38) [12.50; 14.02] 10.37 (0.50) [9.38; 11.36]
2013(7) 13.57 (0.31) [12.95; 14.19] 10.79 (0.53) [9.71; 11.90]
2013(8) 13.51 (0.31) [12.89; 14.13] 10.57 (0.39) [9.77; 11.35]
2013(9) 13.12 (0.38) [12.34; 13.85] 10.11 (0.44) [9.23; 11.01]

2013(10) 12.89 (0.41) [12.08; 13.70] 9.88 (0.44) [9.01; 10.75]
2013(11) 12.75 (0.41) [11.89; 13.56] 9.91 (0.42) [9.06; 10.76]
2013(12) 12.98 (0.41) [12.17; 13.79] 10.61 (0.80) [9.01; 12.24]
2014(1) 14.01 (0.74) [12.41; 15.61] 12.42 (0.71) [11.01; 13.88]
2014(2) 14.05 (0.35) [13.33; 14.72] 12.59 (0.46) [11.64; 13.54]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.7.: Bayesian one-year ahead forecasts (4)

Bremen Hamburg
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 12.69 (0.41) [11.91; 13.53] 8.65 (0.37) [7.92; 9.71]
2013(4) 12.67 (0.50) [11.67; 13.65] 8.61 (0.49) [7.63; 9.69]
2013(5) 12.36 (0.45) [11.45; 13.24] 8.39 (0.48) [7.57; 9.79]
2013(6) 12.23 (0.48) [11.24; 13.15] 8.26 (0.37) [7.55; 9.21]
2013(7) 12.51 (0.49) [11.54; 13.48] 8.49 (0.42) [7.68; 9.71]
2013(8) 12.43 (0.56) [11.30; 13.57] 8.39 (0.42) [7.55; 9.62]
2013(9) 12.10 (0.62) [10.88; 13.39] 8.19 (0.36) [7.54; 9.07]

2013(10) 12.02 (0.67) [10.72; 13.50] 8.09 (0.39) [7.21; 8.86]
2013(11) 11.93 (0.65) [10.64; 13.31] 8.03 (0.44) [7.14; 9.25]
2013(12) 12.09 (0.74) [10.62; 13.68] 8.15 (0.49) [7.07; 9.20]
2014(1) 13.06 (1.39) [10.51; 16.68] 8.72 (0.41) [7.79; 9.58]
2014(2) 13.16 (0.70) [11.71; 14.71] 8.70 (0.36) [7.94; 9.46]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.8.: Bayesian one-year ahead forecasts (5)

Hesse Lower Saxony
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 6.77 (0.19) [6.39; 7.16] 7.58 (0.25) [6.94; 7.96]
2013(4) 6.66 (0.22) [6.22; 7.09] 7.25 (0.30) [6.51; 7.69]
2013(5) 6.37 (0.21) [5.96; 6.78] 6.79 (0.28) [6.07; 7.20]
2013(6) 6.28 (0.22) [5.85; 6.71] 6.71 (0.35) [5.80; 7.21]
2013(7) 6.53 (0.26) [6.02; 7.04] 7.00 (0.29) [6.26; 7.39]
2013(8) 6.44 (0.23) [5.98; 6.91] 6.86 (0.31) [6.16; 7.38]
2013(9) 6.18 (0.28) [5.61; 6.74] 6.55 (0.33) [5.73; 7.06]

2013(10) 6.12 (0.35) [5.39; 6.83] 6.45 (0.37) [5.52; 7.04]
2013(11) 6.08 (0.32) [5.41; 6.72] 7.54 (0.41) [5.51; 7.21]
2013(12) 6.28 (0.37) [5.49; 7.02] 6.95 (0.60) [5.43; 7.94]
2014(1) 6.89 (0.42) [6.01; 7.78] 7.81 (0.72) [5.94; 9.04]
2014(2) 6.96 (0.36) [6.26; 7.75] 7.84 (0.45) [6.59; 8.49]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.9.: Bayesian one-year ahead forecasts (6)

Mecklenburg-Western Pomerania North Rhine-Westphalia
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 14.37 (0.36) [13.66; 15.08] 9.24 (0.19) [8.87; 9.61]
2013(4) 13.42 (0.41) [12.62; 14.26] 9.10 (0.21) [8.69; 9.51]
2013(5) 12.49 (0.43) [11.63; 13.36] 8.87 (0.21) [8.46; 9.28]
2013(6) 11.89 (0.47) [10.93; 12.84] 8.79 (0.21) [8.38; 9.20]
2013(7) 12.10 (0.54) [11.06; 13.20] 9.04 (0.27) [8.51; 9.59]
2013(8) 12.60 (0.52) [11.49; 13.71] 8.94 (0.25) [8.45; 9.46]
2013(9) 11.44 (0.50) [10.41; 12.41] 8.70 (0.27) [8.27; 9.25]

2013(10) 11.21 (0.47) [10.24; 12.15] 8.64 (0.31) [8.03; 9.25]
2013(11) 11.65 (0.43) [10.78; 12.52] 8.63 (0.33) [7.96; 9.28]
2013(12) 12.53 (0.60) [11.31 ; 13.73] 8.51 (0.39) [8.00; 9.62]
2014(1) 14.51 (0.90) [12.69; 16.39] 9.36 (0.39) [8.56; 10.16]
2014(2) 14.68 (0.55) [13.54; 15.78] 9.49 (0.55) [8.39; 10.67]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.10.: Bayesian one-year ahead forecasts (7)

Rhineland-Palatinate Saarland
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 6.26 (0.26) [5.73; 6.71] 8.09 (0.23) [7.64; 8.53]
2013(4) 5.99 (0.30) [5.35; 6.55] 7.92 (0.29) [7.35; 8.50]
2013(5) 5.65 (0.27) [5.11; 6.17] 7.64 (0.24) [7.17; 8.12]
2013(6) 5.54 (0.30) [5.00; 6.12] 7.54 (0.25) [7.04; 8.03]
2013(7) 6.79 (0.32) [5.16; 6.44] 7.79 (0.32) [7.15; 8.44]
2013(8) 5.69 (0.33) [5.03; 6.36] 7.71 (0.33) [7.07; 8.35]
2013(9) 5.40 (0.37) [4.66; 6.17] 7.41 (0.27) [6.88; 7.96]

2013(10) 5.32 (0.43) [4.48; 6.32] 7.28 (0.35) [6.56; 7.98]
2013(11) 5.38 (0.48) [4.39; 6.41] 7.28 (0.31) [6.65; 7.90]
2013(12) 5.74 (0.56) [4.54; 6.89] 7.50 (0.41) [6.66; 8.35]
2014(1) 6.47 (0.52) [5.27; 7.58] 8.10 (0.41) [7.20; 8.92]
2014(2) 6.47 (0.44) [5.56; 7.41] 8.13 (0.46) [7.15; 9.09]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.11.: Bayesian one-year ahead forecasts (8)

Saxony Saxony-Anhalt
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 11.56 (0.36) [10.82; 12.28] 13.15 (0.35) [12.44; 13.84]
2013(4) 10.90 (0.38) [10.10; 11.65] 12.55 (0.39) [11.78; 13.32]
2013(5) 10.26 (0.45) [9.35; 11.20] 11.98 (0.44) [11.10; 12.88]
2013(6) 9.80 (0.50) [8.76; 10.78] 11.59 (0.49) [10.58; 12.61]
2013(7) 10.10 (0.63) [8.85; 11.43] 11.91 (0.52) [10.92; 12.99]
2013(8) 10.00 (0.40) [9.19; 10.78] 11.69 (0.39) [10.91; 12.49]
2013(9) 9.50 (0.50) [8.49; 10.51] 11.08 (0.46) [10.15; 12.02]

2013(10) 9.09 (0.46) [8.17; 10.02] 10.57 (0.54) [9.47; 11.66]
2013(11) 9.12 (0.41) [8.31; 9.94] 10.53 (0.41) [9.70; 11.35]
2013(12) 9.77 (0.76) [8.26; 11.30] 11.19 (0.81) [9.58; 12.81]
2014(1) 11.55 (0.83) [9.90; 13.33] 13.14 (0.68) [11.82; 14.51]
2014(2) 11.77 (0.57) [10.56; 12.92] 13.26 (0.47) [12.31; 14.17]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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Table C.12.: Bayesian one-year ahead forecasts (9)

Schleswig-Holstein Thuringia
Dates BMA (s.e.) 95% - HPD BMA (s.e.) 95% - HPD

2013(3) 8.04 (0.23) [7.58; 8.49] 9.78 (0.40) [8.99; 10.60]
2013(4) 7.54 (0.28) [6.98; 8.11] 9.00 (0.44) [8.11; 9.88]
2013(5) 7.07 (0.25) [6.58; 7.58] 8.38 (0.49) [7.39; 9.36]
2013(6) 6.90 (0.33) [6.23; 7.54] 7.89 (0.56) [6.77; 9.04]
2013(7) 7.15 (0.26) [6.61; 7.68] 8.28 (0.57) [7.19; 9.51]
2013(8) 7.05 (0.29) [6.48; 7.65] 8.19 (0.41) [7.32; 9.04]
2013(9) 6.75 (0.34) [6.06; 7.43] 7.64 (0.47) [6.67; 8.59]

2013(10) 6.69 (0.40) [5.86; 7.51] 7.26 (0.58) [6.07; 8.45]
2013(11) 6.93 (0.47) [5.95; 7.87] 7.28 (0.51) [6.25; 8.32]
2013(12) 7.32 (0.52) [6.26; 8.36] 8.07 (0.95) [6.17; 9.95]
2014(1) 8.14 (0.80) [6.38; 9.87] 9.95 (1.22) [7.71; 12.41]
2014(2) 8.18 (0.41) [7.32; 9.02] 10.10 (0.62) [8.79; 11.37]

’BMA’: Mean of model averaged posterior predictive density, standard error in brackets.
’HPD’: Highest posterior density region.
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D. Figures - chapter 2
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Figure D.1.: Series Australia: posterior densities for the break dates and the long run coefficient.
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Figure D.2.: Series Belgium: posterior densities for the break dates and the long run coefficient.
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Figure D.3.: Series Canada: posterior densities for the break dates and the long run coefficient.
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Figure D.4.: Series Denmark: posterior densities for the break dates and the long run coefficient.
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Figure D.5.: Series Finland: posterior densities for the break dates and the long run coefficient.
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Figure D.6.: Series France: posterior densities for the break dates and the long run coefficient.
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Figure D.7.: Series Germany: posterior densities for the break dates and the long run coefficient.
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Figure D.8.: Series Greece: posterior densities for the break dates and the long run coefficient.
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Figure D.9.: Series Ireland: posterior densities for the break dates and the long run coefficient.

