
10

Interactive Search Processes in Complex
Work Situations

von Raiko Eckstein

Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte
Informatik der Otto-Friedrich-Universität Bamberg

UNIVERSITY OF
BAMBERG
PRESS

 A Retrieval Framework

 Schriften aus der Fakultät
Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Schriften aus der Fakultät Wirtschaftsinformatik
und Angewandte Informatik

Band 10

University of Bamberg Press 2011

Interactive Search Processes in

Complex Work Situations

A Retrieval Framework

von Raiko Eckstein

 University of Bamberg Press 2011

Bibliographische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliographie; detaillierte bibliographische
Informationen sind im Internet über http://dnb.ddb.de/ abrufbar

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der
Otto-Friedrich-Universität als Dissertation vorgelegen
1. Gutachter: Prof. Dr. Andreas Henrich
2. Gutachter: Prof. Dr. Wolfgang Benn
Tag der mündlichen Prüfung: 15. Juli 2011

Dieses Werk ist als freie Onlineversion über den Hochschulschriften-
Server (OPUS; http://www.opus-bayern.de/uni-bamberg/) der
Universitätsbibliothek Bamberg erreichbar. Kopien und Ausdrucke
dürfen nur zum privaten und sonstigen eigenen Gebrauch
angefertigt werden.

Herstellung und Druck: Digital Print Group, Nürnberg
Umschlaggestaltung: Dezernat Kommunikation und Alumni

© University of Bamberg Press Bamberg 2011
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-86309-017-3 (Druckausgabe)
eISBN: 978-3-86309-018-0 (Online-Ausgabe)

URN: urn:nbn:de:bvb:473-opus-3326

It’s not information overload. It’s filter failure.

Clay Shirky

Acknowledgements

This thesis presents the results of my research as a member of the Chair of Media
Informatics at the University of Bamberg, Germany. However, this thesis would not
have been possible without the help of numerous people.

First and foremost, I would like to thank my thesis advisor Prof. Dr. Andreas
Henrich for his enduring support, his guidance and his always helpful ideas that
provided valuable input for my research. I also thank Prof. Dr. Ute Schmid and
Prof. Dr. Elmar J. Sinz for their support as members of my thesis committee.

Furthermore, I would like to express my appreciations for the valuable discus-
sions and inspirations that were part of my work at the Chair of Media Informatics,
in particular, Adrian Hub, Daniel Blank, Nadine Weber, Stefanie Sieber, Tobias Fries,
and Dr. Volker Lüdecke. Additionally, I thank Silvia Förtsch and Siegfried Hofmann
for keeping the Chair running smoothly in the background.

Apart from work, my thanks go to my parents and sister for providing the some-
times necessary gentle motivating push to bring this journey to an end.

Munich, February 2011 Raiko Eckstein

Zusammenfassung

Seit einigen Jahren ist ein stetiges Ansteigen der Menge an Informationen, die in Un-
ternehmen erzeugt werden, festzustellen. Um als Unternehmen wettbewerbsfähig
zu bleiben, ist es notwendig, vorhandenes Wissen wiederzuverwenden, um aus ver-
gangenen Projektergebnissen profitieren zu können. Weiterhin ist ein vollständiges
Informationsbild unabdingbar, um informierte Entscheidungen treffen zu können.
Die Informationsvielfalt in modernen Unternehmen übersteigt häufig die Fähigkei-
ten aktuell anzutreffender unternehmensweiter Suchlösungen. Die Gründe hierfür
sind vielfältig und reichen von nicht verknüpften Informationen aus verschiedenen
Softwaresystemen bis hin zu fehlenden Funktionen, um den Nutzer bei der Suche
zu unterstützen. Vorhandene Suchfunktionen im Unternehmen unterstützen häufig
nicht die Suchparadigmen, die in diesem Umfeld notwendig sind. Vielfach ist den
Suchenden bei der Formulierung ihrer Suchanfrage nicht bekannt, welche Ergeb-
nisse sie finden werden. Stattdessen steht der Aspekt des Wissensaufbaus und der
Gewinnung neuer Einsichten in den vorhandenen Daten im Vordergrund. Hierzu
werden Suchparadigmen benötigt, die dem Nutzer Werkzeuge zur Verfügung stel-
len, die ein exploratives Navigieren im Datenbestand erlauben und ihn bei der Er-
kennung von Zusammenhängen in den Suchergebnissen unterstützen.

Das Ziel dieser Arbeit ist die Vorstellung eines Rahmenwerks, dass explorative
Suchvorhaben im Unternehmensumfeld unterstützt. Das beschriebene LFRP-Frame-
work baut auf vier Säulen auf.

1. Die Multi-Layer Funktionalität erlaubt es Nutzern, komplexe Suchanfragen zu
formulieren, die sich auf mehr als einen Ergebnistyp beziehen. Dies ermöglicht
beispielsweise Suchabfragen, die – ausgehend von einer Menge von relevan-
ten vergangenen Projekten – Selektionen auf den dazugehörigen Dokumenten
erlauben.

2. Das Suchparadigma der facettierten Suche unterstützt Nutzer bei der inkre-
mentellen Formulierung von Suchanfragen mithilfe von dynamisch angebote-
nen Filterkriterien und vermeidet leere Ergebnismengen durch die Bereitstel-
lung gültiger Filterkriterien.

3. Die Erweiterung der facettierten Suche um die Möglichkeit, die Suchergeb-
nisreihenfolge basierend auf Filterkriterien zu beeinflussen, erlaubt es Nut-
zern feingranular vorzugeben, welche Kriterienausprägungen im Suchergeb-
nis stärker gewichtet werden sollen. Für den Nutzer geschieht die Beeinflus-
sung des Rankings transparent über sogenannte Nutzerpräferenzfunktionen.

iv | ZUSAMMENFASSUNG

4. Die letzte Säule umfasst die Visualisierung mit parallelen Koordinaten, die
in der Suchoberfläche des LFRP-Frameworks zwei Aufgaben übernimmt. Zum
einen formuliert der Nutzer damit die Suchanfrage ausschließlich grafisch
über die Visualisierung und zum anderen erhält er eine grafische Repräsen-
tation der Suchergebnisse und kann so leichter Beziehungen zwischen Such-
ergebnissen und deren Facetten erkennen.

Das Framework, welches in dieser Arbeit formal aus Sicht des Anfragemodells
sowie als prototypische Umsetzung betrachtet wird, ermöglicht Nutzern den navi-
gierenden Zugriff auf große vernetze Datenbestände und stellt einen Baustein einer
umfassenden Informationsstrategie für Unternehmen dar.

Contents

I Introduction to the Subject 1

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Statement . 5
1.3 Goals of the Publication . 7
1.4 Organization of the Thesis . 9
1.5 Origins of the Material . 10

2 Background and Basic Concepts 11
2.1 Human–Computer Information Retrieval 11
2.2 Exploratory Search . 15
2.3 Faceted Search . 18

2.3.1 Definition of Faceted Categories 19
2.3.2 Creation of Faceted Categories 20
2.3.3 Description of Faceted Search 22

2.4 Examples for Exploratory Search Systems 24
2.4.1 Flamenco . 24
2.4.2 mSpace Explorer . 27
2.4.3 Relation Browser . 29
2.4.4 Freebase Parallax . 32

2.5 Visualization in Information Retrieval 33
2.5.1 Visual Query Formulation . 34
2.5.2 Visualization of Search Results 36

2.6 Enterprise Search and Information Access Technologies 40
2.6.1 Heterogeneous Information Spaces 43
2.6.2 Internet vs. Intranet Search 46
2.6.3 Consideration of Content Security 47
2.6.4 Expertise Retrieval / Expert Search 49
2.6.5 Evaluation of Enterprise Search 51
2.6.6 Consideration of Contextual Information 51

2.7 Enterprise Search and IA Technologies: Examples 53
2.7.1 Google Enterprise Search Solutions 53
2.7.2 Endeca Information Access Platform 56
2.7.3 Exalead CloudViewTM . 62

vi | CONTENTS

3 Searching in Complex Work Situations in an Enterprise Context 69
3.1 Introduction to Information Needs 69
3.2 Types of Information in Product Development Processes 71
3.3 Information Seeking Patterns in Product Development Processes . . . 74
3.4 Exemplary Search Scenarios . 79

3.4.1 Search for Existing Parts in the Organization 79
3.4.2 Project Reviews . 81

3.5 Multi–Criteria Search . 81
3.6 Summary of the Identified Requirements 87

II Retrieval Model for Complex Search Situations 89

4 LFRP–Search Framework 91
4.1 The LFRP–Approach to Query Statement 92
4.2 The Notion of Artifacts . 94

4.2.1 Description of Artifacts . 94
4.2.2 Attributes and Feature Types 98

4.3 LFRP–Query Model . 100
4.3.1 Facet Types . 102
4.3.2 Selections . 104
4.3.3 Multi–Layer Functionality . 107
4.3.4 Integration of Ranking Functionality 110
4.3.5 Combination of Faceted Search and Similarity Search 116
4.3.6 Determination of Query Previews 118

4.4 Dynamic Facet Provision . 118
4.5 Schema of the LFRP–Search Framework 121
4.6 Related Work . 126

5 Prototypical Realization of the LFRP–Search Framework 127
5.1 Parallel Coordinates . 127
5.2 Architecture of the Framework . 131
5.3 Description of the User Interface . 134

5.3.1 Controlling the User Interface 134
5.3.2 Parallel Coordinates for Search Query Formulation 135
5.3.3 Presentation of Search Results 143
5.3.4 Layer Switching on the User Interface Level 144
5.3.5 Potential Enhancements . 146

5.4 Comparison of the LFRP–Search Framework and DWH Systems . . . 152

6 Evaluation 157
6.1 Evaluation of the LFRP–Search Framework 157
6.2 Evaluation of the User Interface . 160
6.3 Summary of the Evaluation . 163

CONTENTS | vii

III Outlook 165

7 Conclusion 167

IV Appendix 171

A List of Abbreviations 173

B LFRP–Search Framework Schema 177
B.1 LFRP XML Schema . 177
B.2 Example Schema for the Domain of Product Development 181

Bibliography 203

List of Figures

2.1 Search Activities according to Marchionini [2006a]. 16
2.2 Example of a parametric search user interface from AutoScout24 (http:

//www.autoscout24.eu/Search.aspx last accessed 08/01/2010). 23
2.3 Example for a search for Nobel Prize laureates from 1901 to 2004 with

Flamenco: The Opening [Flamenco Search Interface Project, 2007]. 25
2.4 Example for a search for Nobel Prize laureates from 1901 to 2004 with

Flamenco: The Middle Game [Flamenco Search Interface Project, 2007]. . 26
2.5 Example for a search for Nobel Prize laureates from 1901 to 2004 with

Flamenco: The Endgame [Flamenco Search Interface Project, 2007]. 27
2.6 The initial view of the directional column-faceted browser mSpace for a

search in an online newsfilm archive. 28
2.7 The view of the directional column-faceted browser mSpace for a search in

an online newsfilm archive with selections for the facet Theme and Subject. 30
2.8 Relation Browser 07 (http://www.ieee-tcdl.org/Bulletin/v5n1/Capra/

img/rb07.jpg last accessed 08/01/2010). 31
2.9 Freebase Parallax. 33
2.10 The Venn diagram visualization for queries in the VQuery system [Jones,

1998]. 34
2.11 Transformation of the subsets of a Venn diagram into the InfoCrystal Visu-

alization [Spoerri, 1993]. 35
2.12 An example for the InfoCrystal visualization [Spoerri, 1993]. 36
2.13 An example for the treemap visualization for documents from the product

development domain. 37
2.14 An example for the scatter plot visualization for documents from the product

development domain. 38
2.15 An example for the bar chart visualization for documents from the product

development domain. 39
2.16 A histogram of a data set (a) and the respective bargram resulting from

“tipping over” the histogram bin and omitting empty ones (b) [Wittenburg
et al., 2001]. 40

2.17 Screenshot of Endeca’s Discovery for Manufacturing user interface that shows
search results (center) and the guidance visualizations (red brackets) such
as faceted filters, tag clouds, charts and map visualizations (Screenshot from
[Endeca, 2009c]). 61

x | LIST OF FIGURES

2.18 Overview of the Exalead CloudView core components Connectors, Document
Processing Workflow, Index Database, and Front-End Processes (Figure from
[Exalead, 2009c]). 63

2.19 Built-in user interface widgets for search result navigation in Exalead Cloud-
View [Exalead, 2009a]. 66

3.1 Information need and supply model based on [Wigand et al., 1997]. 70
3.2 Types of information found in the different phases of a product development

process. 74
3.3 Different artifact types and their relationships used in the second search

scenario. 82
3.4 Considered artifact types in the second scenario. 83
3.5 Context dimensions for the product development domain [Eckstein and

Henrich, 2008a]. 84

4.1 The LFRP–user interface. 93
4.2 Example artifact type hierarchy from the product development domain (Adapted

and enhanced from [Eckstein et al., 2009]). 97
4.3 Relationships between different layers of artifact types (simplified schema). 98
4.4 Example hierarchical facet with four different levels of granularity for geo-

graphical information. 103
4.5 Inter-layer and intra-layer relationships of artifact layers shown exemplarily

for the material, product, document, and person layer. 107
4.6 Schematic representation of the layer concept with three exemplary layers

containing intra-layer and inter-layer relationships connecting two layers. . 109
4.7 Example query for facet selections from multiple artifact layers. 109
4.8 Example query statements for switching the artifact type. 111
4.9 Sample expression tree for a tuple with the truth values (false, false, true,

true, true) for the criteria A through E [Beck and Freitag, 2008]. 112
4.10 Different selections based on user preference functions for nominal and car-

dinal facets defining interval selections and ranking conditions. 113
4.11 Formal example functions for the definition of ranking criteria. 115
4.12 Rank aggregation over multiple layers. 116

5.1 Visualization of a data tuple in parallel coordinates [Inselberg, 2005]. . . . 128
5.2 Scaling problems with cardinal scale attributes [Edsall, 2003]. 129
5.3 Overplotting in a parallel coordinates plot [Ericson et al., 2005]. 129
5.4 Interactions with parallel coordinates. (a) Focusing (b) Brushing (c) Strum-

ming [Edsall, 2003]. 130
5.5 Architecture of the LFRP-indexing framework. 131
5.6 Architecture of the LFRP-query framework. 132
5.7 Ribbon component which is used for controlling the user interface. 135
5.8 The search user interface of the LFRP-search framework with an exemplary

search request. 136
5.9 Displaying a document’s degree of maturity as ordinal and as cardinal scale

facet. 139

LIST OF FIGURES | xi

5.10 Several function overlays of the cardinal scale attribute facet outer radius. . 140
5.11 Example switch of the artifact layer in one parallel coordinates plot. 145
5.12 The user conducts a query on the product layer and constrains the search

results by the artifact type, product group and weight facet resulting in 19
product artifacts in the search result. For the next step, the user wants to
retrieve all documents which are linked to these products. 146

5.13 After choosing the Switch to documents button in the Switch artifact types rib-
bon group, a new parallel coordinates plot is opened in a second tab shown
directly below the ribbon component. The figure shows user selections for
the document layer on the document type facet. This search query results in
51 document artifacts which were based on the initial 19 product artifacts. 147

5.14 Using lines to connect facet values [Graham and Kennedy, 2003]. 148
5.15 Using curves to connect facet values [Graham and Kennedy, 2003]. 148
5.16 The left parallel coordinate visualization is based on line segments and

omits the information that there are many artifacts with the same facet
value combination. The right visualization shows the relation between the
two facet values by using curve segments (Screenshots based on the proto-
type developed in [Mechnich, 2008a]). 149

5.17 Potential visualization of hierarchical facets. 150

List of Tables

3.1 Different types of information in product development processes according
to [Carstensen, 1997]. 72

Listings

4.1 Facet description for a 3D-geometry similarity facet. 123
4.2 Facet description for a document type attribute facet. 124
4.3 Entity description for the root artifact. 124
4.4 Entity description for the person artifact and its child artifact employee.125
4.5 Examples for definitions of relation facets. 126
B.1 XML Schema for the LFRP-search framework. 177
B.2 Example schema for the LFRP-search framework applied to the do-

main of product development. 181

Part I

Introduction to the Subject

Chapter 1

Introduction

In 1945, Vannevar Bush introduced his vision of the memex—short for Memory
Extender—in the article “As We May Think” [Bush, 1945]. He envisioned the memex
as “a device in which an individual stores all his books, records and communica-
tions, and which is mechanized so that it may be consulted with exceeding speed
and flexibility”. He proposes a mechanical device which supports users in storing
information and helping them to retrieve the information at a later point in time.
Users are supported by the concept of associative trails which are linear sequences
of different knowledge items that are linked together. By organizing information
this way users shall easily be able to follow trails of related knowledge.

In modern organizations, a multitude of information and knowledge is created
and stored during the development of products and services which often is consid-
ered a competitive advantage. To retain competitiveness and innovative capability,
organizations begin to realize the potential of reusing existing knowledge from the
organization. Therefore, organizations strive for solutions which on the one hand
help to capture the produced information and on the other hand support users to
retrieve this information when necessary with the help of methods from the field of
knowledge management1. This reuse of information can help preventing duplicate
work as well as support users in coming to better decisions.

Transferring the idea of Bush to organizations, the memex would be represented
by a single, self-contained system which captures the existing information of an
organization and associates related concepts and entities. At the same time, the
memex would abstract from the multitude of application systems. Users can access
this organizational memory and easily search and access information whenever nec-
essary. Although, individual parts of this vision are currently available as applicable
products, still, large parts are lacking for its realization.

The focus of this publication lies in the analysis of interactive search processes
in complex work situations which occur in enterprise scenarios and in the propo-
sition of an approach which supports knowledge workers in retrieving existing in-
formation and knowledge in an organization. A special emphasis is put on search
situations occurring in product development processes where several examples are
based on. The portrayed application and information landscape is characterized by

1For additional information refer to [Nonaka and Takeuchi, 1995] and [Alavi and Leidner, 2001].

4 | Chapter 1 – Introduction

a variety of different applications which store various types of information ranging
from structured to unstructured information.

This publication embraces the idea of bringing users and search user interfaces
closer together by providing a search framework which helps users to satisfy com-
plex information needs easier. Although, current search engines in the web focus on
providing users with a single search box from which they can enter the keywords
that describe their information needs, this publication advances the view that pro-
viding users with a search interface which adapts to different types of information
is more helpful than common keyword searches. This approach allows users to ex-
plore the available information and discover new information which can be helpful
for their current work tasks.

1.1 Motivation

In knowledge-intensive working environments a large fraction of work time is spent
on searching for internal and external information and knowledge. The exact amount
of time varies based on the tasks and domains which are considered. For instance
for the field of engineering, developers are spending between 20 and 30% of the
complete development time on the retrieval of information (e. g. [Beitz et al., 1997]
and [Marsh, 1997]), but being only successful in about 50% of their searches [Feld-
man, 2004]. del Rey-Chamorro and Wallace [2005] predict that the amount is likely
to increase in the future, as technology evolves and the complexity of product de-
velopment further increases. The improvement of search engines for domains alike
can help to improve the successful retrieval of information in two ways. First, the
amount of time necessary to find information can be reduced which directly helps
shortening development times which is a crucial requirement for companies to stay
competitive. Second, search tasks can be more effective and efficient when users
are given a central search engine which federates information that is spread across
several application systems. This approach might not shorten search times, but can
help to improve the quality of the search by supporting users better in finding the
relevant information.

According to Leszinski [2001] the field of product development can be char-
acterized by growing product complexity which originates from the increasing use
of mechatronic components in the products and dynamic customer requirements
[Schichtel, 2002]. Complex products consist of an increasing number of compo-
nents and relationships among each other. Additionally, products are designed for
customization to satisfy individual customer needs. To stay competitive, companies
try to shorten product development processes to get products ready for the market.

An approach to achieve shorter development times is to encourage users to reuse
existing information, parts and products from the organization. This reuse helps
users to make better decisions by considering (documented) experiences from past
projects. Additionally, duplicate work is avoided which shortens development times
and reduces development costs. This manifests not only in the reduced time to
develop a specific part, but also by reducing duplicate product tests, which might

Section 1.2 – Problem Statement | 5

already be done in the original project where the product was designed. Information
which cannot be found or is found to late might lead to wrong decisions during the
development of products, and thus is decreasing productivity. In general, reuse can
lead to reduced product costs based on more efficient warehousing and optimized
lot sizes. Additionally, the complexity and the risk of new designs can be reduced
by depending on existing and established parts.

Successful project management captures the experiences after the project execu-
tion in form of best practices/lessons learnt which can be materialized in the form of
project reviews. The retrieval of these experiences can help users to avoid mistakes
and to apply successful methods in their current projects. Additionally, potential
problem fields of the current product development can be identified prematurely.

Various studies of engineers’ information seeking behavior found that accessi-
bility is the factor that influences their selections of information sources most (for
instance [Fidel and Green, 2004]). Based on that finding, search engines should
aim for improving the availability and accessibility of information by providing an
entry point to the various systems available in common system landscapes.

The process of developing new products can be characterized by very creative
tasks which often draw on existing designs as a basis for the inspiration for new
developments. Sarkar and Chakrabarti [2007] emphasize how important search and
exploration is during design since these activities enable idea generation capabilities
of engineering designers. The retrieved solutions can be used directly or modified
iteratively to be consistent with the current requirements. These activities occur
during the whole development process and should be supported by search engines
which allows the exploration of information spaces.

The diverse and complex information needs found in organizations, the available
variety of places to search as well as the complexity resulting from the fragmented
application landscape complicate the successful retrieval of information. By pro-
viding users with search tools that support query refinement in a dialog-like style
(as propagated by Human-Computer Information Retrieval (HCIR) introduced be-
low in Section 2.1 on page 11) users get instant feedback how changes to their
queries would affect the intermediate search results. This approach helps users to
better explore the information landscape by providing additional insights about the
search results such as highlighting correlations and dependencies. By integrating
structured and unstructured data about knowledge items interesting new applica-
tions can be provided which include data analysis functionality known e. g. from
the Business Intelligence (BI) domain. The complexity of the information landscape
due to the manifold entities which are stored in various management systems can
be reduced by this kind of tools.

1.2 Problem Statement

As outlined above, organizations can strongly benefit from reusing existing infor-
mation. The domain of enterprise search (which will be described in detail in Sec-
tions 2.6 on page 40 and 2.7 on page 53) tries to provide solutions for search prob-

6 | Chapter 1 – Introduction

lems in organizations which are different from those in the web. Both academia and
industry are proposing various solutions for the specific search problems existing in
organizations.

Application landscapes in companies can be characterized as heterogeneous and
complex. Often many different systems are used to store the manifold information
which is created during the development of products or services the company pro-
duces. Often redundant systems exist in organizations because of grown company
structures resulting from acquisitions and mergers after which the applications sys-
tems were not consolidated.

Considering companies from the domain of product development, a variety of
artifacts is produced describing the different aspects of a product. In addition to
geometric information in two and three-dimensional form, various test reports and
calculations are created during the development. The descriptions are both stored
in multiple document types as well as in various document formats which compli-
cates searching due to the necessary support for all types and formats in the search
engine. The storage of these result documents can take place in various forms rang-
ing from the plain storage on network shares to sophisticated management systems
which allow the storage in addition to descriptive data such as in Product Data
Management (PDM) or in Product Lifecycle Management (PLM) systems. This het-
erogeneity leads to multiple access points when users need to find data about certain
products. Thus, they are forced to search in several systems to find the necessary in-
formation. Although, there exist approaches in the PDM field trying to provide users
with comprehensive information about products, these solutions lack the inclusion
of other information necessary in product development, such as project or expert
information. Furthermore, the existing search functions which are included in ap-
plications for the product development domain often resort to parametric searches.
This kind of search requires users to state a complete query by giving the criteria
based on multiple text fields or drop down boxes. Often these types of queries lead
to empty result sets which can result in abandoned queries. To overcome this re-
striction, Belkin [1993] already proposed in 1993 that information retrieval should
focus more on information-seeking activities, i. e. ways how users interact with in-
formation for a better support and better search results by stronger integrating users
in the search process.

Another difficulty is introduced as information is not always stored in a struc-
tured form which would allow more precise and concrete searches. Much informa-
tion is only stored in unstructured form such as in textual documents. Although
humans might be able to understand the structure of a document, automatic pro-
cessing of this structure during the indexing step can be difficult and often informa-
tion about the structure is lost.

In addition to various types of documents which are created to describe infor-
mation from different viewpoints, additional entity types can be identified which
become relevant in certain work situations for users. Entity types can for instance
be projects, persons, or certain materials. Each of these entity types and their differ-
ent subtypes can be described by a specific set of different descriptive attributes. A
search engine trying to meet these challenges would first need to extract all infor-

Section 1.3 – Goals of the Publication | 7

mation from the different systems, transform it in a homogeneous representation
and eliminate duplicate information before indexing the data. Second, the identi-
fied wealth of information needs to be provided to users in a way that allows them
to explore the entities by using the available entity descriptions as search criteria.

This variety of information types can lead to complex search situations when no
appropriate search support is provided. This includes the mapping of these descrip-
tions to comprehensible search user interfaces. Additionally, information needs vary
from being clearly defined to being very vague. The former can be answered com-
paratively simple by a known-item search where users know what search result they
seek. However, the latter situation is characterized by users not being able to exactly
describe their information need. In situation like that, users should be supported in
the query formulation process. For instance, search user interfaces can help users by
providing relevant search criteria and insights about the search results. Additionally,
this is helpful in situations where information needs are changing during the search
task, i. e. situations where the goal of the search task evolves during the exploration
of the data.

Another challenge lies in the relationships which exist between the different
entity types which should be exploitable by users. For instance, in product develop-
ment projects users might want to find all projects in which certain products were
used or created. A scenario for this type of an information need could be the search
for documents which describe best practices for the development of a specific prod-
uct group. A search task then would start with the search for all products adhering
to specific search criteria. Without a search engine supporting these different re-
lated entities, users would have to search all projects for the products which they
identified in the first step. The difficulty for this type of queries is the necessary data
quality. In addition to the description of the entities, data quality is concerned with
the relationships between the entities which need to be curated.

Especially in the domain of product development, similarity searches on product
data are an interesting approach to find relevant products. During the development
of products, 3D representations are created. In situations where users need a cer-
tain product which adheres to a certain form (i. e. its geometry) a similarity search
should be invoked where users provide a sketch. In addition to this (geometrical)
criterion, users might want to restrict the search results by additional search criteria
such as product features. Currently available search engines for the domain of prod-
uct development often only allow the query for geometrical similarity. An example
for a geometric search engine is the product Geolus Search2.

1.3 Goals of the Publication

The goals of this publication can be derived by examining the difficulties and prob-
lems currently existing in knowledge-driven organizations and are described below:

2http://www.plm.automation.siemens.com/en_us/products/open/geolus/index.shtml
(last accessed (08/01/10)

8 | Chapter 1 – Introduction

• Description of the information landscape in organizations. In contrast to
information found on the web, the information landscape in organizations is
characterized by a variety of different information sources providing differ-
ent information types. Information often is managed wide-spread in different
application systems which introduce additional complexity when users need
to search for information and have to query different systems to satisfy their
information need.

• Description of complex search situations. This publications describes search
situations which can occur in enterprise scenarios with a focus on the domain
of product development. Especially search tasks with a high complexity are
described and reasons for this complexity are assessed. Amongst others this
comprises the existence of search situations where users are not able to de-
scribe their information need clearly, but only have a vague understanding of
what kind of search result they need. Additionally, the availability of various
entity types in the search result complicate the retrieval of information. Search
engines which are deployed in environments like this must show an increased
awareness for these kinds of difficulties to support users appropriately.

• Improvement of the supply of information. Modern enterprises should
strongly try to reuse existing information to benefit from past experiences and
their knowledge base to stay competitive. Often the insufficient search solu-
tions currently available in organizations represent an obstacle for the success-
ful supply of information. The availability of comprehensive search solutions
which consider all available information across various systems is often lim-
ited. Thus, users need to access multiple systems which they have to query
for the same need which can get frustrating and can lead to abandoned search
tasks.

• Definition of a search framework for complex search situations. The char-
acteristics of the information landscape in organizations demand specific solu-
tions for search engines which help users to access the available information
easily. This publication introduces a search framework which provides various
search features customized for the difficulties found in the portrayed domains
and overcomes restrictions of currently available search engines. The frame-
work especially focuses on providing users with an interactive user interface
which allows them to incrementally formulate a query. Additionally, it allows
searching over a data collection consisting of different entity types derived
from various application systems.

– Provide a formal query model for complex search situations. The
analysis of the difficulties of information retrieval in enterprise settings
leads to the definition of a formal query model which is capable to rep-
resent user queries and therewith their information needs. This query
model describes the available query options of the framework in a for-
mal way. By representing it in an SQL-like form, expert users are able to
understand the scope of the query model.

Section 1.4 – Organization of the Thesis | 9

– Propose a search user interface for complex search situations. This
publication proposes a search user interface implementation for the real-
ization of the formal query model. Usually, end users do not come into
contact with the formal query model, but are given a graphical represen-
tation which allow them to state queries in a visual way. At the same
time users are presented with previews helping them to understand how
different search criteria would affect the search result. The graphical rep-
resentation of the query and the search results aim for a better provision
of insights about the data collection, for instance relationships between
different items in the search results. The user interface includes the state-
ment of similarity searches as well as options to influence the search re-
sult ranking based on visual representations of so-called user preference
functions.

The scope of this publication is the conception and the description of the general
search framework with a strong focus on the query side. This comprises the defini-
tion of the query model with all available features and the description of the search
user interface which realizes the introduced query functionality. For a complete def-
inition of a search engine additional functionalities need to be described that are out
of scope of this publication. Amongst others, these comprise the explanation of how
the indexing engine operates including efficient index structures as well as integra-
tion aspects into application landscapes. The latter would describe the federation of
data by using interfaces on how to extract information from multiple systems and
how to consolidate the information to achieve an accurate description of an entity
which might be constructed based on information from multiple systems. For the
described work, a certain quality standard of the indexed data is assumed. This ap-
proach is chosen to introduce the necessary functionality to improve the supply of
information. Nevertheless, this publication considers solutions for situations where
the data quality is below the assumed level in the respective parts of this work.
Additionally, performance aspects are only considered on a shallow level.

1.4 Organization of the Thesis

This work is organized in two main parts. The first part Introduction to the Sub-
ject lays the groundwork for this publication by introducing background informa-
tion and basic concepts in Chapter 2 on page 11 comprising search paradigms such
as exploratory and faceted search which are picked up later in the conception of
the search framework as well as forms of visualizations which can be used for the
presentation of queries and search results. Furthermore, this chapter provides an
overview of related work for the topic of enterprise search and concludes with an
introduction of several exemplary enterprise search engines currently available on
the market. It is followed by Chapter 3 on page 69 where both information-seeking
behaviours of engineers as well as search scenarios typical for enterprise search are
introduced.

10 | Chapter 1 – Introduction

The second part of this publication covers the description of the retrieval model
for complex search situations called Multi-Layer Faceted Search with Ranking using
Parallel Coordinates (LFRP)-search framework. Chapter 4 on page 91 focuses on the
description of the formal model including definitions of the used terminology such
as artifacts and facets.

Chapter 5 on page 127 describes the prototypical realization of the concept de-
scribed in the chapter before. Section 5.1 on page 127 provides an introduction of
the visualization type of parallel coordinates which represents one constituent part
of the framework. It is followed by the description of the architecture of the frame-
work in Section 5.2 on page 131 where the different necessary buildings blocks are
linked together. The main part of this section is found in Section 5.3 on page 134
which describes the search user interface which realizes the LFRP-query model. Af-
ter the introduction of the control options of the user interface, the focus lies on the
usage of parallel coordinates as a visual tool for search query formulation and at the
same time as a visualization of the search results. Additionally, the presentation of
the search results as well as the handling of complex queries which range over mul-
tiple artifact types is described. The chapter closes with a comparison of concepts
from Data Warehouse (DWH) systems with those of the LFRP-search framework.

Chapter 6 on page 157 provides an evaluation of the introduced framework with
regard to the compliance to concepts of the field of HCIR. Additionally, the search
user interface is contrasted with certain established rules of search user interface
design coined by Shneiderman et al. [1997].

The publication closes with a summary of the presented work and provides an
outlook of additional research aspects.

1.5 Origins of the Material

Parts of the work described in this publication were accomplished while researching
in the joint research project FORFLOW3 consisting of six Bavarian universities work-
ing in the fields of engineering design and computer science. It collaborated with
21 companies and is promoted by the Bavarian Research Foundation (Bayerische
Forschungsstiftung BFS). The primary aim of the research project was the develop-
ment of the concept for a Process Navigator that guides engineers through the prod-
uct development process and gives assistance in decision-making4. This is achieved
by providing engineers methods and information which is useful for their current
work tasks. The sub-project “Context-based search for reusable components” espe-
cially examined solutions which help users to cope with the large heterogeneity of
the information landscape. The results of the research project are summarized in
the final report published in [Meerkamm et al., 2009]5.

3http://www.forflow.org (last accessed 09/01/2010)
4http://www.bayfor.org/en/portfolio/research-cooperations/world-of-material/

forflow.html (last accessed 09/01/2010)
5Also available as an e-book at http://www.shaker.de/shop/978-3-8322-8640-8

Chapter 2

Background and Basic Concepts

In this chapter the groundwork is laid out for the main part of this thesis by provid-
ing background knowledge and related work necessary for the concepts described in
Part II on page 91. Sections 2.1 and 2.2 on page 15 outline the challenges of HCIR
and detail the aspect of exploratory searches. Section 2.3 on page 18 introduces
the search paradigm of Faceted Search. Exemplary search systems are described in
Section 2.4 on page 24.

Section 2.5 on page 33 focuses on existing approaches which use visualizations
in search user interfaces. Both visualizations for the query formulation as well as
for the result presentation are covered.

Section 2.6 on page 40 illustrates problems and challenges for the field of infor-
mation access technologies with a focus on enterprise search and gives a characteri-
zation. It is followed by an introduction of several (commercial) systems which aim
for providing enterprise search solutions in Section 2.7 on page 53.

2.1 Human–Computer Information Retrieval

Much of the Information Retrieval (IR) research focuses on the classic retrieval ap-
proach of matching a query with the documents in the search engine index to de-
termine a ranking of search results for the given query. Many search engines pursue
the paradigm that users can paraphrase their information need in form of some key-
words. The search engine then assumes a certain relevancy model and determines
a ranked list of search results. As early as in 1964, Goffman [1964] found that “the
relationship between the document and the query, though necessary, is not suffi-
cient to determine relevance”. In other words, the query does not contain enough
information for the search engine to reliably determine how relevant a document is
for the user’s information need.

Borlund [2003a] gives a thorough overview of the research of the concept of
relevance and points out that no consensus has been yet reached on the relevance
concept due to its multidimensionality.

Schamber et al. [1990] draw three central conclusions about the concept of
relevance:

12 | Chapter 2 – Background and Basic Concepts

• “Relevance is a multidimensional cognitive concept whose meaning is largely
dependent on users’ perceptions of information and their own information
need situations.”

• “Relevance is a dynamic concept that depends on users’ judgments of quality
of the relationship between information and information need at a certain
point in time.”

• “Relevance is a complex but systematic and measurable concept if approached
conceptually and operationally from the user’s perspective.” [Schamber et al.,
1990]

Traditional search engines often produce a relevance ranking based on several
criteria of the documents which are then reduced to a single score based on a propri-
etary formula which defines relevancy1. But from a user viewpoint, the information
that a document is for instance 45.7% relevant is hard to interpret. Thus, users lack
the understanding why a document appears in a certain position in the ranking.

These findings show that it is beneficial to allow users to stronger influence the
relevance measures than it is currently possible in many search engines. Certain
information needs not only require the retrieval of relevant information but addi-
tionally its understanding and connections between this information. Therefore,
users should be given the opportunity to clarify what is relevant to them through
query refinements.

In recent years, IR research more and more embraced approaches that bring hu-
man intelligence more actively in the search process. Researchers began to blend
findings from the Human-Computer Interaction (HCI) and the IR field to create new
kinds of search systems which rely on continuous human control of the search pro-
cess. Marchionini [2006b] coined the term HCIR for this hybrid approach. HCIR
should support people in exploring large information spaces but at the same time
demands more responsibility for this support by expending cognitive efforts. This is
achieved by providing advanced search user interfaces and by improving the under-
standing of search strategies of users in different domains.

This paradigm shift is also partially rooted in the change of the information
which needs to be retrieved. Contents are not anymore only text-based, but also
include multimedia and structured parts adding additional complexity. Thus, more
sophisticated search engines, especially with emphasis on the human interaction
part, should be conceived to consider these changes in the information landscape.

As a result of this combination of research fields, users are seen as active humans
with information needs and information skills and powerful digital resources situated
in global or locally connected communities [Marchionini, 2006a]. This conception
of HCIR demands search systems with the following basic requirements according
to Marchionini [2006b]:

• Search systems should not only get their users closer to the information they
need, but they should provide tools for making meaning of the results in addi-
tion to the delivery.

1The score is also called Retrieval-Status-Value (RSV).

Section 2.1 – Human–Computer Information Retrieval | 13

• Search systems should delegate responsibility as well as control to the user;
thus requiring more human intellectual effort which is then rewarded by im-
proved search results.

• Search systems should have flexible architectures to easily be able to access the
connected information sources.

• Search systems should support the entire information life cycle from the creation
to the dissemination of the information.

The goal of these search systems should be that users are interacting more closely
with the contained information than it is possible with current search systems. Thus,
users need to be provided with several views of the same information which sup-
ports understanding as well as retrieval. The grand challenge of HCIR design lies
in making the IR part transparent to the users so that they can focus on how infor-
mation matches their needs and how they can apply or transform this information.
This additional responsibility of the users necessitates the raising of user literacy in
terms of user involvement.

Marchionini [2006b] also points out the challenge of evaluation of HCIR ef-
forts. The IR measures of Recall and Precision2 and the HCI measures of time to
completion and general satisfaction are not easily applied to assess information in-
teraction. Belkin et al. [2009] proposes a model for the evaluation of interactive IR
based on the criterion of usefulness applied to the complete search task and its sub-
tasks for achieving the overall goal. Borlund [2003b] also proposes an evaluation
model especially designed for interactive IR as an alternative to the Cranfield model
[Cleverdon et al., 1966a,b; Cleverdon and Keen, 1966] which itself relies on con-
trolled experiments to evaluate retrieval performance which are difficult to apply in
interactive settings. This is especially significant in use cases where the information
need evolves during a search session due to newly discovered information.

Tunkelang [2009] proposes three goals a search engine has to adhere according
to the HCIR paradigm: Transparency, Control and Guidance.

The Transparency of a search engine should ensure that users understand why
the search engine returned a particular response to a search query. The empha-
sis here lies on the “why” rather than the “how” since users are usually interested
whether the search engine understood their query and attempts to address the users’
information need they expressed with their query. Users are not interested in the
underlying relevancy measures and algorithms the search engine applies.

By knowing why the search engine returned a certain result, users can try to
adapt to the “limited cognitive capabilities” of the search engine and establish a
more effective communication with it.

When users see that the search engine misunderstood them, they need control
to give the engine the necessary information to express their actual information

2Recall and Precision are two statistical classifications used widely in IR evaluation. Recall is a mea-
sure of completeness and is defined as the ratio between the number of relevant documents retrieved
and the total number of relevant documents. On the other hand, precision defines the ratio between
the number of relevant documents retrieved and the total number of documents retrieved [Baeza-Yates
and Ribeiro-Neto, 2008].

14 | Chapter 2 – Background and Basic Concepts

need and to adjust the query. For instance, Boolean search engines offer much
control to users as they can build arbitrarily complex search queries, but their lack
of guidance (see below) leads to degraded user acceptance. According to [Turtle,
1994] most users—even expert searchers—are not adept at constructing boolean
queries, especially when they are querying unfamiliar content.

Control involves that users can influence the filtering as well as the ranking of
search results which makes them more active in the information-seeking process
than before. Although, control adds more options for users to influence their search
process, on the downside, additional complexity for the users is introduced.

To counteract this complexity, search engines should provide users with Guid-
ance. A search engine should not only respond to users’ queries, but also help them
formulate (complex) queries. This requirement can be based on the different human
information-seeking behaviors.

In 1989, Bates proposed the “berrypicking” model of information retrieval, which
is based on the assumption that typical queries are not static, but rather evolve
during the search process. Information needs are not satisfied by a single search
result set, but usually are answered by consecutive queries which gather information
in bits and pieces. When users find an interesting or important piece of information,
they can “pick” this information and start a new query based on these findings.
Therefore, searchers apply a wide variety of search techniques and might need to
access a wide variety of sources [Bates, 1989].

Another approach to understand the human perception of information retrieval
is the Information Foraging theory developed by Pirolli and Card [1999]. The au-
thors apply an analogy of the information seeking process to the way our animal
ancestors found food. The main concept of this theory is the “information scent”
which guides “informavores”3 to the next step of their information-seeking process.
Users estimate how useful the found information is for their information need and
decide whether they want to follow this lead or whether turn to other search tech-
niques or information sources.

Conveying these theories to search engines following the HCIR search paradigm
means that these search engines need to provide users with guidance (a form of an
“information scent”) at every step in the information seeking process. Techniques
for guidance can include query suggestions, relevance feedback4, faceted search,
visualizations, result clustering, and others. These techniques prevent situations
where users would have to restart the information seeking process by offering them
the refinement of their query to adjust it to their information needs. Both Belkin
[2008] and Saracevic [2007] emphasize the necessity of more interaction in infor-
mation retrieval systems to cater users with more efficient solutions to satisfy their
information needs.

3The term was coined by George A. Miller in [Machlup and Mansfield, 1984] and characterizes
an information consuming organism.

4Relevance feedback is based on implicit or explicit user feedback about search results which then
is used by the search engine to improve subsequent searches [Salton and Buckley, 1990]. Refer to
[Ruthven and Lalmas, 2003] for an overview of relevance feedback for information access systems.

Section 2.2 – Exploratory Search | 15

Nordlie [1999] examined searchers using different online catalogs to conduct
complex search tasks. As a result of this study, Nordlie suggests a more conversa-
tional-style search process which should incrementally reveal the real intentions of
the searcher which is termed by the author as “user revealment”.

In summary, search engines adhering to HCIR should strive for an optimized
communication with users in contrast to “guessing” the user intent based on auto-
mated, difficult to comprehend algorithms. In other words, a dialog between users
and the data should be established. By understanding that for certain information
needs, search processes consist of more than a single query, search engine features
such as query refinement, exploration and discovery become more important than
the current focus on the top ten documents in the result list.

2.2 Exploratory Search

One of the aspects of HCIR is the field of exploratory search which describes certain
search activities from the class of information seeking. White and Roth [2008] define
exploratory search based on the description of Marchionini [2006a]:

“Exploratory search can be used to describe an information-seeking prob-
lem context that is open-ended, persistent, and multi-faceted; and to
describe information-seeking processes that are opportunistic, iterative,
and multi-tactical. In the first sense, exploratory search is commonly
used in scientific discovery, learning, and decision-making contexts. In
the second sense, exploratory tactics are used in all manner of informa-
tion seeking and reflect seeker preferences and experience as much as
the goal.” [Marchionini, 2006a]

Marchionini proposed a differentiation of search activities called lookup, learn,
and investigate as seen in Figure 2.1 on the next page. He separates lookup searches
from those associated with exploratory search processes. Lookup searches usually
aim at retrieving a single answer as for instance in fact retrieval or in known-item
searches [Reitz, 2004]. Lookup searches return discrete and well-structured objects
and can for instance be found in database queries. They usually follow the simple
“query-response” paradigm where a search engine returns a set or ranked list of
results for a given query and demand only minimal need for result set examination
and item comparison.

The activities learn and investigate associated with exploratory searches demand
more user involvement in the query statement process in terms of interaction and
query refinement—users should be brought more actively into the search process.
By examining and comparing results as well as refining and reformulating the query
to discover new information, users are acquiring new knowledge.

Since exploratory search sessions usually span over more than one search query
and are highly interactive, Exploratory Search Systems (ESSs) must provide the
ability to specify information needs in the form of search queries and allow to refine

16 | Chapter 2 – Background and Basic Concepts

Figure 2.1: Search Activities according to Marchionini [2006a].

these during the search session. The navigational search for information is also de-
noted as Browsing which is “[...] the activity of engaging in a series of glimpses, each
of which exposes the browser to objects of potential interest; depending on interest,
the browser may or may not examine more closely one or more of the (physical or
represented) objects.”5 [Bates, 2007]. Marchionini and Shneiderman [1988] define
Browsing as “an exploratory, information-seeking strategy that depends on serendip-
ity. It is especially appropriate for ill-defined problems and for exploring new task
domains.”

Many (more complex) information needs cannot be satisfied by a single query,
but require successive refinement of the query. Studies in the field of user behavior
showed that users usually prefer a search approach which consists of successive
refinements of their query [Spink et al., 2002].

