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Chapter 1

Introduction

The German market for retail derivatives has grown dramatically to
101.7 billion euros invested in the asset class on March 31, 2012 ac-
cording to Deutscher Derivate Verband (2012).1 Compared to 2004
when there were only 48 billion euros invested, this constitutes an
increase of 112%. If there had not been an ongoing financial crisis
since 2007, the increase would most likely be even more pronounced,
which is suggested by the record investment recorded in late 2007
of 139 billion euros and the subsequent plummeting to below 80 bil-
lions in early 2009. Since then the retail derivatives market has not
fully recovered.

The general increase of the retail derivatives market volume in the
past decade is in line with a general increase of privately held net
assets (equity) in Germany since 2004. According to Deutsche Bun-
desbank (2010) these assets rose from 6,421 billion euros to 8,555
between 2004 and 2010 (a relative increase of 33%), which means

1These retail derivatives are also referred to as financial innovations. In Germany
it is also common to call these products certificates. In this thesis, all three terms
will be used interchangeably.
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that retail derivatives have significantly gained market share. This
poses two natural questions:

1) What is the reason for the increase in private net assets?

2) Why are retail derivatives benefiting from this development in a
more pronounced way?

One possible line of explanation is put forth by Kohlert (2009) who
adduces changes in social security legislation which impose a ne-
cessity for a higher degree of private responsibility which naturally
attracts money to capital markets via pension funds or other types
of insurance products. This is in line with the situation depicted
in Deutsche Bundesbank (2010) where assets belonging to the lat-
ter classes are documented to have risen from 1,227 billion euros
to 1,600. The particular development in the retail derivatives sector
might be explained by special tax breaks for financial innovations
in Germany until 2009. Contrary to fixed income products, capital
gains on financial innovations were not taxed at all if they had been
held for at least one year as it was the case with stock market invest-
ments. Secondly, the development might also have been spurred by
considerably lower interest rates than in the 1980s and 1990s which
rendered traditional savings accounts unfavorable.

According to Deutscher Derivate Verband (2012) 98.7% of the assets
recorded in March of 2012 fall into the class of investment products,
while only 1.3% are classified as leverage products.2 Of those lever-
age products, the majority with 38.9% each is written either on
single stocks or stock market indexes. Another 16.8% refer to com-
modities while interest rates and currencies play only a very minor
role. In terms of absolute numbers there is about half a billion euros
invested in stock market index leverage products.

2Contrary to leverage products, investment products oftentimes include capital
guarantees and do not exhibit knock-out possibilities or any type of leverage.
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Research regarding these products is naturally concerned with retail
client specific questions and their ramifications for investors. The
most important questions appear to be:

1) Market segmentation: Due to the fact that issuers typically are
large financial institutions, primarily banks, while investors are
retail clients, the two groups have different access to capital mar-
kets with respect to (w.r.t.) transaction costs, borrowing costs,
limitations to short selling and so forth. This immediately leads
to the second area of research.

2) Fair prices: Are retail certificates fairly priced or do issuers ex-
ploit their market power to the disadvantage of their clients?

3) Justification of potentially unfair prices: If these derivatives are
not fairly priced, to which degree can this be justified in terms
of structuring costs incurred by the issuers and by the offering of
products retail clients could not otherwise replicate themselves
as well as the enablement to access markets that would otherwise
be limited to institutional investors?

The recent paper by Henderson & Pearson (2011) addresses these
questions for the US American market. On the one hand they pro-
vide an account of literature stressing the beneficial effects of finan-
cial innovations. These are the generation of payoff profiles which
would otherwise be unattainable for investors. Secondly, structured
products were shown to reduce transaction costs for investors (Ross
(1989) and Grinblatt & Longstaff (2000)) or provide tax advantages
(Miller (1986)). Thus, all benefits to some extent revolve around lift-
ing market imperfections. On the other hand financial innovations
are designed specifically to the needs or perceived needs of retail
investors, which do not necessarily have to coincide with a ratio-
nal investor’s view. If issuers engineer products with high payoffs
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in states considered more probable by an uninformed investor than
they are in reality and vice versa this opens up selling opportuni-
ties at the expense of such uninformed investors. Using the example
of SPARQS (Stock Participation Accreting Redemption Quarterly-
Pay Securities) introduced by Morgan Stanley, Henderson & Pear-
son (2011) demonstrate that this effect can be quite sizable as those
SPARQS are sold at a surcharge of at least 8%.

These results and considerations motivate to take a specific look
at further structured products and markets. In this thesis we will
closely examine OETCs (Open-End Turbo Certificates), the latest
generation of knock-out leverage products offered to German retail
investors. The two crucial and innovative features of this product are
an openly communicated pricing formula by the issuers paired with
a potentially endless lifetime. Considering these properties and the
fact that there is only very limited research on the topic, this thesis
aims at creating a comprehensive view on OETCs, which appears
to be a promising direction for research.

1.1 Research Question

Based on the abovementioned research gap, we can further con-
cretize the main intentions pursued in this thesis:

1) Detailed discussion of the design of OETCs: The starting point
of the thesis has to be a detailed decription of the structured
product which is the subject matter of this thesis.

2) Detailed theoretical analysis of the main value drivers affecting
the pricing of OETCs: Based on the design of OETCs the next
step has to be an understanding of what essentially drives the
value of the product. Naturally, this has to be done from two
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perspectives, the pure pricing perspective of a financial economist
and the perspective of an investor who might be willing to put
money into the product.

3) Reformulation of OETCs in terms of option pricing methodol-
ogy : For the sake of the actual pricing of OETCs it is beneficial
to formulate the OETC pricing problem as an American option
pricing problem, for which there is a plethora of solution tech-
niques available. These solution techniques have to be assessed
and evaluated based on the previous value driver analysis. In par-
ticular, the derivation of optimal exercise prices for the American
options has to be addressed at this stage.

4) Analysis of numerical pricing techniques for the valuation of
OETCs: Once the solution technique for the OETC pricing prob-
lem has been chosen an efficient numerical solution method has
to implemented to complete the pricing.

5) Comparative statics analysis: After choosing a pricing model to
value OETCs the model has to be validated in a comparative
statics analyis. In such an analysis the impact of the pricing and
model parameters are assessed by varying one parameter while
all other parameters are held constant. At the same time this
analysis helps evaluating which parameters are most crucial to
the valuation and the value OETCs create for investors.

6) Empiricial study to assess market traded OETCs: Finally, the rel-
evance of the pricing methodology has to be demonstrated based
on real market data for an extended period of time in an empiri-
cal analysis. This comprises both an estimation of market model
parameters which are inferred from traded option prices and also
an analysis for which market offered OETCs the optimal exercise
threshold is breached. A second step of the empirical analysis has
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to be concerned with the development of the observations over
time and an economic explanation for the observations.

1.2 Outline of the Research

This thesis consists of five chapters not counting the Introduction
(Chapter 1) and the Conclusion (Chapter 7). In Chapter 2 Stan-
dard Options and Overview of Retail Certificates we first give an
overview of standard call and put options as well as popular re-
tail certificates in the German market. In this way we highlight the
versatility of these structured products in Germany and stress the
necessity to assess their usefulness from an economic viewpoint. In
the second part of the chapter the focus lies on Turbo certificates,
the subject matter of this thesis. First we present the results on
finite-lived Turbo certificates, second we introduce OETCs and pro-
vide an economic analysis under which circumstances these products
should exist. Also we give an interpretation of OETCs in terms of
American-style barrier options.

Chapter 3 Option Pricing Theory pertains to option pricing the-
ory and is divided into four sections. Section 3.1 covers the most
prominent option pricing models revolving around the Black & Sc-
holes (1973) model, jump-diffusion models such as the one suggested
by Merton (1976), stochastic volatility models like the one put forth
by Heston (1993), and combinations and extensions of these models.
This lays the foundation to further applying these models to the op-
tion constituted by OETCs. In Section 3.2 we shift our attention to-
wards American-style options. Since they differ from their European
counterparts in the fact that they can be prematurely exercised we
first summarize the results on properties of the early exercise bound-
ary. After that we present valuation methods for American-style op-
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tions, which we classify as analytic approximations, methods based
on PDEs (Partial Differential Equations) governing option prices,
Monte Carlo simulations and optimal control techniques, which re-
volve around interpreting them as optimal stopping problems. For
each of the methods we summarize the most important results. In
Section 3.3 we describe barrier options, which can be activated or
extinguished based on a barrier being breached, and present the
most relevant results on their valuation. Section 3.4 concludes the
chapter and addresses the assumptions about the market made by
the respective models. In particular, this pertains to perfect and ef-
ficient markets and to which extent these assumptions are satisfied
by stock markets.

In Chapter 4 Optimal Control Theory and Optimal Stopping we
wrap up the theoretical foundations by introducing the mathemat-
ical background of optimal control and optimal stopping problems.
The dynamic programming equations which govern the optimal
value function of a control problem are derived in Section 4.1 as
they are the main ingredient for the development of efficient numer-
ical solution schemes. These numerical schemes revolve around ap-
proximating the underlying stochastic processes with discrete-time
Markov chains, which is elucidated in Section 4.2. Section 4.3 then
deals with the numerical solution methods we employ to solve the
discretized optimal stopping problem.

Having the underlying option pricing theory for American and bar-
rier options, a formulation of OETCs as such, and efficient numeri-
cal solution schemes for these types of problems in place, we carry
out a comparative statics analysis in Chapter 5 Comparative Statics
Analysis of OETCs. This analysis includes the choice of the Bakshi,
Cao & Chen (1997) market model in Section 5.1. In Section 5.2 the
actual comparative statics analysis is conducted which character-
izes the dependence of the optimal exercise thresholds on the gap
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size and the financing parameter of the OETCs as well as the jump
intensity and the expected jump size of the market model. In Sec-
tion 5.3 we conclude the comparative statics analysis with a one-day
empirical analysis of all OETCs written on the DAX and traded on
July 16, 2010.

In Chapter 6 Empirical Study for 2007 through 2009 we conduct
an empirical analysis for the years 2007 through 2009, in which we
analyze all OETCs on the German stock market index DAX. For
this purpose we present our data set in Section 6.1. Our set con-
sists of two parts, the actual OETCs data and the option data on
the DAX from which we infer our market model parameters using
a least squares fit between market and model prices. In Section 6.2
we present the results of the empirical study along with an inter-
pretation of our main findings.

Eventually, Chapter 7 Conclusion summarizes the results of the en-
tire thesis. In addition, a critical interpretation of the results from
an economic point of view and in the light of the research question
is provided. The thesis is then wrapped up by a discussion and an
outlook on potential further research which was not addressed or
only raised in this work.



Chapter 2

Standard Options and

Overview of Retail

Certificates

Innovative products are offered to retail customers in many countries
and have long been discussed by researchers. Examples of the liter-
ature on such retail derivatives include Chen & Kensinger (1990),
Wasserfallen & Schenk (1996), and Burth, Kraus & Wohlwend (2001).

Those products are usually generalizations of standard options and
standard derivatives in general. Therefore, Section 2.1 introduces
standard options. In Section 2.2, we provide an account of the dif-
ferent types of retail certificates available in the German derivatives
market as well as a literature survey of previous research. In Sec-
tion 2.3 we shift our attention to Turbo certificates. First, the long
existing finite-time variant is discussed and eventually the relatively
new open-end version is introduced.



10 CHAPTER 2. STANDARD OPTIONS AND OVERVIEW

2.1 Standard Options

In general, there are two types of options, call options and put op-
tions. Options securitize the right to either buy (call option) or sell
(put option) an asset at a prespecified price in the future. This price
is called the exercise or striking price (more briefly also strike) of
the option. After a certain time, commonly referred to as expiry or
maturity, this right perishes.

In the absence of transaction costs plain vanilla options yield the
following profits Pcall and Pput to their holders at maturity T de-
pending on the underlying S and the striking price K

Pcall(S, T ) = max(S(T )−K, 0)

Pput(S, T ) = max(K − S(T ), 0),

where S(T ) denotes the price of the underlying asset at time T .
These payoff functions have also been illustrated graphically in Fig-
ure 2.1 for a call option with strike Kcall = 15 and a put option with
strike Kput = 20.

Besides, one can make distinctions as to when the option holder
is entitled to exercising the option. Roughly speaking, two major
types of exercise specifications have evolved. So-called European-
style options are exercisable only at maturity. On the other extreme,
American-style options can be exercised at any time between initi-
ation and maturity. Of course, there are also intermediate types of
options, which can, for instance, be exercised at a number of dis-
crete times before maturity (e.g. Bermudan options or Asian options
which depend on the average stock price between initiation and ma-
turity), but classical European and, in particular, American options
make up for the majority of the market share.3

3More information about the design of option markets and the various types of
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Figure 2.1: Payoffs of Standard Call and Put Options
This table shows the payoff functions of a standard call option with
strike 15 and a standard put option with strike 20.

One very important notion is that in contrast to futures or forward
contracts, in which two market participants agree on the obligation
to exchange an asset for cash at a future time, options reflect the
right to engage in a future transaction. This becomes relevant when
at maturity the market price of the asset is less than the striking
price of the option as in such a scenario no rational investor would
buy an asset using the option as she could procure the asset less
expensively in the market. So the option holder would forfeit her
right and have the option expire worthlessly. However, such freedom
can only come at a certain premium which is distinctly different
from forward and futures contracts as these transactions are agreed
upon so that the fair future exercise price precludes the necessity
of upfront cash exchange, as is, for example, pointed out in Hull
(2009).4

options traded in these markets can be found in various textbooks on options
pricing. Among others, there are Hull (2009) and Wilmott (2006). Zhang (1998)
especially deals with the more exotic types of options.

4In this respect fair price means the price that rules out arbitrage opportunities
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Therefore, it is only a natural question to ask what a fair, arbitrage-
free option premium is. Consequently, a whole string of research has
developed around this question. This research can be loosely cate-
gorized in two classes. The first deals with market models trying to
adequately model the underlying asset’s characteristics and with the
subsequent derivation of European option prices. Then, the second
stage deals with the American option feature of premature exercise
given a certain model. As will become clearer when discussing pre-
vious research results the additional right makes contingent claim
valuation markedly more complex.

A detailed discussion of the various option pricing models is given
below in Section 3.1. The intricacies of American-style options and
the alterations necessary to value them are dealt with in Section
3.2. But before this detailed discussion of option pricing theory, the
rest of this chapter gives an introduction to retail certificates in the
German market.

2.2 Types of Retail Certificates

Since retail certificates belong to the class of structured financial
products there is a virtually unlimited range w.r.t. payout and risk
profiles. In the following we will give a brief overview over the most
prominent (and from a sales perspective popular) varieties offered
by financial institutions to private customers. In particular, we focus
on:

1) Discount certificates (cf. Section 2.2.1)

2) Bonus certificates (cf. Section 2.2.2)

for any involved party. More on futures contracts can be found in the textbook
by Duffie (1989).
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3) Sprint certificates (cf. Section 2.2.3).

In the respective sections we will give an overview about how the
type of certificate is structured, how the payoff profile works and
what type of investors it might suit. The latter aspect will be dis-
cussed both from an economic point of view and from the marketing
perspectives of the issuers who intend to target retail clients.

In Table 2.1 we have provided an overview of the issuers of bonus,
discount, and sprint certificates and how many certificates of the re-
spective type they have issued. It is evident that bonus and discount
certificates are overwhelmingly more popular than sprint certificates
with more than 100 times as many discount certificates outstand-
ing. The data were retrieved from the website onvista.de on April
13, 2012 and depict the situation as of this particular day.

In terms of single issuers there is a mixed picture between large
investment banks, such as BNP Paribas or Goldman Sachs, and
German market focused banks like DZ Bank or LBBW. Most bonus
certificates have been issued by BNP Paribas with Commerzbank,
Deutsche Bank and DZ Bank about 1, 000 issues behind. Regard-
ing discount certificates Deutsche Bank is the market leader with
Commerzbank and the Royal Bank of Scotland ranking second and
third. Besides these major competitors there are also several niche
players who offer ten or fewer certificates. Among those are well
known institutions like DekaBank, Landesbank Hessen Thüringen,
HypoVereinsbank or the Austrian Erste Group.

2.2.1 Discount Certificates

One of the most popular classes of certificates, as evidenced by Table
2.1 are so-called discount certificates. Typically they are written
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Issuer Bonus Discount Sprint
Bank of America - Merril Lynch 160 265 0
Barclays Bank 505 1,366 0
BNP Paribas 3,705 1,553 72
Citigroup 49 856 30
Commerzbank 2,429 3,142 33
DekaBank 1 1 0
Deutsche Bank 2,793 3,919 37
DZ Bank 2,205 1,263 7
EFG Financial Products 1 21 0
Erste Group Bank AG 2 0 0
Goldman Sachs 1,645 703 0
HSBC Trinkaus 926 1,108 1
HypoVereinsbank 1 528 0
ING 0 1 0
JP Morgan 10 0 0
Landesbank Berlin 1 10 0
LBBW 5 180 0
Landesbank Hessen Thüringen 5 0 0
Macquarie 20 19 0
Morgan Stanley 0 108 0
Rabobank 0 1 0
Raiffeisen Centrobank 5 4 0
Societé Générale 1,154 503 0
Royal Bank of Scotland 1,348 2,033 0
UBS 73 2,773 0
Vontobel 75 547 3
WestLB 7 65 0
WGZ Bank 2 67 0
Total 17,115 21,054 183

Table 2.1: Number of Outstanding Certificates by Type
This table shows the number of certificates written on the German
stock market index DAX by type and issuer as observed on April
13, 2012. In addition, the total numbers for each type of certificates
are reported.
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on stock indexes or single stocks. This type of certificate revolves
around the idea to mimic the behavior of underlying stock, i.e. gains
and losses are supposed to coincide with those of the underlying. But
the certificates are offered at a discount Y , i.e. investors have to pay
less than they would have to do for the corresponding stock. In
order to make up for that discount, however, the issuer imposes an
upward cap F , meaning that investors will only follow the movement
of the underlying as long as it does not exceed this cap. Furthermore,
discount certificates usually exhibit a finite expiry time.
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Figure 2.2: Payoff Profile of a Discount Certificate
This figure shows the payoff profile of a discount certificate at
maturity. The certificate is written on a stock currently valued
at S0 =e 50.00, has a discount of Y =e 40.00 and is capped at
F =e 55.00. One can see that the investment allows for a positive
return if ST ≥ Y .

To make things more plausible we consider the following example.
Assume a company currently trades at e 50.00. If you buy a discount
certificate with a discount Y =e 40.00 you can obtain the stock at
e 40.00 rather than e 50.00. In turn, there be a cap of e.g. e 55.00.
Then we consider the following scenarios at expiry T :
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1) As long as the stock has not dropped below the discount, i.e.
ST ≥ Y , the investor makes a profit ST − Y .

2) If in turn the stock price increases to e.g. e 60.00, which is beyond
the imposed cap, the investor receives the cap rather than the
stock price, i.e. e 55.00, and has made a profit of F−Y =e 15.00.
In relative terms this amounts to a return of 37.5%.

Figure 2.2 shows the full profit and loss profile of this exemplary
investment.

From the perspective of a financial economist, discount certificates
thus face a tradeoff between reduced downside risk and capped or
limited upside potential. For valuation purposes it roughly speaking
follows that the two levels (discount and cap) should be chosen such
that the probabilities of the two events match.

For the month of November 2001 Wilkens, Erner & Röder (2003)
compare price quotes of reverse convertibles and discount certificates
to replicating strategies revolving around EUREX (European Ex-
change) traded options.5 The cost of duplicating the claim is found
to be below the issuers’ price quotes which indicates mispricing in
their favor. Furthermore, these deviations are related to the type
of product, the issuer, the underlying, and the order flow. Baule,
Rühling & Scholz (2004) also analyze the price setting behavior by
issuers of discount certificates. They find that relative overpricing
(compared to theoretical values) is reduced for the DAX relative
to single stocks. They argue that this can be justified by the fact
that EUREX traded DAX options allow for less expensive replica-

5Reverse convertibles are similar in style to discount certificates but focus on bond
markets. Typically, there is a fixed face value on which the issuer pays interest.
To make the investment attractive, this interest payment usually exceeds market
rates. However, this is attained at the expense of the issuer having a special
redemption right at face value and the right to settle the investment by the
delivery of pre-specified stocks at maturity rather than the notional.
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tion than in the single stock case. Baule, Entrop & Wilkens (2005)
cover discount certificates and analyze their pricing in the context
of both market and credit risk when they simultaneously appear.
Empirical results suggest that the material part of pricing margins
is constituted by credit risk, while the correlation between market
and credit risk appears to be neglected in market prices for the most
part.6 The results are confirmed by Baule, Entrop & Wilkens (2008).
In Baule (2011) the order flow of discount certificates is examined.
The prevailing pattern appears to be that for tax reasons investors
prefer products maturing in more than one year and that they prefer
to sell back their products close to maturity.7 It is found that a ma-
jority of issuers anticipates this order flow and prices in additional
surcharges at the respective times of higher trading activity.

2.2.2 Bonus Certificates

Another very popular type of certificate with retail investors is the
so-called bonus certificate. The bonus is a bonus payment Λ the
investor at least receives if the certificate’s underlying does not un-
dershoot a certain and also predetermined barrier level L during its
lifetime T . Regarding the payoff, we can thus distinguish between
two cases:

6This means that because of the default risk by the issuer investors should earn
a credit risk premium, which traded certificate prices due not reflect. Conse-
quently the issuers can pick up capital below their cost of debt. To highlight
this effect in terms of discount certificates, the authors compare model prices
that reflect credit risk (Hull & White (1995) and Klein (1996)) to default-free
model values (Black & Scholes (1973)) and test the hypothesis that market
prices do not accurately reflect credit risk. They find both, a credit risk margin
and a neglection of credit risk in market quotes.

7The reason is that investors did not have to pay taxes on the capital gains in
Germany until 2009 if a product was held for more than one year or bought
before 2009. Although this was changed beginning in 2009, it still applies to
Baule’s data set which covers the period November 2006 through December
2007.
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1) If L is undershot sometime during the bonus certificate’s lifetime,
i.e. St ≤ L for some t ≤ T , the value of the underlying is returned
at maturity.

2) If, in turn, the barrier is not breached until maturity, the in-
vestor receives the maximum of the bonus level and the under-
lying price.

Consequently, the payoff of a bonus certificate is path-dependent
and is given by the following functional form

g(S, T ) =

max(ST ,Λ) if St > L ∀ t ≤ T

ST else.

For the ease of exposition we present an example. Let us assume that
a stock trades at S0 =e 46.00 and the certificate is sold for the same
price. Further assume, the barrier is fixed at L = e 37.00 and the
bonus level at Λ =e 56.00. Finally, we make the assumption that the
remaining time to expiry is one year. Unless the stock trades below
e 37.00, which amounts to a drop of 19.6%, the investor will receive
at least e 56.00. If the stock trades above e 56.00, say for example
e 60.00, at expiry, the payoff will be the stock price of e 60.00.

Graphically, this has been shown in Figure 2.3 for both the case
where the barrier is undershot and the scenario of the bonus level
still being alive at maturity.

For advertising purposes the issuers compare the certificate to a di-
rect investment in the underlying. The advantage of the certificate
is the payment of the bonus level in the case of a favorable market
development, but it comes at the price of forgoing dividend pay-
ments, a holder of the underlying would be entitled to. From the
perspective of financial economics bonus certificates thus boil down
to a tradeoff between the bonus level and the barrier. For the issuer
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Figure 2.3: Payoff Profile of a Bonus Certificate
This figure shows the payoff of a bonus certificate with bonus level
Λ = e 56.00 and barrier L =e 37.00. In particular, the payoff is
depicted for both possible cases, an intact and an extinguished bonus
level.

such a product is favorable if the expected bonus payment (given the
probability of breaching the barrier) exceeds the expected income
through dividends.

2.2.3 Sprint Certificates

Although discount and bonus certificates are clearly and without
any doubt structured products, sprint certificates are more in-line
with the general notion that structured products have option like
features and are thus subject to much more complex market risks
than direct investments in stocks. Sprint certificates in their own
right are a step closer to options. This becomes manifest by the
introduction of a strike K and a participation rate k.

They enter the structured payoff in a very interesting way. Up until
the strike the payoff coincides with that of the underlying stock.
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Above the strike issuers establish a region in which the participa-
tion in the underlying exceeds that of underlying itself by a factor
k. A typical configuration of such certificate might be a participa-
tion rate of two. In such a case a e 1.00 increase in the stock price
translates to a e 2.00 increase in the value of the payoff. However,
such a seemingly beneficial participation rate comes at a premium,
namely the presence of a cap C beyond which there is no further
participation in the underlying. More precisely, the payoff looks as
follows

g(S, T ) =


ST , ST ≤ K

K + k (ST −K), K ≤ ST ≤ C

gmax ST ≥ C,

where the maximal payoff gmax is given by

gmax = K + k (C −K).

From the perspective of a financial economist, this product payoff is
closely related to that of a standard European call option. Contrary
to discount and bonus certificates the payoff does not depend on the
path of the underlying, as it is the case for standard European call
and put options. This in turn, renders valuation straightforward, as
it essentially boils down to applying standard option pricing tech-
niques to just another payoff function. This can be compared to
valuing a put option instead of a call option. In Figure 2.4 we have
plotted the payoff profile for sprint certificates to further highlight
their behavior.

From the above characterization it is intuitive which type of investor
these products suit most. As pointed out, they are essentially options
and thus they are subject to much more pronounced market risk
than stock market investments, for example volatility or interest
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Figure 2.4: Payoff Profile of a Sprint Certificate
The plot shows the payoff profile of a sprint certificate with strike
K = 45, a cap C = 50 and a participation rate of k = 1.5 in between
the strike and the cap.

rate risk, or a declining time value of the product. Naturally, sprint
certificates are suitable for those investors who would also invest
in standard options. Furthermore, for their particular payoff profile
compared to plain vanilla options to materialize, the investor should
have deep insight and a thorough understanding about how she
expects the market will move in the short term. If she does not
do so, she might forgo her leverage and participation rate and run
into the cap, in which case a plain vanilla call option would be the
superior investment, or, in the case of a market decline, pay an
option premium to just receive the stock which could have been
obtained less expensively via a direct investment. Evidently, this
product is tailored to the needs of highly informed and sophisticated
investors.
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2.2.4 Further Structured Products

Apart from the structured products discussed above, there are many
more such products offered in the marketplace. We loosely classify
them in the following way, based on the respective approaches pur-
sued in the literature dealing with them:

1) Investment vehicles observed in the US American market

2) Derivatives dublicated using EUREX traded products

3) Products not further classified.

In addition, we also point out that there is an increasing amount of
literature from the field of behavioral finance pertaining to certifi-
cates or structured products for retail clients in general.

2.2.4.1 US American Market

Chen & Kensinger (1990) deal with MICDs (Market Index Certifi-
cates of Deposit) in the US American market and derive pricing for-
mulas and equilibrium relationships between the call and put vari-
ants.8 Using the option component and inconsistencies in implied
volatilities issuers’ prices are examined with even more unfavorable
situations prevailing in the put cases. Chen & Sears (1990) are con-
cerned with the pricing of the SPIN (Salomon Brothers’ Standard
and Poor’s 500 Indexed Note), which combines a bond with a call
option.9 Pricing is carried out using the Black & Scholes (1973)

8These products appeared in 1987 and offered variable interest rates to their
holders. The interest rates were determined based on the performance of the
stock market index S&P 500. In this way it was also possible to provide in-
vestors with long and short variants, i.e. products for which interest rates rise
in increasing or falling markets respectively.

9According to the authors it is similar in style to the MICD but intended for
longer periods and exchange-traded.
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model. The valuation reveals small but discernible pricing biases in
favor of the issuers which can be interpreted as structuring costs.
Furthermore, it is pointed out that the issuer’s risk of potentially
high option payoffs at maturity can be hedged away in the futures
market. The paper by Benet, Giannetti & Pissaris (2006) covers re-
verse exchangeable securities, structured products issued primarily
in the US American market. Fair prices are obtained by replicating
the claims in bonds, stocks and derivatives with established prices.
Compared to these fair prices structured products exhibit mispric-
ing in favor of the issuers. Furthermore, there appears to be a pos-
itive correlation between terminal payoffs and the issuer’s financial
performance, which can be used as an explanation for the credit
enhancement and mispricing.

2.2.4.2 Replication via EUREX

In Burth, Kraus & Wohlwend (2001) the authors investigate securi-
tized covered call writing in the Swiss market for structured prod-
ucts. They consider replicating trading strategies in the underlying
markets and at EUREX and detect significant mispricing in favor of
the issuer. This is attributed to the structuring costs incurred by the
latter. Stoimenov & Wilkens (2005) are concerned with the pricing
of equity-linked structured products. Using EUREX option prices,
daily quotes can be empirically compared to these. Doing so it is
revealed that conceivable premia are inherent in the price quotes
in the primary market and the life cycle is found to be a signifi-
cant value driver in secondary markets.10 Grünbichler & Wohlwend
(2005) deal with structured products in the Swiss market without

10This is in line with the life cycle hypothesis, which states that overpricing of
structured products is reduced during their lifetime to earn additional profits.
In this way, investors pruchase these products at a higher degree of overpricing
compared to when they return the products. The difference between the levels
of overpricing constitutes further profit for the issuing institution.
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a capital guarantee and with option like features. Using compara-
ble EUREX traded options the authors find mispricing and market
inefficiencies which appear to be rationally exploited by the issuing
institutions.

2.2.4.3 Further Literature on Structured Products

The paper by Fischer & Schuster (2002) covers index bonds with a
capital guarantee which have developed in the German market. As
potential interest payments of the bond are linked to the develop-
ment of the stock market via various conditions the authors examine
the question whether pricing by the issuers is fair. Furthermore, the
potential return for risk-averse investors is dealt with. Brown &
Davis (2004) investigate the Australian endowment warrants. They
are long-term equity options with dividend protection features and
a stochastic strike price to attain that. On the other hand significant
overpricing is found and ways to mitigate that are also discussed.
In the paper by Branger & Breuer (2007) portfolio selection theory
is applied to portfolios of private investors. As direct investments
in derivatives might be too complicated for private investors, retail
certificates appear to be an attractive circumvention. In a stochastic
volatility jump diffusion model applied to the German stock market
index DAX it is found that for the CRRA (Constant Relative Risk
Aversion) investor the annualized risk-free excess return is 14 basis
points at best with discount certificates performing best and other
certificates often not being held at all.11 Baule & Blonski (2011) ana-
lyze a large sample of bank-issued warrants traded at EUWAX (Eu-
ropean Warrant Exchange), which among others include the above
mentioned discount certificates, bonus certificates, or reverse con-

11A CRRA investor is an investor whose utility function exhibits constant relative
risk aversion. Other than this type of investor, CARA (Constant Absolute Risk
Aversion) is another common assumption regarding an investor’s risk aversion.



2.2. TYPES OF RETAIL CERTIFICATES 25

vertibles, for which margins on top of their theoretically fair prices
have been reported. These margins are further investigated by the
authors and found to be dependent on the order volume. Lower
margins prevail for higher volume trades which is attributed to the
fact that higher volume implies higher reward for conducting price
comparisons.

2.2.4.4 Behavioral Finance Approach

Shefrin & Statman (1993) are concerned with the impact of be-
havioral finance aspects on the design of structured products. Their
paper revolves around an examination of covered calls, both explicit
and implicit. The study is carried out with regard to prospect the-
ory12, hedonic framing13, behavioral life cycle theory14 and cognitive
errors. In Breuer & Perst (2007), the authors apply prospect theory
to the pricing of discount reverse convertibles and reverse convertible
bonds.15 Standard expected utility theory yields that both types of
products are of interest to investors who underestimate stock return
volatility. Furthermore, such a model overestimates the demand for

12Prospect theory dates back to the seminal paper by Kahneman & Tversky
(1979). This theory aims to explain decision making based on utility theory.
But contrary to classic maximization of expected utility it includes psychological
aspects. The latter leads to heuristic elements rather than rigorous maximization
in the evaluation of potential gains and losses and their severity.

13Framing pertains to the shape in which opportunities arise, e.g. expected cash-
flows can be the same but exhibit different risk profiles which leads to different
preferences. The term hedonic means pleasure oriented and the discipline of
hedonic framing is analyzed by Thaler (1985).

14Shefrin & Thaler (1988) extend the life-cycle theory of saving for behavioral
effects which are introduced through so-called mental rather than financial ac-
counts: current income, current assets, and future income. Those alterations in
the theory are intended to describe how agents actually behave rather than how
they should rationally behave.

15Discount reverse convertibles and reverse convertible bonds are combinations
of bonds (zero bonds and coupon carrying bonds) and short positions in put
options on stocks.
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the former products while underestimating the demand for the latter
ones, which in turn can be explained by hedonic framing.

2.3 Turbo Certificates

Turbo certificates are commercially very successful products offered
by banks on the German market. They allow for highly leveraged
positions in virtually every underlying, including stocks, indexes,
currencies, and commodities. This feature is strongly advertised by
issuers. For this reason they are sometimes called “Leverage Certifi-
cates” by issuers.

Different product generations of Turbo certificates can be observed
in the market. The first generation of Turbo certificates were
European-style options with finite maturity. These certificates could
be interpreted as simple down-and-out call (or up-and-out put)
options with the knock-out barrier equaling the strike. This gen-
eration has been subject to extensive research including Fischer,
Greistorfer & Sommersguter-Reichmann (2002), Fischer, Greistor-
fer & Sommersguter-Reichmann (2003) and Scholz, Baule & Wilkens
(2005) who apply option pricing theory to Turbo certificates. Baule,
Scholz & Wilkens (2004) and Mahayni & Suchanecki (2006) deal
with semi-static hedging strategies to obtain upper and lower price
bounds for underlyings with continuous sample paths. Muck (2007)
considers the impact of jump risk on the pricing of Turbo certificates
with finite maturity. An early overview of the different generations
of discount certificates is provided by Entrop, Scholz & Wilkens
(2005).
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2.3.1 Finite-Lived Turbo Certificates

The first generation of Turbo certificates presents a highly leveraged
investment opportunity in virtually every thinkable underlying asset
class. In a certain sense they can be thought of as the next step of
sprint certificates towards a completion of option features, as Turbo
certificates are nothing else than a generalization of classical barrier
options (cf. Section 3.3). This becomes manifest when considering
the payoff of such a product

g(S, T ) =

kmax(ST −K, 0), St > Lt ∀t ≤ T

Rt, else.

Contrary to standard barrier options Turbo certificates also have a
participation rate k which can further increase or decrease the pay-
off. If the barrier Lt is undershot for some t ≤ T the certificate can
become worthless. Furthermore, there is a rebate Rt which is paid in
the case of a knock-out. If this factor equals zero, the Turbo certifi-
cate becomes worthless upon being knocked out. Standard barrier
options are retained by setting Rt ≡ 0 and k = 1.

Of course, there are numerous variations of these certificates in prac-
tice which mostly revolve around the arrangement of the different
parameters. According to Mahayni & Suchanecki (2006) two dimen-
sions of classification prove reasonable:

1) Regarding the position of the barrier relative to the strike: The
barrier can be placed below, above or equal to the strike.

2) Regarding the rebate Rt which can be zero or positive.16

16If there was a negative rebate, the investor would have to make a payment to
the issuer in the case of a knock-out. For obvious reasons such products would
be hard to sell to retail customers.
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Wilkens, Entrop & Scholz (2001) deal with the valuation and value
drivers of certificates issued on foreign currency stock indexes. As
it is the case with currency and quanto options as a key such
value driver the interest rate differential is identified. The paper
by Fischer, Greistorfer & Sommersguter-Reichmann (2002) deals
with the first generation of Turbo certificates in the German mar-
ket. It uses option pricing techniques to investigate to which degree
these products actually match the claims made by issuers’ market-
ing brochures. The study rejects, that the value is independent of
volatility, that the delta equals one, that the leverage equals the
ratio between certificate and underlying, that the leverage is in-
dependent of the time to maturity and that the annual surcharge
solely depends on the dividend yield and the riskless rate of return.
Scholz, Ammann & Baule (2003) intuitively describe the first gen-
eration of Turbo certificates. They are identified as barrier options
and thus their properties are compared to those of the corresponding
standard options. Finally an assessment of the benefits and risks of
private investors is provided. The paper by Scholz, Baule & Wilkens
(2004) is concerned with short Turbo certificates on stock indexes.
In particular, the paper provides economic justification for the ex-
istence and properties of this investment product by comparison to
similar forward positions and variation of the knock-out barrier. In
Scholz, Baule & Wilkens (2005) it is investigated whether the price
quotes of certificates coincide with the published pricing formula. It
is found, that price quotes are biased in favor of the issuer and that
higher financing costs are charged than announced by the issuer.

Mahayni & Suchanecki (2006) explain the prevalence of down-and-
out call and up-and-out put Turbo certificates in terms of applicable
semi-static hedging strategies using standard options, which consti-
tute upper and lower bounds on the value of the Turbo certificates
respectively. Contrary to commonplace pricing and advertising, it
is rejected that this can be independent of volatility. In the pa-
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per by Muck (2006) Turbo certificates and OTC retail derivatives
from ClickOptions are investigated. They are found to be overpriced
compared to fair values because of imperfect market competition,
while the life cycle hypothesis mentioned in Section 2.2.4 cannot be
confirmed. In Muck (2007) knock-out certificates are investigated
in the Bakshi, Cao & Chen (1997) model. It is found that jumps
are very important as they impose a significant gap risk on the is-
suers of the certificates. Furthermore, stochastic interest rates and
stochastic volatility are found to play only a minor role. In a Black
& Scholes (1973) model setup, Wilkens & Stoimenov (2007) empir-
ically investigate the price quotes of finite-lived leverage certificates
(barrier options in essence). They find a pronounced surcharge in
bid-ask quotes compared to fair model values which at least to a
certain degree can be explained as costs incurred by the issuer for
market making and hedging. Since hedging is more complex and
difficult in the case of short certificates, the effect is stronger for
these. Entrop, Schober & Wilkens (2011) examine a data set of the
trades of about 7, 000 retail costumers of a German direct bank. An-
alyzing the order flows for finite-lived retail certificates they confirm
that certificates are overpriced using a Black & Scholes (1973) and a
jump-diffusion model and confirm the life cycle hypothesis. Further,
they find that the pricing policy is consistent with the overnight gap
risk issuers face and the order flow as induced by the costumer.

2.3.2 Open-End Turbo Certificates

The second generation of Turbo certificates are OETCs. The main
difference of the new generation is the perpetual lifetime. This im-
plies that holders of the certificates may redeem the securities at
their discretion unless the certificate is knocked out. For this reason
these certificates are called OETCs. Issuers commit themselves to
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trading these certificates at a pre-specified price function. They are
compensated by the matter of fact that strikes and barriers grow
according to a pre-specified financing parameter. In order to reduce
gap risk, the barrier is usually higher than the strike. These product
characteristics quite naturally lead to the question of when investors
should exercise their certificates. Alternatively, we may also ask how
much the early exercise feature is worth. To the best of our knowl-
edge these questions have not been addressed in the literature so
far. A survey of the current literature on OETCs in provided below
in Section 2.3.2.2 after a discussion of the product characteristics in
Section 2.3.2.1.

2.3.2.1 Product Characteristics

OETCs are offered by a variety of financial institutions. Legally,
certificates are bank bonds with a redemption value being fixed by
the underlying asset. In particular, they are not subject to any pub-
lic or private deposit insurance system.17 Therefore, in the case of
bankruptcy holders of certificates are treated similarly to institu-
tional investors. For this reason the collapse of Lehman Brothers,
a major issuer of Turbos and other certificates, seriously harmed
many retail investors in Germany in 2008.

Table 2.2 shows the number of classic as well as open-end Turbo
certificates traded in the German market.18 Statistics cover the Eu-
rostoxx 50, the DJIA (Dow Jones Industrial Average), and the Ger-
man DAX index as examples for the underlying.

17In Germany there are different layers of deposit protection in the case of bank
defaults. European Union (1994), European Union (1997), and European Union
(2009) mandate financial institutions to protect at least e 100,000 per client and
institution. In excess of this regulatory insurance, there are several protection
funds by the respective banking and credit unions like private institutions and
savings banks.

18The statistical data were retrieved from www.onvista.de for July 16, 2010.
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Two types of Turbo certificates can be observed in the market: Long
Turbos allow for speculation on price increases while short Turbos
profit from decreases of the underlying asset. For simplicity we as-
sume that the underlying stock does not pay any dividends through-
out this study. The term Turbo refers to the superlinear participa-
tion in the movement of the underlying. More precisely the price
function g of a long Turbo certificate is given by

g(St, t) = max (St −Kt, 0) , (2.3.2.1)

where
Kt = K0 exp{(r + z)t} (2.3.2.2)

and St is the level of the underlying stock, Kt the strike price, r the
constant short-term refinancing rate, and z the so-called financing
parameter. Conversely, the price setting formula of a short Turbo
certificate reads

g(St, t) = max
(
K̂t − St, 0

)
, (2.3.2.3)

where
K̂t = K0 exp{(r − z)t}.

The issuing banks communicate these pricing formulae to their cus-
tomers and promise to trade the certificates at any time according
to these formulae. In this sense investors can also “exercise” their
certificate by selling it to the issuing bank at the communicated
price function at any time. The formulae resemble the payoff func-
tions of standard call and put options. The main difference is that
the strike price is not constant. At each instant of time it grows
at the rates r + z and r − z respectively given an initial level K0.
Alternatively, the holder may exercise the certificate at any time
according to (2.3.2.1) or (2.3.2.3). A positive payoff is only possible
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when the knock-out event has not taken place before. Define the
knock-out barrier as

Lt = (1 + a)Kt,

where a ∈ R is a real number and is referred to as the gap size. For
the short variant the factor 1+a is replaced by 1−a. The knock-out
time for the long variant τlong is the first point of time t for which
St ≤ Lt, i.e.

τlong = inf{t ≥ 0 | St ≤ Lt}.

Similarly, the knock-out time τshort of a short Turbo certificate sat-
isfies

τshort = inf{t ≥ 0 | St ≥ Lt}.

In this case the investor receives a payment according to (2.3.2.1)
or (2.3.2.3). The certificates become worthless thereafter. Note that
(2.3.2.1) is a simplified specification of the price function. In particu-
lar, banks adjust barriers and strikes in short discrete time intervals
(daily or monthly). A survey of product characteristics is presented
by Entrop, Scholz & Wilkens (2009). Furthermore, the interest rate
is referenced on a short term (variable) interest rate (usually one-
month EURIBOR (Euro Interbank Offered Rate) or EONIA (Euro
Overnight Index Average)).

Turbo certificates are frequently described by stating that they are
similar to forward contracts but only allow for positive payoffs. Neg-
ative payoffs are prevented by knock-outs. More precisely, the invest-
ment could be seen as a long position in the stock which is partially
debt financed by an amount equal to the strike K0. Exercise (or sale
to the issuer) of the certificate corresponds to selling the stock at
St and paying off the debt including interest. Viewed in this way,
the financing parameter z could be seen as the credit spread that
the investor has to pay. Usually, for the knock-out barrier we have
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Lt ≥ Kt, i.e. in the event of a knock-out the investor still receives a
positive payment.

In the case of short OETCs this interpretation does no longer hold.
However, we can provide a different interpretation. Short OETCs
mimic the short sale of underlyings. In this sense, these products
can be viewed as a partial borrowing of the underlying (i.e. the
underlying less the strike) at the issuing credit institution. The bor-
rowed underlying is then sold in the market place and the proceeds
deposited at the market interest rate. Contrary to the long variant,
the investor thus receives the interest rather than paying it. How-
ever, she only receives the market interest rate less the financing
parameter. The latter can again be interpreted as a fee for borrow-
ing the underlying in the first place. Also, the knock-out barrier is
less than the strike. The reason for that is that knock-outs occur
through up-crossings of the barrier. In order to uphold a cushion
between the barrier and the strike, it is natural that the strike is
greater than the knock-out barrier.

Originally, banks offered certificates with Lt = Kt. However, as
discussed by Muck (2007) this leads to substantial gap risk when the
stochastic process of the stock price is discontinuous and therefore
it might happen that Sτ < Kτ . The larger the gap size a the more
unlikely this event becomes.

The following proposition addresses optimal exercise strategies and
the existence of certificates when the stock price follows a continuous
process. It builds on Entrop, Scholz & Wilkens (2009).

Proposition 2.3.1 (Optimal Exercise Strategy) In a compet-
itive financial market with no transaction costs and short selling
constraints it is optimal to exercise OETCs defined by the payoff
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function (2.3.2.1) immediately if a > 0, z > 0 and the stock price
process is continuous.

Proof - Proposition 2.3.1:

The proof follows from no-arbitrage considerations.

Assume that the stock price process is continuous. Then an investor
could build two portfolios. In portfolio one, she holds the Turbo
certificate. In portfolio two, she buys a stock and borrows an amount
of money equal to K0 at an interest rate r∗ ≥ r. At an arbitrary
point of time τ∗ (which might be equal to the knock-out event τ) she
unwinds both portfolios. From portfolio one she receives a payment
equal to

Payoff1 = St − exp{(r + z)τ∗}K0.

Note that the stock price in the case of a knock-out is Sτ∗ = Lτ∗ ≥
Kτ∗ . This is ensured by the fact that the process is continuous. The
payoff of portfolio two is

Payoff2 = St − exp{r∗τ∗}K0.

Again by virtue of the fact that the stock price process is contin-
uous, the payoff is nonnegative. This implies that in a competitive
financial market r∗ = r. Hence

Payoff2 ≥ Payoff1. (2.3.2.4)

Inequality (2.3.2.4) is strict unless z = 0.
�

Proposition 2.3.1 implies that we cannot explain any Turbo certifi-
cate with financing parameter z > 0 on a financial market with
continuous stock price paths. In this case investors would not buy
these securities.
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Therefore, in order to explain these contracts we consider discon-
tinuous stock price processes since replication of the contracts is
possible with a simple buy and hold strategy. In the following we
assume that the stock price is subject to jump risk. These jump risks
model overnight trading halts and event risks. Especially, the latter
might have an impact on certificates’ prices even when a > 0. When
there is jump risk the stock price might be less than the strike price
in the knock-out event. A long position in the stock and borrow-
ing an amount K0 at the risk-free rate r does no longer represent
a superhedge of the certificate, i.e. a position that always equals or
exceeds the value of the certificate. This gap risk must be priced by
the issuing institution. For the Turbo certificates with price func-
tion (2.3.2.1) this might be done by introducing a positive financing
parameter z.

2.3.2.2 Literature Review

To the best of our knowledge, there are only two papers which ana-
lyze OETCs. Entrop, Scholz & Wilkens (2009) assume that holders
of OETCs have a finite planning horizon T , up until which the cer-
tificate is held. In other words, OETCs are treated as if they were
European-style options.19 Furthermore, the authors provide a quasi
closed-form solution if the underlying is governed by a Black & Sc-
holes (1973) process

OETCT0 = S0 −K0 −K0(exp(zT )(1−Q(τ ≤ T ))

+EQ
[
1{τ≤T} exp(zτ)

]
− 1).

19In their paper, the authors refer to OETCs as OELCs (Open-End Leverage
Certificates). In this thesis we prefer the classic name Turbo certificates, but
the term leverage certificate can be used interchangeably.
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Here, the probability measure Q refers to the risk-neutral measure
we introduce in Section 3.2.2.5 in much greater detail. The probabil-
ity Q(τ ≤ T ) and the risk-neutral expectation EQ

[
1{τ≤T} exp(zτ)

]
are obtained using the methods outlined in Bielecki & Rutkowski
(2002). Given this setup, a comparative statics analysis is conducted
with regard to relative price deviation and profit potential, which
are defined as

PPt = K0 (exp((r + z)t)− exp(rt))

RPD0 =
P0 −OETCT0

P0
.

The purpose of these two numbers is to measure the profit potential,
i.e. by how much a superhedge of the price setting formula (2.3.2.1)
exceeds the price at which issuers are willing to take back the cer-
tificates, and by how much fair theoretical prices deviate from the
price setting formula. The two metrics are investigated for different
combinations of the initial strike K0 and the financing parameter z
as well as the holding period T and the Black-Scholes volatility σ. In
fact, this analysis is a purely theoretical assessment of the degree to
which issuers can exploit arbitrage opportunities at the expense of
the retail customer and how these opportunities depend on the pa-
rameters investigated. The reason is that according to Proposition
2.3.1 OETCs should never be held in the absence of jumps and that
the presence of jumps has been well documented in past research.