153



−3
.5

−2
.5

1970 1980 1990 2000 2010

Time

pr
ob

ab
ili

ty

Time

pr
ob

ab
ili

ty

Time

pr
ob

ab
ili

ty
0.0

0.2

0.4

0.6

0.8

1.0

Posterior probability distribution(s) of 3 break date(s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1
2
3
4
5
6

(p = 1)

de
ns

ity

Marginal posterior densities 'Italy'

Normal
Jeffreys

Figure D.10.: Series Italy: posterior densities for the break dates and the long run coefficient.
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Figure D.11.: Series Japan: posterior densities for the break dates and the long run coefficient.

154



−4
.5

−3
.5

−2
.5

1970 1980 1990 2000 2010

Time

pr
ob

ab
ili

ty

Time

pr
ob

ab
ili

ty
0.0

0.2

0.4

0.6

0.8

1.0

Posterior probability distribution(s) of 2 break date(s)

0.5 0.6 0.7 0.8 0.9 1.0

0

2

4

6

8

10

(p = 2)

de
ns

ity

Marginal posterior densities 'Netherlands'

Normal
Jeffreys

Figure D.12.: Series Netherlands: posterior densities for the break dates and the long run coefficient.
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Figure D.13.: Series Norway: posterior densities for the break dates and the long run coefficient.
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Figure D.14.: Series Spain: posterior densities for the break dates and the long run coefficient.
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Figure D.15.: Series Sweden: posterior densities for the break dates and the long run coefficient.
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Figure D.16.: Series UK: posterior densities for the break dates and the long run coefficient.
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Figure D.17.: Series US: posterior densities for the break dates and the long run coefficient.
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Figure D.18.: Helicopter tour Germany: joint posterior mass function of break number and lags.
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Figure D.19.: Helicopter tour Germany (2): joint posterior mass function of break number and lags.
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E. Figures - chapter 4
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(b) Belgium

Figure E.20.: Bayesian p-values of recursive F-tests of non-periodicity: Australia and Belgium.
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Figure E.21.: Bayesian p-values of recursive F-tests of non-periodicity: Canada and Denmark.
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(b) France

Figure E.22.: Bayesian p-values of recursive F-tests of non-periodicity: Finland and France.
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Figure E.23.: Bayesian p-values of recursive F-tests of non-periodicity: Germany and Greece.
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Figure E.24.: Bayesian p-values of recursive F-tests of non-periodicity: Ireland and Italy.
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Figure E.25.: Bayesian p-values of recursive F-tests of non-periodicity: Japan and Netherlands.
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Figure E.26.: Bayesian p-values of recursive F-tests of non-periodicity: Norway and Spain.
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Figure E.27.: Bayesian p-values of recursive F-tests of non-periodicity: Sweden and Great Britain.
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Figure E.28.: Bayesian p-values of recursive F-tests of non-periodicity: USA.
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F. Figures - chapter 5
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Figure F.29.: Used prior distributions for the Bayesian sign test.
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Figure F.30.: Posterior probability of H1 as a function of x for T = 8.
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Figure F.31.: Posterior probability of H1 as a function of x for T = 60.
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Figure F.32.: Series East-Germany (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.33.: Series West-Germany (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.34.: Series Baden-Wuerttemberg (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.35.: Series Bavaria (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.36.: Series Berlin (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.37.: Series Brandenburg (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.38.: Series Bremen (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.39.: Series Hamburg (01/1991-02/2013) with S(P)ACF and periodogram.

169



Time
%

1995 2000 2005 2010

5
6

7
8

9
10

11

0 10 20 30 40 50 60

−0
.4

0.
0

0.
4

0.
8

Lag

AC
F

0 10 20 30 40 50 60

−0
.4

0.
0

0.
4

0.
8

Lag

Pa
rti

al
 A

C
F

0 1 2 3 4 5 6

1e
−0

5
1e

−0
3

1e
−0

1
1e

+0
1

frequency
sp

ec
tru

m

Figure F.40.: Series Hesse (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.41.: Series Lower Saxony (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.42.: Series Mecklenburg-Western Pom. (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.43.: Series North Rhine-Westphalia (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.44.: Series Rhineland-Palatinate (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.45.: Series Saarland (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.46.: Series Saxony (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.47.: Series Saxony-Anhalt (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.48.: Series Schleswig-Holstein (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.49.: Series Thuringia (01/1991-02/2013) with S(P)ACF and periodogram.
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Figure F.50.: Seasonal boxplots: West- and East-Germany.
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Figure F.51.: Seasonal boxplots: Baden-Wuerttemberg and Bavaria.
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Figure F.52.: Seasonal boxplots: Berlin and Brandenburg.
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Figure F.53.: Seasonal boxplots: Bremen and Hamburg.
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Figure F.54.: Seasonal boxplots: Hesse and Lower Saxony.
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Figure F.55.: Seasonal boxplots: Mecklenburg-Western Pomerania and North Rhine-Westphalia.
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Figure F.56.: Seasonal boxplots: Rhineland-Palatinate and Saarland.
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Figure F.57.: Seasonal boxplots: Saxony and Saxony-Anhalt.
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Figure F.58.: Seasonal boxplots: Schleswig-Holstein and Thuringia.
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Figure F.59.: One-year ahead forecasts of the unemployment rates of West-Germany.
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Figure F.60.: Model averaged posterior predictive densities of West-Germany (1).
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Figure F.61.: Model averaged posterior predictive densities of West-Germany (2).

−1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Dy~t+9

de
ns

ity

95% HPD

−1 0 1 2

0.0

0.2

0.4

0.6

0.8

Dy~t+10

de
ns

ity

95% HPD

−1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Dy~t+11

de
ns

ity

95% HPD

−1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Dy~t+12

de
ns

ity

95% HPD

Figure F.62.: Model averaged posterior predictive densities of West-Germany (3).
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G. Technical details - chapter 4

In the following the derivations of the distributions, used in chapter 4, are outlined. For

this purpose, in section G.1, some basic expressions required in the subsequent sections

are derived. Then in section G.2 and section G.3 the posterior density of the subvector

B1 and φs are established, respectively, where in section G.4 the posterior distribution of

the linear form θ is derived. Finally, in section G.5 some details on the derivation of

the posterior density of the quadratic form Q, used for the Bayesian F-test, are outlined.

To provide more general posterior results a conjugate Normal-Inverse-Gamma-2 (NIG2)

prior for (B, σ2) will be used. Note that a diffuse prior as in chapter 4 can easily be

obtained as a special case of a NIG2 prior, where the latter also serves as a starting point

for other conjugate priors, e.g. Zellner’s g-prior (see Zellner (1986)). In section G.6 some

additional details on these prior issues will be given.

G.1. Preliminaries - posterior analysis

By an application of the Bayes Theorem the joint probability density function of all model

parameters and the data can be factorized according to

f (B,σ2,y|Mi) = f (y| B, σ
2, Mi) · f (B, σ

2|Mi) (6.1)

= f (B,σ2| y, Mi) · f (y|Mi) (6.2)

where Mi is a model indicator for a particular model in the discrete model space M =

{M1, ...,MK}. To express ignorance with respect to M , f (Mi) = 1/K is chosen. Uti-

lizing the above assumptions about the data and the parameters, and applying a variance
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decomposition to the quadratic form in the likelihood function in (6.1) leads to

f (B,σ2,y|Mi) = C−1
N (σ2IT−p ; T − p) · exp

{
− 1

2σ2 [νs2 +(B− B̂)′ · X̃′X̃ · (B− B̂)]
}
·

C−1
N (σ2M−1; d) · exp

{
− 1

2σ2 [(B−B0)
′ ·M · (B−B0)]

}
·

C−1
g

(
a
2

,
2
b

)
· (σ2)−

a+2
2 · exp

{
− b

2σ2

}
(6.3)

with d ≡ dim(B). Further let CN(Σ ; k) = (2π)
k
2 · |Σ| 12 and Cg(a,b) = Γ(a) ·ba , a,b >

0 be the normalizing constant of the Normal and the Gamma distribution, respectively.

Here the first argument of CN(; ) denotes the covariance matrix and the second argument

denotes the dimension of the respective random vector (see Bauwens et al. (1999), p.293).

Let B̂ be the least squares estimator of B and νs2 ≡ (y− X̃B̂)′ · (y− X̃B̂) the sum of

squared residuals, with ν = T − p−d degrees of freedom.

Writing this together yields

= (2π)−
T−p+d+a

2 · (σ2)−

≡a?︷ ︸︸ ︷
T − p+ d + a+2

2 · |M|
1
2 · b

a
2

Γ(a
2) ·2

a
2

· exp

− 1
2σ2 [b+νs2 +(B− B̂)′ · X̃′X̃ · (B− B̂)+ (B−B0)

′ ·M · (B−B0)︸ ︷︷ ︸
≡ b?

]


(6.4)

which has the form of a NIG2 distribution, see Bauwens et al. (1999), p.302.