Although relevance feedback [Ruthven and Lalmas, 2003] is a powerful ap-
proach to improve and refine queries, it is up to the users to execute the revised
query. To engage users in the query refinement process, interactive user interfaces
are necessary which continuously encourage them to provide additional information
about their information need. Dynamic query interfaces aim at providing instant re-
sponses to changes in the user query by providing certain graphic tools to adjust
queries. By changing search criteria visually using slider adjustments and brushing
techniques which are executed on the client-side, users can immediately assess the
results of these changes to the query. Shneiderman [1994] characterizes these dy-
namic queries as a way to apply direct manipulation to the database environment
which is characterized by the following principles:

• “visual presentation of the query’s components;

• visual presentation of results;

• rapid, incremental, and reversible control of the query;
5Here the browser refers to the user and not to the application of a web browser.

Section 2.2 – Exploratory Search | 17

• selection by pointing, not typing; and

• immediate and continuous feedback.” [Shneiderman, 1994]

Plaisant et al. [1999] emphasize the feature of query previews for query inter-
faces of search systems. By providing summary data about the search results users
are guided through the query statement process. The query previews provide an
overview of the search results from different perspectives. Query previews provide
several advantages for users:

• Queries which would lead to zero results are omitted.

• The retrieval of undesired records can easily be omitted by filtering the sum-
maries.

• The comprehension and exploration of the search results can be enhanced for
users by representing statistical information of the dataset visually.

• Dynamic queries can be used to help users discover data patterns and excep-
tions.

• Query previews are suitable to novice, intermittent, or frequent users.

• Query previews can help users to recognize certain search criteria rather than
remembering them.

Exploratory search systems should also consider available contextual informa-
tion about users, their situation and their current exploratory search task to help
them formulating their queries. Especially work tasks have significant effects on
people’s search performance and behavior [Vakkari, 1999]. Exploratory search tasks
usually are less structured and searchers lack the knowledge of the topic and have a
poorer conceptualization of the problem. Thus, task complexity has to be taken into
account when considering context in exploratory searches [Byström and Järvelin,
1995].

To support learning and understanding it is beneficial for users that ESS offer
support for search histories and workspaces. For instance, these can be realized by
providing mechanisms to save interim search queries and results for later evalua-
tion. This can be useful if a search process is interrupted and has to be resumed
later.

Shneiderman et al. proposed eight golden rules of interface design in [Shneider-
man and Plaisant, 2005] which have been rephrased in [Shneiderman et al., 1997]
for the context of information retrieval. A search user interface should have the
following characteristics:

• Strive for consistency. User interfaces should be consistent in the use of the
terminology, the instructions, and the layout including colors and fonts.

• Provide shortcuts for skilled users. All functionality should be reachable
easily, for instance by providing keyboard shortcuts.

18 | Chapter 2 – Background and Basic Concepts

• Offer informative feedback. Users need to be informed about all aspects
of the search process including the used sources, query fields, etc. After the
search is complete, users should be aware of what was searched and why the
search results were returned.

• Design for closure. Users should easily notice when they searched the com-
plete data set or the result list.

• Offer simple error handling. When errors occur during the search process
users should be presented with comprehensible support explaining the oc-
curred error. Additionally, changes to the query should be easy to apply.

• Permit easy reversal of actions. User interfaces should give users the ability
to reverse single actions in their search process, for instance by allowing them
the revert selections by accessing a search query history.

• Support user control. Users should be able to specify queries in any order.
Thus, a search engine should not force users to follow a strict sequence of steps
during query refinement. Users can also get additional control over the search
by being presented visual overviews over the data set. This helps to gain
a better understanding of the data and make more controlled search query
refinements.

• Reduce short-term memory load. Search interfaces should be designed that
users always are shown the relevant information avoiding situations where
they need to remember or keep track of it.

2.3 Faceted Search

The search paradigm Faceted Search supports exploratory searches by providing
tools to filter search results of multi-dimensional information spaces. The filter-
ing is conducted on so-called facets which are descriptive attributes of each search
result and provide users with guidance and control of the search process.

Hearst [2006b] defines goals which should be considered during the design of a
faceted search systems. These systems should

• support the flexible navigation of the dataset,

• integrate seamlessly with directed (keyword) search,

• alternate fluently between refining and expanding the search query,

• avoid empty results sets and

• at all times retain a feeling of control and understanding.

A faceted search user interface provides users with flexible navigation over the
attributes of a domain and offers query previews which empower users to interac-
tively refine their queries for a better matching with their information need. Kules
et al. [2009] conducted a study where they examined how searchers interact with
search engines when conducting exploratory search tasks. The main results are that

Section 2.3 – Faceted Search | 19

facets help users to gain an overview over the data set and provide guidance on
which sub-topics they should focus on for the current search task. Faceted search
engines help users to explore search results more broadly than without faceted cate-
gories while feeling more organized and less lost in their searches [Kules and Shnei-
derman, 2008].

Käki [2005] presents a study showing that users make use of categorized over-
views when they are provided with them by the search engine. Especially, when
the ranking of search results does not provide the expected results, the selection of
descriptive categories helped users to filter the search result for vague, broad, or
general queries.

2.3.1 Definition of Faceted Categories

Faceted search relies on the existence of faceted categories which are organized in
a category system describing a set of meaningful labels organized in such a way as
to reflect the concepts relevant to a domain [Hearst, 2006a].

Well-known category systems were developed in library science to make docu-
ments or books retrievable in a (physical) library. For instance, the Dewey Decimal
Classification (DDC) originally developed by Melvil Dewey in 1876 [Dewey, 1876]
helps to organize books in library shelves in a repeatable manner and ensures short
paths between topically similar books. The DDC spans a taxonomy tree which de-
fines categories for each publication. Each publication is assigned to one specific
node in the taxonomy tree which resembles one specific shelf in the library. The
DDC built the groundwork for the Universal Decimal Classification (UDC) which is
more expressive but also more complex. Additions to the DDC include relationships
between subjects.

In general, these classification systems span a tree where each child node has
one parent, i. e. each node in the tree has one unique path to the root node. This
may pose a problem, since each object is assigned to only one node which is too
rigid. Taking for instance a book about Database programming in Java, it might be
assigned to the Database section or the Java Programming section. To overcome
this restriction of single hierarchy taxonomies, S. R. Ranganathan—being a mathe-
matician and a librarian—introduced the colon classification scheme [Ranganathan,
1933]. His goal was to introduce a notation which could accommodate a general
class of compound subjects. Thus, Ranganathan introduced the first ever library
classification based on facet analysis. He used the term isolates for an independent
category which nowadays is referred to as a facet.

The classification of a compound subject is denoted as a sequence of letters and
numbers separated by colons. Ranganathan gives an example of a specific subject
representing the “Statistical study of the radium treatment of cancer in soft palate”
in [Ranganathan, 1950]. This subject is represented as L2153:4725:63129:B28.
The four elements between the colons describe this subject. Here, the exemplary
elements L2153 and 4725 represent the following hierarchical facets:

• Medicine (L) → Digestive System (L2) → Mouth (L21) → Palate (L215) →

20 | Chapter 2 – Background and Basic Concepts

Soft Palate (L2153)

• Disease (4) → Structural Disease(47)→ Tumor (472) → Cancer (4725)

In combination the cancer of soft palate is described, which shows the indepen-
dent combination of facet hierarchies which are not possible in single hierarchical
taxonomies.

Taylor [1992] describes facets as “clearly defined, mutually exclusive, and col-
lectively exhaustive aspects, properties or characteristics of a class or specific sub-
ject”. These orthogonal sets of categories can be used together to describe a subject
[Hearst, 2000].

In this publication a facet describes an orthogonal category of an item which is
assigned a name and a set of possible facet values6 it can be assigned to. Each of
these facets are orthogonal to each other, i. e. they are independent of each other
and freely assignable to an item.

The idea of decomposing compound subjects by the application of faceted cate-
gories also was picked up in the area of knowledge representation. Hearst [2006a]
refers to these decomposed subjects as Hierarchical Faceted Categories (HFC) which
consist of creating a set of category hierarchies where each corresponds to a differ-
ent facet. Each facet is associated with a set of possible values (mostly terms).
An individual facet can be flat (“authored by Person A”) or hierarchical [Yee et al.,
2003] where an example for the latter are geographical references such as the facet
“produced in” which could contain a facet value for a certain dimension such as
city, country or continent (e. g. Bamberg > Germany > Europe). Furthermore, the
cardinality of a facet must be considered. Single-valued facets allow only one facet
value assignment for a document, whereas multi-valued facets allow multiple facet
values for one facet per document. An example for the former is the facet document
type where only one (unique) value is permitted. An example for the latter case
can be the authors of a document which might consist of multiple persons who are
responsible for the document.

Although mostly text-based facets are found in faceted search engines, an inter-
esting approach is taken by Müller et al. [2008] for the domain of Content-Based
Image Retrieval (CBIR). The authors extracted visual features of images such as the
dominant color of a region or the coarseness level and used them as facets in the
VisualFlamenco prototype.

2.3.2 Creation of Faceted Categories

A thorough overview about the field of faceted classifications and (manual) facet
analysis can be found in [Vickery, 1960] and [Vickery, 1966]. As the manual cre-
ation of faceted categories is obviously a huge effort, several research approaches
try to (semi-)automatically determine these facet hierarchies and assign objects to
nodes in these hierarchies.

6In the literature the term facet label is also found and here regarded synonymously to facet value.

Section 2.3 – Faceted Search | 21

Early approaches to automatically determine categories for a set of documents
mainly relied on clustering techniques [Zamir and Etzioni, 1999; Meila and Hecker-
man, 2001; Zeng et al., 2004]. Clustering describes the task of grouping documents
by a certain measure of similarity among certain features of the documents such as
words and phrases automatically. The main advantage of clustering approaches is
the possibility to fully automate the cluster computation. The research of the Scat-
ter/Gather system showed that a cluster-based approach supports browsing of large
(text) document collections [Cutting et al., 1992]. Initially, the Scatter/Gather sys-
tem scatters the document collection into a small number of document groups (the
clusters) and presents them to the users along with short summaries. Then, users
can choose a number of these clusters which are then gathered as a new “subcollec-
tion” and scattered again into new clusters based on this subcollection. However,
the resulting labels of the applied automatic clustering technique are typically very
long consisting of a set of keywords resulting in category titles such as “battery cali-
fornia technology mile state recharge impact official hour cost government” [Hearst
and Pedersen, 1996]. Although this provides users with insight about the different
determined clusters of documents, it is difficult for presentation in a user inter-
face. Other disadvantages of clustering methods are the lack of predictability of
the resulting clusters, the conflation of many dimensions simultaneously and the
counterintuitiveness of cluster subhierarchies [Hearst, 2006a]. Additionally, clus-
tering techniques usually show labels whose terms are associated with one another
instead of showing hierarchical parent-child relationships. Several studies indicate
that users mostly prefer the navigation with hierarchical categories over associa-
tional clusters [Chen et al., 1998; Pratt et al., 1999].

Several approaches try to automatically determine useful hierarchical faceted
categories which are outlined below.

[Stoica and Hearst, 2004] and [Stoica et al., 2007] present the Castanet algo-
rithm which provides an approach for automatically creating hierarchical faceted
metadata structures. Castanet converts the lexical hierarchy provided by WordNet7

into an appropriate concept hierarchy using a tree-minimization algorithm. A study
found that this approach delivers higher quality results than other automated cate-
gory creation algorithms.

Sanderson and Croft [1999] propose a method for building a category hierarchy
for a set of documents called subsumption. For two terms x and y, x subsumes y
and is a parent of y if the documents which y occurs in are a subset of the docu-
ments which x occurs in. The authors express this by the following condition for x
subsuming y P (x|y) ≥ 0.8, P (y|x) < 1, whereas the probability of 0.8 was chosen
through information analysis of subsumption term pairs.

In two related papers, Dakka et al. introduce an approach for automatically con-
structing multifaceted hierarchies from a large collection of text or text-annotated
objects. Their approach includes the discovery of useful facets and their possible
values, as well as an algorithm for efficient hierarchy construction based on lexical

7A publicly available lexical database for English. In WordNet words are organized into synsets
(synonym sets) which are linked by different relations [Fellbaum, 1999]. (http://wordnet.
princeton.edu/ last accessed 08/01/2010)

22 | Chapter 2 – Background and Basic Concepts

subsumption [Dakka et al., 2005, 2006]. The algorithm to identify useful facets re-
lies on WordNet hypernyms [Fellbaum, 1999] and a Support Vector Machine (SVM)
classifier which assigns keywords to facets.

2.3.3 Description of Faceted Search

The search paradigm of Faceted Search can be defined as the combination of Faceted
Navigation and text/keyword searches. The understanding of faceted search in this
publication will later be broadened to include—in addition to text searches—Query-
by-Example (QbE) queries with faceted navigation for easier filtering. For instance,
users should be able to query for similar products based on 3D geometric similarity
(cf. Section 4.3 on page 100). Thus, the search paradigm is applied to a more
general means to support searches which induce a ranking.

Faceted Navigation is an improvement over parametric searches by providing ad-
ditional guidance (cf. Section 2.1 on page 11). Parametric search interfaces usually
offer users the possibility to create Boolean queries by choosing several filter criteria
based on a faceted collection. The huge disadvantage is that users have to specify
the whole query at once and therefore might conduct searches which lead to empty
result sets.

Figure 2.2 on the facing page shows an exemplary parametric search user inter-
face where users can specify queries for searches of used cars. The example shows a
variety of applicable search criteria, but users have to provide their complete query
before getting any results.

Different studies showed that many users have strong misconceptions about
Boolean operations in search tasks [Michard, 1982; Greene et al., 1990; Young
and Shneiderman, 1993; Muramatsu and Pratt, 2001]. The identified difficulties
of users with Boolean queries are related to the counterintuitive syntax and the mis-
conception about the logical operators conjunction (logical AND) and disjunction
(logical OR). Many users expect the search query of “Germany and France” to de-
liver documents dealing with Germany and documents dealing with France, but not
documents dealing with both countries. With strict boolean search engines users
did not comprehend why the search result did not have any specific order. When
search queries resulted in empty result sets for a given query, many users could not
explain the reason since they expected a wider query by applying the conjunction.

The concept of faceted search tries to avoid these pitfalls of Boolean searches
(and thus, parametric searches). Several usability studies showed that hierarchi-
cal faceted categories can provide a flexible and intuitive approach to access and
explore large semi-structured data collections [Hearst et al., 2002]. With a proper
presentation in faceted user interfaces, users are guided through the data collection
without getting the feeling of being lost [Yee et al., 2003]. A four-week longitu-
dinal study which investigated the usage of exploratory and keyword search forms
showed that exploratory forms of search are used as often as keyword searches by
users [Wilson and schraefel, 2008]. Additionally, users were often able to produce
more rich and expressive queries with exploratory approaches than with plain key-
word searches or boolean queries.

Section 2.3 – Faceted Search | 23

Figure 2.2: Example of a parametric search user interface from AutoScout24
(http://www.autoscout24.eu/Search.aspx last accessed 08/01/2010).

With faceted search, queries are not given in one step, but refined iteratively, i. e.
users can add and remove search criteria incrementally to refine the query to match
their information need. Since the faceted categories are orthogonal to each other,
they can be arbitrarily combined in a query which allows for flexible access to the
contents of the collection. Users incrementally narrow the interim search results by
adding another filter criterion to the query.

Faceted search engines provide users with guidance to support their query state-
ment. Users are guided in the query refinement process as they are shown query
previews which denote the facet values of each facet and the amount of search re-
sults which would remain, if they select this facet value. Facet values for which
no objects exist in the current search result set are not shown to users to prevent
queries which would yield empty result sets. Furthermore, the set of available facets
from which users can conduct selections is adjusted after each refinement step, i. e.
users are presented search criteria which are relevant for their current query. Taking
the example of searching in an online store, where users select the product group
of digital cameras, available facets might be the sensor size, the maximum aperture
of the lens, and the optical zoom. Obviously, these facets are not applicable when
searching for a TV set where other facets will be offered to users.

24 | Chapter 2 – Background and Basic Concepts

The order of the different facet selections conducted by users is insignificant
compared to the search in a strict hierarchy. Thus, users are unrestricted which
facets they choose and do not need to know all associated facet values of the re-
sult object. Assuming a strict hierarchy, it would be necessary to follow the unique
path through the hierarchy to retrieve the sought search result. Selections of differ-
ent facets and associated values are combined by the conjunction (logical AND) to
filter the search results. When users select a sub-hierarchy of a hierarchical facet,
the different values are combined by a disjunction (logical OR). Considering a geo-
graphical facet which supports the layers continent, country, and state, a selection
of the country Germany, would include all 16 states (such as Bavaria, Saxony, etc.)
in the filtering.

Taking all the described features of faceted search together, this search paradigm
provides an intuitive means to help users to navigate multi-dimensional information
spaces without being overwhelmed due to the inherent complexity. Thus, faceted
search interfaces can be found in a wide variety of domains such as media centers
(e. g. iTunes8), photo management software (e. g. Adobe Photoshop Lightroom9)
and others.

2.4 Examples for Exploratory Search Systems

In this section several systems are introduced which allow users to search datasets
of different domains in an exploratory fashion. The actual systems were chosen to
provide a wide overview of available exploratory approaches and at the same time
incorporating the faceted search paradigm.

2.4.1 Flamenco

The group around Prof. Marti Hearst presents a faceted search system called Fla-
menco10 which was developed in a research project at the University of California,
Berkeley [Hearst, 2000]. The search system is built on a relational database and
a web application which can be viewed from a web browser. The used data set
must be provided in a special text format which can be read by Flamenco and is
then stored in the database according to a generic database schema. All parts of
the user interface views are dynamically generated based on Structured Query Lan-
guage (SQL) database queries. Later, the group made the Flamenco faceted search
system available as an open-source project.

The search process in the Flamenco prototype consists of three stages, entitled
Opening, Middle Game and Endgame as a rough analogy to the game of chess [Yee
et al., 2003].

8http://www.apple.com/itunes/ (last accessed 08/01/2010)
9http://www.adobe.com/products/photoshoplightroom/ (last accessed 08/01/2010)

10short for Flexible information Access using Metadata in Novel Combinations (http://
flamenco.berkeley.edu/ last accessed 08/01/2010)

Section 2.4 – Examples for Exploratory Search Systems | 25

Figure 2.3: Example for a search for Nobel Prize laureates from 1901 to 2004 with Fla-
menco: The Opening [Flamenco Search Interface Project, 2007].

The opening mainly provides users with a thorough overview of the data in the
collection and offers entry points for exploratory searches. The opening page shows
each available facet aggregated at the highest hierarchy level, and thus already
offers various navigation options and helps users to familiarize with the organization
of the data collection. In addition to the selection of filter criteria by choosing facet
categories, users can conduct a keyword query by entering text in the search field.
Figure 2.3 shows the user interface in its initial state in the opening stage of a search
for Nobel Prize laureates from 1901 to 2004. The selection of a facet category or
the provision of search terms initiates the Middle Game.

In this stage, users can evaluate and manipulate the result set. Usually, this in-
cludes the narrowing of the search result by adding additional filter criteria. The
user interface is divided into three main parts. The largest area contains the result
set and shows a preview picture of the Nobel Prize laureate data set. The left area
in the user interface contains the available facets with their values and the query
previews which denote the number of search results that would remain in the result
set when users select that facet value. These facet values can be used to refine the
current search query. Additionally, users can limit the result set by providing key-
words in the available text search field, which then is based on the current interim
result. The top part contains the composition of the current query.

To further understand the data set, users are given different possibilities to or-
ganize the search results. The organization can be adjusted by sorting the items in
the result list on various fields (such as name, year of birth and year of death) or by

26 | Chapter 2 – Background and Basic Concepts

Figure 2.4: Example for a search for Nobel Prize laureates from 1901 to 2004 with Fla-
menco: The Middle Game [Flamenco Search Interface Project, 2007].

grouping the results into categories by a facet (e. g. country or prize). When users
select a value of a hierarchical facet such as location, the search results are auto-
matically grouped by the subcategories, i. e. when the location “Europe” is chosen,
the results are grouped by countries, such as France, Italy, Germany, and so on. Fig-
ure 2.4 shows the result when users choose “Germany” and “physics” of the facets
“Country” and “Prize” in the Middle Game. When users remove a facet category
from the current query the search results are broadened again. The selection of a
single item in the search results leads users to the endgame.

The endgame as seen in Figure 2.5 on the next page shows detailed information
of the chosen search result in the context of the current search query. The available
metadata facets are displayed in a tabular view which shows the location of each
facet category in the according hierarchy of that facet. This is realized by a hybrid-
tree layout that shows all metadata terms of the current item and their locations
in the hierarchical facets. Users can start new searches from this stage by clicking
on one of the facet categories in the result view. This functionality allows users to
navigate to an item of interest and from there search for similar items based on
similar metadata categories.

Based on an assessment of Hearst et al. [2002], Flamenco supports six out of
the above mentioned eight design desiderata of Shneiderman et al. The system is

Section 2.4 – Examples for Exploratory Search Systems | 27

Figure 2.5: Example for a search for Nobel Prize laureates from 1901 to 2004 with Fla-
menco: The Endgame [Flamenco Search Interface Project, 2007].

consistent in regard to the layout throughout the whole search process and contin-
uously gives feedback by showing the current query state. Each user action is re-
versible as the system supports the removal of a single facet selection and the start
of a new search. As the entire query state is maintained in the Uniform Resource
Locator (URL), the use of the back button of the browser is allowed and bookmark
features can be used to save intermediate queries. This helps users to stay in control
of the search process. The provision of query previews supports users in finding
logical but perhaps unexpected alternatives for further selections and emphasizes
recognition over recall during a search. Thus, the query previews help to lower
the short-term memory load. This also provides users with an information scent
(cf. Section 2.1 on page 11) which leads to their next steps. Hearst [2006b] gives
additional design recommendations for hierarchical faceted search interfaces which
were derived by studying several revisions of the Flamenco user interface.

Müller et al. [2008] enhanced the Flamenco search engine to be applicable for
CBIR where they used visual features of images as facets and represented them in
an adapted Flamenco user interface.

2.4.2 mSpace Explorer

The mSpace project from the University of Southampton defines an interaction
model [McGuffin and schraefel, 2004] and a software framework [Harris et al.,
2004] to support the exploration and access of information. schraefel et al. [2006]

28 | Chapter 2 – Background and Basic Concepts

Figure 2.6: The initial view of the directional column-faceted browser mSpace for a search
in an online newsfilm archive.

describe the mSpace prototype as a “multicolumn-faceted spatial browser” 11.
In the mSpace framework information of a domain is conceptualized in a multi-

dimensional representation from which only a subset is represented in the user in-
terface at a time. This subset is referred to as a set of “slices” where users can
execute “slice and dice” operations [Marchionini, 1995]. The slices are dynamic
and can be altered to fit the current information need of the users, i. e. dimensions
can be rearranged, added or subtracted which helps users to organize the domain
data according to their needs.

According to McGuffin and schraefel [2004] mSpace is an approach to visual-
ize and interact with multidimensional or multivariate data. The structure of an
mSpace is a special kind of polyarchy which itself is a structure composed of multi-
ple intersecting hierarchies [Robertson et al., 2002].

mSpace is an example for a directional column-faceted browser where facets
(the dimensions from above) are aligned in columns from left to right in the user
interface12 in contrast to non-directional faceted browsers such as Flamenco. Fig-
ure 2.6 shows the initial view of the mSpace user interface for a dataset from an
online newsfilm archive. The currently displayed facets are Decade, Year, Theme,
Subject, and Story Title. Users can remove unnecessary facets from the view and
add other facets to the user interface. Additionally, users can swap the columns to
rearrange slices and access new relations between the facets.

The selection of facet filter criteria only has an affect on the facets to the right.
If users conduct selections in a middle-column facet, only the facets to the right
are constrained by this selection. Figure 2.7 on page 30 shows selections on two
different facets. The user chose the theme “Human Interest” and the subject “Aero

11The prototype is available at http://www.mSpace.fm and can be viewed and tested online (last
accessed 08/01/2010).

12Another common directional column-faceted browser is the digital media library iTunes (http:
//www.apple.com/itunes/ last accessed 08/01/2010) where users for instance can easily filter their
music by Genres, Artists and Albums.

Section 2.4 – Examples for Exploratory Search Systems | 29

& Aviation Sport” which restricted the search to 63 results which are displayed
below in a paginated list view. The facet selections are highlighted in orange in
the according facet column. mSpace allows multiple selections on one facet which
corresponds to a disjunction of facet values of one facet. After each selection the
user interface is updated to reflect the current state of the search result. Thus, facet
values of facets positioned to the right from the facet the selection took place, are
limited to those values currently valid for the selection.

Although this directional faceting already provides information about additional
inter-facet relationships, the potential information in the columns to the left is given
away. To this end, Wilson et al. [2008] propose backward highlighting, which de-
scribes an intuitive way to reveal associations in columns to the left of a selection.
Backward highlighting can be seen in Figure 2.7 on the next page where facet val-
ues of facets left from the current selection are highlighted in a brown color to
show these associations to the selections. Users can easily see, that under the cur-
rent selections there are no items in the search result from the 1900s and 1960s.
Wilson et al. [2008] calls this information which is usually lost in non-directional
faceted search interfaces “Added facts”. Users are given indications of alternative
paths in the collection they could have chosen to reach the sought information by
these highlighted associations. This additional guidance helps users to refine their
search query by facets located left from the current selections which would not have
been easily achievable without this highlighting.

The current version of mSpace (at the time of writing in 2010) omitted the
display of numerical query previews since Wilson and schraefel [2006] claim that
currently the mental models for including them in flexible faceted browsers is not
completely understood from a research viewpoint.

For standard users which are not familiar with the data collection, mSpace sup-
port preview cues, which are a lightweight mechanism to assist exploration of multi-
media content13. This mechanism provides a multimedia preview of the information
associated with a certain area which helps users to assess if a certain area of the do-
main is of interest for further exploration. For the domain of music, preview cues
could be musical snippets relevant to a certain musical era such as Baroque which
are triggered when users hover over the cues [schraefel et al., 2003, 2004]. The
goal is to provide these cues early in the search process at the category level rather
than at the instance level. schraefel et al. [2003] found that these preview cues help
users to explore a domain and make better filter decisions.

2.4.3 Relation Browser

The Relation Browser14 from the University of North Carolina is an ongoing effort
to provide a general-purpose search interface which can be applied to different data
sets [Marchionini and Brunk, 2003]. The prototype underwent several different

13The preview cues of mSpace are not to be confused with the numerical query previews found for
instance in the Flamenco user interface (cf. Section 2.4.1 on page 24.

14http://ils.unc.edu/relationbrowser/ (last accessed 08/01/2010)

30 | Chapter 2 – Background and Basic Concepts

Figure 2.7: The view of the directional column-faceted browser mSpace for a search in an
online newsfilm archive with selections for the facet Theme and Subject.

stages. The introduced version of the Relation Browser is the latest version called
RB07.

The Relation Browser aims at providing support for the exploration of data
spaces by giving users a better understanding about documents and insights about
relationships between or among different facets of these documents. Almost all user
interaction with the prototype is done by mouse actions with the exception of being
able to provide text for keyword searches. This allows both searching and browsing
of a dataset by applying dynamic queries.

Figure 2.8 on the next page shows a screenshot of the Relation Browser during
the query process. Below the input box for keyword queries, the currently selected
facet values are shown (in the example “HTML”, “Mathematics” and “science”) in
the order the users conducted the selections. In this query representation users can
remove parts of the query. Additionally, the different partial queries are highlighted
in red in other areas of the user interface. User selections and exploration of facets is
done in the center of the prototype in the facet view. The Relation Browser supports

Section 2.4 – Examples for Exploratory Search Systems | 31

Figure 2.8: Relation Browser 07 (http://www.ieee-tcdl.org/Bulletin/v5n1/Capra/
img/rb07.jpg last accessed 08/01/2010).

multiple, pluggable facet views which users can switch by using the tabs in the
prototype. The classic facet visualizations (also present in previous versions) is the
Facet List. The facets are shown horizontally next to each other according to the
directional-column faceted style.

Each facet column uses graphic bars to show relative proportions between the
facet values. This acts as an indication of the counts associated with the different
facet values of a facet [Capra et al., 2007]. Without any facet selections this bar
graph visualization gives an overview for the distribution of facets for the whole
data set. By hovering over a facet value, users can instantly see how the selection
of the respective facet value would affect the facet distribution for the resulting set
of documents. Selections of facet values can be simply executed by clicking on the
corresponding facet value and the user interface is instantly updated to reflect the
change of the (dynamic) query.

The more recent addition is the Facet Cloud view [Capra and Marchionini, 2008]
that displays facets in the style of a tag cloud view where facet values are shown in
different font sizes to give an indication of the corresponding number of documents.
In the leftmost area of the prototype users can display static facet controls which
allow them to add facet selections which is especially useful when interacting with

32 | Chapter 2 – Background and Basic Concepts

the facet cloud visualization.
The search result presentation is located below the facet view where users can

choose from two different types. Users can display the results in a common one-
dimensional list view or choose to see the results in a tabular view which displays
facets in addition to a document summary.

Several user studies showed the Relation Browser can support users to accom-
plish data exploration and analysis tasks and is advantageous in comparison to clas-
sic keyword based search interfaces [Zhang and Marchionini, 2005; Capra et al.,
2007].

2.4.4 Freebase Parallax

The Freebase Parallax project15 provides a user interface which allows users to query
the Freebase database. Freebase describes itself as “an open, Creative Commons
licensed repository of structured data of more then 12 million entities”16. Freebase
connects these entities together in a large entity graph structure. Parallax supports
users in querying this graph and provides insights by visualizing the connected data.
Taking an example information need such as trying to find out which schools the
children of the Republican US presidents did attend is relatively difficult to satisfy
using common Internet search engines or by querying Wikipedia17.

Figure 2.9 on the facing page shows the Freebase Parallax user interface after
several selections over related entities. The query started with querying for US
presidents which were then filtered by their political affiliation which reduced the
number of presidents from 43 to 18. The left column in the user interface provides
facets as filters for the current set of entities. In the upper right corner, users can
select related entities from the violet box with provides the currently available rela-
tions. This allows users to browse the dataset from one search result set of entities
to another set of entities. One of the provided relations is children which returns a
set of 61 persons based on the previous set of 18 presidents. The choice of the edu-
cational institution relationship finally returns the information the user was looking
for consisting of 35 schools. Parallax supports several visualizations such as map or
timeline visualizations which give additional insights into the search results.

This approach relies on the modeled dependencies between different artifacts,
which need to be available in the data of Freebase. This is one of the downsides of
Freebase as often necessary information is not populated due to the wide scope of
the database.

15For a demonstration of the prototype refer to http://www.freebase.com/labs/parallax/ (last
accessed 08/01/2010) and for an introductory screencast to http://vimeo.com/1513562 (last ac-
cessed 08/01/2010).
Freebase Parallax is provided as an open source project which can be found at http://code.google.
com/p/freebase-parallax/ (last accessed 08/01/2010)

16http://wiki.freebase.com/wiki/What_is_Freebase%3F (last accessed 08/01/2010)
17http://www.wikipedia.org/ (last accessed 08/01/2010)

Section 2.5 – Visualization in Information Retrieval | 33

Figure 2.9: Freebase Parallax.

2.5 Visualization in Information Retrieval

This section introduces the use of visualizations in search user interfaces. A visu-
alization can target two different use cases. First, the user query can be visualized
to help users to state queries more easily. Second, the understanding of the search
results can be improved by visualizing the search results (or some of their descrip-
tive attributes). This distinction can be blurry when visualizations show both the
query and the search results. By interacting with the visualizations users can ana-
lyze the search results and conduct additional selections to refine their queries. An
example for this twofold functionality is the parallel coordinates visualization intro-
duced in Section 5.3 on page 134 which shows the current query as well as a visual
representation of the search results.

Visualizations help to translate abstract information in a form which provides
users with new insights. The field of information visualization introduces a wide-
spread spectrum of various visualizations forms and guidelines on how to design
them [Tufte, 1983, 1990].

The use of visualizations in user interfaces should always be justified by clear
purpose which should be achieved by providing a visualization. Sutcliffe et al.
[2000] tested the acceptance and usage of visualizations in search user interfaces
and found that users had only partially understood the purpose and the working of
the visualization. The authors came to the conclusion that user training is important
for the success of visualizations in user interfaces. This is necessary to provide users

34 | Chapter 2 – Background and Basic Concepts

Figure 2.10: The Venn diagram visualization for queries in the VQuery system [Jones,
1998].

with an understanding of the used metaphors and functionality of the visualization.

2.5.1 Visual Query Formulation

As mentioned above, the use of Boolean operations for conducting queries has
proven difficult for some user groups. Thus, several approaches exist which try
to reduce the misconceptions about Boolean operators by using visualizations for
the query statement.

An approach to specify Boolean queries visually is proposed by Jones [1998]
with the VQuery system. It uses Venn diagrams to visualize query terms and the
combination operators. Query terms are visualized by circles and can contain single
keywords or phrases. Each circle represents the set of documents which contain
the respective query term or phrase. Each circle is labeled with the keyword it
represents and the size of the document set. The Boolean conjunction of query
terms is conducted by placing the circles so that they overlap as seen in Figure 2.10
for the term lion and tiger. The disjunction of query terms can be achieved by adding
the respective circles (or conjunctions of terms) to the query area. The term jungle
is combined by a disjunction to the conjunction of lion and tiger. Query terms which
are not allowed in the search results (logical NOT) are added to the query area and
selected. The selection is shown in Figure 2.10) by the four small squares around
the circle.

For the selection of the final query users can draw a rectangle around the desired
circles (depicted as “Active query” in Figure 2.10). Terms which are added to the
visualization but lie outside that rectangle are not considered for the current query,
but allow the easy refinement of the query by moving them into the “active query”

Section 2.5 – Visualization in Information Retrieval | 35

!

!

!

!

!

interior icon satisfy (i.e., one -> circle, two -> rectangle,
three -> triangle, four -> square, and so on).

Proximity Coding: The closer an interior icon is
located to a criterion icon, the more likely it is
that the icon’s contents are related to it.

Rank Coding: Icons with the same shape are
grouped in “invisible” concentric circles, where
the rank of an icon is equal to the number of
criteria satisfied and the rank increases as we
move towards the center of an InfoCrystal.

Color or Texture Coding: is used to indicate which
particular criteria are satisfied by the icon’s
contents.
Orientation Coding: The icons are positioned so
that their sides face the criteria they satisfy.

Size or Brightness& Saturation Coding: is used to
visualize quantitative information-, i.e. the
number of elements represented by an icon.

Figure 1 shows the InfoCrystal that involves three
concepts. Figure 2 shows an InfoCrystal for four
search criteria. Figure 3 contains a schematic
representation of an InfoCrystal for five criteria (for
a detailed rendering see [Spoerri 93a]). The number
of possible combinations or relationships among N
different criteria grows exponentially and it is equal
to 2N -1 (excluding the case where documents are not
related to any of the criteria). We have developed a
layout algorithm that enables us to generate Info-
Crystals with N inputs (for a detailed discussion and
examples with N > 5, see [Spoerri, 1993a]). The
objective of this algorithm is to create a layout of
the interior icons that ensures that none of their
locations coincide. We call it the rank layout prin-
ciple, because it strictly enforces the rank coding

principle. However, it also attempts to resolve the
conflict between the rank and the proximity coding
principle that arises for the icons with rank two as
follows: We will represent icons that involve rela-
tionships between two non-adjacent criterion icons
twice and we will place them so that they are close
to their related criterion icons as well as at the
correct distance from the center (see Figure 2).

The user can selectively render the interior icons to
emphasize the qualitative or the quantitative
information associated with them: If the user is
interested in how the interior icons are related to the
inputs then they are displayed as shown in Figure 1.
If, however, the user wants to visualize the number
of documents associated with the interior icons then
the icons are represented as circular pie chart icons
whose size and brightness reflect the numerical
information (see Figure 3). The pie chart icons are
similarly oriented as the polygon icons and the
colors or textures of their slices indicate which
criteria are satisfied.

2.1.1 Example Revisited

In this subsection we show how the InfoCrystal
could help users modify the query example
introduced earlier so that they do not retrieve either
too few or too many documents. Figure 2 displays how
the contents of the INSPEC Database (1991-92)
relate to our four stated interests. The center icon of
the InfoCrystal represents the documents that
satisfy all the four criteria. In our example there is
just one document. We can easily broaden our focus of
interest by examining the icons that surround the
center icon and satisfy three of the four concepts.

a,.,...J,::::i:$:::::ijjj::,,
......... ,:,,,.,.:: ; ,,,

&‘c 2)+..........,,..,:.:,,,:,:.v ,::,:,::::.:.,,,:,,, .:,,.0;::!;‘.,.,.;.,,,.

4P
(3,.‘:.,

0
Figure 1: shows how we can to transform a Venn diagram into an iconic display, called the InfoCrystal, which represents
all the possible Boolean queries involving its inputs in a normal form (see section 2.2). The interior icons have the following
Boolean meanings: 1 = (A and (not (B or C), 2 = (A and C and (not B), 3 = (A and B and C), 4 = (A and B and (not C),
5 = (C and (not (A or B)), 6 = (B and C and (not A), 7 = (B and (not (A or C)).

13

Figure 2.11: Transformation of the subsets of a Venn diagram into the InfoCrystal Visual-
ization [Spoerri, 1993].

area. The current query is also presented in form of a natural language preview
below the Venn diagram visualization.

A disadvantage of the intersection of sets in Venn diagrams is the difficulty to
combine more than three different search criteria in an easy and visually compre-
hensible way. Spoerri [1993] introduces the InfoCrystalTM framework to overcome
this limitation. InfoCrystal is a visual tool for information retrieval & management.
It can be used as a visualization as well as a visual query language. The language
supports Boolean as well as vector-space queries visually.

The InfoCrystal framework aims for a two-dimensional representation of the
multidimensional space spanned by the multiple criteria of a search query. Spo-
erri abstracted from the Venn diagram visualization which shows intersecting sets.
Figure 2.11 shows this transformation from the Venn diagram to the InfoCrystal vi-
sualization. In the first step the diagram is exploded to isolate the different subsets
of the Venn diagram. The resulting subsets are abstracted by icons reflecting the
rank of a subset, i. e. the number of criteria that are met. The InfoCrystal then con-
tains these iconic representations of the subsets which are surrounded by a frame
built of n borders representing the n search criteria. Each corner visually represents
the original sets also called criterion icons.

Figure 2.12 on the following page shows an example for the textual query “visual
query languages for retrieving information and that consider human factor issues”.
This query can be represented by the keyword sub-queries (Visual OR Graphical),
Information Retrieval, Query Language, and Human Factors. The corners of the
quadratic InfoCrystal represent the number of documents which adhere to one of
the four search criteria. The central icon represents the documents which fulfill all
four criteria which in this example only one document does. The surrounding icons
show the number of documents which fulfill three criteria. The different textures of
the frames of an icon indicate which criteria are met. For instance, users can easily
see that there are 12 documents which belong to the subsets Human Factors, Visual
OR Graphical, and Information Retrieval, but not Query Language. Selections in the
InfoCrystal visualization can easily be conducted by selecting the icon representing
the relationship between the designated search criteria.

36 | Chapter 2 – Background and Basic Concepts

Human Factors (Visual OR Graphical)

o1362‘o2295 m Q
1281

‘4 lb..

~ ~~lil

~v v’

84 ..

m o2942

,, ,U

:::::..

~?$
.....

Query Language Information Retrieval

Figure 2: The number associated with an icon indicates
hoi many of the retrieved documents satisfy the conditions
represented by it. The icons with rank two that lie
diagonally opposite each other are represented twice,
because the ranking principle takes precedence over the
proximity principle.

For example, there are 22 documents that are
indexed under and are related to the (Graphical OR
Visual), information Retrieval, and Query Language
concept but not to the Human Factors concept. If we
wanted to move further away from our initial
interest then we could explore the 6 documents that
have been indexed under the Query Language and
Human Factors concept but not under the (Graphicai
OR Visual) or Information Retrieval concept. As the
above discussion indicates, the InfoCrystal enables
us to easily explore an information space and to
broaden or narrow our focus of interest.

The organization of the InfoCrystal ensures that
we can easily infer how the retrieved documents
relate to our stated interests. We can represent our
current interest by selecting the interior icons that
capture it. The selected interior icons can be thought
of as defining the “figure” and the not selected icons
as representing the “ground. The InfoCrystal allows
us to easily alter this figure-ground relationship.
Hence, we are not locked into just one way of viewing
the data, but we can explore an information space in
a flexible and fluid way.

2.2. Visual Query Language

The InfoCrystal has the desirable property that
each of its interior icons represents a distinct Boolean
relationship among the input criteria (see Figure 1).
Hence, the InfoCrystal can be used by users to specify
Boolean queries by interacting with a direct
manipulation visual interface. Users do not have to
use logical operators and parentheses explicitly.
Instead they need to recognize the relationships of
interest and select them. Users just have to click on
an interior icon to select or deselect the Boolean
expression associated with it.

In an InfoCrystal we partition the space defined by
its N inputs into 2N -1 disjoint subsets or constituents
in such a way that no information is lost. It can be
easily shown that any Boolean query that involves
the inputs of an InfoCrystal and that applies the
Boolean operations of union, intersection or negation
can be represented by the union of a certain number of
the constituents (i.e., all the possible queries are
represented in normal form by the InfoCrystal).
Hence, users can specify graphically any Boolean
query that involves the inputs by selecting the
appropriate interior icons, because each of the
constituents is represented by an interior icon. We
establish the intuitive convention that the elements
associated with the selected interior icons are
combined to form the output of an InfoCrystal. We do
not have to worry that certain elements appear more
than once because we are merging disjoint subsets.

It is worth stressing that users can select a subset of
interior icons in multiple ways: 1) They can select
specific relationships by clicking on the appropriate
interior icons. 2) Users can select subsets of interior
icons by clicking on the criterion icons, thereby
performing complex Boolean operations with only a
few mouse clicks. 3) They can activate the
appropriate interior icons by interacting with a
threshold slider and/or the weighting sliders for
the inputs (see Section 2.3 for explanation).

Existing visual query languages allow users to
formulate specific queries, but the proposed visual
query language enables users to formulate a whole
range of related queries by creating a single
InfoCrystal. For N inputs there are 2 to the power of
2N - 1 possible queries and each of them can be
specified by just selecting the appropriate interior
icons. Hence, in the case of five inputs there are over
2 billion possible queries and they are all
represented compactly by an InfoCrystal !

14

Figure 2.12: An example for the InfoCrystal visualization [Spoerri, 1993].

The InfoCrystal concept includes the assignment of relevance weights whereby
users can change from the Boolean model to a vector-space model. Weights can be
assigned to each search criterion with a slider which ranges from -1 to 1, where
negative weights indicate the interest in documents not containing the search crite-
rion and positive weights show a preference for documents containing the criterion.
InfoCrystal supports another view called the Bull’s-Eye layout which places relation-
ships with higher relevance more closer to the center of the visualization.

Other exemplary research approaches which use visualizations for the repre-
sentation of the query are the block-oriented diagram visualization by Anick et al.
[1990] and the Magic Lens approach by Fishkin and Stone [1995].

2.5.2 Visualization of Search Results

The field of information visualization offers a wide spectrum of available visualiza-
tions. In the following only a small selection is introduced. Shneiderman [1996]
introduces the Visual Information Seeking Mantra which can be summarized as

“Overview first, zoom and filter, then details-on-demand”

The description of this mantra contains seven requirements for visualizations to
support users that are exploring a data collection. Initially, the visualization should
aim for providing users with an overview of the data collection. In the next step
users can zoom in on items of interest. By filtering out uninteresting data items
users can focus on the items they are interested in. Details about certain items
in the dataset can be requested on-demand which are then displayed to the users.

Section 2.5 – Visualization in Information Retrieval | 37

Figure 2.13: An example for the treemap visualization for documents from the product
development domain.

Additionally, the visualization should allow users to discover relationships between
items. By keeping a history of the conducted actions, users can undo actions, or
iteratively refine their analysis. Finally, an extraction mechanism should be provided
to allow users to export the found information from the data set.

Visualizations of search results can be applied to different properties of each item
in the result.

A visualization type for hierarchical information is the concept of the treemap
which maps the hierarchical information to a two-dimensional rectangle [Johnson
and Shneiderman, 1991]. The visualization makes use of all available space and
targets the demonstration of proportions between different items by displaying spe-
cific attributes in sizes proportional to their frequency in the data set. Hierarchical
structures are visualized by nested rectangles whereas their size is proportional to
the size of a chosen attribute. Figure 2.13 shows an exemplary treemap which vi-
sualizes documents from product development processes18. The example shows all
available documents grouped by the respective projects they were created in. Above
the visualization users can change the hierarchy the treemap is built upon. In this
example, initially the documents are grouped based on projects. The second group-
ing is based on the document format which can be seen as documents of the same
format are placed near each other and are visualized in the same color. Users can
easily change the order of the different levels of the hierarchy by reordering the
attributes above the treemap. Treemaps support the selection of subsets by drill
down operations. By right-clicking a rectangle the user is presented with the avail-

18The visualization was created with Many Eyes from the Collaborative User Experience re-
search group at IBM. The visualization can be accessed at http://manyeyes.alphaworks.ibm.com/
manyeyes/visualizations/treemap-product-data (last accessed 08/01/2010).