In a second step, Entrop, Scholz & Wilkens (2009) include jumps in
their analysis using the Boes, Drost & Werker (2007) jump model.
This model distinguishes between random and overnight jumps. Us-
ing Monte Carlo simulation the authors examine the impact of
jumps for three holding periods. The result is that the jump im-
pact diminishes with increasing holding duration. However, this is
the well-known average-out effect from the valuation of European
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options. The economic rationale behind this effect is that jumps per-
tain to short term shocks of the underlying, while in the long run,
the diffusion is the predominant determinant of underlying prices.
Consequently, the longer the holding duration, the more time there
is for jumps to be offset again by diffusion. In addition, the analysis
neglects that there is an early exercise premium inherent in OETCs.

Throughout their paper, Entrop, Scholz & Wilkens (2009) stress
that their methodology and results only apply from the perspective
of an issuer but not from the point of view of a retail client. The
reason is that short-selling is not possible for OETCs and that a
replicating strategy could only be set up at excessive additional
costs for private investors. Put differently, exploitation of arbitrage
opportunities is only possible for issuers. This situation amounts to
market segmentation in the sense of Jarrow & van Deventer (1998),
and thus the obtained prices can still be regarded as valid.

The second paper dealing with OETCs is the one by Rossetto &
van Bommel (2009). They are the first to acknowledge that there is
an option component inherent in OETCs and assuming rationality,
investors act so as to maximize the option’s value. Furthermore, they
point out the importance of jump risk and include overnight jumps
in their considerations but do not account for jumps explicitly as
they assume continuous sample paths during trading hours.

In a historical simulation OETCs are examined further. The histor-
ical simulation revolves around a five-year sample of return data for
DAX stocks between January 2002 and December 2006, from which
returns are randomly drawn and applied to a certificate with knock-
out barrier L = 105, a strike K = 100 and a financing parameter
z = 2.0%. They find that OETCs on average traded less than a
percent above their intrinsic values in January 2007.
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Despite the fact, that an option component is included in the val-
uation of Rossetto & van Bommel (2009) they do not apply option
pricing techniques in a straightforward manner but rather resort to
historical simulation of the underlying. Also they acknowledge the
importance of jumps but ignore intraday jumps, which for example
by Merton (1976) have been found to be a significant determinant
of option prices. In fact, they do not assume any market model and
do not carry out any option pricing. Instead, they draw historical
returns, consider intrinsic values of the option component, and av-
erage these for all 100, 000 drawings until they match the initially
assumed payoff by starting over with a new initial payoff in the case
of a mismatch. In their empirical analysis, they finally do not dis-
tinguish between the return data for single stocks and the overall
market index DAX. Rather all historical returns are taken from the
same sample.20 From our point of view, this renders the obtained
OETCs prices debatable.

These results encourage the valuation of OETCs using option pric-
ing techniques and considering jump risk in a consistent way.

20The authors argue that the single stock return data exhibited certain biases due
to single extreme returns which rendered valuation results implausible.





Chapter 3

Option Pricing Theory

This chapter extensively deals with option pricing theory. It is struc-
tured in the following way: Section 3.1 gives an overview of different
option pricing models w.r.t. modeling the underlying and deriving
European option prices. Section 3.2 details how the early exercise
feature inherent in American-style options can be dealt with. Fi-
nally, barrier options are discussed in Section 3.3 because along
with most other retail certificates OETCs also exhibit a barrier, and
Section 3.4 briefly summarizes the assumption of market efficiency
usually made in capital market models.

3.1 Option Pricing Models

In this section the from our point of view most important classes
option pricing models are discussed. The classification is made w.r.t.
the sources of uncertainty and how these sources of uncertainty are
modeled.
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3.1.1 Black-Scholes Model

The renowned Black-Scholes model as posited in the their seminal
paper Black & Scholes (1973) aims at deriving an arbitrage-free and
thus fair price of a European call option. A general theory of the fair
option premium for rational investors is elaborated on, developed,
and formalized in great detail in Merton (1973a). He proves that:

1) In the absence of dividends or other disbursements to common
stockholders American call options are never exercised prema-
turely. In consequence, they always have the same value as their
European counterparts.

2) Under the same assumptions a perpetual option is worth just as
much as the underlying stock.

3) If rationally determined, the option price is a convex function of
the exercise price.21

4) If rationally determined, the option price is non-decreasing in
the riskiness of the associated common stock.

One important property to prove these assertions is the notion of
dominance. A security A is said to dominate security B, if in all
possible states of the world, A is worth at least as much as B and at
a known time in the future the return of A exceeds the return of B.
Merton assumes that for rationality options must neither be dom-
inant nor dominated securities, as such would constitute arbitrage
opportunities.22

21Similar results are obtained by Jagannathan (1984), Bergman, Grundy &
Wiener (1996) and Hobson (1998).

22In such a situation one might long A and short B and would with certainty lock
in the excess return of A at the known time in the future.
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Given these necessary conditions or implications for rational option
pricing, Black & Scholes (1973) have to make rather restrictive addi-
tional assumptions to be able to derive their option pricing formula:

1) The underlying stock S does not pay any dividends and is gov-
erned by a geometrical Brownian motion. So the stock returns
are lognormally distributed.

2) There are no transaction costs.

3) The short-term riskless interest rate r is constant and anybody
can borrow or lend arbitrary amounts of money at this rate.

4) There are no restrictions to short-selling stock.

In more detail, if the stock’s volatility is denoted by σ and Wt de-
notes a standard Brownian motion, the first assumption means that
the stock price follows the stochastic process given by

dSt = r Sdt+ σ S dWt, t > 0. (3.1.1.1)

The central idea put forth by Black & Scholes (1973) in order to
determine the unknown price of the option is to construct a repli-
cating portfolio Π which consists of stocks and riskless bonds.23 For
these securities the values are already known and thus they imply
the value of the option. Formally, the replicating portfolio reads as
follows

Πt = a(t)St + b(t)Bt,

23A replicating portfolio is a portfolio which at any time has the same value as
the original one although it has different constituents. To rule out arbitrage
opportunities both portfolios must share an indentical value at any time. If that
was not the case one could short the more expensive portfolio, long the less
expensive one and upon unwinding the positions risklessly lock in the difference
as a profit.
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where Bt = B0 exp(r t) denotes the riskless asset.24 As the portfolio
Π is assumed to be replicating the option, its changes must be iden-
tical to changes in the option price for all t ≥ 0. If expressed in that
way, however, the value of an option becomes a function of the un-
derlying stock price and given the above assumptions on the stock
price dynamics the option value C is, mathematically speaking, a
function of a stochastic process, i.e. C = C(S, t). Therefore, when
determining the change in the option value one has to resort to Itô’s
Lemma, a renowned result from stochastic calculus. The lemma can
be expressed as follows:25

Lemma 3.1.1 (Itô’s Lemma) Let {Mt := (M1
t , . . . ,M

d
t ), Ft; 0 ≤

t < ∞} be a vector of local martingales in M c,loc and {Bt :=
(B1

t , . . . , B
d
t ), Ft; 0 ≤ t < ∞} be a vector of adapted processes of

bounded variation with B0 = 0 and set

Xt = X0 +Mt +Bt,

where X0 is an F0-measurable random vector in Rd. Let f(t, x) :
[0,∞)× Rd → R be of class C1,2. Then P − a.s. for 0 ≤ t <∞ the
following holds

f(t,Xt) = f(0, X0) +
∫ t

0

∂tf(s,Xs) ds+
d∑
i=1

∫ t

0

∂if(s,Xs) dBis

+
d∑
i=1

∫ t

0

∂if(s,Xs) dM i
s

24The riskless asset is also referred to as a money market account or a riskless
bond, thus the denotation Bt. Typically government bonds issued e.g. by the
United States and Germany are considered default-free as their default risk is
viewed negligible.

25In this basic form the lemma was first proved in Itô (1951a) and Itô (1951b).
Since that time it has developed into an integral part of the field of Itô stochastic
calculus. Far more information can, for example, be found in the introductory
textbook by Karatzas & Shreve (2008).
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+
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂i∂jf(s,Xs) d < M i,M j >s .

Proof - Lemma 3.1.1:
See, for example, Itô (1951a) or Karatzas & Shreve (2008).

�

Applying Lemma (3.1.1) the change in the option value is given by

dC(t) = (Ct + rSCS +
1
2
S2σ2CSS) dt+ σStCS dWt.

By equating these expressions for the changes and exploiting the fact
that the stochastic components must be identical, as both portfolios
have the same risk structure, one obtains the fundamental partial
differential equation, also called Black-Scholes equation26, for the
option value27

0 = Ct + rSCS +
1
2
σ2S2CSS − rC. (3.1.1.2)

In this setting the price C of a standard European call option of
maturity T and striking priceK, i.e. the solution the above equation,
is given by

C(S, t) = N(d1)S +N(d2)K exp(−r(T − t)), (3.1.1.3)

26As pointed out by Wilmott, Howison & Dewynne (1995) this equation is equiva-
lent to the heat equation which is extremely well known from the field of physics.
A direct solution can, for example, be found in Evans (2010).

27Heed that this PDE holds independently of which specific derivative security is
considered as long as it can be replicated using bonds and underlying stocks.
In particular, the same equation applies to put options. For different securities
pricing only differs in the imposed initial and boundary conditions, i.e. the payoff
function in the case of an option. This is in line with the theory of parabolic
partial differential equations, in which uniqueness results are always obtained
for initial boundary value problems. Details are, for instance, provided by Evans
(2010).
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where

d1 =
ln( SK ) + (r + σ2

2 ) (T − t)
σ
√
T − t

d2 = d1 − σ
√
T − t.

This result is the famous Black-Scholes formula, where N(·) denotes
the cumulative normal distribution (i.e. N(x) is the probability that
a normally distributed random variable X takes on a value less
or equal to x) and d1 and d2 are constants that only depend on
market parameters and characteristics of the option. Except for the
volatility parameter σ all input variables are easiliy observable in
the market, thus allowing very straighforward pricing of a European
call option.

Of course, the introduction of this new method of pricing options at
the time instantly led to a vast amount of follow-up papers in which
all properties of the new model are attended to in great detail. Black
(1975) is the first to take on this subject. In his article he one by one
examines the influencing parameters of the formula, i.e. the interest
rate, the time to maturity, the volatility, the current stock price and
the striking price. As the volatility cannot be directly observed in
the market Black suggests to use historical volatilities as a proxy.
Furthermore, the paper deals with possible areas of application of
the model. In particular, hedging and speculative strategies involv-
ing several options are broached.28 In addition, he discusses the
effects market frictions such as taxes, transaction costs or marginal
requirements in the trading accounts would have. He points out that

28Black illudes to the fact that options might be spread against one another. This
means combining options on the same underlying with different striking prices
(e.g. butterfly spread) or maturities (calendar spread) in order to synthesize
desired payoff profiles which are most in line with one’s beliefs of how the market
will develop. A detailed discussion of the different trading strategies in provided
by Hull (2009).
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high taxes diminish option values and might render it better to ex-
ercise an option as opposed to a no-tax world. Similarly, combined
with taxation considerations margin requirements can determine if
directly shorting a stock or writing an option is more favorable.
Apparently, transaction costs can make positions in options unprof-
itable if they have to be repeatedly rebalanced.

Cox & Ross (1976a) provide a survey of option pricing models in
perfect markets and a review of the Black-Scholes model. In particu-
lar, they highlight qualitative properties such as the put-call-parity,
which was previously derived and empirically tested by Stoll (1969).
The put-call-parity is a very fundamental and model independent
relationship between put and call option prices, i.e. it holds irre-
spective of a given model used to price options. This relationship
expresses the value of a call option in terms of the corresponding put
option with identical striking price and time to maturity. It reads

Ct + K exp(−r(T − t)) = Pt + St ∀ t ≤ T. (3.1.1.4)

Researchers detected certain biases in the Black-Scholes model. By
these biases they mean over- or underpricing of market prices by
the model. A detailed summary of these deviations is provided by
Geske & Roll (1984), who categorize the biases as follows:

1) Near-maturity bias: Shortly expiring options are found to be un-
derpriced.

2) Exercise-price bias: In certain periods of time in-the-money op-
tions are underpriced, while out-of-the-money options are over-
priced. However, these biases have been found to reverse them-
selves during other periods, so that there is no clear but a rather
conflicting view. Among others, MacBeth & Merville (1979) and
Emanuel & MacBeth (1982) have documented these biases.
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3) Variance bias: Options on high variance stocks are overpriced
while those on low variance stocks are underpriced. For example,
the bias has been reported by Geske, Roll & Shastri (1983).

Most of these biases are particularly pronounced in combination
with the application of the model to American-style options and
their early exercise features.29 Geske & Roll (1984) are able to ex-
plain the near-maturity and exercise price bias with the early ex-
ercise of American options associated to dividend payments. The
variance bias can be explained by time-changing volatility and the
effects of dividends alike. According to Geske & Roll (1984) uncer-
tain and suspendible dividends can render the dependence of the
option value on volatility negative, i.e. higher volatility decreases
the option value.

In Merton (1973b) the results on put-call parity are extended to
American-style options. Merton points out that for the put-call-
parity to hold there must not be any rational premature exercise.
Therefore, the result only applies to American-style call options,
whereas for American-style put options the relationship fails.

Rendleman & Bartter (1979) introduce a two-state option-pricing
model. Moreover, they are able to re-derive the Black-Scholes model
as the limit of their model which they apply to options on dividend
paying stocks as well as American type claims. El Karoui, Jeanblanc-
Picqué & Shreve (1998) take on the question of robustness of the
Black-Scholes model w.r.t. misspecification of the volatility. Since
the volatility is the only parameter not readily observable in the
market the question to which extent the option price changes when
changes to volatility are applied immediately arises. In their arti-
cle it is shown that dominance in volatility leads to dominance in

29Although the Black & Scholes (1973) model aims at valuing European-style
options there are alterations for their American-style counterparts. Details about
these methods are covered below in Section 3.2.
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option prices and vice versa if the contingent claim being priced
has a convex payoff.30 For standard call and put options this con-
dition obviously holds and the result is intuitively appealing. With
increasing volatility the probability of higher payoffs rises whereas
in opposite direction the downside risk is capped at zero. Thus, this
increase in profit potential immediately translates to higher option
premiums.

Rubinstein (1983) then proposes the displaced diffusion model as
an alternative to Black & Scholes (1973). In addition to the Black-
Scholes case, this model takes the capital structure of the firm into
account by distinguishing between risky and riskless assets. Also,
dividends are incorporated. This model is then further analyzed
by Svoboda-Greenwood (2009). In the paper it is shown that the
displaced diffusion model can be interpreted as an approximation to
the CEV (Constant Elasticity of Variance) model.31 This is attained
by a Taylor series expansion of the functional dependence of the
volatility on the asset σ = σ(t) f(y) dWt. Having established option
pricing formulas in this approximative setting higher order moments
and conditional density functions are investigated.32

In addition to the literature discussing properties of the Black-
Scholes model, there is another strand of literature focusing on car-
rying over the theory from stock options to similar options on com-
modities, foreign exchange or other options (so-called compound
options). Black (1976) deals with futures options on commodities.

30Loosely speaking, a convex function is a function with positive second deriva-
tive. A general mathematical definition can be found in Barner & Flohr (1996),
Barner & Flohr (2000) or Forster (2008).

31The CEV model is a generalization of the Black-Scholes model where the ge-
ometric Brownian motion is replaced by the diffusion dSt = r Sdt + σ Sα dWt

where α > 0. According to Hull (2009) it is particularly suitable to value exotic
options.

32According to Bauer (2001) the k-th moment µk of a random variable X is given
is given by E[(X−E[X])k]. In particular, the second moment coincides with the
variance. A more detailed discussion of the economic implications of the third
moment (the so-called skewness) is given in Section 3.1.3.
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The key difference between stocks and commodities is the absence
of a spot price, because commodities are only traded for delivery
at a certain future point in time. Furthermore, commodities ex-
hibit peculiarities such as seasonality which cannot be observed for
stock prices. These seasonal effects arise out of supply and demand
considerations. Obviously, the supply of agricultural goods heavily
depends on the time of year with the goods being relatively scarce
shortly before harvest and the opposite being true shortly there-
after.33 Garman & Kohlhagen (1983) and Grabbe (1983) deal with
options on foreign exchange (FX options). Contrary to the case of
stock prices there are two riskless rates of interest to be considered,
one for each currency. In these two papers appropriate adjustments
to the valuation process are derived with Grabbe (1983), in addi-
tion, showing that American puts and calls are indeed more valuable
than their European-style counterparts, a result well established
for stock options.34 Geske (1979b) introduces a concept or gener-
alization to value compound options in the Black-Scholes model
by adding the face value of debt as another parameter. Widdicks,
Duck, Andricopoulos & Newton (2005) present another extension
of the Black-Scholes approach to American and down-and-out bar-
rier options. To price these options they apply perturbation theory
(expansion around volatility) to the Black-Scholes equation.35 An-
other application of the Black-Scholes model is made by Thomson

33A very detailed analysis of the additional factors (such as convenience yields)
to be considered when pricing claims on commodities is given by Gibson &
Schwartz (1990) and Schwartz (1997).

34The result follows immediately from the consideration that in an American
option all the rights of the otherwise identical European option are incorporated.
Thus, it must be at least as valuable.

35Perturbation theory is a mathematical method to obtain approximate solutions
to problems not exactly solvable. It revolves around perturbing the exact solu-
tion to a related problem by a small parameter ε and expanding it in a power
series. More details about this technique and various applications can, for in-
stance, be found in Landau & Lifschitz (1981), Kato (1995), Smith (1985) or
Fernández (2001).
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(1992) who deals with forest rotation and models stumpage prices
as a log-normal process.

The third very important strand of literature focuses on the afore-
mentioned rather strict assumptions of the Black-Scholes model.
In particular, this research relaxes the assumptions of no dividend
payments, the absence of transaction costs, portfolio constraints in
building replicating portfolios and the so-called vulnerability of op-
tions, i.e. the fact that options are subject to default risk, since the
writer of an option might be incapable of paying off her counter-
party at maturity. Schwartz (1977) proposes to use finite differences
as a numerical solution technique if there is no closed form solu-
tion available to the option pricing problem as might be the case in
the presence of discrete dividend payments.36 Geske, Roll & Shas-
tri (1983) then address the effect of dividend protection on option
prices. They highlight that adjusting the strike on the ex-dividend
day accordingly virtually rules out premature exercise of American
options. Moreover, they demonstrate that market prices markedly
differ from Black-Scholes prices.37 Davis & Clark (1994) show that
the classic Black-Scholes valuation fails in the presence of transac-
tion costs. Under this assumption exact replications of the option
payoffs are no longer possible, an issue circumvented by the intro-
duction of super-replicating portfolios (i.e. portfolios which are at
least as valuable as the payoff to be replicated) which involves the
use of stochastic control theory. Soner, Shreve & Cvitanić (1995)
prove that in the presence of transaction costs the least expensive

36If one is considering a stock index rather than individual stocks one can, instead
of discrete dividend payments, assume the dividend to be continuously paid at
a rate q. In such a scenario a closed-form solution for European options can be
obtained. The key insight is to adjust the drift rate in the stock price process
for the dividend payment qS. More details on the derivation and the pricing
formula are presented in Hull (2009).

37The authors find an underpricing by the Black & Scholes (1973) model for near-
maturity options as well as call options on low variance stocks, whereas calls on
high variance stocks appear to be overpriced.
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superhedge is the simplest one (cf. Smith (1976)), i.e. hedging a
call option with one underlying share. Broadie, Cvitanić & Soner
(1998) deal with portfolio constraints in the Black-Scholes model.
The intuition of their approach is to construct a super-replicating
option (a so-called majorant) that, with constraints, equals the orig-
inal option. The economic interpretation is that this approach di-
rectly links the option price to the additional costs imposed by the
constraints. Barles & Soner (1998) investigate European call op-
tion pricing in the presence of transaction costs. Since no nontrivial
dominating portfolios are available in such a scenario, the authors
rely on preferences introduced through utility functions condensed
to one factor in the model. In terms of this single remaining factor
the quality of hedging is assessed. Discrete dividends are also dealt
with by Chance, Kumar & Rich (2002). They show that the Black &
Scholes (1973) model is retained if the present value of the expected
dividends is known. Korn & Rogers (2005) posit a discrete dividend
model, which accomodates the usually assumed continuously paid
dividends as the limit case.

Furthermore, many attempts have been made to incorporate de-
fault risk in the Black-Scholes model. Johnson & Stulz (1987) ana-
lyze American options and show that premature exercise might be
optimal when there is default risk. A comparative statics analysis
points out that the behavior of vulnerable options is markedly dif-
ferent from default-free options. Hull & White (1995) add a second
stochastic variable to the underlying stock price. To quantify default
risk they stochastically model the value of the assets of the option
writer. This model is then furthermore applied to American-style
options. A similar approach is taken by Rich (1996) who assumes
the option writer to default when her creditworthiness violates a
certain level. In particular, the author investigates different recov-
ery scenarios and finds margin requirements to be set in excess of
fair market values.
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3.1.2 Jump-Diffusions

A major generalization of the Black-Scholes option pricing model
was introduced by Merton (1976). This model focuses on the finding
well-established by common sense and casual empiricism, that stock
price movements might not be continuous. Ever observed sharp de-
clines in stock prices based on some particular event make this seem
a reasonable assumption.38 Discontinuity in the sample paths of
model stock prices is created through jumps added to the Black-
Scholes process. These jumps well reflect the economic intuition
that discontinuity must be imposed by sudden and sharp upward
or downward movements. From a more formal point of view Mer-
ton adds a homogeneous Poisson process dNt such that the Black-
Scholes process is altered to39

dSt = (r − λ k)Sdt+ σ S dWt + ξ SdNt, t > 0 (3.1.2.1)

ln(ξ) ∼ N(µN , σ2
N ).

For a vanishing jump intensity λ, i.e., if the probability of jumps
is zero, the Black-Scholes process is retained. Furthermore, there
is a normally distributed random variable ξ which is interpreted

38Among others Mandelbrot (1963), Press (1967) and Clark (1973) attempt to
model and explain this behavior. They use a stable Paretian distribution, a su-
perposition of normal and Poisson random variables and a subordinate stochas-
tic process respectively to model stock price dynamics.

39A homogeneous Poisson process is a stochastic process, i.e. a collection of ran-
dom variables {N(t), t ≥ 0}, whose increments are Poisson-distributed. More
precisely, this means that the probability of an increment of the length k is given

by P [(N(t+ τ)−N(t)) = k] =
exp(−λτ)(λτ)k

k!
, k = 0, 1, 2, . . . λ is the intensity

parameter which loosely speaking governs how often an event occurs. For com-
pleteness, a non-homogeneous Poisson process would be one with a time-varying
intensity λ = λ(t). To the best of our knowledge, though, such a process has
not prevailed in the finance literature. Detailed discussions about the proper-
ties of Poisson processes and the Poisson distribution can be found in various
introductory textbooks on probability theory and statistics, for example Bauer
(2001) and Georgii (2001).



54 CHAPTER 3. OPTION PRICING THEORY

as the logarithmic jump size. From an economic perspective these
stock price dynamics can be viewed as a differentiation between
normal variations in stock prices and abnormal variations. Accord-
ing to Merton (1976) such fluctuations can be caused by temporary
imbalances between supply and demand, the arrival of information
with marginal effect on the stock price, changes in the capitalization
structure or the overall economic outlook.40 To the contrary abnor-
mal movements modelled by the so-called jump component can be
attributed to the arrival of new information with more than only
marginal impact. It is characteristic for such information to appear
suddenly and at random times so that choosing a Poisson process
as the base model is kind of a natural selection in this regard.

In particular, it is important to heed, that the inclusion of jumps
also changes the expected diffusive return of the underlying, as this
return is diminished by the expected instantaneous jump size λ k.
The economic reason for this change is that the overall expected
return of the stock price still has to be the riskless rate of return
r regardless, how many and which different constituents or sources
of risk there are. For this reason, the expression λ k is commonly
referred to as the jump compensator.

The derivation of a closed-form option pricing formula is, however,
more complicated because of the jumps. This is primarily due to
the fact that the hedge suggested in Black & Scholes (1973) does no
longer work as a complete hedge because it only eliminates the dis-
persion risk. In other words, applying the Black-Scholes hedge leads
to a portfolio with pure jump risk. Furthermore, this jump risk can-
not be hedged away at all using the stock and a riskless bond as the
linearity in the possible combinations of the hedge portfolio cannot
cope with the non-linear dependence of the option price on the un-

40A more detailed discusssion of the properties of such models and the economic
causes for such behavior can, for instance, be found in Samuelson (1965), Merton
(1971) or Merton & Samuelson (1974).
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derlying stock. But nonetheless one can reduce the influence of the
potential jumps to a level one can handle. As outlined before, jumps
reflect sudden arrival of firm-specific information, which means that
the associated risk is unsystematic in the sense of the CAPM (Capi-
tal Asset Pricing Model), thus not priced by the market and yielding
a return identical to the one of the riskless asset. Applying this in-
sight the option price must satisfy the following PDE

0 = Ct + (r − λk)SCS +
1
2
σ2S2CSS − rC (3.1.2.2)

+ λE[C(S Y )− C(S)],

where Y is the random variable percentage change in the option
price if a Poisson jump event occurs and E[·] the corresponding
expectation operator. Equation (3.1.2.2) coincides with the Black-
Scholes equation (3.1.1.2) if and only if there are no jumps, i.e.
λ = 0. Like in the Black & Scholes (1973) case, Merton (1976)
derives a closed-form solution for his jump-diffusion model. This
solution reads

C(t) =
∞∑
n=0

exp(−λk (T − t))(λk(T − t))n

n!
Cn(t),

where Cn(t) is the price of a European call option with return and
volatility parameters given by

σn =

√
σ2 +

nσ2
N

T − t

rn = r − λk +
n ln(k)
T − t

.

In Smith (1976) a review of the Black-Scholes model as well as the
Merton jump-diffusion model is provided. In addition, empirical ver-
ifications and applications to other contingent claims are provided.
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These include valuing the equity of a levered firm41, the effects of
corporate policy42, the valuation of dual purpose funds43 and the
risk structure of interest rates.44 In Cox & Ross (1976b) several
jump diffusion models are suggested and compared which include
the so-called birth- and death process. Furthermore, they derive
explicit valuation formulas. Carr & Wu (2003b) demonstrate that
there are indeed continuous components and jump components in
the underlying using S&P 500 index options. Furthermore, they find
that the presence of jump risk varies over time, while the continu-
ous component appears to be priced all the time. Ekström & Tysk
(2007) elaborate on monotonicity and convexity results (option price
w.r.t. the stock price) in the volatility, jump size and jump inten-
sity parameters. This is done by virtue of the theory of parabolic
integro-differential equations.

41Black & Scholes (1973) themselves pointed out that the equity value of a com-
pany can be retrieved by interpreting its value as the value of the right to buy
back the company from its bondholders at the face value of outstanding debt.
This, in essence, sets up an option pricing problem.

42Galai & Masulis (1976) assume the CAPM and the option pricing model to
simultaneously hold. Doing so, they investigate the effects of changes in invest-
ment policy.

43A dual purpose fund is a closed-end fund with two different types of shares,
income and capital shares. Holders of the former ones are entitled to whatever
proceeds the fund generates including a minimum cumulative dividend and fixed
maturity payment, whereas capital shares do not pay dividend payments but
allow for redemption at the net asset value at maturity. Ingersoll (1976) studies
dual purpose funds in detail and applies the Black-Scholes framework to find
that it can be justified that such funds sell at a discount compared to their asset
value.

44The assumption of a Modigliani & Miller (1958) world is made, i.e. the value of
a firm is independent of its capital structure, if there are no transaction costs,
no taxes and no costs of brankruptcy. Furthermore, Jensen & Meckling (1975)
point out that the presence of agency costs would cause the total value of a firm
to be a function of the debt/equity ratio. This is consistent with Long (1974)
who finds that stochastic calculus can only be applied if there is no explicit
reference to the value of the firm’s equity or debt in the total value. In this
setting Merton is able to derive the value of corporate debt given the total firm
value. A valuation of a company’s debt using the Black & Scholes (1973) option
pricing approach is presented in Merton (1974).
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Madan, Milne & Shifren (1989) posit the multinomial option pricing
model as a generalization of the binomial model by Cox, Ross &
Rubinstein (1979).45 In the case of jump diffusion processes it is
shown to converge to the Merton model. In Lesne, Prigent & Scaillet
(2000) stochastic interest rates are added. Then the authors examine
the convergence of approximations to these Merton type models.

In addition to this theory of option pricing in Merton type models,
there are also extensions and applications of the models.46 Cont,
Tankov & Voltchkova (2007) deal with hedging in jump-diffusion
models. The hedging strategies investigated include the underlying
itself and a set of several options tailored such that the variance of
the hedging error is minimized. Moreover, the performance is as-
sessed in numerical examples. Camara (2009) presents a significant
generalization of the Merton model by using two different jump
terms, one for upward and one for downward jumps. Just as the
Merton model, this approach captures smiles and skews which are
discussed in Section 3.1.3, but in addition it is also able to explain
term structures of these phenomena. Another generalization is pre-
sented by Øksendal & Sulem (2009) who consider incomplete mar-
kets.47 They show that under risk neutrality the buyer’s price is less
or equal to the seller’s price, while both are respectively bounded
from above and below. To attain those results PDE methods and
stochastic control theory are applied.

45The multinomial model differs from the binomial model in that it allows for n
rather two branches at each node. Hence, prices along the tree are multinomially
rather than binomially distributed.

46For example, Omberg (1988) deals with compound options in jump diffusion
models. Gauss-Hermite quadrature is used and a trinomial model is employed
to deal with the discontinuity in the first derivative of the option pricing formula.

47Formally an incomplete market is a market in which there are more differ-
ent states of outcome than securities that will pay off one unit of money in
these outcomes (so-called Arrow-Debreu securities), thus according to Musiela
& Rutkowski (2005) a market is incomplete if there are unattainable claims.
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3.1.3 Stochastic Volatility

Besides the jump diffusion approach there is another strand of lit-
erature which tries to deal with the shortcomings of the Black &
Scholes (1973) model. This revolves around the observation that
market volatility is not constant as assumed by Black and Scholes
and in the various jump-diffusion models.48 Because of that the
volatility has been proposed to be stochastic. The most prominent
such model is the one suggested by Heston (1993) which reads

dSt = r Sdt+
√
V S dWt, t > 0 (3.1.3.1)

dVt = κ (θ − V ) dt+ σV
√
Vt W̃t.

In this model there is another source of uncertainty in the market,
i.e. another so-called state variable which changes stochastically,
namely the variance of the stock price process. Furthermore, these
two processes do not evolve independently of each other as the two
driving Brownian motions Wt and W̃t are correlated by a factor ρ.
Intuitively speaking, this means that if the stock price increases or
decreases by a certain percentage the volatility changes by ρ times
that amount. Furthermore, the additional stochastic process is mean
reverting to its long-term mean θ at a mean-reversion speed κ. The
reason for that is that if V exceeds θ, the drift becomes negative.
If in turn V < θ the drift is positive, which establishes gravitation
back to the long-term mean for each level of volatility.

Given these market dynamics the procedure to come up with a fun-
damental pricing equation is very similar to the one applied in the
Black & Scholes (1973) case. The only difference is the presence of
the aforementioned additional state variable, which rules out repli-

48There is a large amount of literature dealing with this finding and at the same
time pertaining to the so-called volatility smile, which is discussed in detail
below in this section.
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cation by just bonds and stocks. To amend this drawback, another
option is added to the replicating portfolio making it look as follows

Πt = a(t)St + b(t)Bt + c(t)Dt,

whereDt is the value of the additional option. Carrying out the same
steps as before (using the multidimensional version of Itô’s lemma
to determine the change in the option price given the Heston (1993)
market model, equating the change to the change in the replicating
portfolio, collecting expressions for the respective stochastic compo-
nents which must coincide again) one arrives at the following PDE49

0 = Ct + rSCS +
1
2
V S2CSS + κ(θ − V )CV +

1
2
V σ2CV V + ρV SσCSV − rC.

As it is the case with the Black & Scholes (1973) and the Merton
(1976) models also the Heston (1993) model allows for a closed-form
solution, albeit it is more sophisticated than the previous two. The
price of a European call option is given by

C(t) = P1 St − exp(−r(T − t))P2K.

The helping variables P1 and P2 are obtained as

Pj =
1
2

+
1
π

∫ ∞
0

Real
[

exp (−iy ln(K)) fj(y)
i y

]
dy

fj(x) = exp(G(x) +H(x)Vt + i ln(S)x)

Gj(x) = r x i T +
κθ

σ2
V

[(βj − ρσV yi+ dj(x))T

49Note that the PDE is two-dimensional this time with the additional state vari-
able V appearing as a second dimension. Furthermore, the correlation between
the two underlying stochastic sources of risk, the two Brownian motions, trans-
lates to the mixed derivative term.
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− 2 ln
(

1− gj(x) exp(d T )
1− gj(x)

)
]

Hj(x) =
βj − ρσxi+ dj(x)

σ2
V

1− exp(dj(x)(T − t))
1− gj(x) exp(dj(x)(T − t))

dj(x) =
√

(ρσV xi− βj)2 − σ2
V (2ujxi− x2)

gj(x) =
βj − ρσV xi+ dj(x)
βj − ρσV xi− dj(x)

β1 = κ− ρσV
β2 = κ

u1 =
1
2

u2 = −1
2
.

How this closed form solution of the Heston (1993) model can be
efficiently implemented has been demonstrated by Muck & Rudolf
(2006). Despite the fact that the Heston (1993) stochastic volatility
model has become the most prominent one there are several authors
who have introduced and dealt with such an approach as well.

Scott (1987) analyzes option pricing when the underlying asset’s
volatility is stochastic. Contrary to Black-Scholes one needs two op-
tions and the underlying to form a riskless hedge and more impor-
tantly doing so does not lead to unique option prices since the un-
derlying volatility itself is not a tradable asset. It is further argued,
that volatility risk can be diversified away and that pricing depends
on the risk premium associated with volatility risk.50 To solve such
option pricing problems Scott suggests Monte Carlo simulation. So
is done by Johnson & Shanno (1987) who carry out a Monte Carlo
simulation of a stochastic volatility model to price equity options.
In their paper, Stein & Stein (1991) investigate stock price distri-

50The relationship between the tradability of an asset and the uniqueness of its
price under a martingale measure is expounded in Joshi (2003).
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butions for assets whose volatility follows an Ornstein-Uhlenbeck
process.51 In particular, emphasis is put on how stochastic volatility
relates to the observation of fat tails.52 The second aspect analyzed
in this research is the implication for option pricing in such a setting.
Ball & Roma (1994) examine the biases in the Black-Scholes model
which are furthermore shown to be eliminated. This is done in the
setting of a mean-reverting variance process as proposed by Stein
& Stein (1991) as well as Heston (1993). In addition, the authors
elaborate on the case where there is no correlation between the pro-
cesses and find that in such a case comparatively simple power series
methods for option pricing can be derived.53 In his research, Wiggins
(1987) estimates stochastic volatility processes and applies those es-
timates to valuing options. Doing so, he observes an overpricing by
the Black-Scholes model which is even more pronounced for out-of-
the money options. Schöbel & Zhu (1999) reassess the Stein & Stein
(1991) paper in which an Ohrnstein-Uhlenbeck stochastic volatility
model is assumed. By using a Fourier inversion method they are
able to derive a closed-form solution for the European option pric-
ing problem also involving correlation and they focus their analysis
in particular on the boundary behavior near V=0 and provide nu-
merical examples of their pricing formula.

51An Ornstein-Uhlenbeck process is, mathematically speaking, the only non-trivial
process being Gaussian, stationary and Markov. For precise definitions of these
terms, the reader is referred to Bauer (2001). In financial economics it is typi-
cally a process associated with stochastic volatility. Further properties of such
processes have been thoroughly investigated in Uhlenbeck & Ornstein (1930).

52A fat tail is, roughly speaking, a property of a probability distribution where
there is more mass associated to extreme events than there is in a normal dis-
tribution. A typical measure of this is kurtosis, which is based on the fourth
moment of a distribution and given by E[(X − E[X])4]/var(X)2. More infor-
mation can, for example, be found in Verbeek (2008).

53In a power series approach the option price is assumed to be a non-linear function
of the average volatility and thus the option price is expanded into a power series
of the Black-Scholes price at the expected average volatility. The coefficients of
the higher-order derivative terms are then the variance of the average volatility,
its skewness and so forth.
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Hull & White (1987) price European options in a stochastic volatil-
ity setting for both correlated and uncorrelated asset and vari-
ance processes. Their solution technique revolves around a power
series approximation. Having stochastic volatility prices available,
it is found that the Black-Scholes model tends to overprice options.
Comte & Renault (1998) take up these findings and add a long mem-
ory feature to the stochastic volatility component of the Hull-White
setting.54 In addition to examining the effects on both processes
involved (asset price and variance) the authors consider its option
pricing quality by looking at implicit volatilities.

Another strand of stochastic volatility literature concentrates on the
related problem of valuing currency rather than stock options. Ches-
ney & Scott (1989) deal with European currency options on the US
dollar - Swiss franc exchange rate. They do so in the Black-Scholes
setting to which a stochastic variance component is added. This
empirial analysis of market prices indicates some mispricing in the
light of the biases w.r.t. time to maturity, striking price and volatil-
ity. Furthermore, there seems to be the possibility of arbitrage gains
when trading according to the stochastic volatility model. Melino &
Turnbull (1990) focus on pricing currency options on the exchange
rate between the Canadian and the US dollar in a stochastic volatil-
ity framework of the underlying exchange rate process. Their empir-
ical investigation yields that there is an improvement when it comes
to how well model prices fit market prices.

In addition to the standard models there are again attempts made
at relaxing the rather strict assumption of market completeness and
introducing portfolio constraints to abstract from the assumption
of unlimited borrowing and lending at the risk-free rate of inter-

54The so-called long-term feature addresses the persistence of volatility and is at-
tained by replacing the Wiener process driving volatility by a fractional Brown-
ian motion, which allows for correlated increments. A detailed discussion of this
type of stochastic process can be found in Mishura (2008).
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est as well as restrictions to short-selling assets. Cvitanić, Pham
& Touzi (1999) deal with incomplete financial markets which arise
because of portfolio constraints and stochastic volatility. Portfolio
constraints are due to short-selling limitations for any hedger in this
market. The central finding of the paper is an explicit characteri-
zation of the minimal price of replication a European contingency
claim. This revolves around determining a PDE characterization
of this price’s representation in a shadow market. Moreover, Nico-
lado & Venardos (2003) highlight stochastic volatility models of the
Ornstein-Uhlenbeck type and focus in particular on the incomplete-
ness of such markets. For structure preserving martingale measures a
closed-form valuation formula for European calls is derived.55 The
pricing capabilities are assessed in an empirical part. Henderson
(2005) derives a comparison theorem and proves that convex option
prices are decreasing in the market price of volatility risk. This al-
lows for ordering option prices under various equivalent martingale
measures.56

Finally, Garcia & Renault (1998) use a stochastic volatility model in
connection with GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) and ARCH (Autoregressive Conditional Het-
eroskedasticity) models. The paper explains the differences between
the hedging formulas of the Duan (1995) and Kallsen & Taqqu
(1998) model. While the Duan model is a GARCH model, the
Kallsen/Taqqu suggestion is an ARCH model and both agree on
the same pricing formula but come up with different hedging for-
mulas. The Duan formula is validated by introducing a stochastic
volatility model.57

55In that context a structure preserving martingale measure is a martingale mea-
sure under which log-returns of the Barndorff-Nielsen & Shephard (2001) type
of processes are also of this type.

56Equivalent martingale measures are treated in greater detail below in Section
3.2.2.5. The fact that they are not unique is due to the market incompleteness.

57ARCH and GARCH models date back to the papers by Engle (1982) and Boller-
slev (1986). The objective is to model time-varying variance in time series data.



64 CHAPTER 3. OPTION PRICING THEORY

Another important justification for both jump-diffusion models and
stochastic volatility is the so-called volatility smile. The volatility
smile is a phenomenon observed in the market that options appear to
be priced in a slightly different way than assumed by the Black & Sc-
holes (1973) model. This was discerned by considering so-called im-
plied Black-Scholes volatilities, i.e. the respective volatilities which
have to be inserted in the Black-Scholes model to reproduce market
option prices.58 In contradiction to the model which assumes a con-
stant volatility the resulting implied volatilities depended on both,
the time to maturity and the striking price.59 This effect was very
extensively investigated by Rubinstein (1985), who found conceiv-
ably higher prices for shortly maturing out-of-the-money calls than
predicted by the Black & Scholes (1973) model and a reversal of the
significant striking price biases relative to Black-Scholes.

In Figure 3.1 we have plotted an exemplary smile for DAX options as
it was observed in the market on December 23, 2009. The plots shows
a curve for all three expiration days (January 2010, February 2010,
and March 2010) that were traded on EUREX on that respective
day.

This dependence structure w.r.t. the striking price can be explained
in the following way: The more in-the-money an option is the rela-
tively more probable it is that this situation does not change even
if there is a strong market movement in adverse direction. Hence,
market participants tend to price these options higher. This is in

This is done by having the current variance at time t depend on the error term
of the previous q observations. In GARCH models there is, furthermore, also a
dependence on the actual variance of the previous p observations.

58Lauterbach & Schulz (1990) examine the biases by caused by the Black-Scholes
model and how they can be amended.

59A very intuitive explanation why, at least, the volatility should depend on the
stock price is provided by Hull (2009). If the stock price of a company declines
its leverage increases, thus rendering the equity riskier. Converserly if the stock
price rises the company’s leverage is reduced and consequently the equity is less
risky, which in turn leads to less volatility.
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Figure 3.1: Volatility Smile of DAX Options
The plot shows the volatility smiles for the DAX options maturing
between January and March of 2010 as it was observed on December
23, 2009. On that day the DAX closed at 5957.44 points.

line with the general notion of risk aversion, which implies that in-
vestors want to be compensated for additional risk by additional
return. In the presence of jump risk, prices for in-the-money op-
tions thus increase (which in turn decreases their returns) and vice
versa for out-of-the-money options. The steepness of the smile can
therefore be interpreted as a measure for the degree of risk aversion.

In terms of the considered models they assign more volatility to the
option than the Black-Scholes model does. Moreover, this effect is
even more pronounced in the short run making the interpretation
of jump risk being priced by option traders all the more intuitive.
This is due to the fact that jumps are sudden and sharp (typically
downward) movements, which leave the option holder with less time
to recover the more short-dated the option is.60 Thus the “safety”

60Xu & Taylor (1994) use foreign exchange option prices between 1985 and 1989
to retrieve the time-varying term-structure of volatility expectations. They find
marked differences between long- and short-dated options.
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premium placed on a short-dated option should be higher. Put dif-
ferently, the later in the future an option matures, the higher its
implied volatility beomes, which directly translates to the option
being valued higher. This effect is, according to Hull (2009), also
referred to as the average out effect because over longer periods of
time market dynamics appear to be dominated by the dispersion
components rather than jumps. Furthermore, these economic rela-
tionships translate from implied volatilities to return distributions,
which can also be inferred from the prices of options traded in the
market exploiting the fact, pointed out by Breeden & Litzenberger
(1978) and Hull (2009), that the market implied distribution func-
tion is given by the second derivative of the traded security w.r.t.
the striking price61

g(K) = exp(rT )
∂2C

∂K2
.

In this respect, g(·) denotes the probability density function of the
stock returns. Both Rubinstein (1994) and Derman & Kani (1994)
exploit this relationship between the volatility smile and the proba-
bility distribution of stock returns to infer risk-neutral probabilities,
which are then applied to option pricing purposes in the context of a
binomial tree. Furthermore, Jackwerth & Rubinstein (1996) also use
S&P 500 options to retrieve risk-neutral probabilities, a procedure
they find to better reflect the possibility of extreme events like the
October 1987 stock market crash, a risk usually under-estimated by
classical time-series analysis. Regarding the volatility smile Carr &
Wu (2003a) detect that for S&P 500 index options the smile does
not lose steepness with increasing time to expiry as predicted by the
widely used above pricing models.

61A similar investigation is carried out by Melick & Thomas (1997) who exam-
ine American options on crude oil during the 1991 Gulf crisis to estimate the
probability density function of the return distribution.
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3.1.4 More Elaborate Models

After discussing two very prominent extensions of the Black & Sc-
holes (1973) model, the Merton (1976) jump diffusion model and
the Heston (1993) stochastic volatility model this section deals with
various further generalizations.

First and foremost, of course, there is a combination of the two
previously suggested extensions. This was first considered by Bates
(1996). In his paper he estimates a jump-diffusion model which also
includes stochastic volatility using a generalized least squares ap-
proach.62 With this model, he is able to explain the volatility smile
observed for exchange rate options between the US dollar and the
Deutsche Mark. Without jumps the observed smile can only be at-
tained for unrealistic model parameters, thus making the inherent
jump risk plausible.63 Branger & Schlag (2004), in addition, inves-
tigate the steepness of volatility smiles. It is found that for indexes
the smile is steeper than for individual stocks. By considering an in-
dex to be a weighted sum of individual stocks the smiles are merely
contingent on the dependence structure between the stock prices. In
a stochastic volatility jump-diffusion model these differences w.r.t.
the smile can be explained.

Given these theoretical advances in option pricing, Bakshi & Chen
(1997) relate to the Cox, Ingersoll & Ross (1985) research. It dif-
fers in considering an explicit power utility function which enhances
tractability in a Lucas (1978) exchange economy. The model is then
used to derive bond and stock prices and the prices of the respective

62A generalized least squares approach alters the ordinary least squares approach
so that the procedure is able to cope with heteroscedasticity and correlation.
A detailed discussion about the method is provided in the textbook Kariya &
Kurata (2004).

63Pan (2002) analyzes joint time series data for S&P 500 options close the ma-
turity. This analysis is then used to explain volatility smirks for cross-sectional
option price data.
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contingent claims. The approach is validated by the fact that the
stochastic volatility version of the stock price dynamics is capable of
reconciling the volatility smile. Bakshi, Cao & Chen (1997), in ad-
dition, summarize and evaluate option pricing models to that date
by assessing their pricing capabilities and hedging performance. In
the most general setting this includes jumps, stochastic volatility,
and stochastic interest rates at the same time. Pricing capabilities
are tested using in-sample and out-of-sample data.

Furthermore, research is concerned with the distribution of asset
price returns because, in essence, knowing the risk-neutral distri-
bution and being able to price an option are inseparable. Actually,
any market model makes an assumption about the distribution of
the underlying asset’s return. Bates (1997) investigates S&P 500 fu-
tures options w.r.t. explaining moneyness biases.64 By deriving the-
oretical distribution specific constraints distributional hypotheses
can be identified which are capable and which are incapable of ex-
plaining these biases. Consequently, this is a link to the observation
of skewness.65 Bates (2000) relates the observed skewness in stock
price distributions (inferred from S&P 500 options) to stochastic
volatility and jump models. He finds that including jumps is neces-
sary to avoid implausible volatility of volatility but that nonetheless
there are inconsistencies between sharp moves in the market and
the model. Bakshi, Kapadia & Madan (2003) then aim at explain-
ing the economic source of skewness in the returns of stock options.
Furthermore, risk-aversion is related to skewness in the risk neutral

64The term moneyness bias refers to model and market price deviations w.r.t. how
far an option is in- or out-of-the-money. Essentially such relative option prices
form a direct relation to the thickness of the tail ends of return distributions.

65In descriptional statistics skewness is a measure of the asymmetry of a proba-
bility distribution. Whereas the normal distribution is perfectly symmetric and
has vanishing skewness, asset returns appear to be assymetric with outliers more
probable than assumed by the lognormality assumption. Mathematically speak-
ing, skewness is based on the third moment of a random variable X and given by
E[(X−E[X])3]

var(X)3/2 . More information can, for example, be found in Verbeek (2008).
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density and the term-structure of this skewness is investigated. This
includes identifying a systematic part and an unsystematic part of
skewness risk in individual stocks.