First it is to show, that b? in (6.4) can be written as b? = b+ νs2 +QF(B0) +QF(B),
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with

µB ≡ (X̃′X̃+M)−1 · (X̃′X̃B̂+MB0) (6.5a)

H≡ X̃′X̃+M (6.5b)

δ ≡ (B−µB) (6.5c)

QF(B) ≡ δ
′ ·H ·δ (6.5d)

QF(B0) ≡ (B0− B̂)′ · [M−1 +(X̃′X̃)−1]−1 · (B0− B̂) (6.5e)

Next the derivation of the quadratic forms in (6.5d) and (6.5e) is outlined. The quadratic

form in (6.5d) can be obtained by completing the square for B in:

(B− B̂)′ · X̃′X̃ · (B− B̂)+ (B−B0)
′M(B−B0) (6.6a)

= B′ ·H ·B−2B′ · (X̃′y+MB0)+ B̂′X̃′X̃B̂+B′0MB0 (6.6b)

Apply a Cholesky decomposition to the positive definite matrix H in (6.5b) as H = L ·L′

with L the resulting lower triangular matrix. Then by defining A≡ L′ ·B⇔ B = (L′)−1 ·
A, equation (6.6) can equivalently be expressed as

= A′A−2 ·A′ ·L−1 · (X̃′y+MB0)︸ ︷︷ ︸
≡ µA

+ y′ ·Px ·y+B′0MB0 (6.7a)

= (A−µA)
′ · (A−µA)−µ

′
A ·µA + y′Pxy+B′0MB0 (6.7b)

with Px ≡ X̃ · (X̃′X̃)−1 · X̃′ the usual linear projection matrix.1 Writing out the last equa-

tion explicitly this results in

=
(

B−H−1[X̃′y+MB0]
)′
·H ·

(
B−H−1[X̃′y+MB0]

)
︸ ︷︷ ︸

≡ QF(B) = δ ′·H·δ

− (MB0 + X̃′y)′H−1(MB0 + X̃′y)+ y′Pxy+B0
′MB0

(6.8)

Next construct QF(B0) in a similar fashion. For this reason, first notice that by utilizing

1Note that due to possible singularities in the X̃′X̃ matrix the Moore-Penrose pseudoinverse is used through-
out, see Poole (2006), p.611, for details.
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(6.8) together with the above definition of Px, equation (6.6) can be written as

(B− B̂)′X̃′X̃(B− B̂)+ (B−B0)
′M(B−B0)

= QF(B)− (X̃′X̃B̂+MB0)
′H−1(X̃′X̃B̂+MB0)+ B̂′X̃′X̃B̂+B′0MB0

(6.9)

Now multiplying out the second term in equation (6.9) yields:

(X̃′X̃B̂+MB0)
′(M+ X̃′X̃)−1(X̃′X̃B̂+MB0)

= B′0M′(M+ X̃′X̃)−1MB0 + 2B′0M′(M+ X̃′X̃)−1X̃′X̃B̂

+ B̂′X̃′X̃(M+ X̃′X̃)−1X̃′X̃B̂

(6.10)

Next utilize the Woodbury matrix identity (cf. Lütkepohl (2007), p.660):2

(M+ X̃′X̃)−1 = M−1−M−1(M−1 +(X̃′X̃)−1)−1M−1 (6.11a)

= (X̃′X̃)−1− (X̃′X̃)−1(M−1 +(X̃′X̃)−1)−1(X̃′X̃)−1 (6.11b)

Substituting the first identity (6.11a) in the first and second summand of (6.10) and the

second identity (6.11b) in the last summand of (6.10), respectively, yields after some

algebra:

= B′0MB0−B′0(M
−1 +(X̃′X̃)−1)−1B0

+ 2B̂′MB0−2B̂′(M−1 +(X̃′X̃)−1)−1(X̃′X̃)−1MB0

+ B̂′X̃′X̃B̂− B̂′(M−1 +(X̃′X̃)−1)−1B̂

(6.12)

For convenience let K≡ (M−1+(X̃′X̃)−1)−1 and multiply the second identity in (6.11b)

by X̃′X̃:

X̃′X̃(M+ X̃′X̃)−1 = I−K(X̃′X̃)−1 (6.13)

2In more general form this matrix identity can be stated as (A+U ·C ·V)−1 = A−1−A−1 ·U · (C−1 +V ·
A−1 ·U)−1 ·V ·A−1, with A,U,C and V matrices of conformable dimension. Where the identities (6.11)
can then be deduced by appropriate definitions of these matrices.
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Then the third and fourth summands in (6.12) are equivalently expressed as

2B̂′MB0−2B̂′(M−1 +(X̃′X̃)−1)−1(X̃′X̃)−1MB0

= 2B̂′[I−K(X̃′X̃)−1]MB0

(6.14)

or, by using (6.13),

= 2B̂′ · X̃′X̃(M+ X̃′X̃)−1M ·B0 (6.15)

Note that the middle matrix factor term in equation (6.15) can be written as

X̃′X̃(M+ X̃′X̃)−1M =
[
M−1(M+ X̃′X̃)(X̃′X̃)−1

]−1
(6.16a)

=
(

M−1 +(X̃′X̃)−1
)−1

︸ ︷︷ ︸
= K

(6.16b)

by multiplying out the right-hand side of equation (6.16a).

After utilizing the matrix identities (6.11), (6.13), (6.16) and some lengthy algebra, which

is omitted here in order to save space, the left hand side of (6.10) can finally be written as

(MB0 + X̃′X̃B̂)′(M+ X̃′X̃)−1(MB0 + X̃′X̃B̂) (6.17a)

= B′0MB0 + B̂′X̃′X̃B̂−B′0KB0 + 2B̂′KB0− B̂′KB̂ (6.17b)

= B′0MB0 + B̂′X̃′X̃B̂− (B0− B̂)′(M−1 +(X̃′X̃)−1)−1(B0− B̂)︸ ︷︷ ︸
≡ QF(B0)

(6.17c)

= B′0MB0 + B̂′X̃′X̃B̂− (B0− B̂)′X̃′X̃(M+ X̃′X̃)−1M(B0− B̂) (6.17d)

where the last equation follows from (6.16). Note that for the representation of diffuse

prior information, i.e. with a precision of M→ 0, as in the case of a flat prior, this implies

QF(B0)→ 0.

After substituting (6.17c) in (6.9), the left-hand side of (6.9) equals

(B− B̂)′(X̃′X̃)(B− B̂)+ (B−B0)
′M(B−B0) = QF(B)+QF(B0) (6.18)
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and thus the exponent in (6.4) becomes b? = b+νs2+QF(B0)+QF(B) as stated above.

Next, 1.) the marginal likelihood (or prior predictive distribution) under model Mi, 2.)

the conditional posterior density of a subvector of B as well as 3.) the marginal posterior

density of σ2 under model Mi are derived.

For this purpose consider the following partitioning of δ in (6.5c) above:

δ1
d1 × 1

≡ (B1−µ1B) = E1
d1 × d

· (B−µB) (6.19a)

δ2
d2 × 1

≡ (B2−µ2B) = E2
d2 × d

· (B−µB) (6.19b)

δ
d × 1

≡
(

δ1
′ ... δ2

′
)′

(6.19c)

with d = d1 + d2 and E1 ≡ (Id1

... 0d2) and E2 ≡ (0d1

... Id2) two transformation matrices

that eliminate the lower d2 and d1 components of the vector µB (see (6.5)), respectively.

Further partition the matrix H in (6.5b) conformably as follows:

H =


H11

d1 × d1

| H12
d1 × d2

−−−−− −−−−−
H21

d2 × d1

| H22
d2 × d2

 (6.20)

Using the above definitions the quadratic form in (6.8) can be expressed as

QF(B) = δ
′ ·H ·δ =

(
δ1
′ ... δ2

′
)
·

(
H11 H12

H21 H22

)
·

(
δ1

δ2

)
(6.21a)

Multiplying out this expression then leads to

= δ1
′ ·H11 ·δ1 + 2 ·δ1

′ ·H12 ·δ2 + δ2
′ ·H22 ·δ2 (6.22a)

Let H22 = LL′ with L again the lower triangular matrix from a Cholesky decomposition

and define δ ?
2 ≡L′ ·δ2 ⇔ δ2 = (L′)−1 ·δ ?

2 . Then after completing the square with respect
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to δ2 we have:

= (δ2 + µ2)
′ ·H22 · (δ2 + µ2)︸ ︷︷ ︸
≡ QF(δ2)

−µ
′
2 ·H22 ·µ2 + δ

′
1 ·H11 ·δ1 (6.23a)

= QF(δ2)+ δ
′
1 · (H11−H12H−1

22 H21) ·δ1︸ ︷︷ ︸
≡ QF(δ1)

(6.23b)

with µ2 ≡H−1
22 ·H21 ·δ1.

Utilizing the above expressions the joint density in (6.4) can be expressed as

f (B, σ
2,y|Mi) = (2π)−

a?
2 · (σ2)−

a?
2 · |M|

1
2 · b

a
2

Γ(a
2) ·2

a
2
· exp

{
−QF(δ1)

2σ2

}

· exp
{
− 1

2σ2 [b+νs2 +QF(B0)+QF(δ2)]

} (6.24)

Next integrate out δ2 from (6.24), since in the next section we want to draw our attention

to the analysis of the subvector δ1:

f (δ1, σ
2,y|Mi) = (2π)−

a?
2 · (σ2)−

a?
2 · |M|

1
2 · b

a
2

Γ(a
2) ·2

a
2
· exp

{
−QF(δ1)

2σ2

}

· exp
{
− 1

2σ2 [b+νs2 +QF(B0)]

}

·CN2 ·
∫

Rd2
C−1

N2
· exp

{
−QF(δ2)

2σ2

}
·dδ 2

(6.25)
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where CN2(Σ2; d2) = (2π)
d2
2 · |Σ2|

1
2 and Σ2 = σ2 ·H−1

22 .

= (2π)−
T−p

2 · (2π)−
d1
2 · (σ2)−

≡ a??︷ ︸︸ ︷
T − p+ a+2

2 · (σ2)−
d1
2 · |M|

1
2 · b

a
2

Γ(a
2) ·2

a
2
· |H22|−

1
2

· exp
{
−QF(δ1)

2σ2

}
· exp{− 1

2σ2 [b+νs2 +QF(B0)︸ ︷︷ ︸
≡ b??