38 | Chapter 2 – Background and Basic Concepts

Figure 2.14: An example for the scatter plot visualization for documents from the product
development domain.

able levels to which they can filter the result set. Additionally, users can select the
attribute based on which the size of each rectangle is computed. In the example in
Figure 2.13 on the preceding page the product degree of maturity is chosen. Thus,
larger rectangles show documents describing products which are more advanced in
the product development process.

The visualization of two variables (or attributes) of items from a search result can
be accomplished by a scatter plot. This visualization uses a diagram with Cartesian
coordinates to show the results as a collection of color-coded points. Figure 2.14
demonstrates this visualization type with data from the product development do-
main19. The x-axis displays the values of the degree of maturity of a product,
whereas the y-axis depicts the degree of maturity of the according project. This type
of visualization can for instance be used in the analysis of the progress of projects
in the portrayed domain. The shown scatter plot implementation from the Many
Eyes project allows users to base the size of a data point in the plot on a certain
numeric attribute. Additionally, users can simply change the variables by choosing
the variable from drop-down lists below the visualization. Details about a search
result can be viewed by hovering over a data point which activates a preview of the
item.

This visualization helps to identify dependencies between the search results. This
can be positive or negative correlations which are shown as a line pattern. Further-
more, non-linear relationships between variables are made visible such as showing
clusters of items which have similar attribute combinations. An interesting use case

19The visualization was created with Many Eyes from the Collaborative User Experience re-
search group at IBM. The visualization can be accessed at http://manyeyes.alphaworks.ibm.com/
manyeyes/visualizations/scatterplot-product-data (last accessed 08/18/2010).

Section 2.5 – Visualization in Information Retrieval | 39

Figure 2.15: An example for the bar chart visualization for documents from the product
development domain.

for this type of visualization is the use of the similarity score of an artifact as a
variable which is visualized. The plot then displays one other user-chosen attribute
dependent on the similarity score. A disadvantage of scatter plots is that multi-
ple items from the result set which share the same values for the two displayed
attributes are not distinguishable as they are drawn over each other.

Bar charts help to visualize proportions of an attribute between (sets of) items.
The x-axis shows different items of the search result which are then visualized by an
attribute which is assigned to the y-axis. The data is charted with rectangular bars
whose length is proportional to the value of the attribute. For instance, Figure 2.15
shows the different products which are currently in development and their degree
of maturity20. Thus, users can easily see which products are finished and which are
still in development.

Reiterer et al. [2005] introduce the INSYDER system which offers a wide variety
of visualizations for results of web searches. In addition to a tabular view of search
results, the system uses bar graphs, scatterplots and tile bars [Hearst, 1995] to
provide additional ways to approach the search results. The visualizations are used
both for the query formulation as well as for the analysis of the search results.

Spence and Tweedie [1998] propose an approach which uses histograms to visu-
alize attributes of a data set in the Attribute Explorer. Users can interact with these
histograms by changing minimum and maximum values by direct manipulation. Re-
lationships between attributes are highlighted by color-coding the different objects
in the histograms.

20The visualization was created with Many Eyes from the Collaborative User Experience re-
search group at IBM. The visualization can be accessed at http://manyeyes.alphaworks.ibm.com/
manyeyes/visualizations/bar-chart-product-data (last accessed 08/18/2010).

40 | Chapter 2 – Background and Basic Concepts

consequences of taking a certain path through the decision
space. In a travel domain, users don't want to fix the depar-
ture and arrival times before they know the consequences
for connections or price [9]. Once they do go down a gar-
den path, it's often the case that they are no more enlight-
ened than when they started about the paths NOT taken.
Many of their subsequent interactions may involve undoing
previous choices in order to explore different paths in a
depth-first tree traversal.

Agent-based recommender systems [11] provide a variety
of techniques that support choice-making through similar-
ity or criteria ranking of some kind. The system gathers
various bits of direct or indirect preference information and
then provides a solution. Users must trust the largely
opaque system to do the job, appropriate in some highly
complex situations (heavy-duty military or industrial appli-
cations) and also for some choices that are a matter of taste
(films, music, food). However, in other cases the user may
be left with an uncomfortable sense that they could make a
better decision themselves if only the appropriate informa-
tion relationships could be revealed by the system.

In contrast to these four approaches, the tack taken with
such work as Dynamic Queries [12] and Attribute Explorer
[16] is to investigate methods that allow users to form bet-
ter cognitive models of the decision space---complex
though it may be. Kirsh [6], among others, argues that com-
puting environments can enable better decision-making by
offering a sort of playground for users to manipulate the
parameters of their problem.

"The environment is not simply a reservoir of
cues, constraints, and affordances for simplify-
ing the decision process. The environment is also
a realm where agents discover what they want."
---Kirsch [6]

Environments that can be manipulated may make recall or
decision tasks easier. Kirsh uses the example of manipulat-
ing the physical position of Tetris tiles in order to come to a
decision about a next move. We believe that UIs for elec-
tronic shopping and other complex decision tasks should
also allow users the opportunity to "play" with electronic
artifacts of their decision parameters.
We now turn to the set of techniques that are the subject of
this paper. Our work is in the tradition of what Tweedie has
called interactive visualization artifacts [17]. We introduce
the notion of a bargram, which as far as we know has not
been named or precisely characterized in the literature. We
then discuss the interactive affordances offered by parallel
bargrams and how we have used them to build a system
called EZChooser. EZChooser accepts a generic form of
relational data or attribute tables, and has led to prototypes
in many different choice domains. A limited version has
been deployed on the Consumer Guide section of Verizon's
SuperPages for new and used car shopping (http://cg.super-
pages.corn). In later sections we discuss related work, fol-

lowed by a report on evaluations of the system and, finally,
our conclusion.
BARGRAMS
Bargrarns, a name we have coined, are easily understood in
the context of histograms. Figure la shows a histogram (or
bargraph). A bargram (Figure lb) is derived by 'tipping
over' the columns (bars) of the histogram and laying them
end-to-end, ignoring any null bins. Whereas the relative
count in the histogram is reflected on the vertical axis, the
bargram shows count through relative widths of the bars.

(a)

. . . . I I I

[]
I I

(b) I I I II Ii-'1

(c)

(d)
m m m m m m m m m m
F---l l--IF'----'ID

r-

k

Figure 1: A histogram (a); the corresponding bargram
(b); some value distribution information
restored (c); and associated item vector (d).

Compared to histograms, bargrams carry less visual infor-
mation about value distributions; for example, gaps are not
shown (as they are in Figure la), and consequently outliers
are not evident. Since items are simply ordered, there is no
indication of whether adjacent items are close together or
far apart with respect to a value scale. However, bargrams
have the virtues of simplicity, and they take up relatively
little vertical real estate.
A variant on the bargram restores some information regard-
ing value distributions by reintroducing a second dimension
as shown in Figure lc: shading or some form of line graph
can be added to indicate relative value distributions across
the bins. The addition of shading restores some of the infor-
mation lost from the original histogram.
Figure ld shows the addition of graphical objects corre-
sponding to the items themselves, a visual artifact we call
an item vector.
AFFORDANCES OF PARALLEL BARGRAMS
As one might expect from their relationship to histograms,
bargrams are quite generic. They naturally represent
numeric values, but they can also be used for booleans,
text, dates, and categories. Bargrams can be used in parallel
to represent a potentially unlimited number of attributes

52 UIST '01 November 11-14, 2 0 0 1

Figure 2.16: A histogram of a data set (a) and the respective bargram resulting from
“tipping over” the histogram bin and omitting empty ones (b) [Wittenburg et al., 2001].

Wittenburg et al. [2001] extend bar graphs and histograms and introduce the
visualization form of parallel bargrams to visualize hierarchical multi-dimensional
data. Bargrams are created by taking a histogram and “tipping over” the columns
of the histogram and laying them next to each other on a horizontal line omitting
empty bins as shown in Figure 2.16. The bargrams can be visually enhanced by
displaying value distributions by shading the bargram differently. Their prototype of
this visualization resulted in the EZChooser where bargrams are vertically positioned
parallel to each other. Users can then visually select the values of each attribute and
form dynamic queries [Shneiderman, 1994].

The previous visualizations aimed for the presentation of nominal, ordinal and
cardinal scale attributes. Another category is temporal data which can be for in-
stance represented by timeline visualizations. Alonso et al. [2007] introduce an
implementation which allows the display of both points as well as periods of time.

For a thorough overview of the topic of search user interfaces and the application
of visualizations both for the query as well as for the search result refer to Chapter
10 in [Hearst, 2009]. A good overview of visualizations for the field of Web Retrieval
can be found in [Mann, 2001].

2.6 Enterprise Search and Information Access Tech-
nologies

With the growth of the Internet in the last decade, the area of IR became om-
nipresent in the form of Internet search engines like Google21, Yahoo22 or Microsoft
Bing23. These search engines simplify the retrieval and the access of information
from the Internet. Similarly, enterprises are interested in providing their employees
possibilities to retrieve existing information and knowledge from the enterprise to

21http://www.google.com/ (last accessed 08/01/2010)
22http://www.yahoo.com/ (last accessed 08/01/2010)
23http://www.bing.com/ (last accessed 08/01/2010)

Section 2.6 – Enterprise Search and Information Access Technologies | 41

increase their productivity by the means of search engines. Efficient retrieval of ex-
isting knowledge avoids duplication of work and bad decision-making. Additionally,
the time spent for information acquisition can be decreased.

In their study “The High Cost of Not Finding Information”, Feldman and Sher-
man [2003] describe the results of a lack of information:

• “Poor decisions based on faulty or poor information.

• Duplicated efforts because more than one business unit works on the same
project without knowing it has already been done.

• Lost sales because customers can’t find the information they need on products
or services and give up in frustration.

• Lost productivity because employees can’t find the information they need on
the intranet and have to resort to asking for help from colleagues (Studies by
AIIM and Ford Motor Company estimate that knowledge workers spend 15-
25% of their time on nonproductive information-related activities.).” [Feld-
man and Sherman, 2003]

The authors conclude that “knowledge workers need unified, universal access
to all information, but they only need that portion of the information that actually
solves the information problem at hand.”

In recent years the domain which tries to support users in retrieving informa-
tion in an enterprise context is depicted as enterprise search. However, there does
not exist a generally accepted definition of this term. Enterprise search solutions
comprise the identification of specific contents across the enterprise, the indexing
of this information and the retrieval of these contents. They aim for supporting
employees to retrieve existing information and knowledge from inside the company
as well as external information (e. g. from the Internet). More general, the field
is subsumed under the moniker of Information Access (IA) Technologies which take
enterprise search and supplement it with technologies such as categorization, clas-
sification and visualizations. This approach allows the more “intelligent” display of
search results than the common plain linear search result list. The main goal is the
provision of a better understanding of the organization’s information which is dis-
tributed over various systems in the diverse software landscapes, such as Document
Management (DM) systems, Content Management (CM) systems and other enter-
prise applications [Andrews, 2009].

Enterprise search solutions strive for providing users with more insight into the
organization’s knowledge. To achieve this goal these search engines do not limit
themselves to plain keyword searches, but offer additional analytical features com-
mon in fields like BI. They apply tools such as navigational access, visualizations
and charting to provide users a means to understand the search results better.

According to a survey by White [2009] conducted between July and August
2009 with 175 participating companies from which 118 are actively using enter-
prise search solutions, the main drivers for enterprise search were the improvement
of decision making due to a better overview of the available information and the
increase of employee productivity.

42 | Chapter 2 – Background and Basic Concepts

Braschler et al. [2009] introduce a survey where 233 decision-makers from com-
panies and the administration in Switzerland were questioned about enterprise
search. The participants estimated that about 18% of the work time is spent on
search tasks. The main motivators for enterprise search according to this study are
the loss of time due to the companys’ lack of comprehensive search facilities over
all information sources, the quality loss due to non-retrievable information, the loss
of time due to too large result sets with irrelevant items and the lack of meaningful
result presentation.

Enterprise search solutions help to improve the provision of information by pro-
viding tools to retrieve information unknown to employees. They help to avoid the
duplication of work that has been done in the past but could not be retrieved due
to unawareness of the existence or the location of the information. Furthermore,
the quality of decision-making can be improved since important internal and ex-
ternal information can be retrieved faster and more complete. Additionally, since
the indexed data is delivered in near real time, decisions can be made on current
data. Enterprise search should help users to make decisions they would have never
made before based on information they might not have known it even exists in the
organization.

Enterprise search should deliver the same simplicity as provided by web search
engines, but adapted to very complex and security-sensitive information found in
enterprises. In a first step, enterprise search should support users in finding existing
information, followed by advanced support for making sense of the found infor-
mation. Enterprise search solutions should aim to be an integral part of business
productivity. By making information available not only from the employee’s depart-
ment, but from the whole company a first step is taken towards that goal. Users
now need tools to make sense of the obtained information. Quantrill [2008] calls
this the transition from “the user interface model into the user experience model”
by integrating tools to be able to interact with the data after finding it.

Abrol et al. [2001] gives a characterization of an enterprise portal which is one
option for an implementation of an enterprise search system. It is characterized as
follows:

• The need to access information from heterogeneous repositories.

• The need to respect fine-grained security permissions on a document basis.

• The need to consider a large variety of document types and formats, which
additionally can occur in different languages.

• The need to combine structured and unstructured information from a docu-
ment for the determination of the search result, its personalization and result
presentation.

An enterprise portal plays an important role for knowledge management. Em-
ployees are offered a centralized, personalized and role-based access to the neces-
sary information needed for their work [Friedrich, 2007]. The above mentioned
survey from White [2009] showed that the provision of a single view of all enter-

Section 2.6 – Enterprise Search and Information Access Technologies | 43

prise assets helps companies to increase employee productivity. An enterprise portal
implements such a single view.

An approach to query multiple application systems from a central search system
is the field of federated or distributed search [Callan, 2000; Meng et al., 2002].
Therewith, multiple systems which provide their own search mechanisms are in-
tegrated in one system which handles the task of source selection [D’Souza et al.,
2000; Nottelmann and Fuhr, 2003], i. e. making the decision which systems need to
be queried. The federated search engine then translates the user query to the query
language of the targets search systems. After the search results have been returned
from the systems, they are merged into a single ranking which is presented to the
user [Si and Callan, 2003].

The use of federated search systems offers the benefit for users that instead of
searching multiple repositories sequentially, users only have to provide one query
which then is handed to the search systems and computed in parallel. A drawback
can be the large number of results which can result from querying every source.
Additionally, many federated search systems do not provide additional guidance to
the users such as faceted search approaches which would help them to filter the
search result efficiently.

Ideally, an enterprise search solution provides users with one search result for
a query—the right one. Although, these types of (simple) problems are existent
in organizations, more complex information needs are more common. Taking for
instance design engineers which are designing a new assembly and need a compo-
nent for certain given requirements. If they could—in addition to the information
from the PLM system—access additional information about components e. g. from
Supply Chain Management (SCM) systems, the engineers could base their decision
of which component to choose on more relevant data.

Therefore, the search process in enterprise search scenarios should be conversa-
tion-like. Users should refine their search queries by adding and removing search
criteria in a dialog with the search engine which presents additional descriptive
attributes of the search results to give users ideas how to detail their queries and
new ways to filter and sort the search results.

Hawking [2004] and Mukherjee and Mao [2004] try to define the field of en-
terprise search and outline challenges in this domain. The next subsections outline
these main challenges found in enterprise search.

2.6.1 Heterogeneous Information Spaces

Current enterprises can be characterized by complex information spaces which con-
sist of complex IT system landscapes with a variety of heterogeneous content repos-
itories. Amongst others, these repositories comprise DM-, CM-, Database Manage-
ment (DBM)-, Enterprise Resource Planning (ERP)-, Customer Relationship Man-
agement (CRM)-, and PDM-systems as well as e-mail services, plain file systems and
intranets. Many of these software systems provide some kind of search functional-
ity to retrieve the stored information from each individual system. Users seeking
for a comprehensive answer for a complex information need might need to query

44 | Chapter 2 – Background and Basic Concepts

several information systems consecutively and merge the different search results on
their own. An enterprise search engine should integrate these “information silos”
and provide a single entry point for the retrieval across these different information
systems. For this purpose, an enterprise search engine should ingest and index all
the contained structured and unstructured information from these diverse content
sources and make it easily retrievable for the users of the organization.

An enterprise search vendor has to provide specific adapters or connectors to
access the source repositories and gather the contained content during the index-
ing step. Since there is no generally accepted standard for comprehensive data
exchange across several repositories24 an enterprise search vendor has to provide
connectors for most commonly used information systems.

Often the enterprise search engine offers connector Application Programming
Interfaces (APIs) which allow customers to integrate unsupported or internally de-
veloped software systems. For instance, the enterprise search solution offered by
Google called Google Search Appliance (GSA)25 provides intranet and website search
out-of-the box. Connectors to several enterprise software systems are provided,
e. g. for Lotus Notes, Microsoft SharePoint, Salesforce.com, for file systems and
databases26 (cf. Section 2.7 on page 53 for more detailed information on enterprise
search solutions).

The manifold information systems store different types of information referred
to as artifacts27 in this publication. Each artifact is of a certain artifact type which
describes the information it contains. In an enterprise context, artifacts may be of
different types e. g. a document, person, product or project. Each of these artifact
types is characterized by a specific set of descriptive attributes.

Assuming that the search engine acts as a single point of entry for searching
the information from these systems, the different result types need to be merged
effectively into an integrated search result ranking. These different types introduce
a higher complexity due to their different structure. This is obvious considering
for instance the search for persons in contrast to a search for projects which differ
inherently in their structure, i. e. the available search criteria.

Thus, the introduced variety of artifact types results in a higher complexity for
the search algorithms since search results from different systems with different rel-
evance algorithms need to be merged as well as search results of different types.
This diverse content requires different relevance models for each type of artifact to
determine a search result ranking. Furthermore, it is difficult to combine different
artifact types in a search query, since the contents of the heterogeneous repositories
in the enterprise environment usually are not (strongly) cross-referenced by links

24A standardization attempt for content repositories is for instance the Java Specification Re-
quests 170 (Content Repository for Java

TM
technology API) and 283 (Content Repository for Java

TM

Technology API Version 2.0), implemented e. g. in the Open Source Project Apache Jackrab-
bit (http://jackrabbit.apache.org/ last accessed 08/01/2010) or in the CM-system Magnolia
(http://www.magnolia-cms.com/ last accessed 08/01/2010).

25http://www.google.com/enterprise/search/index.html (last accessed 08/01/2010)
26http://www.google.com/enterprise/labs/index.html (last accessed 08/01/2010)
27For a more detailed introduction to artifacts and their types, refer to Section 4.2 on page 94.

Section 2.6 – Enterprise Search and Information Access Technologies | 45

[Mukherjee and Mao, 2004] which makes a ranking based on the link structure
difficult.

According to Hawking [2004] “enterprises generally prefer a utility function
which reflects what the enterprise wants the searcher to see” which exposes the
requirement for enterprise search solutions to be able to promote certain artifacts
in search results for certain queries.

Furthermore, the information in these systems is stored in a variety of document
types and file formats which need to be parsed to extract as much information as
possible.

Although, the different artifact types are linked logically, these connections are
often not stored in these systems which decreases the potential semantics which
could be used for improving search. Furthermore, the links between the artifacts
often indicate relationships rather than authoritative information as used in web IR
where web pages with many incoming links are valued more than pages with less
links.

For users this might pose a problem if they are searching for documents of a
certain product and then want to quickly navigate to the according development
project documentation. This might include several searches starting from a DM-
system, followed by querying the PDM-system for the product information and fi-
nally searching the project planning portal until they find the information they need.

Additionally, the found information can be in different languages which has to
be considered during indexing and search time. For more information on Cross-
Language Information Retrieval (CLIR) see the Cross Language Evaluation Forum28.

Enterprise search engines must support the search for structured as well as un-
structured data. Structured information can be for instance found in relational
databases where each column of a dataset is defined. Unstructured information such
as text documents is assigned additional metadata29. From an indexing viewpoint,
the search engine should try to extract as much structured information as possible
which can be realized by specific indexing components that apply techniques from
automatic classification, clustering and feature extraction.

In particular, the structured information (e. g. metadata) allows user interfaces
which enable users to navigate along hierarchical categorized information (cf. Sec-
tion 2.3 on page 18). Additionally, a combined approach is feasible where users
search for unstructured content in conjunction with a parametric approach, i.e.
querying for some keywords in addition to some structured search criteria the re-
sults must meet. The integration of structured and unstructured information about
the artifacts helps to enrich and enhance the quality of search results for the users.

By utilizing Natural Language Processing (NLP) approaches such as information
extraction, automatic identification of named entities (persons, organizations, prod-
ucts, etc.) and their relations, structured information can be obtained automatically
to a certain degree30. The Apache open source framework Unstructured Information

28http://www.clef-campaign.org/ (last accessed 08/01/2010)
29For instance, documents can be assigned author and process information by checking it into a

DM-system.
30Refer to [Bates, 1995] and [Charniak, 1997] for an overview of NLP techniques.

46 | Chapter 2 – Background and Basic Concepts

Management Architecture (UIMA)31 supports the development of analysis tools for
unstructured information [Broder and Ciccolo, 2004].

A more broad approach is taken by the SeMantic Information Logistics Archi-
tecture (SMILA)32 which provides an extensible framework for building search so-
lutions especially for unstructured information sources in addition to the proposed
architecture.The extensible framework is based on Service-Oriented Architecture
(SOA) principles and utilizes standards such as Business Process Execution Lan-
guage (BPEL) and Service Component Architecture (SCA) to provide a platform
for information access and integration. It also defines components such as data
connectors to different source systems and delivers interfaces for the management,
operation and monitoring of the framework and its components.

2.6.2 Internet vs. Intranet Search

In Web IR several approaches are followed to determine the relevance of a web
page. One approach calculates the similarity between a document and the query by
applying the Vector-Space-Model from Salton et al. [1975]. Additionally, the link
structure between web pages can be utilized to determine the “importance” of a
web page [Page et al., 1998; Brin and Page, 1998]. For each web page in the search
engine index a so-called PageRank is calculated which weights links from referring
web pages to the considered page differently. It is assumed that web pages which
are linked to frequently, are more relevant than web pages which are linked to less.
During the PageRank calculation the assigned PageRank weights are propagated
from the referring page to the linked page. The rank of a page is higher, if the sum
of the ranks of the referring pages is high. This approach covers the case when
a page is linked often and when a page is only linked from a few highly ranked
pages33. Pages with a higher page rank appear higher in the ranking. PageRank has
been influenced by the field of citation analysis where relations between cited and
citing publications are analyzed to determine the scientific impact of a publication
[Garfield, 1979]. This citation approach is not completely transferable to intranets
due to several reasons explained below.

A part of enterprise search consists of the retrieval of relevant information from
the company’s intranet. Although at a first view the Internet and intranets are quite
similar, there are several differences which have to be considered for searching in
each respectively. Both share the basic overall structure consisting of a collection
of hyperlinked documents. But the differences are rooted in the underlying docu-
ment content generation process. Content creation in the Internet is more demo-

31The UIMA framework provides a component based approach for the analysis of “large volumes
of unstructured information in order to discover knowledge that is relevant to an end user” (http:
//uima.apache.org/ last accessed 08/01/2010).

32Further information about SMILA and the available releases can be found at http://www.
eclipse.org/smila/ (last accessed 08/01/2010).

33It has to be noted that the current implementation of Google’s search algorithm takes over 200
signals into account, whereas PageRank is only one of them (http://www.google.com/corporate/
tech.html last accessed 08/01/2010).

Section 2.6 – Enterprise Search and Information Access Technologies | 47

cratic, considering e. g. the collective efforts of creating an independent encyclope-
dia such as Wikpedia34 often summarized under the moniker Web 2.0 coined by Tim
O’Reilly35. In contrary, content creation in an enterprise context is often more bu-
reaucratic due to a more centralized documentation process performed by a small
group of employees. This leads to the paradox that although the amount of informa-
tion on the Internet is usually much larger than in the enterprise, IR on the Internet
is easier than in the enterprise. This can be explained by the large number of web
sites which handle a certain topic and therefore provide advice for many natural
queries [Fagin et al., 2003]. That publication also claims that the notion of a “good”
answer to a query is quite different for these two domains. Whereas users issuing
queries to web search engines usually expect the “best” or most relevant document,
in the enterprise context, users are usually interested in finding the single “right”
answer. Often users already know or have seen the right document before, but are
seeking help to easily retrieve it again. The “right” answer is not necessarily the
most “popular” document, which frequently determines the “best” answer on the
Internet [Fagin et al., 2003].

Another difference between internet and intranet search is the handling of spam
content. Internet search engines need to undertake huge efforts to prevent spam
in the search results. Therefore, current web engines rarely rely on the descriptive
META tags the Hyper Text Markup Language (HTML) provides, because this was
often misused to promote own webpages for certain search keywords. In organiza-
tions, this spam problem does not exist due to the above mentioned content creation
process. Therefore, this META tag information is much more reliable than in Web
search.

With the vast success of Web 2.0 efforts in the Internet, companies try to embrace
this approach and port it into the enterprise by trying to motivate their employers to
collectively document knowledge by employing (micro-)blogging, wikis, social net-
working tools, etc. Recently, this was labeled Enterprise 2.0 [Newman and Thomas,
2009] and aims for supporting the collaborative information creation and discovery.

2.6.3 Consideration of Content Security

The main objective of enterprise search approaches is the improvement of the access
to company information for their employees. The simple approach to index all
available information regardless of their classification is obviously not feasible. An
enterprise search engine has to take the security contexts of the source systems into
account and enforce them before delivering search results. The search engine has to
ensure that users can only find and access the information they have the permission
to. In consequence, this can lead to the situation where two different users issuing
the same queries are returned two different result sets.

One basic requirement for enterprise search solutions is the enforcement of the
current security permissions of a document [Bailey et al., 2006]. In contrast to col-

34http://www.wikipedia.org/ (last accessed 08/01/2010)
35In 2004 the first O’Reilly Media Web 2.0 conference took place (http://oreilly.com/web2/

archive/what-is-web-20.html last accessed 08/01/2010).

48 | Chapter 2 – Background and Basic Concepts

lection level security where security permissions are granted or denied on an entire
set of documents, this more granular approach is subsumed under the moniker of
document level security (DLS). For enterprise search engines only the read permis-
sions of an artifact are important, since the source systems are still responsible for
enforcing write or execute permissions for users. The search engine only needs to
decide if users can see a certain artifact or not.

An enterprise search solution should contain various adapters to connect to the
different authentication systems used in modern enterprises. Often Single Sign-On
(SSO) systems are used in organizations to provide users with a single point of entry
where they have to authenticate themselves. The SSO system then transparently
passes this authentication to other applications.

In current enterprise search engines on the market two different strategies to
enforce the security of the indexed information are realized: early binding and
late binding. With early binding (also known as mapped security or Access Con-
trol List (ACL) caching / indexing), the search engine not only indexes the artifact,
but additionally adds its security properties to the index. During query time, the
search engine can immediately access the cached security information of the poten-
tial search result and include it in the result ranking, if the users have the necessary
security rights. The advantage of this approach is the faster query processing time
due to the already present security information in the index. The downside might
be the outdated security information if the security information is altered by e. g.
revoking the read permissions of a document for a certain user. If the search engine
only indexes once a week, users might still be able to see this search result (although
they might not be able to open it, since the security is still enforced by the source
application). Typically, enterprise search engines are expected to minimize the de-
lay between the creation of new content and its retrievability. The same applies to
the currency of the security policies [Bailey et al., 2006].

This potential security violation can be circumvented with the late binding ap-
proach (also called mapped security or ACL mapping). When the search engine is
queried, an intermediate search result ranking is computed which in a second step
is filtered by security constraints before displaying it to the users, i. e. all artifacts
are removed for which the users do not have the sufficient rights. This approach
requires real-time verification of access rights for the current user and artifact from
the source system. Therefore, this approach is the most responsive way to changes
in the security access rights. On the downside, late binding obviously strongly af-
fects the query processing time and the scalability of the solution. Furthermore, a
much higher load is put onto the source systems. Some systems also provide both
or a combination of these security approaches.

When planning to introduce an enterprise search solution the security aspect
should not be neglected. Organizations need to find a trade-off between search
engine performance and the risk of the disclosure of protected or confidential infor-
mation. Organizations need to decide whether the knowledge of the existence of an
artifact is already a security violation, even though users might not be able to open
the document because of missing read permission. In large enterprises department
specific software systems often exist which are “sealed off” from other departments.

Section 2.6 – Enterprise Search and Information Access Technologies | 49

In certain situations it might be beneficial for users to access and reuse informa-
tion from a past project of other departments to avoid unnecessary duplication of
work. The company now needs to decide if it is acceptable to notify the searchers
that there might exist information which could prove helpful for them but omit the
presentation of the document. The users now could try to approach the respective
department and gain access. Obviously, this is not always feasible especially with
projects protected by non-disclosure agreements by customers.

Bailey et al. [2006] points out that the enforcement of the underlying security
policies also impact the processing time due to the calculation of the total number
of search results. Even though users might only view the first search result page,
security permissions of each search result have to be checked.

2.6.4 Expertise Retrieval / Expert Search

The field of expertise retrieval has recently received increased attention in IR which
lead to the introduction of the Expert Finding task at the Text REtrieval Confer-
ence (TREC) in 2005 [Craswell et al., 2005a]. Expertise retrieval copes with two
different types of tasks. Expert finding tries to determine a list of persons who are
knowledgeable on a certain topic, i. e. the experts on that topic. In contrary, the
Expert profiling task returns a list of topics a person is knowledgeable about. Early
approaches relied on database approaches where the skills of persons within an or-
ganization were manually captured and maintained which was very time-consuming
and expensive.

Automatic approaches usually examine the associations between persons and
topics assuming that the co-occurrence of a person’s name and a topic shows evi-
dence of expertise for both tasks usually.

Search systems especially developed for the task of expertise retrieval are known
as expert finders [Yimam and Kobsa, 2000]. Their goal is to automatically discover
expertise information by analyzing secondary information sources.

One approach to automatically determine skills of employees is the analysis of
e-mail communication. This type of communication seems particularly well suited
for the “expertise location” task, since persons usually communicate their knowl-
edge. Moreover, since e-mail is a directed communication, social networks can be
identified in the patterns of communication [Campbell et al., 2003].

Several independent research groups carried out analyses of graph-based rank-
ing measures such as PageRank and the Hyperlink-Induced Topic Search (HITS)
algorithms to determine expertise based on e-mail communications. Campbell et al.
[2003] compared the analysis of the contents of e-mails communication to the ex-
ploitation of the link structure which is defined by senders and receivers of e-mails
applying the HITS algorithm [Kleinberg, 1999] to identify experts. The findings of
Dom et al. [2003] showed the better applicability of the PageRank algorithm over
the HITS algorithm for the e-mail communication analysis. D’Amore [2004] exam-
ined the expertise finding problem from the perspective of identifying communities
of expertise in his Expert Locator prototype. The authors motivate an enterprise
model organized around activity spaces or work contexts. These models associate

50 | Chapter 2 – Background and Basic Concepts

expertise with expert signaling behavior, i. e. communication used to convey certain
knowledge or experience.

According to Balog [2008] many approaches exist which automatically exploit
social networks as a source for expert finding tasks. These networks can be based
on and constructed from chat logs, online discussion forums, community-based
question-answering systems, or co-authorship information from bibliographic data-
bases.

A more comprehensive approach is pursued by Craswell et al. [2001] with their
P@nopticum system. They built a representation of each person in the organization
by concatenating the text of all associated documents of these persons in the or-
ganization’s intranet. Textual queries for persons with a certain expertise are then
matched against this document representation, similar to a classic document re-
trieval system. The search result comprises a list of experts, along with their contact
details and the list of matching documents as supporting evidence.

Enterprise PeopleFinder builds on the findings of the P@nopticum system and
refines the representation of a person’s expertise [McLean et al., 2003]. The authors
additionally accept more documents as evidence of expertise based on the corporate
structure and use a more differentiated weighting scheme of the documents (in
comparison to the original equal weights).

Balog [2008] proposes a generative probabilistic retrieval framework for esti-
mating the probability of a person being associated with a certain topic of expertise
by adapting generative language modeling (LM) techniques. On the one hand, the
author uses the associations between people and documents to build a candidate
model and matches the topic against this model. On the other hand, the topic is
matched against the documents and the resulting associations are evaluated to find
evidence for a candidate’s expertise. This probabilistic retrieval framework was suc-
cessfully applied for both the tasks of expert finding and expert profiling [Balog et al.,
2006].

Macdonald and Ounis [2006] consider the expert finding task as a voting prob-
lem, where documents vote for candidates with the relevant expertise. Each can-
didate is assigned a set of documents describing its profile. The user query for a
candidate is matched against the documents describing all the profiles. Simplified,
a candidate appears higher in the ranking if many documents from its profile ap-
pear in the ranking in comparison with other candidates. The authors compared
11 different (adapted) data fusion techniques to aggregate the document “votes”.
The authors compare the aggregation of votes for the candidates by different mea-
sures: (i) the number of retrieved document votings for each candidate, (ii) the
scores of the retrieved documents voting for each candidate, and (iii) the ranks of
the retrieved documents voting for each candidate. The authors emphasize the ad-
vantage of their approach which does not rely on collection specific heuristics, but
is deployable widely for different collections.

Section 2.6 – Enterprise Search and Information Access Technologies | 51

2.6.5 Evaluation of Enterprise Search

In 2005 TREC introduced the Enterprise Track to provide a platform to evaluate
different research approaches for certain enterprise search tasks [Craswell et al.,
2005a; Soboroff et al., 2006; Bailey et al., 2007; Balog et al., 2008]. The track
provides a test collection comprising web crawled intranet pages, e-mail archives,
and document repositories. The test collection also comprises certain topics and
according relevance judgments for different search tasks:

• Expert search. The aim is to provide a ranking of experts for a given topical
area.

• E-mail known item search. The goal is to provide a certain e-mail which is
known by the querying user.

• E-mail discussion search. The aim is to provide users with an overview of
the pros and cons of an e-mail discussion. The user describes the topic by his
query and expects whether the results are relevant and whether they contain
arguments for or against the argument.

• Document search. The main goal is to construct an “overview page” which
lists relevant “key pages” and “key people” of interest for a given topic of
interest.

An interesting task was added in TREC 2009 which focuses on entity-oriented
search on the World Wide Web. A query for the entity finding task comprises an
input entity, a type of the target entity (person, organization, or product) and the
relation between the two entities given in freeform text [Balog et al., 2009].

2.6.6 Consideration of Contextual Information

Due to the heterogeneity of information in the enterprise, it is beneficial to consider
contextual information about the users and the retrievable artifacts to improve the
search quality. For instance, the information needs of users working in Research
& Development differ from users working in the sales department. Furthermore,
several studies showed that users typically use only a few terms to describe their
information need (e. g. [Silverstein et al., 1999] and [Pass et al., 2006] who ana-
lyzed big web query logs found the number of query terms to be between 1 and 4 on
average). While analyzing queries which were conducted against an email archive,
Hawking et al. [2005] found that 33% of all queries were one term queries. This
discrepancy between what users query and what users actually need makes query
processing a challenge for search engines.

The applicability of context information for the target environment needs to be
evaluated and adapted [Hawking et al., 2005]. The knowledge about users in an
enterprise usually comprises the roles of each user, which give hints about their
short and long term information needs and can play an important role during the
matching and ranking phase of the enterprise search process.

52 | Chapter 2 – Background and Basic Concepts

As described in Section 2.6.1 on page 43 above, the document collection is very
heterogeneous with usually unstructured documents of various types originating
from a wide variety of information repositories. However, each of these individual
management systems can provide a local context for an artifact, as process context
information for documents in an DM-system (i. e. information about where in a
process the document was created, was revised or is needed for further tasks as
input documents).

The consideration of process context such as information about work tasks can
help to locate the information source and better understand the information need of
the users. Järvelin and Ingwersen [2004] claim that information about task context
needs to be considered to improve information seeking and retrieval.

Based on results from a study conducted by Freund et al. [2005b] in the domain
of software engineering, a discrete set of contextual variables were found. The most
significant variables were the work task, the information task, and the genre [Fre-
und et al., 2005a]. A work task may lead to a number of information tasks which
comprises information search and retrieval tasks. The genre defines the document
type based on the similarity of form and purpose. The authors try to find associa-
tions between specific tasks and genres in contrast to an isolated view by conducting
a correspondence analysis which led to the identification of relationships between
certain tasks and genres. The further goal of the authors is to incorporate these
relationships into the ranking computation to improve the usefulness of the search
results.

The knowledge of the users’ tasks may help the search engine to understand
the user’s information need better. This can be used for source selection during a
retrieval task where the search engine does not query all potential source systems,
but only those which possibly could answer the queries of the users. For instance,
if a search query contains the name of a person, it might be appropriate to query
an expert finding search tool [Hawking et al., 2005]. Additionally, the knowledge
about the current task of the users can be leveraged in providing them with search
templates which preselect certain search criteria to limit the degrees of freedom for
the users.

A work package from the European integrated project VIVACE dealt with contex-
tual search for engineering knowledge [Redon et al., 2007]. The authors identified
six context dimensions they further investigated, namely activity, project, gate, role
and discipline. The connection between a knowledge element and its context can
either be specified by an expert or determined automatically by the platform itself.
The search process is based on a case-based reasoning system, which utilizes user
context descriptions and the applying knowledge element-context associations.

An interesting field for context-based IR concerning enterprise search is the
possibility of alerting users that there exists potential information based on pre-
vious searches. Additionally, users could define their interests and regularly receive
matching information36. This type of information retrieval task belongs to the field

36Google provides a feature in form of their Google Alerts (http://www.google.com/alerts last
accessed 08/01/2010), where users can enter keywords and are alerted by Email or web feed such
as Really Simple Syndication (RSS) when new web pages are available for the entered keywords.

Section 2.7 – Enterprise Search and IA Technologies: Examples | 53

of information filtering [Hanani et al., 2001].

2.7 Enterprise Search and Information Access Tech-
nologies: Examples

In this section some examples for enterprise search solutions are given and intro-
duced. The selection of the portrayed systems shows the different types of enterprise
search solutions which tackle different problem areas. Whereas the “one size fits
all” solution provided by the GSA is simply deployed in the enterprise, the solutions
from Endeca and Exalead try to support more complex and specialized information
needs and provide enterprises with more visualization support for exploring search
results.

A more thorough market overview and an evaluation is given for instance in the
Forrester Wave: Enterprise Search [Owens, 2008] and in the Gartner MarketScope
for Enterprise Search [Andrews, 2010].

2.7.1 Google Enterprise Search Solutions

In addition to their web search engine, Google also offers enterprise search solu-
tions. The Google solution is a combination of hardware and software and comes
in two different models, the Google Mini and the GSA37 [Google Inc., 2009b]. Both
product models come in a self-contained rack mounted server unit.

Since the GSA comprises all the features of the Google Mini only the former will
be introduced here. The information presented here is extracted amongst others
from the public information Google provides on their web site38, data sheets [Google
Inc., 2009a] and from [Edwards, 2009].

Similar to their intuitive approach to web search, Google tries to provide users
in the enterprise a similar experience and therefore initially offers the known “one
easy, familiar search box” [Google Inc., 2009a]. According to Cyrus Mistry (Product
Manager for Google Search Appliance)39, Google’s primary goal is to deliver only
one— the right result for a query to the users.

Indexing and Searching

The functionality of the GSA supports various content sources comprising file shares,
web servers, DM systems and enterprise applications which it is able to index.
Google provides built-in native support for the following systems:

• EMC Documentum40

37The explanations of the GSA apply to Version 6.0.
38http://www.google.com/gsa/ (last accessed 08/01/2010)
39http://googleenterprise.blogspot.com/2009/08/compare-enterprise-search-relevance.

html (last accessed 08/01/2010)
http://www.youtube.com/watch?v=XeG3-n9u-3c (last accessed 08/01/2010)
40http://www.documentum.com/ (last accessed 08/01/2010)

54 | Chapter 2 – Background and Basic Concepts

• IBM FileNet41

• Microsoft SharePoint Connectivity42

• Opentext Livelink43

• Lotus Notes44

• Salesforce45

Third parties provide additional connectors for systems such as BEA AquaLogic46,
IBM Websphere47 or Oracle Content Server (Stellent)48.

For other unsupported enterprise applications, Google offers the open Content
Connector Framework which includes an open Service Provider Interface (SPI) to se-
curely connect with any other content platform. Additionally, a Third Party Content
Feed API is provided over which source systems can push new non-web accessi-
ble content to the GSA by converting the content to a specified Extensible Markup
Language (XML) format. This functionality helps the search engine to be notified
of changed content which then is re-indexed by the crawler. Additionally, the GSA
crawler continuously searches for new content on an ongoing basis to ensure a small
gap between content changes and them appearing in search results.

Content-wise Google claims the support for 220 different file types including
HTML, Portable Document Format (PDF), Microsoft Office formats and others. Nev-
ertheless, no information is given whether the GSA supports the extraction of struc-
tured content out of unstructured file types such as Microsoft Word documents.
Additionally, an automatic language detection for several languages is supported
during indexing and an automatic translation of search results is provided.

Other features of the GSA comprise a Self Learning Scorer, a form of implicit rele-
vance feedback49, which adapts search results based on user behavior and previous
user selections.

Similar to Google Alerts50, users in the enterprise can get regular email notifica-
tions of new documents of interest based on their specified topics/keywords.

With the huge growth of micro-blogging platforms such as Twitter51, Google now
offers the integration of recent Twitter messages in the search results of the GSA.

41http://www-01.ibm.com/software/data/content-management/filenet-content-manager/
(last accessed 08/01/2010)

42http://sharepoint.microsoft.com/ (last accessed 08/01/2010)
43http://www.opentext.com/ (last accessed 08/01/2010)
44http://www.ibm.com/software/lotus/products/notes/ (last accessed 08/01/2010)
45Salesforce is offering CRM in the cloud http://www.salesforce.com/ (last accessed

08/01/2010)
46http://www.oracle.com/bea/ (last accessed 08/01/2010)
47http://www.ibm.com/websphere/ (last accessed 08/01/2010)
48http://www.oracle.com/stellent/ (last accessed 08/01/2010)
49For a bibliography concerning implicit relevance feedback refer to [Kelly and Teevan, 2003].
50http://www.google.com/alerts/ (last accessed 08/01/2010)
51http://www.twitter.com/ (last accessed 08/01/2010)

Section 2.7 – Enterprise Search and IA Technologies: Examples | 55

Security

The GSA integrates with existing security and access control systems. Therewith,
Google supports document-level security to ensure that users only see those docu-
ments in the search result where they have also access permissions to the content
source. Google provides early as well as late binding for security checking the search
results.

Google provides various authentication and SSO mechanisms such as Lightweight
Directory Access Protocol (LDAP), NT LAN Manager (NTLM) authentication, Public
Key Infrastructure (PKI) authentication with X.509 certificates, Kerberos and Win-
dows Integrated Authentication. By supporting the Security Assertion Markup Lan-
guage (SAML) Identity SPI a customization of access control can be achieved with
legacy systems.

Additionally, the GSA provides an own SSO solution called Universal Login which
provides a single login page for users and passes their login information to back end
system across heterogeneous authentication protocols.

Scalability

The GSA 6 is built upon a new architecture (GSA)n which according to Google
offers higher scalability since several GSA units within an organization can be com-
bined. Therewith, organizations can dynamically add another GSA to handle addi-
tional query load. Furthermore, this architecture enables unified searching across
multiple GSA instances from several departments which might be geographically
distributed.

The Collections feature allows the creation of different index segments which can
be accessible to different users. By that means it is possible to show different search
results to different user groups, e. g. by evaluating the domain name, the geography
or job function. This functionality provides some aspects of the consideration of
application context (cf. Section 2.6.6 on page 51).

Summary

In summary, the GSA is an easy to use solution for enterprise search due to the
combination of hardware and software. Additionally, the delivery model comprises
product updates and support. The scalable architecture allows the solution to grow
with the company requirements.

On the downside, the Google solution does not really support users in finding
search results for complex information needs. Google advances the view that the
search engine can provide users with the single right answer which works in some
query situations. But in situations where users are not able to define their informa-
tion need by giving a simple keyword query—as the Google solution demands—an
emphasis on exploratory approaches would be more helpful for users.