Scott (1997) applies Fourier inversion to obtain closed-form solu-
tions to option pricing problems when there are stochastic interest
rates, stochastic volatility and jumps.66 Properties and effects on
option prices of the respective constituents are then investigated
using options on the S&P 500 stock market index in an empiri-
cal study. A very important advance, in particular from a practical
standpoint, is provided by Duffie, Pan & Singleton (2000). Their
paper deals with option pricing in a so-called affine model setting.
This is a particularly interesting set of models as, which is shown
in this paper, it allows for very general closed-form solutions.67 The
practical relevance is demonstrated by an application to a jump-
diffusion model with stochastic volatility. Then Chernov, Gallant,
Ghysels & Tauchen (2003) provide a comparison between two model
classes, loglinear models and affine jump models when it comes to
modeling the underlying’s distribution.68 Furthermore, the effects
on option pricing are investigated under statistical goodness-of-fit
considerations and other aspects such as parsimony when it comes
to computing option prices and hedge ratios.69 A summary of var-

66Fourier inversion is the inversion of the famous Fourier transform, an extremely
powerful mathematical tool to transform functions so that their transforms
have more desirable properties. For instance, derivatives w.r.t. a certain vari-
able transform to multiplications with that variable. A detailed theory of the
Fourier transform can, for example, be found in Fourier (1822) or Bochner &
Chandrasekharan (1949). A discussion of FFTs (Fast Fourier Transforms) in

the field of finance is provided by C̆erný (2004).
67The term affine pertains to the dependences of the drift vector, covariance ma-

trix and jump intensities on the state vector. Roughly and intuitively speak-
ing, affine-linear means linear with an additional constant offset. Therefore, the
Heston (1993) model, for instance, is affine because of the square root in the
volatility expressions, whereas the Hull & White (1987) is not.

68A log-linear model is a model in which the volatilty is an exponential function
of the underlying stochastic factor.

69Bondarenko (2003) aims at explaining the anomaly observed for put option
prices. Trading strategies involving in-the-money and out-of-the-money puts
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ious models and solution techniques, especially efficient numerics,
can be found in the habilitation by Gerstner (2007).

An interesting new idea is presented in Boes, Drost & Werker (2007).
This paper highlights the fact that in addition to the jumps ob-
served in the market during trading hours there are also jumps re-
sulting from overnight trading halts. The authors empirically find,
that overnight jumps are responsible for about 25% of the entire
jump variation so that the variation in the classic jump components
is significantly reduced. Furthermore, none of the types of jumps
alone can explain all option price characteristics. Another aspect is
addressed by Jarrow, Protter & Shimbo (2010). The authors study
the effect of asset price bubbles70 on option pricing by assuming no
arbitrage opportunities in a local martingale and incomplete mar-
ket framework.71 Their main contribution is to allow for different
local martingales over time. Doing so, they apply their model to
derivative pricing which yields that still American calls are not pre-
maturely exercised, that still put-call-parity holds, that there are no

are empirically found to allow for arbitrage opportunities. This is explained by
inconsistencies between market prices and classic models such as the CAPM and
Rubinstein (1976) which make put prices appear too expensive. In this paper
for a broad class of non-standard models it is excluded that they can contribute
to explaining this.

70The relevance of asset price bubbles is highlighted by, for instance, the papers by
Ofek & Richardson (2003), Brunnermeier & Nagel (2004), Cunado, Gil-Alana
& Perez de Gracia (2005), Battalio & Schultz (2006) and Pástor & Veronesi
(2006) on the technology market bubble around the year 2000, by the works
on the 1929 stock market crash like White (1990), Bradford de Long & Shleifer
(1991), Rappoport & White (1993), and Donaldson & Kamstra (1996), and
studies concercing the US housing price bubble (Case & Shiller (2003)) or the
Japanese one (Stone & Ziemba (1993)). In Scheinkmann & Xiong (2003) the
development of asset price bubbles is related to Tobin’s tax.

71A definition of local martingales can be found in the textbook by Karatzas &
Shreve (2008). From an economic point of view the incompleteness of the market
leads to non-uniqueness of the risk neutral measure according to Harrison &
Kreps (1979), i.e. the market can choose between several ones. The contribution
of Jarrow, Protter & Shimbo (2010) now is that they allow for changes of that
(local martingale) measure, which can be interpreted as a regime change. Doing
so, their model is able to reflect bubble birth (contrary to e.g. Camerer (1989))
without a priori including the bubble in the model.
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bubbles in put prices and that the magnitudes of call price bubbles
relate to the corrensponding asset price bubbles.

A more technical and mathematically demanding, but all the more
promising, generalization is presented by Leippold & Trojani (2008).
In this paper so-called Wishart processes are introduced to model
market dynamics. Loosely speaking, these models are matrix valued
affine processes (thus allowing for Fourier solution techniques) and
give rise to a very general class of problems and properties to be
considered. This includes stochastic correlation between underlying
parameters, single- and multi-asset cases and so forth. Branger &
Muck (2012), for example, discuss quanto options. With this sophis-
ticated model they are able to simultaneously capture the stochastic
correlation between assets and the time-varying volatility smile at
the same time without having to continuously recalibrate the model
parameters.

3.2 American Style Options

After the discussion of option pricing models in general in the pre-
vious section, this section focuses on the properties of American
options. This includes both, characterizations of the early exercise
boundary (cf. Subsection 3.2.1) and valuation approaches (cf. Sub-
section 3.2.2).

3.2.1 Characterizations and Properties of the

Early Exercise Boundary

The key difference between American-style and European-style op-
tions is that the former ones provide their holders with early exercise
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privileges. Because of that observation it is natural and intuitive that
the valuation of American options ultimately amounts to character-
izing when early exercise occurs. More technically speaking, this
prompts research on the shape and properties of the early exercise
boundaries. The three perhaps most basic and central observations
are:

1) There is always a stock price Sf , termed early exercise threshold,
such that early exercise is optimal for S > Sf in the case of
certain call options and S < Sf in the case of certain put options.

2) The early exercise threshold is a monotone increasing function
in the time to maturity.

3) At the early exercise threshold the option value is tangent to
the payoff function, a property referred to as the high contact
condition or smooth pasting condition.72

As the high contact condition is of particular importance in the
context of valuation using partial differential equations, a proof is
presented in Section 3.2.2.3, where such a formulation is derived.

Regarding the exercise threshold below which it becomes optimal
to exercise American put options we take following proposition (in-
cluding the proof) from Sandmann (2009).

Proposition 3.2.1 It can indeed become optimal to prematurely ex-
ercise American-style put options.

Proof - Proposition 3.2.1:
Apparently, the payoff of put options increases with falling stock
prices. It is thus sufficient for optimal premature exercise if the

72These two terms are used interchangeably and in Section 4.1.3 smooth pasting
results are considered in a broader sense.
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intrinsic value (compounded up to maturity) exceeds all possible
payoffs at that point. At time t this means

(K − St) (1 + r)T−t > K − ST

As before, K denotes the strike, r the riskless rate of return and St
and ST the respective stock prices at times t and T . Reformulation
yields

St < K
(

1− (1 + r)−(T−t)
)

+ ST (1 + r)−(T−t) (3.2.1.1)

Thus, the stronger condition St < K
(
1− (1 + r)−(T−t)) is suffi-

cient to ensure that (3.2.1.1) holds in any case. This establishes the
assertion of the proposition.

�

With regard to the monotonicity property, stated as the second item
above, we follow the proof of Kwok (2008). We already know that
all else held constant an option C2 with longer maturity than option
C1 is more valuable, thus the value function of C2 lies above that
of C1 at all times and stock prices. On the other hand both options
satisfy the high contact condition at their respective early exercise
thresholds. As C2 is always greater or equal than C1, this also holds
at the point of tangency. If this was not the case there would have to
be a point of intersection between the two curves which contradicts
C2 ≥ C1. Hence Sf is monotone increasing in the time to maturity.

In the Black-Scholes model we can also further describe the asymp-
totic behavior of American options in the near expiry region. For
this purpose we consider call options on a dividend paying stock
with continuously paid dividend yield q.73 At expiry the value of

73Considering non-dividend paying stocks would be pointless as call options on
such stocks are never prematurely exercised.
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the American option is C(S, T ) = S −K. The time derivative of a
call option in the Black-Scholes model according to Kwok (2008) is
given by

∂C

∂T
=
σ2

2
S2 ∂

2C

∂S2
+ (r − q)S ∂C

∂S
− rC.

Inserting C(S, T ) yields

∂C

∂T
(S, T ) = rK − qS, S > K.

For an American option to be kept alive until maturity ∂C
∂T (S, T ) ≥ 0

must be satisfied. If that was not the case the American option value
would drop below S−K just prior to expiry and thus prompting ex-
ercise. Consequently, the point S = r

qK at which the time derivative
changes sign plays a crucial role. In order to satisfy this condition,
S > K and q < r must hold and to avoid early exerciseK < S < r

qK

is required. It follows that

lim
t→T

Sf (t) =
r

q
K.

This result is in line with the observation that call options on non-
dividend paying assets are never exercised. In this case (q = 0) we
obtain Sf (t) = ∞ which precludes exercise at any time. If in turn
the dividend yield exceeds the riskless rate of interest the situation
is slightly different. From the consideration regarding the change of
sign we know that the limit Sf (T ) is at most K. If we assume the
contrary (that the option is still alive) Kwok (2008) points out that
exercise is inferior to continuation as the foregone earned dividend
qSδt is more than the riskless interest rKδt in a small time interval
δt. It follows that

lim
t→T

Sf (t) = K.
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Jacka & Lynn (1992) examine the shape of the exercise region of gen-
eral American-style contingent claims under diffusion processes and,
in the one-dimensional case, find it to be up-connected if the drift of
the payoff process is decreasing in the underlying.74 Broadie & De-
temple (1997) characterize the optimal exercise boundary of Ameri-
can options written on multiple underlying assets, e.g. the maximum
of two assets or exchange options. Furthermore, they address the
problem of non-convex payoffs which, for example, arises if an option
is capped.75 Detemple & Tian (2002) examine the stopping bound-
ary of American options in a quite general model. They account
for stochastic interest rates and stochastic volatiliy and identify the
stopping boundary be to up-connected and state-dependent. The
result also extends to capped options. By Chen, Chadam, Jiang &
Zheng (2008) a rigorous proof is given for the convexity of the early
exercise region of the free boundary value problem of an American
put option on non-dividend paying assets. Furthermore, the result
is obtained to retrieve rigorous information about the asymptotic
near-expiry behavior of such options.

When approximating American option prices with numerical tech-
niques, this also yields an approximation of the critical exercise
threshold. Lamberton (1993) proves convergence of this approxi-
mate critical stock price in the case of a finite difference approxi-
mation as proposed by Brennan & Schwartz (1978). In the paper
by Kuske & Keller (1998) the differential equation for the early ex-
ercise boundary is solved asymptotically.76 Doing so the authors

74Loosely speaking, up-connectedness can be thought of as consisting of only one
part and being an infinite interval.

75Capped options are options whose upward potential is limited by a so-called cap
L imposed on the payoff function which is then modified to max((S∧L)−K, 0)
in the case of call options. For L → ∞ standard call options are retained. For
finite L the holder of such an option can only participate in the stock price
movement if prices are at most L. A study of such options is conducted by
Broadie & Detemple (1995).

76Given the boundary value problem (3.2.2.5) presented below for the option
price, Green’s theorem (cf. for instance Evans (2010)) can be used to transform
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obtain the optimal exercise boundary for an American put near the
expiry date. In Peskir (2005a) many technical results about Amer-
ican options and stopping problems as well as the corresponding
free boundary value problems are recounted. Besides, they are used
to obtain a characterization of the stopping boundary by virtue of
the change-of-variable formula due to Peskir (2005c). Dai & Kwok
(2006) are concerned with the valuation of lookback options and
Asian style options exhibiting American exercise features.77 The
characterization of the exercise region is set in a framework of vari-
ational inequalities. Göttsche & Vellekop (2011) derive an integral
representation of the early exercise boundary of American put op-
tions as suggested by Kim (1990), Jacka (1991), and Carr, Jarrow &
Myneni (1992). Using the Black & Scholes (1973) model the authors
expand theoretical results to the more realistic case of discrete-time
dividend payments.

In his appendix to Samuelson (1965), McKean (1965) provides some
of the mathematical background necessary for the warrant pricing
paper of Samuelson. Doing so he discusses the existence of opti-
mal functions majorizing the discounted expectation. Afterwards,
the theory is applied to the examples of a multiplicative Brownian
motion and a multiplicative Poisson process. Chen (1970) takes up
the results by Samuelson (1965) and McKean (1965) on warrant
pricing. Using dynamic programming he establishes a relationship

it to an integral equation for the exercise boundary. The authors then provide an
asymptotic solution for small times to maturity with the leading term reconciling
the result by Barles, Burdeau, Romano & Samsoen (1995).

77According to Bowie & Carr (1994) a lookback option is an option whose strike
price is the lowest price (highest price) of the underlying during the lifetime
of the option in the case of the call variant (the put variant). Heynen & Kat
(1995) demonstrate that discretely monitored lookback-options can be valued
in semi-closed form. Further insight into lookback option valuation is obtained
by Choi & Jameson (2003).
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between warrant pricing and the underlying asset.78 American se-
curities are explicitly covered and addressed. In the paper by Kane
& Marcus (1986) the wild card option inherent in treasury bond
futures is investigated. Since the short position bears the right to
opt for delivery until 8 PM while the price is locked in at 2 PM a
put option, termed wildcard option, is constituted. Moreover, acting
optimally in this environment sets up an optimal stopping problem.
This problem is solved recursively in the paper. Karatzas (1989)
in a survey paper is concerned with a presentation of the main re-
sults in the field of mathematical finance and continuous trading,
such as optimal investment and consumption decisions as well as
contingent claim pricing. In particular, he deals with the valuation
of American options and points out that there is a corresponding
optimal stopping problem. Carriere (1996) deals with finite time
discrete Markov chains and investigates optimally stopping them.79

Besides, it is proved that the optimal decisions are equivalent to a
series of conditional expectations, which can be obtained via regres-
sion. Finally, the results are applied to American options.

3.2.2 Valuation Methods

Regarding valuation methods for American-style options, there is a
plethora of different approaches. Nevertheless one can distinguish
between five classes, in which these approaches can be loosely clas-
sified. In the subsequent section the five classes analytical approx-
imations (cf. Section 3.2.2.1), lattice methods (cf. Section 3.2.2.2),
PDE methods (cf. Section 3.2.2.3), Monte Carlo simulations (cf.

78In Section 4.1.1 it will be described what the dynamic programming equations
are and their very close relationship to optimal stopping in particular and opti-
mal control problems in general will be highlighted.

79This is of particular importance to the pricing of American-style contingent
claims since in its discretized version, with which numerical methods to solve
stochastic optimal control problems are concerned, such exercises naturally
arise. Details will be covered in Section 4.2.1.
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Section 3.2.2.4), and stochastic control theory (cf. Section 3.2.2.5)
are discussed in detail.

3.2.2.1 Analytical Approximations

This section deals with analytical approximations to American op-
tions. Such methods have been developed since the late 1970s be-
cause researchers found resorting to numerical methods (these will
be extensively covered in the subsequent sections) too onerous. The
drawback of numerical solution techniques, regardless of the method,
typically is that they require a lot of memory space and computa-
tional time to carry out the respective algorithms. In contrast, the
benefit of analytical approximations or even exact closed-form so-
lutions, like there are for European-style options, is the tractability
of the formula’s evaluation and fewer demand for computational
resources.

One of the most prominent approximations is due to Geske & John-
son (1984). They deal with American put options on a dividend-
paying stock in the Black & Scholes (1973) framework with the as-
sumptions outlined in Section 3.1.1. By the same arguments given
there the put option price satisfies the following PDE

0 = rP − rSPS −
1
2
σ2S2PSS − Pt.

Contrary to the European option counterpart, the terminal time of
the valuation problem is a priori unknown because an American op-
tion can be exercised at any instance up to maturity, thus rendering
the valuation exercise a so-called free boundary value problem.80

The necessary condition at the free boundary is the payoff function

80Free boundary value problems are covered in detail in Section 3.2.2.3 about
PDE solution techniques. Therefore, further details are omitted here.
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of the option
P (S) ≥ max(K − S, 0).

Geske & Johnson (1984) derive a solution to the valuation problem
with the put option being a weighted sum of the strike and the
stock:

P = w2K − w1S, (3.2.2.1)

where the weights are given by the following equations

w1 = N1(−d1(S∗dt, dt))

+N2(d1(S∗dt, dt),−d1(S∗2dt, 2dt),−ρ12)

+N3(d1(S∗dt, dt), d1(S∗2dt, 2dt),−d1(S∗3dt, 3dt),

ρ12,−ρ13,−ρ23) + . . .

w2 = exp(−rdt)N1(−d2(S∗dt, dt))

+ exp(−r2dt)N2(d2(S∗dt, dt),−d2(S∗2dt, 2dt),−ρ12)

+ exp(−r3dt)N3(d2(S∗dt, dt), d2(S∗2dt, 2dt),

−d2(S∗3dt, 3dt), ρ12,−ρ13,−ρ23) + . . .

d1(q, τ) =
ln(S/q) + (r + 1

2σ
2)τ

σ
√
τ

d2(q, τ) = d1 − σ
√
τ

ρ12 = 1/
√

2

ρ13 = 1/
√

3

ρ23 =
√

2/3.

In this respect Nd(·) denotes the multivariate normal distribution
in dimension d.81 Unfortunately, the formula cannot be readily eval-

81According to Gut (2009) a random vector Z = (Z1, . . . , Zd)T has d-dimensional
normal distribution with expectation µ = (µi, . . . , µd) and variance-covariance
matrix Σ = (Σij)i,j=1,...,d if Zi, i = 1, . . . , d are univariately normal with
expectations µi and variances σ2

ii, i = 1, . . . , d, and the covariance structure
cov(Zi, Zj) = Σij = σiσjρij , where ρij denotes the correlation between Zi and
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uated and lacks mathematical rigor omitted in favor of palpability
but nonetheless serves theoretical purposes as it can be used to
compute the Greeks and thus gain further insight into the valuation
mechanics.82 Furthermore, the method can be readily extended to
accomodate multiple discrete dividend payments as suggested by
Roll (1977) and Geske (1979a), who value the dividends separately
and strap the stock price process of them.

The intuition behind the derivation of the valuation formula is that,
as shown in Section 3.2.1, at each instant there is a critical stock
price Sf below which it is more favorable to exercise the put option.
Doing so is more favorable, if the proceeds of exercise are at least as
much as the option. In this way one can set up a series of considera-
tions. At the beginning of the option’s lifetime it cannot have been
priorly exercised. Therefore, its value amounts to the present value
of the integration of the striking price less all possible stock prices
less than the critical stock price. In the second step the situation
is slightly more complicated. This time around the procedure is the
same except for the notion that all combiniations where there is
an exercise in the first instant are excluded from the consideration.
As detailedly expounded in Geske & Johnson (1984) this procedure
exactly leads to (3.2.2.1).

Given this general procedure, in practice it is only possible to obtain
approximate solutions. The idea behind this is to use the above
representation to compute option prices with possible exercise at
discrete times during the life of the option.83 The simplest form

Zj and σi the standard deviation of Zi. The probability density function is given

by f(x) = 1√
2π

d√| det(Σ)|
exp(− 1

2
(x− µ)TΣ−1(x− µ)).

82For details on the Greeks w.r.t. the time to maturity, the striking price and
the stock price the reader is referred to the original paper by Geske & Johnson
(1984).

83Parkinson (1977) deals with American put options which are approximated
by a finite number of exercise dates. The valuation procedure then takes the
expected value of a previous time step and then computes the expectation.
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is an option which can only be exercised at maturity T , i.e. the
European option. The second option might be the one exercisable
at T/2 and T , the third one would allow for exercise at T/3, 2T/3
and T and so forth.84 This defines a sequence of option prices which
converge to the intended American option

P2 = K exp(−rT/2)N1(−d2(S∗T/2, T/2))− SN1(−d1(S∗T/2, T/2))

+K exp(−rT )N2(d2(S∗T/2, T/2),−d2(K,T ),−1/
√

2)

−SN2(d1(S∗T/2, T/2),−d1(K,T ),−1/
√

2)

P3 = . . .

Naturally, the question of how to compute the limit arises. The
method suggested by Geske & Johnson (1984) is Richardson ex-
trapolation which revolves around the assumption that the error
term of each particular approximation of the limit is of polynomial
type in the grid length h, i.e.85

P − Pi = a0h
k0 + a1h

k1 + a2h
k2 + . . .

Truncating the representation after the second order terms and ap-
plying it simultaneously to all three approximative solutions yields

To allow for the early exercise feature in every step the better of continuing
and stopping is chosen, a procedure comparable to the dynamic programming
equation discussed below in Section 4.1.1.

84Heed that here as well as in Geske & Johnson (1984) the grid of possible exercise
times is equidistant. Of course, that does not have to be the case and there is
a converging sequence regardless of the placement of exercise times. This is
exploited by Bunch & Johnson (1992) to improve the speed of convergence.

85In numerical analysis Richardson extrapolation is a means to enhance the order

of convergence of a converging sequence. Assume that A(h)
h↓0→ A with order

k0, i.e. A − A(h) = a0hk0 + O(hk1 ), a0 6= 0, k0 < k1. Then for t > 0 we have
A−A(h/t) = a0(h/t)k0 +O(hk1 ) and by subtraction and rearranging of terms

A =
tk0A(h/t)−A(h)

tk0−1
+O(hk1 ). In other words, this is an approximation of A of

order k1 which is better than order k0. More details can be found in Richardson
(1911) and Richardson & Gaunt (1927) or any textbook on numerical analysis.
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the following polynomial for the American price P

P = P3 +
7
2

(P3 − P2)− 1
2

(P2 − P1).

The results by Geske & Johnson (1984) draw to a large degree on
the previous results by Johnson (1983). In this paper an analytical
approximation for an American put option is derived. The deriva-
tion exploits relative valuation results such as the observation that
a European put with an exercise price rising at the risk-free rate
of interest is more valuable than a standard American put, which
in turn is more valuable than a standard European put. Blomeyer
(1986) amends the Johnson (1983) approximation of American put
options by allowing for one cash dividend prior to the option’s ex-
piration date. Furthermore, the method is found to perform well
by assessing its efficiency in a comparison to the analytical values
based on the Geske & Johnson (1984) method. With respect to the
treatment of known dividends the approach takes up the findings by
Roll (1977), who proposes a way to split an American option on a
dividend paying stock into three European options, which can then
be valued. Besides, he analyzes to what extent the Black-Scholes
biases described in Section 3.1.1 are removed or maintained. Geske
(1979a) presents an analytical solution for the value of an American
call option with known dividends. However, the obtained solution is
only quasi closed-form and involves multivariate cumulative normal
distribution functions.

Whaley (1981) corrects misspecifications by Roll (1977) and Geske
(1979a) in their approaches to valuing American calls with known
dividends. In the summarizing paper of empirical tests by Whaley
(1982) the approximation of American options using the Black ap-
proximation and a simpler one (netting the stock price of escrowed
dividends) are compared to the exact valuation formula according
to Whaley (1981), which is found to perform better. Besides, in
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a test of market efficiency using option prices and riskless hedge
portfolios for the Chicago Options Exchange the hypothesis of ef-
ficiency cannot be rejected taking transaction costs into account.
Omberg (1987) provides further insight and explanations into why
convergence of the binomial model and compound option model by
Geske & Johnson (1984) performs as well as it does. Furthermore,
he suggests methods to improve convergence properties. Selby &
Hodges (1987) further elaborate on this question. This piece of re-
search covers summation identities for multivariate normal distri-
butions as have to be computed in the Geske & Johnson (1984)
approach. Exploiting these identities the number of integrals can
be reduced and accordingly the efficiency of the algorithms can be
enhanced. This is demonstrated in numerical examples. Bunch &
Johnson (1992) significantly enhance the Geske & Johnson (1984)
methodology. The improvement revolves around optimally placing
the exercise points for the integral by Geske and Johnson. Doing so,
the dimensionality of the integration can be reduced from four to
two. Lee & Paxson (2003) are concerned with an extension of the
Geske & Johnson (1984) and Geske (1979a) compound option ap-
proach to come up with an analytical solution to American options.
It provides an exponential approximation and establishes tighter
upper bounds on the price. Besides, the approximation is given for
a two-factor model with stochastic interest rates.

In addition to the Geske & Johnson (1984) approximation strategy
there is another strategy which revolves around a decomposition
of the American option price P into the European option p and a
so-called early exercise premium π, i.e.

P = p+ π. (3.2.2.2)

Kim (1990) presents an integral valuation formula for American
call and put options which is based on this decomposition into a
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European part and an early exercise premium. Moreover, the inte-
gral is then numerically solved. The drawback is that the analytical
solution of the free boundary problem does not permit an explicit
closed-form solution. Gao, Huan & Subrahmanyam (2000) deal with
American-style barrier options and derive quasi-analytical expres-
sions for the option prices and the hedge parameters. Besides, they
establish relationships similar to the put-call-parity, which facili-
tates valuation and hedging.86 The derivations are also based on
the decomposition technique and the results are applied in numer-
ical demonstrations. Chiarella, El-Hassan & Kucera (1999) formu-
late the European and American option valuation problem in terms
of path integrals, which they approximate using Fourier-Hermite
series expansion. In the process of doing so they are also able to
obtain delta hedge ratios. In Gukhal (2001) an analytical valua-
tion formula is presented for the value of American options based
on jump-diffusions as the underlying processes. However, a short-
coming is that it cannot be readily evaluated in closed-form. More-
over, dividends are covered and a decomposition is provided which
is different from the one for diffusions (European plus early exer-
cise premium).87 Ibánez (2003) values American put options by this
decomposition. He furthermore investigates the error of the afore-
mentioned Richardson extrapolation applied to the convergence of
Bermudan options to the desired American options and improves
the convergence of the Kim (1990) model. In numerical experiments
he finds his approach to perform well.

86The authors decompose the price of American barrier options into the Euro-
pean counterpart and an exercise premium. The European part is then further
represented as the standard option and a barrier term for which an integral rep-
resentation is available. In this way, determining the hedging parameters boils
down to those of the European constituent options.

87In the presence of jumps transition from the continuation to the exercise region
might be discontinuous. This leads to adjustment terms in the decomposition,
i.e. the American option equals the European option plus the expected present
value of dividends received in the exercise region, less the interest paid on the
strike in the exercise region, plus rebalancing costs when a jump from the exer-
cise into the continuation region occurs.
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In essence, all these methods amount to characterizing the early
exercise boundary since most of the time the European counter-
part of the American option to be valued can be determined in a
comparatively not so onerous way. In Huang, Subrahmanyam & Yu
(1996) an analytical valuation formula is presented for the value of
an American put option. This formula involves the determination
and approximation of the early exercise boundary and it can be ap-
plied whenever the value of the European counterpart is available.
The formula is tested in numerical examples, where quanto options
and stock options are valued. It is found to perform particularly
well when it comes to computing hedge ratios. Ju (1998) uses the
American option value representation of Kim (1990), Jacka (1991),
and Carr, Jarrow & Myneni (1992). The early exercise boundary is
assumed to be a piecewise exponential function on the time grid, so
that the resulting integral admits a closed-form solution. Moreover,
the valuation is tested for stock options and found to perform re-
markably well compared to binomial methods, which are discussed
in Section 3.2.2.2. In Zhu & He (2007) the Bunch & Johnson (2000)
approach is revisited and an error in their derivation is found. This
error is corrected leading to a new valuation formula and numerical
experiments are conducted pointing out the efficiency of this new
formula.

Besides, there are even further methods of approximating the Ameri-
can option value analytically. Sullivan (2000) takes the integral rep-
resentation of an American option.88 Since the first part of that
equation yields an explicit solution only the second integral is treated
numerically. The novel approach followed there is to use Gaussian
quadrature with Chebychev polynomials.89 Moreover, a study of

88For discretely exercisable American options the author finds a rep-

resentation as C(S,m) = exp(−rδ)
R ln(B(m−δ)/S)
∞ (K − Sez)f(z)dz +

exp(−rδ)
R∞
ln(B(m−δ)/S) C(Sez ,m − δ)f(z)dz, where δ is the interval between

two exercise points and B(·) the respective exercise threshold.
89Gaussian quadrature is an integral approximation method of the type
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performance is conducted relating the speed and accuracy of this
approximation to the ones of the binomial method and analytical so-
lutions. The method is found to perform remarkably well. In Zhang
& Li (2010) the critical stock price Sf of American options, i.e. the
price above which call options should be exercised and the price be-
low which put options should be exercised, is dealt with when there
is first a constant and second a continuous dividend yield. The crit-
ical stock price is obtained using perturbation theory, as mentioned
in Section 3.1.1, and has the form of a power series. Furthermore,
numerical experiments indicate that the representation is well suited
for practical use in trading and hedging. Another intriguing approx-
imation strategy is presented by Carr (1998). It revolves around re-
placing the fixed maturity by a random one which eliminates time
dependence.90 The random maturity is chosen via a Poisson jump
process, which is independent of the continuous stock price process.
As the number of jumps tends to infinity the random option value
approaches the true one.

Another very well known approximation method has been suggested
by Bjerksund & Stensland (1993). They approximate the American
option value by exogeneously imposing a threshold which immedi-
ately triggers exercise of the option upon being breached. Given the
theoretical results outlined below in Section 3.2.2.5 that the true

R 1
−1 f(x)dx =

Pn
i=1 wig(xi), where f(x) = W (x)g(x), g approximately poly-

nomial and W (x) known. The method is designed to exactly integrate polyno-
mials of degree 2n − 1 by proper choice of the weights and evaluation points.
If W (x) = 1√

1−x2
the evaluation points are just the roots of the Chebyshev

polynomials. These are orthogonal polynomials (w.r.t. the L2([−1, 1]) scalar
product) that on the interval of orthogonality satisfy Tn(x) = cos(n arccos(x)).
Details about the construction, recursive formulas and more information can be
found in Freund & Hoppe (2007).

90In the context of portfolio optimization Cass & Yaari (1967) and Merton (1971)
show that random maturity valuation problems are equivalent to infinite time
valuation problems with an adjusted discount rate. So surprisingly enough, ran-
domization entails simpler valuation formulas than the non-randomized prob-
lem.
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American option value is the solution to an optimal stopping prob-
lem this approximation constitutes a lower bound. Having estab-
lished a valuation formula for an arbitrary exercise threshold they
proceed assessing two particular thresholds similar in style to the
approximation by Barone-Adesi & Whaley (1987). In Bjerksund &
Stensland (2002) this approximation method is revisited by parti-
tioning the lifetime of the option into two intervals to which the
above technique is applied separately.

As with all other models there is also a strand of literature trying to
relax assumptions or attempting to generalize the model framework.
Chung & Chang (2007) provide analytical upper bounds for Amer-
ican options, which are closed-form when the corresponding Euro-
pean option is closed-form. Moreover, they are independent of the
underlying stock price distribution and also hold in the multidimen-
sional cases of stochastic interest rates etc. Moreover, European and
American option pricing in the presence of transaction costs is in-
vestigated by Leventhal & Skorokhod (1997). It is shown that when
the stock price moves with non-vanishing probability there is only
the trivial hedge (i.e. the underlying stock itself) available for Amer-
ican options. For European options it is proved that this condition
together with stableness of the price is necessary for only having the
trivial hedge available. The paper draws on the results for discrete-
time models, which are significantly simpler to handle. The prob-
lem with transaction costs in continuous-time finance is that perfect
hedging entails an unlimited amount of trading and thus transac-
tion costs to be paid, while in discrete time these costs are bounded.
Option prices are then obtained by replacing the replicating portfo-
lio of Black & Scholes (1973) by a superreplicating portfolio. Such
a portfolio is no longer a perfect hedge but minimizes transaction
costs and in this way resolves the tradeoff between hedging accu-
racy and trading costs incurred. These problems are dealt with by
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Bensaid, Lesne, Pagès & Scheinkman (1992), Boyle & Vorst (1992),
and Edirisinghe, Naik & Uppal (1993).

Besides stock options, options written on futures are also an area of
active research. Whaley (1986a) gives a summary about the prob-
lems associated with futures option pricing. Most notably, the differ-
ence between European options and American options is elucidated,
i.e. the problem of adequately determining the early exercise pre-
mium. The article summarizes what measures have been taken to
deal with this problem. In Whaley (1986b) pricing techniques for
American futures options are reviewed and applied to testing the
efficiency of the futures market. No closed-form solution to the val-
uation problem is provided but computationally quick analytical ap-
proximations are followed. Barone-Adesi & Whaley (1987) propose
a quadratic analytical approximation method for American options.
In particular, this paper covers options written on commodities and
commodity futures. Furthermore, it is pointed out, that contrary
to call options on stocks it might be feasible to prematurely exer-
cise them. Also, the method is compared against binomial trees and
finite differences and found to be more efficient.

3.2.2.2 Lattice Models

In their simplest form lattice models are also known as binomial
models and date back to the seminal work by Cox, Ross & Rubin-
stein (1979). As before, it is still assumed that there are no transac-
tion costs, taxes, or margin requirements as well as there is unlimited
possibility of short selling. Contrary to the models discussed before,
though, there is no continuous time stochastic process governing the
dynamics of the underlying assets or economic variables. Instead it
is assumed that the underlying stock price S can either move up
by a factor u > 1 to uS or down by a factor 0 < d < 1 to dS in
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the next time period. In addition, we always assume that u d = 1,
a property that renders the tree re-combining.

If there is only one period of time until expiry of an option with
strike K, its values Cu in the upward and Cd in the downward case
respectively are

Cu = max(uS −K, 0)

Cd = max(dS −K, 0).

These states can then be replicated by a cash investment B in a
riskless bond, which grows at the riskless rate r and the purchase of
δ stocks. This is attained by choosing

B =
Cu − Cd

(u− d)(1 + r)

δ =
uCd − dCu

(u− d)S
.

To rule out potential arbitrage opportunities the option value C

must be identical to the value of the replicating portfolio

C = δS +B

=
1

1 + r

[
1 + r − d
u− d

Cu +
u− (1 + r)
u− d

Cd

]
.

One can furthermore define so-called upward and downward proba-
bilities and simplify the formula accordingly91

p =
1 + r − d
u− d

91These probabilities can be interpreted as risk-neutral upward and downward
probabilities. Technically they add up to one and lie strictly between zero and
one. Economically the definition of p and 1− p allows to write the option value
as the expected value (w.r.t. this probability measure) of the outcomes in the
possible states discounted at the riskless rate of return.



90 CHAPTER 3. OPTION PRICING THEORY

1− p =
u− (1 + r)
u− d

C =
1

1 + r
[pCu + (1− p)Cd] .

When there are more than one, say two for the moment, valuation
periods, the valuation formula can be readily carried over and gen-
eralized. In such a scenario the underlying stock can either move up
twice, move down twice or move once up and once down, leading
to three possible states and option values Cuu, Cud, Cdd after two
periods which for the first period and present time fulfill92

Cu =
1

1 + r
[pCuu + (1− p)Cud]

Cd =
1

1 + r
[pCud + (1− p)Cdd]

C =
1

1 + r
[pCu + (1− p)Cd] .

Thus, the option price at present time is recursively defined by re-
peated application of the valuation formula for the respective sub-
periods. As elucidated in Cox, Ross & Rubinstein (1979) this can be
further generalized to the case of n periods. In this case the option
value reads

C =
1

(1 + r)n

 n∑
j=0

n!
j! (n− j)!

pj(1− p)n−j max(ujdn−jS −K, 0)

 .
According to Box, Hunter & Hunter (2005) n!

j! (n−j)!p
j(1 − p)n−j

is the density of a binomial distribution with probability p and n

drawings which renders it quite intuitive how this model came to
be called the binomial model. In order to understand how the early
exercise feature of American options is addressed within binomial

92Please heed, that due to our above assumption of a re-combining tree, the order
of the upward and downward move does not matter, i.e. Cud = Cdu. In essence,
this is the reason why this property is called re-combining.
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models one has to recall that such a valuation works backwards
in time. This means that in a first step all values at maturity are
determined. Having computed those, one can move back one step
in time, carry out the discounting, and obtain the option values in
that time layer. If there is furthermore a privilege to prematurely
exercise the discounted value is replaced by the greater of this value
and the immediate exericse value. In this case the above two-step
scheme is altered to

C ′u = max(Cu, S −K, 0)

C ′d = max(Cd, S −K, 0)

C ′ = max(C, S −K, 0).

In this very intuitive treatment and the fact that such a scheme can
readily be implemented lies much of the appeal and attractiveness
of the binomial model for practical purposes.

Geske & Shastri (1985b) examine the convergence theory and com-
putational efficiency for the binomial and finite difference technique
(the latter is covered below in Section 3.2.2.3) when there is one
underlying stochastic variable. A survey of the convergence theory
between discrete time and continuous time models to that time is
presented by Willinger & Taqqu (1991). In particular, emphasis is
put on structure preserving properties w.r.t. no arbitrage and com-
pleteness.93 Duffie & Protter (1992) deal with weak convergence of
sequences of trading strategies and asset price processes. If both
have a weak limit the authors then deal with the question under
which circumstances the corresponding financial gain process con-
verges as well.94 In Cutland, Kopp & Willinger (1993), the authors

93In this context structure preserving means that the approximate discrete-time
market model exhibits the same structural properties as its continuous time
counterpart. If, for instance, the continuous time model is arbitrage-free, so is
the discrete-time model.

94For a sequence of random variables (Xn)n∈N weak convergence to X or conver-
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present a different, stronger type of convergence than the commonly
discussed weak convergence for the Cox, Ross & Rubinstein (1979)
model. It is called D2 convergence and a technical generalization
of L2 convergence.95 Contrary to weak convergence it entails con-
vergence of hedge portfolios and contingent claims. In addition,
this type of convergence is further characterized in terms of non
standard analysis.96 Amin & Khanna (1994) deal with the conver-
gence of American option prices computed with discrete models. It is
shown that if the discrete model converges weakly to the respective
continuous-time one, then so do the corresponding American option
prices. In Leisen & Reimer (1999) the Cox, Ross & Rubinstein (1979)
model is shown to be convergent with order one. Furthermore, the
authors demonstrate how convergence order two can be obtained
only by adjusting the up and down factors u and d of the binomial
model. In Leisen (1998) the question of obtaining the order of con-
vergence of the binomial model for American put options is revisited
as it can serve as a measure of convergence speed. Furthermore, a
method is presented to reduce the initial error of such a model. The
questions of when weak convergence of a sequence of models under
the respective empirical measures implies weak convergence under
the risk-neutral measure and thus of derivative prices, is covered
in Hubalek & Schachermayer (1998). Leisen (1999) examines a bi-
nomial model with random time steps. Weak convergence to the

gence in probability, which are used interchangeably, is said to hold if for all
ε > 0 the condition limn→∞ P [|X −Xn| ≥ ε] = 0 is satisfied. Furthermore, for
a trading strategy θ and an underlying S the financial gain process Yt is the
process given by Yt =

R t
0 θdS which describes the profit yielded by the trading

strategy that invests θ units in S.
95L2 convergence means convergence w.r.t. to the L2 norm, i.e. a sequence of

random variables (Xn)n∈N is said to converge to X in L2 if limn→∞ E[|X −
Xn|2] = 0.

96Non-standard analysis is a branch of mathematics reformulating well known
results from standard calculus in terms of infinitesimal numbers, which are an
extension to real numbers. Furthermore, there is a range of applications in the
field of stochastic calculus as expounded in Albeverio, Fenstad, Høegh-Krohn &
Lindstrøm (1986)
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Black-Scholes process as well as convergence of the corresponding
European and American option prices is shown. Furthermore, the
author applies extrapolation to obtain order two convergence.

The binomial model as originally developed by Cox, Ross & Ru-
binstein (1979) is able to value contingent claims, when there is
one underlying stock price. In the market, however, there are also
options traded on more than one underlying stock, e.g. basket or
other exotic options.97 Naturally a demand for valuation techniques
developed which could accomodate multiple underlying economic
variables. In continuous time such a multidimensional lognormal
model for stock prices reads

dSt = b(St)dt+ σ(St)dWt, (3.2.2.3)

where b : RN → RN and σ : RN → RN×N satisfy the following
Lipschitz regularity condition for some constant L > 0

|b(x)− b(y)|+ |σ(x) + σ(y)| ≤ L |x− y| ∀x, y ∈ RN .

He (1990) proposed an N -variate (N + 1)-nomial process and pro-
vides a complete convergence theory of both contingent claim prices
as well as the dynamic replicating portfolio strategies to the multidi-
mensional lognormal model.98 The starting point of his construction
of such a process is the approximation of the Brownian increments,

97An account of various types of exotic options is, for example, provided by Zhang
(1998).

98He (1990) very intuitively pointed out that deriving such a model is trickier
than it seems at first glance. The natural approach of having two processes
approximate a two-dimensional model if one does so in one dimension falls
short. This is due to the fact that two processes lead to four uncertain states of
the economy in the next period, while there are only three assets (two stocks
and a riskless bond) to trade in. Thus, the market is incomplete. In the resulting
tradeoff between convergence of the model and market completeness previous
attempts of formulating such a model, like e.g. by Boyle (1988), Hull & White
(1988), Boyle, Evnine & Gibbs (1989) or Madan, Milne & Shifren (1989), fell
short.
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which are needed for each for each of the N dimensions and for
each of the n time steps, i.e. random vectors εk = (εk1 , . . . , ε

k
N )T for

k = 1, . . . , n. These random vectors are then used to further con-
struct the actual increments of the multinomial approximation pro-
cess. Assuming a sample space Ω = {ω1, . . . , ωN+1} with an equal
probability distribution He (1990) sets

εkj (ωs) = esj , s = 1, . . . N + 1, j = 1, . . . , N,

where the matrix E = (esj)sj is given by

esj =
√
N + 1 asj

with A = (asj)sj being an orthogonal and invertible matrix whose
last column is given by 1√

N+1
(1, . . . , 1)T . This leads to the following

multinomial processes for the stocks and the bond

Snk+1 = Snk +
b(Snk )
n

+ σ(Snk )
εk√
n

Bnk+1 = Bnk

(
1 +

r(Snk )
n

)
.

As it is the case with the option pricing and valuation techniques,
there are also papers devoted to generalization, improvement and
further applications of the existing models. In Rendleman & Bart-
ter (1980) the application of the Rendleman & Bartter (1979) ap-
proach to stock option pricing as well as an extension to bond op-
tion pricing is discussed. Hull & White (1988) provide an assessment
of the control variate technique in conjunction with option pricing
lattices.99 Its usefullness is demonstrated for the cases of dividend
and non-dividend paying American put options. Amin (1991) con-
siders general path-independent discrete models such as Cox, Ross

99An explanation of the control variate technique is presented below in Section
3.2.2.4 on Monte Carlo simulation, where this technique is more commonplace.
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& Rubinstein (1979) to value American options. In addition, the
author allows for time-dependent volatility which the numerics pre-
sented by Boyle (1988) and Nelson & Ramaswamy (1990) are not
capable of accomodating. In addition, multidimensional extensions
are also included which ensure better accuracy. In Nelson & Ra-
maswamy (1990) computationally simple binomial models (models
whose number of nodes grows no more than linearly in the number
of time intervals) are introduced and dealt with. They are shown
to converge weakly to common diffusion models applied in finance
such as the CEV model. Also the authors show the convergence of
the corresponding European option prices.

Broadie & Detemple (1996) introduce a new way to compute Amer-
ican option prices. The key aspect of the approach is that two ap-
proximations (both an upper and a lower one) are obtained. The
authors then show that this method significantly, around factor 20,
improves the computational speed of the method. Furthermore, an
enhancement of the Cox, Ross & Rubinstein (1979) binomial model
is suggested. Figlewski & Gao (1999) present a method, called adap-
tive mesh method, which allows for different granularity of the grid
of an option pricing tree in different regions and accordingly places
the majority of the nodes in those region which exhibit the high-
est sensitivity to variations. By this procedure, well-known from the
field of numerical analysis for PDEs the computational time of es-
tablished valuations is significantly reduced and other previously
non-feasible and by far too computationally cumbersome valuations
become possible. The applicability to practically relevant option
pricing problems is demonstrated for the case of barrier options.
Bally, Pagès & Printems (2005) deal with pricing and hedging of
American basket options. The numerical procedure revolves around
computing conditional expectations on optimal grids which are de-
signed to minimize the projection error which is based on Graf &
Luschgy (2000).



96 CHAPTER 3. OPTION PRICING THEORY

3.2.2.3 PDE-based Methods

In Section 3.1.1 a partial differential equation for the value of a Eu-
ropean option was derived. Furthermore, it was pointed out that
this PDE is valid irrespective of the contingent claim under consid-
eration. As a consequence, it is of utmost importance how initial
(or terminal) and boundary values are specified as they are the lone
remaining determinants of the option premium.

In the case of a European put option the terminal value is, for in-
stance, given by the known exercise value of the option at maturity.
This has to be combined with appropriate boundary data. At the
boundary S →∞ it is reasonable to assume that the option becomes
worthless, as the probability that the options ends up in-the-money
at maturity vanishes. For stock prices equaling zero, put-call-parity
(3.1.1.4) yields an appropriate boundary condition exploiting that
a call option vanishes in that case, as it becomes an option on a
worthless asset. Altogether, this constitutes the following terminal
boundary value problem100

0 =
∂P

∂t
+

1
2
σ2S2 ∂

2P

∂P 2
+ r S

∂P

∂S
− r V S ∈ R+, t ∈ [0, T )

P (S, T ) = max(K − S, 0) S ∈ (0,∞)

P (0, t) = K exp(−r(T − t)) ∀ t ∈ [0, T )

lim
S→∞

P (S, t) = 0.

Suitable boundary data for a wider class of options such as binary,
digital, cash-or-nothing options or even combinations of different
kinds of options can be found in the textbook by Wilmott, Howison
& Dewynne (1993). From a mathematical point of view, these are

100In the textbooks by Alt (2006) and Evans (2010) it is established that without
proper specification of boundary and initial/terminal values uniqueness of the
solution cannot be attained.
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very standard problems from the field of parabolic partial differen-
tial equations, which in many cases even yield closed-form solutions.
This assertion extends even to more complicated models such as
multivariate models or jump diffusions as they have been discussed
in detail in Sections 3.1.2 and 3.1.3, where for the Merton (1976)
and Heston (1993) models closed-form solutions are provided. We
shall, however, restrain ourselves to the consideration of the prob-
lem in the Black-Scholes model to ensure that the solution pattern is
not obscured in cumbersome and somewhat technical considerations
(for example w.r.t. notation from vector calculus) that arise when
dealing with multidimensional PDEs. If no such closed-form solu-
tion exists, there is a wide array of numerical techniques which are
able to very efficiently cope with initial/terminal boundary value
problems numerically, most prominently the approximation tech-
niques of finite differences and finite elements in combination with
the multigrid solver for linear systems.101

In the case of American options the right to exercise the option at
any time not only changes the valuation problem economically but
it also translates to a more complicated mathematical formulation.
This entirely revolves around the fact that we still know the value of
the option in the case of exercise, but we do not know anymore if or
when this exercise occurs. Nonetheless we are able to characterize
the problem further. From Section 3.2.1 we know that there is always
a stock price Sf below which it is optimal to exercise the option. If
exercise of a put option is optimal for Sf then so is the case for any
S < Sf as this only increases the exercise value which was already
valued higher than continuation. On the other hand this threshold
depends on time and satisfies 0 < Sf (t) < K.102

101For finite differences and finite elements the reader is referred to the literature
mentioned below in this section. The multigrid method solves linear systems in
complexity O(N) and is due to Hackbusch (2003).

102In Section 3.2.1 it is shown that Sf is monotone increasing in t. Economically,
this can be interpreted as follows: If at a time t1 it is optimal to exercise the
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If we denote the valuation region of the option by Ω this consider-
ation constitutes a disjoint partition into an exercise and a contin-
uation region

Ω = R+ × [0, T ]

Ωcontinuation = {(S, t) ∈ Ω|S > Sf (t)}

Ωexercise = {(S, t) ∈ Ω|S ≤ Sf (t)}.