]}

= (2π)−
T−p

2 · (2π)−
d1
2 · (σ2)−

d1
2 · |M|

1
2 · b

a
2

Γ(a
2) ·2

a
2
· |H22|−

1
2 · exp

{
−QF(δ1)

2σ2

}

·Cg

(
a??
2

;
2

b??

)
·C−1

g

(
a??
2

;
2

b??

)
· (σ2)−

a??+2
2 · exp

{
− b??

2σ2

}
︸ ︷︷ ︸

= IG2(a?? , b??) density

= (2π)−
T−p

2 · (2π)−
d1
2 · (σ2)−

d1
2 · |M|

1
2 · b

a
2

Γ(a
2) ·2

a
2
· |H22|−

1
2

·Cg

(
a??
2

;
2

b??

)
· IG2 ·CN1(Σ1; d1) ·C−1

N1
(Σ1; d1) · exp

{
−QF(δ1)

2σ2

}
︸ ︷︷ ︸

= Nd1 (µ1B , Σ1) density

(6.26)

with a??= T− p+a and b??= b+νs2+QF(B0) and normalizing constants Cg

(
a??
2 ; 2

b??

)
,

CN1(Σ1; d1) as defined above.

Hence, given a model specification Mi and a value for σ2, the random vector δ 1, or

equivalently B1, follows a d1-dimensional normal posterior distribution with first and

second moments µ1B (see (6.19)) and

Σ1 = σ
2 · (H11−H12H−1

22 H21)
−1 , (6.27)

respectively, and the conditional posterior density of σ2, under model Mi, is of the IG2 (a?? ; b??)

189



form. By using (6.27) the last line of (6.26) becomes

= (2π)−
T−p

2 · |M|
1
2 · |H22|−

1
2 ·
∣∣∣(H11−H12H−1

22 H21)
∣∣∣− 1

2︸ ︷︷ ︸
= |H|−

1
2

·C−1
g

(
a
2

;
2
b

)
·Cg

(
a??
2

;
2

b??

)
· Nd1 · IG2︸ ︷︷ ︸
= NIG2 density

(6.28)

where the fact is utilized that |H| = |H22| · |H11−H12H−1
22 H21|, cf. Greene (2003), Ap-

pendix A.5.2, p.823.

Next rewrite the product of determinants in (6.28) as follows:

|H|−
1
2 · |M|

1
2 =

∣∣∣X̃′X̃+M
∣∣∣− 1

2 ·
∣∣M−1∣∣− 1

2 (6.29a)

=
∣∣∣Id + X̃′X̃ ·M−1

∣∣∣− 1
2 (6.29b)

From Sylvester’s determinant theorem it is known that for any two matrices A
d×T−p

and

B
T−p×d

the following identity holds:

|Id +AB|=
∣∣IT−p +BA

∣∣
and thus equation (6.29b) can equivalently be written as

∣∣∣Id + X̃′X̃ ·M−1
∣∣∣− 1

2
=
∣∣∣IT−p + X̃M−1X̃′

∣∣∣− 1
2 (6.30)

Hence equation (6.28) becomes

f (B1, σ
2,y|Mi) = (2π)−

T−p
2 ·
∣∣∣IT−p + X̃M−1X̃′

∣∣∣− 1
2 ·

C−1
g

(
a
2

;
2
b

)
·Cg

(
a??
2

;
2

b??

)
·NIG2

(6.31)
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or

= (2π)−
T−p

2 ·
∣∣∣IT−p + X̃M−1X̃′

∣∣∣− 1
2 · b

a
2

Γ(a
2) ·2

a
2
·

Γ(a??
2 ) ·2

T−p+a
2

[b??]
a??

2
· NIG2 (6.32a)

=
Γ(a??

2 )

π( T−p
2 ) ·Γ(a

2)
·b

a
2 ·
∣∣∣IT−p + X̃M−1X̃′

∣∣∣− 1
2 ·
[
b+νs2 +QF(B0)

]− a??
2 · NIG2

(6.32b)

Now let QF(y) ≡ νs2 +QF(B0) and note the following identities:

QF(y) = (y− X̃B̂)′ · (y− X̃B̂)+ (B0− B̂)′ ·
(

M−1 +(X̃′X̃)−1
)−1
· (B0− B̂)

= (y− X̃B̂)′ · (y− X̃B̂)+ (B0− B̂)′ · X̃′X̃(M+ X̃′X̃)−1M · (B0− B̂)

= (y− X̃B0)
′ · (IT−p + X̃M−1X̃′)−1 · (y− X̃B0)

= (y− X̃B0)
′ · (IT−p− X̃(M+ X̃′X̃)−1X̃′) · (y− X̃B0)

(6.33)

where the first equality follows by using equation (6.17c) and the second equality follows

from (6.16). The last but one equality can be obtained after some lengthy algebra, essen-

tially by completing the square with respect to y, see Hamilton (1994), Appendix 12.A.,

p.368, for more details, and the last identity follows from an application of the Woodbury

matrix identity, see footnote 2 on page 185 above.

Hence the joint probability density in (6.32b) can be written as

f (B1, σ
2, y|Mi) =

Γ(T−p+a
2 )

π( T−p
2 ) ·Γ(a

2)
·b−

T−p
2 ·
∣∣∣IT−p + X̃M−1X̃′

∣∣∣− 1
2

· [ 1+QF(y)/b ]−
T−p+a

2 · NIG2

= f (y|Mi) · f (B1| σ2, Mi, y) · f (σ2|Mi, y)

(6.34)

From (6.34) it can be observed that, under model Mi, the conditional posterior distribu-

tion of B1, given σ2, is a multivariate Normal density with first and second moments µ1B

and Σ1, respectively, and the marginal posterior distribution of σ2 is of the IG2 (a?? ; b??)
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form, with mean E(σ2|Mi, y) = a??/(b??−2), for b??> 2, and variance Var(σ2|Mi, y) =
2

b??−4 · [E(σ
2|Mi, y)]2, for b?? > 4, see Bauwens et al. (1999), p.292.

Moreover from (6.34) it can be recognized that the joint data density, f (y| Mi), under

model Mi, is given by

f (y|Mi) =
Γ(T−p+a

2 )

π( T−p
2 ) ·Γ(a

2)
·b−

T−p
2 · |P|−

1
2 · [ 1+QF(y)/b ]−

T−p+a
2

=C−1
t (P; a; T − p) ·

[
1+(y− X̃B0)

′ (b ·P)−1(y− X̃B0)
]− T−p+a

2

(6.35)

with P≡ IT−p + X̃M−1X̃′ and

Ct (P; a; T − p) =
[

Γ
(a

2

)
/Γ
(

T − p+ a
2

)]
·π

T−p
2 · |b ·P|

1
2

the normalizing constant of a multivariate Student-t density (cf. Bauwens et al. (1999),

p.303).

Hence the sample density (6.35) is a (T − p)-dimensional multivariate Student-t density

with a degrees of freedom, mean vector X̃B0 and scale matrix b · (IT−p + X̃M−1X̃′), see

also Hamilton (1994), Appendix 12.A., p.368, for a similar result. For given data, (6.35)

is the marginal likelihood function of Mi, and is thus the (unnormalized) probability mass

function of the discrete-valued random vector of model indicators Mi, which is needed for

the construction of posterior model probabilities.

G.2. Derivation of the posterior density of B1

Next the (model specific) marginal posterior density f (B1|Mi, y) will be derived. For this

purpose the first equation in (6.26) of section G.1 is utilized, which will be restated here
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for the ease of reference:

f (δ1, σ
2,y|Mi) = (2π)−

T−p+d1
2 · (σ2)−

≡ ã︷ ︸︸ ︷
d1 + a??+2

2 · |M|
1
2 · b

a
2

Γ(a
2) ·2

a
2
·

|H22|−
1
2 · exp{− 1

2σ2 [b??+QF(δ1)︸ ︷︷ ︸
≡ b̃

]}

(6.36)

with ã = d1 + a?? and b̃ = b??+QF(δ1), and QF(δ1) = δ ′1 · (H11−H12H−1
22 H21) ·δ1.

Also recall from above that a?? = T − p+ a and b?? = b+νs2 +QF(B0) = b+QF(y),
with QF(y) = (y− X̃B0)

′ · (IT−p + X̃M−1X̃′)−1 · (y− X̃B0).

Next integrate (6.36) with respect to σ2 by using the properties of the IG2 density:

f (δ1, y|Mi) = (2π)−
T−p+d1

2 · b
a
2

Γ(a
2) ·2

a
2
· |H22|−

1
2 · |M|

1
2 ·Cg

(
ã
2

;
2

b̃

)
·

∫
R+

C−1
g

(
ã
2

;
2

b̃

)
· (σ2)−

ã+2
2 · exp

{
− b̃

2σ2

}
·dσ

2

= (2π)−
T−p+d1

2 · b
a
2

Γ(a
2) ·2

a
2
· |H22|−

1
2 · |M|

1
2 ·Cg

(
ã
2

;
2

b̃

)
(6.37)

with the normalizing constant of the IG2 density equal to (see Bauwens et al. (1999),

p.292):

Cg

(
ã
2

;
2

b̃

)
= Γ

(
d1 + a??

2

)
·2

d1+a??
2 · [b??+QF(δ1)]

− d1+a??
2 (6.38)
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Substituting (6.38) in the last equation of (6.37) yields after some rearrangements:

f (δ1, y|Mi) = π
− T−p+d1

2 · b
a
2

Γ(a
2)
· |H22|−

1
2 · |M|

1
2 ·Γ
(

d1 + a??
2

)
·

(b??)−
d1+a??

2 · [1+QF(δ1)/b?? ]
− d1+a??