56 | Chapter 2 – Background and Basic Concepts

2.7.2 Endeca Information Access Platform

Endeca provides enterprise search solutions for different domains such as retail, me-
dia & publishing, distribution, manufacturing and government. Endeca describes
itself as a provider of search applications in contrast to “one size fits all” applica-
tions/appliances such as the GSA. The latter solutions provide generic search ap-
proaches applicable in a widespread set of use cases. In contrast, search applications
are tailored to help a specific set of business users to complete a specific set of tasks.

Endeca strongly focuses on supporting users conducting exploratory searches (cf.
Section 2.2 on page 15) and provide a comprehensive set of user interface compo-
nents to support users in gaining insight into the organization’s information. The
solution focuses strongly on the integration of structured content into searches by
offering additional tools for users to filter search results. They aim for improving
the discovery of existing information by providing them with the analytical power
of business intelligence in enterprise search tasks.

The information provided below originates from the following publications [En-
deca, 2007], [Endeca, 2008], [Endeca, 2009a], and [Endeca, 2009b]. Additionally,
Endeca patented their approach in several patents such as [Ferrari et al., 2006a,b].

Presentation / End User Experience

To support exploratory searches in enterprise search, Endeca’s search application
called Information Access Platform (IAP) is based mainly around their implementa-
tion of faceted search called Guided Navigation R� in their terms. The main goal of
Endeca’s IAP is to reveal relationships in enterprise data and content to encourage
information exploration and discovery. In addition to the characteristics of faceted
search introduced in Section 2.3 on page 18, Endeca provides presentation types for
special types of facets. According to [Endeca, 2009a], Guided Navigation is the first
commercial version of faceted search.

Users can initiate a search process by giving a keyword query or by filtering the
whole result set by stating initial facet criteria. The returned search results contain
a set of relevant documents based on the given search criteria and a set of search
result summaries. These summaries help to refine the user query. These summaries
can be the query previews (cf. Section 2.3 on page 18) which show the size of the
result set when users would choose this facet value. Furthermore, users can give
a value range by using range filters. If geospatial information is available, it can
be displayed on a map which helps filtering by a location. An interesting use case
for this type of query summary is the search for a supplier which should be located
nearby. Other built-in supported visualizations are tag clouds [Hassan-Montero and
Herrero-Solana, 2006] to visualize important terms or facet values of a facet of the
result set. Other summaries include charts and graphs which serve as a means to
make the result set more understandable and give more insights about the data.
The result set summarizations provide users with guidance helping them to refine
their search query and explore the dataset further.

During the deployment of the search engine, line-of-business managers have

Section 2.7 – Enterprise Search and IA Technologies: Examples | 57

fine-grained control over the placement and the functionality of the user interface
elements. The selection of which summaries are displayed to the users is config-
urable by precedence rules. By giving these rules, it can be controlled which facets
are shown and and which are hidden based on the already chosen facets and their
values. The determination of which facets are shown to users is called second-order
relevance by Endeca. It is important to determine those facets which most proba-
bly help users in finding what they are looking for. Additionally, the right type of
summary for the facets needs to be determined to provide effective guidance.

Furthermore, line-of-business managers can promote specific documents in the
search results for specific queries. This type of search result elevation is called
Content Spotlighting R� in Endeca terms.

The functionality of the application layer of the Endeca IAP can be extended with
new user interface features authored in XQuery52. This makes it easy to pull data
out of the MDEX Engine (cf. Section 2.7.2 on page 59) to provide users with new
data visualizations for enhanced guidance through the search process.

As typical for faceted search (and thus Guided Navigation R�), after each query
refinement step of the users, the facets and their values which are shown to them are
recalculated and shown with updated and exact (i. e. no approximations) category
counts (the query previews introduced in Section 2.3 on page 18 above).

Endeca supports so called “Record Relationship Navigation” which allows users
to apply facets from different artifact types which share a relationship. Thus, a
navigation by facets of facets is possible. Design engineers can for instance filter
search results to only contain subassemblies containing parts of type Bearing which
are in a second step filtered by facets describing manufacturers. This approach is vi-
able since there exists a relationship between products and their manufacturers. Of
course this information needs to be determined during indexing [Endeca, 2009a].

Lately, Endeca released their User Interface Design Pattern Library53 which aims
at providing a knowledge base for best practices for the design of search user inter-
faces.

Connectors / Indexing

The part of the architecture of Endeca’s IAP which handles indexing of enterprise
content is called Information Transformation Layer (ITL). In an offline process, the
ITL processes and enriches the enterprise data. It consists of two key components:
The Content Acquisition System (CAS) and the Data Foundry. The former enables the
extraction of content from diverse source systems.

Part of the enterprise search solution is the Developer Studio which comprises
manifold options to configure the retrieval and access of enterprise content sources.

The CAS can process information from a variety of sources and formats. Endeca’s
CAS natively supports normalized data input formats, including comma-separated

52XQuery is a standards-compliant query language for semi-structured content. For more informa-
tion on XQuery see http://www.w3.org/TR/xquery/ and http://www.w3.org/XML/Query/ (both
last accessed 08/01/2010).

53http://patterns.endeca.com/content/library/en/home.html (last accessed 08/01/2010)

58 | Chapter 2 – Background and Basic Concepts

values (CSV), vertical54, fixed width, and XML. The latter one can be converted
by an XSLT transformation into the custom Endeca Record XML format. Endeca
provides the Developer Studio tool which supports easy reading and formatting of
these data formats.

Endeca provides crawlers for content stored on web servers and on file servers
which automatically search for new and changed information and pass the found
content over to the Data Foundry. Endeca claims that they support over 390 file for-
mats from which they can extract content and metadata, but no indication is found
in the product descriptions of how much structured content can be obtained of un-
structured content. The Developer Studio can be used to configure the crawlers,
e. g. adding inclusion and exclusion filters.

In addition to the documents itself, the Endeca crawlers also acquire security in-
formation, such as ACLs which enables the above mentioned early binding approach.

Enterprise applications running on a Relational database management system
(RDBMS) can be accessed via Open Database Connectivity (ODBC) and Java Data-
base Connectivity (JDBC) adapters which are standard CAS components. The re-
cords can be retrieved for indexing from databases by stating SQL statements from
the Developer Studio.

Whereas the introduced access options are of a generic nature, Endeca also pro-
vides specific connectors, called Content Adapters, which are made specifically for
a particular content source. The advantage of these adapters over the generic ap-
proach is the support for system-specific data structures and thus more efficient
metadata and relationship extraction. Endeca provides content adapters for en-
terprise applications such as CM, CRM, ERP, DM or Enterprise Content Manage-
ment (ECM) systems and can utilize common Extract, Transform, and Load (ETL)
tools to index data from these systems. According to [Endeca, 2007], the IAP sup-
ports systems such as EMC Documentum, Microsoft SharePoint, Salesforce.com,
PTC Windchill55 and others.

For systems yet unsupported by Endeca, they provide the Content Adapter Devel-
opment Kit (CADK) which allows companies to develop custom content connectors.

The Data Foundry layer of the ITL aggregates the extracted information from
the different sources and tries to infer relationships across the data. Additionally,
unstructured content is analyzed and transformed by techniques of classification,
language identification, entity extraction and taxonomy generation. For instance,
Endeca provides automatic category creation which automatically determines facets
from unstructured text by employing entity extraction to automatically recognize
people, places, and organizations. Additionally, an auto-tagging mechanism is avail-
able which tries to determine the most salient terms of a document set.

The results of these analytical steps can for instance be navigational facets for
the documents or key terms for tag clouds.

The Data Foundry layer can be extended by plug-ins for custom in-house enrich-
ment packages and data quality routines to measure or ensure data quality. The

54The records are stored as property name/value pairs, each separated by a delimiter character.
55PTC Windchill is a PDM system for storing and managing product data in the product develop-

ment domain.

Section 2.7 – Enterprise Search and IA Technologies: Examples | 59

processed information from the ITL is then passed to the so called MDEX Engine
which is Endeca’s index structure.

Back End Engine: MDEX Engine

Since Endeca’s search solution heavily relies on the accommodation of structured,
semi-structured and unstructured content, a data model capable of representing
these types of information is required. Thus, Endeca developed an index structure
based on semi-structured databases56 called MDEX Engine R�.

According to [Endeca, 2009a,b] the MDEX Engine R� incorporates techniques
from relational databases, traditional search engines, and XML databases. It is built
on a flexible data model, where each record is effectively self-describing (similar to
XML). Every indexed field of a document (including its full text) and every value it
contains (including all indexed terms) become a unique dimension that slices across
the data. Each record representing a document consists of a collection of attribute/
value pairs which are not dictated by an overarching schema of the data model.

Since user queries are not known in advance, no profound query optimization
can be preprocessed in advance. Endeca filed several patents for their techniques
used in query evaluation which includes tailored indices, query planning and mem-
ory caching [Ferrari et al., 2006b], [Ferrari et al., 2006a], [Ferrari et al., 2007].
Their index structure achieves high compression and efficient memory scans by em-
ploying a “vertical record store”, which is slightly analogous to column-oriented
databases57 in a RDBMS but differs due to the characteristics unique to semi-structur-
ed data such as sparsity and hierarchy.

The IAP answers queries according to the set retrieval approach where documents
are assigned to two sets: the documents which adhere to the search criteria and to
those which are not. Additionally, the search results are summarized along several
dimensions of search criteria. The summaries of the search result are processed on
the server side to ensure high performance.

The MDEX Engine R� offers different access option for data indexing, query con-
struction and application development such as XQuery and Web Services technology

56Semi-structured data is a type of data which does not adhere to a general structure, but contains
part of its structural information in itself [Abiteboul et al., 2001]. One standard to express semi-
structured data is the Object Exchange Model [Papakonstantinou et al., 1995] which can be applied
for exchanging semi-structured data between object-oriented databases. In the Object Exchange
Model data is modeled as a directed graph where the nodes represent objects and the arcs their
attributes. Objects can be atomic or complex. The former can be of type Integer, String, or similar
and represent the leafs of the graph. The attributes of the latter are depicted as arcs which reference
complex objects or atomic objects. Another common notation of semi-structured data is XML (http:
//www.w3.org/TR/REC-xml/ last accessed 08/01/2010).

The graph-like notation supports navigational or path-based queries efficiently such as XQuery
(http://www.w3.org/TR/xquery/ last accessed 08/01/2010) and its subset named XPath (http:
//www.w3.org/TR/xpath/ last accessed 08/01/2010).

57Column-oriented databases (in contrast to row-based databases) store their content by columns
rather than rows [Stonebraker et al., 2005]. This can be advantageous when aggregates over many
rows (such as query previews) have to be computed often, which is useful in applications such as
Online Analytical Processing (OLAP) or the here applied faceted search.

60 | Chapter 2 – Background and Basic Concepts

for high interoperability.
To improve the scalability of Endeca’s search application it is built on the Endeca

Virtual Engine (EVE) which acts as an abstraction of the query evaluation from phys-
ical processors to improve performance across multi-core processors. Furthermore,
parallel query processing is supported.

Extensibility

Endeca’s search application is extensible by a plug-in mechanism using so-called
Cartridges. New features such as query mechanisms, filters or summaries can be
authored in XQuery and exposed as a cartridge which then can be included in the
search application.

Endeca already provides a set of packed components such as for rendering Guided
Navigation R�, search boxes or search results. They are both available for the JAVA58

and .NET59 platform and are integrated in common integrated development en-
vironments (IDEs) such as Eclipse and Visual Studio where developers can easily
integrate them via Drag and Drop into the search result page template.

The search application is built on a SOA to allow easy integration into the
enterprise software stack. Newly developed custom services can be published to
Web Service endpoints and accessed via Simple Object Access Protocol (SOAP) or
Hypertext Transfer Protocol (HTTP)-based web services (including Representational
State Transfer (REST) and XML-Remote Procedure Call (XML-RPC)).

Example Domain: Manufacturing

One specific tailored search application is Endeca’s Discovery for Manufacturing suite
which strives for the improvement of decision-making during product development.
The suite includes the modules Design for Supply, Spend Analysis, and Warranty
Analysis [Endeca, 2009c]. The main goals are the support of engineers to provide
them with a better visibility of existing parts or assemblies in the company to avoid
re-inventing already existing parts and to support re-use of existing parts. The suite
integrates data from several information silos such as product catalogs, PLM and
SCM systems and presents them in a unified manner and allows exploration of this
data.

Figure 2.17 on the facing page shows an example of the Manufacturing Suite
with user selections on the criterion part family, a geographic filter and the inner
diameter of the parts. Users are presented with a list of search results in the center
of the user interface and various additional filter options. For instance, users could
filter the search results by material or the favored supplier. Other visualizations
provide the users with insight about the average fulfillment time in a pie chart, a
map for location data or auto-completion of keyword queries.

58http://www.oracle.com/technetwork/java/index.html (last accessed 08/01/2010)
59http://www.microsoft.com/germany/net/net-framework.aspx (last accessed 08/01/2010)

Section 2.7 – Enterprise Search and IA Technologies: Examples | 61

Figure 2.17: Screenshot of Endeca’s Discovery for Manufacturing user interface that shows
search results (center) and the guidance visualizations (red brackets) such as faceted filters,
tag clouds, charts and map visualizations (Screenshot from [Endeca, 2009c]).

Summary

The Endeca IAP provides organizations with a suitable enterprise search applica-
tion which enables search approaches supporting discovery and exploration in the
organization’s data landscape. To provide this kind of insight into the company
knowledge more customization during deployment of this search application has to
be done to address the specific information needs—in comparison to the “one-size-
fits-all” solution such as the Google GSA.

Endeca approaches enterprise search by providing several domain-specific search
applications which are already partially tailored to domain requirements. Consider-
ing the product development domain, Endeca offers their Discovery for Manufactur-
ing suite which covers structured data in that domain. However, support for search
scenarios which comprise the search for similar parts based on geometry or topology
is not available.

62 | Chapter 2 – Background and Basic Concepts

2.7.3 Exalead CloudViewTM

The France-based company Exalead60 offers CloudViewTM which is their “unified
information access platform” [Exalead, 2009a]. The platform was designed for Web
retrieval as well as enterprise search scenarios and thus, is capable of collecting data
in many different formats from many information sources (the Web, email servers,
databases, intranets, multimedia archives, etc.) and automatically transforms it into
structured information as far as possible.

The CloudView Technology can be utilized in different scenarios for which Exa-
lead provides several editions of their platform. Customers can simply deploy the
search engine in the enterprise as is and resort to the built-in index modules and the
provided user interface using the CloudView Search or CloudView 360 editions. In
addition, the latter solution—at the time of writing only available as a beta version—
features semantic tools to analyze the source data further and provide additional
insight into the data (in Exalead parlance a “360 view” on the data).

Another scenario applies to Original Equipment Manufacturer (OEM) which can
embed the search technology in their own commercial applications, such as ECM,
Messaging, Information Lifecycle Management systems and others. Therefore, the
CloudView OEM edition provides special open APIs which enables the companies to
access the platform functionality.

Architecture

Exalead’s CloudView is built on a SOA and provides an extensive set of APIs to
access the functionality of this search solution from other applications or services
[Exalead, 2009c].

Figure 2.18 on the next page shows the core components of the Exalead Cloud-
View Platform: Connectors, Document Processing Workflow, Index Database, and
Front-End Processes. The tasks which are executed in these core components are
described in the subsequent sections.

Indexing and Content Analysis

The initial step for using the CloudView platform consists of collecting the desig-
nated data from internal or external sources. So-called connectors use the data
source’s native protocol to access the contained information. The connector re-
trieves all documents, their associated metadata and their ACLs which are all con-
verted to an XML document, which then is sent to the Index Server.

Exalead provides a set of native, built-in connectors to information sources such
as groupware applications, intranets, CM systems, file servers, email systems and
databases. For a complete overview refer to [Exalead, 2009d]. Additionally, Cloud-
View contains Web connectors which can work as a focused Web crawler61 and thus

60http://www.exalead.com/ (last accessed 08/01/2010)
61In comparison to global crawling, focused crawling only indexes documents which belong into

a specific subject area. The crawler decides based on an analysis of the current document contents
whether it falls into the subject area or not. This technique was first introduced by Chakrabarti et al.

Section 2.7 – Enterprise Search and IA Technologies: Examples | 63

Figure 2.18: Overview of the Exalead CloudView core components Connectors, Docu-
ment Processing Workflow, Index Database, and Front-End Processes (Figure from [Exalead,
2009c]).

can be built to do thematic Internet crawls around specific subjects, e. g. covering
competitors, related industries or products.

For other unsupported applications Exalead provides the Push API (or PAPI)
which can be used to add connectivity for legacy and non-standard systems. There-
with, organizations can develop custom connector components using a simple HTTP
/ REST protocol or a higher level API available for Java, C# or Exascript62 to add or
update documents as well as retrieving the current list of indexed documents.

After the collection of the data from the different source systems, the CloudView
Platform processes and transforms the data in the Document Processing Workflow.
The results then can be fed into the CloudView Index Server.

The document filters and their execution order in the Document Processing Work-
flow can be fully customized to match the organizations demands. The platform
provides native support for over 300 document formats which can be parsed for
text and metadata [Exalead, 2009a,d]. The metadata found by different connectors
is then “normalized” to be consistent across different naming schemes in the source
systems. The attributes of the different naming schemes are mapped to fields of the
indexable document which are common to all data sources. The platform automati-
cally determines the language of the documents during indexing (native support for

[1999].
62Exascript is an object-oriented XML language where Java and XML are blended provided by

Exalead.

64 | Chapter 2 – Background and Basic Concepts

over 50 different languages is provided).
Furthermore, the processing workflow comprises the automatic analysis and

classification of the gathered documents. Additional attributes such as document
keywords (and their variants), entities (e. g. people, places and organizations) and
metadata such as document location, file type, authors and creation date are de-
termined. Also special processing filters try to identify relationships within and in
between the found artifacts which can be beneficial during the actual search process.

Exalead tries to transform unstructured content into a fully classified resource
which can be synthesized with structured content from other systems in the orga-
nization to provide new insights into the data. An interesting use case can be the
interpretation of a product sales report from a BI system by incorporating Web “no-
toriety” statistics for this product (i. e. the results of what people are saying about
this product in the Web in the sense of sentiment analysis63) as well as qualitative
data gathered from support forums, email messages to product support and others
[Exalead, 2009a].

The transformation is accomplished by the utilization of techniques from the NLP
domain. Amongst others, Exalead employs language detection, stemming, lemmati-
zation, morphological and syntactic processing and Part-of-speech (POS) tagging64.

All types of gathered data is transformed into an XML document in the Exalead
CloudView XML document format which is the internal representation of a docu-
ment in the Index Server. This format is used to associate a unique identifier for the
document with a set of named fields (such as the document content, its different
metadata fields and the categories).

Back End: Index Server

The transformed data with the features necessary for searching as well as security
information about the artifacts is then transferred to the central component of the
CloudView platform: the Index Server.

One of the main functions of the Index Server is to maintain the index structure
by processing the XML documents provided by the connector components.

The frequency of the index updates can be configured to happen in real-time,
at specified intervals (e. g. hourly, daily, etc.) or “just in time”. The latter checks,
if the resources are current when queries are received from certain applications to
guarantee current data. In addition to the index, CloudView assures that the uti-
lized language processing modules such as thesauri, keyword recognition engines,
spellcheckers and dictionaries are current as well.

63Sentiment analysis or opinion mining is a subarea of text mining which tries to infer the opinion
of the author about a subject by statistical text analysis. Pang and Lee [2008] give a broad overview
of the research in this field.

64POS tagging describes the assignment of terms of a text to parts of speech (so-called lexical
categories such as noun, verb, adjective, etc.) utilizing statistical methods and techniques of machine
learning. For an introduction to POS tagging see [Charniak, 1997] and [van Halteren et al., 2001].
The Stanford University offers their “Stanford Log-linear Part-Of-Speech Tagger” at http://nlp.
stanford.edu/software/tagger.shtml (last accessed 08/01/2010).

Section 2.7 – Enterprise Search and IA Technologies: Examples | 65

The Index Server supports automatic replication of the index structure. When
documents are added or updated to the master index, this information is automati-
cally transferred to the replicas which are then updated as well.

Exalead provides an export option for their index which makes it possible to
make its contents available for other systems as well. Among other formats, Exalead
provides an XML export.

Presentation / End User Experience

Another function of the core component Index Server consists of the processing of
user queries.

User queries with Exalead CloudView usually start by users having entered their
query into a single text box. User queries can be interpreted as a boolean search,
a phrase search, proximity search and others. For these keyword queries Exalead
provides common functionality such as spell checking, phonetic matching, fuzzy
queries, etc.

When the index server processes a user query, a numerical value called RSV is
assigned to each search result depending on multiple criteria. CloudView considers
criteria such as the relative frequency of the query terms in the index and specific
indexing weights given for specific terms during indexing. User front-end applica-
tions can take control of these different criteria by giving relative weights for them
and for each boolean term in the query by the “low level query language” provided
by the index server. With these weight modifiers organizations can implement ad-
vanced ranking features to boost the score of specific documents based on terms or
attribute values. These advanced options can be used for user-specific search results
where the ranking options are adjusted based on the querying user. Alternatively,
multiple user interfaces with different ranking functions and weights can be used to
provide user specific result lists.

The fourth core component of the CloudView platform is the Search Front-End
which covers the interaction with the actual users conducting searches. Cloudview
offers an interaction framework which provides a built-in search interface, which is
fully customizable employing Cascading Style Sheets (CSSs), JavaServerFaces65 or
Java Portlet66 technology to integrate the search interface in existing systems such
as enterprise portals. In addition to the option of giving a keyword query, the user
interface provides users with a (patented) faceted navigation system which contains
options for narrowing or broadening the search query as well as providing links to
related content (e. g. related terms and categories).

The navigation system presents users—besides the search result list—with addi-
tional summaries which provide them with guidance for refining their search. These

65A Java standard for server-side user interfaces. For more information refer to
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html (last ac-
cessed 08/01/2010).

66A Java standard for interoperable user interface components displayed in web portals. For the
specifications refer to http://www.jcp.org/en/jsr/detail?id=168 and http://www.jcp.org/en/
jsr/detail?id=286 (both last accessed 08/01/2010).

66 | Chapter 2 – Background and Basic Concepts

Figure 2.19: Built-in user interface widgets for search result navigation in Exalead Cloud-
View [Exalead, 2009a].

additional query results help navigating the results by presenting related terms and
concepts, user ratings, file types and size, language, author and others.

Exalead calls these summaries table of contents which are built for each selected
metadata field. Fields considered during an email search could be the sender, the
attachment types or the message date.

Figure 2.19 shows examples of the built-in user interface parts which provide
user guidance, such as the content previews which are generated for documents,
related terms for the textual user query and faceted navigation for the document
type and extracted entities (e. g. people).

If the built-in user interface solution does not suffice the organization’s require-
ments, Exalead’s search functions can be accessed by CloudView’s Search API and
therewith integrated into other systems. The API supports Java, .Net, PHP, Ruby,
Python and Perl and web formats such as SOAP, REST, XML, Resource Description
Framework (RDF) and Web Ontology Language (OWL). Exalead proposes the cre-
ation of information-rich business applications such as information dashboards and
unique content mash-ups to make the knowledge of the organization more avail-
able.

Scalability

All Exalead CloudView editions are built on the same distributable architecture
which provides simple scalability by the addition of standard hardware on demand.
This is realized by making the core services distributable over several servers. The
configuration of all services can be controlled by the provided web interface or the
Monitoring and Management Interface (MAMI) by using protocols such as SOAP or
REST. Amongst others, management tasks comprise the assignment of user priv-

Section 2.7 – Enterprise Search and IA Technologies: Examples | 67

ileges, the control of ranking criteria, replication and backup, the modification of
search result pages or the monitoring of usage statistics. Due to the ability to par-
tition and replicate the CloudView index over several servers, a high performance
and availability can be ensured.

The CloudView platform can also be used as a federated search engine where
multiple search results from CloudView instances from e. g. different locations are
merged. A scenario could be the federation of a CloudView instance covering the
intranet and an instance used for file and email search.

The different Exalead products such as Exalead Desktop and Exalead CloudView
are able to work together and thus provide a federated overview over the results
from different indexes. For this scenario it would be possible to search for docu-
ments in the company and the users’ computer and get a merged search result list.
The table of content summaries of the different indexes would be syndicated as well
and presented to the users in a unified way.

Security

Similar to other enterprise search solutions CloudView respects the existing security
rules and only shows users the search results they have access to in the source sys-
tem. The CloudView platform supports many common authentication mechanisms
such as LDAP, OpenLDAP, Active Directory and Domino Directory.

Exalead CloudView supports to work with an SSO system where users only have
to login on one system (e. g. the search engine) and the SSO system takes care of
passing the login information to the source systems when search results are opened
by the users.

In addition to the documents and its metadata, the Connectors also include secu-
rity information such as ACLs. Security can be configured to comply with the default
security policy of the underlying data source or by the security rules issued from a
given security source based on users or groups such as an LDAP system.

Exalead CloudView supports both the early (in Exalead’s terms called ACL In-
dexing) and the late-binding approach introduced in Section 2.6.3 on page 47 for
checking ACLs. In [Exalead, 2009b], Exalead recommends a combined approach
of these two which can be implemented in two ways. The first option is the us-
age of the real-time indexing capabilities which ensure that during query run-time
the document’s contents and the permissions stored in the index are current as in
the source system. If this is not the case, the index is updated before the query is
answered.

The second possibility filters the search results list comprising all found docu-
ments without respect to user permissions by the indexed ACL to a manageable
size. In a second run, the remaining results are checked against the ACLs in the
source systems. With this approach the situation can occur that users do not see all
results due to recent permission changes which were not yet reflected in the ACLs
stored in the search index and checked in the first run.

68 | Chapter 2 – Background and Basic Concepts

Summary

The Exalead CloudView Platform strongly builds on rich content analytics to extract
and infer as much structured content from unstructured data as possible. The com-
pany strongly relies on techniques from the NLP domain. Similar to the approach
Endeca takes, they are aware that many information needs in organizations need
to be transferred to queries stepwise, i. e. users need facilities to navigate along
structured information to refine their queries.

The platform provides a comprehensive set of APIs to access almost the com-
plete functionality from external systems which makes it very convenient to include
partial functionality in the organization’s software stack.

Chapter 3

Searching in Complex Work
Situations in an Enterprise Context

In this section, in addition to the review of Enterprise Search systems and their
requirements in Section 2.6 on page 40 above, information needs and information
behavior in an enterprise context are reviewed with a focus on design engineers.
Furthermore, the characteristics for the retrieval of information in an enterprise
context are illustrated. This serves the purpose to identify further requirements for
a retrieval system for complex work situations.

The chapter closes with a summary of primary requirements necessary for an IR
system in an enterprise context.

3.1 Introduction to Information Needs

Before examining complex work situations in enterprise scenarios, a short introduc-
tion of information needs in general is given.

First published in 1962, the concept of an information need was described by
Taylor [1962] who identified four levels of question formulation for human inquir-
ers.

• “Q1—The actual, but unexpressed, need for information (the visceral need);
• Q2—The conscious within-brain description of the need (the conscious need);
• Q3—The formal statement of the question (the formalized need);
• Q4—The question as presented to the information system (the compromised

need).” [Taylor, 1962]

This differentiation especially highlights that users usually have to adapt the formu-
lation of their need of information to fit the search system they query. According
to Mooers’ Law that adaptation should not be too difficult otherwise users just omit
searching.

“An information system will tend not to be used whenever it is more
painful and troublesome for a customer to have information than for
him not to have it.” [Mooers, 1959]

70 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

Objective
information

need

Subjective
information

need

Information
supply

Actual
information

demand

Current
information

level

Figure 3.1: Information need and supply model based on [Wigand et al., 1997].

According to Stelzer [2001] an information need is defined as “type, quality and
amount of information [...] that a task bearer (person or organizational unit) needs
to perform a certain task” (English translation by author)1. A distinction is made
between “objective” and “subjective” information needs. The objective information
need describes the information from the task viewpoint, i. e. the necessary informa-
tion to perform and finish the task. The subjective information need describes the
information needed to finish the task from the task bearer’s perspective. It is depen-
dent on a variety of influencing factors, e. g. the current level of knowledge or the
degree of structuredness of a task.

Figure 3.1 shows the different views of information needs in context by relating
them to the actual available information supply and the actual information demand
of the inquirer. The actual available information supply comprises all information
which is provided by all available data sources. Usually, the information need and
the information supply will not be congruent with each other. The actual requested
information demand refers to the demand of a person in a certain work task. The
information demand is a subset of the subjective information need.

As shown in the Venn diagram, the intersection of the objective information
need, the information demand and the information supply results in the current
level of information for a certain work task [Wigand et al., 1997].

1“Art, Qualität und Menge der Informationen [...], welche Aufgabenträger (Personen oder Organi-
sationseinheiten) zur Erfüllung einer bestimmten Aufgabe benötigen.” [Stelzer, 2001]

Section 3.2 – Types of Information in Product Development Processes | 71

Another view on the topic of information needs is given by Ingwersen [1992]
who introduces the label effect. The effect states that users are not expressing the
whole information they have about their information need, but only the amount
they think is enough for a human recipient [Ingwersen and Järvelin, 2005]. There-
fore, search systems should try to elicit more of the available information about the
users’ information needs to provide better search results.

Due to these explanations, it is necessary to describe information needs found in
the domain under research and describe the way users are searching for information
in order to being able to design a supporting IR system.

3.2 Types of Information in Product Development Pro-
cesses

To understand current issues concerning the information provision in product deve-
lopment processes and information needs of engineers, a quick characterization of
this type of a knowledge worker is necessary. Hertzum and Pejtersen [2000] de-
scribe engineers—although they are a diverse group of professionals—as subject
specialists who perform rather complex tasks. Due to the involvement of creative
stages during the development of products, engineers usually have certain degrees
of freedom of choosing the approach they want to accomplish their work with. Since
there are many available solutions for a design problem, engineers have to make
informed decisions. Their choices depend strongly on their understanding of the
context of the task and therefore on the success of obtaining information about the
context. Although, technical solutions and the result of the design are usually well
documented in the design documentation, information about the context of the de-
sign process is often not available or indexed for easy retrieval at a later time.

In an empirical study Carstensen [1997] analyzed which information were used
by designing engineers of a large Danish manufacturing company during a design
project. Additionally, the chosen access to the information was examined. As the
used information relates to a wide series of topics, Carstensen (based on research in
[Pejtersen et al., 1997]) grouped the requested information into six expertise infor-
mation areas: technical, end users, marketing, maintenance, disposal, and production.
The identified information types which should be retrievable by an electronic search
engine are shown in Table 3.1 on the following page.

The study also resulted in two other main findings. First, at the time of the
study the main information type were potential contact persons which have special
knowledge and expertise on a certain topic. Secondly, the most common type of
search was similarity search, e. g. the search for similar problems, ideas, compo-
nents, project types, etc. Due to these diverse information sources, a search engine
should provide a means for seamless switching when several information sources
are accessed.

Furthermore, Carstensen names different general requirements for an explora-
tory search system in the product development domain. It should provide users
with easy access to different information types and enable a seamless switching

72 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

Table 3.1: Different types of information in product development processes according to
[Carstensen, 1997].

Type Description
Previous Designs From past projects or from competitors and suppliers in-

cluding requirement specifications, functional specifica-
tions, overall architectures, technical drawings, descrip-
tions of methods used, etc.

Design Rationales Information on the reasons for or against a certain solu-
tion.

“Similar products” Information on similar products to the one currently be-
ing developed should be provided.

“Known problems” in
products

Explicit descriptions of known problems, weaknesses,
etc.

Component specifica-
tions

Browsing and searching on specifications of products
which are considered useful in the design should be en-
abled. The search should include facilities for component
information related to several different aspects, e.g. per-
formance, price, basic technology, supplier, etc.

Standards and norms Up-to-date information on the standards and norms for
different types of components. This includes both com-
pany specific and national and international standards
and norms.

Working procedures Procedures, standard methods and techniques etc.,
which define how the task must be performed, managed,
coordinated, etc. should be accessible.

Production line char-
acteristics

Specifications on bills of materials, production tool de-
scriptions, rationales for work place designs and salary
structures.

New materials and
components

Up-to-date information on new materials, technologies,
components.

Literature and re-
search results

Information on new techniques and findings from re-
search.

Relevant persons Information on colleagues and other persons who have
knowledge or experience on special topics should be re-
trievable. This includes structured and easy-accessible
information about persons (both internal and external).

Project documenta-
tion

General project information such as plans, specifications,
drawings, communication with external partners, con-
tracts, and agreements.

between different search strategies and information sources. This study suggests
that information needs of engineers not only center around documents, but also
deal with project information and persons. Thus, search engines developed for these

Section 3.2 – Types of Information in Product Development Processes | 73

work situations should be able to use the relations between the different process
inputs and outputs to make complex searches possible that interlink between the
different artifacts.

When providing access to information it is important to support information
needs which on the one hand demand very specific and concrete information but
on the other hand also support more general information needs which require a
more general overview over the data. The former is used to retrieve information
for a specific problem or question. The more general overview serves in situations
when users are browsing to learn new aspects of a general problem or to get aware-
ness of new information. Finally, Carstensen highlights the necessity for similarity
search approaches for the different information types and for the provision of search
engines which help users to refine their search queries step-wise.

The examination of product development processes by chronological aspects
leads to the identification of different types of information which are relevant for
the different process phases. Based on different Verein Deutscher Ingenieure (VDI)
guidelines (especially 2201 [VDI, 1993] and 2222 [VDI, 1997, 1982]) the planning
and design process can be divided into four main phases (based on [Pahl et al.,
2007]):

• Planning and task clarification: The result of this phase is the specification
of information in the form of a requirements list which acts as an input for the
next phases and is updated constantly.

• Conceptual design: In this phase the specification of the principle solution
(concept) is developed by abstracting the main problems, determining function
structures and searching for suitable working principles. These findings are
then combined into a working structure.

• Embodiment design: Based on the results of the previous phase, engineering
designers determine the construction structure of the product which should be
designed. Finally, a specification of the layout of the construction is achieved.

• Detail design: The focus of this phase is the specification of the production
documentation. Characteristics of the arrangement, forms, dimension and
surface properties of the individual parts of the final product are resolved.
Additionally, production possibilities are evaluated, cost calculations are con-
ducted and all necessary drawings and production documents are created.

Of course, in reality product development is not as linear as described and con-
tains iterations where phases are repeated until each result of a phase conforms to
the requirements.

Figure 3.2 on the next page shows the four introduced phases and assigns dif-
ferent types of documents to them. The assignment of the documents to the phases
was partially derived from [Pahl et al., 2007] and from an information analysis con-
ducted with the industry partners of the FORFLOW project. The found information
can be classified into different groups. The majority of the documents describe the
product itself. Pahl et al. [2007] refers to these product-based documents as product

74 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

Planning
and Task

Clarification

Conceptual
Design

Embodiment
Design Detail Design

Requirement
Specification
Market Research
Results
Calculation of Costs
Project Planning
Target Specification

Sketches
Functional
Structures
Modular
Structures
Solution
Descriptions

2D / 3D Models
FEM models
Simulation &
Analysis Results
Guidelines
Regulations and
Instructions
Vendor data

Technical
Drawings
Bills of Materials
Operating &
Assembly
Instructions

Figure 3.2: Types of information found in the different phases of a product development
process.

models. This category comprises textual documents such as requirements specifica-
tions, solution descriptions and operating and assembly instructions. Additionally,
special document types such as 3D Computer-Aided Design (CAD) models, technical
drawings, and bills of materials are found. The second category contains documents
which are used for the project management such as project plans, work breakdown
structures, project hand books, and milestone plans. General documents describ-
ing regulations, instructions, norms and company guidelines are summarized in the
third category of documents.

During the development of a product, engineers need access to these documents
which are stored in various systems previously outlined in Section 2.6.1 on page 43.
Not all of the described documents are equally relevant in every process phase. The
information needs are specific to the task the engineer is working on. To leverage
reuse of existing parts or products in the company, the engineers need an efficient
way to get access to artifacts from past projects.

3.3 Information Seeking Patterns in Product Develop-
ment Processes

Several studies have been carried out to identify information needs of engineer-
ing designers. Additionally, the accessed information and information types were
examined to better describe information-seeking in product development processes.

Wallace and Ahmed [2003] show the results of two studies which examined
how engineers obtain information in product development. The first study was con-

Section 3.3 – Information Seeking Patterns in Product Development Processes | 75

ducted in 1993 [Marsh, 1997] and studied the information search of several groups
of engineers in an aerospace company. The main result was that for 90% of all
queries the designers approached other persons which answered these mainly from
memory which was confirmed by a study described in [Court et al., 1996]. The rea-
son for this behavior is that engineers did not know what information is needed and
therefore relied on a dialog with a person to determine the information need. This
is an indication that search systems should support searches in a conversational-
style as introduced in Section 2.2 on page 15. Additionally, there existed a tendency
among engineers to not trust documents because they might be outdated. On aver-
age, the designers spent 26% of their working time with the search for information.
These search tasks do not occur at one point in time but are fragmented through-
out the workday, which is counter-productive considering the concentrated creative
work needed for design projects.

The second observational study conducted in the same aerospace company fo-
cused on the question, which approach is most suitable to help novice and experi-
enced designers to find the relevant information [Ahmed, 2001]. Thus, the different
approaches for design tasks between novice and experienced developers were exam-
ined. The authors assume that novice engineers have less than two-and-a-half years
experience and experienced designers over 10 years of experience in the respec-
tive domain. The main result showed that it is beneficial to guide novice engineers
during engineering and during the necessary search for knowledge and informa-
tion. The study identified 8 different design strategies of developers [Ahmed et al.,
2003]. With respect to this publication, only the activity “Refer to past designs”
is introduced here. Designers usually referred to past designs from sources like
their memory, drawings, reports and colleagues. Usually, they tend to refer only to
projects that were known to them, i. e. an active search for projects which might
include helpful information did not take place. The reasons for referring to past
designs are manifold:

• “to understand why a particular component had been used;

• find designs similar to the current design problem;

• to find designs that were similar with regard to environmental or functional
conditions, and to understand how the components had behaved in these con-
ditions [...];

• to find projects where similar problems had arisen and how they were re-
solved;

• to use as a starting point for new designs and to ensure consistency between
designs;

• to obtain numerical data for the current problem, e. g. to estimate a weight,
a designer used the ratio of the weight and the volume of a past design.”
[Ahmed et al., 2003]

The main findings were that designers prefer to get information from other per-
sons, since they consider this a more effective and efficient approach rather than

76 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

querying a retrieval system. By speaking to a person, the designers can add further
contextual information to their information need. The approached person then can
help to rephrase and state the query more precisely. It has been shown that the
initial query often was not identical to the query in the end.

Given that the first study was conducted in the early nineties, it has to be noted
that since the publication application system support grew steadily and it is assumed
that nowadays a similar study would not convey this fear of outdated information.
Nevertheless, these studies show clearly that engineers, especially novice engineers,
need support in phrasing their search queries to efficiently retrieve the necessary
information in an exploratory way which enables engineers to incrementally define
search queries.

Zipperer [1993] gives three reasons why engineers prefer getting information
from their colleagues.

• Engineers are seeking feedback on ideas or designs, either as trusted opinion
or as impetus for creative discourse.

• Colleagues act as a pointer to information which they remember, which is far
easier than manually looking through files.

• Due to close working relationships engineers are able to pick the most promis-
ing person as an information source.

Allen examined the differences between engineers and scientists with respect to
information seeking in a series of publications [Allen, 1988, 1995]. To illustrate
the differences he makes use of an input-output model to explain the relationship
between design documentation and oral communication. Scientists use information
to produce new information, which denotes that the input and output of a task are
compatible so that the output of one stage can act as input for the next one. Infor-
mation supply can be seen as a matter of collecting and organizing these outputs
and making them accessible.

On the contrary, engineers consume, transform and use information to make a
product which is information-bearing but does not provide the information in verbal
form. Verbal information is produced as a by-product in form of design documen-
tation. The type of the output is usually different from the type of the input and
therefore cannot serve as direct input in the next stage. According to Allen the
documentation is often not sufficient alone and needs the responsible person for
additional context. “Thus, technological documentation is often most useful only
when the author is directly available to explain and supplement its content” [Allen,
1988].

Hertzum and Pejtersen [2000] examined the information seeking practices of
engineers. The authors conducted two different case studies. The subject of the
first study was how engineers acquire information from previous internal projects
as well as from external sources. The second study observed one single project in
the same company and recorded which information was needed and how it was
acquired and retained. The main conclusion the authors drew, was that “engineers
search for documents to find people, search for people to get documents, and in-
teract socially to get both oral and written information without engaging in explicit

Section 3.3 – Information Seeking Patterns in Product Development Processes | 77

searches” [Hertzum and Pejtersen, 2000]. The reason for the strong use of per-
sons as mediators to retrieve information lies in the fact, that—according to the
authors—the product documentation (seen as the by-product of the process) does
not convey enough contextual information about the rationales behind the design.

The authors emphasize the advantage of written information with respect to
retrievability through search engines and propose that additional information about
the development of this information should be made available through a search
engine. This could help finding persons with expertise for the current work task.

Fidel and Green [2004] conducted a study to understand which factors play a
role for engineers in selecting sources of information. In particular, they identified
the two notions of accessibility and quality of an information need. Additionally,
they tried to clarify the notion of accessibility of information sources. In many stud-
ies, this term was stated as the main factor for the engineers’ choice of an informa-
tion source, but is used inconsistently (e. g. refer to [Leckie et al., 1996] and [Pinelli
et al., 1993]).

The study resulted in the identification of several factors of accessibility which
influence the choice of an information source by engineers. The main factors will be
introduced briefly and implications and requirements for the design of a search en-
gine relevant to this thesis are described. Factors solely referring to human sources
(e. g. experts) are omitted in the following list. The main factors are:

• Sources I know. Engineers tend to use sources that they used before in past
projects due to the fact of being familiar with that source which involves re-
duced efforts to take advantage of the contained information. Thus, a search
engine should aim for making new yet unknown sources to users familiar by
providing a unified search interface which covers several systems.

• Has a lot of different types of information in one place. Engineers prefer
sources which offer multiple information types since these sources make a
retrieval over many systems unnecessary. A retrieval system should federate
several source systems and offer a user interface which searches these systems
in parallel and merges the results in a consolidated ranking.

• Can give the right level of detail. This factor centers around the granularity
of the search results users need in different situations. A search engine should
provide users with tools to get an overview of a set of search results as well as
to provide detailed information about each search result.

• Saves time. It is important for an information source to provide users with the
right information in a timely manner. Thus, a search engine should execute
search queries efficiently.

• Has the right format. Engineers preferably use sources which contain in-
formation in formats they already know or have used before. Thus it can be
beneficial for users, when information access systems provide the functionality
to give users the same information in different formats, e. g. by automatically
converting a document to the preferred document type.

78 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

• Can be searched with keywords or codes. Users prefer sources which offer
search functionalities for easier retrieval of information.

• Is interactive. The factor of interactivity of an information source is important
to engineers when their information need is not clearly defined. By being
offered search tools which allow conversational-style searches users can refine
their the query step-wise until they narrowed down the search results to the
needed information.

The study of enterprise search behavior of software engineers in [Freund and
Toms, 2006] identified four categories which help users to determine the usefulness
of an information, namely content, format, currency and authority. The participants
assessed the content based on the topic, the level of specificity of the information and
the degree of situatedness, i. e. if the information was related to a particular case or
scenario or whether it is a generic information. The format criterion was assessed by
the genre of the document, its structure and the possibility of interaction with the
authors. Currency was defined by the creation date and the version of the product
or technology. Lastly, authority was measured based on acquaintances, reputation
or team affiliation of the author and the organizational source of the information
[Freund and Toms, 2006]. These findings are similar to those from [Fidel and Green,
2004]. Modern user interfaces should support users in providing them with these
types of information for a quick assessment of the usefulness of a document.

Additionally, the study resulted in the definition of some requirements for enter-
prise search. Searchers need to be provided with tools which support the creation
of complex queries and make use of specialized (domain-specific) terminology. Ad-
ditionally, the provision of facilities which help sorting and limiting the document
collection by multi-dimensional structured data is highly recommended (cf. Sec-
tion 2.3 on page 18 for an overview of faceted search and Section 2.4 on page 24
for according user interfaces).

Byström and Järvelin [1995] found in a study in a public administration context
that there exists a dependency between the complexity of a task and the according
information needs. The main findings were that as task complexity increases,

• “the complexity of information needed increases,
• the needs for domain information and problem solving information

increase,
• the share of general-purpose sources increase and that of problem

and fact-oriented sources decrease,
• the successfulness of information seeking decreases,
• the internality of channels decrease, and
• the number of sources increase.” [Byström and Järvelin, 1995]

In two studies del Rey-Chamorro and Wallace [2003, 2005] examined the re-
trieval of information in the aerospace domain. Both studied how designers use
existing product documentation in a new design project. The main finding was
that designers still preferred paper-based documentation over electronic resources.