Further exploiting that, as shown below in this section, P is contin-
uously differentiable w.r.t. S at S = Sf with

∂P

∂S
(Sf , t) = −1 (3.2.2.4)

this sets up the following valuation problem

0 =
∂P

∂t
+

1
2
σ2S2 ∂

2P

∂P 2
+ r S

∂P

∂S
− r V S > Sf , t ∈ [0, T )

P (S, t) = max(K − S, 0) S ≤ Sf , t ∈ [0, T ) (3.2.2.5)

lim
S→∞

P (S, t) = 0 t ∈ [0, T )

P (S, T ) = max(K − S, 0) S ∈ R+

such that P and PS are continuous at S = Sf .

Intuitively speaking, condition (3.2.2.4) means that at the point
where exercise becomes optimal the value function of the option
touches the payoff function tangentially, i.e. they coincide and share
the same derivative. Why this is the case can be made plain in a
two-step argument. The first step is to show that the derivative

option at Sf (t1) then at t2 > t1 it is also optimal to exercise at Sf (t1). This is
the case because, all else held constant, the time value of the option is diminished
as there is less time remaining for improvement. Therefore, the exercise payout
can be reduced (which corresponds to an increase in Sf ) by that loss of value
without losing optimality of exercise.



3.2. AMERICAN STYLE OPTIONS 99

cannot be less than −1, which follows immediately from the fact
that P (S, t) = K − S where S ≤ Sf (t).

The reverse assertion that ∂P
∂S (Sf , t) cannot be greater than −1 is

shown using an arbitrage argument for the case of a Black & Scholes
(1973) world. Assume a portfolio consisting of a put option and one
share of the underlying stock, i.e. Π := P + S. Then by application
of Itô’s lemma we obtain

dΠ =

0, S < Sf

(∂SP + 1)σ SdW +O(dt), S ≥ Sf

Assume now that ∂P
∂S (Sf , t) > −1 and buy one share of Π by bor-

rowing P + S. If dS > 0 this implies dΠ > 0 as (∂SP + 1) > 0.
Unraveling the portfolio pays off Π + dΠ > Π and paying back the
borrowed money after dt prompts a cashflow of −Π − Πdt︸︷︷︸

=O(dt)

and

thus altogether an arbitrage profit of dΠ > 0. Hence, this estab-
lishes ∂P

∂S (Sf , t) = −1.

Mathematically speaking, (3.2.2.5) is a free boundary value prob-
lem. Except for very few exceptions these problems do not yield
closed-form solutions.103 Therefore, financial economists had to re-
sort to numerical methods. Perhaps the best known such technique
for partial differential equations is a so-called finite difference ap-
proximation, which is very appealing in its intuitive approach. The
computational domain is partitioned with an equidistant grid in
both stock price direction (let h denote the step size) and time di-
rection (let τ denote the step size). Then at a grid point Si the first
and second derivatives w.r.t. the stock price can be approximated

103Examples from the field of finance include, for instance, the infinite maturity
American put option, for which Merton (1976) provided a solution, or the Amer-
ican call option on non-dividend paying stocks, for which it can be argued that
premature exercise is never optimal so that the valuation problem reduces to a
classic terminal boundary value problem.
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as follows

DhP (Si) :=
Si+1 − Si−1

2h

D2
hP (Si) :=

Si+1 − 2Si + Si−1

h2
,

where Dh and D2
h denote the discrete first and second derivatives.

In the standard literature about numerical analysis it is well estab-
lished that these approximations yield second order convergence for
sufficiently smooth P .104 Concerning the time direction, three ap-
proximations have evolved, an explicit, an implicit, and the Crank-
Nicholson scheme105

Pn+1
i − Pni

τ
= Fni (P, PS , PSS , S, t)

Pn+1
i − Pni

τ
= Fn+1

i (P, PS , PSS , S, t)

Pn+1
i − Pni

τ
=

1
2
[
Fni (P, PS , PSS , S, t) + Fn+1

i (P, PS , PSS , S, t)
]
.

The first two are of first order convergence while the Crank-Nicholson
scheme converges with order two.106 When inserting these approx-
imations into the original PDE, one obtains a linear system which
can then be solved to obtain the desired approximative solution to

104Second order convergence means that ||DhP−∂SP ||+||D2
hP−∂SSP || ≤ Ch

2 for
some constant C < ∞. The proofs use Taylor expansion and can be found, for
instance, in Deuflhard & Bornemann (2002), Stoer & Bulirsch (2005) or Hanke-
Bourgeois (2009). In fact, second order convergence is a desirable property as it
means that refining the grid by factor two reduces the error by at least factor
four.

105In this notation F denotes the mapping that interprets the time derivatives in
terms of the spatial derivatives. Such a notation is very commonplace in the
study of ODEs (Ordinary Differential Equations), which boils down to stating
properties F has to satisfy. For more information the reader is referred to the
textbook by Walter (2000).

106See the literature above for proofs and more information on these so-called one
step methods. They are called one step methods as they only make use of one
previous time step when approximating the current one. By using more than
one previous step (multi-step methods) higher order can be attained. Examples
include Runge-Kutta methods and are outlined, for example, in Butcher (2003).



3.2. AMERICAN STYLE OPTIONS 101

the PDE. However, since the PDE is only satisfied in the contin-
uation region, these finite difference schemes cannot be employed
without further adjustments. This is why financial economists have
made up workarounds that adjust the price in every time step of
the numerical solution process for optimality.

Brennan & Schwartz (1976) are to the best of our knowledge the
first to use finite differences in financial economics in their valua-
tion of life insurance contracts, which are reinterpreted in terms of
options. Brennan & Schwartz (1977) suggest to apply finite differ-
ences to the valuation of American put options with finite lifetime
and without dividend protection as there is no closed-form solu-
tion available. The model is, moreover, applied to a set of 55 put
options traded in the New York dealer market between 1966 and
1969. In the paper by Brennan & Schwartz (1978) a summary of
finite difference techniques for option pricing is provided. In partic-
ular, implicit and explicit discretizations are considered.107 Courta-
don (1982) introduces a Crank-Nicholson discretization and shows
that it produces higher accuracy than the implicit approximation
proposed by Schwartz (1977). The article by Brenner, Courtadon &
Subrahmanyam (1985) deals with the differences between options on
spot or cash instruments and futures options in a PDE formulation.
They find that if there was a continuous payout on the spot instru-
ment equal to the interest rate both instruments would be valued
identically. Shu, Gu & Zheng (2002) value American put options
in a finite difference setting. Their discretization relaxes the com-
monly observed singularity problems close to the exercise boundary
and expiration date.108 In Wang & Wang (2006) finite differences

107The terms explicit and implicit refer to whether at time n the solution at the
next time step has to be obtained with (implicit) or without (explicit) solving a
linear system of equations. The benefit of using implicit schemes lies in the fact
that they are unconditionally stable w.r.t. the step size, while explicit schemes
carry a maximal step size to be used which might entail a significantly higher
number of time steps.

108In the context of partial differential equations a point of singularity is a point
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are applied to solve parabolic degenerate variational inequalities as
they appear in the valuation of American options.109

A mathematically more stringent way to tackle the problem of early
exercise is to directly deal with the free boundary value problem.
According to Jaillet, Lamberton & Lapeyre (1990) and Zhang (1997)
the free boundary value problem (3.2.2.5) can also be written as

0 ≥ ∂P

∂t
+

1
2
σ2S2 ∂

2P

∂S2
+ r S

∂P

∂S
− r V

S ∈ (0,∞), t ∈ [0, T )

P (S, t) = max(K − S, 0) =: Ψ(S)

S ≤ Sf , t ∈ [0, T )

0 =
(
∂P

∂t
+

1
2
σ2S2 ∂

2P

∂P 2
+ r S

∂P

∂S
− r V

)
(P −Ψ)

S ∈ (0,∞), t ∈ [0, T )

P (S, T ) = Ψ(S) S ∈ (0,∞).

This version of the problem formulation provides intuition why such
problems are also called linear complementarity problems. Linearity
is without question as P and all respective derivatives only appear
linearly. Furthermore, as pointed out above, the option value coin-
cides with the payoff in the exercise region, where only a partial
differential inequality holds, and conversely the partial differential
equation holds in the continuation region where the option value
exceeds immediate payoff. Such a situation is referred to as comple-
mentarity.

where the differential ceases to be well-behaved. In numerical terms this usually
causes stability issues for the discretization. Since the pricing PDE only holds in
the continuation region the boundary to the exercise region is a natural region
for singularity issues to appear.

109For an explanation of variational inequalities and how they appear in the context
of American options, see below in this section.
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This reformulation serves as the starting point of the formulation for
the American option valuation as a variational inequality which is
the linchpin of treating it in a mathematically effcient and consistent
way. Feng, Linetsky, Morales & Nocedal (2011) show that the option
price satisfies

P (0, S) = ψ(S)− ψ̄(S) x ∈ Ω

P (t, S) = 0 t ∈ (0, T ], S ∈ ∂Ω

P (t, S) ≥ ψ(S)− ψ̄(S) t ∈ (0, T ], S ∈ Ω

0 ≤ (Pt, w − P ) + a(P,w − P )− (Lψ̄, w − P )

for all test functions w ≥ ψ − ψ̄,

where Ω = [xmin, xmax], (·, ·) : L2(Ω) × L2(Ω) → R is the scalar
product on L2(Ω), ψ̄ ∈ C2(Ω) such that ψ = ψ̄ on an open neigh-
borhood of ∂Ω and the differential operator L and the bilinear form
a(·, ·) : L2(Ω)× L2(Ω)→ R are given by

LP =
∂P

∂t
+

1
2
σ2S2 ∂

2P

∂S2
+ r S

∂P

∂S
− r P

a(u,w) =
1
2
σ2

∫ xmax

xmin

uxwx dx− (r − 1
2
σ2)

∫ xmax

xmin

uxw dx

+r
∫ xmax

xmin

uw dx.

This is the so-called weak formulation of the free boundary value
problem.110 The boundary conditions are reflected in the choice of
the test functions and the space they are taken from.111 Just as
it is the case with the strong formulation, the weak formulation
does not yield a closed-form solution either. But when it comes to

110The term weak formulation is used because this formulation does no longer
include second derivatives which were replaced by test functions that only need
to be integrable and differentiable in a weak sense, i.e. that they allow for
integration by parts like a strong (traditional) derivative would at least do.

111A very meticulous description and construction of the respective so-called
Sobolev spaces with which this is attained can be found in Alt (2006).
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numerical approximations these are very well studied problems as
they appear in numerous fields of science.112 The natural way to
discretize both variational equations and variational inequalities is
via finite elements. Not only is the corresponding exact solution less
restrictive than its strong formulation counterpart, but also finite
elements exhibit better numerical properties than finite differences
do.113 The reason for the advantages are that finite elements ap-
proximate the space of test functions and via the integrals of the
bilinear forms and the scalar products ensure that the entire domain
contributes to the approximation rather than a very limited number
grid points. Furthermore, they offer much more flexibility w.r.t. the
choice of approximating functions, typically polynomials.

As it was the case above, discretization of the strong formulation
with finite differences and discretization of the variational inequality
using finite elements according to Seydel (2009) lead to discrete
linear complimentarity problems of the following type for the desired
solution w and ν = 1, . . . νmax − 1

g := gν+1

b := bν

Aw − b ≥ 0

w ≥ g

(Aw − b)T (w − g) = 0.

Such a problem can be solved numerically using an adaptation of
the SOR (Successive Overrelaxation) method by Cryer (1971) for

112Various examples are given in Friedman (1982) and Caffarelli (1998) which
include, for instance, fluid filtration in porous media and elasto-plasticity.

113For extensive coverage of finite elements from a mathematical standpoint, in-
cluding precise definitions and further applications, we refer the reader to the
textbook by Braess (2003). An introduction to finite element methods in the
field of finance is provided by Topper (2005). Error estimates for the finite el-
ement discretization can, for instance, be found in Brezzi, Hager & Raviart
(1977).
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standard linear systems of equations. Writing x := w−g, y := Aw−b
and b̂ := b−Ag the algorithm reads

Algorithm 3.2.1 For k = 1, 2, . . . and i = 1, . . . ,m− 1

r
(k)
i := b̂i −

i−1∑
j=1

aijx
(k)
j − aiix

(k−1)
i −

n∑
j=i+1

aijx
(k−1)
j

x
(k)
i = max

(
0, x(k−1)

i + ω
r

(k)
i

aii

)
y

(k)
i = −rki + aii

(
x

(k)
i − x

(k−1)
i

)

In this solution pattern ω is called the relaxation parameter and
influences the speed of convergence. In general, though, there is no
optimal such ω and it must be determined based on the problem at
hand.

In addition to this basic algorithm to solve linear complementarity
problems, researchers have occupied themselves with improvements
and various applications in the field of financial economics. Koc̆vara
& Zowe (1994) are concerned with the efficient numerical solution
of linear complementarity problems as they arise when discretiz-
ing the free boundary value problem of American option valuation.
More precisely, the authors suggest a pre-conditioned CG (Conju-
gate Gradient) technique with a projection step, which they compare
to established solution techniques. The method is found to perform
remarkably well for several differently shaped obstacle problems.114

In the paper by Dempster & Hutton (1999) linear programming
techniques such as the simplex and interior point algorithms are
applied to numerically solve the linear complementarity problems

114In the theory of partial differential equations and numerical mathematics ob-
stacle problems are the canonical example of free-boundary value problems.
For more details and examples see for instance Friedman (1982) and Caffarelli
(1998).
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of plain vanilla American put and lookback options. The perfor-
mance is then compared to the standard PSOR (Projected Suc-
cessive Overrelaxation) technique. Siddiqi, Manchanda & Koc̆vara
(2000) address the application of the two-step algorithm presented
by Koc̆vara & Zowe (1994) to the valuation of American options.
Furthermore, from a modeling perspective inflation and devalua-
tion by evolution equations are taken into account. The paper by
Ikonen & Toivanen (2008) deals with the pricing of American op-
tions in the Heston (1993) stochastic volatility model. In this model
they compare five solution techniques for the arising linear com-
plementarity problems, the PSOR method, a projected multigrid
method, an operator splitting method, a penalty method and a com-
ponentwise splitting methods. While the accuracy of the methods is
roughly comparable, it turns out that componentwise splitting is the
fastest scheme. Morales, Nocedal & Smelyanskiy (2008) improve the
Koc̆vara & Zowe (1994) algorithm by combining the PSOR method
with a subspace minimization step. In numerical experiments for ill-
conditioned problems the method is found to perform better than
interior point and gradient projection methods.

A generalized concept of solutions are so-called viscosity solutions.
This notion has been established by Crandall & Lions (1983) and
has more general applications in the solution theory of optimal con-
trol problems.115 Crandall, Ishii & Lions (1992) cover modern tech-
niques in that context for fully non-linear PDEs. In particular, they
are concerned with uniqueness and existence results for which new
arguments in a more general setup are provided. Application of the
results extends to the field of financial economics, for instance in the
context of American option pricing. Using the dynamic program-
ming principle Benth, Karlsen & Reikvam (2003) derive a semi-
linear PDE for the value of an American option in the Black &

115The link between viscosity solutions and optimal control problems is further
explored in Sections 4.1.1 and 4.1.2.
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Scholes (1973) market model with the non-linearity stemming from
the dependence on the option value itself. As there is no clear-cut
solution concept to this type of equation they suggest a viscosity
solution approach and prove existence and uniqueness. Roch (1997)
deals with the PIDE (Partial Integro Differential Equation) govern-
ing the American option value in the stochastic volatility model by
Barndorff-Nielsen & Shephard (2001). If the payoff function fulfills
a Lipschitz condition, the American option value is shown to be the
unique viscosity solution to the PIDE.

In addition to the valuation itself, there is also literature dealing
with different types of options such as futures options or path-
dependent options or the mathematical properties of the option
price. Ramaswamy & Sundaresan (1985) address the research ques-
tion of the optimal exercise policy of futures options. It is found
that in general, premature exercise can be optimal but that the as-
sociated early exercise premium is relatively small. This is carried
out in the PDE setting provided by Black (1976). Finally, the au-
thors extend their valuation model to stochastic interest rates, one
of the most important value drivers of futures contracts, and they
find the option values to be rather sensitive w.r.t. deviations from
the long term mean. In Geske & Shastri (1985a) the early exer-
cise of American put options is investigated. The authors show that
American puts are exercised either immediately after dividend pay-
ments or just prior to maturity. To carry out their considerations
of optimal early exercise they apply the framework of Black & Sc-
holes (1973) and the PDE derived therein. In the paper by Jaillet,
Lamberton & Lapeyre (1990) the regularity of the pricing functions
of American options is discussed.116 Furthermore, the authors ex-

116In the theory of partial differential equations regularity refers to the properties
of functions w.r.t. integrability and differentiability. The higher the order of dif-
ferentiability the smoother a function generally is. This is of interest because
more regularity in the input data, i.e. the coefficient functions etc., typically
leads to improved regularity in the solutions. Examples and more precise char-
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amine a numerical technique based on variational inequalities. In
Barraquand & Pudet (1994) and Barraquand (1996) the FSG (For-
ward Shooting Grid) method is introduced which is a numerical
solution technique to cope with degenerate diffusion PDEs.117 This
is applied to path-dependent contingent claim valuation where these
problems naturally arise by including the path-dependent variable
as a state variable. Furthermore, the FSG method is shown to be
unconditionally stable and it is the first to be able to deal with
the early exercise feature of American claims.118 Kholodnyi (1997)
shows that American options with general time-dependent payoffs
satisfy a semilinear Black-Scholes equation. The non-linear term in
this equation is economically interpreted as the cost associated with
suboptimally holding the option in its exercise region. Rambeerich,
Tangman & Bhuruth (2011) solve the PIDE of the American option
pricing problem in an infinite activity Lévy model using exponential
time integration techniques whose numerical efficiency is assessed
and highlighted by comparison to a more ordinary Crank-Nicolson
scheme.

3.2.2.4 Monte Carlo Simulation

Besides analytical approximations, binomial or multinomial trees
and PDE-based approximation methods there is also a class of meth-
ods that directly deals with the computation of the expected value of

acterizations can be found in the aforementioned textbooks by Alt (2006) and
Evans (2010).

117A partial differential equation is called degenerate if the coefficients in the lead-
ing derivatives tend to zero on at least parts of the domain. This can entail a
change in the type of equation, for instance from parabolic to hyperbolic, which
significantly impacts the numerical stability of traditional solution techniques.
See, for example, Hanke-Bourgeois (2009) for more information on that effect
and ways of mitigation.

118In numerical analysis stability refers to the error propagation of a solution al-
gorithm across the computational domain. Roughly speaking, stability is said
to hold, if the approximation error is not magnified during iteration.
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the option payoff. The central part of the approximation is the sim-
ulation of the underlying, which revolves around the discretization
of the SDE (Stochastic Differential Equation) assumed to govern
the underlying economic dynamics. In general, assume a multidi-
mensional process of the type (3.2.2.3)119, i.e.

dXt = b(Xt) dt+ σ(Xt) dWt.

In discrete time, this equation can according to Hull (2009) and
Duffy & Kienitz (2009) be rewritten as

Xi(t+ ∆t)−Xi(t) = bi(X(t)) ∆t+ σi(X(t)) εi
√

∆t,

where Xi(·) denotes the i-th component of the stochastic process, εi
the i-th component of a random drawing of a multivariate normal
distribution with ρik, 1 ≤ i, k ≤ N being the correlation coefficient
between the respective components and ∆t = T

m ,m < ∞.120 Al-
together, a simulation consists of n simulated paths with m steps
each, in which an N -dimensional random sample of a normal distri-
bution has to be drawn.121 Given an initial state X(0) one can then
compute N sample states for X(T ). If g denotes the payoff function
of a contingent claim C its approximative value ĈN corresponding
to sample size N is then obtained as

ĈN =
1
N

exp(−rT )
N∑
j=1

g(Xj(T )). (3.2.2.6)

119Heed that this includes the models discussed in Section 3.1 w.r.t. multiple assets
as well as multiple sources of risk such as stochastic volatility.

120Of course, this is only one way of discretizing an SDE. An account of alternatives,
which are, in fact, closely related to discretization schemes for ODEs, is provided
by Kloeden & Platen (1999), Kloeden, Platen & Schurz (2003) and Duffy &
Kienitz (2009).

121How such random samples can be generated in an efficient manner is outlined
below.
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Given this setup, the entire simulation boils down to the drawing of
multivariate normal vectors ε, which in turn consists of the following
three steps:

1) Generation of uniformly distributed numbers u1, u2, . . . in the
interval [0,1]

2) Transformation of these uniformly distributed numbers to ran-
dom samples of univariate normal distributions

3) Aggregation of d such univariate normal random samples to a
d-dimensional random sample.

Very commonplace to perform the first step is the use of linear
congruential generators which work as follows:122

xi+1 = (axi + c) mod m

ui+1 =
xi+1

m
.

Here, a, c and m are predetermined integers which have to be com-
bined with an a priori determined seed x0 serving as a starting
point for the iteration. This type of generator goes back to Lehmer
(1951), who originally introduced it. Marsaglia (1972) and Knuth
(1998) then investigated desirable relationships between a, c and m
to achieve that the sequence of random numbers has full period.123

Reasonable choices of the parameters are, for instance, discussed by

122Besides this class of estimators one might also use inverse congruential es-
timators or feedback shift register (see Matsumoto & Nishimura (1998) and
Eichenauer-Herrmann, Herrmann & Wegenkittl (1998) respectively for more
detailed information and assessment of the sampling accuracy and quality).

123By the very construction of the algorithm it cannot produce more than m dif-
ferent values as there are no more than m possible remainders when dividing
by m. Furthermore, any sequence entirely repeats itself once a number appears
for the second time. Thus it is a desirable property that a sequence produces all
m different values before the repetition occurs which Glasserman (2004) refers
to as full period.
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Lewis, Goodman & Miller (1969), Fishman & Moore (1986), Park
& Miller (1988), and L’Ecuyer (1988), who also suggests amending
the algorithm by combining several such generators. Further im-
provements are provided by Wichmann & Hill (1982) and L’Ecuyer
(1996).

Having obtained a sequence of uniformly distributed random num-
bers u1, u2, . . . , uk they have to be transformed to normally dis-
tributed random numbers. To do so, two broad classes of meth-
ods have evolved. The first uses the inverse distribution function
of the desired distribution124 and the other are acceptance-rejection
methods.125 The inverse distribution function F−1 is then evaluated
at the random numbers u1, u2, . . . , uk and F−1(u1), F−1(u2), . . . ,
F−1(uk) are normally distributed. The fact that the inverse of the
cumulative normal distribution function is not available in closed
form has spawned approximations of the standard normal distribu-
tion function, for instance, by Beasley & Springer (1977) and Moro
(1995), who reduces the sampling error to less than 3× 10−9 in the
seven standard deviations interval around the mean.126 As an alter-
native sampling method for the normal distribution one might also
use the Box & Muller (1958) algorithm.

The final step consists of assembling d univariate normally dis-
tributed random numbers to a drawing of a d-dimensional normal

124The distribution function of a probability distribution π is given by F (x) =
P [X ≤ x] if X has distribution π.

125Acceptance-rejection methods date back to von Neumann (1951) and might be
more feasible if the inverse distribution function cannot be readily evaluated
or if, for whatever reason, there is another function g that can be more easily
sampled than f with the property f ≤ c g for some constant c. A sample ζ is then

accepted as a sample of f with probability
f(ζ)
c g(ζ)

. The latter can be attained by

drawing a U uniformly distributed on [0, 1] and accepting ζ if U <
f(ζ)
c g(ζ)

.
126Heed that it is not necessary to sample a normal distribution with mean µ

and standard deviation σ as such a sample is readily available by virtue of the
transformation z̄ = µ + σz, where z is the sample for the standard normal
distribution.
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distribution. This is readily performed by the following notion pro-
vided by Glasserman (2004): if Z1, Z2, . . . , Zd are univariately stan-
dard normal, then Z := (Z1, Z2, . . . , Zd)T has multivariate distribu-
tion N(0, Id), where Id is the d-dimensional unity matrix. Exploit-
ing further that AZ then has distribution N(0, AAT ), the sampling
problem reduces to finding a matrix A with Σ = AAT , where Σ is
the variance-covariance matrix of the multivariate normal distribu-
tion to be sampled. Using Cholesky factorization a lower triangle
matrix with this property can be attained so that µ + AZ is the
desired random sample of the multivariate normal distribution.127

Having outlined how one can obtain the single ingredients of the
Monte Carlo estimator (3.2.2.6), i.e. ĈN = 1

N exp(−rT )∑N
j=1 g(Xj(T )), we have yet to make plausible that such a scheme

actually converges. The argument revolves around the central limit
theorem128 which implies that

ĈN − C
σC/
√
N

N→∞−→ N(0, 1),

i.e. convergence in distribution, where C is the true option price
and the expectation of the single realizations and where σC is the
variance of the single realizations. Put differently, the error ĈN −C
of the estimator is approximately normal with N(0, σ

2
C

N ), i.e. the
standard deviation of the error is σC√

N
. In other words, the standard

error of the Monte Carlo estimator tends to zero at a rate 1/2 as N
approaches infinity.

127Details, properties and hints on how to efficiently implement this decomposition
can be found in Freund & Hoppe (2007).

128The central limit theorem is one of the most important and most often utilized
results from probability theory. Given independent and identically distributed
random variables X1, X2, . . . , Xn with mean µ and standard deviation σ their

arithmetic mean Sn = 1
n

Pn
i=1Xi converges in distribution to N(µ, σ

2

n
). The

precise assumptions to be able to prove this assertion together with various
generalizations can be found in any textbook on probability theory, e.g. Bauer
(2001).



3.2. AMERICAN STYLE OPTIONS 113

Given this very general outline about how Monte Carlo simulation
works, it becomes quite intuitive where the advantages of this ap-
proach are in comparison to the methods decribed above. Not only
is it straight forward to include multidimensional models w.r.t. both
assets and other factors such as volatility but also path-dependency
is readily incorporated as, for instance, needed for barrier options,
which are further discussed in Section 3.3. In particular, the applica-
bility to multidimensional problems makes Monte Carlo simulation
superior to classical numerical integration techniques, because the
order of convergence 1/2 is independent of the dimension, while, as
for instance Glasserman (2004) points out, the convergence order of
the trapezoidal rule for numerical integration amounts to 2

d , where
d is the dimension. In practice this means, that at least beginning
with four dimensional problems, the Monte Carlo scheme converges
faster.

Boyle (1977) is the first to apply Monte Carlo simulation to option
pricing and he demonstrates its usefulness with several numerical
examples including call options on stocks that pay discrete divi-
dends, jump-diffusion models and the use of a control variate to
enhance convergence properties. In Scott (1987) randomly changing
variance is introduced via a second underlying stochastic process for
the stock’s variance. When deriving an option pricing formula it is
pointed out that it cannot be uniquely determined as volatility is not
a tradable asset. However, if the processes are assumed uncorrelated
the pricing formula collapses to an integral of the Black-Scholes for-
mula and the probability distribution of the volatility. The model
is applied to market data using Monte Carlo simulation. By Tilley
(1993) it is demonstrated that Monte Carlo simulation can be used
to value American-style contingent claims. The differentiation be-
tween optimality of exercise or continuation is made exploiting the
lattice structure of the sample paths moving backwards from ex-
piry where the exercise boundary is known using the methodologies
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outlined for lattice models in Cox & Rubinstein (1985). Longstaff
& Schwartz (2001) propose least squares Monte Carlo. The method
deals with the valuation of American contingent claims, which can-
not be directly simulated because of the early exercise feature. The
approach revolves around approximating the conditional expecta-
tion of continuation using least squares regressions. The usefulness
of the method is pointed out by comparison against finite differences
in a multidimensional case.

The central idea of this so-called least squares Monte Carlo lies in
the approximation of the continuation value of the option along all
simulated sample paths. The procedure Longstaff & Schwartz (2001)
suggest goes as follows:

1) Simulate sample paths of the underlying for m time steps as
if the option to be valued was European-style and determine
the corresponding cash-flows from exercise at expiry and denote
them by X.

2) For j = m − 1, . . . , 1 determine the discounted cash flows from
the in-the-money paths at step j + 1 and denote them by Y .129

3) For j = m−1, . . . , 1 assume that the desired conditional expecta-
tion E[Y |X] is a polynomial of X and determine the expectation
by regressing Y on X.

4) For each sample path determine the option value as the higher
of the just determined continuation value, the conditional expec-
tation, and the intrinsic value of the option, i.e. the payoff if it
was immediately exercised.

129Longstaff & Schwartz (2001) argue that omitting out-of-the-money paths not
only enhances efficiency but also improves the quality of the approximation.
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Rogers (2002) introduces a dual Monte Carlo approach for the valu-
ation of American options.130 He characterizes the American option
by subtracting martingales (whose supremum w.r.t. time is still in-
tegrable of class L1) from the discounted asset price process Zt

and minimizing over that class.131 In addition, the method is as-
sessed in numerical examples. Stentoft (2004b) lays the mathemat-
ical foundation for the least squares Monte Carlo method proposed
by Longstaff & Schwartz (2001). He proves its convergence in two
stages, first it is shown that the approximation of the conditional
expectations converges and then it is shown that the numerical op-
tion price converges to the true one. Furthermore, so is done in a
multidimendional multiperiod setting.

Since the order of convergence of the Monte Carlo simulation is
relatively small with 1/2 researchers have developed methods that
intend to improve the speed of convergence. Among the most promi-
nent improvements are:

• Antithetic paths: The antithetic path of a simulated path is
the sample path with the inverse increments at any time step,
i.e. the reflection at the origin of the Brownian increment. In
this way one not only obtains the same number of simulations
a lot faster but also the variance of the estimated option value
is found to be reduced. To gain intuition suppose that u is
a drawing of a uniformly distributed variable on [0, 1], then
so is 1 − u with the property that this tends to pair low and

130In the context of American option pricing, which is typically formulated as
choosing the maximum over all possible exercise policies, duality formulation
means rewriting the pricing problem as a minimization over certain classes of
supermartingales. In addition to its theoretical merit, this facilitates and en-
ables the construction of upper bounds on the true price. Loosely speaking, any
approximation with a supermartingal other than the true minimizer would be
biased high.

131In fact, the author further proves that the minimum is attained by the mar-
tingale of the Doob-Meyer decomposition (cf. Karatzas & Shreve (2008)) of
Y ∗t = ess supt≤τ≤T E[Zτ |Ft].
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high realizations. Due to the monotonicity of the inverse dis-
tribution function F−1 this translates to the simulated path.
If this distribution is, moreover, symmetric about the origin,
as it is the case with the normal distribution, which we are in-
terested in, this produces values with the same magnitude but
opposite sign. In a natural way this reduces the variance of the
entire sample as it adds realizations which are by construction
negatively correlated to the existing ones.132

• Using a control variate: The control variate technique is of-
ten used when for a simpler version of the option the correct
solution and thus the error ε̄ := vexact − vapprox of the nu-
merical solution is known. In such a case the simulated value
is adjusted by the error term of the simpler version, i.e. the
simulated value V is replaced by Ṽ = V + ε̄.133

• Importance sampling : The idea of importance sampling is the
notion that there are regions which are more impactful to the
value of the option, typically those where the convexity is most
pronounced, i.e. around the at-the-money point. If that is the
case placing more sample paths in that area to provide a better
resolution of the critical area can be attained by a change
of measure that overweights the sample paths in that area.
However, to ensure that the Monte Carlo estimator remains
unbiased the resulting paths must be given a lower weight
again provided by the Radon-Nikodym derivative of the two
measures.134

132For more theoretical background on this variance reduction technique the reader
is refered to Hammersley & Handscomb (1964) and Fox (1999). Applications
in the world of finance include Boyle (1977), Fishman & Huang (1983) and
Rubinstein, Samorodnitsky & Shaked (1985).

133A detailed exposition and justification of the method is given in the textbook
by Glasserman (2004).

134In measure theory the Radon-Nikodym derivative is a function f satisfying
ν(A) =

R
A fdµ for two measures µ and ν and measurable sets A. The result
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In addition to these variance reduction techniques which according
to Glasserman (2004) do not improve the order of convergence but
rather the constant in the error estimates, there is also a whole set
of methods which improve the order of convergence to 1 − ε for
all ε > 0. This technique deals with the placement of the random
points in the d-dimensional hypercube.135 To attain such a filling
of the hypercube, special sequences are designed and used which
heavily rely on insight from the mathematical field of number theory.
Furthermore, they render the entire procedure purely deterministic
contrary to classic Monte Carlo in which the drawing is stochastic or
at least pseudo random. Thus, calling the placements random points
might be slightly unfitting. Nonetheless, the term quasi Monte Carlo
has prevailed for this class of methods.

In practice, the sequences suggested by Halton (1960) and Hammer-
sley (1960) are widely used. Their sequence in dimension d is given
by

xk = (ψb1(k), ψb2(k), . . . , ψbd
(k)) k = 0, 1, . . .

ψb(k) =
∞∑
j=0

aj(k)
bj+1

.

The bases b1, b2, . . . , bd are chosen relatively prime136 and the factors
aj(k) ∈ {0, 1, . . . , b − 1} are obtained as the coefficients when k is
represented using137

k =
∞∑
j=0

aj(k)bj .

in its general formulation is due to Nikodym (1930). A thorough analysis and
derivation can furthermore be found in Karatzas & Shreve (2008).

135This filling of the hypercube is essentially the replacement of drawing random
samples of uniformly distributed variables on [0, 1].

136Two integers are called relatively prime if they do not share any common divisor
other than 1.

137If the basis is ten, this is just the representation of numbers used in everyday
life with aj(k) being the digits of k. But such a representation is, of course, also
possible for any other basis.
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Birge (1994) examines and demonstrates the usefulness of quasi
Monte Carlo methods for the case of plain vanilla call options. Bar-
raquand (1995) deals with the arbitrage pricing of contingent claims
when there are many underlying sources of uncertainty and when
there is no closed-form solution available. The numerical method
of choice is Monte Carlo simulation for which an error reduction
method, so-called quadratic sampling, is introduced. The benefit
of this method is that it can be combined with other such tech-
niques like e.g. importance sampling and is applicable and efficient
for arbitralily many sources of uncertainty as demonstrated for the
case of 100. In Barraquand & Martineau (1995) the numerical val-
uation of American contingent claims when there are many under-
lying sources of risk is investigated. As lattice methods face the
drawback of running out of memory in such a case, this paper uses
Monte Carlo simulation together with a certain partioning of the
state space, so-called stratified state aggregation.138 In a numerical
example it is demonstrated that the method can be used for up to
400 risk factors. Boyle, Broadie & Glasserman (1997) review the
Monte Carlo method and related methods to enhance the efficiency
of the algorithm (variance reduction and quasi Monte Carlo) as well
as applications to the computation of Greeks. Ibánez & Zapatero
(2004) propose a fixed point algorithm to determine the optimal
exercise boundary of Bermudan options which is then used as an in-
put for classic European Monte Carlo simulation. Stentoft (2004a)
evaluates the Longstaff & Schwartz (2001) paper. He points out
that there are superior methods with regard to the efficiency and
accuracy with which the price is computed, such as using ordinary
monomials rather than Laguerre polynomials.139 Furthermore, the

138This is a common numerical technique for the solution of optimal control prob-
lems. For a detailed description we refer the reader to the textbook by Kushner
& Dupuis (2001).

139Laguerre polynomials are, similarly to Chebychev polynomials, orthogonal w.r.t.
the L2 scalar product. According to Freund & Hoppe (2007) they are given by

Ln(x) = ex

n!
dn

dxn (e−xxn).
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method is applied to multiasset options and found to be more fea-
sible than finite differences or binomial models in these cases. Also,
in Kohler, Krzyzak & Todorovic (2010) American options are val-
ued using Monte Carlo simulation. The conditional expectation of
not exercising the option is computed with a neural network regres-
sion.140 Furthermore, convergence rates and consistency are exam-
ined.

Besides the classical Monte Carlo simulation technique, a num-
ber of authors have developed estimators for option prices based
on different simulation methodologies or at least in part involving
Monte Carlo simulation. Broadie & Glasserman (1997) introduce
a simulation method consisting of two estimators, one upper bi-
ased and one lower biased. A combination of both is shown to be a
good and efficient approximation of the true price of the American-
style contingent claim when compared to lattice and finite difference
methods. In the paper by Boyle, Kolkiewcz & Tan (2003) a tech-
nique is suggested which significantly improves the benefit of using
a quasi Monte Carlo rather than a Monte Carlo method in the set-
ting of Boyle, Kolkiewcz & Tan (2000) and Boyle, Kolkiewcz & Tan
(2002) who combine the stochastic mesh method with quasi Monte
Carlo techniques.141 In Andersen & Broadie (2004) upper and lower
bounds for American and Bermudan options are derived. The up-
per bounds, in particular, are obtained by Monte Carlo simulation of
the dual representation of the value function as proposed by Rogers
(2002) and Haugh & Kogan (2004). In the latter paper a general
method is presented to obtain upper and lower estimators of the
true option price which are obtained using Monte Carlo simulation.
In the case of the upper bound this is justified by virtue of the
dual minimization problem. Chaudhary (2007) suggests a simula-

140For an overview over neural networks the reader is referred to Bertsekas &
Tsitsiklis (1996) and Bertsekas (1999).

141In Broadie & Glasserman (2004) an assessment of the stochastic mesh method
is provided in the context of high-dimensional American options.
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tion method for American option valuation using the Fast Fourier
Transform. It is used to compute the convolution of a transition
function of the underlying asset price process, which can be fairly
general as its possible processes include the variance gamma pro-
cess besides classical geometric Brownian motion. The PhD thesis
by Holtz (2008) deals with high-dimensional numerical integration
techniques which appear in the simulations associated with the val-
uation of financial assets or liabilities in a very comprehensive and
general manner. It can thus be viewed as a collection of state of the
art simulation techniques to that date.

3.2.2.5 Control and Stopping Problems

This section covers the valuation of American contingent claims in
a much more mathematically rigorous way, deriving a formulation
in terms of stochastic control theory.142 Although the procedure
might appear somewhat technical at certain times, doing so is in
the very nature of American options. This is due to the fact, that
they entitle their holders with the right to exercise completely at
their discretion during the lifetimes of the options, which essentially
means in mathematical terms that their is a control variable con-
taining information on whether or not exercise has already taken
place.143

142An early introduction to the field of stochastic control theory with focus on
parametric optimization and optimal stochastic control for linear systems with
quadratic criteria is given in the textbook by Åström (1970).

143In his survey paper Samuelson (1973) summarizes the mathematical contribu-
tion made to social sciences and economics in general and financial economics
in particular. Especially stressed are the fields of general equilibrium equations,
constrained programming equations, theory of portfolio optimization, maximiz-
ing utility, and dynamic programming of the Bellman type, the latter of which
is of importance in the context of stochastic control problems and which is dealt
with in Section 4.1.1.
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The derivation or (mathematically) precise and rigorous statement
of the valuation problem heavily relies on the foundational theory
about continuous trading put forth by Harrison & Pliska (1981)
(which was later rephrased by Taqqu & Willinger (1987) in terms of
probabilistic rather than functional analytic arguments) and their
follow-up paper Harrison & Pliska (1983).144 In brief, these authors
establish certain terms and make several assumptions explained be-
low:

1) There is a probability measure, under which the discounted prices
of risky assets behave as if they were martingales.

2) Investors’ portfolios consist of one riskless asset (thought of as a
bond) and d risky assets such as stocks, which can be continu-
ously adjusted or rebalanced. The value of the portfolio at any
time is termed the value process.

3) The allocation of capital to assets is called the trading strategy.

4) Any trading strategy is assumed to be self-financing, i.e. there
are no cash withdrawals or infusions and any change in the value
of the portfolio is accredited to rebalancing or change in value of
the held assets.

5) A trading strategy is referred to as admissible if it corresponds
to a value process which is a positive martingale.

6) Besides the aforementioned assets the market is also assumed to
accomodate contingent claims, i.e. integrable random variables.
Those contingent claims are called attainable, which are, in the
almost surely interpretation, positive random variables and at

144In addition, there is the famous paper by Harrison & Kreps (1979) which can
be thought of as the progenitor of the other two papers as it covers very similar
questions in discrete rather than continuous time formulation. Also in Kreps
(1981) the non-existence of arbitrage opportunities is related to an economic
equilibrium as a necessary and sufficient condition.
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their expiry time T equal the value process of some admissible
trading strategy.

The abovementioned assets are assumed to be governed by Itô dif-
fusion processes given by

dB = r(t)B(t)dt, 0 ≤ t <∞

dSi = Si(t)

bi(t)dt+
d∑
j=1

σij(t)dWj(t)

 , 1 ≤ i ≤ d, 0 ≤ t <∞.

W (t) = (W1(t), . . . ,Wd(t))T is a d-dimensional Brownian motion
on the probability space (Ω,F , P ) w.r.t. the filtration Ft induced
by W , the bond is denoted by B and the risky assets (stocks) by
S1, . . . , Sd.

In this setting, Harrison & Pliska (1981) prove their central result,
that for every attainable claim, there is a unique price precluding
arbitrage. With more rigor, this is expressed in terms of measures
and market completeness. In this respect an equivalent measure Q
to P is deemed a martingale measure if it renders the discounted
(at the risk-free rate of return) asset price processes martingales.145

Further, a market is termed complete if every integrable contingent
claim is attainable. The relationship between the price π of a con-
tingent claim X and an equivalent martingale measure Q then is
uniquely given by

π = EQ

[
exp

(
−
∫ T

0

r(s)ds

)
X

]
,

as it was established in the same piece of research and by Harrison
145Two measures Q and P are considered equivalent on (Ω,F) if they share the

same null sets, i.e. P (A) = 0 if and only if Q(A) = 0. Please heed that by
the first item above, it is assumed that there exists at least one such measure.
Therefore, the following theorem does not claim existence of such a measure but
merely characterizes conditions for uniqueness if at least one exists.
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& Kreps (1979) for discrete time. In this terminology, the central
result by Harrison & Pliska (1983) regarding market completeness
and arbitrage-free pricing reads:

Theorem 3.2.2 The following assertions are equivalent:

i) The model is complete under the reference measure Q.

ii) The set of all equivalent martingale measures is a singleton, i.e.
Q is unique.

Proof - Theorem 3.2.2:
See Harrison & Pliska (1983).

�

By virtue of the relationship between equivalent martingale mea-
sures and the prices of contingent claims this theorem essentially
establishes the uniqueness of an arbitrage-free price if the market is
complete.

Given the notion that in the aforementioned literature contingent
claim prices have well been established to be discounted values of
their respective expected payoffs, the seminal work by Harrison &
Pliska (1981) omits and does not tackle the question of how the
prices of American options can then be understood in that setting.
This question is taken up in Bensoussan (1984), who indeed provides
a rigorous formulation of the American contingent claim valuation
problem.

His starting point is the model setup used by Harrison & Pliska
(1981), i.e. his considerations revolve around replicating or hedging
contingent claims by trading in a riskless bond and d risky stocks.
Bearing in mind, that American-style options can be exercised at
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any time, which means that their payoff, governed by a payoff func-
tion g, can be cashed in at any time, the general valuation problem
is to find a portfolio or trading strategy u such that

u(ν(t)) = ν0(t)B(t) +
d∑
k=1

νk(t)Sk(t)

u(t) ≥ g(t) ∀t ∈ [0, T ) (3.2.2.7)

u(T ) = g(T ),

where ν0(t), ν1(t), . . . , νd(t) are the trading strategies describing how
much investment capital is allocated to the respective assets and g

is the payoff function of the option to be replicated. The latter
conditions reflect that, of course, at any time prior to maturity the
option value must exceed or equal its intrinsic value while they have
to coincide at maturity. If that was not the case at some point in
time, immediate exercise would be better and the valuation problem
would be trivial. In addition, Bensoussan (1984) points out that
two seemingly technical conditions have to be imposed, which on
the other hand serve as the entry point for most of the economic
underpinning of the valuation procedure. The first condition the
American option price has to satisfy is the so-called protective hedge
property, which reads

u(t2)− u(t1) ≤
∫ t2

t1

[ν0(s) dB(s) +
d∑
k=1

νk(s) dSk(s) (3.2.2.8)

+
d∑
k=1

νk(s)zk(s)Sk(s) ds], ∀t1 ≤ t2 ≤ T,

where zk denotes a continuously paid dividend yield on asset k. The
economic interpretation is that we are contrary to the European case
(cf. the derivation of the Black-Scholes formula in Section 3.1.1) no
longer interested in an exact replication or hedge but rather in a
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superhedge. This means that the proceeds from the hedge must at
any time at least outweigh the gains from the contingent claim.

The second technical condition to be imposed requires the definition
of an additional stopping time

θ̂t := inf{s ≥ t|u(s)− g(s) = 0}.

For any time t this is the least time s such that the claim equals
the value of immediate exercise. Naturally, this time is at most T ,
at which they coincide under any circumstances, and can be inter-
preted as the waiting time until exercise becomes optimal for the
first and/or next time. This notion turns out very practical in the
precise distinction between the European and the American case,
which becomes manifest in the following constraint

u(s ∧ θ̂t)− u(t) =
∫ s∧θ̂t

t

[ν0(s) dB(λ) +
d∑
k=1

νk(λ) dSk(λ) (3.2.2.9)

+
d∑
k=1

νk(λ)zk(λ)Sk(λ) dλ], ∀s ≥ t.

The intuition is that prior to θ̂t it is not optimal to prematurely
exercise, therefore the hedge is supposed to be exact as it is the
case in the European variant. Altogether this allows for the state-
ment of the general American option valuation solution according
to Bensoussan (1984).

Theorem 3.2.3 Given the technical conditions (3.2.2.8) and
(3.2.2.9) as well as the complete market assumption there is only
one possible valuation function for American contingent claims in
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the sense of (3.2.2.7)

u(t) = ess supt≤θ≤TE
Q

[
g(θ) exp

(
−
∫ θ

t

r(s)ds

)
|Ft

]
.

Proof - Theorem 3.2.3:
See Bensoussan (1984).

�

The theorem only states that there cannot be any other valuation
function for an American claim. But what still needs to be verified
is that the suggested solution is indeed a valuation function. This
is a two-step procedure, which exploits the penalization technique
and follows the scheme:146

1) Solve the penalized problem for uε and prove that uε → u as ε
tends to 0.

2) If the payoff function g is an Itô process then the limes u satisfies
the technical conditions (3.2.2.8) and (3.2.2.9).

The interpretation of Theorem 3.2.3 is that holders of American
options behave such as to maximize the expected payoff from the
option over all possible exercise times θ. This general result estab-
lishes the fact that American option valuation is an optimal stopping
problem.147

146The penalization technique revolves around considering deviations from the de-
sired solution parameterized by ε such that the original problem is retained as
ε tends to zero. The benefit stems from skillfully penalizing such deviations in
a way that contrary to the original problem the penalized one allows for direct
solution. In this way it only remains to be shown that not only the problem
formulations converge but so do their solutions.

147Intuitively speaking, the essential supremum rather than the classical supremum
is used because the function to be maximized is an expectation which is not
sensitive to changes on null sets. Therefore, the supremum only has to hold up
to null sets.
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The downside of these results are the rather restrictive assumptions
made in Bensoussan (1984) such as boundedness and regularity con-
ditions on the payoff function not even satisfied by standard Amer-
ican options, which are needed for the penalization technique to be
used. For example, the payoff function of a standard American call
option is not bounded by a deterministic constant on [0, T ], but such
a constant would rather depend on T . Furthermore, in that proto-
typical case there is no additional positive payoff function which
pays out per unit time.

This is where Karatzas (1988) takes up this strand of research and
devises a reformulation of the valuation problem yielding a relax-
ation of the above drawbacks and validity for standard American
options. His approach revolves around minimizing the initial en-
dowment required to form a hedging portfolio. His first step is the
introduction of portfolio and consumption processes π(t) and Ct. If
πi(t) denotes the amount of money invested in asset i at time t, a
portfolio process π(t) = (πi(t), 0 ≤ i ≤ d,Ft, 0 ≤ t ≤ ∞) is an Rd-
valued, adapted process satisfying the square integrability condition

d∑
i=1

∫ T

0

π2
i (s)ds <∞ P a.s. , T <∞,

which is imposed for mathematical reasons. A consumption process
C = {Ct,Ft; 0 ≤ t < ∞} is progressively measurable w.r.t. {Ft},
takes values in [0,∞) and satisfies P-a.s., ω ∈ Ω

1) C0(ω) = 0

2) t 7→ Ct(ω) is non-decreasing, right-continuous.