2

= π
− T−p+d1

2 · b
a
2

Γ(a
2)
· |H22|−

1
2 · |M|

1
2 ·Γ
(

d1 + a??
2

)
·

[b+QF(y)]−
d1+a??

2 · [1+ δ
′
1 ·P1 ·δ1]

− d1+a??
2

(6.39)

with P1 ≡ (H11−H12H−1
22 H21)/b??.

= π
− T−p+d1

2 · b
a
2

Γ(a
2)
· |H22|−

1
2 · |M|

1
2 ·Γ
(

d1 + a??
2

)
·

[b+QF(y)]−
d1+a??

2 ·C−1
t (P1, a??; d1) · [1+ δ

′
1 ·P1 ·δ1 ]

− d1+a??
2︸ ︷︷ ︸

=Td1 (µ1B, P1, a??)

·Ct(P1, a??; d1)

= π
− T−p+d1

2 · b
a
2

Γ(a
2)
· |H22|−

1
2 · |M|

1
2 ·Γ
(

d1 + a??
2

)
·Td1(µ1B, P1, a??) ·b−

d1+a??
2 ·

[
1+(y− X̃B0)

′ ·Py · (y− X̃B0)
]− d1+a??

2 ·Ct(P1, a??; d1)

(6.40)

with Py ≡
[
b · (IT−p + X̃M−1X̃′)

]−1
and Ct(P1, a??; d1) the normalizing constant of the

d1-dimensional Student-t density, Td1(µ1B, P1, a??), with mean µ1B, scale matrix P1 and

a?? degrees of freedom (see Bauwens et al. (1999), Appendix A.2).

For a p-dimensional t-density with scale matrix P and ν degrees of freedom this normal-

izing constant has the general form:

Ct(P, ν ; p) =
[

Γ
(

ν

2

)
/Γ
(

ν + p
2

)]
·π

1
2 p · |P|−

1
2 (6.41)
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which is stated here for the ease of reference, ibid., p.303.

Using this (6.40) becomes

f (δ1, y|Mi) = π
− T−p

2 ·b−
T−p+d1

2 ·
Γ(a??

2 )

Γ(a
2)
· |P1|−

1
2 · |H22|−

1
2 · |M|

1
2 ·Td1·

[
1+(y− X̃B0)

′ ·Py · (y− X̃B0)
]− d1

2 ·Ct(Py, a; T − p)

C−1
t (Py, a; T − p) ·

[
1+(y− X̃B0)

′ ·Py · (y− X̃B0)
]− a??

2︸ ︷︷ ︸
=TT−p(X̃B0, Py, a)

= b−
T−p+d1

2 · |P1|−
1
2 ·
∣∣Py
∣∣− 1

2 · |H22|−
1
2 · |M|

1
2 ·

[
1+(y− X̃B0)

′ ·Py · (y− X̃B0)
]− d1

2 ·Td1 ·TT−p

(6.42)

Now consider the product of determinants in (6.42) in some more detail:

|P1|−
1
2 · |H22|−

1
2 · |M|

1
2 ·
∣∣Py
∣∣− 1

2

=

∣∣∣∣∣H11−H12H−1
22 H21

b??

∣∣∣∣∣
− 1

2

· |H22|−
1
2 · |M|

1
2 ·
∣∣∣b−1 · (IT−p + X̃M−1X̃′)−1

∣∣∣− 1
2

= (b??)
d1
2 · |H22|−

1
2 ·
∣∣∣H11−H12H−1

22 H21

∣∣∣− 1
2 · |M|

1
2 ·b

T−p
2 ·
∣∣∣IT−p + X̃M−1X̃′

∣∣∣ 1
2

= (b+QF(y))
d1
2 · |H|−

1
2 · |M|

1
2 ·b

T−p
2 ·
∣∣∣IT−p + X̃M−1X̃′

∣∣∣ 1
2

(6.43)

utilizing again the fact that |H| = |H22| · |H11−H12H−1
22 H21|, cf. Greene (2003), Ap-

pendix A.5.2, p.823, in the last line. Furthermore from (6.29) and (6.30) it is already

known that |H|−
1
2 · |M|

1
2 = |IT−p + X̃M−1X̃′|− 1

2 .
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Hence the last equation in (6.43) finally simplifies to

|P1|−
1
2 · |H22|−

1
2 · |M|

1
2 ·
∣∣Py
∣∣− 1

2 = (b+QF(y))
d1
2 ·b

T−p
2

= (1+QF(y)/b)
d1
2 ·b

T−p+d1
2

(6.44)

Substituting the last result (6.44) into (6.42) finally gives

f (δ1, y|Mi) = f (δ1| y, Mi) · f (y|Mi) = Td1 ·TT−p (6.45)

That is the joint density f (δ1, y| Mi) equals the product of two multivariate Student-t

densities.

Hence, given the data, the marginal posterior density under model Mi is proportional to

f (B1|Mi, y) ∝

[
1+(B1−µ1B)

′ ·
(
H11−H12 ·H22

−1 ·H21
)

b??
· (B1−µ1B)

]− a??+d1
2

(6.46)

which is the kernel of a d1-dimensional Student-t density with a?? = T − p+a degrees of

freedom.

In chapter 4, the vector B1 corresponds to the vector of PAR coefficients φ . Under the

Jeffreys prior, used in chapter 4, this kernel then becomes (see also section G.6 for details):

f (φ |Mi, y) ∝

[
1+(φ − φ̂ )′ ·

(
H11−H12 ·H22

−1 ·H21
)

νs2 · (φ − φ̂ )

]− T−p−d2
2

(6.47)

since T − p−d + d1 = T − p−d2 (see Zellner (1971), p.69, for a similar expression).
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G.3. Derivation of the posterior density of φs

The derivation of the (model specific) marginal posterior density of φs proceeds along the

lines of section G.2, except that now one has to partition

B = [B1
′ ... B2

′]′ =

[
φs

1×1

... φ
′
−s , δ

′
]′

(6.48a)

This leads to

f (φs|Mi, y) ∝

1+(φs− φ̂s)
2 · (H11−H12 ·H−1

22 ·H21)/b??︸ ︷︷ ︸
≡ (h11)−1


− a??+1

2

∝

[
1+

(φs− φ̂s)2

h11

]− a??+1
2

(6.49)

which has the form of a univariate Student-t density with a?? degrees of freedom, location

parameter φ̂s and scale parameter h11,where H11 denotes the scalar (1,1)-element of the

matrix H in (6.20).

G.4. Derivation of the marginal posterior of θ

Next the derivation of the marginal posterior of θ , i.e. the linear approximation of the

product of periodic autoregressive coefficients is outlined. First define θ ≡ ι ′ · φ , with

ι ′
1×S

= (1, ...,1). From section G.1 we know that the conditional posterior distribution of

the subvector B1, or more precisely φ , given σ2, follows a multivariate Normal distribu-

tion Nd1(µ1B, Σ1), with mean µ1B, see (6.19), and covariance matrix Σ1, see (6.27).

Given these results, it is straightforward to check that, conditional on σ2 and a model

specification Mi, the linear form θ follows a univariate Normal posterior distribution with

first and second moments, under a NIG2 prior, given by

E(θ | σ2, Mi, y) = ι
′ ·µ1B (6.50a)

Var(θ | σ2, Mi, y) = σ
2 · ι ′ ·

(
H11−H12 ·H22

−1 ·H21
)−1 · ι︸ ︷︷ ︸

≡ c

(6.50b)
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and, under a Jeffreys prior, given by

E(θ | σ2, Mi, y) = ι
′ · φ̂ (6.51a)

Var(θ | σ2, Mi, y) = σ
2 · ι ′ · (X̃11− X̃12 · X̃−1

22 · X̃21)
−1 · ι︸ ︷︷ ︸

≡ cJ

(6.51b)

The marginal posterior distribution of the linear form θ , under model Mi, can be obtained

by integrating the joint posterior

f (θ ,σ2|Mi, y) = f (θ | σ2, Mi, y) · f (σ2|Mi, y)

with respect to σ2, using properties of the IG2 distribution, which yields3

f (θ |Mi, y) =
Γ
(

a??+1
2

)
Γ
(a??

2

)
·
√

π
· (b?? · c)−

1
2 ·
[

1+
(θ − ι ′ ·µ1B)2

b?? · c

]− a??+1
2

(6.52)

which is a univariate Student-t density with a?? degrees of freedom, mean ι ′ · µ1B and

variance b?? · c/(a??−2), see Bauwens et al. (1999), Appendix A.1.4, p.294.

Whereas under a Jeffreys prior, omitting for convenience all terms independent of θ , this

simplifies to

f (θ |Mi, y) ∝

[
1+

(θ − θ̂ )2

νs2 · cJ

]− T−p−d+1
2

(6.53)

which is the kernel of a univariate t-density with T − p−d degrees of freedom, mean θ̂ =

ι ′ · φ̂ , i.e. the ordinary least squares estimate of θ , and variance νs2 · cJ/(T − p−d−2),

see Zellner (1971), p.70, for a similar expression.

G.5. Derivation of the marginal posterior of Q

Next consider the linear form Rφ = r, with R a J× S matrix of linear contrasts and r
a J-vector of constants, where J = S in the following. Utilizing some definitions and

arguments used in the derivation of the posterior of θ , it is known that under a NIG2 prior

3Details are omitted to save space.
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f (φ | σ2, Mi, y) = Nd1(µ1B, Σ1). Hence, conditional on the data and all other parameters,

it follows that

Rφ | σ2, Mi ,y ∼ NS(R ·µ1B , σ
2 ·R(H11−H12 ·H−1

22 ·H21)
−1R′︸ ︷︷ ︸

≡ Ω

) (6.54)

or under a Jeffreys prior:

Rφ | σ2, Mi ,y ∼ NS(R · φ̂ , σ
2 ·R(X̃11− X̃12 · X̃−1

22 · X̃21)
−1R′)

Further it is known, using (6.54), that the quadratic form

Z ≡ [R(φ −µ1B)]
′ ·Ω−1 · [R(φ −µ1B)] (6.55)

is χ2
(S)- distributed with S degrees of freedom, cf. Kendall and Stuart (1969), chapter 15.