Section 3.4 – Exemplary Search Scenarios | 79

Users claimed that—especially in collaborative work situations—paper provides a
stronger and more accessible platform and allows easier face-to-face communica-
tion. When accessing documentation, designers preferred to browse through ring
binders. To navigate through different sources, the designers usually referred to
indexes and cross-references. Especially for novice designers dealing with a task
or type of component for the first time, browsing through folders helped them to
identify other issues relating to the current design.

More experienced senior designers also searched for standards and manuals, but
additionally reverted to other information sources such as past projects. By finding
examples in past projects they derived a detailed description of the required type
of documentation. Although these studies showed that designers often search for
previous designs, their intention often was not to reuse parts of previous designs,
but to become aware of the issues and the documents related to a certain subject.

The studies of information behavior in an enterprise context helped to identify
requirements for an IR system for that domain.The findings of different studies that
engineers still prefer to browse through paper-based documentation (for instance
[del Rey-Chamorro and Wallace, 2005]), is a clear indication that search options
are not sufficient right now.

Unlike in safety-critical domains like Air Traffic Control (ATC) [MacKay, 1999] or
in the military [McGee et al., 2002], where paper-based documentation is preferred
due to the robustness to failure and flexibility, in the author’s opinion the acceptance
of electronic documentation can be increased by providing better IR systems, which
support users in accessing different information in an electronic tool.

3.4 Exemplary Search Scenarios

This section aims to introduce some exemplary search scenarios to demonstrate
which types of search tasks exist in an enterprise environment.

3.4.1 Search for Existing Parts in the Organization

The starting point of the first scenario is the development of a current generator
which is composed of numerous components, such as screws, cooling elements,
insulating plates, fans, and others. For instance, if engineers are situated at the step
component design, more precisely in the design stage of the product development
process, they have to create CAD models for certain parts of the new product. A
search engine can support them by providing customized search options.

A search task could proceed as follows: Different types of query alternatives are
available to engineers. They can search for documents in the classic way by giving
a keyword query (e. g. “fan” or an according part number). This type of search
returns documents containing the keyword or documents which are assigned this
keyword (e. g. attributes from a PDM system). Furthermore, users could query the
search engine by providing an example object/document. For instance, engineers
describe their queries in form of a 2D-sketch, which represents a view of the required

80 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

product. This representation is then automatically compared with other views from
existing technical drawings in the search engine index that were developed in earlier
projects. Alternatively, the engineer can use a rough 3D-model of the fan as a query
object which then is compared to already existing 3D-fan models. The result of this
query is a list of similar parts which are already existent in the organization or are
available from parts catalogs. As a drawback the result list also can incorporate gear
wheels since they are—at least concerning their geometry—similar as well.

To circumvent that these inapplicable parts are included, the search result set
can be optimized by considering additional contextual factors for the search. This
information helps to improve the search results by filtering those documents or parts
from the results which are inapplicable for the current work situation. These contex-
tual factors can be partially derived from documents of previous process phases. The
consideration of the function of a part (which is defined in an early process phase
called function structure) can help to exclude geometrically similar parts such as gear
wheels. By providing users with a faceted search user interface, they are able to ap-
ply special search criteria such as Design for X (DfX)-criteria2, tolerance data (e. g.
for temperature ranges), or specifications of dimensions for filtering. Furthermore,
by employing project management software the process model can be harvested for
process context information about users. By accessing the process and task model
the search engine can determine which artifact types are relevant for users in their
current work task. Thus, the search query can be augmented and enhanced by this
information which narrows down the search result further.

Engineers can then choose an appropriate part for their current work problem
from the search result. This part can be used in its entirety or can simply be modified
to suit the changed requirements in the current project. Furthermore, the search
can contribute to reduce the amount of work necessary. By re-using a fan which
is already approved in the organization, necessary calculations can be omitted in
certain situations since the fan was already tested in its original development.

A modification of this scenario was examined during the requirements analy-
sis with the industrial partners of the research project FORFLOW. There, engineers
were looking for a certain product. Not the product itself was their main objec-
tive, but the supplier who delivers it. The engineers wanted to know which other
products were offered by that supplier to achieve higher order sizes. This kind of in-
formation need demands the combination of different queries which are connected
through interim search results. Users first need to restrict the set of products to the
desired ones and based on them query for the suppliers of these products. These
complex search situations are difficult to support proactively by current search en-
gines, since these often only focus on one type of search results.

2DfX describes a collection of specific design guidelines for main requirements denoted by the
variable X. X can be substituted with, for example, Cost, Reliability, Environment, Manufacture and
others [Pahl et al., 2007]. Each guideline provides methods, strategies and tools to realize the chosen
X.

Section 3.5 – Multi–Criteria Search | 81

3.4.2 Project Reviews

The second search scenario addresses the evaluation of past projects. After finishing
a project in an organization, usually reviews are conducted to record best practices
and lessons learned during the execution of a project. Taking the example of the
analysis of a product development project, a search scenario can be the assessment
of how successful different methods were applied during a project by its members.
An example for a method from this domain is the utilization of a morphological
box3 to determine possible solutions for a design. This analysis can help to improve
future project outcomes by providing better method documentation or training on
these methods.

This scenario assumes that projects are supported by project planning systems
which help users in proceeding in a project. These systems support document man-
agement and enable users to attach results, such as documents and notes to the
corresponding process steps4. These systems usually rely on a pre-defined process
model with which they are parameterized to provide the mentioned guidance.

For the scenario the relations between the classes process, process step, methods
and documents as depicted in Figure 3.3 on the following page have to be consid-
ered. A project planning software as described above can generate and store these
relations which then are utilized in search tasks.

For instance, the analysis over this data could be started by a user query which
filters for documents of type review and by a time interval (e. g. the last half-year)
by faceted filtering. Additionally, the resulting set of documents could be narrowed
down by a keyword query. In the next step, the search result set containing docu-
ments is taken as the basis for further queries. By switching the artifact type to the
project level, all projects linked to the current set of review documents are deter-
mined and presented to the users. The remaining set of projects then can be filtered
by project evaluation measures such as the degree of maturity, the degree of fulfill-
ment of milestones, the compliance with dates or the number of occurred errors in
the project result. This serves the next step, where the according process steps of
the projects are shown to see where problems occurred with the applied methods.

Figure 3.4 on page 83 shows different artifact layers and relations in and be-
tween these layers which have to be considered for this search scenario.

Alternatively, the result of a query for this search scenario could be the display
of all types of methods which were used for a set of selected process steps.

3.5 Multi–Criteria Search

As described in the sections above, the information landscape in enterprise scenarios
is affected by a mixture of un-structured and structured data. Furthermore, infor-

3The morphological box is the result of a morphological analysis which helps to explore solutions
to a multi-dimensional, non-quantified problem complex [Zwicky, 1969].

4An exemplary system is the project planning portal Stages from the company Method Park Soft-
ware AG (http://www.methodpark.de/ last accessed 08/01/2010) who was an industrial project
partner of this research and provided the software for research purposes.

82 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

Process

Process step Method

Document

is
 c

re
at

ed

supports

Figure 3.3: Different artifact types and their relationships used in the second search sce-
nario.

mation needs can be quite complex and thus, different contextual information of
the users should be considered for augmenting search queries.

The available contextual information about users and artifacts as well as the
structured data provide users with a wide variety of search criteria they can use in
a retrieval task. In [Eckstein and Henrich, 2008a] an integrated context model for
the product development domain was introduced to show the variety of contextual
information which can influence user information needs. Figure 3.5 on page 84
shows the different identified dimensions of the context model. The model captures
information about the dimensions user, document, product, process, project, company
and task. Nevertheless, the availability and concreteness of each individual crite-
rion has to be evaluated for each organization, i. e. the applicability and ways of
acquisition must be assessed. Whereas criteria such as current process phases or the
current project are more easily captured by using project planning software, the in-
tegration of criteria from the company model appear more difficult. The contextual
information of the different dimensions can describe artifacts in addition to their
actual contents5.

Traditional IR approaches such as the Vector Space Model [Salton et al., 1975]
or the probabilistic retrieval model Okapi BM25 [Sparck Jones et al., 2000] regard
relevance as a single score by aggregating basic features of the query and the ar-
tifacts in question. The applied features usually cover the “topical relevance”. For
instance, these features comprise the term and document frequency for the example

5The notion of artifacts which is used in this publication is introduced in Section 4.2 on page 94.

Section 3.5 – Multi–Criteria Search | 83

d1 d3d2

m1 m3 m2

Documents

Process

Methods

p1

p3

p2

V

Figure 3.4: Considered artifact types in the second scenario.

of the Vector Space Model. By relating the single score of a document to the query,
the RSV can be computed which helps building a relevance ranking of the artifacts.
These relevance computations are static and do not adjust to different search situa-
tions.

In contrast, several studies advance the view, that there does not exist a single
concept of relevance, but many kinds of relevance [Schamber et al., 1990; Borlund,
2003a] (also refer to Section 2.1 on page 11). Moreover, the concept of relevance
cannot be explained by considering only one source of evidence. The combination
of multiple sources of evidence helps to significantly improve retrieval effectiveness.
This comprises several features of an artifact which are used to determine relevance
as well as the integration of contextual information about artifacts.

Considering the example search scenario from Section 3.4.1 on page 79, the
search for reusable parts for the current project can depend on several sources of
evidence. One feature would be the search for geometric similar parts for an exam-
ple object which returns a ranking of similar parts according to this feature. Usually,
engineers possess more available information about the objects they are searching
for. The search for additional keywords or the filtering of objects based on size re-
strictions can help to narrow the search results. Each of these features produce a
document ranking which then has to be merged to the final ranking. This combina-
tion of many sources of evidence has proven to be superior than the consideration
of a single source (for instance in [Belkin et al., 1995]). The automatic merging of
multiple result rankings for the different sources of evidence is called rank aggrega-

84 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

Figure 3.5: Context dimensions for the product development domain [Eckstein and Hen-
rich, 2008a].

tion6 in the literature. The search engine determines multiple rankings based on the
same data collection but uses different approaches to determine similarity for each
considered feature. The final ranking of artifacts is then determined by combining
the different rankings.

The literature proposes several mechanisms to combine multiple rankings. Shaw
and Fox [1993] use the min and max aggregation operators to combine results from
different search schemes and document collections. Since these non-compensatory
operators only consider one criterion value such as the worst or best score of the
artifacts in the different rankings, a lot of available information about the scores is
lost.

Craswell et al. [2005b] consider adding various query-independent features as
relevance weights in addition to a baseline ranking such as BM25 to improve rele-
vance ranking. For instance, the authors consider query-independent features such
as PageRank [Brin and Page, 1998] or the document length and linearly combine
them with the baseline score. The query independent features are applied with a
sigmoid transform to receive relevance weights which according to their study is a
successful approach to include these features in the final ranking.

Other approaches use aggregation operators such as P-norms [Salton et al.,
1983; Robertson, 1977] and fuzzy logic conjunctive or disjunctive operations [Yager,
1988; Dubois and Prade, 1985].

Yager [1988] introduces the use of Ordered Weighted Averaging (OWA) aggrega-
tion operators for multi-criteria decision making. When considering the aggregation
of multi-criteria, two extremes in the relationships of the criteria can be identified.

6The term data fusion problem can also be found.

Section 3.5 – Multi–Criteria Search | 85

On the one hand, it can be necessary that all given criteria are met. On the other
hand, the decision can be made if any of the given criteria is satisfied. These two
extremes can be satisfied by the usage of conjunctive (logical AND) or disjunctive
(logical OR) operators. The main goal of this work is the proposal of an aggrega-
tion operator which lies in between these two extremes. In contrast to the classical
weighted average, the introduced operator uses coefficients which are associated
with an ordered position rather than directly with a particular attribute.

Farah and Vanderpooten [2006, 2007] propose a multiple criteria framework for
IR which uses an aggregation mechanism which is based on decision rules identify-
ing positive and negative reasons for the rank determination of a document.

The approaches introduced above all have in common that they strongly rely
on query dependent criteria such as term frequency (tf) and document frequency
(df) and do not consider additional search criteria based on structured information
such as metadata. Additionally, these approaches do not incorporate users in stating
preferences to influence the determination of the ranking.

Belkin et al. [1995] showed that it is useful to combine several different rep-
resentations of a single information problem with respect to search result quality
and not just identify the best search representation. These representations can com-
prise evidence from different retrieval techniques, different document representa-
tion techniques, or even different IR systems. Belkin et al. emphasize that this
combination of different query representations is applicable for two scenarios. It
can be used to combine evidence from within the same system (also called query
combination) and from different systems (called data fusion). For the latter scenario
Belkin et al. point out that there are still open issues in combining evidence from
multiple systems due to the different applied computations of similarity scores. The
described successful experiments used adaptive weighting for the combination of
the different similarity scores based on a test dataset. Another major finding was
that documents that appear in most of the rankings (but were derived by different
representations) are more likely to be relevant. Additionally, Lee [1997] found that
although various retrieval techniques often return different irrelevant documents,
many of the retrieved relevant documents are the same.

A difficulty of the referenced rank aggregation methods is that users cannot eas-
ily comprehend the underlying aggregation methods and thus lack the ability to
interpret the search result ranking. As illustrated in Section 2.1 on page 11 a search
engine should provide users with transparency so that they understand why a partic-
ular response is returned. Thus, the aggregation of different ranking criteria should
be comprehensible to users. Moreover, the described approaches themselves choose
criteria to describe the users’ information needs without giving them the opportu-
nity to interact with the search engine. The case when users themselves want to
state their search criteria is not considered in these approaches.

The inclusion of multiple search criteria—both attributes of artifacts as well
as contextual factors describing an artifact—evolves the search mechanism from
single-criterion matching7 to multi-criteria matching which introduces several diffi-

7For instance, comparing the textual document contents with the query.

86 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

culties concerning the processing of this additional information and should (at least
partially) be represented in a search user interface.

These are:

• Determination of weights for the different search criteria. Depending on
the search situation different search criteria can be used. After the choice of
the appropriate search criteria, the weighting of the different criteria needs
to be determined i. e. which criteria are more important in the current search
situation than others. Considering the search for 3D-models of a part which
can be used in the current construction, users might put more weight on the
geometric similarity than on the recency of a file which is returned.

• Description of the dependencies between the search criteria. The different
available search criteria for a certain domain are not independent of each
other, but condition each other. For instance, the choice of the document type
usually determines certain document formats. The choice of a certain product
group unlocks the usage of different specific search criteria, e. g. the criterion
of the diameter for screws.

• Determination whether a search criterion acts as simple filter or influ-
ences the ranking. The utilization of a search criterion can serve two differ-
ent purposes. The selection of a value of a search criterion can simply filter
all artifacts which comply with this criterion according to the Boolean search
model. Additionally, selections on a search criterion can help to influence the
search result ranking in contrast to the previous approach. Artifacts adher-
ing to certain values of a search criterion can be elevated in the search result
ranking.

Different solutions to these problems are conceivable. One solution is the appli-
cation of methods of machine learning [Mitchell, 2008] to automatically determine
weights and dependencies between the available search criteria and the contextual
information. One big disadvantage of these approaches is the necessary learning set
to train the system before it can be applied. Due to the breadth of the researched
domain and the scope of the search engine, it is claimed in this thesis that no au-
tomatic definition of the weights can be achieved as the information needs in the
portrayed search scenarios are too diverse.

Alternatively, human experts could select appropriate search criteria and accord-
ing weights for different search situations. The obvious problem with this approach
is that it cannot easily be ensured, whether these relevance assessments are trans-
ferable to other users and how good their quality is.

Thus, the third possible solution consists of handing over the control to end users
of the search engine by letting them decide which contextual factors and search
criteria have to be considered for the evaluation of the query. The calculation of the
ranking is then based on the users’ choices. Users in enterprise environments can be
in different work contexts throughout a work day due to multiple projects they work
on. These multiple contexts complicate an automatic approach due to the frequent
task switches. This thesis advances the view that users themselves can be decisive

Section 3.6 – Summary of the Identified Requirements | 87

about the search criteria, if the user interface is intuitive for them and supports
them properly in the process of query formulation and search result analysis. The
search engine should strive for providing guidance through the search process, but
still offer users transparency and control. This advanced support is necessary due
to the higher cognitive efforts users have to undertake in searching. Although this
approach moves much of the complexity of query elaboration to the user, this more
technical approach to a search user interface was chosen since the end users in the
portrayed domain are technically knowledgeable.

3.6 Summary of the Identified Requirements

The previous sections identified several requirements for a search solution aiming
for the support of the provision of information for users in an enterprise environ-
ment. In this section they are summarized and serve as requirements for the search
framework introduced thereafter.

Main requirements for a search framework in an enterprise environment are:

• Support multiple information types. Information needs in an enterprise
setting circle around different artifact types which should be supported na-
tively in a comprehensive search solution. Thus, multiple query mechanisms
need to be supported to apply the according similarity measure for each ar-
tifact type. Example artifact types for the considered domain are documents,
projects, products and persons.

• Support the relations between artifact types. The different artifact types
are linked by relationships. The search engine should gather these links and
offer them as navigational options for users. Therewith, complex information
needs can be satisfied by traversing the relations between artifacts types.

• Support heterogeneous information spaces. The enterprise software land-
scape can be characterized by a variety of different systems that store infor-
mation which ranges from unstructured to structured data. The search engine
needs to access these systems to index the information. This helps to provide
a single point of entry for users which need to access information from these
systems.

• Support different granularities of search results. The granularity of infor-
mation needs varies in different situations. Therefore, a search engine should
support users in answering more specific as well as vague and more general
information needs. This can be achieved by offering different search result ag-
gregations. For instance, search user interfaces can help to understand search
results better by providing users with visualizations that aggregate the results
and serve as an overview.

• Support exploratory searches. Information needs which cannot be formu-
lated completely in the beginning of a search task necessitate mechanisms
which help users to refine their queries step-wise. The search engine should

88 | Chapter 3 – Searching in Complex Work Situations in an Enterprise Context

try to establish conversational-style searches where users can incrementally
refine and rephrase their queries. This can be supported by query previews
and techniques from the field of exploratory search. Furthermore, users need
support for creating complex queries which involve queries-by-example with a
customizable weighting of contextual information and other facets. Addition-
ally, users should be provided with support for saving search tasks due to the
fragmentation of search tasks to help them reassess past searches and to pick
them up later.

• Support query and search result visualizations. Several information needs
cannot be satisfied by providing users with a simple one-dimensional search
result list. More complex information needs might necessitate the provision of
data visualizations which help users to understand the data collection better
and to provide them with guidance through the query formulation process.

• Unified metaphor for query elaboration. The search engine should offer the
diverse query options in a unified way by introducing a metaphor helping users
to easily comprehend the query options which can be very different based on
the currently used artifact type. Examples are the search for text documents
vs. the search for similar geometric objects. The user interface should provide
a similar way to conduct a query and show the results.

• Federate several source systems. A successful search engine needs to feder-
ate several source systems to allow users to simply query one (search) system
and retrieve results from all connected systems.

• Similarity search. A search engine should support similarity searches for
different artifact types and provide users with a unified way to conduct these
queries. Similarity for an artifact type requires different features and thus
different algorithms. A query for a geometrically similar object is determined
different to the search for similar text objects.

• Provide support for different user groups. A search engine should distin-
guish different user groups (for instance standard and expert users) due to
different information seeking patterns. Furthermore, for a broad acceptance
of the search engine low entry barriers have to be ensured. Users should easily
be able to formulate their queries to satisfy their information needs. Never-
theless, more experienced users should be provided with more sophisticated
search tools to foster all available search options.

Part II

Retrieval Model for Complex Search
Situations

Chapter 4

LFRP–Search Framework

In this chapter, the generic LFRP-search framework is introduced and defined. The
framework supports users in coping with complex search situations as described in
Chapter 3 on page 69. The acronym LFRP represents the four constituent parts
of the framework: Multi-Layer Faceted Search with Ranking using Parallel Coordi-
nates.

The multi-layer functionality supports users in defining complex search queries
for information needs when coping with multiple artifact types. Users are given a
tool to switch artifact types based on interim search results of a related layer such as
switching from a set of products to documents which describe these products. The
search paradigm of faceted search supports users in stating queries incrementally by
refining them interactively with filter criteria. This search paradigm usually only
returns sets of search results based on the applied filtering. The LFRP-search frame-
work introduces user preference functions to influence the order of precedence of
search results—the so-called ranking. To give users the control over this retrieval
model, an intuitive user interface is introduced which applies the visualization tech-
nique of parallel coordinates as a tool for stating queries1.

These four pillars of the LFRP-search framework are defined generically in this
chapter, whereas the following chapter shows the realization of this framework. The
framework is built on the basis of different search paradigms and comprises aspects
of ranked retrieval, exploratory search, faceted navigation, dynamic queries and
target search.

Section 4.1 on the following page gives a brief overview of the user interface to
make the description of the generic framework more comprehensible to the reader.
Section 4.2 on page 94 defines the notion of artifacts with respect to the LFRP-search
framework. Section 4.3 on page 100 defines the fundamentals for the supported
query concept and details the different query and facet types. The introduction of
the layer concept allows the search on multiple artifact layers and enables the for-
mulation of complex search queries. Additionally, the LFRP-query model is defined
semi-formally in an SQL-like notation. Both the query options for single sub-queries
on one artifact layer as well as the combination of search criteria from multiple ar-
tifact layers are specified. This chapter closes with the introduction of the concept

1An initial sketch of the framework was introduced in [Eckstein and Henrich, 2008b].

92 | Chapter 4 – LFRP–Search Framework

of user preference functions which enable users to influence the search result ranking
by adding preferences for certain facet values. Section 4.4 on page 118 covers the
feature of dynamic facet provision which determines the facets which are currently
available depending on the users’ queries.

One main criterion during the conception of the framework was the generic ap-
proach to make the framework adaptable to different domains in order to support
users that face complex search situations. Before the deployment the generic frame-
work needs to be customized to specific environments by the definition of a facet
schema which will be detailed in Section 4.5 on page 121. The realization of the
framework is shown in Chapter 5 on page 127.

Although every search system can be characterized as interactive, the interactive
characteristic is especially highlighted for the LFRP-search framework. Interactiv-
ity in general can be described as an interrelationship between two entities which
exchange information2. In this publication interactivity is not simply covered by
having users provide search queries which are answered by the search engine with
a search result. Here, use cases are covered where users are communicating with
the search engine and vice versa. The retrieval model comprises different features
which help users to refine their search query. The framework tries to establish a
query elaboration dialog where users are guided through the data in the enterprise
by interactive features of the search engine3.

On the one hand the dialog relies on input from users giving a representation
of their information need and on the other hand the search engine helps users to
elaborate their queries. This is especially helpful for users when their information
need is still vague and they need to explore the data collection. The features of
the LFRP-search framework aim at giving users a tool set to describe their infor-
mation needs incrementally to the search engine. The search engine then returns
information tailored to the current situation of the users to help them focus on their
information needs. The provided user interface helps users to understand how the
search engine determined the current search results in the ranking, thus providing
both guidance and transparency for users.

In summary, the use of the characteristic of interactivity refers to the query re-
finement which is explicitly supported by the LFRP-search framework where users
are supported after each query step.

4.1 The LFRP–Approach to Query Statement

This section introduces the approach for stating complex faceted queries visually
on the basis of the LFRP-user interface. The intuitive search interface allows the

2Rafaeli [1988] defined the concept of interactivity as “an expression of the extent that in a given
series of communication exchanges, any third (or later) transmission (or message) is related to the
degree to which previous exchanges referred to even earlier transmissions”, i. e. the two parties
involved in the communication are relating their messages to each other.

3The metaphor of a dialog for the query elaboration process was borrowed from Daniel Tunke-
lang. http://thenoisychannel.com/2008/09/03/query-elaboration-as-a-dialogue/ (last ac-
cessed 08/01/2010)

Section 4.1 – The LFRP–Approach to Query Statement | 93

Figure 4.1: The LFRP–user interface.

interactive and incremental search query refinement which is a major requirement
for the support of exploratory searches. This introduction aims at providing a better
understanding of the formal description of the framework. Section 5 on page 127
will provide a more detailed look at the prototypical implementation.

The LFRP-search framework is a general approach to support knowledge work-
ers in retrieving information which is needed or helpful in the current task for the
current information need. An intuitive user interface supports knowledge workers
by providing an interactive and flexible search tool.

Figure 4.1 shows an example screenshot of the search user interface after several
facets have been chosen and selections on these facets have been applied. The
user interface is divided into three horizontal parts. The topmost part consists of
a ribbon component which enables users to apply additional facets to the parallel
coordinates plot. The list of available facets is adjusted after each query refinement
step. This dynamic facet provision feature relies on a company-specific artifact and
facet schema. Roughly spoken, this schema defines the inheritance hierarchy of the
artifacts together with the discriminative attributes (called discriminative facets in
this context). As soon as a value for a discriminative facet is selected the additional
facets of the corresponding subtype become available in the “Add facet” area. For
further information see Sections 4.4 on page 118 and 5.3 on page 134.

Additionally, the switching of the considered layers can be conducted (cf. Sec-
tion 5.3.4 on page 144) and general options for the user interface can be set.

The central part of the user interface consists of a parallel coordinates plot con-
sisting of a dynamic number of axes which represent the different facets. The multi-
dimensional faceted metadata is mapped to a two-dimensional area which can be
charted and comprehended easily. Each axis can be adjusted by a control panel

94 | Chapter 4 – LFRP–Search Framework

situated below the axis which enables swapping, removing and weighting of the
corresponding facet. Each chosen facet is drawn as a vertical axis with markers
for the currently visible facet values. For instance, the facet values of nominal and
ordinal facets can be sorted lexicographically or based on the facet value counts.
For metric values users can quickly see how the values for this facet are distributed
within the current search result set.

In addition, each artifact in the search result is plotted into the parallel coor-
dinates plot as a polyline. This polyline intersects all axes at the appropriate facet
values for the current record. The connecting polylines of two adjacent axes can be
used to determine relationships and correlations between facets and artifacts.

Users have the option to add facets to the parallel coordinates plot in order to
use them for further analysis of the search result. Moreover, they can use the axes
to specify a sub-query. By selecting specific facet values of an axis, users filter the
search result set to those artifacts that fulfill this constraint. The plot is adjusted
immediately to reflect the modified data in the reduced result set.

The lower part of the user interface simply shows the search results in a list
view which can be sorted and allows users to open the search results in a source
application or e. g. in a DM system. Additional information about the graphical
implementation of the user interface can be found in Section 5.3 on page 134 and
in [Eckstein and Henrich, 2009].

The LFRP-search framework comprises—in addition to the concept of faceted
search—content-based full text and QbE type queries. The latter takes an example
artifact, e. g. a document and retrieves similar documents according to artifact spe-
cific similarity measures (e. g. the vector space model for text documents [Salton
et al., 1975]). Additionally, users can search for similar projects in the company
based on requirements of their current project. These similarity facets are displayed
as a facet axis as well. The “Text query” in the leftmost axis in Figure 4.1 on the
preceding page gives a simple example for such a similarity facet. Similarity search-
ing returns a ranking of artifacts which is ordered according to a similarity score
or a distance of an artifact [Zezula et al., 2006]. This score is used to arrange the
markers on the axis. Users can simply understand that documents whose markers
are drawn higher on the axis are more similar to the given example object.

The statement of the query was harmonized by completely integrating the dif-
ferent search types in the parallel coordinates plot in which the query can be com-
posed. Users simply need to understand the notion of an axis in the plot referring
to a sub-query for their information need which they combine with other axes.

4.2 The Notion of Artifacts

4.2.1 Description of Artifacts

One of the main characteristics of the LFRP-search framework is the support for
search queries which cope with multiple artifact types. In the present publication an
artifact is defined as an information carrier or an information object, which can be

Section 4.2 – The Notion of Artifacts | 95

returned as a part of a search result in a search process4. Each information object is
assigned an entity type that describes the associated information of each considered
object.

The principle of polyrepresentation [Ingwersen, 1994] from the field of Informa-
tion Seeking and Retrieval suggests that the information need of a person should
be represented by a vast variety of influencing “features”. The same applies to the
artifacts in the index, i. e. their representation is not complete when only the ac-
tual contents are taken into account. Therefore, a search engine needs to combine
different aspects of an artifact. For example, a 3D similarity comparison should in-
clude information about geometry, topology, material properties, and metadata of
an artifact to be able to provide improved retrieval results.

In general, an artifact can contain a certain artifact content. Considering doc-
uments, the content can be—for instance—a textual or a geometrical description
of a product. Additionally, various metadata can be collected from different source
systems which provide other views on the artifact. If the artifact comprises tangi-
ble contents, the indexing framework might extract additional metadata about that
specific artifact or might identify related artifacts. These relationships are indexed
and can be used for information needs spanning multiple artifact types as well.

Furthermore, especially in enterprise environments there often exist different
management systems which can provide additional metadata about the managed
artifacts. PDM systems provide facilities to link documents which contain partial
product descriptions to product data. Although, the documents itself can contain
specific product properties such as the author of a document and the document
format, they might also be stored in the respective management system. DM systems
provide additional information about the release status, the document type, the access
rights and process information about artifacts. In such cases, rules need to be set
which define the valid information and thus should be used for indexing. A more
detailed description of the necessary indexing steps can be found in [Weber et al.,
2009].

The analysis of the contained information in the artifact content and the possi-
bilities to extract it, strongly depend on the structuredness of the data (structured
vs. un-structured content). Although the actual indexing and processing of the data
is out of scope of this publication, Section 2.6.1 on page 43 above briefly introduced
some approaches and frameworks supporting this kind of information access.

There exist two types of connections between the different artifact types. First,
the elements of one layer can be connected. In the product layer, is-part-of relations
can be established between products and their components. Second, the linkage
between the layers define the anchor points which enable the traversal between the
layers. For example, documents are linked to the project in which they were created.
The LFRP-search framework allows advancing from one layer to another through
those inter-layer connections. For example, a requirements document—found in
the document layer—is connected to a project from the project layer. Additionally,
different projects consist of subprojects where different links might be propagated.

4An alternative name for an information object is an entity, which depicts a unique, definable
object, which can be assigned information.

96 | Chapter 4 – LFRP–Search Framework

For each project the user can switch easily to the person layer and find people work-
ing in that project. In the LFRP-search framework a layer can be connected to each
other layer.

The available layers and connections are company-specific and have to be mod-
eled as artifact hierarchies before the search engine can be deployed. These hier-
archies are integrated into an artifact type schema by defining the intra-layer and
inter-layer relationships which will be introduced in Section 4.5 on page 121.

The enterprise search domain comprises a diverse variety of artifact types which
need to be considered for searches, i. e. the available information varies strongly.
Figure 4.2 on the next page shows an exemplary compilation of different artifact
types with a non-complete list of attributes in Unified Modeling Language (UML)
notation5 in an artifact type hierarchy. In this hierarchy, the five different main arti-
fact types document, product, project, material and person are distinguished. Each of
these artifact types is assigned a specific set of attributes which can later be used as
search criteria in search queries. For instance, a document can be characterized by
attributes such as its document type (documentType), creation date (creationDate),
version (version) and lifecycle state (lifecycleState) amongst others. In contrary, a
person can be defined by its first name (firstName), last name (lastName) and its
roles (role) in the company or project (designer, test engineer, purchaser, and oth-
ers). Artifacts in the hierarchy inherit all attributes which are defined in parent-
artifacts, i. e. all artifacts which are higher in the hierarchy and are described by an
is-a relationship. Therefore, each artifact inherits from the root type Artifact which
specifies that each artifact requires a unique identity (artifactId) and its path (arti-
factPath) where the artifact is managed (for instance, the document’s file path in a
plain file system or the logical path in a DM system or the PDM system. Further-
more, each artifact is assigned an artifact type which is shown in Figure 4.2 on the
facing page as “virtual” UML attribute which specifies the specialization relationship
of the artifacts on the top level of the hierarchy.

Furthermore, Figure 4.2 on the next page shows that artifacts of one specific
artifact type can also have different sets of describing attributes based on a dis-
criminative attribute as shown in the distinction of the project-based and product-
based documents. Project-based documents, such as project plans, possess an at-
tribute which relates the document to a certain project. Similarly, product-based
documents—in the product development domain also called product models [Pahl
et al., 2007]—are linked to the product. Another domain specific example is illus-
trated with the two example product groups Screws and O-rings [Eckstein et al.,
2009]. For instance, seals with a circular shape such as the shown O-rings can be
defined by their outer and inner diameter. On the other hand, screws are defined by
their length, their threading type and so on. This example shows that each product
group or more general each artifact type defines its own set of valid attributes in the
hierarchy.

The LFRP-search framework requires the prior definition of the artifact type hi-
erarchies for the domain where the framework is applied. This is necessary due to

5http://www.uml.org/ (last accessed 08/01/2010)

Section 4.2 – The Notion of Artifacts | 97

Artifact
+artifactId : String
+artifactPath : String

Document
+documentType : DocumentType
+documentCategory : DocumentCategory
+creationDate : Date
+modificationDate : Date
+version : Integer
+sourceTool : String
+fileFormat : FileFormat
+documentPath : String
+filename : String
+lifecycleState : LifecycleState
+author : Person

Product
+partNumber : String
+productName : String
+weight : Double
+productGranularity : ProductGranularity
+procurementKey : String
+lifecycleState : LifecycleState
+function : ProductFunction
+geometryDescription : Object

Project
+projectName : String
+projectNumber : String
+projectDescription : String
+startDate : Date
+endDate : Date

Person
+firstName : String
+lastName : String
+role : Role
+phoneNumber : String
+email : String
+address : String

Material
+materialName : String
+materialKey : String
+materialGroup : MaterialGroup
+density : Double
+...

ArtifactType

MaterialGroup Role DocumentType DocumentCategory FileFormat LifecycleState

ProductGranularity ProductFunction

project-based Document
+project : Project

product-based Document
+product : Product

Screw
+threadingType : ThreadingType
+nominalDiameter : Double
+screwLength : Double
+propertyClass : Double
+tensileStrength : Double

O-Ring
+outerDiameter : Double
+innerDiameter : Double
+thickness : Double

ThreadingType

ProductGroup

Figure 4.2: Example artifact type hierarchy from the product development domain
(Adapted and enhanced from [Eckstein et al., 2009]).

the generic nature of the framework which makes it adaptable to different domains
and environments.

As mentioned above, an artifact contains not only information about itself, but
about other artifacts as well. This implies that artifacts can be interrelated in any
way resulting in a network of various artifact relations. Such networks can be very
complex as shown exemplarily in Figure 4.3 for the domain of product development.
Projects are initiated in order to develop new products or to modify existing ones.
A product is either a part of another product or an assembly consisting of multiple
products. These products are usually described in documents which are created,
revised, or needed in a certain process phase which itself is linked to a certain
project. The projects are carried out by persons who have different roles in the
development process (e. g. designer, project manager, etc.) and who create and
modify the documents in various process phases.

98 | Chapter 4 – LFRP–Search Framework

Project

Document

Role

Product

Phase
revise

create

is-responsible-for

-developed-in

has
describesentry

exit

Person has

is-sub-project is-part-of

Figure 4.3: Relationships between different layers of artifact types (simplified schema).

The identified relationships hold valuable information about the artifacts and
thus should be provided to users in order to help them satisfy their complex infor-
mation needs. Tasks such as “Find all related documents for a product.” or “Find all
projects in which material Z of supplier XY was used for the developed product.” are
also manageable by the LFRP-search framework. This necessitates the extension of
the artifact descriptions with relationships that are administrated in the index. The
definition of possible relations between artifact types is also managed in the artifact
type hierarchy which enables their setting during indexing time. During query time,
the search component can utilize these relationships by utilizing the layer concept
to improve both the search functionalities and the quality of the search results (cf.
Section 4.3.3 on page 107).

4.2.2 Attributes and Feature Types

In order to make the manifold attributes of the different artifact types accessible
to a search engine, it is necessary to make a classification of the different feature
types beforehand. According to the understanding in the field of statistics, a feature
describes a measurable property of a unit of observation6 [Vogel, 2000]. In general,
a feature of an artifact can be classified based on different types. The classification
is usually based on the type of the feature and the number of possible characteristic
values [Bosch, 1999], i. e. the possible values of the feature that a certain object can
be assigned to.

According to Litz [2003] there are different approaches to categorize and sepa-
rate features. The author distinguishes between a content-wise and a formal cate-
gorization, whereas here, the formal criteria are the main focus.

6In the case of this publication a feature equals a property of an artifact.

Section 4.2 – The Notion of Artifacts | 99

On the formal level, the distinction can be made based on

• qualitative (nominal or ordinal) and quantitative (cardinal) variables,

• as well as discrete and continuous variables [Litz, 2003].

Considering the LFRP-search framework, this distinction is necessary on the one
hand with respect to available query options of the different attribute types which
will be introduced in Section 4.3 on the next page. On the other hand, the visual-
ization of the different facets in the parallel coordinates visualization depends on
the type of the variable (cf. Section 5.3.2 on page 136).

The following sections describe the formal categorization of the possible “lev-
els of measurement” (or scales of measure) which can be assigned to attributes:
nominal, ordinal, interval, and ratio measurement [Stevens, 1946].

Nominal Scale

Attributes with a nominal scale7 are a characteristic of qualitative variables. The
different, disjoint attribute values which can be assigned to an attribute are equal,
i. e. they are distinguishable from each other, but the distances of the differences
are neither measurable nor quantifiable. Therefore, no order of precedence of the
values is defined. Values of nominal attributes can be accumulated if an artifact sup-
ports multiple assignments of values [Vogel, 2000]. A specialization of the nominal
attribute is a dichotomous attribute for which only two different attribute values are
possible (e. g. the gender of a person which can only be male or female).

Examples for nominal attributes concerning artifacts of the type document can
be the document format and the author, whereas the latter supports accumulation
when a document was created by more than one person.

Ordinal Scale

Attributes with an ordinal scale are also representatives of qualitative attributes.
In addition to the characteristics of nominal attributes, the distinguishable, disjoint
attribute values can be put into a specific order of precedence. This can be done
by either a definition of a larger-smaller or a better-worse relation, but this does not
include a definition of the distances between the values [Vogel, 2000].

The attribute of the creation phase of a document is an example for an ordinal
attribute, if a sequential order of the process phases in the process is assumed. The
process phases can be put in a defined order, but no information about the distances
of the attribute values can be calculated or given.

Cardinal scale

Attributes with a cardinal scale belong to the category of quantitative attributes and
analogous to the ordinal scale have distinguishable, disjoint attribute values with a

7Additionally, in the literature the denotation categorical or discrete can be found.

100 | Chapter 4 – LFRP–Search Framework

defined order of precedence. Additionally, the distance between the attribute val-
ues is defined and measurable. Therewith, the comparability between the different
attribute values is possible [Vogel, 2000].

Based on the used scale, the cardinal scale can be specified further as interval
and ratio scale [von der Lippe, 1993].

Interval scale A scale where the zero value and the unit of measurement is assigned
arbitrarily to an attribute is called interval scale. Thus, only the distance cal-
culation between values is meaningful and not based on the zero point of the
scale. A classic example is the temperature in degree Centigrade. The distance
between the values of 10 ◦C and 15 ◦C is the same as between 30 ◦C and 35 ◦C,
i. e. 5 ◦C. The ratio between two attribute values cannot be computed (e. g.
20 ◦C are not twice as warm than 10 ◦C).

Ratio scale Ratio scale attributes are characterized by a non-arbitrary zero value.
Due to this characteristic, a calculation of ratios of attribute values is possible.
The age of two persons can be compared as a ratio and the statement that “A
20-year old person is twice as old as a 10-year old person.” is possible and
true.

Another classification which is orthogonal to the type of scale is the distinction
if the values are discrete or continuous [von der Lippe, 1993].

Discrete A variable is called discrete if it only can contain finitely many or denu-
merably infinite values in a closed interval [von der Lippe, 1993]. Examples
for discrete variables are the number of sub-components of an assembly or the
number of project members.

Continuous A variable is called continuous if the values from a closed interval can
take “uncountably infinite values” [von der Lippe, 1993]. The age of a person
can be seen as a continuous variable as it can be measured arbitrarily accurate.
However, continuous variables are sometimes acquired discrete due to reasons
of measuring accuracy [Pinnekamp and Siegmann, 2008].

After the introduction to the different categorizations of attributes, the query
model of the LFRP-search framework can be elaborated.

4.3 LFRP–Query Model

This section examines the query model of the LFRP-search framework. In addition to
the textual explanation of the query model a semi-formal description in an SQL-like
notation is given. This description serves two purposes. On the one hand, the query
model needs to be defined, so that the complete scope is accessible and understand-
able. On the other hand, this notation can be used for communication purposes to
expert users who might need a deeper understanding of the inner workings of the

Section 4.3 – LFRP–Query Model | 101

LFRP-search framework, e. g. when they are creating search templates for specific
information needs in certain process stages (cf. Section 5.3.5 on page 150).

The specification comprises a definition of the supported facet types and their
specific characteristics and query options.

Queries in the LFRP-search framework usually do not follow the classic Query-
Response Paradigm [White and Roth, 2008] where searchers formulate the complete
query before submitting it to the search engine. Instead the model supports an inter-
active query refinement which allows searchers to refine their queries incrementally
after assessing interim search results and being guided by the search engine. By fol-
lowing this approach, users are provided with an instrument to better specify their
information need by adding or removing search criteria than would be possible by a
plain text-based search solution. After each change of the search query, the users are
presented with an updated search result list, the visual display of these results in the
parallel coordinates and a current list of available (and applicable) search criteria
from which they can choose from. By that approach users never face an empty result
set after adding additional restricting search criteria. This information is determined
based on the artifact type hierarchies where the artifact types with their respective
facets are modeled (cf. Section 4.2 on page 94 and Section 4.5 on page 121). The
guidance of the search engine minimizes the occurrence of necessary backtracking
steps which might happen due to mislead search tasks.

Formally, a query in the LFRP-query model consists of an arbitrary number of
sub-queries. Each sub-query represents a facet selection on an axis in the parallel
coordinates. Due to the support of arbitrary filter criteria and different types of
similarity searches, each sub-query has to adhere to a certain query semantics.

An important goal during the conception of the LFRP-search framework was the
omission of lengthy query statements that users would have to type in to invoke a
search. Users should be able to compose and refine their query almost completely
visually by adding and removing facets and conducting selections.

In general, an SQL query has the form:

SELECT columns FROM sources

WHERE constraints

ORDER BY ranking criteria (4.1)

Sections 4.3.2 on page 104 and 4.3.3 on page 107 especially cover the SELECT-,
FROM- and the WHERE-clause of the statement. The order of the search results
using the ORDER BY-clause is handled in Section 4.3.4 on page 110 where the
user preference functions for facets are explained. In contrast to the simple sorting
options based on facet values in SQL, here, the order of the search results is based
on user preferences of different facet values. The explanations cover how the search
results could be derived employing SQL statements. The aggregation of the current
facet values and their facet value counts are sketched in Section 4.3.6 on page 118.

102 | Chapter 4 – LFRP–Search Framework

4.3.1 Facet Types

Basically, in the LFRP-search framework two different kinds of facets are distin-
guished: attribute facets and similarity facets. Attribute facets are describing aspects
of an artifact. These aspects usually can be determined during indexing time. The
facet values can either be extracted from the artifacts themselves or obtained from
the respective management systems. For instance, the information about authors
of documents can be extracted directly from the document when this metadata is
maintained. Alternatively, this information can be extracted from a DM system and
can be indexed if a system alike is used. The usage of attribute facets as filter criteria
is usually a binary decision whether an artifact is contained in the result set or not.

Another characteristic of attribute facets is the potential number of facet values
which can be assigned to a facet of a specific artifact. Single-valued facets allow only
one facet value assignment per artifact, whereas multi-valued facets allow multiple
facet values for one facet per artifact. An example for the former is the facet doc-
ument type. Since this value is unique, only one value is permitted. An example
for the latter case is the facet author of a document which might consist of multiple
persons which are responsible for the document. This distinction has an effect on
the available query options as will be detailed below.

Attribute facets can be either flat or hierarchical. Whereas the former only con-
sists of a single value, the latter contains hierarchical information which specifies
different kinds of granularity for this information. For instance, geographical in-
formation such as the regional provenance of a product or temporal information is
predestined for viewing and filtering at different levels of granularity. Figure 4.4 on
the facing page show an example of a hierarchical geographic facet hierarchy with
the four levels continent, country, state, and city. Artifacts are assigned to a leaf
node and thus define the hierarchical information. Another example are product
groups which often are organized hierarchically (screw → head screw → cylinder
head bolt). User selections in these hierarchies can be seen as drill down and roll up
operations known from DWH systems (cf. Section 5.4 on page 152).

In addition to directly determinable facet values which can be extracted from an
artifact, the values can be derived by pre-defined creation rules during the indexing
step. For instance, a creation rule can define calculations on metric values or can
combine different metadata fields (e. g. concatenating “firstname” + “lastname” to
a name field). Facets which are derived by applying a creation rule are called derived
facets.