Intuitively, consumption starts with 0 and cannot decrease if thought
of as a cumulative process. The wealth process corresponding to a
pair (π,C) of portfolio and consumption processes is governed by
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the SDE

dXt =

[
r(t)Xt +

d∑
i=1

πi(t) (bi(t) + zi(t)− r(t))

]
dt− dCt

+
d∑

i,j=1

πi(t)σij(t)dWj(t) 0 ≤ t <∞.

As before, b denotes the drift or appreciation rate, z the dividend
yield and σ the dispersion matrix. The economic interpretation is
that the wealth on average develops at the riskless rate plus the
respective excess return (dividend yield plus appreciation rate less
riskless rate) for the proportion of assets respectively invested. Fur-
ther, consumption must be subtracted from the wealth as it can
be thought of as negative income. Finally, the uncertainty is added
using the stochastic terms. The next step is the construction of an
equivalent martingale measure, which is used to state the results
brought forth by Karatzas (1988). To do so, we define the helping
variable θ such that

d∑
j=1

σij(t)θj(t) = bi(t) + µi(t)− r(t), 0 ≤ t <∞, 1 ≤ i ≤ d.

Then the exponential supermartingale148

Zt = exp
(
−
∫ t

0

θT (s)dW (s)− 1
2

∫ t

0

||θ(s)||2ds
)
Ft, 0 ≤ t <∞

becomes a martingale and for fixed T > 0 and lends itself to the

148In general, the exponential, so-called Doléans-Dade exponential, of a semi-
martingale X is given as the solution to the SDE dYt = YtdXt with initial
condition Y0 = 1. It differs from the classic exponential in the subtraction
of the quadratic variation. A detailed description along with conditions under
which the Doléans-Dade exponential is a martingale can be found in Revuz &
Yor (2010).
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definition of a probability measure by virtue of

P̃T (A) := E[ZT 1A], A ∈ Ft.

Applying the change of measure rule due to Girsanov (1960) we
obtain:149

1) P and P̃T are mutually absolutely continuous150 and

2) W̃ (t) := W (t) +
∫ t

0
θ(s) ds, 0 ≤ t ≤ T is an Rd-valued Brownian

motion on (Ω,Ft, P̃T ).

Using this newly defined measure we can now further follow the con-
siderations of Karatzas (1988) and reinterpret the notion of hedging
portfolios in terms of portfolio and consumption processes. For a
given time horizon T > 0 and a level of initial wealth x ≥ 0, consider
an admissible pair (π,C) of portfolio and consumption processes and
let X denote the corresponding wealth process. We say that (π,C)
is a hedging strategy against the American contingent claim with
maturity T and payout f , (π,C) ∈ H(x, T ), if for P̃T -a.s., ω ∈ Ω,
the following requirements hold

1) At(ω) := Ct(ω) is a continuous, non-decreasing function

2) Xt(ω) ≥ ft(ω) ∀t ∈ [0, T ]

3) XT (ω) = fT (ω)

4) For the stopping time τt := inf{t ≤ s ≤ T |Xs = fs} and for fixed
t ∈ [0, T ]: At(ω) = Aτt(ω)(ω).

149The change of measure formula states that for a Brownian motion W

and a process Y with
R T
0 Ys ds < ∞ such that the process Lt :=

exp
“
−
R t
0 YsdWs − 1

2

R t
0 Y

2
s ds

”
is a martingale, the probability measure Q with

density LT with regard to P renders the process Ỹt := Wt+
R t
0 Ysds a standard

Brownian motion.
150Loosely speaking, absolutely continuous means that there is a probability den-

sity function for one measure w.r.t. the other.
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These conditions correspond to the conditions imposed by Bensous-
san (1984) meaning that the hedge is a superhedge until maturity,
exact at maturity and whenever exercise is not better than contin-
uation. The fair price of an American contingent claim V is then
considered as the minimal necessary endowment x to set up a hedge,
i.e.

V0 := inf{x ≥ 0| ∃(π,C) ∈ H(x, T )}.

With all this notation in place we can state the general result by
Karatzas (1988), which furthermore recombines his notion of Amer-
ican contingent claim valuation with the view of Bensoussan (1984).

Theorem 3.2.4 The fair price at t = 0 for the American contin-
gent claim with maturity T and payoff f is given by

V0 = u(0) := sup
τ∈S0,T

ẼT

[
fτ exp

(
−
∫ τ

0

r(s) ds
)]

.

Moreover, there is a strategy (π,C) ∈ H(T, u(0)) with corresponding
wealth process X = {Xτ ,Fτ ; 0 ≤ t ≤ T} which is continuous and
satisfies for every fixed t ∈ [0, T ]

Xt = ess sup
τ∈St,T

ẼT

[
fτ exp

(
−
∫ τ

0

r(s) ds
)]

Proof - Theorem 3.2.4:
See Karatzas (1988).

�

The first condition is essentially the same characterization Bensous-
san found, namely that the American option value is obtained as
an optimal stopping problem. The second statement characterizes
the associated value function of the hedging portfolio which in its
optimization coincides with the option value.
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Samuelson (1965) presents a pricing scheme for warrants like, for in-
stance, options based on arbitrage considerations.151 Together with
McKean (1965), who proves Samuelson’s assertions, exact valuation
formulas for perpetual warrants on lognormal processes are derived.
However, this is not possible for the early exercise feature of Amer-
ican options. In the paper by Dalang, Morton & Willinger (1990)
stochastic processes which can be transformed to a martingale un-
der an appropriate change of measure are studied and characterized.
This translates to securities markets as the question when arbitrage
gains, so-called free lunches, are precluded. In other words, the au-
thors show that a process must be a martingale under some measure,
if it precludes arbitrage. In Jacka (1991) it is shown that pricing an
American put option is equivalent to solving an optimal stopping
problem and gives rise to a parabolic free boundary value problem.
The main contribution according to the author is the verification of
the essential uniqueness of the free boundary value problem. My-
neni (1992) summarizes the main findings of the American options
literature to that time. It is primarily concerned with the optimal
stopping formulation and its relation to free boundary value prob-
lems and variational inequalities.

Karatzas & Xue (1991) deal with incomplete markets in the context
of investment consumption processes for the sake of utility maxi-
mization. The authors demonstrate that under partial observations
with the asset price history being the only available information
these problems are easier to solve. Cvitanić & Karatzas (1992) cover
constrained portfolio optimization, i.e. maximization of utility, for
assets governed by Itô processes. The control problem is solved by
embedding it in an equivalent unconstrained problem. The results
are then applied to incomplete markets, short-selling and spreads

151Although very similar to options, warrants are not identical, as they are usually
much less standardized and traded over-the-counter. More information on the
differences is provided in Hull (2009).
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between borrowing and lending rates. The paper by Cvitanić &
Karatzas (1993) is an extension of Cvitanić & Karatzas (1992) and
similar to El Karoui & Quenez (1995) and focuses, in particular, on
different borrowing and lending rates and incomplete markets. Cvi-
tanić & Karatzas (1996) then focus on hedging contingent claims
in the presence of proportional transaction costs. The initial wealth
needed to perform such a hedge is characterized as the supremum of
all discounted claim values over all probability measures rendering
the wealth process a supermartingale. Furthermore, shadow prices
from the corresponding dual formulation can be used to price con-
tingent claims.152 Option pricing in the presence of portfolio con-
straints, such as restrictions to short-selling or incomplete markets,
is considered by Karatzas & Kou (1996) assuming that no arbitrage
is permitted by the prices of contingent claims. Rather than sin-
gle unique prices, arbitrage-free intervals are obtained, that include
the Black-Scholes price for European options. Furthermore, the end-
points of this arbitrage-free interval can be obtained via stochastic
control problems of the Cvitanić & Karatzas (1992) and Cvitanić &
Karatzas (1993) types. Uniqueness inside the arbitrage-free interval
is obtained by virtue of utility maximization. El Karoui, Peng &
Quenez (1997) provide a broad account and summary of the the-
ory of backward SDEs and their applications in the field of finance.
Karatzas & Kou (1998) extend the general pricing theory of Ben-
soussan (1984) and Karatzas (1988) who established that American-
style contingent claims are the solutions to properly formulated op-
timal stopping problems in the presence of frictions such as differ-
ent borrowing and lending rates, incomplete markets, restrictions
on borrowing or short-selling. The article provides explicit compu-
tations for the abitrage-free interval of American call options in a

152The term shadow price originates from the field of constrained optimization.
Technically speaking, it is the value of the Lagrange multiplier at the optimal
solution. Interpreted economically, it can be thought of as the marginal utility
gained when relaxing the constraint by one unit.
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very sophisticated manner using stochastic control theory, optimal
stopping, Doob-Meyer decompositions and convex analysis.

Shepp & Shiryaev (1993) introduce a new and untraded option,
called Russian option, and explicitly value it in a closed-form so-
lution using the Black & Scholes (1973) model.153 The option is
of infinite lifetime and criteria are stated under which configura-
tion parameters of optimal behavior change. In the paper by Duffie
& Harrison (1993) explicit valuation formulas for Russian options
are given by determining the optimal exercise time. This is then
specified as a first passage time.154 Besides, the authors distinguish
between the dividend paying and the non-dividend paying case and
find that the rational economic value of the option is only finite,
when there is a dividend. Finally, the results are extended to per-
petual lookback options. Peskir (2005b) revisits the Russian option,
this time dealing with a finite time horizon. Moreover, an integral
equation for the optimal exercise threshold is established.

Gerber & Shiu (1994) value perpetual American call and put options
using Esscher transforms and the optional sampling theorem.155 For
geometric Brownian motion down-and-out calls and Russian options
are dealt with. Furthermore, the approach and methodology is re-
lated to the high contact condition as introduced in Section 3.2.1
and related to the first order condition for optimality due to Mer-

153A Russian option is a potentially perpetual put option which pays the maximum
stock price at which the stock has ever traded during the lifetime of the option.

154A first passage time is the first time at which a stochastic process ever exceeds a
certain threshold. In terms of exercise policies, optimal exercise times are often
the first times an underlying breaks a certain optimal exercise threshold. Darling
& Siegert (1953) derive first passage times for continuous Markov processess.
The results are then extended to moving barriers in the paper by Tuckwell &
Wan (1984).

155The optional sampling theorem states conditions under which the expected value
of a martingale at a stopping time equals its initial value. Esscher transforms are
commonplace in actuarial sciences and were introduced to insurance pricing by
Esscher (1932). For probability densities f(x) their Esscher transforms f(x, h)

are given by f(x, h) =
exp(hx)f(x)R +∞

−∞ exp(hx)f(x)dx
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ton (1973b). Gerber & Shiu (1996) extend the results of Gerber &
Shiu (1994) for perpetual options to the case of two underlyings.
Examples for such situations include, for instance, the Mandelbrot
(1978) exchange option or options on the maximum of two stocks.
In Lai & Lim (2004), the authors deal with American lookback
options in an optimal stopping framework. More precisely, they ap-
proximate the stopping boundary with piecewise linear functions.
Furthermore, a decomposition formula is derived and applied to
examining the near maturity behavior of option prices. In a local
volatility model Chevalier (2005) investigates the behavior of the
critical stock price, i.e. the exercise threshold, of an American put
option on a dividend paying stock near maturity. Two situations can
be distinguished, the dividend rate being greater than the interest
rate and vice versa. In the former case an expansion of the critical
stock price from the value function of the corresponding optimal
stopping problem turns out to be parabolic, while the situation is
less regular in the latter case. The article by Evan, Henderson &
Hobson (2008) covers the question of when to optimally sell a non-
traded asset if the corresponding agent has a power utility function
and can invest her other assets in a complete market. The solution
to this mixed optimal stopping, optimal control problem is found to
be the first time the option’s value exceeds a certain proportion of
the entire portfolio. Carmona & Touzi (2008) deal with the valua-
tion of swing options in the Black & Scholes (1973) model.156 This
setup can be interpreted as multiple exercise of American contingent
claims which is theoretically investigated and for which existence of
such exercise strategies is proved. Hussain & Shashiashvili (2010)
address the delta hedging of American options. They show that for
any uniform approximation of the American option value function

156Swing options are options that allow their holders to exercise put or call options
on a number of pre-specified times. More information on their valuation and
applications in the fields of commodity and electricity options can be found in
Jaillet, Ronn & Tompaidis (2004) and Kluge (2006) respectively.
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at equidistant rebalancing points a discrete time hedging portfolio
can be set up, which in turn uniformly approximates the perfect
delta hedging portfolio.157

A good and mathematically oriented account about derivative pric-
ing results in the Harrison & Pliska (1981) martingale setting is pro-
vided by Kallsen (1998) in his doctoral thesis. The thesis revolves
around expounding on different market models and their inherent
distributional assumptions as well as different markets, such as stock
and interest rate markets, under the common, established and well
appreciated mathematical framework of semimartingales.

3.3 Barrier Options

Barrier options are an extension of standard options with an ad-
ditional feature, the barrier. As it is the case for their standard
counterparts, there are also calls and puts as well as American-style
and European-style exercise rights. However, the payoff of such an
option is contingent on the barrier being breached.

Naturally, this gives rise to two fundamental classes of barrier op-
tions, knock-ins and knock-outs, whose names are to a large degree
self-explanatory. Knock-ins only pay off, if they are activated by
breach of the barrier, while knock-outs only pay off unless they are
killed during the option’s lifetime.

157Of course, in reality a perfect delta hedge is unattainable as it would require
continuous time rebalancing. In this regard, uniform approximation of a value
function is understood in the usual sense, that vh uniformly approximates v if
supx≥0 |vh(x, tk)− v(x, tk)| ≤ C h for some constant C <∞ and finitely many
equidistant discrete times tk. Please note, that this uniform approximation is
much stronger than pointwise approximation as the same constant applies to
all stock prices.
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If the barrier is denoted by L, we can define the crossing time of the
barrier as

τL = inf{t > 0|St = L}

and distinguish between up-crossings (S0 < L) and down-crossings
(S0 > L). Intuitively, in the case of call options up-crossings cor-
respond to knock-ins and down-crossings to knock-outs. For put
options it is the other way round. This gives rise to the following
four cases, where T denotes the term to maturity and K the strike:

1) A down-and-out call pays off max(S −K, 0), if τL > T, S0 > L

2) An up-and-in call pays off max(S −K, 0), if τL ≤ T, S0 < L

3) A down-and-in put pays off max(K − S, 0), if τL ≤ T, S0 > L

4) An up-and-out put pays off max(K − S, 0), if τL > T, S0 < L.

The conditions S0 6= L are trivial, since S0 = L would instantly
eliminate the effect of the barrier. The same holds for knock-ins
starting in the knocked-in region and knock-outs starting in the
knocked-out region.

In practice, however, a slightly different type of barrier breach has
been established, namely knock-ins and knock-outs only being al-
lowed at prespecified times. Such options are referred to as discrete
barrier options. More precisely, we assume that the barrier is only
monitored at discrete times t1, . . . , tm, where ti = i∆t, i = 1, . . . ,m.
Further denote the underlying asset prices by S̃i := Sti . In this way,
the crossing time of the barrier simplifies to

τ̃L =

inf{n > 0|S̃n > L}

inf{n > 0|S̃n < L}
.

By this change, the four barrier cases transform to:
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1) A discrete down-and-out call pays off max(S̃m − K, 0) if τ̃L >

m, S0 > L.

2) A discrete up-and-in call pays off max(S̃m−K, 0) if τ̃L ≤ m, S0 <

L.

3) A discrete down-and-in call pays off max(K − S̃m, 0) if τ̃L ≤
m, S0 > L.

4) A discrete up-and-out call pays off max(K − S̃m, 0) if τ̃L >

m, S0 < L.

Regarding the existence of barrier options one can put forth in-
vestors’ demands. This becomes plausible by considering an exam-
ple: A down-and-out call is equivalent to a standard call if the barrier
is not breached. Thus the holder of such an option has no upside
potential relative to the holder of a plain vanilla option, but rather
only the downside risk of suffering a knock-out and losing the entire
investment. On the other hand, this renders the option less expen-
sive. Consequently, it becomes a viable alternative if an investor is
convinced that the knock-out scenario is highly improbable. In this
way, investors can increase returns or lower costs if the options are
used for hedging purposes.

When it comes to real-world financial markets the discrete-time ver-
sions of the options are more commonplace. Once again this is be-
cause of very practical reasons. In integrated and globalized mar-
kets virtually all underlyings are traded (or at least can be traded)
anywhere in the world at any time. In particular, this might even
prompt a knock-out or knock-in during non-trading hours in the in-
vestor’s country. Because of this it appears to be a natural wish by
market participants to limit potential barrier actions to their own
trading hours.
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Besides these simplest continuous-time and discrete-time barrier op-
tions, options with another common feature have emerged, a so-
called rebate R. This rebate is an amount of money paid in the
original case of worthless expiry. More precisely:

1) A down-and-out call pays off R upon being knocked out

2) An up-and-in call pays off R if it is not activated until maturity

3) A down-and-in put pays off R if it is not activated until maturity

4) An up-and-out put pays off R upon being knocked out.

Of course, standard barrier options are only a special case of rebate
barrier options, namely those with rebate R = 0.

Regarding valuation, one can make certain model-independent state-
ments about standard barrier options. The first reduces the valua-
tion problem to knock-out options as knock-ins can be replicated as
a combination of a standard option and a knock-out. In detail, we
have

CKI = C − CKO (3.3.0.10)

PKI = P − PKO. (3.3.0.11)

Here C stands for a call option and P for a put option. The sub-
scripts KI and KO indicate knock-ins and knock-outs respectively,
while no subscript indicates a plain vanilla option. These relation-
ships can be made plain by looking at the options’ payoffs. If an
option has not been knocked-in, its value is zero. Conversely, the
corresponding knock-out option in this case is equivalent to the stan-
dard option. If the option, however, is knocked in, it is equivalent to
its standard counterpart, while the knock-out is worthless. Appar-
ently, these considerations hold true independently of whether call
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or put options are investigated. By standard arbitrage arguments it
follows that the replication formulas not only hold at maturity but
at any point in time.

Having classified barrier options in general and outlined several of
their basic properties and relations to one another, the question of
how to determine the fair option premium naturally arises. This
question was comprehensively answered in the paper by Kunitomo
& Ikeda (1992).

Actually the authors solve a more general option pricing problem in
their paper as they impose two knock-out barriers. In this way the
option is nullified if it leaves the corridor between the two bound-
aries. Because of this property such options are also referred to as
double barrier or corridor options. Furthermore, the authors deal
with exponentially curved boundaries given by

y1 = B exp(δ1 u)

y2 = A exp(δ2 u),

where B ≥ A > 0 and y1 ≥ y2, which implies that the two bound-
aries do not intersect. Obviously, by equating δ1 = 0 or δ2 = 0 the
curved boundaries become flat again, as it is the case with standard
barrier options. Letting B → ∞ or A → 0 transforms the problem
to the one barrier scenario.

Although this setup appears technical at first glance or far in ex-
cess of the original interest of pricing standard barrier options, it
is not without great practical relevance. This becomes manifest by
abstracting from barrier option pricing and taking OETCs into ac-
count, which are the main subject matter of this thesis. As it is
detailedly described in Section 2.3.2, these products exhibit exactly
a barrier of this exponentially curved type. Also double barrier op-
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tions are highly relevant for practical purposes.158 And of course,
being able to give a unified view and pricing of flat and curved as
well as single and double barrier options is of great merit as well.
This leads to consistent pricing and nests the more special cases in
natural fashion.

The only drawback certainly lies the fact that Kunitomo & Ikeda
(1992) only employ the Black & Scholes (1973) model (3.1.1.1) pre-
sented in Section 3.1.1. This shortcoming on the other hand is pre-
sumably caused by the complexity the pricing problem still exhibits.

As it has been established in Section 3.2.2.5 and the references
therein, the option pricing problem can be stated as follows, if the
two boundaries are taken into account

C(t) = E [exp(−rT ) max(ST −K, 0)|St = S]

=
∫ y

K

exp(−rT )s(T )f(s(T ))ds(T )

−E
[∫ y

K

exp(−rT )f(s(T ))ds(T )
]
,

where f(s(T )) denotes the probability density function of ST for
starting at St = S. The main ingredient to obtain a quasi-closed
form solution (up to evaluations of the normal distribution in an
infinite series) is the probability of the stock price not leaving the

158Taking up the above example of a speculator or hedger who does not believe
in prices rising above or falling below the barrier, double barrier options are a
natural means of extending this rationale. In this way traders who do not expect
underlyings to leave a certain corridor can save more money on their investments
or thus increase returns or lower the costs of hedging. If the boundaries are
exponentially curved, in addition, the relative distance to the barrier can be
kept constant over the course of time as the barrier then moves in unison with
the underlying which, in a risk-neutral world, grows at the risk-free rate of
interest. This effect further diminishes the costs of the investment.
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active area of the option, which is known as the Lévy formula in
probability theory for the case of standard Brownian motion.159

For this purpose we introduce the minimum and maximum asset
prices L(t) and M(t) given by

L(t) = min
0≤u≤t

Su

M(t) = max
0≤u≤t

Su.

Then we can state the following theorem brought up and proved by
Kunitomo & Ikeda (1992).

Theorem 3.3.1 Suppose {St}t≥0 follows the geometric Brownian
motion given by (3.1.1.1) with S(0) = S0 and I ⊂ [A exp(δ1T ),
B exp(δ2T )]. Then the probability that

A exp(δ1T ) < L(t) ≤M(t) < B exp(δ2T ) ∀t ∈ [0, T ]

and ST ∈ I is given by

PI =
∫
I

[
+∞∑

n=−∞
kn(y)

]
dy

y

where

kn(y) =
(
Bn

An

)c1n
(
A

S0

)c2n

fN

(
ln(y)− ln(S0B

2n

A2n )− (r − σ2

2 )T

σ
√
T

)

−
(
An+1

A0Bn

)c3n

fN

(
ln(y)− ln(A

2n+2

B2nS0
)− (r − σ2

2 )T

σ
√
T

)

c1n = 2
r − δ2 − n(δ1 − δ2)

σ2
− 1

159For more information and other applications of this formula the reader is referred
to Anderson (1960).
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c2n = 2n
δ1 − δ2
σ2

c3n = 2
r − δ2 + n(δ1 − δ2)

σ2
− 1

and fN (·) is the density function of the standard normal distribu-
tion.

Proof - Theorem 3.3.1:

See Kunitomo & Ikeda (1992).
�

In this theorem the probability that the option does not knock out
until time T has been comprehensively characterized in terms of
the minimum and maximum asset prices strictly staying within the
bounds imposed by the two barriers. This result, however, comes at
the expense of only being available as an integral over an infinite
sum, rather than a palpable closed-form expression. Nonetheless,
the formula exhibits some economic intuition after all. Without the
barriers, i.e. the classic Black-Scholes case, there would not be a
knock-out probability, and thus PI = 1. Furthermore, the growing
speeds δ1 and δ2 of the barriers only enter the coefficients of the
normal distribution density function but not the probability distri-
bution itself. This is due to the fact, that an altered growing speed
does not affect the distribution of the stock price at time T but only
whether or not a prevailing state amounts to a knock-out. There-
fore, the different outcomes are weighted differently in case there are
other speeds in place. Finally, the growing speeds mostly enter the
equation as the difference between the two speeds. As an increase in
the lower barrier renders to the knock-out probability higher while
this relationship is reversed for the upper barrier, it appears reason-
able that the key ingredient is whether the asset price moves closer
to either barrier, which is determined by the difference between δ1

and δ2.
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A proof, why this formula holds, would exceed the scope of this
thesis and distract from summarizing the key results and insights
regarding barrier option valuation. Nonetheless, the proof can be
found in Kunitomo & Ikeda (1992). In addition, Theorem 3.3.1 al-
lows the statement of the general double barrier option pricing result
with curved boundaries as put forth in the same piece of research:

Theorem 3.3.2 The value of the call option at t, which is extin-
guished before its maturity date whenever the underlying asset price
{St}t≥0 reaches the upper boundary B exp(δ1 u) or the lower bound-
ary A exp(δ2u) for any u ∈ [t, T ] is given by

C(t) = S
+∞∑
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where

c∗1n = 2
r − δ2 − n(δ1 − δ2)

σ2
+ 1

c∗3n = 2
r − δ2 + n(δ1 − δ2)

σ2
+ 1

F = B exp(δ1 T )

t̂ = T − t

d1n =
ln(SB2n/EA2n) + (r + σ2/2)t̂

σ
√
t̂
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d2n =
ln(SB2n/FA2n) + (r + σ2/2)t̂

σ
√
t̂

d3n =
ln(A2n+2/ESB2n) + (r + σ2/2)t̂

σ
√
t̂

d4n =
ln(A2n+2/FSB2n) + (r + σ2/2)t̂

σ
√
t̂

.

Proof - Theorem 3.3.2:

See Kunitomo & Ikeda (1992).
�

As for Theorem 3.3.1, at first glance it is hard to find the economic
intuition behind the result. Anyhow, the result can be regarded as a
generalization of the Black-Scholes formula (3.1.1.3). By eliminating
the barriers, i.e. A = 0 and B → ∞, the Black-Scholes formula is
retained, as in this case d2n, d3n, and d4n vanish. If there are barriers
the reflection principle implies higher order terms with n 6= 0 as
Kunitomo & Ikeda (1992) emphasize.160 In this way the authors
have provided a comprehensive view on barrier option valuation
in the Black & Scholes (1973) world which nests the classic cases
without any barriers and thus is a natural and smooth extension
of previous research. Therefore, their results appeal from both a
mathematical and an economic point of view.

In addition to these results, there is a lot of literature on barrier op-
tions in general. In the Black & Scholes (1973) model Carr (1995)
extends barrier option pricing in two ways. First, a protection period
is introduced during which knock-outs are precluded and second,

160The reflection principle for standard Brownian motion states that the stochastic
process which is reflected at time T is a standard Brownian motion as well. This
result can be found in any textbook on stochastic calculus and Brownian motion,
e.g. Karatzas & Shreve (2008). In our case, these reflecting times are the hitting
times of the barrier and for any extinguishing path there is a non-extinguishing
antithetic path, the probability of which is given as one minus the knock-out
probability along the path. Therefore, we have to consider all possible hitting
paths of the barriers which leads to the infinite sum.
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knock-out events are contingent on a second asset touching a bar-
rier. For both cases closed-form solutions are provided. In addition,
a survey of the literature on barrier option pricing to that point is
provided. Hui (1996) deals with double barrier binary options in a
Black & Scholes (1973) setting. Besides, applicability of these op-
tions to trading is discussed. Roberts & Shortland (1997) deal with
barrier options in an altered Black & Scholes (1973) model, in which
the interest rate and volatility are deterministically time-dependent.
First, the authors provide explicit valuation formulas and then ap-
ply the result of Roberts & Shortland (1995) to estimate barrier
crossing times which are not available in closed-form, for example
if the barrier depends on time. In the paper by Haffner & Loistl
(1999) the authors provide an introduction and summary to the
basic properties and fields of application for barrier options. In par-
ticular, emphasis is put on the possibilities barrier options provide
when it comes to trading strategies. It is highlighted that fund man-
agers are enabled to both, a cost reduction in risk management as
hedging strategies are typically less expensive and improved invest-
ment opportunities as barrier options can increase the leverage of
an investment position and are tailored more closely to the needs
and demands of investors. In their follow-up article Haffner & Loistl
(2000) barrier options are revisited. The main focus of this paper
lies on hedging strategies for barrier options and the properties of
their Greeks in relation to those of plain vanilla options without a
barrier. Wystup (2002) provides an overview over the difficulties of
pricing exotic options in general, and barrier options in particular,
compared to the Black & Scholes (1973) model for standard options.
Moreover, a plethora of valuation formulas and Greeks for various
exotic options is provided.

Apart from general considerations of barrier options the question of
hedging these products has spurred a lot of research as well. It can
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be loosely classified in two strands, static hedging and more complex
hedging.

Bowie & Carr (1994) present static hedging strategies for barrier
options. These hedges revolve around forming exact hedges of the
exotic options by using standard options. In this way valuation boils
down to the valuation of standard call and put options and hedging
costs are minimized as the hedge does not require continuous rebal-
ancing of the hedging portfolio. Only at the time when the barrier
knocks in or out a one-time change is required. In the paper by Der-
man, Ergener & Kani (1994) approximate static replication is used
for exotic options, which are decomposed into standard options. In
this way hedging can be attained without continuous rebalancing of
the replicating portfolio as well. Carr, Ellis & Gupta (1998) provide
a static hedging strategy for barrier options which is based on a
generalized put-call-symmetry.161 The strategy allows for constant
volatility and volatility being a function of the forward price. The
benefit of this methodology lies in the high sensitivity to volatility
changes exhibited by barrier options. This vega risk renders dynamic
hedging rather expensive. Metwally & Atiya (2002) apply Brownian
bridge techniques and Taylor expansion to approximate the result-
ing integrals in the context of Monte Carlo simulation to speed up
classic Monte Carlo valuation by factor 100.162 AitSahlia, Imhof &
Leung Lai (2004) adjust classic binomial and trinomial tree meth-
ods to cope with the optimal stopping problem posed by American
knock-in options. The necessity for adjustment stems from the fact
that the American variant of barrier options does not allow for a de-
composition of the type given in equations (3.3.0.10) and (3.3.0.11),

161Carr, Ellis & Gupta (1998) prove that for frictionless markets, no arbitrage
and zero drift C(K1)/

√
K1 = P (K2)/

√
K2, where the forward price F satisfies√

K1K2 = F .
162According to Glasserman (2004) a Brownian bridge is a continuous-time stochas-

tic process whose probability distribution coincides with the one of a Brownian
motion contingent on B(0) = B(1) = 0.
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since the respective suprema of exercise are generally attained at dif-
ferent times. Furthermore, this also renders the American knock-in
option pricing problem non-Markovian which leads to a break-down
of the methods established for solving free boundary value problems.
Bernard, Le Courtois & Quittard-Pinon (2005) develop a numerical
inverse Laplace transform technique to price Parisian options and
derive their Greeks.163 In Nalholm & Poulsen (2006), static hedges
for barrier options are compared to dynamic delta hedging strategies
in terms of model risk. The static hedges include standard options as
hedging instruments and are found to outperform classical dynamic
hedging. Furthermore, these results for the Black & Scholes (1973)
model are shown to carry over to more sophisticated extensions like
the CEV model, the Heston (1993) stochastic volatility model, and
the Merton (1976) jump-diffusion model.

Geman & Yor (1996) draw on the double barrier option results by
Kunitomo & Ikeda (1992) who derive a representation as an infinite
series. In their paper, though, the Laplace transform w.r.t. to matu-
rity of the double barrier option price is expressed in comparatively
simple fashion using the methodology of Geman & Yor (1992) and
Geman & Yor (1993) for Asian options.164 Using an efficient inverse
Laplace transform, the option price is readily attained. Numerical
considerations suggest that practical merit lies in the observation of
hedging being as efficient as pricing, although both suffer from the
downsides and weaknesses of Monte Carlo simulation as discussed
in Section 3.2.2.4. Pelsser (2000) is concerned with the valuation of
double barrier options paying a rebate. Furthermore, double knock-

163These options have been suggested by Chesney, Jeanblanc-Piqué & Yor (1997)
and are generalizations of standard barrier options in the fact that their payoff
depends on the time the underlying spends beyond the barrier. More precisely,
they are activated or knocked out once the underlying has stayed beyond the
barrier for a pre-specified amount of time.

164According to Arendt, Batty, Hieber & Neubrander (2011) the Laplace trans-
form F of a function f is given as the integral transformation F (s) =R∞
0 exp(−st)f(t)dt where s ∈ C.
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in barriers are discussed. The authors use Laplace transforms to
option prices, but contrary to Geman & Yor (1996) they derive an-
alytical rather than numerical solutions. To obtain their result they
employ contour integration.165 Carr & Chou (2002) value complex
barrier options by hedging them with standard options, which only
have to be rebalanced at certain times. The technique is applied
to partial barrier options, forward starting barrier options, dou-
ble barrier options, rolling options, ratchet options, and lookback
options166. In their paper, Gobet & Kohatsu-Higa (2003) employ
Malliavin calculus to the pricing of barrier and lookback options
and the determination of their Greeks.167 The improvements re-
volve around an additional dominating process to cope with the lack
of differentiability of minimum and maximum processes required to
represent these entities. In a numerical study in the Black & Scholes
(1973) world, the method is shown to be superior to the classic ap-
proximations using finite differences.

Besides, there is also a strand of research concerned with discretely
rather than continuously monitored barrier options, as they are
more commonplace in the market but more difficult to price. Such
options are treated by Broadie, Glasserman & Kou (1997). Contrary

165Contour integration is a technique from the fields of complex analysis and the-
ory of functions, which deals with integrals along paths in the complex plane.
More information about these integrals can be found in the textbook by Stalker
(1998).

166According to Musiela & Rutkowski (2005) forward starting options are options
which start at a pre-specified time in the future. They are comprehensively ana-
lyzed in a stochastic volatility, stochastic interest rate model by van Haastrecht
& Pelsser (2011). Ratchet options or cliquet options (terms which can be used
interchangeably) are a series of such forward starting options, for which Kjaer
(2006) provides efficient solution schemes. The payoff of lookback options gener-
ally depends on the minimum or maximum of the underlying during the option’s
lifetime.

167Malliavin calculus is the extension of calculus of variations to stochastic pro-
cesses. It can, for example, be used to define derivatives for random variables
and has applications in the field of mathematical finance. In the latter it can
be used to derive the Greeks of financial derivatives. More information about
Malliavin calculus can, for instance, be found in di Nunno, Øksendal & Proske
(2009).
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to their continuously monitored counterparts these options can only
knock out or in respectively at certain pre-defined points of time in
the future. However, no closed-form valuation formulas exist and
those for continuously monitored barriers exhibit inaccurate valua-
tion results. This problem is tackled by a so-called continuity cor-
rection, i.e. the discrete option is subjected to a shift in the barrier
and afterwards dealt with as if it were continuous. Furthermore, con-
vergence is proved and the accuracy further assessed in numerical
examples. Broadie, Glasserman & Kou (1999) price path-dependent
options which are based on extremal values of the underlying in a
Black & Scholes (1973) setting. For the discrete-time versions they
develop correction terms applied to the continuous-time counterpart
and numerical alterations to further enhance accuracy. These correc-
tion terms can be interpreted as shifts to the underlying, the barrier
or the strike. Pricing examples of the methodology include look-
back, barrier and hindsight options. Kou (2003) extends the results
on discretely monitored barrier options by Broadie, Glasserman &
Kou (1997) to all eight of their barrier option cases. Furthermore,
he suggests a simpler proof which exploits methods from the field
of sequential analysis as presented by Siegmund & Yuh (1982).168

Eventually, the result is very similar to the continuity correction
brought forth by Hörfelt (2003). The latter adds to the research
by Broadie, Glasserman & Kou (1997) and determines pricing for-
mulas for up-and-out calls and puts, down-and-out calls and puts
as well as double barrier options, if they are discretely monitored.
The results and approximations are further validated by numerical
experiments.

168Sequential analysis is a method of statistical hypothesis testing, in which the
sample size is adaptively determined as part of the calculation. This is attained
by pre-defined stopping criteria once significant results are available. In this way
the required sample size can be considerably reduced. Examples for sequential
analysis and more information are provided in Wald (1947) and Arrow, Blackwell
& Girshick (1949).
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3.4 Assumption of Efficient Markets

Throughout the sections on option pricing models and valuation
techniques we have always assumed perfect and frictionless markets
as set out in Section 3.1.1. In the absence of frictions such as trans-
action costs, Oehler & Unser (2002) point out that the procurement
of information does not incur any costs and thus it is rational for
all market participants to gather all available information. Natu-
rally, this entails homogeneous expectations, freedom of arbitrage
and market efficiency. The latter states that all asset prices reflect
all available information, which wipes out the opportunity to aver-
age excess returns above the market average.

Not only is this a somewhat idealized view of the world but to a
certain degree also a debated one. If market efficiency, for which
there is a plethora of literature and tests, was refuted, this would
simultaneously cast doubt on the validity of the presented option
pricing models. Therefore, this section provides a closer look at cer-
tain forms of market efficiency and at the extent to which market
efficiency holds. Of course, market efficiency is one of the most inten-
sively researched topics in financial economics and therefore worth
numbers of theses, books, and articles solely focusing on that topic,
so that this section can by no means be a complete account.

Fama (1970a) distinguishes between three degrees of market effi-
ciency:

1) Weak-form tests: How well do past returns predict future re-
turns?

2) Semi-strong-form tests: How quickly do security prices reflect
public information announcements?
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3) Strong-form tests: Do any investors have private information that
is not fully reflected in market prices?

For all three of these types there is various literature both in favor
of and suggesting evidence against market efficiency.169 Dimson &
Mussavian (1998) provide an account of the literature on market
efficiency and summarize the results both in favor of the efficient
market hypothesis as well as anomalies which might be interpreted
as evidence against efficient markets. But as Fama (1970a) pointed
out, every research testing for market efficiency suffers from the
joint hypothesis problem. Since one investigates whether informa-
tion is correctly reflected by market prices one has to choose an
asset pricing model which specifies what a correct reflection means.
Unfortunately, when detecting deviations it is unclear whether they
stem from a flawed asset pricing model or from missing market ef-
ficiency.170

3.4.1 Tests for Return Predictability

According to Fama (1991) the majority of undecidedness to which
extent capital markets can be deemed efficient stems from the re-
search area of return predictability. This field covers the question
of how well stock returns can be predicted from returns observed in
the past or other economic variables such as price earnings ratios

169Jensen (1978) highlights and summarizes several early findings of anomalies
(e.g. abnormal returns when applying option-implied variances, abnormal re-
turns following disclosure information) found by researchers regarding a poten-
tial rejection of the efficient market hypothesis.

170Jarrow & Larsson (2012) have recently relaxed the joint-hypothesis problem
by showing that an efficient market is entirely characterized by the absence of
both, arbitrage and dominated securities. Furthermore, the authors draw on
their result and present tests for market efficiency which do not no longer suffer
from this problem.
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etc. Furthermore, research can be loosely classified as focusing on
short or long-term returns.

With respect to short horizons evidence is abundant that there is
positive first-order autocorrelation of daily stock returns. Exam-
ples include Fama (1965) or French & Roll (1986).171 This is borne
out and detailed further by Lo & MacKinlay (1988) and Conrad
& Kaul (1988). Regarding long horizons findings are more vague,
but nonetheless Fama & French (1988b) and Poterba & Summers
(1988) are able to establish negative autocorrelation for two to ten
year returns which is caused by a slow reversal of temporary sta-
tionary components of prices.172 Nonetheless, these studies tend to
suffer from low statistical power. Fama (1990) aims at explaining
the rational variation in stock returns by shocks to expected cash
flows, by variation in returns over time in the discount rates used
to price expected cash flows and by shocks to discount rates. All in
all, the author is able to account for round about 60% of the total
variation.

The statistical situation is better concerning the prediction power
of price earnings ratios, dividend yields and default spreads for high
and low-yield bonds as elaborated on by Keim & Stambaugh (1986),
Campbell & Shiller (1988), Fama & French (1988a) and Fama &
French (1989). The studies by Campbell (1987) and Chen (1991)

171In particular, the authors find that stock prices are more variable during trad-
ing hours. They believe this is caused by noise trading, as examined by Black
(1986), which leads to pricing errors caused by uninformed investors. These are
then reversed which becomes manifest in short-term negative autocorrelation
observed in daily returns.

172If short-term deviations from the efficient market price prevail, then in an effi-
cient market those deviations should be overturned in the long run. Therefore,
it should be possible to observe negative autocorrelation for time horizons be-
tween two and ten years. In their extremly long time series studies ranging back
to 1871 such autocorrelation could only be detected when including data from
the time of the Great Depression in the 1930s, certainly a time of extra-ordinary
market conditions. Therefore, these results tend to be supportive of the efficient
market hypothesis.
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focus further on term spreads.173 By Fama (1976a) it is examined
to which degree forward rates serve as good predictors of future spot
rates. According to Fama (1975) and Fama (1976b) uncertainty in
forward rates predominantly stems from the uncertainty about fu-
ture inflation rates. In particular, it is shown that the market reacts
in accordance with the observed monthly negative autocorrelation
and its time variance, which is in line with the hypothesis of efficient
markets. The paper by Fama & Bliss (1987) is further concerned
with the forecast power of forward rates for future spot rates. It is
found that with increasing horizon the forecasting power increases
as well which is attributed to slow mean reversion in interest rates.

Apart from testing market efficiency directly the joint hypothesis
problem lends itself to the possibility of testing asset pricing mod-
els instead. If such models, which assume efficient markets, describe
market prices and returns in a sufficiently accurate way, then this
might strengthen the efficient market hypothesis. In this strand of
literature Fama (1991) identifies three classes of models, the CAPM
by Sharpe (1964), Lintner (1965) and Black (1972), multifactor
models and consumption-based models as suggested by Rubinstein
(1976), Lucas (1978) and Breeden (1979).

With respect to the CAPM there is a plethora of literature de-
voted to assessing and mostly refuting the explanatory power of
market betas for cross-sectional expected returns. Jensen, Black &
Scholes (1972) and Fama & MacBeth (1973) find anomalies with
zero beta portfolios, which appear to expect higher returns than the
risk-free rate of interest. Roll (1977) and Stambaugh (1982) adduce
that stock market indexes are bad proxies for the market portfolios.

173More precisely, in Chen (1991) the author investigates variables that are corre-
lated with macro-economic circumstances, such as aggregate production growth
or dividend yields, are thus priced in an equilibrium due to Fama (1970b) and
can serve as forecast variables for future stock returns. The latter is based on
the fact that past and future growth of the gross national product are related
to the stock market premium in excess of the risk-free rate of interest.
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Chan, Hamao & Lakonishok (1991) and Fama & French (1992) find
a size effect that expected returns depend on the book-to-market
ratio. In general, though, this evidence is viewed as a shortcom-
ing w.r.t. the CAPM rather than market inefficiency. According to
Fama (1991) this is caused by the fact that anomalies are time per-
sistent and can at least in part be explained by rational multifactor
models.

Naturally, multifactor models have been developed which try to ex-
plain the observed expected returns via linear regression on multiple
factors. Most prominently, Ross (1976) introduced the APT (Arbi-
trage Pricing Theory). The subsequent debate about how many fac-
tors to include (Roll & Ross (1980), Shanken (1982), Chen (1983),
Lehmann & Modest (1988), Roll & Ross (1984), Dhrymes, Friend,
Gultekin & Gultekin (1984) and Trczinka (1986)) could not find a
definite and clear answer. Chen, Roll & Ross (1986) explicitly look
for economic variables which are correlated with returns. It turns out
that the industrial production growth rate and the spread between
high and low-grade bonds is most important while unexpected in-
flation and term spreads play only a minor role. Furthermore, these
variables are shown by Chan, Chen & Hsieh (1983) to resolve the
size effect. Fama (1981) deals with real returns of stocks, i.e. returns
adjusted for inflation, to further elaborate on the surprising finding
of a negative relation between inflation rates and stock prices. It
is found, that real returns of stocks prices are positively related to
real economic activity such as capital expenditures and that infla-
tion serves as a proxy for that. This is further interpreted in terms
of money demand theory and the quantity theory of money.174

The paper by Fama & French (1996) shows that most anomalies ob-
served in stock returns (dependence on size, past earnings, book-to-

174The quantity theory of money establishes a direct, proportional relationship
between prices and money supply.
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market value ratios etc.) disappear when using the Fama & French
(1992) three-factor model rather than the CAPM. Fama (1998) chal-
lenges inferences of market inefficiency based on long-term anoma-
lies. It is argued that on average there is neither an over- nor an
under-reaction to the arrival of information but both occur about
equally frequently. Furthermore, most such anomalies are not per-
sistent w.r.t. a change of methodology, i.e. they can only be detected
under very distinct circumstances. All in all, the author suggests to
uphold the efficient market hypothesis due to the lack of consistent
alternatives.

3.4.2 Event Studies

With respect to event studies Fama (1991) points out that finan-
cial economists have emphasized three sorts of events which are of
particular interest to researchers regarding market efficiency:

1) News about dividends,

2) Issue of new common stock,

3) Corporate control transactions.

Naturally, these events are predominantly questions of corporate
finance as in the stock markets the investigated market values of
corporations are determined.

If there is an unexpected change in dividends, this typically prompts
a change in the stock price of the same direction. This is reported
by Charest (1978a), Charest (1978b), Aharony & Swary (1980) and
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Asquith & Mullins (1983) and means that an increase in dividends
is good news for stock holders.175

It was further found by Asquith & Mullins (1986) that issuing new
common stock is bad news for the stock prices while redemptions,
according to Dann (1981) and Vermaelen (1981), are good news.176

Concerning corporate control transactions it is empirically well es-
tablished that mergers lead to large capital gains for the stock hold-
ers of the target company. Examples of such studies include, for in-
stance, Mandelker (1974), Dodd & Ruback (1977), Bradley (1980),
Dodd (1980) or Asquith (1983). For management buyouts the same
is confirmed by Dodd & Warner (1983) and Kaplan (1989).

The question then is how this relates to market efficiency. Since in ef-
ficient capital markets prices reflect available information, the reac-
tion time to the arrival of new information (event) is a natural mea-
sure for market efficiency. As Fama (1991) points out, event studies
contrary to other studies do not face the joint hypothesis problem
as the (potentially) abnormal returns following announcements by
far exceed the average daily returns (15% instead of 0.04%). Thus
the majority of studies is supportive of market efficiency.177

175From an economic perspective, this is interpreted in terms of signaling to the
market that the company is in good enough shape to not only maintain its level
of expenditures but also to disburse additional earnings to its shareholders.

176The economic intuition behind this phenomenon is information asymmetry.
When stocks are overvalued issuing new stock is more profitable. Similarly,
when using free cash flows to redeem stock, agency costs are lower.

177Nonetheless, there are also studies which argue differently, when evaluating stock
prices of acquiring firms, as it is e.g. done by Asquith (1983), Roll (1986) or
Franks, Harris & Titman (1991). But when considering slow adjustments the
joint-hypothesis problem arises again.
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3.4.3 Tests for Private Information

Scholes (1972) shows that (in line with common sense) corporate
insiders indeed have access to information not publically available.
When testing for private information three strands of literature have
emerged. The first is concerned with insider trading, the second with
securities analysts’ information and the third with professional port-
folio management. Regarding insider trading, Jaffe (1974) uses the
CAPM to show that there are insider profits in the market which can
even further be exploited by non-insiders after publication. Seyhun
(1986) agrees on that but not on the persistency of the opportu-
nities once they become public and attributes it to a size effect,
that small stocks tend to have high returns in the CAPM (see Banz
(1981)). Lloyd-Davies & Canes (1978) and Stickel (1985) provide ev-
idence that some analysts have private information that translates
to statistically significant price movements upon publication. This
means that they are compensated for the costs they incur to obtain
the beneficial information rendering the market less than perfectly
efficient. However, all investors are still rational and in line with
the noisy rational expectations hypothesis by Grossman & Stiglitz
(1980).178 Regarding professional portfolio management there is a
mixed picture.179 Jensen (1969a) and Jensen (1969b) find that pri-
vate information is atypical for professional fund managers. Hen-
riksson (1984) and Chang & Lewellen (1984) find that there can be
enough private information to offset management fees. Negative evi-

178Loosely speaking, the rational expectations hypothesis due to Lucas (1972)
states that the expectation of an asset price and the ex post realized one coin-
cide.

179Fama (1972) is concerned with methodologies of assessing investment perfor-
mance, i.e. the ability of fund managers to pick stocks from general benchmark
portfolios to which they allocate more funds because of higher return prospects.
Doing so serves as a measure of how well fund managers can materialize on
information not yet reflected in market prices. The notion of risk and return
used to assess performance is based on the capital market theory put forth by
Sharpe (1964) and Lintner (1965), i.e. the CAPM.
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dence, i.e. negative excess returns, for pension plans and endowment
funds are reported by Beebower & Bergstrom (1977) and Ippolito
& Turner (1987). The findings are further upheld if challenged for
biases in the Sharp-Lintner model. Chen, Roll & Ross (1986), Chan
& Chen (1991) and Fama & French (1992) present multifactor mod-
els that mitigate the anomalies of the Sharpe-Lintner model (size
effect, book-to-market value anomalies).