Following Hamilton (1994), p.369, I make the simple change of variables

Q≡ Z ·σ2 ·a??/(S ·b??) (6.56)

with Jacobian equal to
∣∣S ·b??/(σ2 ·a??)

∣∣.
Since Z|σ2,y ∼ χ2

(S), or equivalently Z|σ2,y ∼ G(S
2 , 2), it is easy to show that Q|σ2,y

follows a Gamma-2 distribution, G2
(
S, d ·b??/(σ2 ·a??)

)
, given all other parameters and

the data.4 The posterior f (Q|Mi, y) can then be obtained by integrating the joint posterior

distribution

f (Q, σ
2|Mi, y) = f (Q| σ2, Mi, y) · f (σ2|Mi, y) (6.57)

with respect to σ2, using properties of the IG2 density, where as above f (σ2| Mi, y) =
IG2(a??, b??).

After some algebra, which is omitted here to save space (see Hamilton (1994), Appendix

12.A, p.370, for some details) it can be shown that the marginal posterior distribution

of the quadratic form Q in (6.56), under model Mi, follows an F-distribution with S and

4Note that if X ∼ G2(ν ,s)⇔ X ∼ G( ν

2 , 2
s ), see Bauwens et al. (1999), A.15, for details.
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a?? = T − p+ a degrees of freedom, i.e.

Q|Mi,y∼ F(ν1 = S, ν2 = a??)

Whereas under a Jeffreys prior, i.e. if (b, M)→ 0 and a→−d, then Q| Mi,y∼ F(ν1 =

S, ν2 = T− p−d), which therefore yields the same result as within a classical framework.
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G.6. Some comments on the prior distribution

As already mentioned briefly at the very beginning of this appendix the assumed (non-

informative) Jeffreys prior of chapter 4 can be obtained as a special case of the natural

conjugate NIG2 prior (see (6.3) above). Recall that the kernels of the multivariate Normal

and the IG2 density, respectively, are given by

k(B| σ2) = σ
−d exp

{
− 1

2σ2 (B−B0)
′M(B−B0)

}
(6.58a)

k(σ2) = σ
−(a+2) · exp

{
− b

2σ2

}
(6.58b)

By letting the scale matrix M and the shape parameter b both go to zero, we find the

noninformative priors by computing the limits of the respective kernels (not the limit

of the densities which are trivially equal to zero through their respective normalizing

constants). Letting M→ 0, which corresponds to a zero precision, the kernel in (6.58a)

becomes

k(B| σ2) = σ
−d (6.59)

In addition, letting b→ 0 the kernel of the IG2 prior in (6.58b) becomes

k(σ2) = σ
−(a+2) (6.60)

which has different interpretations depending on the choice for the parameter a, see

Bauwens et al. (1999), p.114, for a discussion. Obviously from (6.59) and (6.60) the

kernel of the joint diffuse prior is equal to

k(B, σ
2) = σ

−(a+d+2) (6.61)

Now by letting a→−d, Jeffreys’ prior can be obtained, see ibid.:

k(B, σ
2) = σ

−2 (6.62)

As already mentioned in the previous sections G.2-G.5 the corresponding posterior ex-

pressions under a noninformative Jeffreys prior can be easily obtained by letting the IG2
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hyperparameters: b→ 0, in b??, and a→−d, in a??, and letting M→ 0 for the precision

of B.

Another prior specification, used in an earlier version of the paper presented in chap-

ter 4, is Zellner’s g-prior (Zellner (1986)), which has become quite popular because of

its analytical convenience, cf. Zellner and Siow (1980), Chipman et al. (2001), Liang

et al. (2008), Garcia-Donato and Martinez-Beneito (2012), among others. Zellner’s g-

prior allows the experimenter to introduce information about the location parameter of

a regression, but to bypass the most difficult part of the prior specification, namely the

specification of the prior correlation structure. This structure is data-dependent and thus

fixed in Zellner’s approach as (see Judge et al. (1985), Marin and Robert (2010))

B| σ2, X̃∼ Nd(B0, g ·σ2(X̃′X̃)−1) and f (σ2| X̃) ∝ σ
−2 (6.63)

All the posterior results of the previous sections could easily be adapted for the case of a

g-prior simply by substituting M = g−1 · (X̃′X̃). For example, the marginal likelihood in

(6.35), under model Mi, then becomes

f (y|Mi) =
Γ(T−p+a

2 )

π( T−p
2 ) ·Γ(a

2)
·b−

T−p
2 · (g+ 1)−

d
2 · [ 1+QF(y)/b ]−

T−p+a
2

with

QF(y) = (y− X̃B0)
′
(

IT−p−
g

g+ 1
X̃ · (X̃′X̃)−1 · X̃′

)
· (y− X̃B0)

However one potential drawback with this approach is that it introduces the additional

unknown hyperparameter g, which has to be integrated out numerically. Furthermore

assuming a g-prior did not yield better results in the empirical application presented in

chapter 4 compared to the results using a Jeffreys prior.
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H. Technical details - chapter 5

H.1. Derivation of the posterior predictive distribution of ỹK

In the following it will be shown that the results in Broemeling and Land (1984), stated

for a nonperiodic AR(p) model, also apply to the more general case of a periodic AR(p)

model of the form (5.1) as in section 5.2.5 The subsequent results apply to the case of a

model without a structural break or with a break at known date TB.

The joint probability density function (pdf) of B, σ2, ỹK , given the data y and a particular

model specification Mi, can be factorized as (cf. Zellner (1971), p.72):

f (ỹK ,B,σ2|Mi, X̃, W̃K , y) = f (B,σ2|Mi, X̃, y) · f (ỹK|Mi, B, σ
2,W̃K , y) (6.64)

In the subsequent conditioning on X̃ and Mi will be omitted in order to simplify the no-

tation. It is important to keep in mind that the matrix W̃K contains deterministic future

values, but more importantly, also lagged future values yT+K−p, for p = 1...pmax, when

a K-step ahead forecast is considered. In the following it will be useful to partition the

vector of unknown future observations according to

ỹK =

(
ỹK−1

yT+K

)
(6.65)

where ỹK−1 is a subvector of dimension K− 1 and yT+K the unknown future value at

t = T +K.

Further partition the right-hand side variables of the prediction equation (5.7) (see section

5.2.2, p.82), contained in the matrix W̃K , conformably to (6.65):

W̃K =

(
W̃K−1

W(K)

)
(6.66)

with W̃K−1 a submatrix of dimension K− 1× d and W(K) a vector of dimension 1× d

which is just the K-th row of the matrix W̃K .

5Note that a nonperiodic AR model is a special case of a periodic AR model, namely for φs = φ , ∀s.
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Note that for K = 1, ỹ1 = yT+1 and W̃1 =W(1). The main results are summarized in the

following proposition, which generalizes Theorem 1, in Broemeling and Land (1984), to

the periodic case.

Proposition 1. If {yt : t = 1...T} is a trajectory of a Gaussian PAR(p) process with un-

known parameters B = (φ ′, δ ′)′ ∈ Rd and σ2 ∈ R+, where the vector y contains the

last T − p observations and y0 contains the first p observations, and if unknown future

values {yT+k : k = 1...K}, contained in the vector ỹK , are generated by the same pro-

cess as the observations, and X̃′X̃ and W̃′
KW̃K are symmetric positive definite matrices,

and the joint prior distribution of (B, σ2) is of the Normal-Inverse-Gamma-2 form with

parameters B0 ∈Rd , V a symmetric positive definite scale matrix and a,b > 0, then the

posterior predictive distribution of ỹK given y and y0, can be expressed as the product

K univariate predictive densities, namely the marginal density of yT+1, the conditional

predictive density of yT+2 given yT+1 and so on, where these densities have the following

form:6

• If K = 1, the predictive density of yT+1 is a Student-t density with ν? = T − p+ a

degrees of freedom, mean

E(yT+1| y) = D−1
1 ·E1 (6.67)

and variance

Var(yT+1| y) =
F1−E ′1 ·D

−1
1 ·E1

(ν?−2) ·D1
(6.68)

where

D1 = 1−W(1) ·R−1 ·W ′(1)

E1 =W(1) ·R−1 ·F1

F1 = S− y2
T+1−F′1 ·R−1 ·F1

(6.69)

6Conditioning on y0 and X̃ is omitted.
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with

R = V−1 + X̃′ · X̃+ W̃′
K ·W̃K (6.70a)

S = y′ ·y+ ỹ′K · ỹK +B′0 ·V−1 ·B0 + b (6.70b)

F1 = V−1B0 + X̃′y (6.70c)

• In general, if K > 1, the conditional predictive density of yT+K given W̃K (see (5.6)

in section 5.2.2, p.82) is a Student-t density with ν? = T − p+a+K−1 degrees of

freedom, mean

E(yT+K| W̃K , y) = D−1
K ·EK (6.71)

and variance

Var(yT+K| W̃K , y) =
FK−E ′K ·D

−1
K ·EK

(ν?−2) ·DK
(6.72)

where

DK = 1−W(K) ·R−1 ·W ′(K)

EK =W(K) ·R−1 ·
(

F1 + W̃′
K−1 · ỹK−1

)
FK = S− y2

T+K−
(

F1 + W̃′
K−1 · ỹK−1

)′
R−1

(
F1 + W̃′

K−1 · ỹK−1

) (6.73)

Proof:
Writing out (6.64) more explicitly (omitting the normalizing constants for convenience)

the kernel of this joint pdf is given by

f (ỹK ,B, σ
2 |Mi, y)

∝ (σ2)−
T−p

2 · exp
{
− 1

2σ2 (y− X̃ ·B)′ · (y− X̃ ·B)
}
· (σ2)−

a+2
2 · exp

{
− b

2σ2

}
·

(σ2)−
d
2 · exp

{
− 1

2σ2 (B−B0)
′ ·V−1 · (B−B0)

}
·

(σ2)−
K
2 · exp

{
− 1

2σ2 (ỹK−W̃K ·B)′ · (ỹK−W̃K ·B)
}
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(6.74)

with d = (4+ p) ·S (= dim(B)).