Similarity facets are a special facet type where users are given the option to for-
mulate a query based on an example artifact. Similarity facets demand an example
object as input which then is transferred to a specific search module that determines
artifacts which are similar based on specific similarity measures. Similarity facets
are applied when conducting QbE queries. Taking the example of a QbE query for
text documents, users upload a text document to the similarity facet placeholder in
the user interface which is then used by the according text search module to deter-
mine similar documents. This QbE approach is elaborated further in Section 4.3.5
on page 116.

Section 4.3 – LFRP–Query Model | 103

Europe

Germany

Bavaria

Munich Bamberg

United Kindom

Saxony

Continent

Country

State

City

Figure 4.4: Example hierarchical facet with four different levels of granularity for geo-
graphical information.

The LFRP-query model supports users in giving preferences of facet values to
influence the search result ranking by stating user preference functions. Facets which
can be parameterized likewise are called ranking facets in the framework. A detailed
examination can be found in Section 4.3.4 on page 110.

The relationships between the different supported artifact types introduced in
Section 4.2 on page 94 have to be considered for the available facets of an artifact
type as well.

Facets which are derived by traversing to other layers are referred to as relation
facets. A relation facet of an artifact type A refers to a facet or to a derived facet of
an artifact type B but gives this attribute a new semantics. Taking the example of the
artifact type document which can be filtered by authors who created the document.
The facet name of a person artifact gets the semantic of creator for the document
artifact by the assignment of a relationship description (e. g. has created). Although,
that facet and its value are derived from another layer (in this case the person layer)
the facet belongs to the document layer and therefore is handled as a document
facet. The computation of the facet values still needs to take place on the related
artifact layer.

Scale-based Distinction

In addition to the distinction of attribute facets and similarity facets, each facet
is assigned a specific facet type which is based on the level of measurement that
represents the scale of the possible values of this facet according to the distinction in

104 | Chapter 4 – LFRP–Search Framework

Section 4.2.2 on page 98. In this publication the three facet types nominal, ordinal
and cardinal are distinguished. This distinction is necessary with respect to the
visualization of the respective axis as well as the expressiveness of the query which
will be elaborated below.

A nominal scale is applicable for facet values for which no order can be defined,
e. g. for the authors of a document. Facets with an ordinal scale can be ordered
according to a natural order, but no distance calculation is supported between the
facet values. An example for an ordinal facet is the process phase during which
a document was created. The process model defines a sequence of consecutive
process phases (simplified) which can serve as a way to order them. If the values
can be ordered and a distance between the facet values is defined a cardinal scale
type facet is given. An example for an attribute facet with a cardinal scale is the
degree of maturity of a product, which can be assigned values from 0% to 100%.
This value can be obtained during indexing time. Similarity facets which are derived
based on a similarity search as outlined above are cardinal scale facets as well, since
the returned RSVs are numerical values with a defined order of precedence.

4.3.2 Selections

As outlined above, one goal during the conception of the framework was the har-
monization of the query formulation for users by treating the visualization and the
query options for similarity searches and facet filtering similar. That way users face
a common metaphor for their query statement, as every facet type operates in a sim-
ilar fashion. In this section, queries are covered which only consist of sub-queries
referring to one specific artifact layer. Relationships to other layers are addressed in
Section 4.3.3 on page 107.

Users can combine multiple facets in their queries. Each facet for which a se-
lection is made by users is represented as a sub-query Qi addressing the respective
facet which is combined with the other sub-queries by a conjunction (logical AND).
This leads to the following SQL Statement (4.2):

SELECT ∗ FROM layer

WHERE Q1 AND Q2 AND . . . AND Qn (4.2)

Here, n equals the number of facets which are currently chosen and for which
user selections are made. Users are able to add facets to the query without conduct-
ing selections on them. These facets do not affect the query but support users in
understanding the data and getting better insights into the search results.

The support for the disjunction of the different facet selection conditions is in-
tentionally omitted as this combination operator would lead to larger result sets
instead of reducing the result set which would add additional complexity for the
users.

Each facet sub-query is specific for the facet type it is built upon. For ordinal or
nominal facets both single-valued and multi-valued selections are possible. Whereas
the first equals to the classical way found in most faceted search implementations,

Section 4.3 – LFRP–Query Model | 105

the latter incorporates different ways of combining the values. If single-valued facets
are assumed where only one value can be assigned to an artifact, the conjunction of
selected values would cause empty results. In that case, the disjunction is the only
way to combine several selected values for one facet. Considering a multi-valued
facet—e. g. the part function where a (mechanical) part or assembly implements sev-
eral functions—the conjunction is applicable and filters out documents describing
parts which do not comply with the requirements, i. e. all the required functions.
Another example is the facet author of a document. Documents can be created
by several authors which allows two different ways of querying for documents by
author selections. If users query for several authors which are combined by a con-
junction, only documents that were jointly created by these authors are returned.
Applying a disjunction for several authors weakens this criterion and returns docu-
ments where at least one of these persons is amongst the authors.

The distinction from above results in three different cases. In the following
statements, a sub-query Qi describes selections on the facet Fi with values vj.

For single-valued facets, the corresponding SQL-like expression for Qi utilizing
the disjunction can be formulated as in Statement (4.3).

Qi ≡ Fi IN (v1, v2, . . . , vn) (4.3)

The values of multi-valued facets are set-valued which usually would demand
that the according database tables are normalized. Instead, set-valued entries in the
database are assumed. Therefore, the query notation vj ∈ Fi is introduced which
demands that the facet value vj is included in the facet Fi. The corresponding SQL-
like expression for Qi can be formulated as in Statement (4.4).

Qi ≡ (v1 ∈ Fi) OR (v2 ∈ Fi) OR . . . OR (vn ∈ Fi) (4.4)

For multi-valued facets additionally the conjunction is possible for Qi according
to Statement (4.5).

Qi ≡ (v1 ∈ Fi) AND (v2 ∈ Fi) AND . . . AND (vn ∈ Fi) (4.5)

The two different applicable query semantics demand that users can switch be-
tween the two different approaches. The definition of this option can be found in
the facet schema where the multi-value characteristic as well as the default semantic
is set.

For cardinal scale facets single value selections are possible but rare. Multi-
valued selections can be realized by allowing users to choose an interval of the val-
ues they are particularly interested in. The second axis in Figure 4.10 on page 113
shows this approach where users want to restrict the search results to documents
whose degree of maturity lies between 60% and 100%.

More formal an interval query Qi could be written as in Statement (4.6).

Qi ≡Fi BETWEEN v1 AND v2 OR
Fi BETWEEN v3 AND v4 OR . . . OR
Fi BETWEEN vn AND vn+1 (4.6)

106 | Chapter 4 – LFRP–Search Framework

The query model supports the statement of multiple inclusive intervals per facet
to allow more complex query statements which can be done simply by adding a
second interval to the plot. A use case might be the comparison of certain products
from different price brackets.

When querying hierarchical facets, users can drill down into the hierarchy in
successive queries. For the formulation of the query statement it is assumed that
the hierarchical facet is stored in a compressed format containing the facet labels
for a facet of an artifact in a concatenated string representation. The facet labels for
each hierarchy level of a facet of an artifact are separated by a delimiter. A similar
approach was chosen by Ben-Yitzhak et al. [2008].

Below, an example for a geographic assignment is shown where all four different
levels are given. Here, a forward slash is used as delimiting character.

0: Europe/
1: Europe/Germany/
2: Europe/Germany/Bavaria/
3: Europe/Germany/Bavaria/Bamberg

The additional storage of the partial hierarchies has the advantage that an ag-
gregation for the faceted search is possible on every level of the hierarchy.

A sub-query for a hierarchical facet would comprise a prefix query, i. e querying
for a substring of the complete hierarchy of the facet. Formally, a sub-query would
be written according to Statement (4.7).

Qi ≡ Fi LIKE facetlabel% (4.7)

The percent sign acts as a wildcard which represents no or arbitrarily many
characters. The content of the facet label would be the concatenated part of the
hierarchy to the desired level8.

An example sub-query which selects all artifacts which are assigned to Bavaria
would be formulated as Statement (4.8).

Qi ≡ geography LIKE ’Europe/Germany/Bavaria/%’ (4.8)

A selection on a label retrieves all artifacts that have been assigned to this label.
Therefore, a selection on a label within a hierarchy is equivalent to the selection of
a disjunction of all the labels in the hierarchy level beneath, i. e. all Bavarian cities.

The combination of the above mentioned query selection options offers users a
toolset to formulate complex queries which can be stated interactively with the help
of the user interface described above. Users do not have to formulate the complete
query in the beginning, but can add new criteria after they assessed the interim
search results or remove criteria if the filtering was too restrictive. Referring to
the SQL Statement (4.2) that corresponds to changing one of the sub-queries Qi by
adding or removing facet value selections.

8Of course, the displayed facet label in the user interface is only the description of the current level
of granularity and does not have to be identical to the concatenated view which is only necessary
internally for the query computation and storage.

Section 4.3 – LFRP–Query Model | 107

Material Layer

Product Layer

Document Layer

Person Layer

Figure 4.5: Inter-layer and intra-layer relationships of artifact layers shown exemplarily for
the material, product, document, and person layer.

4.3.3 Multi–Layer Functionality

In addition to selections which concern only one artifact layer, the LFRP-query
framework natively supports comprehensive inter-layer selections between artifact
layers. The relations between the different artifact types are used for the switching
of the search result layer. Figure 4.5 exemplarily shows artifacts of the four lay-
ers: material, product, document, and person. There are relations between products
visible on the product layer (for instance, is-part-of relations between the different
parts and the overall product) as well as relations between layers (product is-made-
of material). Based on these relationships the following exemplary questions can be
answered by the LFRP-framework.

• Who created the results?

• Which products are described in these documents?

• Which sub-components are used in a product?

• Which materials were used in a product?

In principle, search queries in the LFRP-query framework can start on every sup-
ported artifact layer. Users can take advantage of the linkage between the artifacts
in two different use cases.

The first use case consists of the search for artifacts on one layer, where users
formulate their queries according to Section 4.3.2. It can be helpful, to add filter

108 | Chapter 4 – LFRP–Search Framework

criteria by means of facets from directly connected layers to further decrease the
search result set. When searching on the document layer it can be reasonable to fur-
ther filter the result documents by the product facet ProductName. As shown in Fig-
ure 4.5 on the previous page documents (in the product development domain) can
describe products, i. e. there exists a link between these two artifact types. This en-
ables the LFRP-framework to aggregate facets of directly connected artifacts based
on the current search result set from the current artifact layer and use this infor-
mation to filter search results. The search engine automatically generates a nested
query which takes the current artifacts from the search result—in the considered
case documents—and retrieves all products which are linked to these documents.
In the next step, the facet ProductName is determined for this set of products. So
users can apply the linkage between artifacts to define filter criteria9. The search
result which is displayed, still only contains documents which were filtered by facets
stemming from a different layer.

For this section, a layer is defined to contain all indexed artifacts ai,j of one
artifact type and is identified by layeri and is depicted schematically in Figure 4.6
on the facing page. Facets of layer i are referred to as Fi,j where j is used to
distinguish different facets of an artifact type. The mechanism of dynamic facet
provision ensures that selections on the facets which are offered to the users return
valid results (cf. Section 4.4 on page 118 for further details). For inter-layer queries
this means that only facets from a connected layer can be offered, when each artifact
from the current search result has the relationship to the other artifact type and is
defined by valid values. If this is not the case, users have to further restrict their
search. For instance, the relationship describesProduct which is available for certain
types of documents can only be harnessed when the set of documents is restricted
to product-describing documents, i. e. general documents like guidelines or norms
are not included in the user selection.

In general, an inter-layer query can be notated according to the following State-
ment (4.9).

SELECT Fi,j, Fi,j+1, Fk,l, . . . FROM layeri
JOIN layerk ON Fi,m = Fk,n WHERE
Qi,j AND Qi,j+1 AND Qk,l AND . . . (4.9)

The three exemplary facet sub-queries Qi,j correspond to the facets of different
artifact layers given in the SELECT clause. The first index i denotes the number of
the layer and the second index j is the number of the facet on layer i.

The use of the JOIN operator is valid here, as only facets from connected layers
are offered to users which are valid for all currently selected artifacts, i. e. each
artifact in the current artifact layer has a relationship to artifacts from another layer.

The constraint to only offer facets from other layers if each current artifact in the
search result has a defined relation to another layer is very restrictive. Thus, it is

9Obviously, depending on the cardinality of the relationships this can lead to single-valued or
multi-valued facets. However, multi-valued facets are common for direct facets as well and their
treatment was discussed in Section 4.3.2.

Section 4.3 – LFRP–Query Model | 109

a12

2layer

1layer

3layer

a13 a14

a11

a21 a22

a23 a24

a31

a33

a32

Figure 4.6: Schematic representation of the layer concept with three exemplary layers
containing intra-layer and inter-layer relationships connecting two layers.

SELECT D.DocumentType, D.DegreeOfMaturity, D.Author, P.ProductName
FROM document D JOIN product P ON D.DescribesProduct = P.ProductId
WHERE D.DocumentType = “Requirements Specification” AND
D.DegreeOfMaturity > 0.8 AND D.Author = “Smith”AND
P.ProductName = “Engine”

Figure 4.7: Example query for facet selections from multiple artifact layers.

conceivable that the search engine determines relation facets which are available for
the majority of the search results. Especially in situations where it is known, that
the data quality is not perfect, i. e. that certain information is not covered in the
search index, it is recommended to relax this constraint. Otherwise, many queries
with layer-relationships cannot be conducted. In situations like this, users must be
notified, that the resulting facets and artifacts from the related layers are based on
a subset of the current search result.

The example query in Figure 4.7 comprises the document facets document type,
degree of maturity and author and the product name facet from the product layer. The
query shows selections on both artifact layers. Additionally, the primary/foreign
key relationship DescribesProduct between the document and the product layer is
harnessed for the result determination.

110 | Chapter 4 – LFRP–Search Framework

The second use case covers the transition between layers of artifacts. It consists
of an initial query on one artifact layer whose search results serve as initial con-
straints for artifacts of a directly connected layer. Users select facets on which they
want to filter by carrying out selections on their current search results—similar to
the first use case. For certain information needs it can be useful to switch the artifact
layer based on the current search results. A practical example of this approach is a
search in the document layer where the users query the search engine with an ex-
ample query consisting of a similar document. Based on the returned search result
the users can do further filtering based on document facets. If they are satisfied by
the result set, they might want to see all related products which are described in the
documents from the result set. The LFRP-query framework now determines the con-
nected products according to the linkage which is stored in the index. In short, the
LFRP-framework takes the current result set on the original layer, navigates along
the specified relationships and builds the new result set from the destination objects
on the target layer. The users can apply additional selections on the result set and
can filter further. Additionally, it is possible to return to the initial selections on the
original layer to widen or narrow the selections which are applied to the destination
layer.

The initial query on the first layer is shown in Statement 4.10 and the chosen
sub-queries in Statement 4.11. The facet sub-queries Qi,j from layer i can be defined
according to the options discussed in Section 4.3.2 on page 104.

SELECT Fi,j, Fi,j+1, Fi,j+2 FROM layeri
WHERE Q (4.10)
Q ≡ Qi,1 AND Qi,2 AND . . . AND Qi,n (4.11)

The actual layer switch happens in the second step where the relationship de-
scribed by facet Fi,j+1 is used as a sub-selection as shown in Statement (4.12). The
two layers i and k are connected by a relationship defined by the facet Fi,j+1 from
layer i and by the facet Fk,l from layer k.

SELECT ∗ FROM layerk WHERE Fk,l IN
(SELECT Fi,j+1 FROM layeri WHERE Q) (4.12)

The example shown in Figure 4.8 on the facing page harnesses the relationship
between the document and the product layer called DescribesProduct. In terms of
relational databases the connection between the two layers would be represented by
a primary key/foreign key relationship. When further facet selections on layerk are
added, these can be easily added in the outer WHERE-clause in Statement (4.12).

4.3.4 Integration of Ranking Functionality

As mentioned above, users should have the possibility to influence the ranking by
giving preferences over certain search criteria they chose. Especially in database
research several approaches were evaluated to add ranking possibilities to database

Section 4.3 – LFRP–Query Model | 111

1st step: Filter on document layer:

SELECT D.DocumentType, D.DegreeOfMaturity, D.Author
FROM document D WHERE Q
Q ≡ D.DocumentType = “Requirements Specification” AND
D.DegreeOfMaturity > 0.8 AND D.Author = “Smith”

2nd step: Switch to product layer via the relationship DescribesProduct:

SELECT ∗ FROM product WHERE productId IN
(SELECT D.DescribesProduct FROM document D WHERE Q)

Figure 4.8: Example query statements for switching the artifact type.

queries. In the following, four different research approaches are introduced and
followed by the specification on the integrated ranking functionality in the LFRP-
search framework.

Database queries usually return a set of database tuples which can be sorted by
an additional criterion. The query itself usually restricts the search result by Boolean
expressions. Beck and Freitag [2008] propose an approach which adds ranking to
a search result set by assigning weight annotations to Boolean expressions in the
WHERE clause of an SQL statement. The weights are given by assigning single
numbers from a range such as 1 (“less important”) to 10 (“very important”) to a
selection criterion. This limitation is a huge advantage for users since they are ac-
customed to this kind of importance-based ranking. Moreover from a user interface
viewpoint, controls for applying these weightings are easily included by displaying
slider controls for instance.

For illustration purposes a complex weight annotated query F can be formulated
according to Statement (4.13).

F := (A1 ∧ (B8 ∨ C2)2)4 ∧ (D7 ∧ E8)3 (4.13)

A through E are five different search conditions which are combined by conjunc-
tions and disjunctions. The superscripts define the weights used for the ranking
of the result set. The ranking process is based on the truth values of the Boolean
conditions of the query. Thus, an expression tree for each result tuple is built. In
short, each level of the resulting expression tree is transformed into an element of a
rank vector for each tuple by aggregating the weights wi of all operands which are
true. The aggregation of the levels on the tree can be conducted by any monotonic
function. The authors apply the weighted average as aggregation function in their
publication. The final ranking of all tuples is determined by sorting all the rank
vectors lexicographically.

Figure 4.9 on the next page shows a sample expression tree for a tuple which
does not fulfill criteria A and B, but is true for criteria C, D, and E. The labels
of each node contain a pair (w, b), where w is the weight of the subformula and b

112 | Chapter 4 – LFRP–Search Framework

Tuple A B C D E Rank Vector
t1 t t f t f (1.000,0.771,0.305)
t2 t f t f f (0.571,0.571,0.076)
t3 f f t t t (0.429,0.810,0.076)
t4 f t t f t (0.429,0.610,0.381)

TABLE I
TRUTH VALUES AND RANK VECTORS

than his desire for anti-lock brakes (weight 3). For F1, a
corresponding simplistic SQL query using a weight annotated
WHERE clause looks as follows:
SELECT * FROM car
WHERE (4WD=1) [2] OR (ABS=1) [3]

In a more realistic scenario, the modeling of conditions
would be more complex than 4WD=1. As an example, a part
time four-wheel drive could be excluded, acceptable or even
preferred. In addition, technical details of an automobile are
typically distributed over several tables. For the sake of brevity,
we abstract from these details and stick to the shorter form.

To capture the intuitive meaning of weight annotations, we
define the semantics of a weighted disjunction Aw1

1 ∨ . . .∨Awn
n

or—similarly—conjunction by aggregating the weights wi of
all operands Ai that are true. Using the weighted average for
aggregation, we can rank a given table instance with respect
to expression F1:

Tupel 4WD ABS Rank
t1 true true 1.0
t2 false true 0.6
t3 true false 0.4
t4 false false 0.0

Note that t4 is not a member of the result set because it
does not satisfy the condition 4WD∨ABS. For aggregation,
any monotonic function can be adopted. We use the weighted
average as aggregation function for the remainder of the paper.

Things become more complex when considering arbitrarily
complex, weight annotated conditions. Instead of squeezing in
the formal details, we will give an example to illustrate the
idea. A complex weight annotated formula F2 := (A1 ∧ (B8 ∨
C2)2)4 ∨ (D7 ∨E8)3 is interpreted as a complex specification
of the desired features of a product. In this interpretation, F2
specifies a product made up of two “alternative” components,
namely F21 := A1 ∧ (B8 ∨C2)2 and F22 := D7 ∨ E8. Due to
the semantics of ∨, “alternative” means that at least one of
the subformulas must be true, i. e., a product represented by
a result tuple must contain at least one of the components
described by the subformulas. These components have the
weights 4 and 3 respectively, specifying that F21 (weight 4) is
preferred over F22 (weight 3). F21 itself is made up of two
obligatory (due to the semantics of ∧) components A and
B8∨C2. The remaining complex formulas can be decomposed
analogously. In essence, we identify the expression tree of a
complex formula with a corresponding component tree which
serves as a basis for the ranking process.

In table I, the truth values of four tuples t1 to t4 with respect
to the atomic Boolean expressions of F2 are presented. In

∨

∧(4,f)

A(1,f) ∨(2,t)

B(8,f) C(2,t)

∨(3,t)

D(7,t) E(8,t)

4
7

3
7

1
3

2
3

→

→

→

3
7

2
3 ·

4
7 +

15
15 ·

3
7

2
10 ·

2
3 ·

4
7

≈ (0.429,0.810,0.076)

Fig. 1. Sample Component/Expression Tree and Rank Vector of Tuple t3

addition, the resulting rank vector is given.
On the left side of figure 1, the expression tree for F2 is

shown. The nodes of the expression tree are labeled by a
pair (w,b) where w is the weight of this subformula and b
is a truth value determined as follows. For a tuple t � of the
result relation, the parameter b is true (t) if the corresponding
subformula is true for t �—otherwise b is false (f).

According to the example presented in figure 1, condition
B∨C with weight 2 is true for tuple t3 of table I. Note that
different tuples of the result relation can have different truth
values b for the particular conditions, as shown in table I, while
the weight w of an expression is fixed for all result tuples.

To compute a ranking for a complex formula, we extend the
approach presented for simple disjunctions/conjunctions. For
the first level of subcomponents, F21 and F22 in the running
example, we can directly apply the aggregation function as for
simple disjunctions. As illustrated in figure 1, this results in
a ranking value of 3

3+4 = 3
7 for tuple t3, since F21 is false for

t3 and F22 is true for t3. The next level of subformulas and
subcomponents, respectively, is treated analogously, yielding
l := 1

3 in the left subtree and r := 15
15 in the right subtree.

Additionally, l and r are now aggregated again according to
the weights of their parent formulas. This is illustrated in figure
1 by the edge labels of 4

7 for the left subtree and 3
7 for the

right subtree. The same procedure is applied to the third tree
level. In total, we get three ranking values, one for each tree
level, forming a vector that we call rank vector. In the example,
this leads to the vector (0.429,0.810,0.076). A rank vector of
the same structure (though with potentially different values)
is generated for every result tuple, as shown in table I.

Due to the hierarchical nature of the component model in
the intended application domains, we interpret these vectors
hierarchically. Therefore, we sort a result set using a lexico-
graphic order on the rank vectors (see table I).

III. OPERATOR CLASSIFY

The entire ranking process presented in section II is based
on knowledge about truth values of Boolean conditions. More
precisely, for every tuple of the result relation and for every
weight annotated (Boolean) expression at each level of the
component tree the truth value (true/false) must be available
for calculating the rank vectors needed for sorting the result
relation. To capture the evaluation scheme formally, we intro-
duce a relational algebra extended by a new operator classify.

Figure 4.9: Sample expression tree for a tuple with the truth values (false, false, true, true,
true) for the criteria A through E [Beck and Freitag, 2008].

is the truth value of this node, determined by the conjunction or disjunction of the
child nodes. The rank vector of the sample tuple from above is (0.429, 0.810, 0.076).
Additionally, the authors provide an adapted relational algebra and introduce a new
operator classify and provide insights into the implementation into an existing SQL
query engine and the necessary query optimizations.

A similar approach which tries to introduce an extended relational algebra and
necessary query optimization is presented in [Li et al., 2005] with the RankSQL ap-
proach. In particular, the authors aim at including the ranking functionality of top-k
queries as a database operator and not a solution which sits outside of the query
engine. The authors show how to integrate a ranking relationship as a property of
the data similar to the membership property used for boolean filtering.

Kießling and Köstler [2002] propose a different approach for ranking relational
database queries with Preference SQL which extends SQL by a preference model
based on strict partial orders (in contrast to [Beck and Freitag, 2008] where numer-
ical weights are used to indicate user preferences). In addition to standard SQL,
they include additional language constructs which act as an orthogonal extension
of standard SQL. Preferences are added using the PREFERING-clause which can
be parameterized by certain base preference types. The AROUND type allows to
favor numerical values close to a numerical target value. The LOWEST (HIGHEST)
preference type allows asking for the lowest (highest) value, if possible. Other-
wise, the closest value to the minimum or maximum is used. This preference type
can be paramterized by a single value or by an arithmetic expression over several
attributes. Finally, positive (POS) or negative (NEG) preferences can be given.

Additionally, different operators are available to combine several single prefer-
ences in a complex preference statement. It has to be distinguished between equal
importance of preferences or an order of preferences. The former is described by
the Pareto accumulation which follows the concept of Pareto efficiency. The latter
uses the CASCADE operator to define an order of preferences which are conducted
consecutively until a unique order is achieved. Both combination operators can be
used together. In addition to the definition of these operators, the authors give an
insight into the Preference SQL query optimization and provide benchmark results.

Section 4.3 – LFRP–Query Model | 113

Figure 4.10: Different selections based on user preference functions for nominal and car-
dinal facets defining interval selections and ranking conditions.

In [Lee, 1994], an overview of Extended Boolean retrieval is given which is an
extension of Boolean retrieval that allows weighting of boolean clauses for ranked
retrieval. The author introduces an n-ary soft boolean operator based on the P-Norm
model. The semantics of the Extended Boolean retrieval differ in contrast to the
approaches described above. The contents of the result sets from the approaches
above were not influenced by the weighting of the boolean criteria, thus they were
only used for sorting the boolean result. In contrast, the weighting approach of
Extended Boolean retrieval uses a fuzzy set model and therefore can exclude certain
search results due to their weights. Thus, a weight for a boolean clause being zero
leads to the omission of this clause which is a different view on truth values as in
classic boolean retrieval.

The LFRP-search framework supports ranking functionality based on facet se-
lections. As described above, users should easily be able to apply weights to their
queries. The framework supports users in augmenting their queries by the notion
of user preference functions which define a ranking of artifacts by facet values. Since
the framework does not automatically determine weights, the ranking mechanism
needs to be comprehensible for the users. The definition of weighting criteria is
completely optional for the users, but if desired, they have the possibility to “draw”
visual functions onto each axis in the parallel coordinates plot to prioritize artifacts
differently according to their facet values for a specific facet (cf. Section 5.3.2 on
page 135).

In general, this concept is applicable for the three introduced facet types (nom-
inal, ordinal, cardinal), but the available functions are different. For nominal and
ordinal facets only a discrete function as shown in the first axis in Figure 4.10 is
reasonable. Preferences on cardinal facets can be set by a continuous function as
seen in the three rightmost axes in Figure 4.10. Both types of functions allow users
to specify facet values which are more important for their current information need.

According to the initial query blueprint in Statement (4.1) the artifact ranking
is determined based on the ORDER BY clause. The order is conducted according

114 | Chapter 4 – LFRP–Search Framework

to the score of an artifact aj which is determined by computing a weighted average
according to Statement (4.14).

score(aj) =
n�

i=1

αi · fi(xi,j) with
n�

i=1

αi = 1 (4.14)

Here, αi is the weight for the facet i, which can be set for each facet by the users
to influence the weighting of the functions (the default is 1/n). By that means users
can define higher or lower emphasis for a single ranking criterion. fi(xi,j) ∈ [0, 1]
describes the user preference for the value xi,j of facet i for artifact aj as graphically
defined by the users.

The continuous function fi can be defined completely according to preferences of
the users in a visual way. But for easier comprehension the system introduces some
simple template functions which are often needed like the triangular and quadri-
lateral shapes found in the third and fourth axis in Figure 4.10 on the previous
page. These functions again are completely customizable and shown formally in
Figure 4.11 on the facing page. The upper limit of a function is called lu, whereas
the lower bound is called ll.

An example for a more complex user preference function concerns the document
degree of maturity. Users might want to rank more mature documents higher and
do not want to include documents where the corresponding value lies below 50%. If
they already know the released documents (i. e. documents that are 100% mature)
and want to rank documents higher which will be finished soon, the function in the
fourth axis in Figure 4.10 on the previous page can be helpful. This ranking func-
tionality enables users to simply apply ranking criteria to their searches to quickly
access the information they seek.

Rank Aggregation over several layers

In Section 4.3.3 on page 107 the multi-layer functionality of the LFRP-search frame-
work was introduced. If a multi-layer search is conducted by users which contains a
layer switch10, two different cases need to be distinguished. In the first case, users
only use the initial query to determine a set of artifacts from the initial layer. Since
there is no ranking in the initial search result no aggregation needs to be undertaken
for the results of the directly connected artifact layer to which user switched in the
second step.

In the second case where users utilized the ranking functionality of the LFRP-
search framework by employing user preference functions, this preference informa-
tion should be propagated to the target layer and incorporated in the calculation of
the target ranking. Depending on the relationship between the two concerned lay-
ers, multiple target artifacts can be referenced when the relationship between the
two layers is a one-to-many relationship. Additionally, an artifact from the target
layer can be referenced by multiple artifacts from the initial layer. For instance, a

10The second use case described in Section 4.3.3 on page 107.

Section 4.3 – LFRP–Query Model | 115

Constant function (catch all) for simple filtering without
influencing the ranking by the considered facet:

fi(x) =

�
1 for x ∈ [ll, lu]

0 otherwise

Example:

fi(x) =

�
1 for x ∈ [60, 100]

0 otherwise

Simple linear function with filtering:

fi(x) =

�
1− lu−x

lu−ll
for x ∈ [ll, lu]

0 otherwise

Example:

fi(x) =

�
1− 100−x

100−50 for x ∈ [50, 100]

0 otherwise

Complex linear function with filtering:

fi(x) =






lu−x
lu−ll

for x ∈]lt, lu]
1− lt−x

lt−ll
for x ∈ [ll, lt]

0 otherwise

Example:

fi(x) =






100−x
100−80 for x ∈]80, 100]
1− 80−x

100−50 for x ∈ [50, 80]

0 otherwise

Figure 4.11: Formal example functions for the definition of ranking criteria.

document can describe multiple parts and thus, the RSV from this document needs
to be propagated to all referenced parts. In consequence, multiple documents can
reference the same part. In this case, a certain semantic needs to be chosen to
combine the multiple RSVs.

Figure 4.12 on the following page shows an example where artifacts A and B
from the origin layer are related to multiple different artifacts A1 through A5 from
the target layer. In this example, the average semantic is chosen where the RSVs
from relating artifacts of the initial layer are evenly averaged for an initial RSV for

116 | Chapter 4 – LFRP–Search Framework

Initial Ranking
Rank Artifact RSV
 1 A 0.8
 2 B 0.6
 3 C 0.2

Initial Target Layer Ranking with
Average Semantic
Rank Artifact RSV
 1 A2 0.8
 2 A1 0.7 (0.8*0.5 + 0.6*0.5)
 A3 0.7 (0.8*0.5 + 0.6*0.5)
 3 A4 0.6
 A5 0.6

A

B

A1

A2

A3

A4

A5

C

Figure 4.12: Rank aggregation over multiple layers.

the artifacts of the target layer. In further refinements of the query these scores
can be altered by additional ranking criteria. The calculation is then performed as
described above. Alternatively, a maximum or a weighted average semantic can be
chosen, but for easier comprehension the LFRP-search framework uses the average
semantic.

This example also shows artifact C which does not have any related artifacts on
the target layer and thus is not included in the result calculations for that layer11.

4.3.5 Combination of Faceted Search and Similarity Search

The introduced ranking functionality allows a seamless integration of QbE and
keyword-based searches into the LFRP-search framework. Similarity queries return
a ranking of artifacts based on an example query object. Depending on the similar-
ity computation the ranking is either based on similarity values or distances [Zezula
et al., 2006]. The framework allows multiple similarity sub-queries Qi in a query as
illustrated in Statement (4.2).

In general, the query model of the LFRP-search framework maps its query op-
tions to subordinate query paradigms (such as filter conditions, QbE, or text retrieval
models like the vector space model[Salton et al., 1975]), takes the returned results
(which correspond to a partial ranking of the complete query), and makes them
available for further filtering and ranking by translating them to the concept of the
LFRP-query model. The process of query formulation is harmonized so that users
simply need to understand one metaphor on how to create queries and can transfer
this to different query paradigms.

11In this example the constraint that layer-switching is only available if all source artifacts have a
defined relation to the target layer is relaxed.

Section 4.3 – LFRP–Query Model | 117

The LFRP prototype is designed for product development processes in the en-
gineering domain which in addition to text retrieval also demands the retrieval of
CAD models (both 2D and 3D) based on geometrical and topological information.
For similarity queries on CAD documents see for instance [Bustos et al., 2005]. The
framework itself is extensible to various kinds of similarity searches. Examples for
other domains could be the search for a piece of music based on a sample recording.
Müller [2007] gives a thorough overview of the field of music IR. Another exem-
plary domain is the field of image retrieval in medical applications. One goal of this
domain is to automatically classify x-ray images for similar medical evidence or to
find other x-rays with similar diagnostic findings (refer to [Müller et al., 2004] for
an overview of this domain).

Similarity queries return a ranking of artifacts where each of the artifacts is as-
signed a score representing the degree of similarity to the query object. This score
acts as the facet value of the respective similarity facet. Its determination is executed
in sub-modules of the LFRP-search framework. The generic search framework relays
the users’ facet selections and the example objects to these sub-modules and maps
the returned results to the parallel coordinates visualization. The example query
object needs to be converted into a certain representation appropriate for the spe-
cific search sub-module (e. g. into a term vector for text searches). The module then
returns a partial ranking and determines the facet values for this similarity facet.

By default each similarity facet is assigned a linear function which normalizes
the scores of each similarity measure to the interval [0, 1], where a similarity score
closer to 1 means a higher similarity. This step is necessary to align scores of mul-
tiple similarity facets. Additionally, this normalization ensures the comparability of
distances. This function preserves the preference relation of the initial scores.

Users still have full control over the ranking functionality and can adjust the
default user preference function to their needs. Typical actions are the pruning of
the search results by changing the upper (lu) or lower boundary (ll). This can be
necessary to remove the least similar artifacts from the result ranking.

In certain situations it might be beneficial to remove the standard linear function
and assume a constant function to remove the preference on the similarity and only
use this facet for filtering. In a next step, users can parameterize other ranking facets
to apply special ranking semantics. Although possible, the case that users want to
invert the similarity ranking by flipping the user preference functions seems rare.

Since users can filter these results analogous to other types of facets, the usage
of these similarity searches is transparent to filter queries.

The description of the various similarity search approaches for the different arti-
fact types is out of scope of this publication.

In the case that users want to include multiple similarity facets in a search query,
the merging of the rankings is simply achieved by applying the weighted aver-
age from Statement (4.14). Users can decide how the different features should
be weighted relatively to each other.

118 | Chapter 4 – LFRP–Search Framework

4.3.6 Determination of Query Previews

The faceted search paradigm supports users in providing query previews which
show them how many search results are available for each displayed facet value
(as introduced in Section 2.3 on page 18). In general, a facet value count is the
number of artifacts that the search engine would return if users select a certain
facet value in addition to already conducted selections.

The following statement shows how the facet value count for a facet Fi with the
value vj is determined in an SQL-like notation. The facet sub-queries Q2 to Qn are
the selections made prior to the current facet value count calculation which have to
be considered.

SELECT COUNT (∗) FROM layeri
WHERE Fi = vj
AND Q2 AND . . . AND Qn (4.15)

Without any selection in the parallel coordinates plot, the sum of all facet value
counts of a single-valued facet is the number of all artifacts in the result set. For
multi-valued facets the sum is greater or equal than the number of all artifacts of
layeri, since multiple facet values can be assigned to one artifact.

4.4 Dynamic Facet Provision

As argued above, users need guidance through the query formulation process. One
aspect of this guidance consists of the provision of the available next query options
users can undertake to specify their queries more accurately. This is necessary for
two different reasons. First, users should not be provided with facets and facet val-
ues which would lead to an empty result set, if they would conduct selections on
them. Thus, the displayed facet values need to be valid for the current artifacts in
the result set. Second, the visual presentation of the facets demands the determi-
nation of “important” facets and their facet values due to screen space limitations.
Although possible, the display of all facets and their values can lead to a feeling of
being overwhelmed by the variety of query options for the users. This is especially
important in large domains where many different artifacts with different available
query options exist. The research with the faceted search engine Magnet showed
that the display of all available facets and their values can overwhelm users and
can lead to degraded user performance [Sinha and Karger, 2005]. Thus, it is not
purposeful to present users with all facets which are available in the search system.
The search engine needs to determine the more useful facets with respect to the
users’ information needs which are then displayed to them.

Koren et al. [2008] examine ways to generate “intelligent” faceted search inter-
faces by using explicit user ratings to automatically select facets and facet values.
The authors introduce a probabilistic framework to build faceted document models
and user relevance models maximizing the utility of the selected facets to each in-
dividual searcher. They propose several algorithms to determine facet-values which

Section 4.4 – Dynamic Facet Provision | 119

are presented to users during the different query refinement steps. The most fre-
quent algorithm simply aggregates all facet values of the current search result and
provides users with the facet values that occur most. The most probable approach
ranks facet values based on the probability that the artifacts assigned with those
facet values are relevant to the user. The determination of these probabilities can be
done by collaborative efforts (relevance judgments by the community of users) as
well as by personalization for each user. Mutual information is a common method
used in feature selection. Hereby, the pointwise mutual information between the
presence of a facet-value pair appearing in an artifact and the artifact’s relevance is
calculated. The most informative values are shown to the user for query refinement.

Additionally, the publication proposes different methods to build a starting search
page for users beginning their search task where initial sub-queries are already cho-
sen. The baseline is the null start state method where no preselection on facets is
conducted. The collaborative start state method automatically issues a query based
on the most likely facet values of the artifacts users are searching for. The authors
employ a hierarchical Bayesian model to infer initial facets for the users based on
other users’ choices. The personalized start state method resorts to a constant user
relevance model which assumes that documents which were relevant for previous
information needs are relevant to users now. The publication uses both the col-
laborative as well as the user-specific approach since it takes some time to learn a
detailed user model and the collaborative data is available earlier.

Dash et al. [2008] cover the facet selection problem from a different viewpoint
by trying to provide users with “surprising” aspects of the data collection. The main
goal is the discovery-driven analysis similar to work in OLAP exploration. They em-
ploy an “interestingness” measure which describes how surprising aggregated facet
values are based on a given expectation. In contrast to faceted search implementa-
tions found in e-commerce scenarios, the introduced faceted search system focuses
on discovery-driven analysis by displaying facets that deviate most from users’ ex-
pectations. The authors introduce several methods to set the expectation of a user
and found that the navigational method is particularly suitable in the context of
faceted search. This method sets the users’ expectations based on how they navi-
gate the search results by relating the facet counts of the current sub-query to the
distribution of the facet counts of the complete data collection.

The determination of the “interestingness” of a facet value with respect to the
query is done by calculating the probability that in a random sample of the size of
the current search result set there will be at least q documents with that facet value.
q is the number of artifacts in the search result assigned with the current facet
value. In statistical hypothesis testing, this probability is called P-norms and denotes
the probability of getting a result which at least is as extreme as a given data point
assuming that the null hypothesis is true. In the next step, an aggregation of facet
values of the different facets takes place to determine which facets are “surprising”
enough to be presented to users. The aggregation happens based on the k most
interesting values of a facet and is aggregated by different weighting schemes such
as a maximum weight, average weight and hybrid weight semantic.

Dakka et al. [2005] compare three different techniques on how to determine the

120 | Chapter 4 – LFRP–Search Framework

“best” facets which are shown the users. Their baseline is defined by a frequency-
based ranking. Facet values assigned to more search result artifacts are preferably
displayed. The set-cover ranking aims to maximize the number of distinct objects
that are accessible from the top ranked categories. This task is an instance of NP-
complete set-cover problem [Cormen, 2007]. By utilizing a greedy algorithm the
authors approximate this set-cover problem in time linear to the number of cate-
gories. The third introduced ranking approach called merit-based takes structural
properties of sub-hierarchies into account. In particular, this approach ranks cat-
egories higher that allow users to access their contents with the smallest average
cost.

The LFRP-search framework realizes the guidance for its users with its dynamic
facet provision feature. This feature takes care of providing users only with valid
facets that are currently available for the search results of the current query. Fur-
thermore, users are provided with facets which are useful with respect to the current
state of the query. After each refinement of the query, the framework determines the
facets which should be displayed to the users dynamically. For this requirement two
distinctions need to be made. On the one hand, the framework takes care of pro-
viding users with available facets for the current artifact type. On the other hand,
facets from directly connected artifacts are determined and provided to the users as
well.

As mentioned above in Section 4.3.3 on page 107, the LFRP-search framework
supports different connected artifact types which are beneficial for different infor-
mation needs in enterprise search scenarios. These artifact types are logically or-
ganized on different linked layers. In Section 4.2.1 on page 94 the artifact type
hierarchies were introduced. These play a major role for the dynamic facet provision
since they define the inheritance hierarchy of the artifacts and their specializations
along with the facets which are available for each level of specialization for an ar-
tifact. This hierarchy is represented by a schema defining dependencies between
artifacts and facets as described in Section 4.5 on the facing page. A dependency
between artifacts of a hierarchy is modeled by providing the parent artifact type
along with a facet-value pair and the respective target artifact type. Naturally, a de-
pendency can consist of different mappings based on the same facet, but different
facet values.

The list of available facets from which users can choose during a search task de-
pends on the previous facet selections. The search query is specialized by each new
facet selection which offers users more specific facets for their information need. For
instance, if they specify their search to products and restrict the commodity group
to o-ring seals, the facets inner radius and outer radius can be enabled. The update
of the currently enabled facets is done instantly after a facet selection of the users.

To achieve this specialization the search framework determines the hierarchy
path of each search result during query evaluation and tries to find the lowest com-
mon ancestor node in the hierarchy to determine the set of facets which are provided
to users as next possible steps. When this node is found in the hierarchy, the schema
provides the relations of this type for the current subtree as well as references to
other subtrees of the artifact hierarchy which can be used for layer switching. The

Section 4.5 – Schema of the LFRP–Search Framework | 121

specialization of artifact types is completely conducted with the help of the discrim-
inative facets.

A problem already introduced above concerns the situation where the artifact
descriptions in the search engine are not complete due to data quality problems.
The strict view would prevent certain choices of specializations if not all artifacts in
the current search result contain values for the discriminative facet under consider-
ation. If relations of a subset of the current search result are used for the further
specialization, users need to be notified, that the current search result was reduced
to the artifacts where the chosen relation was available.

A search task does not always have to start at the top of the hierarchy where
users would have to decide with which type of artifact they are starting their search
task. The LFRP-search framework can also start with a subtree of the hierarchy and
thus hide other partial trees from the hierarchy for simplification or more specific
search queries.

The relatively strict schema-approach for determining the available facets for
further refinement was chosen to support more predictable results for the facet pro-
vision during searching. The downside is of course the prior definition of these
dependencies in a schema as well as the necessary data curation. Furthermore, this
approach was chosen since the observed domains are very complex and many de-
pendencies exist between the different artifact types. Thus, the manual approach
promises better results than the automatisms which try to infer relations between
various artifacts. The approaches described in the beginning of this section have the
advantage of being mostly automatable but may return results which are inexplica-
ble to users.

The realization of this feature is described in Section 5.3 on page 134 from a
visual viewpoint.

4.5 Schema of the LFRP–Search Framework

The configuration of the LFRP-search framework is done by a schema, which de-
scribes aspects for the indexing as well as for the query modules. The schema is
an XML document specified by an XML Schema definition which is shown in Ap-
pendix B.1 on page 177.

The schema contains two main sections. The first section defines all facets which
exist in the portrayed domain or in the organizational context where the framework
is deployed.

The facet descriptions are general, re-usable definitions which can later be used
in several artifact definitions in the schema. The main purpose is to define a unique
identifier of the facet (attribute id), its type (attribute type) and its cardinality
(attribute multiIndexable)12. The unique identifier is later used to reference this
facet in the artifact descriptions. Since the framework was influenced from search

12This definition clarifies whether one facet value or multiple values can be assigned to an artifact.
An example for the latter is the facet author of a document. Multiple authors can create a document,
but for instance the creation date is unique and therefore not multi-valued.

122 | Chapter 4 – LFRP–Search Framework

situations in an enterprise setting, in addition to the scale-based distinctions for facet
types in Section 4.3.1 on page 103, the cardinal scale facets are detailed further.
They are distinguished between the following three additional types:

• FUNCTION INTERVAL This type is used for attribute facets which are of car-
dinal type such as inner or outer diameter of a product.