All in all, because of the joint hypothesis problem it is hard to reject
strong market efficiency but nonetheless the tendency is that there
are abnormal returns which can be attributed to insider information.

3.4.4 Behavioral Aspects

Over recent years another branch of finance literature has devel-
oped aiming to explain what is left unexplained by the tradional
asset pricing models such as the CAPM, the APT and multi-factor
models generalizing the aforementioned ones. Contrary to the estab-
lished models, this branch does not assume fully rational investors
but bounded rationality instead. MacKinlay (1995) deals with two
possible sources for missing explanatory power of the CAPM, miss-
ing risk factors on the one hand and the presence of irrational in-
vestors on the other hand. Furthermore, it is found that the latter
empirically serves better to fill the gap of explanation.

This discernment has spawned numerous literature to explore the
field of not fully rational finance. Barberis, Shleifer & Vishny (1998)
present a model that is able to capture both over- and underreac-
tions observed in empirical findings.180 The idea is that investors

180It is observed in the markets that upon the arrival of good news, for instance
earnings announcements, prices only slowly reflect this and thus underreact (see
for example Cutler, Poterba & Summers (1991)). If, however, there is a series of
good announcements prices seem to overreact in the long run (see for instance
Fama & French (1988b) or Poterba & Summers (1988)).
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study time series and tend to neglect deviations from the seemingly
prevailing model. In the paper by Daniel, Hershleifer & Subrah-
manyam (1998), under- and overreactions in securities markets are
investigated. The authors determine two sources to explain the phe-
nomena, investor overconfidence and biased self-attribution. Hong
& Stein (1999) add to the approaches pursued by Barberis, Shleifer
& Vishny (1998) and Daniel, Hershleifer & Subrahmanyam (1998).
However, the focus lies on the interaction between market partici-
pants rather than cognitive biases that bound the assumed investor
rationality. The model is applied to investigate underreaction in the
short run, caused by gradual diffusion of information, and overre-
action in the long run implied by too simple models used by those
chasing this trend. Campbell (2006) covers the relatively little ex-
plored field of private households and analyzes their actual behav-
ior compared to what they should rationally do. Contrary to pro-
fessional investors or corporations private households are subject to
more factors and aspects from behavioral finance as they face higher
market frictions and exhibit a much wider spread between educated
investors and, how the author calls it, naive investors.

In more recent literature Barberis & Xiong (2012) develop a model of
realization utility181 and are able to explain among others the dispo-
sition effect182 and the relatively low investment success of individ-
uals. The paper by Fryman, Barberis, Camerer, Bossaerts & Rangel
(2010) employs neural data in addition to a behavorial model to ex-
plain investors’ behavior. The results confirm the realization utility
hypothesis and lend themselves to explaining a commonly observed
disposition effect. Empirically overcondidence is found to produce

181The term realization utility describes the observation that investors appear to
gain or lose utility from merely realizing gains or losses on the their investments
in addition to that based on the current level of wealth. Examples include Shefrin
& Statman (1985) and Barberis & Xiong (2009).

182The disposition effect refers to the often observed behavior that investors are
willing to realize gains after stocks increased while they are reluctant to realize
losses after a drop in stock prices.
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negative autocorrelation in the long run and additional volatility.
Biased self-attribution in turn causes positive short-run autocorre-
lation.



Chapter 4

Optimal Control

Theory and Optimal

Stopping

In this chapter we give an account of optimal control theory and op-
timal stopping w.r.t. the aspects we need below in Chapters 5 and
6 to numerically deal with OETCs. For this purpose the chapter
is structured in the following way: Section 4.1 presents the theo-
retical formulation of optimal control problems and corresponding
results in continuous time, Section 4.2 deals with discretizations of
the problems and Section 4.3 concludes with the actual solution
methods.
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4.1 Optimal Control Problems

In this section we present formulations and theoretical results for
optimal control problems. Section 4.1.1 sheds light on the dynamic
programming equations, which are the focal point of optimal control
theory as they govern the optimal value function. Section 4.1.2 deals
with Pontryagin’s Minimum Principle, which is an important theo-
retical reformulation of optimal control theory. In Section 4.1.3 the
theory of the previous two sections is applied to optimal stopping
problems, which are a special case of optimal control problems.

4.1.1 Dynamic Programming Equations

This section establishes the dynamic programming equations, which
are satisfied by the value function of a stochastic control problem
in continuous time.183 This process consists of three parts:

1) Precise formulation of the optimal control problem and its ingre-
dients

2) Establishing the principle of optimality

3) Deduction of the Hamilton-Jacobi-Bellman equations using
stochastic calculus.

The starting point is the mathematical definition of a discount func-
tion for a vector-valued process on the time interval I, which can
be thought of as the option’s lifetime, i.e. I = [0, T ].

183In this thesis we only present the continuous time formulation as we throughout
the work assume a continuous time market model for the dynamics of the un-
derlying stochastic variables. Furthermore, we would like to point out that the
term dynamic programming equations is used interchangeably with Hamilton-
Jacobi-Bellman equations in continuous time and Bellman equations in discrete
time. In this thesis we also adhere to this convention.
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Definition 4.1.1 A discount function β : I × RN → RN has the
following properties:

i) β(0, x) = x ∀x ∈ RN

ii) β(t, β(t̄− t, x)) = β(t̄, x) ∀ t, t̄ ∈ I, x ∈ RN

iii) β(t, s x+ y) = s β(t, x) + β(t, y)

iv) β(t1 + t2, x) = β(t1, x)β(t2, x).

Though appearing technical at first glance, these properties are
quite intuitive. The first means that there is no instantaneous dis-
count, the second means that intermediate discount is irrelevant, the
third means linearity in the claim to be discounted, i.e. claims can
be discounted separately, and the fourth pertains to the exponential
form of the discount factor. It is readily seen that these properties
are indeed satisfied by the discount function β(t, x) = exp(−rt)x,
where r is the riskless rate of return and the product is to be inter-
preted componentwise.

Besides, the notion of a control variable has to be properly defined,
for which we follow Kushner & Dupuis (2001).

Definition 4.1.2 A control is a mapping u : I×Ω→ A(x, t) which
assigns a control action for any time t and state x from the set of
admissible actions A(x, t) for that combination of state and time,
which is to be specified separately. In the case of explicit dependence
on x the control is referred to as feedback control.

In this definition Ω is the state space of the stochastic process X
equipped with a filtration, as it is defined in Section 3.2.2.5. How-
ever, to establish a formulation as a stochastic control problem we
have to allow for dependence of the coefficient functions on the con-
trol variable and we have to impose several technical conditions.
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We assume the control function u : I × Rd to be progressively
measurable, the coefficient functions b : I × Rd × Rd → Rd and
σ : I × Rd × Rd → Rd×d to be continuous and for fixed third argu-
ments (the control action) α differentiable with the following bounds
on the derivatives

||bt||+ ||∇b|| ≤ C

||σt||+ ||∇σ|| ≤ C

||b(t, x, α)|| ≤ C (1 + ||x||+ ||α||)

||σ(t, x, α)|| ≤ C (1 + ||x||+ ||α||).

In this setting, C <∞ is a suitable constant. For open and bounded
sets Rα ⊂ Rd and RX ⊂ Rd admissibility of the control is specified
via

A(t, x) := {u : I×Rd → Rd |u(s,X(s)) ∈ Rα, X(s) ∈ RX∀s ∈ [t, T ]}.

Define now the functional J which is to be maximized as

J(t, x;u) := E[
∫ T

t

β(s− t, g1(s,X(s), u(s,X(s)))) ds

+β(T − t, g2(T,X(T ), u(T,X(T )))) | X(t) = x]

and the corresponding value function as

v(t, x) := max
u∈A(t,x)

J(t, x;u). (4.1.1.1)

In Section 3.2.2.5 it has been established that the value of an Amer-
ican option is given by the solution of an optimal stopping problem,
which has now been retained in a stochastic control problem formu-
lation. Here, the function g1 plays the role of a continuous payout,
which is not present in our application, i.e. g1 ≡ 0, and g2 =: g
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is the terminal payoff.184 In Karatzas & Shreve (2010) it is shown
that this v is indeed well-defined.185 The purpose of this section is
to further characterize this optimal control problem.

The Bellman principle or principle of optimality, as stated by Kush-
ner & Dupuis (2001), allows for a major modification

v(t, x) = max
u∈A(t,x)

E[
∫ T

t

β(s− t, g1(s,X(s), u(s,X(s)))) ds

+ β(t− t̄, v(t̄, X(t̄))) | X(t) = x]. (4.1.1.2)

The intuition behind this principle is that regardless of what hap-
pens now an optimal policy must be optimal from the next point
on. From a practical point of view this is of utmost importance as it
gives rise to a reduction of the maximization problem of the entire
time interval to a maximization over the next small time interval,
which will below allow for a solution technique backwards in time.

The derivation of the dynamic programming equation (which dates
back to the original work by Bellman (1954)) is carried out in two
stages:

1) Derivation without discounting, i.e. β(t, x) = x.

2) Modification for the presence of a discount factor.

According to Karatzas & Shreve (2010) the assumptions of Itô’s
lemma (cf. Lemma 3.1.1) are satisfied by the value function v. Ap-

184An example where both types of payouts occur, might be a cost minimization
problem of running a production machine. In this situation g1 can be thought
of as the immediate cost of running the machine and g2 would be the terminal
cost of replacing the machine.

185Being well-defined in this context means that the involved integrals, expecta-
tions and maxima actually exist.
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plication yields

v(t̄, X(t̄)) = v(t,X(t)) +
∫ t̄

t

vt(s,X(s))ds

+
∫ t̄

t

d∑
k=1

vXk
(s,X(s))dXk(s)

+
1
2

d∑
k,l,m=1

∫ t̄

t

σkm(s,X(s), u(s,X(s)))

σlm(s,X(s), u(s,X(s)))vXlXk
(s,X(s), u(s,X(s))) ds.

For the ease of notation we introduce σ̄ := σσT , i.e. σ̄kl =∑d
m=1 σkmσlm. On the other hand, by virtue of Bellman’s principle

(4.1.1.2) we have

v(t,X(t))− v(t̄, X(t̄))

= max
u∈A

E

[∫ t̄

t

g1(s,X(s), u(s,X(s))) ds | X(t) = x

]
.

Adding up establishes

0 = max
u∈A

E[{g1(s,X(s), u(s,X(s)))

+vt(s,X(s))

+
1
2

d∑
k,l=1

σ̄kl(s,X(s), u(s,X(s)))vXlXk
(s,X(s))}ds

+
d∑
k=1

∫ t̄

t

vXk
(s,X(s))dXk(s)|X(t) = x].

Inserting the assumptions about X gives us

0 = max
u∈A
{E[
∫ t̄

t

{g1(s,X(s), u(s,X(s))) + vt(s,X(s))



4.1 OPTIMAL CONTROL PROBLEMS 167

+
d∑
k=1

bk(s,X(s), u(s,X(s)))vXk
(s,X(s))

+
1
2

d∑
k,l=1

σ̄kl(s,X(s), u(s,X(s))) vXlXk
(s,X(s))}ds | X(t) = x]

+E[
∫ t̄

t

σkm(s,X(s), u(s,X(s))) vXk
(s,X(s))dWm(s) | X(t) = x]}.

According to Evans (1983) the last summand vanishes. By division
through t̄− t we can apply the mean value theorem for integration,
which yields a ξ ∈ [t, t̄] such that

0 = max
u∈A

E[{g1(ξ,X(ξ), u(ξ,X(ξ))) + vt(ξ,X(ξ))

+
d∑
k=1

bk(ξ,X(ξ), u(ξ,X(ξ))) vXk
(ξ,X(ξ))

+
1
2

d∑
k,l=1

σ̄kl(ξ,X(ξ), u(ξ,X(ξ))) vXlXk
(ξ,X(ξ)) | X(t) = x].

Letting t̄ → t and exploiting the fact that everything is known
at time t so that the expectation operator can be dropped, finally
establishes

0 = vt(t, x) + max
u∈A

[g1(t, x, u(t, x)) + b(t, x, u(t, x)) · ∇v(t, x)

(4.1.1.3)

+
1
2

tr(σ̄Hess v(t, x))]

with terminal condition v(T, x) = g2(T, x). This equation can be
regarded (and solved) as a maximization w.r.t. u depending on x, b
and σ̄ and the v-derivatives and afterwards with the obtained value
for u as a PDE for v.
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To adjust for a discount factor we assume that β : [0, T ]×Rd → Rd

is given in multiplicative form, e.g. β(t, x) = exp(−rt)x, and its
restriction to [0, T ] be differentiable in (0, γ) for fixed x ∈ Rd and
constant w.r.t. varying x such that186

−∞ < lim
ξ→0

β′(ξ)
β(ξ)

=: ζ <∞.

This prompts adjustment of the value function (4.1.1.1) to

v(t, x) = max
u∈A

E[
∫ T

t

β(s− t) g1(s,X(s), u(s,X(s))) ds

+β(T − t) g2(T,X(T ), u(T,X(T ))) | X(t) = x]

and of Bellman’s principle (4.1.1.2) to

v(t, x) = max
u∈A

E[
∫ t̄

t

β(s− t) g1(s,X(s), u(s,X(s))) ds

+β(t̄− t) v(t̄, X(t̄)) | X(t) = x].

We now choose t̄ such that t̄− t < γ and repeat the previous calcu-
lations. The only difference is that Itô’s lemma is to be applied to
β(t̄− t) v(t̄, X(t̄)) so that the time derivative vt of v is replaced by

vt(s,X(s))→ β′(s− t) v(s,X(s)) + β(s− t) vt(s,X(s)),

while all other terms are just multiplied with β(s − t). As it also
appears as the discount of g1 we can divide by β(s− t) and adjust
equation (4.1.1.3) to

0 = ζv(t, x) + vt(t, x) + max
u∈A

[g1(t, x, u(t, x))

186In a slight misuse of notation we denote the restriction of β by β as well.
However, as the meaning ought to be self-explanatory whenever this substitution
is made everything else would unnecessarily complicate readability.
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+ b(t, x, u(t, x)) · ∇v(t, x) (4.1.1.4)

+
1
2

tr(σ̄Hess v(t, x))]

with the terminal condition v(T, x) = g2(x, T ) as before. For our
discount function β(t) = exp(−rt) we can also readily obtain the
coefficient ζ as

ζ = lim
ξ→0

β′(ξ)
β(ξ)

= −r.

So, in essence, discounting only introduces an additional reaction
term −r v(t, x) to equation (4.1.1.4), which is the desired dynamic
programming equation or Hamilton-Jacobi-Bellman equation.

Furthermore, the Hamilton-Jacobi-Bellmann equation can be viewed
as a necessary condition for the solution to the optimal control prob-
lem. From Fleming & Soner (2010) we take the following proposition
which establishes existence and uniqueness of solutions:

Proposition 4.1.3 Let A be compact, b, σ̄ and g1 together with
their partial derivatives continuous and bounded and g2 ∈ C3. If
σ̄ is uniformly parabolic, i.e.

d∑
k,l=1

σ̄kl(t, x, u) ξkξl ≥ c ||ξ||2 ∀ξ ∈ Rd, (t, x, u) and some c > 0,

then there is a unique solution to equation (4.1.1.4).

Proof - Proposition 4.1.3:

See Fleming & Soner (2010).
�

Although this establishes existence and uniquess, it reveals draw-
backs of studying the Hamilton-Jacobi-Bellman equation with PDE
methods when setting up suitable numerical techniques. Whereas
uniform parabolicity is quite standard in such a context and ensures
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non-singul-
arity of the matrix across the domain, the regularity assumptions
and boundedness might be rather hard to achieve in practice.

On the other hand the characterization of optimal control problems
via the Hamilton-Jacobi-Bellman equation is comprehensive as the
following sufficient condition shows:

Proposition 4.1.4 Let w ∈ C1,2 be a solution to equation (4.1.1.4)
satisfying

|w(t, x)| ≤ K (1 + ||x||m)

for some constants K,m. If a maximizing strategy u∗ in (4.1.1.4) is
admissible we have

w = J(·, ·;u∗) = v.

Proof - Proposition 4.1.4:

See Fleming & Soner (2010).
�

4.1.2 Pontryagin’s Minimum Principle

In addition to the dynamic programming equations there is also a
deep theory pertaining to a further characterization of the optimal
control variate. The key element in this theory is the use of an ad-
joint variable. As the solutions to dynamic programming equations
often lack the regularity required by a solution in the classical sense
Fleming & Soner (2010) present a characterization in terms of a
generalized notion of solutions.

Theorem 4.1.5 (Pontryagin’s Minimum Principle) Let u∗(·)
be an optimal control at (t, x), which is right-continuous at each
s ∈ [t, t1), and P (s) be the (so-called) adjoint variable satisfying
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i)

d

ds
Pj(s) = −

n∑
l=1

∂jbl(s, x∗(s), u∗(s))Pl(s)−∂jL(s, x∗(s), u∗(s))

ii)

P (s)·b(s, x∗(s), u∗(s))+L(s, x∗(s), u∗(s)) = −H(s, x∗(s), P (s))

iii)
P (t1) = Dg2(x∗(t1))

Then for each s ∈ [t, t1)

(H(s, x∗(s), P (s)), P (s)) ∈ D+v(s, x∗(s)),

where D+v(t, x) is the set of superdifferentials of v at (t, x) and
L = g1 + 1

2 tr(σ̄Hess v(t, x)) and the Hamiltonian H is given by

H(t, x, p) = sup
v∈A

(−b(t, x, v) · p− L(t, x, v)) .

Proof - Theorem 4.1.5:

See Fleming & Soner (2010).
�

A detailed proof of the Theorem 4.1.5 is omitted because we con-
sider the details of this intricate result outside the scope of this
thesis which is not intended to focus on the mathematical details
and subtleties but rather to provide the mathematics necessary to
accurately formulate and solve the pricing problems from the field
of financial economics.

Before giving an interpretation of this result we are due an expla-
nation of superdifferentials as they appear in the above theorem:
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Definition 4.1.6 Let W ∈ C0(Q̄) and (t, x) ∈ Q. The set of su-
perdifferentials of W at (t, x), denoted by D+W (t, x) is the collection
of all (q, p) ∈ R× Rn which satisfy

(q, p) = (wt(t, x),∇w(t, x))

(t, x) ∈ arg max{(W − w)(s, y)|(s, y) ∈ Q̄}

for some w ∈ C1(Q).

The benefit of the above theorem, which goes back to the work by
Pontryagin, Boltyanskii, Gamkrelidze & Mishchenko (1998), is that
it relates the minimization of the Hamiltonian to the set of superdif-
ferentials. More precisely, it states that the trajectory from taking
optimal control action at any time indeed renders the correspond-
ing Hamiltonian a superdifferential of the optimal value function.
Furthermore, this concept also covers the often missing regularity
of both solutions and ingredient components (such as assumptions
about market behavior) in a generalized setting.

From even another perspective it can be interpreted as a kind of
verification of the dynamic programming equation. Before, dynamic
programming was seen as a means of characterizing optimality and
thereby retrieving optimal solutions. Now we state that if optimal
trajectories are inserted in the Hamiltonian, it is indeed the differ-
ential that describes the optimal value function.

Another notion of Pontryagin’s principle is given by Fleming &
Rishel (1975). The authors relate it to the method of character-
istics known from the theory of hyperbolic and non-linear partial
differential equations.187 They point out that the partial differen-

187The method revolves around a reduction of the PDE to a family of ODEs,
from which the solution is obtained by integration of the initial data. Further
information about this method is provided by Evans (2010).
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tial equation involved in the minimum principle is same as the one
governing the characteristic strip, i.e. the family of ODEs.

4.1.3 Application to Optimal Stopping

Given the general characterization of optimal control problems in
Sections 4.1.1 and 4.1.2, researchers have focused on the particu-
lar control problem of optimally stopping a stochastic process. As
established in the aforementioned, these problems are quite com-
monplace not only in financial economics but in business in general.
As pointed out by Kushner & Dupuis (2001), optimal stopping prob-
lems are the simplest optimal control problems, since there is only
the choice between continuation and stopping. Hence, research has
been very fruitful with regard to characterization of solutions.

Dynkin (1963) characterizes the optimal stopping times and value
functions of general discrete-time Markov processes and provides an
extension to continuous time processes. In Taylor (1968) the author
deals with optimal stopping problems based on three different kinds
of reward or payoff functions, fixed reward at T , fixed reward and
continuously paid reward at and up to T , as well as average reward.
Most of the results are special cases of the optimal stopping prob-
lems considered by Dynkin (1963). Fakeev (1970) investigates the
optimal stopping problem from a technical mathematical perspec-
tive. In this regard, it is characterized under which circumstances the
optimum can be attained and how it can be approximated. More-
over, it is proved that it does not make any difference if one takes
the supremum over all stopping times or over the restrained set of
bounded stopping times.188 In the paper by Bather (1970) the op-
timal stopping of Brownian motion processes is addressed. In this

188More precisely, the author maximizes the expected reward from the underlying
stochastic process over all Markov times satisfying P [t ≤ τ < ∞] = 1 and
E[Xτ̄ ] < ∞ and shows that the resulting optimal value function v coincides
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context he re-establishes the fact, that an optimal value function sat-
isfies the heat equation with appropriate boundary conditions and
furthermore, regularity assumptions regarding exit times from open
sets are relaxed compared to previous work, e.g. by Dynkin (1963).
Fakeev (1971) extends the results of Fakeev (1970), in which the
optimal reward is characterized as the essential supremum and the
smallest super-martingale majorizing the underlying process. Here
in a Markov case a characterization in terms of excessive functions
is provided.189 van Moerbeke (1974) discusses the solution of an op-
timal stopping problem with a linear reward or gain function and
accurately describes the stopping boundary. van Moerbeke (1976)
extends the results and minutely characterizes the stopping bound-
ary in dependence on the reward. Besides, he addresses regularity
questions concerning the stopping boundary and the reward and
states several examples of optimal stopping problems, e.g. from war-
rant pricing as introduced by Samuelson (1965) and McKean (1965).
In Bismut & Skalli (1977) previous results by Fakeev (1970) are re-
visited by virtue of proving existence of optimal stopping times and
completely characterizing them. This is done employing the meth-
ods and results suggested by Bismut (1977). Jacka (1993) presents a
new result on the known fact that the essential supremum S of the
expectation of a stochastic process X is the minimal supermartin-
gale dominating the underlying process X if S is a semimartingale.
He then applies this result to optimal stopping and obtains a smooth
pasting result in the sense of Section 3.2.1.

with the solution v∗, i.e. v∗ = v, where the considered Markov times only
satisfy P [τ ≥ t] = 1.

189The term excessive is defined by comparing functions with discounted expecta-
tions of that function. Excessiveness is then said to hold if the function exceeds
the discounted expected value even for a vanishing interest rate when the dis-
counting effect is minimal. Fakeev (1971) shows that the optimal value function
is the smallest excessive majorant of the payoff function.
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Besides this theory there is also work on more general processes
and more advanced results in the characterization of optimality.
Shepp (1969) is concerned with optimally stopping modified Wiener
processes. In particular, the optimal exercise rule for the process
W (t)/(a + t), a > 0, is shown to be the first time a certain thresh-
old is reached. Furthermore, the paper extends the characterization
of optimally stopping discrete-time processes (Xn)n where the Xn

share a common distribution and the payoff is given by the average of
the first n observations. The paper by El Karoui & Karatzas (1991)
deals with the Skorokhod problem of reflecting a process at a moving
boundary.190 It is shown that the value function can be described by
the integration of the solution to the corresponding stopping prob-
lem, i.e. stopping when first reaching the moving boundary. Dubins,
Shepp & Shiryaev (1993) are concerned with the optimal stopping of
Bessel processes.191 In particular, the stopping rules for maximum
gain functions are investigated and those maximal inequalities, i.e.
inequalities for the maximum of stochastic processes, are derived
which provide upper bounds for the expected maximum of the pro-
cess until a given stopping time. Pham (1998) deals with an optimal
stopping problem of a controlled jump diffusion process. It is proved
that the value function (supremum of expected discounted gain) is
a viscosity solution of the PIDE corresponding to the dynamic pro-
gramming equation. Besides, comparison and maximum principles
are investigated.

190The Skorokhod problem was originally introduced by Skorokhod (1961). A re-
cent summary and extensions are provided by Reed, Ward & Zhan (2011).

191According to Øksendal (2010) Bessel processes are the solutions to the SDE
dXt = dWt + n−1

2
dt
Xt

where Wt is an n-dimensional Brownian motion.
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4.2 Approximation Methods

In this section we introduce a class of approximation or discretiza-
tion methods for optimal control problems revolving around Markov
chains. The discretization process generally consists of two steps:

1) the derivation of the discrete-time Markov chain control problem
(cf. Section 4.2.1) and

2) the verification that the chain actually approximates the contin-
uous time problem (cf. Section 4.2.2).

4.2.1 Discrete-Time Markov Chain

In Section 4.1.1 we have established the dynamic programming
equations (4.1.1.4) which govern and characterize the solution to
stochastic optimal control problems in continuous time. For the sake
of tractability we recall that they read

0 = −r v(t, x) + vt(t, x) + max
u∈A

[g1(t, x, u(t, x))

+b(t, x, u(t, x)) · ∇v(t, x) +
1
2

tr(σ̄ Hess v(t, x))].

The subject matter of this section is now to describe a discretization
scheme which allows us to solve such an equation numerically. This
is done according to the following steps:

1) Establish a discrete time Markov chain Xh,δ, which approximates
the underlying stochastic process X in a suitable sense. What
this means is further specified in Section 4.2.2 below.192

192For a very general discussion of approximating random processes we refer the
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2) Establish the corresponding discrete time dynamic programming
equations and ensure that their solution converges to the solution
of the continuous time formulation.

3) Establish a numerical solution technique which actually solves
the discrete time version of the dynamic programming equations.

This section deals with the first and second items, before the next
section covers the approximating properties and the actual solution
scheme is presented in Section 4.3.

The way in which an approximating Markov chain is constructed
might appear slightly bohemian as it is a mixture of stochastic ap-
proximation techniques and classic PDE solution techniques. The
idea goes back to the works by Kushner (1990) and Kushner &
Dupuis (2001), who detailedly describe this procedure. It revolves
around a finite difference discretization of the Hamilton-Jacobi-
Bellman equation, but only to obtain a Markov chain on the cor-
responding grid and not to numerically solve the PDE itself. Given
the relatively poor regularity mentioned above in Section 4.1.1, the
latter approach does not appear to be promising at all.

The first step is to discretize equation (4.1.1.4) using the following
implicit finite difference approximations

∂iv(x, t, γ) → vh,δi (x, t, γ) :=


v(x+eihi,t,γ)−v(x,t,γ)

hi
if bi ≥ 0

v(x,t,γ)−v(x−eihi,t,γ)
hi

else

∂tv(x, t, γ) → vh,δt (x, t, γ) :=
v(x, t+ δ, γ)− v(x, t, γ)

δ

∂iiv(x, t, γ) → vh,δii (x, t, γ)

reader to the textbook by Kushner (1984). In his book he studies the approxima-
tion by weakly convergent diffusion and jump diffusion processes and presents
examples of applications from economically important fields other than finance,
such as operations research or engineering.
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:=
v(x+ eihi, t, γ) + v(x− eihi, t, γ)− 2v(x, t, γ)

h2
i

∂ijv(x, t, γ) → vh,δij (x, t, γ)

:=



2v(x,t,γ)+v(x+eihi+ejhj ,t,γ)+v(x−eihi−ejhj ,t,γ)
2hihj

−v(x+eihi,t,γ)+v(x+ejhj ,t,γ)
2hihj

−v(x−ejhj ,t,γ)+v(x−eihi,t,γ)
2hihj

if σ̄ij ≥ 0

− 2v(x,t,γ)+v(x−eihi+ejhj ,t,γ)+v(x+eihi−ejhj ,t,γ)
2hihj

+v(x+eihi,t,γ)+v(x+ejhj ,t,γ)
2hihj

+v(x−ejhj ,t,γ)+v(x−eihi,t,γ)
2hihj

else.

These approximations correspond to the suggestions made in Kush-
ner & Dupuis (2001).193 In particular, an upwind scheme is used for
the mixed derivatives, which makes the algorithm numerically more
stable.194 In order to come up with a discrete-time Markov chain,
we insert the finite difference approximations into the PDE corre-
sponding to the Bakshi, Cao & Chen (1997) model with logarithmic
prices, our most general model from Section 3.1.4, replace t by n/δ,
multiply with δ and obtain

(
1 +

δ

h1
|µ|+ δ

h2
κ|θ − V |+ δ

h2
1

V +
δ

h2
2

V σ2
V − |ρ|σV V

δ

h1h2
+ δr

)
v(x, nδ, u)

193An example of early work on this subject is Quadrat (1989), who finds that
for discrete time Markov chains and quadratic cost functionals the Hamilton-
Jacobi-Bellman equation collapses to a Riccati equation.

194In general, any other finite difference approximation can be used as well. The
resulting Markov chain would be different but it would still be an approximation.
The convergence properties of such other schemes are an area of open research.
For a recent example see Koutsoukos (2005).
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= v(x, nδ + δ, u) +
δ

h1
µ+ v(x+ h1e1, nδ, u)

+
δ

h1
µ− v(x− he1, nδ, u) + κ(θ − V )+ δ

h2
v(x+ h2e2, nδ, u)

+κ(θ − V )−
δ

h2
v(x− h2e2, nδ, u) +

1
2
V
δ

h2
1

v(x+ h1e1, nδ, u)

+
1
2
V
δ

h2
1

v(x− h1e1, nδ, u) +
1
2
V σ2

v

δ

h2
2

v(x+ h2e2, nδ, u)

+
1
2
V σ2

v

δ

h2
2

v(x− h2e2, nδ, u)

+
1
2
σV V

δ

h1h2
ρ+ v(x+ h1e1 + h2e2, nδ, u)

+
1
2
σV V

δ

h1h2
ρ− v(x+ h1e1 − h2e2, nδ, u)

+
1
2
σV V

δ

h1h2
ρ+ v(x− h1e1 − h2e2, nδ, u)

+
1
2
σV V

δ

h1h2
ρ− v(x− h1e1 + h2e2, nδ, u)

+
1
2
σV V

δ

h2
1

(−ρ+ − ρ−) v(x+ h1e1, nδ, u)

+
1
2
σV V

δ

h2
1

(−ρ+ − ρ−) v(x− h1e1, nδ, u)

+
1
2
σV V

δ

h2
2

(−ρ+ − ρ−) v(x+ h2e2, nδ, u)

+
1
2
σV V

δ

h2
2

(−ρ+ − ρ−) v(x− h2e2, nδ, u).

So far we have only discretized the PDE and rearranged the equation
but we can already obtain the desired discrete-time Markov chain.
In the next step we identify transition probabilities by looking at
the coefficients of the respective values at the grid points of the
value function v. Because of the discretization the equation at each
point only involves neighboring states.195 In addition, we exploit the

195This is a very desirable property. Its consequence is that the iteration matrices
below are rendered sparse, i.e. there are only five diagonals filled in the matrices.
By virtue of that property, iteration speed is significantly enhanced compared
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relationships

a+ + a− = |a|

a+ − a− = a,

where a+ is the positive part and a− the negative part of a real
number a given by

a+ = max(a, 0)

a− = −min(a, 0).

Doing so yields the following diffusive transition probabilities and
interpolation interval

p̂h,δD ((x, nδ), (x+ hY eY , nδ)|γ)

=

(
r − λQµQ − 1

2Vt
)+ δ

hY
+ 1

2Vt
δ
h2

Y
− 1

2σV Vt|ρ|
δ

hY hV

Qh,δ(x)

p̂h,δD ((x, nδ), (x− hY eY , nδ)|γ)

=

(
r − λQµQ − 1

2Vt
)− δ

hY
+ 1

2Vt
δ
h2

Y
− 1

2σV V |ρ|
δ

hY hV

Qh,δ(x)

p̂h,δD ((x, nδ), (x+ hV eV , nδ)|γ)

=
κ(θ − Vt)+ δ

hV
+ 1

2V σ
2
V

δ
h2

V
− 1

2σV Vt|ρ|
δ

hY hV

Qh,δ(x)

p̂h,δD ((x, nδ), (x− hV eV , nδ)|γ)

=
κ(θ − Vt)− δ

hV
+ 1

2V σ
2
V

δ
h2

V
− 1

2σV Vt|ρ|
δ

hV hY

Qh,δ(x)

to a full matrix. If we were to employ an alternative finite difference scheme
involving more than the directly neighboring states this would lead to additional
diagonals in the interation matrix being filled.
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p̂h,δD ((x, nδ), (x+ hY eY + hV eV , nδ)|γ) =
1
2σV Vt

δ
hY hV

ρ+

Qh,δ(x)

p̂h,δD ((x, nδ), (x+ hY eY − heV , nδ)|γ) =
1
2σV Vt

δ
hY hV

ρ−

Qh,δ(x)

p̂h,δD ((x, nδ), (x− hY eY + hV eV , nδ)|γ) =
1
2σV Vt

δ
hY hV

ρ−

Qh,δ(x)

p̂h,δD ((x, nδ), (x− hY eY − hV eV , nδ)|γ) =
1
2σV Vt

δ
hY hV

ρ+

Qh,δ(x)

p̂h,δD ((x, nδ), (x, nδ + δ)|γ) =
1

Qh,δ(x)

∆t̂h,δ(x, γ) =
δ

Qh,δ(x)
,

where Qh,δ(x) is defined by

Qh,δ(x) = 1 +
δ

hY

(∣∣∣∣r − λQµQ − 1
2
Vt

∣∣∣∣)+
δ

hV
(κ|θ − V |) +

V δ

(
1
h2
Y

+
σ2
V

h2
V

− |ρ|σV
hY hV

)
.

Due to this choice of the finite differences, which only involve neigh-
boring states for discretization at each point, a chain is constructed
which can also only change to neighboring states in a diffusion
model. In the presence of jumps these diffusive transition proba-
bilities have to be altered in order to account for movements to
non-neighboring states. The adjusted transition probabilities are ob-
tained by the following convex combination196 of the diffusive part
and the yet to be determined jump probability involving the jump
intensity λ

p(x, y|γ) = (1− λ∆t̂h,δ(x, γ)) p̂h,δD (x, y|γ) +

196By virtue of this convex combination we can treat the approximation of diffusion
and jump risk separately. In case there is no jump risk, i.e. the a vanishing jump
intensity λQ, the following approximation will collapse to the already established
diffusion part.



182 CHAPTER 4. OPTIMAL CONTROL THEORY

λ∆t̂h,δ(x, γ) Π{ρ|qh(x, ρ) = y − x}.

The jump probability can be computed given the assumption of the
normal distribution of jumps in logarithmic prices. Denoting the
cumulative distribution function of the normal distribution by ΦN

the jump probability then is computed as

Π{ρ|qh(x, ρ) = y−x} =
(

ΦN(y1 − x1 +
1
2
h)− ΦN(y1 − x1 −

1
2
h)
)
.

These values are readily available by numerical integration. Define
the Markov chain {ξh,δn }n as the chain with the transition proba-
bilities given above and the states given by the grid Sh. In Section
4.2.2 local consistency is established.

What remains to be done is the replacement of the dynamic pro-
gramming equations for the optimal value function by the ones for
its discrete-time counterpart Zh,δ. In the latter case the expected
value is the probability weighted average of the neighboring states
to which traversal of the chain is possible. At the same time we
can incorporate the decision between stopping and continuing in a
0−1-parameter γ. The discrete version of the dynamic programming
equations reads

Zh,δ(x, nδ) = max(g(ξh,δn ), Eh,δx,t Z
h,δ(ξh,δn ))

= max
γ

[
∑
y

p̂h,δ(x, nδ; y, nδ|γ)Zh,δ(y, nδ)

+ exp(−rδ) p̂h,δ(x, nδ;x, nδ + δ|γ)Gh,δ(x, nδ + δ)],

where γ ∈ {0, 1} represents the choice between stopping and con-
tinuing and p̂h,δ are the probabilities of movement to the respective
states. The intuitive interpretation of the procedure is that we de-
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cide between the better of two alternatives: immediate exercise and
the expected value of another step on the grid.

Moreover, we face the usual problem of having to truncate the com-
putational domain because we can treat an infinite domain in neither
the stock price dimension nor the volatility direction. This trunca-
tion comes along with adding an obligatory stopping condition at
the truncation points in stock price direction and a reflecting bound-
ary in the volatility direction due to mean reversion. Such compul-
sory stopping means that we immediately exercise the option if we
ever exceed a pre-determined maximal stock price Smax. This oblig-
atory stopping threshold can be chosen such that the numerical
solution is virtually independent of it. Technically speaking we can
deal with this by adding a vector which can be interpreted as the
expected additional exercise value when exceeding the domain. If
x ∈ Sh denotes the present state of the chain on the computational
grid this vector reads

Ĉ(x, n+ 1, γ) =
∑
y∈∂Sh

p̂h,δ(x, nδ; y, nδ|γ) g(y, nδ) +

exp(−rδ) p̂h,δ(x, nδ;x, (n+ 1) δ|γ)

Zh,δ(x, (n+ 1) δ).

The value function is replaced by the payoffs if there is a step onto
the stopping boundary. They can be considered as additional ar-
tificial payoffs which are imposed by and associated with obliga-
tory stopping. If we further introduce a transition matrix Rh,δγ =
p̂h,δ(x, nδ; y, nδ|γ) we can rewrite the dynamic programming equa-
tions in the following compact matrix-vector notation

Zh,δ(x, nδ) = max
γ

[
Rh,δγ Zh,δ(x, nδ) + Ĉ(x, n+ 1, γ)

]
. (4.2.1.1)
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Intuitively, the approximative chain traverses the grid, which is gov-
erned by the transition matrix Rh,δγ and at each step decides whether
or not to continue. If the chain ever exceeds the boundary or if the
time horizon is reached, immediate stopping is imposed, which is
governed by the additional payoff vector Ĉ.

4.2.2 Local Consistency

By ∆ξhn := ξhn+1 − ξhn we define the increment of the approximating
Markov chain. Assume further that the following conditions hold
regarding the expectation and covariance structure of the approxi-
mating chain

Ehn[∆ξhn] = ∆th(x, u)b(x, u) +

O(hα∆t(x, u))

E[(∆ξhn − E[∆ξhn])(∆ξhn − E[∆ξhn])T ] = σ(x)σ(x)T∆th(x, u) +

O(hα∆t(x, u))

|ξhn+1 − ξhn| = O(h).

These conditions are introduced by Kushner (1990) and referred to
as local consistency conditions as the approximating chain locally
mimics the behavior of the underlying stochastic process. These ap-
proximating properties play a crucial role in the convergence proofs
of the payoff function. The exposition below is based on Kushner
(1990) and Kushner & Dupuis (2001) and is carried out for the pre-
viously mentioned interpretation of minimizing a cost functional.197

From now on assume that there is a compact set G such that the
process is forced to stop by the time it leaves the interior G0 of G,

197Without difficulty one sees that minimization and maximization problems are
equivalent by virtue of max f(x) = min(−f(x)) for every real valued function
f .
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i.e.
τ = inf

t
{X(t) /∈ G0},

unless it has been stopped previously. The purpose now is to find
the stopping time τ̄ ≤ τ such that

v(x) = inf W (x, τ̄).

To proceed we have to make several assumptions regarding the un-
derlying stochastic process:

1) X has a unique solution in the weak sense as described by Karatzas
& Shreve (2008) and Øksendal (2010).198

2) b(·) and σ(·) are bounded and continuous

3) q(·) is measurable and bounded, q(·, ρ) is continuous for each ρ

4) g1(·) and g2(·) are bounded and continuous199

5) G is compact and the closure of its interior.200

Theorem 4.2.1 Under the above assumptions and if infx∈G g1(x) =
k0 > 0, there exists an optimal stopping time τ ′ and

Ex[τ ′] ≤ max
y∈G

g2(y)
k0

.

198Essentially this amounts to the drift, dispersion and jump parameters satisfying
uniform Lipschitz conditions, as given in the same textbooks. Since we confine
our process to a compact set these conditions are, indeed, satisfied.

199As before, the conditions in items ii) through iv) follow from the confinement
to a compact set.

200According to Bredon (2010) the smallest closed set F with A ⊂ F ⊂ Y is called
the closure of the set A in a topological space Y .
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Proof - Theorem 4.2.1:
See Kushner & Dupuis (2001).

�

This theorem reduces the set of stopping times that must be con-
sidered as optimal ones will always have a bounded first moment.
Hence, others can be neglected. Given the discrete time version of
the dynamic programming equation the convergence theorem can
formulated as follows:

Theorem 4.2.2 If supx∈GEx[τ ′] < ∞ replaces the strict positiv-
ity of g1 or under the conditions of Theorem 4.2.1, where τ ′ =
inf{t|X(t) /∈ G}, we have V h → V .

The following proof is based on the ones given in Kushner (1990)
and Kushner & Dupuis (2001).

Proof - Theorem 4.2.2:

Let (ψh(·), ρ̄h) denote the continuous parameter approximating chain
and its optimal stopping time respectively and define wh(·) and
Nh(·) as

wh(t) =
∫ t

0

D+
h (s)P ′h(s) dMh(s)

+
∫ t

0

(I −Dh(s)D+
h (s)) dw̃(s)

Nh(t,H) =
∑

n:νh
n≤t

Iρn∈H .

Then the sequence (ψh(·), wh(·), Nh(·), ρ̄h) is tight and we can as-
sume that ρ̄h satisfies the upper bound from Theorem 4.2.1 for all h
and x ∈ G0. By virtue of the Markov property it follows for integral
k that

lim sup
h
Ex[ρ̄h]k <∞,
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which in turn renders the sequence of stopping times uniformly in-
tegrable. Let (x(·), w(·), N(·), ρ) denote the limit of a weakly con-
vergent subsequence. Then the limit process satisfies

X(t) = x+
∫ t

0

b(X(s))ds+
∫
σ(X(s)) dW (s) (4.2.2.1)

+
∫ t

0

∫
Γ

q(x(s−), ρ)N(ds dρ)

and there is a filtration Ft such that w(·) is an Ft-Wiener process,
N(·) is an Ft-Poisson measure, ρ is an Ft-stopping time and X(·)
is adapted to Ft. By the uniform integrability and the weak conver-
gence we have

Wh(x, ρ̄h) = vh(x)→W (x, ρ) ≥ v(x).

In order to obtain the reverse inequality we apply an ε-optimal stop-
ping rule. For this purpose, assume ε > 0 and note that there are
δ > 0 and T < ∞ such that the stopping times for (4.2.2.1) only
take the values {nδ, nδ ≤ T} with increasing the cost functional by
at most ε. Assume further that ρε is a stopping time for that re-
strained problem. Then this ε-optimal stopping time can be viewed
as defined by functions Fn(·) which are continuous in w for each
of the other variables and such that the probability law of ρε is
determined by P [ρε = 0] and for n > 1

P [ρε = nδ | w(s), N(s), s ≤ nδ, ρε > nδ − δ]

= Fn(w(pθ), N(pθ,Γqj), j ≤ q, pθ ≤ nδ).

Let ρh denote the stopping time for ψh(·) which is analogous to ρε.
Define σhn by

P [uh(σhn) = α | uh(σhi ), i < n, ψh(s), wh, Nh(s), s ≤ nδ]

= Fn(α, uh(σhi ), i < n,wh(pθ), Nh(pθ,Γqj),
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j ≤ q, pθ ≤ σhn)

and let the probability law of ρh be determined by P [ρh = 0] =
P [ρε = 0] and for n > 1

P [ρh = σhn | ψh(s), wh(s), Nh(s), s ≤ σhn, ρh > σhn−1]

= Fn(wh(pθ), Nh(pθ,Γqj), j ≤ q, pθ ≤ σ
h
n).

By weak convergence and the uniqueness of (4.2.2.1) the proof is
completed.

�

Finally, we point out that the approximating Markov chain indeed
satisfies the above local consistency conditions. This was first shown
by Kushner & DiMasi (1978).

4.3 Numerical Solution Methods

Given the discretized version (4.2.1.1) of the dynamic programming
equations as derived in Section 4.2.1 they have to be solved numer-
ically. For this purpose many of the iterative solution techniques
used for linear systems of equations, such as the Jacobi iteration or
the Gauß-Seidel iteration, can be used in accordingly adjusted form.

For these methods to be applied, we have to impose a set of fur-
ther assumptions suggested by Kushner & Dupuis (2001) for the
numerical procedure:

1) R and Ĉ are continuous in the control for each pair x and y from
the state space.

2) There exists an admissible feedback control u0(·) such R(u0) is
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a contraction and the infima of the costs over all admissible con-
trols are bounded from below.

3) R(u) is a contraction for any feedback control u(·) for which the
associated cost is bounded.

4) If the cost associated with the sequential use of the feedback con-
trols u1(·), . . . , un(·), . . ., is bounded, then R(u1) . . . R(un)

n↑∞→ 0

Because of the discounting involved in the setup of the iteration
matrix the contraction properties are satisfied. Furthermore, as we
assume a compact computational domain boundedness follows im-
mediately where required, as continuous functions take on there
maxima and minima on compact sets. This allows us to formulate
the Jacobi iteration.

Proposition 4.3.1 (Jacobi Iteration) Let u(·) be an admissible
feedback control such that Rγ is a contraction and make the above
assumptions. Then for any vector Z0 the sequence recursively defined
by

Zm+1(x) = max
γ

[∑
y

RγZm(y, n) + Ĉ(x, n+ 1, γ)

]
, (4.3.0.2)

n = N,N − 1, . . . , 0

converges to the unique solution of the optimal stopping problem.

Proof - Proposition 4.3.1:

Let um(·) be minimizing in (4.3.0.2) at step m then

Z1 = R(u1)Z0 + C(u1)

Zm = R(um) . . . R(u1)Z0 +
m∑
i=1

R(um) . . . R(ui+1)C(ui).
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This is the m-step cost for the policy which uses ui(·) when there
are still i steps to go and with terminal cost Z0. The maximizing
property in (4.3.0.2) yields that for any other admissible feedback
control sequence {ũm(·)} for which the payoff is bounded

Zm+1 ≥ R(ũm+1)Vm + C(ũm+1).

Iterating the last inequality yields

Zm+1 ≥ R(ũm+1) . . . R(ũ1)Z0 +
m+1∑
i=1

R(ũm+1) . . . R(ũi+1)C(ũi),

which is the payoff for an m + 1-step process under the controls
{ũi(·)} and terminal payoff Z0. Thus, Zm is indeed the asserted
maximal m-step payoff.

Since there is a unique solution to the discrete time formulation of
the dynamic programming equations (4.2.1.1) we can assume ũ(·)
to be a maximizer therein. Then we have

R(um+1)Vm + C(um+1) = Zm+1

≤ R(ũ)Zm + C(ũ)

R(ũ)V + C(ũ) = Z

≥ R(um+1)Z + C(um+1),

which implies that

R(ũ)(Z − Zm) ≥ (Z − Zm+1)

≥ R(um+1)(Z − Zm).

By iterating this latter set of inequalities we obtain

Rm+1(ũ)(Z − Z0) ≥ Z − Zm+1
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≥ R(um+1) . . . R(u1)(Z − Z0).

The boundedness of {Zm} follows from the contraction property of
R(ũ). Thus by R(um) . . . R(u1)

m↑∞−→ 0 it follows that Zm
m↑∞−→ Z.

�

Kushner & Dupuis (2001) point out that the algorithm can be en-
hanced by making use of new iterates or values for Zn(x) once they
become available and not only when they are available for all x.
This slight adjustment is called Gauß-Seidel iteration and can be
formulated as follows:

Proposition 4.3.2 (Gauß-Seidel Iteration) Let u(·) be an ad-
missible feedback control such that Rγ is a contraction and make
the above assumptions. Then for any vector Z0 the sequence recur-
sively defined by

Zm+1(x) = max
γ

[
∑
y<x

RγZm+1(y, n) +
∑
y≥x

RγZm(y, n)

+Ĉ(x, n+ 1, γ)], n = N,N − 1, . . . , 0

converges to the unique solution of the optimal stopping problem.

Proof - Proposition 4.3.2:

A proof of the theorem as well as elucidations of further properties
can be found in Kushner & Kleinman (1971) and Kushner (1972).