First consider only the exponent of (6.74), which is equal to

(y− X̃ ·B)′ · (y− X̃ ·B)+ (ỹK−W̃K ·B)′ · (ỹK−W̃K ·B)

+ (B−B0)
′ ·V−1 · (B−B0)+ b

(6.75)

Next complete the square with respect to the vector B. By using the matrix R given in

(6.70a), the exponent (6.75) can be expressed more compactly as

= B′ ·R ·B−2 ·B′(X̃′y+V−1B0 + W̃′
K · ỹK︸ ︷︷ ︸

≡ F

)+ y′y+ ỹ′K ỹK +B′0V−1B0 + b︸ ︷︷ ︸
≡ S, see (6.70b)

(6.76)

Applying a Cholesky decomposition to the matrix R = LL′, with L the corresponding

lower triangular matrix, and defining B̃ ≡ L′B ⇔ B = (L′)−1B̃, then after completing

the square with respect to B̃, equation (6.76) can be written as

= (B̃−L−1 ·F)′ · (B̃−L−1 ·F)−F′ ·R−1 ·F+S (6.77)

and by substituting B̃ = L′B and some algebra, (6.77) is seen to be

= (B−R−1 ·F)′ ·R · (B−R−1 ·F)+S−F′ ·R−1 ·F (6.78)

where in the following the quadratic form in B is denoted by QF(B).

Plugging (6.78) into the exponent of the joint pdf (6.74) the latter becomes

f (ỹK , B, σ
2 | y) ∝ (σ2)−

T−p+K+d+a+2
2 · exp

{
− 1

2σ2 [ QF(B)+S−F′ ·R−1 ·F ]

}
(6.79)
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Now integrate out B from (6.79) using properties of the multivariate Normal density

f (ỹK , σ
2 | y) ∝

∫
Rd
|R|

1
2 · (σ2)−

d
2 · exp

{
− 1

2σ2 ·QF(B)
}
·dB

· |R|−
1
2 · (σ2)−

T−p+K+a+2
2 · exp

{
− 1

2σ2 [ S−F′ ·R−1 ·F ]

}
(6.80)

and write b? ≡ S−F′ ·R−1 ·F henceforth.

Next integrate out σ2 from (6.80) by using the properties of the IG2 density:

f (ỹK | y) ∝ |R|−
1
2 ·Cg

∫
R+

C−1
g · (σ2)−

a?+2
2 · exp

{
− b?

2σ2

}
·dσ

2 (6.81)

with a? ≡ T − p+K +a and Cg(
a?
2 ; 2

b? ) the normalizing constant of the Gamma-2 distri-

bution, see Bauwens et al. (1999), p.292.

In the following the main task is to obtain the posterior predictive distribution of ỹK under

model Mi. By subsuming all terms independent of ỹK into the proportionality sign the

expression in (6.81) is proportional to

f (ỹK | y) ∝ | R |−
1
2 · (b?)−

a?
2

= | R |−
1
2 · ( S−F′ ·R−1 ·F )−

a?
2

(6.82)

Furthermore by proceeding as in Zellner (1971), p.72 f., we can express the last factor of

(6.82) in terms of quadratic forms, by completing the square with respect to ỹK , y and B0,

which after some algebra7 finally results in

f (ỹK | y) ∝ | R |−
1
2 · [ QF(B0)+QF(y)+QF(ỹK) ]

− a?
2 (6.83a)

= | R |−
1
2 · c−

a?
2 · [ 1+QF(ỹK)/c ]−

a?
2 (6.83b)

with QF(.) the respective quadratic forms and c≡ QF(y)+QF(B0).

7Details are omitted here in order to save space, cf. ibid.
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For an ease of reference QF(ỹK) is stated here explicitly without a proof:

QF(ỹK) =
(

ỹK−W̃K · β̂B

)′
·E? ·

(
ỹK−W̃K · β̂B

)
(6.84)

with scale matrix8

E? ≡ IK−W̃K ·R−1 ·W̃′
K (6.85a)

=
(

IK + W̃K · (V−1 + X̃′X̃)−1 ·W̃′
K

)−1
(6.85b)

and

β̂B ≡
(

V−1 + X̃′X̃
)−1
·
(

V−1B0 + X̃′y
)

(6.86)

the usual Bayes estimate of B under quadratic loss, cf. Bauwens et al. (1999), p.58.9

At first sight the expression in (6.83b) resembles that given in Zellner (1971), p.73, which

has the form of a multivariate t-density (see also Bauwens et al. (1999), Theorem 2.25,

p.61). However when examining (6.83b) in some more detail we recognize that the matrix

R = V−1 + X̃′X̃+ W̃′
KW̃K , and hence the determinant, depends on lagged future values

yt , t ≤ T +K− 1, through the matrix W̃K . As a consequence the last factor in (6.83b)

is not the kernel of a multivariate t-density, since a subset of the values in W̃K contains

lagged future values of yt . Hence the posterior predictive distribution of a PAR model

is not a multivariate t-density as in the case of a standard (non-autoregressive) linear

regression model, see for example Judge et al. (1985), p.122, Gelman et al. (1995), p.239,

among others.

Next the posterior predictive distribution f (ỹk| y) is examined in more detail. As noted

by Broemeling and Land (1984), p.1309 (henceforth abbreviated by ’BL’), for the case of

a nonperiodic AR(p) model, and as can also be seen from (6.82), the Bayesian predictive

8The last equation (6.85b) follows from an application of the Woodbury matrix identity by setting A =

IK , U = W̃K , V = W̃′
K and C = (V−1 + X̃′X̃)−1 in (A+U ·C ·V)−1, see footnote 2 on page 185 of

section G.1.
9A similar expression as that in (6.84) can be found in Bauwens et al. (1999), Theorem 2.25, p.61., using
(6.85b), or in Zellner (1971), p.73, when using a joint diffuse prior for B and σ2.
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distribution of ỹK , for K ≥ 1, can be factorized according to:

f (ỹK | y) = g1(ỹK−1, y) ·g2(ỹK , y) , ỹK ∈RK (6.87)

with

g1(ỹK−1, y) ∝ | R |−
1
2 (6.88a)

g2(ỹK , y) ∝ ( S−F′ ·R−1 ·F )−
T−p+K+a

2 (6.88b)

For the sake of clarity consider next the matrix W̃K in more detail. Note that this matrix

consists of two submatrices, see (5.6) in chapter 5. Below only the first of these two

submatrices, namely XK , is indicated here for s = 1,2 explicitly. This matrix is given by

D1,T+1 · yT . . . D1,T+1 · yT+1−p D2,T+1 · yT . . . D2,T+1 · yT+1−p . . .

D1,T+2 · yT+1 . . . D1,T+2 · yT+2−p D2,T+2 · yT+1 . . . D2,T+2 · yT+2−p . . .

D1,T+3 · yT+2 . . . D1,T+3 · yT+3−p D2,T+3 · yT+2 . . . D2,T+3 · yT+3−p . . .
...

...
...

...

D1,T+K · yT+K−1 . . . D1,T+K · yT+K−p D2,T+K · yT+K−1 . . . D2,T+K · yT+K−p . . .


with dimension K× d and Ds,t equals one if observation t falls in season s, and equals

zero otherwise.10

For K = 1 and a sample y, the first term g1(ỹ0, y) in (6.87) does not depend on yT+1 since

W̃1 contains only yt-terms with t < T + 1, and g2(ỹ1, y) only depends on ỹ1 = yT+1,

given y. Note that if K = 1, then ỹK−1 = ỹ0 = 0 and W̃K = W(K), since W̃K−1 = 0, see

expressions (6.65) and (6.66). Hence the marginal posterior predictive pdf for a one-step

ahead forecast is

f (yT+1| y) ∝ g2(yT+1, y) (6.89)

and will be shown to have the form of a univariate Student-t density. In this case, g2

equals the kernel and g1 equals the normalizing constant of a univariate t-density.

For K = 2, the first term g1(ỹ1, y) does not depend on yT+2, since both ỹ1 and W̃2 contain

10Where the subsequent discussion follows that in Broemeling and Land (1984) for the nonperiodic case.

209



only yt-terms with t < T + 2, and the second term, g2(ỹ2, y), depends on both yT+1

and yT+2 through ỹ2. Hence for given values y1, ...,yT ,yT+1, the conditional posterior

predictive distribution of a two-step ahead forecast, f (yT+2| yT+1, y), is g2(ỹ2, y), which

will be seen to have the form of a conditional t-density. Since the joint posterior predictive

pdf for K = 2 can be factorized as

f (ỹ2| y) = f (yT+2| yT+1, y) · f (yT+1| y) (6.90)

it follows that this joint pdf is given by the product of two univariate t-densities (a marginal

and a conditional).

In general, for K ≥ 2 the first term g1(ỹK−1, y) in (6.87) does not depend on yT+K

since ỹK−1 and W̃K contain only yt-terms with t ≤ T +K− 1, and g2(ỹK , y) depends

on yT+1, ...,yT+K through ỹK . Hence for given values ỹK−1 and y, the conditional poste-

rior predictive pdf for a K-step ahead forecast, f (yT+K| W̃K , y), is equal to g2(ỹK , y),
which will be shown below to be proportional to a t-density kernel. Since the joint poste-

rior predictive pdf for K ≥ 1 can be factorized as

f (ỹK| y) =
K

∏
k=1

f (yT+k| ỹk−1, y) , with ỹ0 = 0 (6.91)

it follows that the posterior predictive pdf of ỹK can be expressed as the product of K

univariate t-densities, viz. a marginal t-density for yT+1 and K−1 conditional t-densities.