• TEXT QUERY This type is applied for textual queries where users can enter
keywords for a text-based search.

• QUERY BY EXAMPLE Since users should be able to conduct (similarity) queries
based on example objects, facets which support this kind of query are param-
eterized by this type. The LFRP-search framework supports different types
of similarity searches. The exact type is defined in the schema with the at-
tribute similarityType. The prototype itself supports the following similarity
searches:

– TEXT: In contrast to the aforementioned textual keyword queries, this
QbE query targets similarity searches of complete documents. This dis-
tinction is made, since complete documents may contain additional struc-
tured information which can be used in the query process.

– GEOMETRY 2D and GEOMETRY 3D: This type of QbE query determines
similarity based on the found example geometry for two-dimensional ob-
jects (e. g. technical drawings) and for three-dimensional objects such as
3D-CAD drawings.

– TOPOLOGY 2D and TOPOLOGY 3D: This type of similarity search fo-
cuses on the topology of the described objects (refer to [Fonseca and
Jorge, 2003] for further information).

Further details on the methods used to conduct similarity searches in the product
development domain is given for 3D objects for instance in [Bustos et al., 2005] and
for 2D objects in [Weber and Henrich, 2007].

For cardinal scale facets it can be defined whether the ranking functionality
from Section 4.3.4 on page 110 is enabled or disabled for users with the attribute
weightingEnabled.

Additionally, a facet can also be of type DATE which allows time-aware filtering.
The aspects of facets described above are necessary for the indexing and the

query handling in the LFRP-search framework. Additionally, the schema contains
information about the visual representation of each facet. As shown in Listing 4.1
on the next page each facet element in the schema contains a child element visual
which defines clear text names and an icon path for the visual representation in the
user interface. Additionally, it is defined whether a facet allows multi-valued selec-
tion and if so, which combination operator should be used (disjunction or conjunc-
tion).

As mentioned in Section 4.4 on page 118 it is not always reasonable to dis-
play all available facet values to the user due to screen space limitations and the

Section 4.5 – Schema of the LFRP–Search Framework | 123

added feeling of being overwhelmed. Each facet can be parameterized by multi-
ple comparators which are used in the result computation to determine how many
facet values are included for a facet and how they are sorted. The schema allows
the definition of a default comparator for each facet. Each comparator is defined by
its JAVA classname which is instantiated during the result computation and assigned
to each facet. If multiple comparators are instantiated, the user interface can allow
users to switch the sorting of the facets based on these comparators. Exemplary
comparators are:

• Numerical Comparator This comparator is mainly used for cardinal scale
facets and sorts values numerically.

• Facet Count Comparator This comparator sorts facet values bases on its car-
dinality of the set of artifacts assigned to this value.

• Alphanumerical Comparator This comparator is used for textual facets and
sorts the facet values alphanumerically.

The framework is not limited to these comparators, but allows easy extensibility
by offering a comparator interface for the development of custom comparators.

As outlined in Section 4.1 on page 92 each facet is visualized as an axis in a
parallel coordinates plot in the user interface. Although, the framework harmonizes
the query statement along different types of search criteria, some distinctions need
to be made. The child element visualizationtype defines the display of each facet
in the visualization due to the order of the displayed facet values, the integration
of distances between facet values and the application of user preference function.
Thus, the schema distinguishes the following visualization types:

• NOMINAL

• ORDINAL

• FUNCTION INTERVAL This type is used for cardinal scale facets and allows
the use of user preference functions.

• DATE This facet type allows users to conduct interval queries on temporal data
and support hierarchical queries where the facet values can be aggregated
along different temporal granularities (year, quarter, month, day, etc.).

Listing 4.1 shows an example facet which handles 3D-geometry similarity searches.

1 <f a c e t id=”3dGeometry ” type=”QUERY BY EXAMPLE” s i m i l a r i t y T y p e=”
GEOMETRY 3D” documentType=”CAD MODEL” mul t i Indexab le=” f a l s e ”
weightingEnabled=” t rue ”>

<v i s u a l name=”3D GEO−S i m i l a r i t y ” iconPath=” images/ f a c e t s /
qbe cad geometry . png” mult iValued=” t rue ” multiValueOp=”OR”>

3 <comparators>
<comparator d e f a u l t=” t rue ”

5 classname=” org . fo r f l ow . search . f a c e t . comparator .
NumericalComparator ” />

</ comparators>
7 <v i s u a l i z a t i o n t y p e s>

124 | Chapter 4 – LFRP–Search Framework

<v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
9 d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
11 </ v i s u a l>

<f a c e t>

Listing 4.1: Facet description for a 3D-geometry similarity facet.

In contrast Listing 4.2 describes an attribute facet for the type of a document.

<f a c e t id=” documenttype ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
2 <v i s u a l name=”Document Type ” mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
4 <comparator d e f a u l t=” t rue ” classname=” org . fo r f l ow . s o r t a b l e .

FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator ”

/>
6 </ comparators>

<v i s u a l i z a t i o n t y p e s>
8 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
10 </ v i s u a l>

</ f a c e t>

Listing 4.2: Facet description for a document type attribute facet.

The second section of the LFRP-schema covers the artifact type hierarchies where
the different artifacts are defined along with their facets, inheritance hierarchy and
dependencies to specialized artifacts of the same root artifact or to other artifacts.
These definitions are found in the entities element. Each entity is described by
a set of facet elements which reference the facet descriptions from above. Fur-
thermore, it is defined whether that facet is mandatory or optional by the required
attribute. This information is used during indexing to ensure data quality. As shown
in Listing 4.3 each artifact has at least three required facets artifactId, artifactPath
and artifactType.

1 <e n t i t y id=” a r t i f a c t ” name=” A r t i f a c t ” root=” t rue ”>
<f a c e t requ i red=” t rue ” id=” a r t i f a c t I d ” />

3 <f a c e t requ i red=” t rue ” id=” a r t i f a c t P a t h ” />
<f a c e t requ i red=” t rue ” id=” a r t i f a c t T y p e ” />

5 <f a c e t requ i red=” f a l s e ” id=” embeddedSystemPath ” />
<f a c e t requ i red=” f a l s e ” id=” a r t i f a c t H i e r a r c h y P a t h ” />

7 <f a c e t requ i red=” f a l s e ” id=” gu iDes c r i p t i on ” />
<dependency>

9 <from id=” a r t i f a c t T y p e ” />
<mapping>

11 <value>PRODUCT</ value>
<to>product</ to>

13 </mapping>
<mapping>

15 <value>DOCUMENT</ value>
<to>document</ to>

17 </mapping>
<mapping>

Section 4.5 – Schema of the LFRP–Search Framework | 125

19 <value>PERSON</ value>
<to>person</ to>

21 </mapping>
<mapping>

23 <value>MATERIAL</ value>
<to>mater i a l</ to>

25 </mapping>
<mapping>

27 <value>PROJECT</ value>
<to>p r o j e c t</ to>

29 </mapping>
</dependency>

31 <parent−e n t i t y id=” a r t i f a c t ” />
</ e n t i t y>

Listing 4.3: Entity description for the root artifact.

The dependency element defines a dependency of the currently described artifact
to a child artifact by providing the source facet, its value and the target artifact.
Listing 4.4 shows the person entity (which itself is inheriting from the artifact en-
tity) and its child entity employee. The dependency between these two artifacts
is modeled by the facet role. Persons for whom the role matches “Employee” are
specialized Employee artifacts.

<e n t i t y id=” person ” name=” Person ”>
2 <f a c e t requ i red=” t rue ” id=” r o l e ” />

<f a c e t requ i red=” f a l s e ” id=” surname ” />
4 <dependency>

<from id=” r o l e ” />
6 <mapping>

<value>Employee</ value>
8 <to>employee</ to>

</mapping>
10 </dependency>

<parent−e n t i t y id=” a r t i f a c t ” />
12 </ e n t i t y>

14 <e n t i t y id=” employee ” name=” Employee ”>
<f a c e t requ i red=” f a l s e ” id=” department ” />

16 <!−− r e l a t i o n s to o the r l a y e r s −−>
<r e l a t i o n f a c e t requ i red=” f a l s e ” id=” w o r k s i n p r o j e c t ” t o E n t i t y I d=”

p r o j e c t ” t o E n t i t y F a c e t I d=” project name ” />
18 <parent−e n t i t y id=” person ” />

</ e n t i t y>

Listing 4.4: Entity description for the person artifact and its child artifact employee.

A special type of facets are relation facets which describe relationships between
artifacts of different sub-hierarchies and are derived by traversing to other layers. A
relation facet of an artifact type A refers to a facet or to a derived facet of an artifact
type B but assigns this attribute a new semantic. In general, they are defined by
a source layer (e. g. documents), a set of combinable target attributes (i. e. facet
names) such as the surname or a combination of first and last name (”first name” +

126 | Chapter 4 – LFRP–Search Framework

”last name”) and an identifying relationship which defines the name of the relation
facet.

1 <r e l a t i o n f a c e t requ i red=” f a l s e ” id=” author ” t o E n t i t y I d=” person ”
t o E n t i t y F a c e t I d=” surname ” />

3 <r e l a t i o n f a c e t requ i red=” f a l s e ” id=” w o r k s i n p r o j e c t ” t o E n t i t y I d=”
p r o j e c t ” t o E n t i t y F a c e t I d=” project name ” />

Listing 4.5: Examples for definitions of relation facets.

The facet name of a person artifact gets the semantic of creator or creating per-
son or author for the document artifact by the assignment of a relationship descrip-
tion (e. g. has created). In the example shown in Listing 4.5, the surname of a person
artifact is assigned the semantic of being the author of a document. Although, that
facet is derived from another artifact (in this case from person artifacts) that facet
belongs to the set of document facets. Similarly, the name of a project is assigned to
a facet of a person which works in this project.

Appendix B.2 on page 181 shows a complete example of the schema file with
several entity types and according facets.

4.6 Related Work

Ross and Janevski [2005] present work on searching faceted databases and aim for
the definition of a general query language for hierarchically classified data, called
the entity algebra. The authors show that their query language possesses low data
complexity by having linear data complexity in terms of space and quadratic data
complexity in terms of time. Additionally, the authors introduce a query engine for
the domain of archeological databases. A query in their entity algebra takes entity
sets as input and produces an entity set as output. The query language is compared
to the relational algebra and maps its functionality excluding projections and cyclic
hypergraphs. Similar to the LFRP-query concept, the entity algebra resorts to a
pre-defined schema which defines the artifact hierarchies and the respective facets
which are available. Similarity searches as well as ranking functionality are not
considered in the entity algebra.

Clarkson et al. [2009] review various faceted search engines and tries to derive
generalized formal models to describe these systems and find possible extensions
to this query paradigm. One aspect the authors discuss are faceted data models
to represent the faceted information properly. They start by using the Entity Re-
lationship (ER) model and describe entities and their attributes / facets with and
without relationships to other entities. Additionally, they define formalisms to rep-
resent queries (containing flat or hierarchical data) for faceted search. The authors
introduce the notion of single- vs. multi-focus items which is slightly comparable
to the multi-layer functionality of the LFRP-search framework but focuses more on
relations between facets (in contrast to the relationships between artifacts which
are covered in this publication).

Chapter 5

Prototypical Realization of the
LFRP–Search Framework

This section covers various aspects of the implementation of the LFRP-search frame-
work which was formally described in Chapter 4 on page 91. First, in Section 5.1
the visualization type of parallel coordinates is introduced which is suited for the
display of multi-dimensional data. This is followed by the description of the archi-
tecture of the LFRP-search framework implementation in Section 5.2 on page 131. A
detailed characterization of the user interface and the usage of parallel coordinates
for the visualization of search queries and search results is given in Section 5.3 on
page 134. Finally, Section 5.4 on page 152 compares the LFRP approach for hand-
ling multi-dimensional data with concepts from DWH systems.

5.1 Parallel Coordinates

In Section 2.5 on page 33 the advantages of visualizations in search interfaces were
motivated and highlighted. Since the data found in the portrayed search scenarios
is multi-dimensional, appropriate forms of visualizations need to be found.

During his studies of multi-dimensional geometries, Alfred Inselberg noticed the
lack of appropriate visualizations and started to research how this kind of data can
be visualized with the concept of parallel coordinates [Inselberg, 1985; Inselberg
and Dimsdale, 1990]1.

The main idea of parallel coordinates is to project multiple dimensions of a data
set into the two-dimensional space by drawing each dimension as an axis of equal
height parallel to each other. Figure 5.1 on the following page shows an example
of a visualized tuple with five dimensions. Along the x-axis, n parallel axes xi (with
i = 1, . . . , n) are drawn with equal distance to each other. Each value of a tuple is
marked on a location on the according axis which indicates the value relative to the
other values of the attribute. The points of a tuple are then connected by a polyline.

1Alfred Inselberg is currently working at the Computer Science and Applied Mathematics Depart-
ment at the Tel Aviv University, Israel. On his website he provides additional information about
parallel coordinates (http://www.math.tau.ac.il/~aiisreal/ last accessed 08/01/2010).

128 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Figure 5.1: Visualization of a data tuple in parallel coordinates [Inselberg, 2005].

The lower and upper end of an axis represents the minimum and maximum value
of the available attributes for the current record set for sortable attributes. The plot
of the data in the two-dimensional space gives users a visual representation of the
relationships between different variables.

The parallel coordinates visualization helps users to easily understand relations
in the data by transforming multi-dimensional data into patterns which can be easi-
ly seen in the two-dimensional space. For instance, a set of points on a line in the
Cartesian coordinate system is represented as a set of lines in the two-dimensional
parallel coordinates which all intersect in one point. This linear relationship is de-
noted as line ↔ point duality. The study of these kind of dependencies help users
to make conclusions about relationships in multi-dimensional data [Inselberg and
Dimsdale, 1990].

Depending on the scale of the shown attribute, the distances between the at-
tribute values differ. Values of discrete attributes with a nominal or ordinal scale
are usually drawn on the axes with equal distances. Cardinal scale attributes typi-
cally are represented linearly on the axis, although a logarithmic display might be
applicable for certain kinds of attributes. The interval of the values of a cardinal
scale attribute is distributed onto the whole length of an axis. In situations where
attributes of the same type are analyzed such as temperatures at different times of
day as illustrated in Figure 5.2 on the next page the different scaling based on mini-
mum and maximum values for the current data set might hide relations between
the data. The right side of Figure 5.2 shows the parallel coordinates where each
axis is set to the same minimum value of 9.5 and it is immediately obvious that
the temperature for each tuple at 6:00am is the lowest which was not visible be-
fore. Thus, users should be given the option to explicitly enable the same scaling of
similar attribute types in the user interface.

Parallel coordinates cannot only be used for geometrical visualizations, but were
later transfered to the domain of exploratory data analysis for multi-dimensional
data [Wegman, 1990; Unwin et al., 2006]. For instance, Edsall [2003] used parallel

Section 5.1 – Parallel Coordinates | 129
R.M. Edsall / Computational Statistics & Data Analysis 43 (2003) 605–619 609

Fig. 2. Typical axis value designation hides temporal trends (left). Axis values that are consistent across
time axes reveal temporal features (e.g., most observations reach their minimum temperature at 6:00 a.m.:
right).

in this paper allow a user to assign a variable to any axis. Relationships among a
small number of variables would be di!cult to discern if those variables were distant
from one another on the representation. It is quite conceivable that two variables not
adjacent to each other in an initial ordering (no matter how well conceived) might
prove to have a surprising or unexpected association that, using the PCP, would be
discerned only when the variables are moved to adjacent axes. This can be overcome
by (a) selecting a variable for each axis from a drop-down menu—employed in the
Tcl/Tk version, or (b) physically click-dragging an axis and repositioning it between
two other axes of interest—employed in the ArcViewJ version.
The problem of line density in the PCP can be reduced dramatically by focusing

on particular observations of interest (Fig. 3a). Focusing the PCP removes the lines
of all other observations from the display to reduce the visual clutter and draws the
focused observations in yellow or any other highlight color. Using this feature, a re-
searcher may isolate observations that share a value or a range of values of a particular
variable. Questions that might be answered easily using PCP focusing include “are the
outliers of the barometric pressure variable also extreme values of other variables,
such as precipitation?” and “how similar are the traces of all of the observations at
this latitude?”
Another method of reducing the complexity of lines in the plot is through the ap-

plication of the EDA concept of brushing (Fig. 3b). Brushing consists of highlighting
a group of data observations by some method of selection; in a PCP, multiple line
segments may be selected simultaneously by click-dragging a box around the bundle.
Upon release of the mouse button, the observations passing through the box are high-
lighted. This can be a very e"ective method of drawing attention to the multivariate
(or multiple-time) signatures of a group of observations that share similar values of
one attribute (or one time).
Individual observations can be highlighted on the parallel coordinate plot by moving

the mouse over the line segment. This is a special case of brushing; on a PCP, this
recalls the image of a pick moving over strings of a guitar (the frets are the axes;
the strings are the observation lines), thus it could be called strumming (Fig. 3c).

Figure 5.2: Scaling problems with cardinal scale attributes [Edsall, 2003].2 Parallele Koordinaten

Abbildung 2.4 — Overplotting (nach [EJC05])
Werden zu viele Linien in einem PCP dargestellt,
wird die Darstellung sehr unübersichtlich.

hen, indem offensichtliche Gruppierungen in den Daten erkannt und dargestellt werden [EJC05].
Sollen die Zusammenhänge zweier Dimensionen untersucht werden, ist es günstig diese beiden
Achsen nebeneinander anzuordnen[EJC05]. Die Möglichkeit Achsen neu anordnen zu können ist
also für die Untersuchung der Daten ein weiteres wichtiges Instrument. Wenn einzelne Objekte
in Parallelen Koordinaten im Zeitverlauf betrachtet werden sollen, können auch Animationen
ein nützliches Hilfsmittel sein [EJC05].

Viele der genannten Ansätze erfordern komplexe Interaktions- und Darstellungsformen und er-
fordern längere Einarbeitungszeiten bzw. Erfahrung mit deren Umgang. Sie sind daher für die
Anwendung durch einen Experten geeignet. Werden Parallele Koordinaten zur Produktsuche
verwendet, muss die breite Masse der Shopbesucher damit umgehen können. Es darf keine lan-
ge Einarbeitungszeit vorausgesetzt werden, um das Tool bedienen zu können. Die meisten der
zuletzt genannten Aspekte sind daher für die Benutzung durch den Endanwender nicht geeignet
(vgl. dazu auch Abschnitt 2.3). Die Konzepte des focusings, brushings und strummings können
für die Produktsuche durch den Endanwender sinnvoll eingesetzt werden. Bei der Betrachtung
der verschiedenen Interaktionsmöglichkeiten in Kapitel 5 wird darauf zurückgegriffen.

2.3 Parallele Koordinaten für die Produktsuche

Für Produkte, die in einem Webshop angeboten werden, sind i.d.R. eine Vielzahl von Eigen-
schaften hinterlegt. Diese Eigenschaften können als n-dimensionales Tupel (mit n = Anzahl der
Eigenschaften) aufgefasst und in Parallelen Koordinaten dargestellt werden. Dabei sind einige
Besonderheiten sowohl in der Anwendung durch den Benutzer, als auch in den zugrundeliegen-
den Daten zu beachten. In den Abschnitten 2.3.1 und 2.3.2 werden diese Aspekte diskutiert. In
Abschnitt 2.3.3 werden schließlich die Vorteile herausgearbeitet, die Parallele Koordinaten bei
der Produktsuche bieten.

11

Figure 5.3: Overplotting in a parallel coordinates plot [Ericson et al., 2005].

coordinates to represent spatial and spatio-temporal data and linked it with other
visualization forms such as maps and scatterplots. Tory et al. [2005] used parallel
coordinates as a means for exploratory volume visualization in the field of medical
imaging.

With large data sets the static parallel coordinates visualization does not reveal
all contained information about the data set. Additionally, parallel coordinates can
get very cluttered when visualizing large data sets. Ericson et al. [2005] call this
effect overplotting which complicates the recognition of dependencies. Figure 5.3
gives an example of the effect of showing too many lines in the parallel coordinates.
To overcome this cluttered view and to reveal additional information about the
shown data several interactive features were introduced.

In general, it is necessary to provide users with the possibility to choose which
attributes should be added to the parallel coordinates. Furthermore, they should be

130 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework
610 R.M. Edsall / Computational Statistics & Data Analysis 43 (2003) 605–619

Fig. 3. (a) Focusing of PCP; (b) brushing of PCP; (c) strumming of PCP.

Strumming highlights the PCP trace across the whole plot, allowing users to identify
interesting relationships in individual observations between a pair of variables (for
example, an outlier with low surface humidity but signi!cant rainfall) or a series of
variables (such as a single observation that is higher than average “across the board”).
Additionally, because this strumming action occurs in real time, users may be able
to identify critical attribute values where signi!cant multivariate relationship changes
occur. For example, a meteorologist uses the thickness of the layer of atmosphere
between 1000 mb (approximately the surface of the earth) and 500 mb as a predictor
of either rain or snow: the rule-of-thumb is that snow (not rain) occurs in most cases
when that thickness is less than 5430 m. Strumming along the “thickness” variable axis
in a plot of a meteorological data set may reveal that point—5430 m—where there is
a binary switch on the “precipitation type” variable axis from rain to snow.
Visual and analytical cartographic research has been incorporated in the applications

of the PCP described here through customizing color and classi!cation. Observations
may be classi!ed, for example, according to one variable (in a choice of classi!ca-
tion schemes) and colored according to this classi!cation. In Fig. 2, the observations
are colored according to a classi!cation on temperatures at 12:00 a.m. This allows
the visualization of the consistency (or persistence) of observations across variables—
for example, do cold observations remain cold over the entire time period of inter-
est? Do observations that are low in median income also have low values in most
other socioeconomic indexes? Choice of classi!cation schemes are driven in part by a
knowledge of the variable’s distribution. One primary advantage of the PCP is that this

Figure 5.4: Interactions with parallel coordinates. (a) Focusing (b) Brushing (c) Strum-
ming [Edsall, 2003].

allowed to hide attributes from the parallel coordinates so that they can focus on
their task and are not distracted by too many axes. The parallel coordinates visual-
ization only shows dependencies between attributes which are drawn on adjacent
axes. By allowing users to switch axes they can easily change the order of the axes.
Thus, dependencies and trends which exist in the data set can be better observed by
users.

Edsall [2003] introduces several features which allow a deeper analysis of a
subset of records drawn in the visualization. Focusing helps users to select a value
or a range of the values of an attribute. Polylines of records which are not in-
cluded in these selections are removed from the view. By that an easy reduction
of a large dataset can be achieved. By brushing users are able to select a set of
polylines by a selection method. Various prototypes allow the selection of polylines
by click-dragging a box around the desired records. The chosen polylines then are
highlighted to support the analysis of multi-dimensional data. A specialization of
brushing is strumming where users can highlight a single record by hovering the
mouse pointer over the specific polyline. The name is chosen since this action re-
minds of strumming a string of a guitar where the frets equal the axes of the parallel
coordinates. A polyline is highlighted in real time along all axes of the parallel coor-
dinates. Figure 5.4 shows an example for each of these three interaction types from
Edsall [2003].

Section 5.2 – Architecture of the Framework | 131

!"#$%&'#()*+'"$,#$-.!"#$%&'#()*+'"$,#$-.

Documenttype
Extractor

Product data
Extractor

-Extractor

!"#$%&'#()*+'"$,#$-.

Facet
Index

Consistency
Check

...

QbE-IndexQbE-Index
QbE-Index

...

Facet
schema

Figure 5.5: Architecture of the LFRP-indexing framework.

5.2 Architecture of the Framework

The prototypical implementation of the LFRP-search framework can be divided in
two main parts which are necessary for the search engine. Figure 5.5 shows the
architecture of the LFRP-indexing framework. Its main purpose is to index data from
different source systems and to generate artifact descriptions. Due to data which
might exist in multiple source systems it is necessary to transform the data in a well-
defined format and remove redundancies. This transformation step is based on the
schema containing the artifact type hierarchies described in Section 4.5 on page 121.
Additionally, this step helps to correct different syntaxes and semantics and maps
the data onto a uniform data schema. Finally, the data is stored in appropriate
index structures which allow efficient retrieval during query time. The artifacts are
specified by different features which can be used for querying. Indexing in the LFRP-
search framework is not a singular process, but can be accomplished by two different
approaches. On the one hand, the indexing framework can be notified from source
systems when changes are made on artifacts which triggers the indexing. On the
other hand, a crawler can—also in addition to the notification approach—search
for new or changed information in the various source systems from the application
landscape. With respect to this publication, the details of the indexing framework
are out of scope. Further details about the indexing can be found in [Weber et al.,
2009].

Figure 5.6 on the following page shows the general structure of the LFRP-query
framework and illustrates the flow of a search query. As described in the sections
above, the query elaboration process with the LFRP-search framework is of an inter-
active nature, i. e. users do not formulate the complete query in one step, but refine
their queries in several steps being supported by the search engine.

After each change the query is handed over to the query framework. The central
module is the Search Handler, whose main task is the control and delegation of the
sub-tasks necessary for the evaluation of the query. Each sub-query is forwarded
to the responsible search module. For instance, the faceting module is used for
the determination of the query previews of simple attribute facets. For similarity
facets specialized modules are employed which conduct the similarity computation.

132 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Search Handler

Query

Facet
Index

...

QbE-IndexQbE-Index
QbE-Index

Permission
manager

...

Facet
selection

Suchmodul
SuchmodulSuchmodulSearch

module

Facet
schema

Ranking
module

Query Framework

Figure 5.6: Architecture of the LFRP-query framework.

For instance, a module can determine the 3D-geometry similarity or conduct a full
text search for textual contents. Each of these modules return a ranking which is
necessary for the axis visualization in the parallel coordinates.

The ranking module computes the overall artifact ranking based on the different
single rankings of the sub-queries and their according preference functions. Based
on the current query and the artifact type hierarchies (including the facet descrip-
tions), the facet selection module determines the list of currently available and el-
igible facets. Finally, the permission manager ensures that users only are returned
artifacts in the ranking for which they have the necessary permissions.

The prototype itself was developed for the Java Platform2 due to its interoper-
ability and availability for cross-platform environments. The implementation of the
framework is based on the client-server model.

The framework uses the Spring Framework3 for the front and the back end to al-
low simple extensibility of the framework. By declaratively adding additional index
storages, indexing components and search modules in the XML configuration sup-
ported by Spring, the implementation can be enhanced to support different domains
and use cases.

Currently the back end of the framework resorts to two different index struc-
tures. Textual contents and attribute facet information are stored in an instance
of the Apache Solr enterprise search platform4. Apache Solr is based on the open
source library Apache Lucene which mainly focuses on full-text search. Solr is built
on top of Lucene and provides a full text search server with enterprise features
such as scalability, distributed search and index replication. Additionally, it supports
built-in faceted search, clustering, database integration and hit highlighting. This
solution was chosen as the base for the LFRP-search back end due to its stability,

2http://www.oracle.com/us/technologies/java/index.html (last accessed 08/01/2010)
3The Spring framework is a layered open source application framework for the Java/J2EE plat-

form. Its primary goal is to simplify enterprise software development by providing a lightweight
inversion of control container, an aspect-oriented programming framework, a data access frame-
work and a Model-View-Controller (MVC) framework amongst others. More information about the
framework can be found at http://www.springsource.org/about (last accessed 08/01/2010).

4http://lucene.apache.org/solr/ (last accessed 08/01/2010)

Section 5.3 – Architecture of the Framework | 133

functionality, and open source availability. The latter easily allowed the addition or
modification of aspects of the framework which were needed for LFRP functional-
ity5.

Internally, the Lucene library uses an inverted index for the storage of the tex-
tual features which is suitable performance-wise for the determination of textual
similarity as well as the faceted search computations6.

The relation information between different artifacts and the artifact features for
geometry and topology information are stored in an object-oriented database. The
decision for this type of index structure was chosen due to its simplicity for the
implementation and not performance-wise since this aspect was not the primary
focus of the prototypical implementation.

The LFRP-search framework abstracts from the used index structures and offers
a higher-level API to access both the indexing as well as the query functionality.

Currently, the communication between front end and back end is based on the
HTTP invoker mechanism7 from the Spring framework, but could easily be config-
ured to use other technologies such as Web Services (with Java API for XML-based
RPC (JAX-RPC) or Java API for XML-Web Services (JAX-WS), Remote Method Invo-
cation (RMI), and Java Message Service (JMS).

The used approach depends on standard Java serialization. After each query
refinement step, the changed search query is sent to the back end where the query
framework determines the search results. The following information is sent to the
user interface:

• The search result list with result previews for each artifact such as textual
snippets or preview thumbnails for images.

• For each search result artifact the respective facet values of the chosen facets
are included for the polylines in the parallel coordinates visualization.

• The currently chosen facets including the query previews for the current search
results.

• The list of available facets from which users can choose in the next query
refinement step. These facets are constrained by the artifact type hierarchies.
Additionally, the relationships of the search results to related artifact layers
are evaluated and when available provided to the user for multi-layer queries.

5Although Section 4.3 on page 100 introduced and explained the LFRP-query model with SQL
statements, the current implementation in the back end prototype resorts to built-in functionality
provided by Apache Solr to evaluate queries.

6Alternatively, the back end could have been realized with relational databases. There exist
several approaches which combine the relational model with keyword based search, for instance
[Agrawal et al., 2002], [Hristidis et al., 2003], and [Liu et al., 2006].

7For documentation refer to http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/remoting.html#remoting-httpinvoker (last accessed
08/01/2010) and for the API to http://static.springsource.org/spring/docs/3.0.x/
javadoc-api/org/springframework/remoting/httpinvoker/package-summary.html (last
accessed 08/01/2010).

134 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

5.3 Description of the User Interface

Hearst [2009] defines the function of a search user interface “to aid users in the
expression of their information needs, in the formulation of their queries, in the
understanding of their search results, and in keeping track of the progress of their
information seeking efforts”. In Section 4.1, the search user interface of the LFRP-
search framework was introduced shortly. In this section several important aspects
and funtions of it are highlighted and elaborated.

The introduced LFRP-search framework heavily relies on visualization techniques
to support users in understanding the search results better. Due to the graphic na-
ture of the visualization and the requirement to give users instant guidance after
each query refinement step, the decision was made that the user interface prototype
is realized in Java Swing8 and is deployed via Java Web Start9. Java Swing provides
an API for building graphical user interface for desktop applications. Although, the
development of modern Web browsers is heavily focused on improving performance
to provide “desktop application experience” for web applications, the choice of the
Swing framework was chosen due its maturity and stability.

The user interface is divided into three main areas which are described subse-
quently. The partition of the user interface was chosen to prevent users from having
to scroll down to see the search results which is recommended for better usability
of search user interfaces [Hearst, 2009].

5.3.1 Controlling the User Interface

The top section of the user interface contains a ribbon component also known from
current Microsoft Office10 applications. The use of ribbons for controlling the user
interface supports users in finding the options necessary for completing search tasks
efficiently without having to refer to program documentation or help sections. Rib-
bons allow the placement of many different actions in a space-saving way by pro-
viding user with different tabs which can be populated with various different ele-
ments11.

As shown in Figure 5.7 on the facing page, the ribbon contains three different
tabs. The Facets tab is the primarily used tab and provides users with the possibility
to add search criteria to the current query. The in-ribbon gallery in the Add facet
ribbon group contains a set of currently available and valid facets from which uses
can choose. The graphical representation of the facet in form of an icon can be set in
LFRP-schema. The set of valid facets comprises attribute facets as well as similarity

8http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/uiswing/ (last ac-
cessed 08/01/2010)

9http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html (last ac-
cessed 08/01/2010)

10http://office.microsoft.com/en-us/ (last accessed 08/01/2010)
11Refer to http://msdn.microsoft.com/en-au/library/cc872782.aspx (last accessed

08/01/2010) for a detailed description of the ribbon user interface concept provided by the
Microsoft Developer Network.

Section 5.3 – Description of the User Interface | 135

!"#

In-Ribbon gallery Ribbon group

$%&'

Figure 5.7: Ribbon component which is used for controlling the user interface.

facets. By adding an attribute facet to the parallel coordinates plot, the facet values
and their respective facet counts are computed in the back end of the framework
and are instantly visualized as an axis. When a similarity facet is added to the plot,
initially, an empty placeholder axis is added to the parallel coordinates which offers
the users the possibility to specify the search criterion for this facet. This search
criterion can consist of a keyword query or an example file for QbE queries. In the
former case, users are provided with an input field below the respective axis where
they can enter their keywords. In the current prototype, the keyword search is
applied to all textual contents including document contents and textual attributes.
In the latter case, users are provided with the possibility to upload a file to the
search engine back end which then computes the search results. Another approach
to begin a similarity search is the invocation based on a search result artifact. For
instance, users could choose the similarity facet by accessing a context-menu from
the search result list which offers the applicable similarity methods.

The elements of the in-ribbon gallery are sorted based on artifact types. This
functionality is necessary for facets which are referencing a related artifact layer
and is detailed in Section 5.3.4 on page 144. Users simply select the desired search
criterion and the appropriate facet is immediately added to the parallel coordinates.
The ribbon band Switch artifact types is adjusted after each query refinement step
and contains facets which initiate a layer switch (cf. Section 5.3.4 on page 144).
Additionally, users can reset their search and remove all facets and facet selections
to start a new query.

5.3.2 Parallel Coordinates for Search Query Formulation

The central part of the user interface is the parallel coordinates visualization which
is responsible for two different tasks. One the one hand, it provides a visualiza-
tion of the query and allows users to refine the query by conducting (additional)
selections visually. On the other hand, the search results are visualized to help users
understanding the search results better and to identify relations which exist between
the different facets and between the artifacts. This is achieved by visualizing each
search result as a polyline representing the facet values of this artifact in the parallel
coordinates.

136 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Figure 5.8: The search user interface of the LFRP-search framework with an exemplary
search request.

Each chosen facet is added to the parallel coordinates and represented as an axis
with marker points representing the different available facet values. As shown in
Figure 5.8 each axis is labeled with its name. Below each axis users find a control
panel which allows them to apply different actions concerning the axis.

Visualization of the Different Facet Types

In Section 4.3 on page 100 the different supported facet types were introduced along
with the available query options. One of the primary goals of the LFRP-search frame-
work is the harmonization of the query statement across different search paradigms
such as text, geometry and topology similarity as well as faceted filtering. Thus,
each sub-query—independent of the applied query paradigm—is visualized as an
axis in the parallel coordinates. The presentation of the different axes based on the
distinction of the scale of a facet differs slightly to be able to express all potentials
offered by the specific facet type.

A scale is composed of an axis of fixed height. Based on that height, the facet
value distribution for the facet on the axis has to be calculated so that on the one
hand all available facet values can be displayed and on the other hand the distances

Section 5.3 – Description of the User Interface | 137

between the values carry a meaning. For example, if a cardinal scale is assumed the
values could be arranged proportionally, whereas with a nominal scale a constant
distance between values is more appropriate.

In the following, the possibilities are described how to represent the different
facet types visually.

Facets with a nominal scale are characterized by facet values which cannot be
put into an ordered sequence, e. g. the facet project addressing the project where a
document was created. This fact raises a few questions. Though, no natural order
exists, the facets still have to be aligned in an intuitive way for the user in the user
interface. As each facet value “carries” a facet count which describes the number
of artifacts which belong to that value, a frequency-based approach can be used
which sorts the facet values decreasingly based on the facet counts. Alternatively,
a lexicographic order is imaginable. Of course, other heuristics are imaginable for
the sorting of the facet values. For example, the system can record the choices of
the users and then order the facet values according to the most often chosen values.
Since this approach relies on previous user selections, the system needs a certain
amount of training data until it can work reliably.

In contrary to the just described facet type, ordinal scale facets include a natural
order of the facet values. But still, the visualization of the distances between the
facet values cannot be expressed by the facet value names as they do not carry a
distance semantic. Thus, the facet values are displayed with equal distance on each
axis.

For both types, each displayed facet value is marked on the axis and is described
by a label containing its value and the number of artifacts in the search result which
are assigned this value. Another visual aid for the users is the size of the facet value
markers drawn in each axis. They vary in size proportional to the facet counts, so
that users easily can understand for which facet values more search result artifacts
are available based on the current selections. This is especially helpful in situations
where the facet labels are not sorted based on the facet counts, but lexicographically
for instance.

The configuration of the available visualizations and sorting of the facet values
for these facets is done in the schema as introduced in Section 4.5 on page 121.
If multiple comparators are given, users can easily switch the sorting on demand.
Thus, users are given various options how the facets can be sorted and displayed in
the user interface. Nevertheless, an approach which results in a known order, such
as a frequency-based approach should be chosen by default, since various studies
indicate that users prefer the predictability of a known order of the facet values
(e. g. [Pratt et al., 1999]).

Both the nominal and the ordinal scale visualizations can suffer from too many
facet labels which need to be displayed on one axis. In the worst case the axis label-
ing is so crammed that users cannot read the labels anymore. Here several solutions
are imaginable. For instance, only the most probable ones (e. g. based on the inter-
estingness measure of [Dash et al., 2008]) or the ones with the highest facet count
could be displayed initially. The user interface should provide an option to include
the facet values with lower counts using a dialog window. Those low occurrence

138 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

facet values could also be abstracted to an “Other” category. Alternatively, an ag-
gregation can be made which clusters the entries lexicographically (e. g. A–E; F–R;
S–Z). An important requirement for the realization of the search interface is that
the entries in the axes are not visually moving too much. If the user restricts facets,
the order and amount of the facet values can change, which might lead to a “flut-
tering” of the entries where the position of the facet labels change when additional
selections are conducted.

These two facet types support single-value and multi-value selections. Selections
are simply conducted by mouse-clicking the marker on the axis or the describing
label. The refined query is then evaluated and the visualization is getting updated.
For selections of multiple facet values, the user can initially select multiple values
by holding the CTRL key and clicking the desired values similar to selections in file
managers.

After the selection all unselected facet values are usually hidden to help users
focus on their selections. In situations where users want to broaden their search
by selecting additional facet values for a facet, the display behavior of multi-valued
facets can be changed. For multi-valued facets users can decide whether the uns-
elected facet values should be displayed in the parallel coordinates plot or not in
the Settings tab. If unselected values are displayed users might be provided with
additional insight about the values in the facet. An alternative realization of this
requirement is the provision of a filter dialog which can be invoked from the control
panel below each facet axis to add additional values.

For multi-valued facets which are enabled for multi-selections in the schema,
users should be able to define whether a multi-selection is combined by a conjunc-
tion or disjunction. For instance, this can be implemented by providing a button in
the control panel below the according axis which offers the available combination
operators.

The visualization of the cardinal scale includes several key points which need
to be addressed. In general, it is not reasonable to visualize all facet values be-
cause that would lead to a cluttered user interface. The front end has to calculate
some marker values to guide the users so that they can comprehend the approx-
imate values of a data record for that facet. Additionally, the actual facet values
are marked by small red circles to show users the exact position of the facet value
of an artifact. For analysis purposes of the search results, users are able to change
the minimum and maximum value which is used for the display of an axis. Users
can switch between a display of the axis which is restricted to the current minimum
and maximum value of the current search result. Alternatively, they can display the
whole codomain for a better understanding of the actual distribution of these facets.
A product part search might be constrained by certain size restrictions. Users might
be interested how the current parts in the result set are distributed on the complete
scale and therefore display the complete range from zero to the current maximum.
This functionality helps users to examine absolute and relative differences between
several artifacts in the search result.

An alternative representation of this facet can be achieved by transforming the
continuous values into an interval model by aggregating them to several intervals

Section 5.3 – Description of the User Interface | 139

Figure 5.9: Displaying a document’s degree of maturity as ordinal and as cardinal scale
facet.

which represent the original values. The scale is then transformed into an ordinal
scale because the order of the intervals can still be derived. Figure 5.9 illustrates
this approach with the facet of the document’s degree of maturity which shows
users a quantitative measure of the completion of a specific document. The left part
shows the interval visualization where the continuous values were aggregated to
intervals of 10 percent spans. For instance, the interval 90.0–100.0 now comprises
six documents, whereas in the right visualization the data points can be seen at
92.0 and 100.0. The downside of this interval visualization is the restriction on
the predefined intervals when users want to select ranges and might lead to the
situation where users cannot select their desired interval.

Selections on cardinal scale facets are conducted using user preference functions
and work for cardinal scale attribute facets as well as similarity facets. The func-
tionality of user preference functions allows the easy statement of user preferences
by simply “drawing” a function onto the axis of a facet. Obviously, for certain user
groups this is a very helpful feature, but can overwhelm standard users. Thus, the
user interface needs to support function templates from which users can choose.
These function templates can be kept in the Templates tab in the ribbon component
and show users the available function templates (cf. Section 5.3.5 on page 150).

Attribute facets which are added to the parallel coordinates initially show all val-
ues of the facet. Multi-value selections are conducted by “drawing” an interval with
the mouse on the axis to define the upper and lower boundary of the selection. An
example is given in Figure 5.10 on the next page in the first and the second axis. This
constant function can be modified to give higher preferences on certain ranges. The
user preference functions are changeable by the small rectangular handles in each
corner. The user can simply drag a handle and change the function to the desired
position. The current implementation of the user interface prototype realizes the
example functions introduced in Section 4.3.4 on page 110 above which constrain
the degrees of freedom for users. The placement of the handles of the functions are
limited to two values. The handle can be positioned on the axis itself (denoting a
weight of 0) or on the maximum to the right (denoting the maximum weight of 1

140 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Figure 5.10: Several function overlays of the cardinal scale attribute facet outer radius.

for this facet value). If users move the handle to other positions in the function area
of the axis, the user interface automatically moves the handle to the nearest point
of these two extremes. This approach was chosen, to simplify the user preference
functions. The relative weighting of certain facet values by giving a different width
is not allowed, but could easily be implemented. The weights for the facet values be-
tween two chosen handles are determined by the defined linear functions between
the handles. User can add additional handles on the functions by double-clicking on
the desired position on the frame of the function. After each change of the function
the search results are immediately updated. The options for users include the prun-
ing of the search results by changing the boundaries of the interval to filter artifacts
where the facet value lies below and/or above a certain threshold. The use of linear
functions allows the statement of intervals where certain facet values are preferred
and the artifacts are promoted in the search results.

Figure 5.10 shows different functions for the attribute facet outer radius of a
product part. The first axis shows the view where a default interval function is over-
laid covering all values. In the second axis users chose to exclude parts whose outer
radius is too small by excluding the range from 0 to 3 by setting the lower boundary
to a higher value. The constant interval function is still used. The right axis sets
the preference on artifacts with an outer radius of 8 by applying a fuzzy interval
which still considers artifacts with other radiuses. The result of the application of
the shown function is that artifacts with an outer radius more close to the value of
8 are ranked higher in the search result ranking. This type of function is helpful
in situations where users search for artifacts with an attribute in a certain interval
where several values are preferred.

Although a rare use case, users can select single values by clicking on the desired
data point on the axis.

Initially, similarity facets are overlaid by a linear function which covers the com-
plete spectrum of the similarity scores to ensure the normalization of the similarity
scores returned from the respective search module. The normalization makes sure

Section 5.3 – Description of the User Interface | 141

that the similarity scores which are used for the computation of the result ranking
lie in the interval [0, 1]. Visually, the facet axis displays the similarity scores returned
by the respective search module to the users graphically, i. e. the artifacts are shown
on the axis according to their score. Similar to attribute facets with a cardinal scale,
the function can be adjusted to the users’ preferences. For instance, they can ad-
just the boundaries of the interval to prune the search results lying below a certain
threshold.

If the default interval function is changed, the axis can be displayed in two ways.
First, the scaling of the axis can remain as it was before the selection to illustrate
the minimum and maximum value of that facet for the complete data (as introduced
above). Second, the axis could be “zoomed” which restricts the axis to the current
minimum and maximum of the chosen interval. Therewith, the single facet values
are better viewable because they can be arranged on the complete height of the
axis. The current prototype follows the first approach by default with the option to
enable zoom.

The polylines in the parallel coordinates visualization illustrate dependencies
between the chosen artifacts and their facets. In Section 2.4.2 on page 27 the func-
tionality of backward highlighting was introduced which helps users in directional
faceted browsers to understand how the current selections affect the facets to the
left of the current selection which is summarized by the notion of “added facts” by
Wilson et al. [2008]. The polylines also support this information since they connect
the chosen facet values of all facet axes and help users to assess inter-column depen-
dencies. This is especially helpful, when users chose to display all facet values (not
only those for the current search result) of a facet in the Settings tab. Nevertheless,
users can change the opacity of the polylines or hide them from the Settings tab in
the ribbon component on top.