�
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Schweitzer, Puterman & Kindle (1985) present an aggregation-
disaggregation procedure to numerically solve equations as they
arise in semi-Markov reward processes. Applications include queue-
ing systems and controlling multiproduct inventories.201 The pro-
posed iterative algorithm is found to be superior to alternative suc-
cessive approximations. Chernoff & Petkau (1986) show that certain
classes of sequential decision problems collapse to optimal stopping
problems. These problems can than be numerically tackled by solv-
ing the corresponding free-boundary value problems for the heat
equation via further simplified optimal stopping problems. The au-
thors assess these approximations as good rough estimates of the
exact solution which can be exploited for the construction of conti-
nuity corrections for the original problems. In the working paper by
Tsitsiklis & van Roy (1997) the authors investigate optimal stopping
problems for discrete time ergodic Markov processes.202 They show
existence and uniqueness of solutions to Bellman’s equation and
provide a stochastic approximation which converges almost surely.

Kushner (1999) extends the Markov chain approximation methods
introduced by Kushner (1990) to diffusion processes with a control-
dependent variance. The key to efficient numerical solutions is to
allow for transitions to non-neighboring states. These states are
chosen based on the state and the control. Besides, convergence
of the suggested approximation is proved. In his PhD thesis, Engel
(2009) gives a comprehensive account of constrained optimization
problems. It is particularly concerned with PDE constraints and
quadratic functionals. For such problems a multigrid solver is devel-
oped, which includes smoothing and pre-conditioning. In addition,

201Queueing theory or the theory of queueing systems deals with the study of wait-
ing lines from a mathematical perspective. Economically relevant applications
among others include production processes, telecommunications and traffic en-
gineering. For an introduction the reader is referred to Gross, Shortle, Thomson
& Harris (2008) and Zukerman (2011).

202For a detailed explanation of the term ergodic we refer the reader to the intro-
ductory textbook by Norris (1997) on Markov chains.
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active set strategies are included that deal with sequential quadratic
programming.203

203Quadratic programming, similar to linear programming, deals with the math-
ematical optimization of quadratic functions under constraints. According to
Nocedal & Wright (2006) active sets are those constraints in mathematical pro-
gramming for which equality rather than inequality holds.





Chapter 5

Comparative Statics

Analysis of OETCs

In Section 2.3.2 we introduced OETCs and pointed out that they
can be interpreted as American-style options with a moving strik-
ing price. American options can in turn be understood as opti-
mal stopping problems. The former was expounded on in Section
3.2.2.5, while Section 4.2 provided solution techniques for these op-
timal stopping problems. In this chapter we will now combine these
results, rephrase the valuation of OETCs as an optimal stopping
problem, and carry out a comparative statics analysis.

This comparative statics analysis of OETCs contributes to the liter-
ature in several aspects. First, we analyze optimal exercise thresh-
olds. These thresholds depend on jump risk as well as product char-
acteristics such as the financing and gap parameters defined above
in Section 2.3.2. The amount of jump risk is positively related to
early exercise thresholds. Secondly, we argue that in the absence
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of jumps the existence of most OETCs cannot be explained at all.
Instead, even retail investors could generate more attractive payoff
structures by borrowing money and buying the underlying stock.
Thirdly, in a situation with a fixed investment horizon we identify
the early exercise premium as the difference between European and
American-style Turbo certificates. It turns out that the early exer-
cise premium significantly impacts the price. Finally, in an empiri-
cal study we investigate a sample comprising all 1, 345 long OETCs
traded in the market on July 16, 2010. On the observation day, all
but one (a knock-out) of the certificates should be exercised. This
result suggests that investors do not exercise certificates optimally,
which in turn leads to profits for the issuers.

This section builds on two strands in the literature. The first strand
is the growing literature on investment certificates mentioned above
in Section 2.3. Similarly to other authors, we take an option pricing
approach to Turbo certificates. Option pricing models have been
extensively discussed and analyzed in Section 3.1.

The second strand is the literature on American-style options for
which various solution techniques have been developed. These tech-
niques have been outlined above and include analytical approxi-
mations (cf. Section 3.2.2.1), binomial models (cf. Section 3.2.2.2),
finite differences (cf. Section 3.2.2.3), Monte Carlo simulation (cf.
Section 3.2.2.4), and optimal control theory (cf. Section 3.2.2.5).

5.1 Market Model

In Section 2.3.2 we introduced the mechanics, fundamentals and
characteristics of OETCs. In particular we pointed out in Propo-
sition 2.3.1 that the existence of these certificates can only be ra-
tionally explained if the underlying is subject to jump risk. The
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intuitive explanation for this is that in pure diffusion models financ-
ing costs r + z always exceed the expected rate of return r of the
underlying.

In the presence of discontinuous stock price processes the Turbo cer-
tificate could be replicated by investors who buy a stock and borrow
an amount of money equal to K0. However, the replication would
only be exact if the interest rate applicable for borrowing money is
equal to r + z and the LGD (Loss Given Default) in the knock-out
case is 100% (independently of the amount by which the strike is
undershot). In other words, the replication argument assumes that
all investors have the same credit quality and that they have no
further funds in order to cover losses in the event of a jump related
knock-out. Certainly, these are very restrictive assumptions.204 In
particular, investors with a better credit quality and consequently
lower credit spreads might find certificates attractive because they
allow for speculation on stock price increases while offering protec-
tion against downward jumps.205 This protection against downward
jumps provides option value to the owner of a certificate. The ques-
tion naturally arises under which conditions it is favorable to own
the certificate. The cost from the financing rate that is potentially
higher than the credit spread (or LGD of less than 100%) has to be
compared to the benefit of protection against downward jumps.206

204Despite the fact that these assumptions appear rather restrictive at first glance,
they are still natural to a certain degree. This is because on the one hand the
issuers of OETCs do not take the creditworthiness of buyers into account in a
way more sophisticated than assuming the same credit spread for every investor.
On the other hand, as Entrop, Scholz & Wilkens (2009) pointed out, this setup
allows the issuers to superhedge an OETC as long as z is greater than the
issuer’s own credit spread. Thus credit quality does not necessarily have to be
modeled explicitly.

205In this way, these investors are charged a higher credit spread than the one
corresponding to their respective creditworthiness. On the other hand this can
be justified to a certain extent by protection against downward jumps below the
striking price of the OETC.

206The latter further stresses the above explanation that only discontinuous stock
price processes provide option value to the holders of OETCs. If the stock price
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For simplicity and in order to analyze the impact of the protec-
tion against downward jumps we assume that investors and issuers
cannot default, i.e. both can borrow and lend at the risk free rate
of interest.207 Furthermore, there exists a risk-neutral measure Q.
Investors face an optimal stopping problem in which they want to
maximize the present value of the expected payoff

g∗(St) = max
T

EQ [exp(−r T ) g(ST , T )]

= max
T

EQ [exp(−r T ) max(ST −KT , 0)]

under the risk neutral measure. Investors need to determine the
optimal stock price threshold at which it is optimal to exercise the
certificate. This is similar to the problem faced by the holder of an
American-style call option. The main differences are that strike and
barrier are not constant and that certificates have infinite maturity.
In the following we assume that the model proposed by Bakshi, Cao
& Chen (1997) applies, i.e.

dXt =

(
dYt

dVt

)
=

(
r − λQµQX −

1
2Vt

κ(θ − Vt)

)
dt

+
√
Vt

(
1 0
ρσV

√
1− ρ2 σV

)
dWt

+

(
ξY dNY

t

0

)
,

process was continuous and there could thus be no jumps, downward jump
protection would be moot and investors would be charged positive credit spreads
z for a worthless option. In this case the whole investment would also boil down
to a simple leveraged investment in the underlying. In order to materialize those
investments require that the expected rate of return of the underlying (the
riskless rate of return r for risk-neutral investors) is higher than the financing
costs r + z.

207Potential default of issuers has a significant pricing impact as well. This is
demonstrated in Baule, Entrop & Wilkens (2005).
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where Yt = ln(St) and

ξY ∼ N(µQX , σ
2
X)

under the risk neutral measure. The vector of state variables con-
tains Yt and Vt which denote the log-stock price and its variance re-
spectively. Log-stock prices are exposed to jump and diffusion risk,
the variance is affected by diffusion risk only. By Wt we denote a
two-dimensional Wiener process, by NY

t a one-dimensional Poisson
process which can be interpreted as the jump counter, and ξY can be
viewed as the jump size which is normally distributed. The correla-
tion of diffusion risk between both state variables is ρ. The variance
has a long term mean θ to which it gravitates at a mean reversion
speed κ. The volatility of variance is σV . The risk neutral jump in-
tensity is λQ, i.e. intuitively speaking the risk-neutral probability of
a jump happening during a small time interval ∆ is roughly λQ∆.
By standard arguments we assume that the jump intensity and the
expected jump size as well as mean reversion speed and level need
to be adjusted when moving from the empirical measure P to the
risk neutral measure Q. The model nests the models of Black & Sc-
holes (1973), Heston (1993) and Merton (1976) as special cases. In
Table 5.1 we have summarized for which values of the parameters
the respective models are retrieved.

5.2 Presentation of Comparative Statics

The objective of a comparative statics analysis is two-fold. On the
one hand it aims at validating the chosen market model as suitable
for the problem at hand. This is attained by demonstrating that
the key parameters of OETCs, the optimal exercise threshold and
the early exercise premium, depend on the parameters of the model
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in an economically meaningful, explicable and intuitive way. Natu-
rally, these considerations are of a more qualitative than quantita-
tive character. On the other hand, the comparative statics analysis
provides insight to which extent the optimal exercise threshold and
the early exercise premium depend on the parameters of the model.

In our comparative statics analysis we investigate the pricing of
OETCs. Especially, the choice of the jump parameters is important
since jump risk is the main driver for optimal exercise thresholds.
In the base case scenario, we choose the following specification

λQ = 0.7

µQX = −0.14

σJ = 0.08

κ = 3.4

θ = 0.05

ρ = −0.77

r = 4%

K = 4, 800.

This generic selection is based on Eraker (2004) and Breuer (2008)
who conduct parameter estimations for various stock markets. More-
over, we assume that the Turbo certificate is written on a non-
dividend paying stock and that the financing and gap parameters
are given by

a = 1.5%

z = 3.0%.

The choice of the gap parameter a implies Kt = Lt

1+a for the strike.
These are typical contract specifications traded in the market, e.g.
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for Turbo certificates on the German stock market index DAX to
be analyzed empirically below in Section 5.3 and Chapter 6.

The outline of this section is as follows. First, we investigate the
effect of truncation of the computational domain. Second, we an-
alyze early exercise thresholds. Third, we follow Entrop, Scholz &
Wilkens (2009) and consider a fixed investment horizon. This allows
us to derive early exercise premiums.

5.2.1 Truncation of the Computational Domain

In order to compute numerical prices we have to truncate the com-
putational domain in the time direction without significantly in-
fluencing the results.208 In Figure 5.1 we have plotted the relative
pricing errors for several levels of stock prices, volatilities, and trun-
cation points in relation to the solution with a time horizon of 15
years. This truncation can be thought of as a comparative static
of the imposed maturity. In other words, we force stoppage at a
fixed maturity and examine how prices behave when changes to this
maturity are made.

In Figure 5.1, we observe that for examined stock prices and volatil-
ities the relative pricing error decreases when longer maturities are
taken into account. However, we notice that the overall level of er-
ror is extremely small suggesting convergence of the algorithm: In
the stock price case the pricing error amounts to less than 0.003%
and to less than 0.001% when considering different volatilities. Note

208The solution methods for optimal stopping problems presented in Section 4.3
work backwards in time and start at maturity. Therefore, we have to impose
an artificial maturity (which amounts to a fixed investment horizon) in a way
that does not alter results significantly. Taking into account that infinite-lived
derivatives have a vanishing theta risk, it becomes plausible that such a trun-
cation point is available. In contrast to the fixed investment horizon considered
by Entrop, Scholz & Wilkens (2009) we still allow for premature exercise and
do not render the valuation problem European-style.
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Figure 5.1: Comparative Statics Time-to-Maturity
This figure shows the relative pricing error compared to a 15-year
time horizon. The scenario considered is the above base case sce-
nario with gap size a = 1.5%, financing parameter z = 3.0%, jump
intensity λQ = 0.73 expected jump size of µQX = −0.1437, and jump
volatility σJ = 0.0822. The initial strike is 4, 800.

that the plot takes the shape of steps due to stepwise changes in
maturity. Interpolating with a different function is highly debat-
able, since we lack knowledge of the exact asymtotics of truncation.
All in all, changing the truncation point is virtually irrelevant and
we can we henceforth assume that the selection of maturity T = 5
yields meaningful results.
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5.2.2 Exercise Thresholds

Figure 5.2 shows optimal thresholds in various scenarios. Note that
these thresholds are the maximum stock prices at which investors
ought to hold the certificates. Intuitively, this can be explained by
the matter of fact that investors compare the option value from
protection against downward jumps with the financing parameter
z. If the option value is higher than the costs incurred by increasing
strike and barrier prices, investors are attracted by the certificate.
The option value is negatively related to stock prices because higher
stock prices render jumps below the strike level less likely. Therefore,
rational investors will hold the certificates until the underlying stock
price reaches the threshold level and then exercise it immediately.
As a result, we can identify situations in which it is not rational to
hold the certificates.

Figure 5.2a shows the relationship between the optimal exercise
threshold and the gap size a for various parameters of diffusion
volatilities σdiff =

√
V . We make two observations: First, there is a

negative relationship between the threshold and the gap size. The
larger the gap size the less probable a beneficial jump is and in
consequence holding the certificate is less attractive. Therefore, the
option should be exercised earlier. Second, diffusion volatility has a
positive impact on Turbos. Intuitively, high volatility increases the
probability of movements in the direction of the knock-out barrier
and thus into a region in which jumps below the strike are likely.

In Figure 5.2b, we analyze the impact of the financing parameter
on thresholds. The relationship is negative since a financing param-
eter is unattractive to investors. This is due to the fact that there
is higher cost associated with continuation and hence the threshold
lowers. Alternatively, we might state that a high financing param-
eter leads to less demand of the products due to smaller continua-
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tion regions. Again, volatility has a positive impact on certificates’
thresholds. This can be explained by a similar argument as above.

Figures 5.2c and 5.2d depict the relationship between thresholds and
jumps. Generally speaking, they confirm that thresholds increase
as negative jumps become more likely. In this case the protection
against downward jumps is more valuable and the continuation re-
gion grows. In Figure 5.2c more negative jumps are the result of an
increased jump intensity. In Figure 5.2d, decreases of expected jump
sizes shift the jump probability distribution to the left. The impact
of diffusion volatility can be interpreted as in Figures 5.2a and 5.2b.

Finally, the thresholds also allow investors to identify mispriced cer-
tificates: As mentioned above issuers communicate the price func-
tion (2.3.2.1) to the market. This price function reflects the intrinsic
value of the certificate. In the exercise region the intrinsic value is
larger than the continuation value, i.e. the certificate is offered at
a premium. Conversely, in the continuation region the no-arbitrage
price of the certificate is higher than the intrinsic value. Issuers offer
certificates at a discount to the no-arbitrage price.

5.2.3 Exercise with Fixed Investment Horizon

In contrast to Entrop, Scholz & Wilkens (2009) we find that jump
risk has a non-negligible impact on the valuation of Turbo certifi-
cates. This can be explained by the different valuation approach.
Entrop, Scholz & Wilkens (2009) price certificates as if they were
European-style options. They assume that investors have fixed in-
vestment horizons and hold certificates until either maturity or
knock-out. In contrast, the application of optimal stopping theory
allows us to take early exercise opportunities into account.
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In order to analyze the right of early exercise we follow Entrop,
Scholz & Wilkens (2009) and consider a fixed investment horizon.
The early exercise premium π is the difference between the value
of an American-style Turbo certificate ZAmerican and an otherwise
identical European-style counterpart ZEuropean. More precisely, we
define

π := ZAmerican − ZEuropean.

Entrop, Scholz & Wilkens (2009) take into account investment hori-
zons between 0.01 years (roughly three and a half days) and one
year. They report that gap risk is significant for very short invest-
ment horizons only. However, this might as well be due to the effect
that jumps “average out” for long investment horizons. This effect is
also known for standard (European) options. In order to investigate
this issue in greater detail we consider a rather long-term investment
horizon of five years.

Figure 5.3 shows the size of the early exercise premia. It turns out
that the impact is significant. For most strikes and spot prices, the
size of the premium is far more than 10% which exceeds bid-offer
spreads by far.209 In addition to that the impact of the model and
product characteristics were analyzed in similar fashion as in Sec-
tion 5.2.2. Sensitivities support the results, i.e. the probability of
large negative jumps is positively related to the early exercise pre-
mium. Furthermore, the impact of the gap size a and the financing
parameter z is negative. For the sake of brevity we do not report
them in greater detail here.

209Bid-offer spreads are usually very small for Turbo certificates. See also the dis-
cussion below in Section 5.4.
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Figure 5.3: Surface Plot of the Early Exercise Premium
This figure shows the early exercise premium with respect to spot
and strike price. Model parameters correspond to the base case sce-
nario, i.e. a = 1.5%, z = 3.0%, λQ = 0.73, µQX = −0.1437, and jump
volatility σJ = 0.0822.
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5.3 Empirical Study for a Single Day

For a first rough and brief empirical assessment of OETCs we con-
sider certificates on the German stock market index DAX. This
empirical assessment is limited to the consideration of a single day.
A detailed empirical study over a three-year period will follow below
in Chapter 6. Nonetheless, such a one-day snapshot is suitable to
sharpen one’s view of what to look for in a detailed investigation.

Conducting an empirical analysis of Turbo certificates written on
the DAX presupposes the availability of a market model and its
corresponding parameters, which is attained by means of estimation.
In light of the empirical study presented in Chapter 6 we present the
estimation procedure of how to infer market and model parameters
from options traded at EUREX in Section 5.3.1. This is done in a
sufficiently general way to cover the situation of Chapter 6, but in
a more general way than needed for the discussion of the one-day
snapshot of OETCs written on the DAX taken on July 16, 2010 in
Section 5.3.2.

5.3.1 Estimation Procedure

In order to be able to apply the above optimal stopping framework
to real-world market data we first have to choose a market model.
Our model of choice is the Merton (1976) jump diffusion model
(3.1.2.1) which reads

dSt = (r − λQ k)Sdt+ σD S dWt + ξ S dNt, t > 0

ln ξ ∼ N(µQX , σ
2
J).

Compared to the optimal stopping theory and the numerical ap-
proximations and solution techniques outlined in Sections 4.2 and
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4.3, this is a simplification as these models also allow for stochas-
tic volatility and jumps in volatility. However, this simplification
is readily justified both from an economic perspective and from a
computational perspective.

In economic terms, we have demonstrated in Section 5.2 that op-
timal exercise thresholds are far more sensitive to the stochastic
behavior in stock price dimension than to stochastic modeling of
stock price volatility. From a computational perspective we can ar-
gue that the valuation time per certificate reduces from over thirty
minutes to about thirty seconds. Taking into account that in the
empirical study of Chapter 6 there are just under 200, 000 certifi-
cates quotes in our sample, it becomes clear that it is not feasible
to consider both jumps and stochastic volatility at the same time.

According to the market model (3.1.2.1) we thus have to estimate
four parameters from market data, the diffusive volatility σD, the
jump intensity λQ, the expected jump size µQX and the standard
deviation of the expected jump size σJ . In addition, we need to
know the risk-free rate of interest and the DAX price of the trading
day. Both are taken directly from market quotes. For the interest
rates we use the EONIA overnight index to proxy the riskless rate of
return and for stock prices the closing price of the respective trading
day is employed.210

The Merton (1976) model parameters are inferred from the prices
of traded call options written on the underlying of the OETC for
each trading day.211 To this base sample of estimation data we then
apply the criteria put forth by Bakshi, Cao & Chen (1997):

210Interest rates and closing prices of stocks are both obtained from Thomson
Reuters Data Stream Advance.

211Bakshi, Cao & Chen (1997) infer market model parameters from both call and
put option prices on the S&P 500 stock market index. They find that results are
of very similar quality and conclude, that it suffices to merely take call option
prices into account. We follow the same approach here.
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• All options with less than six days to expiry are removed to
account for liquidity related biases

• All options with prices less than e 0.35 are excluded to limit
the impact of price discreteness

• All options violating the arbitrage condition (5.3.1.1) below
are excluded.

From an economic point of view we observe that the market model
we employ is a continuous model not only in time but also in stock
price dimension.212 However, real world capital markets exhibit min-
imum tick sizes, thus rendering stock price changes discrete. As long
as stock prices are large enough though, this is not a problem as
the tick size is negligible compared to the stock price. However,
for small stock prices the tick size can become substantial. There-
fore, we adopt the abovementioned threshold. With regard to time
to expiry, options just before maturity exhibit higher liquidity and
trading volume than other options. Consequently, they are more
susceptible to price changes as option sensitivities are particularly
pronounced for these types of options.213

In order to work with arbitrage-free option prices we further impose
the following arbitrage condition

Ci(λQ, µ
Q
X , σD, σJ ,Ki, Ti, St, r) ≥ max(0, St −Ki). (5.3.1.1)

Here Ci refers to the observed i-th option of a day’s sample, Ki

212Please not that the expression continuous here does not refer to the sample paths
of the model, which can, of course, be discontinuous in a jump diffusion model,
but rather to the state space of the model, i.e. the values the price process can
take on.

213Chiang (2009) documents a monthly seasonal pattern of option liquidity peaking
on the third Friday of each month, which is when listed options mature. Thus,
removing options with less than a week to expiry amounts to dropping the most
liquidly traded options.
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and Ti to the respective strike and time to maturity, r to the risk-
free rate of interest and St to the stock price of the respective day.
The parameters λQ, µQX , σD, σJ , we mentioned above, are inherently
priced by the market but not directly observable, which is why we
have to estimate them below. The reasoning behind the arbitrage
condition goes as follows: Option prices should always be positive
and greater than their intrinsic value St − Ki, which is the profit
the option holder could immediately cash in upon exercising the
option. The latter is due to the fact, that in addition to the intrinsic
value each option bears a time value which represents the positive
probability that the intrinsic value increases until maturity.

Now denote by j ∈ {1, 2, . . . D} the D days on which we wish to esti-
mate model parameters and by Dj the number of option prices used
for estimation on day j. The corresponding option prices observed
in the market on day j are referred to as Cji , i = 1, 2, . . . Dj , j ∈
{1, 2, . . . D}. Furthermore, we have Merton (1976) model prices for
each observed option. We count them in the same way as the market
prices but add a hat to indicate that they are model prices. Thus,
on day j we denote by Ĉji , i = 1, 2, . . . Dj , j ∈ {1, 2, . . . D} the jump
diffusion model price of the i-th option in the respective day’s cross
section.

In order to estimate the Merton (1976) model parameters we employ
the least squares method suggested by Bakshi, Cao & Chen (1997).
For this methodology the model option prices Ĉji of a given day j are
assumed to be a function of the market parameters to be estimated,
i.e.

Ĉji = Ĉji (λQ, µQX , σD, σJ).

During the estimation process for each j ∈ {1, 2, . . . D} we pick
the particular set of parameters ((λ̂Q)j , (µ̂QX)j , σ̂jD, σ̂

j
J) among all

possible combinations of ((λQ)j , (µQX)j , σjD, σ
j
J) which minimizes the
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sum of squared errors between model and market prices on day j.
More precisely, we set

((λ̂Q)j , (µ̂QX)j ,σ̂jD, σ̂
j
J) (5.3.1.2)

= arg min

 Dj∑
i=1

(Ĉji − C
j
i (λQ, µQX , σD, σJ ,K

j
i , T

j
i ))2

 .
Heed that we have to make extensive use of indexes by always stating
j in order to indicate that all estimations are done separately for
each j and thus all the results depend on j as intended, so that
for every estimation day we obtain a new set of estimated model
parameters. Furthermore, all estimations also depend on the strike
Kj
i and the term to expiry T ji for option i on day j. With our choice

of the minimization function, which considers absolute rather than
relative errors, we overweight large option prices compared to small
option prices. If we used relative errors instead, the situation would
be the other way round. Following Bakshi, Cao & Chen (1997) it is
good practice to choose (5.3.1.2) for the minimization and live with
the over- or underweighting dilemma.

With regard to the estimation technique employed here, we have
to point out that, while relatively simple, straighforward and easy
to implement it exhibits certain shortcomings. Eraker, Johannes &
Polson (2003) point out four of these drawbacks and suggest to
amend them using MCMC (Markov Chain Monte Carlo) methods.
The downsides mentioned there are:

1) MCMC also provides estimates of the unobservable latent volatil-
ity, jump times, and jump sizes,

2) MCMC also accounts for estimation risk,

3) MCMC methods exhibit superior sampling properties compared
to competing methods,
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4) MCMC methods are computationally effcient, thus allowing to
check the accuracy of the method using simulations.

Not only would an MCMC estimation approach tackle the shortcom-
ings of the minimization of squared option pricing errors, but also
those of the EMM (Efficient Method of Moments) method (see e.g.
Durham & Gallant (2001) or Brandt & Santa-Clara (2002)), simu-
lated maximum likelihood and the implied-state GMM (Generalized
Method of Moments) (see e.g. Pan (2002)). Furthermore, Eraker, Jo-
hannes & Polson (2003) point out that these improvements are fur-
ther pronounced if the estimated model includes stochastic volatility
or even jumps in volatility. In respect of this observation Jacquier,
Polson & Rossi (1994) find MCMC to be superior to QMLE (Quasi
Maximum Likelihood Estimate) using simulation, which Andersen,
Chung & Sørensen (1999) extend to EMM.

Naturally, the mentioned studies spawned more research using the
MCMC methodology to estimate more sophisticated market models
and analyze their relevance for option pricing.

Eraker, Johannes & Polson (2003) find that the inclusion of jumps
in both the stock price dimension and the volatility component is
important and omitting jumps in volatility leads to misspecifica-
tion because it ignores the conditional volatility of returns, which
is shown to be quickly changing. In terms of option pricing, the
authors show that jumps in volatility significantly increase implied
volatility for deep in-the-money and deep out-of-the-money options.
Eraker (2004) picks up the void left by Eraker, Johannes & Polson
(2003) who did not include option prices in their estimations. Us-
ing joint options and returns data jump and volatility risk premia
are estimated. Furthermore, complex jump specifications are found
to help simultaneously explaining options and returns data while
not substantially improving option pricing. The results for the US
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American market are extended by Breuer (2008) to seven major
stock market indexes across the world by including, for instance,
the Japanese Nikkei 225 or the German DAX. Using MCMC it is
confirmed that simultaneous jumps in returns and volatility im-
proves data fitting. In addition, estimations are provided for both
the empirical and risk-neutral measure. Rodrigues & Schlag (2009)
employ MCMC to analyze to which degree jumps of stock market
indexes can be traced back to jumps in the underlying individual
stocks. It is found that not necessarily a large number of jumps in
individual stocks coincides with an index jump.

Given these advantages of MCMC techniques, we have to explain
why for our purposes we deemed it sufficient to use a least squares
approach. On the one hand such a method is by far more tractable
and straightforward. On the other hand the focus of our study does
not lie on evaluating different market models for which it would be
essential to capture even small nuances in the parameters with the
estimation techniques. In addition, the comparative statics analysis
of Section 5.2 demonstrates that while these parameters are crucial
to the valuation of OETCs and determining their optimal exercise
thresholds, exercise thresholds appear insensitive enough to justify
living with the drawbacks of a least squares approach. Another as-
pect strengthening this view is, that our model does not include
stochastic volatility and would thus not be able to fully exploit the
advantages of MCMC anyway.

In Section 5.3.2 we will apply this estimation procedure to determine
market model parameters and employ them to deal with a one-day
snapshot of real-world OETCs written on the German stock market
index DAX.
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5.3.2 Snapshot of July 16, 2010

In this section we are going to apply the optimal stopping methodol-
ogy described above and already applied in the comparative statics
analysis of Section 5.2 to treat real-world OETCs on the German
stock market index DAX as observed on July 16, 2010. In particu-
lar, we have to estimate market model parameters and apply them
to derive optimal exercise thresholds.

The DAX is a portfolio of 30 large German stocks. As a performance
index, the DAX assumes that dividends are reinvested. Hence, we do
not have to address potential future dividends explicitly, which is in
line with our above assumption of a non-dividend paying underlying.
In order to calibrate our model to the market we follow Bakshi, Cao
& Chen (1997) and infer Merton (1976) model parameters from the
option market as outlined in Section 5.3.1. Standard European-style
calls and puts are liquidly traded at EUREX.

For our snapshot of July 16, 2010, we are looking for estimates
λ̂Q (jump intensity), µ̂QX (expected jump size), σ̂D (fixed diffusive
volatility), and σ̂J (standard deviation of the jump size).

The estimation is based on D1 = 93 observations of call option
prices from Thomson Reuters Datastream Advance which were ob-
served on July 16, 2010.214 These option prices meet the elimination
criteria outlined above and the arbitrage condition (5.3.1.1).

The interest rate is the one-month EURIBOR on that day (r =
0.556%). We obtain the following estimates

σ̂D = 0.23

λ̂Q = 0.11

214Please note, that in the notation of Section 5.3.1 there is only one estimation
day, i.e. D = 1. Consequently, there are also no Dj ’s other than D1.
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µ̂QX = −0.05

σ̂J = 0.20.

These parameters are applied to compute model certificate prices
and optimal exercise thresholds. The data for our study has been
manually obtained from the website www.onvista.de on July 16,
2010. It comprises a sample of 1, 345 OETCs which meet the prod-
uct characteristics outlined in Section 2.3.2.1. The sample further
includes certificates from eleven major issuers with each certificate
applying to 0.01 DAX contracts. Bid-offer spreads are tight. Where
applicable, they mostly lie below e 0.02 and the majority are even
as low as e 0.01. In line with the issuers’ prospectuses we assume
that the financing parameter is fixed at 3% for the entire sample.
Conversely, the gap size for each OETC is taken from the sample
data and fixed as well. Note that these choices are somewhat de-
batable since these parameters are usually subject to change by the
issuer in times of extra-ordinary market conditions. See also En-
trop, Scholz & Wilkens (2009) for a detailed overview over product
characteristics.

Table 5.2 shows the details on the certificates and the results and
groups them by issuer. Optimal thresholds can be compared to DAX
levels. The opening and closing prices of the index were 6, 165 and
6, 040 points respectively on July 16, 2010. The DAX varied between
6, 018 points (low) and 6, 205 points (high) on the observation day.
Gap sizes range from 0.43% in the case of Vontobel to 2.11% for
Barclays and Lang & Schwarz. The overall average gap size is found
to be 1.39% which corroborates our assumption of 1.5% for the com-
parative statics analysis in Section 5.2. For the sake of palpability
we define the following relative gap measures

DDAX-KO :=
DAXclose − Lt

Lt
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= Distance DAX to KOt

DThreshold-KO :=
Thresholdt − Lt

Lt
(5.3.2.1)

= Distance Threshold to KOt

DDAX-Threshold :=
DAXclose − Thresholdt

Thresholdt
= Distance DAX to Thresholdt.

By the first distance between the DAX and the knock-out barrier
we measure how far away and thus how probable a knock-out of the
certificate is. From an investor’s point of view this number might be
used as an indicator of the riskiness of the certificate.215 The second
distance between the optimal exercise threshold and the knock-out
barrier serves as a means to quantify the region of optimality for
OETCs. This is due to the observation that for DAX levels below
the knock-out barrier the certificate is practically worthless and be-
yond the optimal exercise threshold it is suboptimal to hold the
certificate. Therefore, this number can be seen as the size of the
region where certificates should be held. From an investor’s per-
spective, the larger this number is the longer the optimal holding
duration of the certificate is, because with a decreasing distance the
probability of traversal across either boundary of the region of opti-
mality increases. The third distance measures the distance between
the DAX and the optimal exercise threshold. A positive distance in-
dicates that the certificate is suboptimal to hold, on the other hand a
negative one indicates optimality. Moreover, this distance describes
how far away from optimality a certificate is or, if optimal, how far
away from a change of this status the OETC is.

215The distance between the DAX and the knock-out barrier is also similar in
style to the moneyness of options, which indicates the distance between the
underlying and the strike. Because of the constant gap size between the strike
and the knock-out barrier, DDAX-KO can be interpreted as a moneyness based
on a shifted strike.
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Before moving on, we would like to point out that reporting a dis-
tance between the DAX and the knock-out barrier of sayDDAX-KO =
5% does not mean that the DAX has to drop by as much as 5% to
trigger a knock-out. The fact that the certificate is still alive implies
that Lt < DAXclose and thus

DAXclose − Lt
DAXclose

=
Lt

DAXclose
DDAX-KO

< DDAX-KO.

This means that we have to multiply the percentage distance be-
tween the DAX and the knock-out barrier with the ratio of the two
numbers to obtain by how much the underlying has to drop to cause
a knock-out. The root cause for this behavior is that DDAX-KO is
measured in terms of the knock-out barrier rather than the under-
lying. Naturally, the same applies to the other two distances as well
and we can put forth similar arguments.

The average distance between the exercise threshold and the knock-
out level of outstanding certificates is 1.05%. The average distance
between the DAX and the knock-out barrier (46.58%) turns out
to be substantially larger in relation to the distance between the
optimal exercise threshold and the knock-out level.216 Differences
are observed between major issuers for DDAX-KO. For instance, the
DAX overshoots the barrier of Vontobel certificates by 16.04% in
the mean while the corresponding number for Citigroup is 66.30%.
These numbers are compared to the distance between the optimal
exercise threshold and the knock-out level of Vontobel and Citigroup
with mean value of 1.11% and 1.21% respectively. Looking at indi-
vidual certificates it turns out that except for one certificate (WKN

216We would like to emphasize that these distances are computed as percentage
numbers with regard to the barrier. They do not imply that the DAX has to
plummet by 46.58% for a knock-out to occur. The required jump size depends
on the single certificate and would be significantly lower.
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DZ1FQN) issued by DZ Bank all certificates should have been ex-
ercised on that particular day. This observation holds for open and
closing as well as high and low values of the DAX. However, this
one certificate had a barrier of 6, 101.10 (strike of 6, 174.31) and was
knocked out on that day.

Results suggest that theoretically, it is possible to purchase a cer-
tificate at at discount because issuers commit themselves to trade
according to the exercise value (2.3.2.1). This is the case when the
continuation value is larger than the exercise value. However, for the
day under consideration it turns out that none of these certificates
is available for trade. Investors can only buy and hold certificates
which should be exercised. Thus, the continuation values of these
securities are smaller than the exercise values. As we know from
other American-style options the financial disadvantage from non-
optimal exercise behavior is the profit of the issuer. Of course, from
the perspective of an issuer there is always the risk that a certificate
is issued that might become attractive for investors. However, this
risk is limited. Those certificates that are potentially attractive for
investors have barriers that are close to the DAX. These certificates
are thus very likely to be knocked out and these investment oppor-
tunities hence disappear from the market. Certainly, in the context
of knock-outs issuers face gap risk. Nevertheless, they should be
compensated for this risk as long as enough investors continue to
hold enough certificates in the exercise region.

5.4 Interpretation of the Results

The existence of OETCs can only be explained when underlying
stock prices are subject to jump risk. Otherwise, rational investors
could replicate these products by a very simple strategy of buying
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stock and borrowing money. In a pure diffusion model this debt
would be riskless and hence the risk-free rate of interest should ap-
ply yielding more attractive payoffs than certificates with a financ-
ing rate z > 0. Therefore, we apply the model of Bakshi, Cao &
Chen (1997). Based on optimal stopping theory we derive exercise
thresholds, i.e. prices of the underlying stock beyond which investors
should sell their certificates. These thresholds result from the trade-
off between the financing parameter z and the gap size a on the one
hand and downward jump protection on the other. Furthermore, we
follow Entrop, Scholz & Wilkens (2009) and consider fixed invest-
ment horizons. We show that early exercise premia are economically
significant even when very long investment horizons are considered.
Finally, in a one-day empirical application we analyze the prices
of 1, 345 certificates on the DAX traded on July 16, 2010. It turns
out that the optimal exercise thresholds of all but one of them (a
knock-out during the trading day) are overshot by the DAX. From a
theoretical point of view these certificates should not be held at all.
In summary, we can argue that OETCs in certain situations allow
for beneficial outcomes of investments. However, such situations are
based on the underlying hovering between the knock-out barrier and
the optimal exercise threshold. In our case this is a relatively small
and narrow band. Because of the general movement of the under-
lying it is though highly likely that this beneficial region is exited
within short periods of time, thus wiping out potential investment
opportunities. Nevertheless, the situation might be slightly differ-
ent in an environment of market stress like the sovereign debt crises
currently observed in Europe and the USA.

Eventually, this first assessment of market traded OETCs only per-
tains to a single day. Although the obtained results are very intuitive
and economically explicable, the choice of a single observation day
always bears some randomness which might influence the results in
an unforeseeable direction. Such impact can manifest itself in biased
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estimates of market data as well as data of the OETCs themselves.
This might be the case because of extra-ordinary market movements
on that respective day, particularly high or low trading volume by
market participants on that day, a holiday in other major markets
such as the US or Japan which regularly influences trading in Eu-
rope as well, or various other reasons. Although none of this appears
to be case the empirical study should still be extended to covering
a longer period of time.

Apart from those general reasons, there are also very OETC-specific
reasons suggesting longer empirical studies. For example, we men-
tioned above that for OETCs to be optimally held the underlying
has to hover around a small band between the knock-out barrier and
the optimal exercise threshold. This naturally entails the question
of how long this seemingly unlikely scenario is sustained in reality.
In a longer empirical study, such situations could be identified and
monitored.

Therefore, Chapter 6 picks up that gap and addresses the questions
of how OETCs, the associated optimal exercise behavior, and hold-
ers of OETCs behave over the course of time.





Chapter 6

Empirical Study for

2007 through 2009

This chapter takes up the key research gap left in Chapter 5. The
empirical analysis is extended from one day to three years which
will allow for obtaining a much clearer picture about whether the
observations in that chapter have to be attributed to the movements
of a certain trading day or whether they are part of an overall trend.
The general items addressed in this chapter are:

1) Are there more OETCs which can be rationally held in the long
run?

2) Do potential investment opportunities only sustain for short pe-
riods of time?

3) Are there any trends in the observed long distances between the
DAX and the knock-out barrier and in the narrowness of the
continuation region?
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The chapter is organized in two sections: Section 6.1 presents the
data for the study and Section 6.2 the results.

6.1 Data for the Study

In this section we describe the data for our study which consists
of the certificates data (cf. Section 6.1.1) on the one hand and the
option data to estimate market parameters (cf. Section 6.1.2) on the
other hand.

6.1.1 Certificates Data

For our empirical study, we consider a sample of up to 1, 097 long
OETCs on the German stock market index DAX. The sample con-
sists of all such certificates that were alive on July 10, 2010 and that
were traded on the Frankfurt stock exchange. For the entire sample
we have traded prices for the years 2007 through 2009, which totals
196, 743 price quotes.217 The data were taken from the Karlsruhe
capital market data base KKMDB (Karlsruher Kapitalmarktdaten-
bank), which provides capital market data for teaching and research
purposes.

The certificates in our sample are issued by eleven different financial
institutions, which play a significant role in the German market. On
December 30, 2009, the last trading day of our three-year period,
our sample looks as shown in Table 6.1.

217From this sample we have already removed the very few obvious misquotes. Of
course, we do not want such quotes to negatively impact our study. However,
we do not examine the prices themselves or to which degree they coincide with
the price setting formula (2.3.2.1) (according to which issuers have committed
themselves to trade OETCs), but rather use these quotes together with the
certificates’ parameters to assess whether exercise or holding is the preferable
strategy.
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Issuer Number of Average Average Average
Certificates Strike Gap Barrier

DZ Bank 29 4,607.245 0.015 4,673.594
Vontobel 22 4,741.027 0.010 4,787.901

Deutsche Bank 87 4,050.965 0.010 4,091.340
Citigroup 156 3,733.197 0.012 3,768.322

The Royal Bank 58 3,972.098 0.019 4,041.904
of Scotland

BNP Paribas 183 4,265.961 0.011 4,312.831
HSBC Trinkaus 145 3,853.815 0.011 3,897.243
Commerzbank 265 3,688.316 0.021 3,760.311
Goldman Sachs 122 4,485.712 0.021 4,580.419
Barclays Bank 18 4,456.341 0.021 4,550.431

Lang & Schwarz 12 4,648.949 0.021 4,745.465
Total 1,097 4,013.895 0.016 4,072.560

Table 6.1: Descriptive Statistics for OETCs on Dec. 30, 2009
The table provides information about the number of outstanding
OETCs on December 30, 2009 by issuer and on an aggregate level.
In addition, the average strike, the average gap size, and the average
barrier are provided.

Considering only those certificates that were alive on July 10, 2010
implies that our results potentially exhibit a certain survivorship
bias. This is due to the fact that OETCs which were knocked out
before that date do not appear in the sample. Thus an evaluation
of the OETCs in our sample might overestimate the actual distance
between the DAX and the knock-out threshold, since shortly before
their extinction knock-outs are most likely situated closer to the
barrier than survivors. Nonetheless, our assessment in Chapter 5
makes it plausible that a potential bias is rather small. Knock-outs
appear to be very rare events (1 in 1, 345 on a day with a sizable
range between the low and high price of the DAX). Assuming that
such market movements happen more seldom than once a week, this
suggests that over 99.9% of the quotes should be correctly recorded.
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Consequently, we cannot rule out that there is a survivorship bias
but we can expect its effect to be most likely insignificant in terms
of distances between the underlying, the knock-out barrier and the
optimal exercise threshold.

Furthermore, we might underestimate the number of certificates
that should be rationally held. This is due to the fact that those
certificates are naturally closer to the knock-out barrier than others.
Therefore, unrecorded knock-outs might have been in the continu-
ation region shortly before the knock-out event. On the one hand
our above argument indicates that this should be a rare scenario
(thus keeping the bias small) and on the other hand such a bias
would corroborate our rationale that optimal holding opportunities
are usually very short lived. Either way, it appears that there cannot
be a sizable negative influence on our results.

As described in Section 2.3.2.1 each certificate is characterized by
its strike, its barrier, and the constant gap size between them. For
illustrative purposes Table 6.1 displays the average values of these
parameters by issuer.

The table reveals that once again there are substantial differences.
The gap size ranges between 0.010 for Vontobel and Deutsche Bank
and 0.021 for Commerzbank, Goldman Sachs, Barclays, and Lang &
Schwarz, i.e. the range amounts to a factor of two. This means that it
takes jumps of twice the length to undershoot both the barrier and
the strike. But also the average striking prices differ considerably
across the sample. We observe the lowest value for Commerzbank
with roughly 3, 688 points and the highest for Vontobel with about
4, 741 points.218 Below in this section, this is intuitively explained by
the market conditions at the time when the bulk of these certificates

218Since the relative gap size between the strike and the barrier is constant for
OETCs the average barriers behave in the same way as the average striking
prices and are not further discussed here.
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was issued. This observation gives rise to the question of how the
number of OETCs in our sample and their parameters developed
over time. Figure 6.1 shows the number of certificates in our sample
for the years 2007 through 2009.219

We discern that the number of certificates is relatively constant
throughout the year 2007 with several fluctuations (cf. Panel 6.1a)
due to the fact, that on several days there are no quotes or misquotes
that have been removed from the sample. The overall number only
moves from 31 to 32. Commerbank, HSBC and the Royal Bank of
Scotland constantly have six, four, and 15 respectively. The slight
increase of one is due to BNP Paribas.

The situation stays the same until about October 2008, when the
number of overall certificates more than triples from 39 to 128. Ex-
cept for the Royal Bank of Scotland all issuers contribute to this de-
velopment with Goldman Sachs appearing as a new issuer. They is-
sued 17 OETCs between October and December 2008. The strongest
increase can be observed for HSBC and Commerzbank. For Com-
merzbank the number of issued certificates rises from 10 to 43 in this
period. For HSBC the increase is from 7 to 33. For BNP Paribas
the increase is from three to twelve in absolute terms.

In the calendar year 2009 there is again about an eight- to nine-fold
increase in the overall number of issued OETCs from 128 to 1, 097.
The majority of this increase has to be attributed to Commerzbank
(43 to 256), BNP Paribas (12 to 183), HSBC (33 to 145), and Cit-
igroup (0 to 156). For the Royal Bank of Scotland and Goldman
Sachs there is a less significant increase from 15 to 58 and 17 to 122
respectively. The same holds for Deutsche Bank with a rise from 8

219In this figure, we have divided the data for the year 2009 into two slices for the
sake of improved readability as we deem twelve graphs in the same plot rather
confusing. The grouping into the two slices was done randomly without any
economic interpretation to it.
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to 87. Besides Lang & Schwarz, DZ Bank, Vontobel and Barclays
appear as new issuers. Until the end of the year they issued twelve,
29, 22, and 18 OETCs respectively.

Besides the total number of OETCs, we also consider the average
gap sizes of the outstanding products. Although for each single cer-
tificate the gap size is constant, the average gap sizes change over
the course of time with new OETCs being issued. This has been
illustrated in Figure 6.2.

For the year 2007, we observe mostly constant gap sizes. Of course,
this is due to fact, that the number of certificates was almost con-
stant throughout the year. All changes naturally coincide with new
certificates being issued.220 Interestingly, these changes typically
lower the average gap sizes which means that the newly issued
OETCs have a smaller gap than the existing ones.

In 2008 this trend mostly continues. For Deutsche Bank, HSBC
and BNP Paribas we see that average gap sizes decrease when new
certificates are offered. In the case of Commerzbank, though, there is
a mixed picture. In February they issue new certificates with higher
gap sizes but in April and October the newly issued certificates
have lower gap sizes again. As mentioned above, Goldman Sachs
appears as a new issuer in October 2008. The average gap size of
their certificates, however, is slightly higher than the overall market
average (0.020 vs. 0.022). In addition to this relative behavior it
is worthwhile discussing the absolute gap sizes. The overall average
amounts to 0.029 at the beginning of the year but is reduced to 0.019
at the end of 2008. Among issuers there are significant differences.
The average gap size is highest for the Royal Bank of Scotland with
0.031 throughout the entire year. For HSBC the average gap size
goes down from 0.03 to 0.01 in several steps. Starting in April of

220Apart from these real changes, there are also minor fluctuations until April 2007
resulting from misquotes or missing quotes we removed from our sample.
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2008 HSBC also exhibits the lowest average in our sample. The
values for the other issuers lie between 0.02 and 0.03 for the entire
year.

In the year 2009 the tendency of declining overall gap sizes is main-
tained but it is not as sharp as before, since there are two significant
increases when the average gap size for Citigroup increases from 0.0
to 0.012 and 0.011 to 0.020. For the Royal Bank of Scotland we ob-
serve a decrease from 0.031 to 0.019, which is no longer the highest
value in the sample. At the end of the year this position is taken
on by Commerzbank and Goldman Sachs with 0.021. The lowest
values in turn are observed for HSBC, BNP Paribas, Vontobel and
Deutsche Bank with 0.011, 0.011, 0.010 and 0.010 respectively. In
addition to the already mentioned sharp upward moves for Citi-
group we observe similar moves for Commerzbank (0.021 to 0.024)
and Lang & Schwarz (0.013 to 0.026).

In addition to the number of outstanding certificates and average
gap sizes we also consider the average striking prices of the issued
OETCs, as plotted in Figure 6.3.

Unless there is an issue of a new certificate the average striking price
grows at the risk-free interest rate as given by equation (2.3.2.2).
This is confirmed by the market data for the year 2007. Except
for Deutsche Bank and BNP Paribas the average strike constantly
grows, which is in line with the abovementioned fluctuations for
Deutsche Bank and the additional issue by BNP Paribas. In abso-
lute terms there are significant differences again. The lowest starting
value is observed for BNP Paribas with roughly 2, 272 and the high-
est for Commerzbank with about 2, 588. When BNP Paribas issued
a new OETC the average strike makes a sizeable jump from round
about 2, 442 to 2, 620.
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Naturally, this behavior continues in 2008 with all jumps in the av-
erage striking prices being induced by the issuing of new products.
The most significant move can be observed for Commerzbank. At
the beginning of 2008 they exhibit the highest average strikes, but in
March they drop to the lowest values from 2, 942 to 2, 778. Until Oc-
tober they stayed at this end of the spectrum but then jumped back
up close to the top (2, 711 to 2, 935), only behind BNP Paribas and
Goldman Sachs (2, 975 and 3, 288 respectively). A similar upward
jump at about the same time can be observed for BNP Paribas.
Jumps in the opposite direction are exhibited by HSBC (2, 856 to
2, 678) and Deutsche Bank (2, 849 to 2, 487).