However the crucial point here is that this pdf is not the standard K-variate Student-t

density, as in Zellner (1971), p.73, for the case of a (nonautoregressive) linear regression

model. The same result has been established by Broemeling and Land (1984) for the

nonperiodic case.

Next it will be shown that for K = 1 the marginal posterior predictive density of yT+1 is

a Student-t density with T − p+ a degrees of freedom and that for K > 1 the posterior

predictive density of yT+K , given W̃K , is a conditional Student-t density with T − p+a+

K−1 degrees of freedom.
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First write out the second term of (6.82) explicitly:

S−F′ ·R−1 ·F = y′y+ ỹ′K · ỹK +B′0V−1B0

− (X̃′y+V−1B0 + W̃′
K · ỹK)

′ · (V−1 + X̃′X̃+ W̃′
KW̃K)

−1 · (X̃′y+V−1B0 + W̃′
K · ỹK)

(6.92)

and use some notation to simplify the subsequent algebra

S−F′ ·R−1 ·F

=

≡ S1︷ ︸︸ ︷
B′0V−1B0 +

≡ S2︷︸︸︷
y′y +

≡ S3︷ ︸︸ ︷
ỹ′K · ỹK

− (

≡ F1︷ ︸︸ ︷
V−1B0 + X̃′y+

≡ F2︷ ︸︸ ︷
W̃′

K · ỹK)
′ · (V−1 + X̃′X̃+ W̃′

KW̃K)
−1 · (F1 +F2)

= ỹ′K · ỹK−
[
W̃′

K · ỹK +F1

]′
·R−1 ·

[
W̃′

K · ỹK +F1

]
+S1 +S2

= ỹ′K · [IK−W̃KR−1W̃′
K ]︸ ︷︷ ︸

≡ H
K×K

· ỹK−2 · ỹ′K ·W̃KR−1F1︸ ︷︷ ︸
≡ D

K×1

+S1 +S2−F1R−1F1︸ ︷︷ ︸
≡ const

(6.93)

Next complete the square with respect to yT+K , i.e. the K-th element in the vector ỹK (see

(6.65)). Further partition the matrix H in (6.93) as follows:

H =


H11

K−1 × K−1
| H12

K−1 × 1

−−−−− −−−−−
H21

1 × K−1
| H22

1 × 1

 (6.94)

and also the vector D, defined in the last line of (6.93):

D =

 DK−1

D(K)

=

 W̃K−1 ·R−1 ·F1

W(K) ·R−1 ·F1

 (6.95)

with DK−1 a vector of dimension K−1 and D(K) the K-th element of D.
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Using these expressions the last equation in (6.93) can be written more compactly as

= ( ỹ′K−1 , yT+K ) ·

H11 H12

H21 H22

 ·
ỹK−1

yT+K

−2 · ( ỹ′K−1 , yT+K ) ·

DK−1

D(K)

+ const

(6.96)

Multiplying out (6.96) and completing the square with respect to yT+K yields

S−F′ ·R−1 ·F

= H22 ·

≡ QF(yT+K)︷ ︸︸ ︷[
yT+K−H−1

22 · (D(K)−H21 · ỹK−1)
]2
−H−1

22 ·
[
D(K)−H21 · ỹK−1

]2

+ ỹ′K−1H11ỹK−1−2 · ỹ′K−1DK−1 + const︸ ︷︷ ︸
≡ q

= H22 ·QF(yT+K)−H−1
22 ·
[
D(K)−H21 · ỹK−1

]2
+q

(6.97)

To get explicit expressions for the mean and variance of yT+K recall from (6.93) that the

matrix H is given by

H = IK−W̃KR−1W̃′
K

= IK−



≡V11︷ ︸︸ ︷
W̃K−1R−1W̃′

K−1 |

≡V12︷ ︸︸ ︷
W̃K−1R−1W ′(K)

−−−−−−−−− −−−−−−−−−
W(K)R

−1W̃′
K−1︸ ︷︷ ︸

≡V21

| W(K)R
−1W ′(K)︸ ︷︷ ︸
≡V22



=


IK−1−V11 | −V12

−−−−− −−−−−
−V21 | 1−V22



(6.98)

From QF(yT+K) in (6.97) the conditional posterior expectation of yT+K can be seen to
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equal

E(yT+K| W̃K , y) = H−1
22 · (D(K)−H21 · ỹK−1) (6.99)

or by inserting the expressions of the second equation of (6.98):

=
(

1−W(K) ·R−1 ·W ′(K)

)−1
·
(

D(K)+W(K) ·R−1 ·W̃′
K−1 · ỹK−1

)
(6.100)

From the definition of D(K) in (6.95), the conditional expectation in (6.100) can be written

as

E(yT+K| W̃K , y)

=
(

1−W(K) ·R−1 ·W ′(K)

)−1
·W(K) ·R−1 ·

(
F1 + W̃′

K−1 · ỹK−1

) (6.101)

verifying (6.71) of proposition 1, see BL, p.1310 (26), for a similar expression.

To derive the conditional posterior variance of yT+K , stated in (6.72), first write out the

last equation of (6.97), utilizing

q = ỹ′K−1 ·H11 · ỹK−1−2 · ỹ′K−1DK−1 +S1 +S2−F′1R−1F1

together with the definitions of (6.98) to yield

S−F′ ·R−1 ·F = H22 ·QF(yT+K)

−H−1
22 ·
(

D(K)+W(K)R
−1W̃′

K−1 · ỹK−1

)2
+ ỹ′K−1 · (IK−1−V11) · ỹK−1

−2 · ỹ′K−1DK−1 +S1 +S2−F′1R−1F1

(6.102)

For an ease of comparison with the results in BL define:

EK ≡ D(K)+W(K) ·R−1 ·W̃′
K−1 · ỹK−1 (6.103)

= W(K) ·R−1 ·
(

F1 + W̃′
K−1 · ỹK−1

)
(6.104)

where the last line follows from the definition of D(K), see (6.95).
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Then (6.102) can be written as

S−F′ ·R−1 ·F = H22 ·QF(yT+K)−E ′K ·H−1
22 ·EK +S− y2

T+K

−F′1R−1F1− ỹ′K−1 ·V11 · ỹK−1−2 · ỹ′K−1 ·DK−1

(6.105)

by utilizing the fact that S1 +S2 = S−S3 = S− ỹK−1 · ỹK−1−y2
T+K , see equation (6.93).

Further by using the definitions of DK−1 and V11, given in (6.95) and (6.98), equation

(6.105) becomes

= H22 ·QF(yT+K)−E ′K ·H−1
22 ·EK +S− y2

T+K− [ ỹ′K−1 ·W̃K−1︸ ︷︷ ︸
≡ C′

·R−1 ·W̃′
K−1 · ỹK−1

+ 2 · ỹ′K−1 ·W̃K−1 ·R−1F1 +F′1R−1F1 ]

= H22 ·QF(yT+K)−E ′K ·H−1
22 ·EK +S− y2

T+K−
[

C′R−1C+ 2 ·C′ ·R−1F1 +F′1R−1F1
]

= H22 ·QF(yT+K)−E ′K ·H−1
22 ·EK +S− y2

T+K− ( C+F1)
′ ·R−1 · ( C+F1)︸ ︷︷ ︸

≡ FK

(6.106)

Note that since H22 corresponds to DK in (6.73) of proposition 1, H22 = DK is used in

the following. By using the last equation of (6.106) the posterior predictive distribution

in (6.82) can be written as:

f (ỹK| y) = g1(ỹK−1, y) ·g2(ỹK , y)

∝ |R|−
1
2 ·
[

FK−E ′K ·D−1
K ·EK +DK ·QF(yT+K)

]− a?
2

= |R|−
1
2 ·
(
FK−E ′K ·D−1

K ·EK
)− a?

2 ·

[
1+

(
DK

FK−E ′K ·D
−1
K ·EK

)
·QF(yT+K)

]− ν?+1
2

(6.107)

with ν? ≡ T − p+ a+K−1 and QF(yT+K) =
(

yT+K−E(yT+K| W̃K , y)
)2

, where the

expectation is given in (6.101).
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First from (6.107) it can be observed that the last factor is the kernel of the proposed

conditional Student-t density of yT+K with ν? posterior degrees of freedom, given ỹK−1 =

(yT+1, ...,yT+K−1)′, future deterministic values and the data y, contained in the matrix

W̃K . From the expressions in (6.73) of proposition 1 it can be seen that the first two factors

in the last line of (6.107) do not depend on yT+K , but only on ỹK−1. With regard to the

conditional Student-t density of yT+K , for K > 1, this means that given ỹK−1 the first two

factors can be subsumed into the normalizing constant of f (yT+K| W̃K , y). Hence, given

ỹK−1, for K > 1 the factor g2 in (6.107) is equal to a conditional Student-t density with

ν? posterior degrees of freedom. From (6.107) the variance of the conditional predictive

pdf of yT+K (see Bauwens et al. (1999), A.35, p.294) is given by:

Var(yT+K| W̃K , y) =
FK−E ′K ·D

−1
K ·EK

(ν?−2) ·DK
(6.108)

verifying (6.72) of proposition 1.11

To obtain the conditional posterior predictive density of yT+K−1 given values ỹK−2 =

(yT+1, ...,yT+K−2)′ and y, complete the square with respect to yT+K−1 in the second factor

of (6.107), which then can be shown to have the form of a univariate conditional t-density,

and so on.

The expressions of the first two moments for K = 1, proposed in (6.67) and (6.68) above,

can be obtained from (6.101) and (6.108), respectively, by noting that for K = 1, ỹK−1 = 0
and W̃K−1 = 0, and thus ỹK = yT+1 and W̃K = W(1), where W(1) only depends on the

observed data y. To obtain the corresponding expressions under the diffuse prior for σ2,

used in section 5.2.1, the hyperparameters of the IG2 prior have to be chosen according

to a→−d and b→ 0.

�

11Note that the precision of yT+K is equal to Var(yT+K | W̃K , y)−1 in (6.108), see BL, p.1311 (27), for a
similar result.
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