In 2009 there are so many, almost continuous, new issues of OETCs
that we can no longer observe a constant growth as in 2007 and
2008. However, the strikes generally increase for all issuers. Except
for two downward jumps for Citigroup (3, 266 to 2, 850 and 3, 446 to
3, 078) in the first half of the year there are no sharp moves either.
Furthermore, the overall increase is very substantial. During the
year 2009 the overall average strike increased from 2, 862 to 4, 014.
The highest values in the sample are even as high as 4, 500 with
Goldman Sachs, Lang & Schwarz, DZ Bank and Vontobel at 4, 486,
4, 649, 4, 607 and 4, 741. For Lang & Schwarz we also observe the
most significant increase over the year 2009 starting from 1, 742. On
the other end of the spectrum, we discern the lowest average strikes
for Commerzbank and Citigroup (3, 688 and 3, 733) to end the year.

Apart from the fact that the strikes grow at the risk-free rate of
interest plus the financing rate, we might argue that the increased
strikes are in line with a general rise of the market which is reflected
in the parameters the new issues.
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6.1.2 Estimation of Market Model Parameters

For all OETCs in our sample described in Section 6.1.1 we want to
compute optimal exercise thresholds. How this can be done using the
methodology of optimal stopping has been outlined in Section 5.2.
Moreover, in Section 5.3.1 we have chosen the Merton (1976) jump-
diffusion model and explained how its parameters can be inferred
from option markets.

Since there are 784 trading days in our sample of Section 6.1.1 it
is plausible that we cannot use the same set of parameters for the
entire three-year period. On the other hand we cannot re-estimate
the parameters on each trading day either, as this would be too
onerous. Therefore, we conduct a new estimation for the parameters
every week. In this way the number of estimations is reduced from
784 days to 157 weeks.

In addition, this is the same approach taken by Dumas, Fleming &
Whaley (1998). Furthermore, they suggest to use Wednesdays for
the estimations because on Wednesdays there are the fewest hol-
idays. If there is a holiday on a Wednesday after all, we use the
preceding trading day. In case this is a holiday as well, the subse-
quent business day is used. Therefore, for all Wednesdays between
January 2007 and December 2009 (or their respective replacement
days) we consider all traded call option prices.221

In addition to the elimination and arbitrage criteria outlined in Sec-
tion 5.3.1, we also remove obvious misquotes from the cross section
as we did with the sample of OETCs in Section 6.1.1. The esti-
mations themselves are carried out using Matlab functionality for

221The option data were retrieved from Thomson Reuters Data Stream Advance.
Since options trading is forward looking and because of the fact that a certain
set of maturities expires every month, our estimation sample includes options
expiring between January 2007 and March 2010. Typically, i.e. except on very
few occasions, option prices with up to three months maturity are available.
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No. Reporting Period Table with Estimated
Parameters

1 January through April 2007 Table A.1
2 May through August 2007 Table A.2
3 September through December 2007 Table A.3
4 January through April 2008 Table A.4
5 May through August 2008 Table A.5
6 September through December 2008 Table A.6
7 January through April 2009 Table A.7
8 May through August 2009 Table A.8
9 September through December 2009 Table A.9

Table 6.2: Reporting of Estimated Market Parameters
For reporting purposes and the sake of readability, we have grouped
the estimated market parameters in time periods of four months
each. This table shows in which table the results for the respective
periods are reported.

minimization problems. We group the results of the estimation pro-
cedure in clusters of four months each and for the sake of readability
we report them in Appendix A as indicated by Table 6.2. To visually
highlight the development of the parameters over time, Figure 6.4
provides a plot of the estimated diffusive volatilities, the expected
downward jump sizes together with their standard deviations, and
the jump intensities for each of the years 2007, 2008, and 2009.

Before moving on to the application of these parameters to value
OETCs and determine their optimal exercise thresholds, we should
evaluate the estimated parameters and shed light on their economic
context. Our main observation is that there appear to be compara-
tively low expected downward jump sizes. For 2007 we find an av-
erage of −3.7%, for 2008 −2.63%, and for 2009 −2.42%. Compared
to our base case scenario, which was based on Eraker (2004) and
Breuer (2008), with roughly −14%, these estimates are markedly
lower. Furthermore, they also seem to decline even further from
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year to year. A similar picture can be drawn for the jump intensi-
ties. The above base case scenario reports an intensity of 0.73, i.e.
0.73 jumps a year or one jump about every 16 months. In our sample
we observe significantly lower values: 0.049 for 2007, 0.132 for 2008,
and 0.114 for 2009. The opposite holds for the standard deviation
of the jump sizes. The base case scenario exhibits round about 8%,
while our sample shows 27.3% for 2007, 19.3% for 2008, and 24.0%
for 2009.

From an economic perspective, this means that market participants
expect shorter jumps, which occur a lot more rarely. On the other
hand there is far more uncertainty regarding the size and frequency
of an actual jump.

A possible line of explanation for these observations, particularly in
the fall of 2008, might be the financial crisis of the years 2008 and
2009. Those years saw a very sharp decrease of the DAX by more
than 50% (and a subsequent partial recovery making up for roughly
half the losses) which was among other factors induced by a decline
of the price-adjusted GDP (Gross Domestic Product) of 4.7% for
Germany in 2009 (cf. Statistisches Bundesamt (2011)). This makes
it very likely that market participants were already extremely pes-
simistic regarding the future economic outlook and thus priced the
constituent single stocks of the DAX accordingly. Doing so means
that there should not be any further negative surprises which could
adversely impact stock prices. Since such a negative surprise would
be the equivalent of a jump, the explicit jump risk appears to have
decreased during this crisis.

Apart from these high-level considerations, at the peak of the finan-
cial crisis in October 2008 we nonetheless observe increased jump
intensity, downward jump sizes and corresponding standard devia-
tions, and diffusive volatilities in the short run. This becomes plain
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by comparing the values to those of adjacent months and weeks,
which indicates a local peak during the month of October of 2008.
In economic terms, this can be interpreted as increased uncertainty
in capital markets or even panic following the bankruptcy of Lehman
Brothers just one month before. When comparing the expected jump
sizes to actual market returns we, moreover, find that single day re-
turns in excess of the expected value were absolutely commonplace.
On the 23 trading days in October 2008 there were returns of less
than -4.9% six different times (three of these days even showed re-
turns of -6.5% and -7%). On the other hand there were two days
with +11% or more and only three days on which the DAX changed
by less than a percent in any direction. Furthermore, this goes in
line with a reported increase in diffusive volatility for our sample
which is as high as 35%.

The uncertainty in the market is further corroborated by Panel 6.4d
which shows the option smiles of October 22, 2008. Compared to
usual option smiles (e.g. those depicted in Figure 3.1), which indi-
cate that longer-term options are more relatively expensive than
short-term options and that in-the-money options are relatively
more expensive than out-of-the-money options to account for the
fact that they are less susceptible to jump risk, this day’s smile is
somewhat reversed. We discern that out-of-the-money options ex-
hibit higher implied volatilities (meaning they are relatively more
expensive) in the short term. Economically speaking, this means
that market participants seem to perceive them as less risky than
medium- or long-term options, which most likely indicates that there
is a lot of uncertainty about the future market development in
the longer time horizon. To make this more plausible and palpa-
ble, the uncertainty appears to even outweigh the short-term jump
risk which typically disappears in the long run, but it appears to
be persistent enough to render short-term out-of-the-money options
relatively more expensive than their medium-term counterparts.
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In terms of the valuation of the OETCs in our sample, the compar-
ative statics analysis of Chapter 5 gives a rather clear indication of
what that means. The presence of jump risk in the shape of higher
jump intensities and higher expected downward jump sizes is ben-
eficial for OETC investors as it increases their option values and
widens their continuation regions. If in turn there is less such jump
risk priced by the market, OETCs lose attractiveness which mani-
fests itself in lower optimal exercise thresholds and presumably more
certificates being held inefficiently. The extent to which this holds
will be explored below in Section 6.2.

6.2 Results of Empirical Study

In this section we present and evaluate the results of our empirical
study, in which we have computed the optimal exercise thresholds
for OETCs on the DAX for the years 2007 through 2009. In order
to be able to better interpret the thresholds we relate them to the
DAX and the knock-out barriers of the certificates. We do so by
recalling the three distances (5.3.2.1) defined in Section 5.3

DDAX-KO :=
DAXclose − Lt

Lt
= Distance DAX to KOt

DThreshold-KO :=
Thresholdt − Lt

Lt
= Distance Threshold to KOt

DDAX-Threshold :=
DAXclose − Thresholdt

Thresholdt
= Distance DAX to Thresholdt.

In the following, we will plot, closely examine, and interpret all
three distances over the years 2007, 2008, and 2009. In particular,
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we extend the one-day glimpse provided in Chapter 5 to a period
of three years. In this way we will be able to identify tendencies or
patterns among the characteristics of OETCs and derive suggestions
about when and for how long OETCs should be held by investors.
Compared to a one-day snapshot this allows for an elimination of
potential effects of the choice of day.

In Figure 6.5 we display the distances between the DAX and the
knock-out barriers of the certificates by issuer and on an aggregate
level across all issuers for the years 2007 through 2009. In general
we observe a relatively parallel movement among issuers. However,
w.r.t. the absolute level, there are substantial differences between
them.

The overall level is highest for the year 2007, as shown in Panel 6.5a
where distances range between roughly 140% and 240%, meaning
that the DAX exceeds the extinguishing barrier by that amount.
During the year of 2007 we also observe, that the ranking of the
issuers in that area is relatively constant with BNP Paribas and
HSBC usually exhibiting the highest distances to the knock-out bar-
rier and Deutsche Bank and Commerzbank typically being at the
lower end of the spectrum. The difference between the upper and
the lower end of the spectrum is round about 40 percentage points
throughout the entire year.

In 2008 the picture changes as shown in Panel 6.5b. Except for the
months of November and December the gap between the highest and
lowest values is down to approximately 25 percentage points. How-
ever, contrary to 2007 the ordering among the issuers is shuffled dur-
ing the year. At the beginning, Deutsche Bank and Commerzbank
exhibit the lowest values again, then Commerzbank moves to the
top for about March to August and to the lower end again in the
last third of 2008. On the other hand Deutsche Bank appears at
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the top at the end of the year. Almost constantly at or close to the
top is HSBC again. During the month of October Goldman Sachs
appears as a new issuer. All the way through to the end of the year
they exhibit the lowest distance between the DAX and the knock-
out barriers of the certificates. Furthermore, the overall level of the
distances decreases significantly from a range of about 180 to 220
down to about 40 to 80 percentage points.

For the year 2009, there are almost twice as many issuers. For the
sake of readability, the corresponding graphs have been distributed
across two plots, Panels 6.5c and 6.5d. During 2009 the ranking
among issuers is relatively constant again. As before, HSBC is at
the upper end of the spectrum and Goldman Sachs usually ranks
at the lower end. Furthermore, the trend established by Goldman
Sachs that new issuers immediately fill in at the lower end continues
with the appearance of Barclays, Lang & Schwarz, Vontobel and
DZ Bank. The distances for the new issuers even lie as low as 10
to 20 percentage points. On the other hand the overall level of the
distances does not further decrease nor does it increase again, at
least not significantly.

These observations can be explained in a very intuitive way. Since
the knock-out barrier increases at the constant rate of r + z the
DAX has to increase at the same pace to keep the distances up at
the same level. However, in 2008 the DAX sharply declined from its
all-time high in 2007 of 8, 105.69 points to 4, 127.41 points during
2008 and to as low as 3, 666.41 in 2009.222 After hitting the low
mark, the DAX started to recover and increased to 5, 957.43 closing
the year 2009. This devolopment has been graphically represented
in Figure 6.6. Furthermore, the market saw a major drop in the

222Please note, that these numbers are always closing prices. Therefore, it is pos-
sible that during the day even higher or lower prices were observed. But for us,
these further details would not add any more value.
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riskless rate of interest beginning in 2008.223 Whereas the EONIA
interest rate even increased from 3.69% to 3.92% in 2007 to as high
as 4.47% on September 23, 2008 it then decreased to 2.35% closing
the calendar year. The trend continued throughout 2009 when the
EONIA rate even fell to 0.299% during the month of December. A
graphical representation is also provided in Figure 6.6.
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Figure 6.6: Time Series Plot of the German Stock Market
Index DAX and the EONIA Overnight Rate between 2007
and 2009
This figure depicts the development of the DAX between 2007 and
2009. It shows the all-time high during 2007, the substantial decline
during 2008 and the beginning recovery during 2009. Furthermore,
the unheard of drop in interest rates from about 4% to almost zero
over the same period is depicted.

The development of the year 2009 can be explained as the super-
position of two different effects. On the one hand, the DAX signifi-
cantly increased during the recovery from the financial crisis of the
year 2008 which implies larger distances between the DAX and the
knock-out barriers. On the other hand, 2009 sees the introduction of

223The most important reason for the decline in interest rates was that central
banks lowered interest rates to support the heavily plummeting economy fol-
lowing the financial crisis of the years 2008 and 2009.
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a plethora of new OETCs, which typically appear with lower such
distances. Therefore, it is reasonable to draw the conclusion that the
increase in the distances for existing OETCs is offset by the lower
distances for newly introduced ones.

In Figure 6.7 we present the distance between the DAX and the op-
timal exercise thresholds for the year 2007 (cf. Panel 6.7a), the year
2008 (cf. Panel 6.7b) and the year 2009 (cf. Panels 6.7c and 6.7d).
Intuitively speaking, this measures the degree of suboptimality of
OETCs which should not be held.

For the year 2007 we observe a general but fluctuating rise in the dis-
tance from about 62% to roughly 66%. Between June and July the
distance peaks at about 68% but in February it is as low as approx-
imately 60%. For Commerzbank and the Royal Bank of Scotland
we observe a practically parallel movement to the overall average
with the former being slightly under the average (going down to
about 58%) and the latter slightly above. The same holds for HSBC
but it appears to be randomly above or below the average, though
relatively close all the time. For BNP Paribas the movement is also
mostly parallel but peaks are more pronounced reaching about 70%
between June and July. Deutsche Bank exhibits certain spikes up
to about 69% in the first half year while it moves almost strictly in
parallel to and below the overall average in the second half of the
year.

The behavior can be explained by the movement of the DAX, which
is roughly mimicked by the distances. The reason why the distance
changes is that the time dependent optimal exercise threshold reacts
more slowly or sublinearly to changes in the underlying.224

224From an economic perspective it is quite plausible that there is is a sublinear
relationship between the underlying and the optimal exercise thresholds, which
represent the tradeoff between the possibility of downward jumps below the
strike and the financing costs. So to speak the threshold is the DAX level where
downward jumps finally become too improbable. As it takes very long jumps to
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In 2008 the overall trend reverses. Along with a decreasing DAX, the
overall average distance between the DAX and the optimal exercise
thresholds decreases from round about 65% to roughly 40%. Until
about October, when there are various new issues of OETCs the
observed distances for all issuers move very closely and in parallel.
Furthermore, there are hardly any changes (with the exception of
Commerzbank) in whether an issuer is below or above the average.
In March Commerzbank moves from below to above the average,
where it stays until October. Apart from that, Deutsche Bank and
HSBC generally appear to be below the average while the Royal
Bank of Scotland and BNP Paribas are above.

In October the whole situation changes. Most likely, this is due to
the fact that many new issues of certificates take place and issuers
differently fix the parameters of the new issues.225 Between October
and December we observe a very parallel movement of the distance
between the DAX and the optimal exercise threshold as well as a
very distinct order among issuers. From the highest to the lowest
values the order is: Deutsche Bank, HSBC, Royal Bank of Scot-
land, Commerzbank, BNP Paribas, and Goldman Sachs. Starting
at about 40% in October, the values bifurcate to a range between

go below the strike, these jumps are from the tail end of the jump distribution,
which is relatively flat. Consequently, an increased DAX level hardly affects the
probability of beneficial jumps but it directly increases the distance between the
threshold and the DAX.

225Not only is this quite plausible and intuitive but it can also be very well verified
with the example of the Goldman Sachs issues at the end of October 2008. On
October 23 and 24 there are three issues each so that all six first appear in our
sample for October 29. The average distance between the DAX and the knock-
out level is 43.2% on that day, which is by far the lowest for all issuers with BNP
Paribas exhibiting the second lowest value at 59.6%. This further translates to
the distance between the DAX and the optimal exercise threshold. Although
none of the six certificates should be rationally held they can be viewed as less
suboptimal than the rest as they only exceed the threshold be 29.9%. Again
BNP Paribas ranks second with 36.5%. Thirdly, the band of optimality is also
the widest for Goldman Sachs with 0.35% and Commerzbank ranking second
at 0.21%.
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35% and 45%. Upward and downward peaks go to 50% for Deutsche
Bank and 25% for Goldman Sachs.

In addition to the issuing of new certificates we can bring forth
the peak of the financial crisis in October 2008 with the Lehman
Brothers collapse of September 2008 only one month removed. As
discussed above, this prompted a significant drop of the DAX to-
gether with increased jump risk which manifested itself in higher
jump intensities and higher expected downward jump sizes com-
pared to adjacent months. Since exercise thresholds and jump risk
are positively related the two effects combined can explain the de-
creased distances between exercise thresholds and the DAX across
all issuers.

In the year 2009 we observe many fluctuations of the overall average
with a minor decrease from over 40% to about 32%. For the most
part of the year the movement of the distances is roughly parallel,
in particular between April and December. Between January and
March fluctuations are pronounced. For Citigroup, Commerzbank,
and the Royal Bank of Scotland we discern a traversal from below
the overall average to above the overall average. A shift in the oppo-
site direction is only observed for Deutsche Bank. Moreover, we see
a general increase in the range of values, similar to the one docu-
mented for October 2008. The values are highest for Commerzbank,
Citigroup, and HSBC with about 35% and 36%. In turn, Vontobel
and DZ Bank exhibit the lowest values with roughly 20%. This ob-
servation is in line with 2008, when Goldman Sachs appeared as a
new issuer, as do Vontobel and DZ Bank, and instantly took the
position of lowest values. Other issuers who are generally below the
overall average are Goldman Sachs, Barclays and BNP Paribas.

From an economic perspective we observe that all averages are by
far positive. Although we observe an average of below 5% for Von-
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tobel in July 2009, the averages typically are in excess of 20% with
values as high as 70% in 2007. In turn, this means that OETCs are
generally suboptimal to hold by the given percentage number. Thus,
on an aggregate level they should not be held at all. However, we
also observe a general decrease in the distance between the optimal
exercise thresholds and the DAX. On the one hand this can be ex-
plained by the movement of the DAX as above. Another argument
we might put forth is increased competition among issuers. Between
2007 and 2009 we observe a rise from about 30 to about 1,000 out-
standing certificates in the marketplace, which makes this argument
plausible. Due to the increased competition issuers might have to
make their products more attractive. This can be attained by re-
ducing the sub-optimality of the OETCs. The observation that new
issuers often offer the certificates with the lowest distance between
the DAX and the optimal exercise threshold further corroborates
this rationale.

In Figure 6.8 we have plotted the observed distances between the op-
timal exercise thresholds and the knock-out barriers of the OETCs
for the years 2007 (cf. Panel 6.8a), 2008 (cf. Panel 6.8b), and 2009
(cf. Panels 6.8c and 6.8d). Intuitively speaking, this measures the
width of the continuation region, in which holding the certificate is
rational.

For the year 2007 we observe sharp fluctuations of the distance.
The intuitive interpretation why this distance behaves in such a
fashion is the stable growth of the barrier on the one hand and
the sensitivity of the optimal exercise threshold w.r.t. stock price
movements, the most important determinant of optimality, on the
other hand. Consequently, the relative difference between optimal
exercise thresholds and barriers is highly susceptible to stock price
price changes. The values of this distance range from 1.4% to -
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0.5%, both attained by BNP Paribas.226 HSBC and Deutsche Bank
exhibit the second highest peaks in both directions with about 1.2%
and -0.4%. The overall average moves between 0.6% and -0.1%.

In general, it is not possible to detect a certain pattern apart from
the fact that peaks in one direction appear to be immediately fol-
lowed by peaks in the opposite direction. Naturally, the effect is
least pronounced for the overall average because averaging has a
certain effect of attenuation. We furthermore stress, that this be-
havior is in line with the fact that during the year 2007, there were
the fewest, namely two, OETCs outstanding by BNP Paribas, and
four respectively by HSBC and Deutsche Bank. Even less fluctua-
tions we observe for Commerzbank with six traded certificates and
the Royal Bank of Scotland with 15. In addition, there is a tendency,
that the certificates issued by the Royal Bank of Scotland almost
on average exhibit a higher distance virtually throughout the entire
year. This is explained by the gap sizes of roughly 3.1% and 2.7%.
The larger the gap size is, the less probable it becomes that an in-
vestor gets knocked out without any rebate. Therefore, higher gaps
allow for a longer expected holding duration which manifests itself
by a higher optimal exercise threshold.

In 2008 the trend of very high fluctuations continues with Deutsche
Bank again showing the most pronounced such behavior. For them
the average distance between the optimal exercise thresholds and
the knock-out barriers varies between 1.2% and -0.4%, while the
overall average only ranges from roughly 0.5% to -0.1%. The overall

226Please note, that we observe negative distances between the optimal exercise
threshold and the knock-out barrier. This means that the exercise threshold
lies between the strike and the knock-out barrier. Although counter-intuitive
at first glance, this is a valid case because of the fact that OETCs allow for a
rebate in the case of a knock-out between knock-out barrier and strike. Given
the characteristics of the certificate and the market conditions (especially stock
price level and downward jump risk) at a certain time, the best possible average
outcome for an investor might be a knock-out with a rebate.
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average only very slightly diminished from 0.37% to 0.32%. Simi-
larly sharp movements can be observed for HSBC (1.0% to -0.4%)
and BNP Paribas (0.8% to -0.2%). The Royal Bank of Scotland
and Commerzbank rank somewhere in the middle. Furthermore, we
identify a reduced level of fluctuations beginning in October except
for the Royal Bank of Scotland. This is directly attributable to the
fact that the Royal Bank of Scotland did not issue new OETCs
at that time as did the other issuers in our sample for 2008. This
also includes Goldman Sachs who first appeared as an issuer at that
time. Regarding the distance between the optimal exercise thresh-
olds and the knock-out barrier they fill in at the lower end of the
spectrum and clearly below the overall average with a trend of a
declining distance until the end of the year 2008.

There are two lines of reasoning for this observation. First the aver-
age gap size for Goldman Sachs certificates amounts to about 2.2%
compared to an overall average of 1.9%, which would suggest the
opposite behavior given our argument above. At the same time we
observe a reduced expected jump length compared to the calendar
year 2007 (-2.5% vs -3.7%).227 As pointed out in Section 5.2 about
the comparative statics w.r.t. the expected downward jump size this
has a negative effect on the value of the certificate and on the opti-
mal exercise threshold. This effect is then even further strengthened
by the reduced jump variation (27.7% vs 22.2%) which makes large
downward jumps less probable. From a competitive market point of
view we can argue that the closer the distance between the optimal
exercise threshold and the knock-out barrier is, the more beneficial
the product becomes for its issuer, because there are simply more
states of the market in favor of the issuer. Consequently, issuer bene-

227At first glance, this is a very unintuitive observation. However, the average jump
risk and the short-term jump risk was actually increased compared to adjacent
months. Furthermore, this period of time saw very strong movements of the
DAX on almost every trading day so that we can expect the estimation results
to depend more strongly on the observation day than usual.



254 CHAPTER 6. EMPIRICAL STUDY

fits seem to outweigh market competition in favor of retail costumers
at that point in time.

In 2009 the distance between the optimal exercise threshold ranges
between roughly 0.3% and 0.1% with an average of 0.18%, the latter
of which is a significant reduction from the previous years’ values.
This is in line with the above observation that for a new issuer the
distance is less than the overall average, as a very large number of
new issues took place during 2009. Consequently, those new issues
show more favorable parameters for their issuers. Also the fluctua-
tions are reduced which is due to the larger sample sizes in 2009.

The observed new issues by DZ Bank, Lang & Schwarz as well as
Vontobel corroborate the above rationale as those OETCs mostly
and instantly appear below the overall average, although for Lang
& Schwarz we identify larger fluctuations due to the smaller sam-
ple size compared to the other two. Apart from that, the trend of
some issuers constantly ranking above the average (Citigroup, Com-
merzbank) and others below the average (Royal Bank of Scotland,
Goldman Sachs, BNP Paribas) is reinforced. However, there is no
clear pattern which allows us to relate this behavior to the observed
gap sizes for the certificates. Therefore, we suggest that these is-
suers follow different strategies with their products. Narrowing the
distance between the optimal exercise thresholds and the knock-out
barriers might be indicative of a profit maximization by the issuer,
while a widening of this gap could be based on the consideration to
offer more beneficial products to attract new costumers.

In addition to an examination of the observed distances between
the DAX, the knock-out levels, and the optimal exercise thresholds,
which naturally takes place on an aggregate level it is also worth-
while considering which OETCs are not in the exercise region but
should rather be held by investors according to our analysis. There
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are twenty such certificates in our sample, which have been summa-
rized in Table 6.3. Put differently, more than 99.5% of the examined
certificates should not be rationally held according to our analysis.
For the other twenty certificates we report the above distances to-
gether with the observation day, the corresponding strike, gap and
exercise thresholds. The former are reported to better put those
certificates and their characteristics in perspective to the overall
situation, which has been discussed before at length.

In general, we have two factors that influence optimal exercise thresh-
olds. Diffusive volatility is bad for investors (as it entails a higher
risk of diffusive knock-out) and thus lowers the exercise threshold,
jump risk is good for investors and increases the exercise thresh-
old. Furthermore, optimality of exercise depends on time and the
interplay of these factors with the DAX level itself. Therefore, we
explore all these directions for possible explanations why certain
OETCs appear to become rational to hold.

Right away, we can make two major observations in Table 6.3. First,
all certificates which can be rationally held by investors appear in a
two-month period between July and September of 2009 and second
they are all marketed by two issuers, Goldman Sachs and Citigroup.
Naturally, since it is optimal to hold rather than exercise them (i.e.
the DAX does not exceed the exercise threshold), they exhibit neg-
ative distances between the DAX and the optimal exercise thresh-
olds. However, all these distances are below 1% so that a future
change of that status (either through a knock-out or by becom-
ing suboptimal) is highly likely. This is further corraborated by the
narrowness of the exercise region measured in terms of the distance
between the optimal exercise threshold and the knock-out level. For
this distance we observe an average value of 0.42%, while the over-
all average for all certificates in our sample is 0.18% between July
and Spetember 2009. This is in line with our argument that a larger
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such distance is beneficial for investors. In addition, the rather small
distance between the knock-out barrier and the DAX supports the
suggestion of Chapter 5 that rationally held OETCs are very close
to being knocked-out and thus such investment opportunities are
highly likely to disappear rather quickly.228

To validate these results we explore whether they are caused by
particular market circumstances at the time of the observations.
For this purpose we examine the estimated market parameters for
our sample. With the exception of July 22, 2009, we always detect
a higher jump intensity compared to the neighboring days in the
sample. This suggests that optimality is mostly determined by the
short-term level of jump risk rather than its overall level observed
during our three-year sample, since the estimated parameters for the
respective days are generally lower than those estimated for years
prior.

Besides the jump intensity, it is worthwhile investigating whether
similar effects can be observed for the other impact factors for op-
timality. Regarding the expected downward jump size, our sample
does not exhibit any hint that the optimality of exercise might have
been caused by a short-term peak in that variable since the esti-
mated values of the respective days do not show any special be-
havior compared to their neighbors. The same holds true for the
standard deviation of the expected jump size. If there is no change
in the expectation an increase in the variablity might still have in-
creased the probability of longer downward jumps. Yet, we neither

228In our sample we also observe several cases where there is a negative distance be-
tween the DAX and the knock-out barrier which would be indicative of a knock-
out event. However, these values can be explained without a knock-out event by
unpublished changes to the gap sizes, which would contradict our assumption of
constant gap sizes. Although issuers are allowed to do so in extra-ordinary cir-
cumstances, they communicate in their prospectuses that gap sizes are mostly
held constant. Therefore, constancy of gap sizes is still a valid assumption.
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find a special increase nor a decrease, which would be different from
normal fluctuations.

Finally, the Merton (1976) diffusive volatility has to be considered.
Contrary to jumps, diffusion has a negative impact since it increases
the likelihood of diffusive knock-outs which can never occur below
the strike. A reduced diffusive volatility in our sample thus could
also explain the existence of OETCs, which can be rationally held
by investors. However, we cannot confirm such a behavior based on
our estimated parameters.

All in all we draw the conclusion that on the days in our sample
the optimality appears to be solely induced by pronounced jump
intensity in the short run. We do not find substantial support, that
optimality might be influenced by product characteristics. For cer-
tificates issued by Goldman Sachs the average gap size is in line
with the average gap size of all their OETCs. For Citigroup, there
are certificates with both higher and lower than average gap sizes
and yet both appear optimal. Furthermore, we find evidence for our
suggestion in Chapter 5 that, optimal investment opportunities are
not time persistent and hence disappear rather quickly, since none of
the OETCs detected appears optimal on more than one observation
day.



Chapter 7

Conclusion

This chapter concludes the thesis by summarizing the main results
in Section 7.1 and giving an outlook to promising further questions
not addressed in this piece of research in Section 7.2.

7.1 Summary and Discussion of Results

In this thesis we address the valuation of OETCs, a popular retail
derivative in the German private investment market. The contribu-
tion to existing literature and research on this investment vehicle
can be classified in the following categories:

1) Methodological advances in terms of mathematical problem for-
mulation

2) Theoretical advances in terms of the employed market model,

3) Comparative statics analysis,

4) Empirical analysis.
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The first contribution of this thesis lies in the area of methodological
advances and revolves around the discernment that OETCs are es-
sentially American-style options with a moving strike price, which
continuously grows at the risk-free rate of interest plus a financing
spread. In this regard, exercise of the option amounts to return-
ing it to the issuer at the openly communicated redemption price
(2.3.2.1), for which the respective institution is willing to take back
the product at any time. Therefore, it appears quite natural and
straightforward to apply American option valuation techniques.

With regard to these valuation approaches we identified five classes
of problem formulation: analytical approximation techniques, lattice
methods, PDE-based valuation, Monte Carlo simulation, and formu-
lation as a stochastic control problem. In Sections 3.2.2.1, 3.2.2.2,
3.2.2.3, 3.2.2.4, and 3.2.2.5 they have been discussed at length in
terms of their strenghts, weaknesses and applicability to real-life
option pricing problems. The development of these five methods is
closely related to the fact that American option prices hardly ever
allow for a closed-form solution (not even in the simplest case of a
plain vanilla American put option) so that resorting to approxima-
tion techniques is inevitable. Nonetheless, on a very abstract math-
ematical level all these methods are equivalent again as they are
approximations of the same valuation problem which has a unique
solution, the fair price of the OETCs.

In the case of OETCs it is almost natural to pursue a stochastic
control approach. This is because of the various goals pursued in
this thesis. From a theoretical standpoint this formulation is intu-
itive and tractable and allows for gaining economic insight. From a
practical perspective, optimal control problems happen to allow for
very powerful numerical solution techniques, which readily incorpo-
rate various models and more sophisticated features such as jumps
in the same setting with only very slight adjustments, which is in
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sharp contrast especially to PDE-based methods and analytical ap-
proximations. In the case of PDEs jumps can even alter the type of
the equation from parabolic to hyperbolic which would require to-
tally different numerical approximations. Compared to Monte Carlo
simulation, the numerics of stochastic control problems are parsi-
monious in terms of required computational resources to carry out
simulation.

The valuation problem is eventually tackled by applying the stochas-
tic approximation techniques proposed by Kushner & Dupuis (2001).
Again, a lot of merit of this approach lies in its intuition in respect
of the construction of the approximating Markov chain. Thus, the
methodological advance of this thesis lies in the fact that to the
best of our knowledge we are the first to apply these approximation
techniques to a problem from the area of financial economics.

The second area of contribution of this thesis is of economic nature
and covers theoretical advances. The pivotal point of these advances
is Proposition 2.3.1, in which we have demonstrated that in fric-
tionless markets OETCs should not exist, unless asset prices are
discontinuous and exhibit jumps. This observation entails two sub-
stantial consequences:

1) Since it is well documented that asset prices do not follow con-
tinuous sample paths, there is a justification for these products
to be traded and held in the marketplace. Of course, it becomes
a meaningful question, under which circumstances rational in-
vestors would hold OETCs.

2) Economically meaningful results can only be obtained by con-
sidering asset prices, which allow for discontinuity.

The first item is addressed in the empirical study of Chapter 6,
the resuls of which are summarized below. The second item is in
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very sharp contrast to existing literature, in particular the paper
by Entrop, Scholz & Wilkens (2009), who carry out a comparative
statics analysis in the Black & Scholes (1973) world with continu-
ous sample paths and ignore the early exercise premium of OETCs
in connection with a jumping model. Naturally, they observe the
average-out effect of jumps in option valuation. This effect describes
that short-term shocks like jumps are dominated by the on average
steadily growing diffusive part in the long run. This establishes that
the Merton (1976) model should be used as the minimum level of
sophistication in connection with OETCs.

Furthermore, we apply the Bakshi, Cao & Chen (1997) model with
stochastic volatility to our setting. In this way we obtain two note-
worthy results:

1) Stochastically modeling asset price volatility adds little explana-
tory power to both the prices of OETCs and the rational exercise
behavior investors should follow.

2) Issuers’ claims that OETC prices are indepedent of volatility on
account of the volatility independent redemption price (2.3.2.1)
can be unequivocally refuted.229

Both results are perfectly in line with previous research. The former
is a well-known result for the finite-time counterparts of OETCs and
was first reported by Muck (2007). The latter is well established for
all types of certificates and it has to be considered surprising that
issuers still use this wrong claim to advertise option-like products.

The third class of insights established in this thesis pertains to the
comparative statics analysis of OETCs. The pivotal point of this

229Bear in mind that the payoff functions of plain vanilla stock options do not
depend on the asset price volatility either. Nonetheless it is beyond any question
that volatility is the main value driver of stock options.
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analysis has been to identify how the optimal exercise thresholds of
OETCs depend on their value drivers. Since we characterized these
certificates as a means to invest in the trade-off between financing
costs for the leveraged position in the underlying on the one hand
and capped downside risk as a result of the issuers’ gap risk on the
other, we have closely investigated the four parameters associated
to that: the financing cost z and the gap size a as parameters of the
certificate as well as the jump intensity λ and the expected jump
size µ as market observables governing the jump components of the
underlying.

Our study yields very unambiguous results:

1) Increasing the financing parameter lowers the optimal exercise
threshold, as higher financing costs are negative for investors
and thus they should only hold the product for a shorter period
of time.

2) Increasing the gap size also lowers the optimal exercise threshold,
as larger gaps provide more protection against gap risk for the
issuers. Thus it is bad for investors and again they should only
hold OETCs for shorter durations.

3) Increasing the jump intensity raises the optimal exercise thresh-
old, as jumps occur more often then and in particular beneficial
jumps for the investor are rendered more likely.

4) Increasing the expected downward jump size increases the opti-
mal exercise thresholds, as on average jumps reach further down-
ward and the situation is more favorable for the investor so that
OETCs ought to be held for a longer duration.

In this way we have demonstrated that our model captures the fea-
tures of OETCs as they are predicted and can be explained by the
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above economic rationale. At the same time this in a certain way
shows the merit of our approach (model choice and solution method)
as the results are economically viable.

Fourthly, we have conducted an empirical study of OETCs written
on the DAX for the years 2007 to 2009, which significantly extends
the one-day snapshot also investigated in Chapter 5. In this study
we have employed the Merton (1976) model to determine optimal
exercise thresholds for 1, 097 certificates and identified whether or
not they should be exercised or rationally held. Our study reveals
that the overwhelming majority of these certificates cannot be held
rationally. The only exceptions we find are 20 quotes between July
and September 2009.

Motivated by this observation, we explore the pricing of OETCs
in the exercise region. This is done using the relative distances be-
tween the optimal exercise threshold and the knock-out barrier, the
DAX and the knock-out barrier and the DAX and the optimal ex-
ercise threshold. It is very intuitive that a large distance between
the optimal exercise thresholds and the DAX measures by how far
OETCs are tailored to the issuers’ benefit. The same holds true for
the distance between the DAX and the knock-out level, which can be
viewed as the security blanket for the issuer against a knock-out, in
which case gap risk might materialize. Thirdly, the distance between
the optimal exercise threshold and the knock-out barrier measures
the width of the area in which holding the certificate would be ra-
tional.

Considering these distances it has been revealed that in general the
situation has continuously improved for investors over the observed
time period. Nonetheless, this means that holding OETCs is still
mostly irrational although less pronounced. For this finding three
explanations can be put forth. On the one hand this is caused by
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downward market movement in 2008 as a result of the financial
crisis which naturally reduces the distance between the DAX and
the knock-out barrier and thus the extent by which OETCs are in-
the-money. This goes along with increased jump risk during this
crisis which is also beneficial for OETC investors. On the other
hand we have suggested that increased competition among issuers
can be adduced as a cause for declining distances. This is based on
and corroborated by the observation that newly issued certificates
typically exhibit smaller distances. In this way, the large increase
in the number of outstanding certificates beginning in October of
2008, which further intensified throughout 2009, has led to reduced
distances.

7.2 Implications for Future Research

This thesis extends the existing research in the various ways out-
lined above. Nonetheless, the lines of advances mentioned there also
indicate, in which direction future studies might head.

From a mathematical point of view it is probably worthwhile im-
plementing even more recent numerical solution schemes. A very
promising methodology could be the multigrid method suggested by
Kushner & Dupuis (2001), which might considerably reduce compu-
tational effort for the solution through better approximation error
reduction in each iterative step and improved sparsity properties
of the involved matrices. Confidence about that can be taken from
the fields of partial differential equations and numerical simulation,
in which multigrid methods have prevailed as the most common
and state-of-the-art solution technique because of their O(N) com-
plexity compared to O(N2) of standard solvers. Furthermore, better



266 CHAPTER 7. CONCLUSION

numerical efficiency can be regarded as a prerequisite to incorporate
more advanced market models.

More advanced market models to be incorporated might be the Er-
aker (2004) model, which in addition to stochastic volatility also
allows for jumps in the volatility component. Although stochastic
volatility has been found to be only of minor influence to the optimal
exercise thresholds of OETCs, the findings and explanations of Er-
aker (2004) suggest that this might be different for volatility jumps.
In the paper, it is argued that stock price jumps tend to cluster over
time, i.e. large jumps are typically followed by further sharp market
movements. However, that stylized fact contradicts the assumption
of independently arriving jumps in the Merton (1976) and Bakshi,
Cao & Chen (1997) models. If volatility was allowed to jump, this
would lead to periods of a significantly increased level of volatil-
ity which in turn can explain subsequent sharp market movements.
Combining this with the fact that jumps are the reason why OETCs
exist in the market makes it plausible that our jump-diffusion mod-
els might underestimate jump risk and thus predict too small op-
timal exercise thresholds. Further recent research that suggests the
relevance of jumps in volatility is provided by Huang & Wu (2004)
and Broadie, Chernov & Johannes (2007) who use Lévy processes
to document that jumps in volatility help explain the behavior of
S&P 500 options and futures options. Cont (2006) suggests a quan-
titative measure to assess model uncertainty in option prices which
might help to further quantify the potential impact of such a more
advanced model.

Furthermore, our assumption of basically default-free issuers is de-
batable as the bankruptcy of the renowned investment bank Lehman
Brothers in 2008 emphatically shows. Certainly, buyers of certifi-
cates are not default-free either. The first shortcoming might be
taken on by using vulnerable options methodology as suggested
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for instance by Johnson & Stulz (1987) or Hull & White (1995).
The second issue of positive credit spreads for individual investors
appears to be more difficult. On the one hand such a feature is
built-in in OETCs by virtue of the financing parameter z, but on
the other hand this factor is not investor-specific. Consequently,
investors with credit spreads z̄ > z would always fare better by
investing in the certifcate than by a leveraged stock position since
the payoff max(St − K0 exp((r + z̄)t)) is always less than the one
of the OETCs. In other words, such investors would have an exer-
cise threshold of infinity.230 As a result of these considerations the
creditworthiness of every single individual has to be known and ag-
gregate supply and demand have to be condensed to equilibrium
prices. Moreover, the effect of individual credit spreads should not
be overestimated as both issuers and investors have credit spreads.
This leads to a situation where both spreads cancel out each other to
a certain extent. Thus, the important value driver of optimal exer-
cise thresholds should be the net credit spreads between issuers and
investors. In that context, another line of research worthwhile pur-
suing is the one by Elkamhi, Ericsson & Wang (2012) who show that
put features in bonds provide protection against liquidity, interest
rate and default-risk. Thus the effect of default risk on the exercise
thresholds of OETCs might be limited by the presence of this op-
tion. Nonetheless, it should be left to future research to carefully
examine these effects and decide which prevails in which situation.

Regarding the comparative statics analysis, one might investigate
the short variant of OETCs. This would be an interesting exercise
and complete the view on these certificates, although one might

230From an economic point of view this can be intuitively explained. Defaultable
investors who are not charged with their appropriate risk premia and credit
spreads are attracted by this favorable situation for them. Consequently, they
would always hold the certificate at a discount compared to their individually
fair price. Without adjustment of the financing rate which reflects the investors
default risk, this observation is independent of time and would uphold forever,
thus an infinite exercise threshold.
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expect an even less favorable situations for retails investors as the
average jump sizes are negative while it takes upward jumps to
knock out short OETCs.

Furthermore, the comparative statics analysis could be conducted
afresh using the suggested model extensions mentioned above. In
this way one would be able to reassess the influence of jumps to-
gether with their parameters on the tradeoff with the financing costs
and the gap size. This would also shed light on whether jump risk is
potentially over- or underestimated. Another step might be the ap-
plication of these models to single stock OETCs. Contrary to single
stocks, stock market indexes are well-diversified. This should lead
to pronounced and potentially unsystematic jump risk. Taking fur-
ther into account, that jumps are the phenomenon that creates the
value of OETCs it should be worthwhile investigating whether sin-
gle stock OETCs provide better investment opportunities for retail
investors.

Eventually we suggest to extend the empirical study along the same
lines mentioned above, i.e. also consider short OETCs, include cer-
tificates on single stocks, and employ more sophisticated models.
Apart from that the empirical study might be extended to a longer
period of time. In particular the fact that markets are under ad-
ditional distress due to the European sovereign debt crisis, might
render a study interesting, which models defaultable OETCs.

Finally, it could be worthwhile following the issuers’ marketing prospec-
tuses and tap into commodity markets, as OETCs are often mar-
keted as a means for retail investors to enter commodity markets
such as crude oil, natural gas, precious metals or agricultural goods
and diversify their portfolios in this way. From a numerical and
mathematical point of view, this could be done in the same set-
ting presented in this thesis, but from an economic point of view



7.2. IMPLICATIONS FOR FUTURE RESEARCH 269

that would require totally different market models which reflect the
intricacies of commodity markets such as seasonality, the cost of
carry concept along with the convenience yield, and the effect of
backwardation and contango which heavily impacts rollover costs.
These rollover costs are incurred at the expiry of the front month
future when the issuer has to set up a new hedge. Models capa-
ble of dealing with these properties are, for example, the ones sug-
gested by Gibson & Schwartz (1990) for oil, Cortazar & Schwartz
(1994) for contingent claims on copper, Schwartz (1997), or Trolle
& Schwartz (2009).231 Fama & French (1987) evaluate the theory
of storage which aims at explaining differences between futures and
spot prices in terms of interest rates, convenience yield and costs
incurred for warehousing. They find evidence for spot price changes
based on these explanatory factors.

231A model for the dynamics of forward curves in the presence of seasonality is
presented by Borovkova & Geman (2007).





Appendix A

Estimated Market

Model Parameters

In this section we present the results of the estimation of the Merton
(1976) market model from option prices conducted in Section 6.1.2.
In particular, we estimated the following four parameters for each
of the D = 157 re-estimation days of our sample:

1) Diffusive volatility σ̂D

2) Jump intensity λ̂Q

3) Expected jump size µ̂QX

4) Standard deviation of the expected jump size σ̂J .

In this respect the hat always indicates that the parameters are not
observed in the market but rather estimated and, where applicable,
the superscript shows that the parameter is to be understood w.r.t.
to the risk-neutral measure Q rather than the empirical measure.

271
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In addition to the four estimated parameters we also report several
further information. In the column titled Options we provide the
total number of options available on the given day. Column N gives
the number of options actually used, i.e. those that satisfy the ar-
bitrage condition (5.3.1.1), the term to maturity criterion and the
price criterion mentioned above. In column ∆ we then give the num-
ber of options excluded based on these criteria. Finally in columns
Interest Rate and Close Price we report the risk-free rate of interest
used for the given day and the respective day’s closing price for the
DAX.

We obtained the following estimation results:
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Cvitanić, J., H. Pham & N. Touzi. 1999. “Super-Replication
in Stochastic Volatility Models under Portfolio Constraints.”
Journal of Applied Probability, 36:652–681.
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Gewöhnliche Differentialgleichungen. 2nd ed. Berlin, Germany:
Walter de Gruyter.

Deutsche Bundesbank. 2010. Sektorale und gesamtwirtschaftliche
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Walter, W. 2000. Gewöhnliche Differentialgleichungen. 7th ed.
Berlin and Heidelberg, Germany: Springer Verlag.

Wang, G. & S. Wang. 2006. “On Stability and Convergence of a
Finite Difference Approximation to a Parabolic Variational In-
equality Arising from American Option Valuation.” Stochastic
Analysis and Applications 24:1185–1204.

Wasserfallen, W. & C. Schenk. 1996. “Portfolio Insurance for the
Smart Investor in Switzerland.” Journal of Derivatives 3:37–43.

Whaley, R.E. 1981. “On the Valuation of American Call Options
on Stocks with Known Dividends.” Journal of Financial Eco-
nomics 9:207–211.

Whaley, R.E. 1982. “Valuation of American Call Options on
Dividend-Paying Stocks - Empirical Tests.” Journal of Finan-
cial Economics 10:29–58.

Whaley, R.E. 1986a. “On Valuing American Futures Options.” Fi-
nancial Analysts Journal 42:49–59.

Whaley, R.E. 1986b. “Valuation of American Futures Options: The-
ory and Empirical Tests.” The Journal of Finance 41:127–150.

White, E.N. 1990. “The Stock Market Boom and Crash of 1929
Revisited.” The Journal of Economic Perspectives 4:67–83.

Wichmann, B.A. & I.D. Hill. 1982. “An Efficient and Portable Pseu-
dorandom Number Generator.” Applied Statistics 31:188–190.

Widdicks, M., P.W. Duck, A.D. Andricopoulos & D.P. Newton.
2005. “The Black-Scholes Equation Revisited - Asymptotic Ex-
pansions and Singular Perturbations.” Mathematical Finance
15:373–391.



340 BIBLIOGRAPHY

Wiggins, J.B. 1987. “Option Values Under Stochastic Volatility -
Theory and Empirical Estimates.” Journal of Financial Eco-
nomics 19:351–372.
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This dissertation analyzes Open-End Turbo Certificates (OE-
TCs), a popular class of retail derivatives. OETCs can be ex-
ercised at any time at the investor’s discretion. In order to 
explain the existence of the certificates jump risk must be 
considered. We propose and implement an optimal stopping 
approach to price these securities, which further allows for 
determining optimal exercise thresholds. They result from 
the trade-off between benefits from downward jump protec-
tion and financing costs. We show that early exercise right 
has a significant impact on their values. In an empirical ana-
lysis pertaining to the years 2007 through 2009 it turns out 
that certificates which could be rationally held are very rare, 
although the degree by which the underlying exceeds the op-
timal exercise thresholds continually declines over the consi-
dered period. We suggest three lines of explanation: general 
market movement, jump risk perception by the market, and 
increased competition among issuers.
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