As described above, the search result comprises the search results and their facet
values for the currently chosen facets in the visualization. The front end then de-
termines the polylines which can affect the performance of the user interface in
addition to the visual problem of overplotting which was introduced above. In
two projects which were conducted during the research for this publication, it was
shown that this front end centered approach can result in noticeable delays in the
use of the user interface [Mechnich, 2008a,b]. This effect was the result of the cal-
culation of the positions of the polylines as well as the time necessary to draw the
lines in the parallel coordinates12. A solution to ensure the performance of the user
interface can be prior calculations on the back end to ensure that no duplicate lines
need to be drawn. Alternatively, the drawing of the polylines can be omitted until
the number of search results is in a magnitude where the delay-free drawing and
usability can be ensured. In the project works, the user interface was drawing the
polylines when the search result comprised 1000 or less artifacts.

12It has to be noted that the realization of the faceted search user interface which utilizes parallel
coordinates was realized in Adobe Flash in these two projects.

142 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Interactions with the Parallel Coordinates

One main benefit of the search interface visualization is the attained insight and
knowledge which can be acquired about the underlying search results. To tap the
full potential of the visualizations, users are provided with a set of different op-
erations which help them controlling the parallel coordinates. This supports the
navigation in the artifacts [Siirtola, 2000]. A control panel for each facet in the par-
allel coordinates is situated below each axis and shown exemplarily in Figure 5.10
on page 140. Therewith, users can easily conduct changes on each axis.

A characteristic of parallel coordinates is that dependencies can only be deter-
mined for adjacent axes. Below each axis users find a left- and a right-pointing
arrow which allows users to move this axis to the desired position. The polyline
representation is immediately updated to reflect the changes. The search result
which is transferred to the front end includes the complete information about the
polylines of the current search result. Thus, no new query needs to be submitted
and evaluated. Additionally, this functionality lets users determine how they wish
to organize their search space to best support their focus of interest.

In queries comprising many different search criteria, the screen space for the
visualization can get scarce. Users can minimize an axis horizontally by choosing
the third button in the control panel, which hides the labels from the view and
only displays the marker points on the respective axis. The control panel is also
minimized and shows only the button to maximize the axis again. Additionally, the
selections on minimized axes are locked so that no unintentional selection or de-
selections of facet value constraints can be conducted. Users are notified visually of
this lock by a change of the cursor when they hover over the facet.

In addition to removing selected facet labels by clicking on them in the axis, users
can also resort to the fourth button (with the two gray crosses) in the control panel
to quickly remove all current selections on the respective facet axis. The button with
the red cross to the right removes the facet along with the axis and the selections
completely from the plot and the query.

For cardinal scale facets an additional button is found in the control panel which
allows to set the relative weight between facets. Initially, all cardinal scale facets are
weighted equally with respect to the computation of the search result ranking. By
changing the weight slider users can influence the relative weights of each ranking
facet as introduced formally in Section 4.3.4 on page 110. If a less granular weight-
ing between facets is desired, this slider could be for instance replaced by a number
of stars, where users could easily set their preferences between facets.

The polyline visualization is interactive as well. The common parallel coordi-
nates features such as strumming and brushing are implemented. User can hover
over the polylines with the mouse and the corresponding polyline is immediately
highlighted in a striking color. Hovering over a facet value in an axis highlights all
records which belong to this value, which allows user to better analyze dependen-
cies in the plot. Alternatively, it is possible to select multiple records by clicking the
corresponding polylines while holding the CTRL key. Simultaneously, the records in
the result list are marked. Vice versa, by selecting search results in the list at the

Section 5.3 – Description of the User Interface | 143

bottom of the user interface the corresponding polylines are highlighted as well.
Further control functionality should be provided to the users. The configuration

of these features was introduced in the 4.5 on page 121 and is summarized shortly
below:

• Switch between multiple visualization of a facet if enabled (such as the cardi-
nal vs. the interval facet display introduced above).

• Switch through the different configured comparators to change the sorting of
the displayed facet values.

• Apply the zoom functionality for cardinal scale facets to either display the
whole interval of the data set or the interval valid for the current search result
set.

• Provide users with information about the current artifact when hovering over
a polyline in the parallel coordinates. This could be realized with the display
of a pop-up window. For instance, it may contain the artifact preview and the
facet values to give users an instant feedback about the search results.

5.3.3 Presentation of Search Results

Whereas the parallel coordinates help to understand the search results and support
query statement for users, the bottom part of the user interface contains the search
result list and provides users with the possibility to open the found artifacts in the
source systems. After each query refinement step, the list is constantly updated so
that only selected artifacts are displayed. Studies showed that it is important to
present users immediate results after each query refinement step [Plaisant et al.,
1997]. This helps users to immediately see if their chosen search path is right or if
adjustments to the query are necessary.

The current prototype shows the result in a tabular structure. Each search result
is represented with a preview, the artifact name, and the respective RSV. Depending
on the artifact type, different types of previews are used. For textual documents
short textual previews are chosen if the query contained a search for keywords.
Considering 2D- or 3D-CAD drawings, small visual representations are used to give
users an instant idea about the represented artifact. The use of artifact previews
helps users to find the searched artifacts better and faster in a search result list
when they are provided with thumbnails [Woodruff et al., 2001].

The tabular display of search results allows users to add the currently chosen
facets as columns. Additionally, the table representation allows users to sort the
results column-wise if necessary. This is useful for situations where users did not
utilize the ranking functionality, but simply want to order the search result arti-
facts based on certain ordinal or cardinal values. The search result table also offers
sorting based on several columns.

Additionally, the table supports the grouping of its entries. For instance, if several
artifact types are contained in the search result list, users can group the search
results based on the artifact type.

144 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

5.3.4 Layer Switching on the User Interface Level

Section 4.3.3 on page 107 introduced the multi-layer functionality of the LFRP-
search framework. Above two use cases were introduced which make use of the
relationships which exist between different artifact layers. This section introduces
various possibilities how the user interface can be realized for these two cases.

In the first use case facets from related artifact layers—the so-called relation
facets—are used for the filtering of artifacts of the initial artifact type. To keep the
current way of adding facets to the parallel coordinates plot, the relation facets are
added similar to facets of the same artifact type to the plot. The currently valid
relation facets are added to the list of available facets. These facets are placed in
a separate area of that list to point out that those facets are from a related layer.
This separation is necessary for better comprehension of the origin of each facet.
So, users can see easily which facets belong to the current artifact layer and which
originate from connected layers. This separation is natively supported by the in-
ribbon gallery in the Add facet ribbon group by labeled separators. An example for
this type of query is the search for documents which are be filtered by certain project
names. Here the result artifact type remains on the document layer, but the filtering
of the search results is done with a relation facet from the project layer.

The second use case includes the actual transition from one artifact type to an-
other under the consideration of the current search results as initial constraint for
the artifacts of the target layer. To visually separate this type of layer traversal more
from the first use case, it is invoked differently. The list of artifact layers to which
users can switch—based on the current selections—resides next to the list of the
available facets in the user interface (cf. the ribbon group Switch artifact types in
Figure 5.8 on page 136). This spatial separation to the facets from the first use case
is necessary as the change of the artifact layer involves a more complex procedure
in the user interface. If the current search result is of one type and has relationships
to multiple artifact layers, users can choose which layer is appropriate for their cur-
rent information need. Exemplary relations between artifact types were given in
Section 4.2.1 on page 94.

The visual realization of a layer transition can be conducted in two different
ways which are introduced below.

The first solution seems to be the more intuitive way as the parallel coordinates
are simply kept with the current selections on the initial artifact layer and the layer
switch to the connected artifact layer is conducted in the current plot. When new
facets are added from related layers the current selections have to be marked as
locked. Then, new facets from the related layer can be added to the current plot.
When many facets are chosen on the first layer, the adding of further facets can
introduce screen space problems. These can be partially counteracted by the mini-
mization of some axes so that only the axis is displayed—omitting the facet values.
Of course that reduces the visibility of the relationships between the facets and the
obtained search results.

This implementation deviates from the classic visualization of the parallel coor-
dinates where each artifact is represented by a polyline. Since this approach now

Section 5.3 – Description of the User Interface | 145

Layer 2Layer 1

Figure 5.11: Example switch of the artifact layer in one parallel coordinates plot.

visualizes two artifact types which are connected by a relationship in one plot, the
semantic slightly changes. The relationships between artifact types are usually mod-
eled with a one-to-many cardinality. Thus, the representation of an artifact as a
polyline has to be split in several polylines after the layer switch when several arti-
facts from the target layer are connected with the initial artifact. Taking the example
of product artifacts as the origin layer of the transition and document artifacts as the
target layer. In this case, the initial facets in the plot will represent product facets
and the further facets will be document facets. Since a product can be described by
multiple documents, the line in the plot representing a certain product will be split
into multiple lines representing the associated documents for the document facets.
Figure 5.11 shows an exemplary parallel coordinates plot for this issue with one ar-
tifact of the initial layer 1. The red line shows where the layer switch is conducted.
It can be seen that there exist three related artifacts in layer 2 for the one artifact
from the initial layer.

The second approach separates the view of the different artifact layers in multi-
ple tabs containing both the parallel coordinates plot with the facets of one artifact
layer and the corresponding search result list. The notion of a tab can be compared
to the concept modern web browsers use to enable users to have multiple web pages
open in one window. The user interface notifies the users about the available op-
tions for the artifact layer switch by showing icons for the respective layers in the
ribbon group Switch artifact type next to the Add facet ribbon group. These icons
do not represent facets as in the first solution but are triggers which initiate the
layer switching. When users invoke the layer switching, a new tab is opened for
the new parallel coordinates plot and the result list with the mapped search results
based on the results from the first tab. Initially, the parallel coordinates plot shows

146 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Figure 5.12: The user conducts a query on the product layer and constrains the search
results by the artifact type, product group and weight facet resulting in 19 product artifacts
in the search result. For the next step, the user wants to retrieve all documents which are
linked to these products.

a marker axis which defines from which layer the users came to this layer to provide
additional explanation on how the transition was conducted. Analog to a similar-
ity facet this axis should show the calculated RSVs from the initial layer according
to the applied fusion semantic to provide users with a better understanding of the
propagated ranking values. Users can add facets of the second layer to the new
parallel coordinates plot to further restrict the search results. Furthermore, users
can switch between layers using the tabs. Selections and modifications made in one
tab will reflect in the other tab.

Figure 5.12 and 5.13 on the next page show a visual prototype of the user inter-
face for a search task which initially begun with a query on the product layer and
then was continued on the document layer. Users can close the target artifact tab,
when the results of a layer switch did not lead to the results they were looking for.

5.3.5 Potential Enhancements

Whereas the sections before described the general functionality of the LFRP-search
user interface, this section presents several enhancements for the LFRP-search frame-

Section 5.3 – Description of the User Interface | 147

Figure 5.13: After choosing the Switch to documents button in the Switch artifact types
ribbon group, a new parallel coordinates plot is opened in a second tab shown directly
below the ribbon component. The figure shows user selections for the document layer on
the document type facet. This search query results in 51 document artifacts which were
based on the initial 19 product artifacts.

work which aim for a higher usability for the users.

Extensions to the Parallel Coordinates Visualization

In addition to overplotting issues, the parallel coordinates visualization can hide
relations between different facets because of the polyline representation. For users
it is difficult to follow the polyline of an artifact if there exist different artifacts which
share the same facet value. Figure 5.14 on the following page shows this “crossover-
problem” with two examples where users cannot tell which part of the line belongs
to which artifact. Graham and Kennedy [2003] propose the use of curve segments
instead of line segments for the polylines. In cases where the number of artifacts
is not too large, users can more easily follow the line of an artifact. Figure 5.15
illustrates this solution for the example above and shows that the identification of
the according line for an artifact is easier with this type of visualization. The authors
use quadratic or cubic curves for the different segments between the axes.

148 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

geometrical space. However, when dealing with discrete,
heterogenous data dimensions, such as those found in
information visualisation, these meanings are lost. A poly-
line that slopes upwards from axis A to axis B does not
mean that a particular object has a higher value in
dimension B than A, as the number of discrete points on
both axes may differ, and the units used on each
dimension may be impossible to compare in any
meaningful way. Dimensions themselves may have no
particular ordering to enforce on an axis’ scale, relying
instead on an arbitrary scale such as alphabetical or
numerical ranking. As such, if for abstract information
sets, the lines have lost their usefulness apart from

representing continuity, we may as well attempt to use
their ability to represent that continuity more fully.

Figure 3. Detail of Figure 2.

Line B

Line A

Line A or B?

Line A or B?

Line A

Line B

Line C

Line ?

Line ?

Line ?

Figure 1. Crossover uncertainties result when lines share a point on an axis.

Figure 2. A crossover ambiguity in our CV data set.

!"#$%%&'()*+#,+-.%+/%0%(-.+1(-%"(2-'#(23+4#(,%"%($%+#(+1(,#"52-'#(+6'*723'82-'#(+916:;<=+
>;?<@?ABCD;<+E>CF;;+G+H;;<+1III!

Figure 5.14: Using lines to connect facet values [Graham and Kennedy, 2003].

inflection that would otherwise need to be drawn by a
combination of two adjacent quadratic curves, as shown in
Figure 7. In these circumstances, drawing solely with
quadratic curves can sometimes produce wildly oscillating
curves whose paths go off-screen.

Figure 6. Close up of Figure 5. Brushing
confirms the continuation.

Figure 4. Curves make the crossings easier to resolve

Figure 5. As per Figure 2, but with curves instead of straight lines

Curve A

Curve B

Curve A

Curve B

Curve B

Curve B

Curve A

Curve A

Curve A

Curve B

Curve C

Curve C

Curve A

Curve B

!"#$%%&'()*+#,+-.%+/%0%(-.+1(-%"(2-'#(23+4#(,%"%($%+#(+1(,#"52-'#(+6'*723'82-'#(+916:;<=+
>;?<@?ABCD;<+E>CF;;+G+H;;<+1III!

Figure 5.15: Using curves to connect facet values [Graham and Kennedy, 2003].

Additional information is hidden by the polyline visualization when a connection
between two facet values of two adjacent facet axes is shared by several artifacts. In
this case all artifacts are represented by a single line segment which does not allow
to see how many artifacts are assigned to this facet value combination. Here the
use of the curve visualization helps to reveal this information. Figure 5.16 on the
next page shows the difference based on a prototype developed in the project work
described in [Mechnich, 2008a]. The prototype was developed for the scenario of
a search in the product range of an e-commerce system for a wine merchant. The
visualized relationship in Figure 5.16 on the facing page shows the facets color (in
German: Farbe) and type (in German: Art). The left part visualizes the relationship
of wines with a red color and those which are of the type red wine by a single
visible line. By changing the visualization to curve segments this relation is much
more visible since all segments are shown.

Another approach to provide users with additional information about the distri-
bution of facet values of a facet for the current search result is proposed by Hauser
et al. [2002]. They compute histograms for each axis in the parallel coordinates
which then are plotted over the axes. In situations where many artifacts are visu-
alized, users still can easily see which facet values are more often represented in
the current data. This substitute visualization could for instance also be used in
situations where the search result is too large to show the polylines as pointed out
in Section 5.3.2 on page 136.

Exposing sub-hierarchies of facets.

In Section 4.3 on page 100 the concept of hierarchical facets was introduced. From
a user interface viewpoint it should be possible to easily drill-down into a hierarchy
of facet labels. An approach to expose a facet sub-hierarchy of a hierarchical facet
in the user interface is the use of a pop-up window which is automatically shown
when users hover over a hierarchical facet label similar to the realization in the Fla-

Section 5.3 – Description of the User Interface | 149

Figure 5.16: The left parallel coordinate visualization is based on line segments and omits
the information that there are many artifacts with the same facet value combination. The
right visualization shows the relation between the two facet values by using curve segments
(Screenshots based on the prototype developed in [Mechnich, 2008a]).

menco project (cf. Section 2.4.1 on page 24). Users are then shown the labels of the
sub-hierarchy from which they can conduct selections on these labels. Disadvan-
tages of this approach are the possibility of a crowded visualization resulting from
a very large number of facet labels and the complication of multiple selections. The
latter problem arises since a selection would result in a facet axis which displays the
chosen facet label from the sub-hierarchy omitting the labels from the level above.

Figure 5.17 on the following page shows a possible realization of a hierarchical
facet axis in the user interface for a facet containing hierarchical geographic infor-
mation. In contrast to flat facets, the facet description above the axis contains the
current hierarchy level selection. In this case, users selected artifacts in the left axis
which belong to the continent of Europe in the previous selection resulting in five
different facet labels describing countries. The figure also shows query previews
for further drill-down operations when users mouse-hover over a facet label. Users
can conduct (single) selections directly from the shown pop-up window. Alterna-
tively they can select a complete facet label of the current hierarchy level (in the
shown case Germany) and the axis is adjusted to only showing the German states
for which artifacts exist in the search result as shown in the right axis. The facet
axis description is then adjusted to reflect this additional selection in the hierarchy.
The latter selection approach can provide additional information about the search
result, since the polyline visualization of the parallel coordinates is shown for the
complete sub-hierarchy of the facet.

150 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Geography
Continent:Europe

Germany (17)

Finland (3)

France (5)

Spain (12)

UK (18)

State:
Bavaria (7)
Saxony (4)
Thuringia (3)
Lower Saxony (3)

Geography
Continent:Europe
Country:Germany

Saxony (4)

Lower Saxony (3)

Thuringia (3)

Bavaria (7)

Figure 5.17: Potential visualization of hierarchical facets.

Templates

The LFRP-search framework offers a wide spectrum of functionality to conduct com-
plex search queries. Nevertheless, this added functionality introduces additional
complexity for the users which is not desired in every search situation. One ap-
proach to support users to work with the LFRP-search framework is the use of tem-
plates which are offered to the users. Templates are a more coarse-grained way of
guidance for users.

The concept of the LFRP-search framework supports different types of templates.
The most complete type are query templates. Expert users predefine faceted queries
for certain search tasks. The definition of templates like this is done by specify-
ing which facets are initially included in (i. e. relevant for) the search query and
whether several facet values are preselected. This approach minimizes the degrees
of freedom for users that are available during query-time. For each sub-query in
the template it is defined whether the users can change the predefined selections.
It is helpful for users to see and analyze dependencies for all chosen facets even if
no changes to the facet itself are allowed. Additionally, the query options for each
facet need to be defined. That comprises the use of keyword or QbE queries as well
as the selection functionality itself. The availability of user preference functions for
ranking facets can be limited to simplify query statement (by sacrificing some of the
functionality of the framework).

The definition of these query templates should be conducted in the search user
interface. Expert users should be given the option to save their current query as a
template which can be customized in a new dialog window based on the description
above. End users can access the templates in different ways. The user interface itself

Section 5.3 – Description of the User Interface | 151

offers the tab Templates which contains the available templates from which users can
choose from. This approach still expects users to understand the purpose of each
template. This tab also includes the saving functionality for queries.

The introduced approach of invoking search templates was restricted to starting
searches directly from the search user interface. Often certain artifacts are needed
in the application users are currently working in. Therefore, the search engine or
queries itself should be invokable from these source systems. Assuming the use of
a project-planning portal software which helps users to be guided through develop-
ment processes, search templates which are typically used in certain process steps
could be invoked directly from this system. This mapping of search templates to
process steps or specific work tasks needs to be assigned beforehand. Additionally,
theses application systems offer additional contextual information which might be
usable for preselecting various facets in the query.

Another type of template affects the user preference functions. The possibility
to change functions arbitrarily by “drawing” them in the parallel coordinates on
the one hand is a very powerful feature but on the other hand introduces additional
complexity for users. Thus, it is recommended that the user interface offers function
templates which can simply be added to an axis. The simple functions described in
Section 4.3.4 on page 110 should be considered for inclusion in the set of templates.
The implementation of this type of templates could be realized by adding these
templates to the Templates tab in the ribbon component where users could choose a
template and drag and drop it on a ranking facet.

Search Dashboard

The idea of providing different types of templates to lower the barriers to use the
LFRP-search framework can be broadened by expanding the search user interface
to a search dashboard. Dashboards typically are used in executive information sys-
tems and provide aggregated visualizations of information from various sources.
Transferring this concept to a search engine, users can be provided with advanced
analysis capabilities.

In the following several functions for a search dashboard are proposed:

• Saved searches. Users should be able to save current searches in the dash-
board to be able to simply access them again in similar situations in future
projects.

• Saved search results. Especially in enterprise scenarios search tasks can be
fragmented throughout the day (cf. Chapter 3 on page 69). Therefore, users
should be supported in being able to interrupt a search task and resume it
later without big efforts. The search engine should be personalizable, i. e.
users have a user account for the search engine and can store their search
history. When users end a search session, the current state of the search can
be stored and resumed easily when logging into the system again. This func-
tionality is also necessary when users want to save interim search results for
later review. For instance for the domain of product development it can be

152 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

useful to search for different existing solution for a certain design problem.
The different retrieved solutions can be stored in a digital notebook in the
dashboard, which also allows annotating notes. After having identified useful
solutions the engineer can compare the solutions collectively and choose the
appropriate one.

• Notifications/Alerts. This function is related to saved searches. Users might
be interested in being notified when artifacts are created or changed which
fit certain search criteria. The search engine then constantly monitors the ar-
tifacts which are changed and indexed and notifies users when appropriate
artifacts are identified. This notification could be realized by digests which
are sent by email or are distributed by RSS feeds in certain configurable time
intervals (hourly, daily, weekly, or so on). The configuration could be an addi-
tional option when users save searches.
A similar functionality for web results is provided by Google Alerts13 where
users can specify keywords for which they want to be notified.

• Additional visualizations. To provide users with additional options to ana-
lyze the search results, a search dashboard should include other types of visu-
alizations which can provide insights which are not possible to identify with
parallel coordinates.
Applicable visualizations can for instance be the examples described in Sec-
tion 2.5.2 on page 36. However, additional visualizations in the search user
interface can lead to difficulties, when users are not able to comprehend any-
more which changes in a visualization affects the current query. When users
are formulating their queries by using the parallel coordinates and later in-
teract with other visualizations, the (currently) clear definition of the query
statement gets blurry, i. e. the parallel coordinates are not anymore the single
way to adjust the query.

5.4 Comparison of the LFRP–Search Framework and
Data Warehouse Systems

Several aspects of the structure and the goals of the LFRP-search framework re-
semble those of DWH systems. This section will outline these similarities and will
show differences with a focus on the application of both systems in an enterprise
environment.

One of the first definitions of a data warehouse was made by Inmon:

“A data warehouse is a subject-oriented, integrated, time-variant,
non-volatile collection of data in support of management’s decision-making
process.” [Inmon, 2002]

According to this definition, a DWH is characterized by four criteria which are
necessary for decision-making processes and will briefly be detailed.

13http://www.google.com/alerts (last accessed 08/01/2010)

Section 5.4 – Comparison of the LFRP–Search Framework and DWH Systems | 153

• Subject orientation. The selection of the data which is transfered to the DWH
is chosen based on the necessary subjects for the analysis of indicators for
decision processes and not for specific areas of operation.

• Integration. The used data is integrated based on several operative source
systems of different areas of operation. The source data usually is stored in
heterogeneous structures in the source systems.

• Time Variance. Data about a subject is not only stored at one point in time
but stored so that analyses can be made which compare the data in a timely
fashion. Thus, changes in time on the data can be evaluated.

• Non-Volatility. Data which is stored in a DWH is neither changed nor deleted
(which is important for the time-variant characteristic).

Both DWH systems and the LFRP-search framework aim at providing users with
insight about multi-dimensional data in which they can navigate arbitrarily. Both
systems provide users with a toolset for the analysis of the data in the respective
data structures. Therewith, users can conduct flexible searches in the data set.

The data set itself is built by integrating information from different source sys-
tems. DWH systems usually access systems of different areas of operation in an
organization whereas the LFRP-search framework primarily accesses management
systems for the different supported artifacts in the organization.

The analysis of data in a DWH is a dynamic process involving different operators
which help navigating the multidimensional data structure and follows the princi-
ple of OLAP which was coined in [Codd et al., 1993]. The principle describes the
interactive, exploratory analysis based on multidimensional data structures called
hypercubes. The elements of a hypercube consist of different measures which are
classified based on different dimensions. An example are sales figures of a company
which are described by dimensions such as time and geography. A general overview
of DWH and OLAP technology is given in [Chaudhuri and Dayal, 1997]. For more
detailed information refer to [Barquin and Edelstein, 1997] or [Kimball and Ross,
2002].

Besides the multidimensional data model, OLAP also defines a set of specific
operations for the analysis of the data.

• Drill Down and Roll Up. Both operators navigate along a dimension hierarchy
in the hypercube. Drill Down navigates deeper in the hierarchy, for instance
by specializing the view of the sales figures from a monthly aggregation level
to a weekly view. Roll up is the opposing operator which aggregates the di-
mensions. Both operators allow the hierarchical navigation of the information
in the DWH. Based on the example above, an analysis can begin with an ag-
gregated sales figure for a calendar year. For instance, by drilling down the
sales figures can be compared on a quarterly, monthly or weekly basis. Alter-
natively, the sales figure can be compared based on the different countries or
on the subsidiaries a company is distributing their products.

• Slice and Dice. Both operators create individual views on the multidimen-
sional data. The slice operator selects a slice of the hypercube by aggregating

154 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

a measure along one value of a dimension. An example is the analysis of the
sales figure along the dimensions time and geography for one specific product.
Dicing consists of slicing on more than two dimensions of the hypercube such
as analyzing the sales figures for a specific product and a specific time span.

• Rotate. Rotation (or Pivoting) allows users to rotate the hypercube by trans-
posing two dimensions to analyze arbitrary perspectives.

These hierarchical dimensions of the different measures equal the hierarchical
facets found in the LFRP-search framework. By selecting facet labels of hierarchical
facets users can conduct drill down and roll up operations similarly to the OLAP
functionality. The slice and dice operators equal the selection of a faceted category
allowing the analysis of the remaining facet dimensions.

Differences between the two approaches lie in the different target groups. Where-
as the LFRP-search framework targets search situations with complex information
needs, applications of DWH systems often target business-management problems
such as planing the pricing of products and the planing of a range of products.
DWHs are often part of Executive Information Systems (EISs) which aim for sup-
porting the management of an organization. The LFRP-approach is mainly targeted
at search tasks at the operational level such as supporting design engineers to re-
trieve information which helps them to develop better products. This also mirrors
in the results the different systems return. The approach introduced in this publica-
tion uses artifacts which are classified based on different dimension (i. e. the facets
describing attributes of an artifact). The framework mainly tries to help users find
certain artifacts necessary for their current work tasks. Here the multi-dimensional
data and its visualization and query options help users by giving them a better un-
derstanding about the search results. In addition, the framework offers the use case
of stating QbE queries where users search for artifacts based on an example object
which triggers a similarity search. This type of searches is out of scope of DWH
systems.

In contrast, the goal of DWHs is the identification of connections by aggregating
and analyzing data to help controlling business processes. Thereby, quantitative
data (i. e. the measures) which is classified with qualitative data representing the
dimensions is used. The results are usually standard or ad hoc reports which provide
aggregated views of enterprise data.

Considering the data which forms the basis of these two approaches, the index
structure of the LFRP-search framework is updated when the source artifacts in
the source systems are changed and primarily current data is stored in the index.
DWHs allow the access to historical data to analyze variations in time of the data
and therefore keep historical information which is never altered (as described above
with the non-volatility and time variance characteristic) after loading it in the DWH.

Both approaches aim for the integration of data with different structure from
heterogeneous source systems. The process of integrating data from different source
systems in a DWHs is called ETL [Kimball and Caserta, 2004] and solves difficulties
which also appear in the indexing process in the LFRP-search framework.

Section 5.4 – Comparison of the LFRP–Search Framework and DWH Systems | 155

• Extract. This initial part of the process extracts data from the various source
systems. In this step, it is decided which parts of the data are included in
the DWH. This comprises internal and external sources which are analyzed
to be able to decide which objects and attributes need to be included for the
intended analyses. Furthermore, update strategies for the data needs to be de-
fined. Periodically, changes in the data needs to be determined and transfered
into the staging area of the DWH.

• Transform. The data integration from different systems necessitates the trans-
formation of the individual schemes of the source systems into the DWH-
schema. Due to different utilized database systems and data models as well as
conflicts in the original schema, a schema integration is necessary for the trans-
formation. Based on [Batini et al., 1986] an integrated schema has to adhere
to the criteria of completeness, correctness, minimality, and understandabil-
ity. They also provide a comparative analysis of methods for database schema
integration in [Batini et al., 1986]. Spaccapietra et al. [1992] propose an
assertion-based approach for schema integration.
Schema conflicts can occur due to aspects concerning different data types, ta-
ble structure conflicts, naming conflicts or missing attributes amongst others
[Kim and Seo, 1991]. An exemplary problem is the consistency between ob-
jects which exist in multiple data sources. As the identifying keys of the same
object often differs in the different systems, surrogate keys must be created
and managed to ensure the identification of the same object from multiple
systems. Solutions to solve these difficulties are shown for instance in [Sheth
and Larson, 1990]. The conducted data transformations comprise syntactic as
well as semantic aspects of the data.

• Load. The final stage of the ETL process loads the transformed data in ap-
propriate data structures in the DWH. Initially, the complete data needs to be
loaded in the DWH which then is updated periodically to reflect updated data
in the source systems. In particular, the initial loading is very time-consuming
which might be problematic due to the induced system load.

These difficulties also are existent when a search engine such as the LFRP-search
framework is deployed in an organization. As the framework also supports unstruc-
tured content in addition to structured data, additional issues need to be solved.
More information about the indexing part of the LFRP-search framework which
covers some of these difficulties can be found in [Weber et al., 2009].

Recently both enterprise search vendors as well as academic researches recog-
nized the similarities and the relationship between DWHs and enterprise search
solutions. Evelson and Brown [2008] emphasize the requirement to bring search
technology closer to BI applications to provide better insights of the information
in an organization. In Section 2.7 on page 53 several enterprise search solutions
were introduced whereas for instance the solutions of Endeca and Exalead are try-
ing to include BI functionality such additional visualizations and better aggregation
operators.

156 | Chapter 5 – Prototypical Realization of the LFRP–Search Framework

Ben-Yitzhak et al. [2008] pursue an interesting approach which extends tradi-
tional faceted search by “flexible, dynamic business intelligence aggregations” which
offer more (qualitative) insight about the data than the classic quantitative query
previews for artifacts. The authors apply aggregations on sub-categories of arith-
metic and Boolean functions over numerical attributes of the artifacts. Their model
supports the min, max, average, and sum functions in addition to the count function
for the quantitative query previews. The authors extended the Lucene search library
to support their search model.

The authors use the scenario of a book catalog which is accessed by their ex-
tended faceted search model. The application of their aggregation functions allows
the determination of criteria such as the average price of books in a faceted category,
the number of best selling books of an author (by counting the number of books in
the 5000 best-selling books). The approach allows the inclusion of the similarity
score of the initial text query in the computation of the aggregated previews which
can be used to show users the maximum score for a faceted category.

Additionally, the authors introduce the notion of dynamic facets which are not
yet known at indexing time and have to be determined at query time. An example
are temporal facets in the form of “artifacts dated in the last day/week” or spatial
facets which represent the count of documents which lie in certain radii.

Chapter 6

Evaluation

This chapter provides an assessment of the applicability of the LFRP-search frame-
work for complex information needs. The evaluation is two-fold. First in Sec-
tion 6.1, the assessment criteria from Tunkelang [2009] are used to evaluate the
complete LFRP-search framework as a search engine operating based on the HCIR
model. Second in Section 6.2 on page 160, the user interface is evaluated based
on the eight characteristics of search user interfaces defined by Shneiderman et al.
[1997].

6.1 Evaluation of the LFRP–Search Framework

In Section 2.1 on page 11 three goals were introduced for search engines which are
based on the HCIR paradigm: Transparency, Control and Guidance.

Transparency

The characteristic of Transparency shall ensure that users understand why the search
engine returned a particular search result. The LFRP-search framework defines a
concise query model formally. This model strongly relies on users clearly specifying
their queries visually. In the current implementation no supplemental information
is added to the user query. At all times users can see and review their queries in the
parallel coordinates visualization.

For faceted queries in the user interface the transparency characteristic reflects in
the parallel coordinates visualization. Thus, users need to understand the metaphor
of an axis in the plot to equal an attribute of the artifacts with certain selected
values.

As described in Section 5.2 on page 131, similarity queries are handled in spe-
cific search modules which implement algorithms to compute the similarity between
an example object and the artifacts in the index. These computations usually are
more complex to understand than the Boolean filtering which takes place for at-
tribute facets. Additionally, the applied algorithms often are not exposed to end
users. Still, a basic understanding of the concept of a similarity facet is assumed,

158 | Chapter 6 – Evaluation

i. e. for the domain of product development users should be aware of the difference
of geometry and topology similarity whereas thorough knowledge of the algorithms
is not necessary. Thus, they need to be provided with more details why the artifacts
in the search result are similar to the query object. Depending on the used similarity
method, users need to be informed visually—if possible—how each result relates to
the query object. Marchionini and White [2007] propose the use of document sur-
rogates1 which are summarized information about the document to provide users
with a better understanding of the search artifact. This can be information based on
the content of an artifact or metadata summaries. For instance, an artifact preview
in form of a thumbnail can help users to see the similarity of a product to the given
QbE object. Taking the example of a 3D-similarity query, users are shown a thumb-
nail of the three-dimensional representation of the product for each object in the
search result list. For text queries, it is helpful to provide users with text summaries
of the artifacts where the query terms are highlighted [Marchionini, 1995]. The cur-
rent implementation of the prototype realizes these previews for textual queries and
for 2D- and 3D-geometry queries. For the latter a small graphical representation is
shown for each search result in the result list. The same representation for the query
object is displayed in the respective similarity facet in the parallel coordinates.

Whereas the transparency of queries which focus on one artifact type is ensured
by displaying the current query in one parallel coordinates plot, the layer switching
functionality complicates the compliance with this characteristic. By moving the
query of the target artifact layer to a second tab in the user interface users lose
some transparency as the query of the initial layer is not shown. The user interface
provides users with a marker axis on the second tab which visualizes the search
results from the initial layer. This axis shows the initial search results as a facet with
a cardinal scale and provides the link to the query on the original artifact layer.

The user preference functions which are used for specifying preferences of facet
values for the ranking computation are an advanced feature which tries to simplify
the statement of preferences. Although the LFRP-query model supports arbitrarily
complex continuous functions, users are restricted to linear functions to reduce the
complexity of the user interface.

A means which could be integrated for users is a natural language query visu-
alization which provides users with an easier understanding of the selected search
criteria (e. g. “Search for any products from the product group screws and the mate-
rial steel” similar to the implementation in the VQuery system [Jones, 1998]).

In summary, the LFRP-search framework provides users with transparency of
the search engine as the complete query is visualized in the user interface and no
automatic query augmentations takes place. The functionality of the layer switching
and the user preference functions can lead to diminished transparency for users.

1For the case of this publication the term artifact surrogate is more appropriate to reflect the
different supported artifact types in the LFRP-search framework.

Section 6.1 – Evaluation of the LFRP–Search Framework | 159

Control

The characteristic of Control aims for giving users tools to involve them more in the
information-seeking process. These tools comprise options to influence the filtering
as well as the ranking of the search results.

The LFRP-search framework allows users at each point in the search process
to change sub-queries to reflect the obtained additional insights about the results.
Users have control over adding additional facets to the query to restrict the search
results or to remove facets to broaden the search scope again. Additionally, they
can adjust selections on a facet by adding or removing facet values. Facets without
selections also can be added to the parallel coordinates to allow additional analysis
of the search results.

The feature of user preference functions gives users a fine-grained control over
the ranking. Users can adjust their preference for the chosen facets as well as for
specific value (ranges) by applying these functions visually in the user interface.
Function templates help users to keep the complexity which is introduced by these
functions low.

All these changes to the query are immediately reflected in the user interface
which behaves according to the concept of dynamic queries [Shneiderman, 1994].
Both the parallel coordinates visualization as well as the search result list is updated
to reflect the current query.

Guidance

Although helpful, the given control can lead to additional complexity of the user
interface. Thus, users need to be guided through the search process. To cover the
complexity which is introduced by the support of multiple artifact types where each
offers different search criteria, the LFRP-search framework can be customized to
work only on a subtree of the artifact type hierarchy. This is useful in situations
where the information needs are more concise. The restriction to the subtree helps
users by reducing their search options.

Additionally, the currently available facets for the current state of the query are
presented to the users. This feature called dynamic facet provision prevents users
from choosing facets which would lead to an inconsistent state of the query.

Furthermore, the framework supports the inclusion of specialized comparator
methods which influence the display of the facet values of each facet. This function-
ality is necessary to provide users with facets which might help them in their current
search task. For instance, the order of the facet values in the display could be ar-
ranged based on the “interestingness” measure introduced in [Dash et al., 2008].

However, an aspect which currently is not under consideration of the framework
is the inclusion of contextual information which is automatically evaluated and used
in the search interface. Conceivable approaches could comprise the use of contex-
tual information to preselect certain facets along with their values to give users an
initial search query. Furthermore, the search could restrict the search options auto-
matically to a sub-tree of the artifact type hierarchy based on the current work or

160 | Chapter 6 – Evaluation

search task.

6.2 Evaluation of the User Interface

Shneiderman et al. proposed eight golden rules of interface design in [Shneider-
man and Plaisant, 2005] which have been rephrased in [Shneiderman et al., 1997]
for the context of information retrieval. A search user interface should have the
following characteristics:

• Strive for consistency. User interfaces should be consistent in the use of the
terminology, the instructions, and the layout including colors and fonts.

• Provide shortcuts for skilled users. All functionality should be reachable
easily, for instance by providing keyboard shortcuts.

• Offer informative feedback. Users need to be informed about all aspects
of the search process including the used sources, query fields, etc. After the
search is complete, users should be aware of what was searched and why the
search results were returned.

• Design for closure. Users should easily notice when they searched the com-
plete data set or the result list.

• Offer simple error handling. When errors occur during the search process
users should be presented with comprehensible support explaining the oc-
curred error. Additionally, changes to the query should be easy to apply.

• Permit easy reversal of actions. User interfaces should give users the ability
to reverse single actions in their search process, for instance by allowing them
to revert selections by accessing a search query history.

• Support user control. Users should be able to specify queries in any order.
Thus, a search engine should not force users to follow a strict sequence of steps
during query refinement. Users can also get additional control over the search
by being presented visual overviews over the data set. This helps to gain
a better understanding of the data and make more controlled search query
refinements.

• Reduce short-term memory load. Search interfaces should be designed that
users always are shown the relevant information avoiding situations where
they need to remember or keep track of it.

Below, the search user interface of the LFRP framework is checked for the fulfill-
ment of these characteristics.

Strive for consistency

The conception of the user interface for the LFRP-search framework especially fo-
cused on providing users with a consistent metaphor to state queries that combine
different types of sub-queries. The use of an axis representing a facet in the user

Section 6.2 – Evaluation of the User Interface | 161

interface as the general instrument to conduct selections helps users to understand
the implications of their selections better. All supported types of facets operate in a
similar fashion.

The concept of similarity facets allows users to provide the search engine with
additional information as input for the query. Dependent on the type of similarity,
users provide different types of input such as keywords or example files. The pre-
sentation of this query stays the same, i. e. users are presented with an axis which
shows the search results sorted based on the used similarity measure in the axis.

Although an advanced feature, the user preference functions introduce a concept
which allows users to state preferences about facet values of a facet. The graphical
representation of preferences which can be easily adjusted by the mouse shows
users visually which values of their selections are considered more important for
the determination of the search results. This feature works for different types of
facets such as similarity facets and attribute facets.

Provide shortcuts for skilled users

Users can control the user interface by using the keyboard and a pointing device
such as a mouse. The search engine is mainly controlled through the use of the
ribbon component on the top part of the user interface. The use of this interface
component helps to keep the length of the menus short. For skilled users, the ribbon
component is completely controllable by keyboard shortcuts which makes operating
the user interface more efficient.

The enhanced functionality of the LFRP-search framework such as the multi-
layer functionality and the user preference functions can be offered to expert users.
As these are more complicated to handle, a plain keyboard control is hard to achieve
and thus, it is primarily resorted to mouse input. To simplify these features, the user
interface provides different templates for user preference functions which can be
overlaid on an axis by choosing them from the ribbon component.

Offer informative feedback

One goal of the LFRP-search framework is to simplify the statement of difficult
search queries in situations with complex information needs. As described in previ-
ous chapters, complex information needs comprise multiple search criteria and may
concern various artifact types.

The LFRP user interface shows each chosen criterion as an axis to visualize the
current query to the users and to provide them with additional transparency. The
polylines which connect the different axes (i. e. the chosen criteria) help users to
gain a better understanding of the chosen search criteria as well as the search results
by visualizing dependencies. This analysis functionality also allows users to add
facets without conducting selections on them to provide additional insight. After
each change to the query, the result is instantly updated which helps to understand
how the changed query affects the search results. The feature of the user preference

162 | Chapter 6 – Evaluation

functions help to better comprehend the weighting between different preferred facet
values visually.

Apart from this query and search result visualization, users are not provided
with information why the result was returned by the search engine. Users could
be supported by showing them a text representation of the query similar to the
VQuery system [Jones, 1998] as introduced in Section 2.5.1 on page 34. Addition-
ally, artifact previews such as thumbnails or textual snippets support users in better
understanding why the results were returned.

A requirement for offering informative feedback lies in conveying which sources
were used to compute the search result. The current implementation of the user in-
terface only marginally realizes this. The result list allows users to access the result
artifact by accessing the source system. Here, users should be supported better by
the search framework. Solutions could comprise a source selection features where
users can initially choose the source systems they want to access with their search.
Alternatively, different sources could be automatically chosen by the search frame-
work based on the users’ context. For instance, the search engine could choose
different initial sources based on the place where the search was started. Consider-
ing the integration of the LFRP-search framework in a CAD software, the searches
mainly circle around products. Thus, a search in the company’s PDM system is likely.

Design for closure

This characteristic demands that users are able to notice when they searched the
whole dataset. With respect to this requirement, the LFRP-user interface only par-
tially fulfill this characteristic. The query previews which are automatically com-
puted for each facet value give users an overview of how many artifacts are available
for a query refinement with a specific facet value.

Offer simple error handling

The LFRP-search framework tries to prevent users from making errors during the
statement of their queries. By relying on the paradigm of faceted search users are
prevented from making query selections which would result in empty results. Addi-
tionally, conflicting sub-queries are prevented since users are only offered available
facets and facet values by the feature of dynamic query provision. Thus, only similar-
ity facets can lead to difficulties during query statement. For instance, a similarity
query can fail if users provide the wrong example object which is not applicable for
the chosen similarity type. In such cases, the search engine should notify the users
of this error and provide them with an explanation of which types of data are appli-
cable for the facet type. Furthermore, the advanced feature of the user preference
functions can lead to erroneous usage and thus should be kept simple.

A difficulty which should be communicated to the users by the search engine is
the fact, that similarity facets can lead to zero results.

Section 6.3 – Summary of the Evaluation | 163

Permit easy reversal of actions

All user selections can be reverted independently from all other sub-queries. This
includes the removal of single facet selections as well as complete sub-queries by
removing the facet axis.

To simplify this process, the user interface should be enhanced by a search his-
tory functionality. Apart from being able to execute past queries again, this function
would allow users to access any snapshot from the query statement process to revert
recent steps.

Currently, the LFRP-search framework does not include contextual knowledge.
Thus, users create their queries completely on their own and have an understanding
of the consequences of each sub-query. When the framework is used with templates
or contextual information which automatically preselects facets and facet value se-
lections, users should be able to remove those selections if they do not fit the current
information need. This also should be feasible with the search history functionality.

Support user control

This requirement is similar to the above described characteristic of Control defined
by Tunkelang and thus it is referred to the description in Section 6.1 on page 157.

Reduce short-term memory load

Search queries which apply to only one artifact layer are displayed completely on
one screen. This directly helps users to keep the memory load small since they can
comprehend the complete query. In contrast, multi-layer queries raise the users’
memory load since each layer query resides on a different (but still logically con-
nected) tab. Hence, the deployment of this feature must be weighed up against the
additional power of the available search features.

The current search result display in the list view allows users to easily access
the search results, but for a larger result sets, users would have to scroll to see all
results. When users do not want to restrict the search result any further by facet
selections, additional visualizations might support them in the task of choosing the
right result.

The above described search history functionality can also support the require-
ment to reduce the short-term memory load. This feature allows users to continue
their search sessions where they left off before or which they aborted.

6.3 Summary of the Evaluation

The evaluation based on the two different viewpoints from the previous sections
showed that the LFRP-search framework qualifies for the support of users in com-
plex search situations with the help of the search paradigm of HCIR.

An aspect which should be supported stronger is the use of additional visualiza-
tions to provide users with an even more comprehensive understanding of the data

164 | Chapter 6 – Evaluation

collection under consideration. A pivotal point is the distinction of a visualization as
a visual instrument to provide additional insights and the use of a visualization as
a query instrument. Currently, the visualization type of parallel coordinates is used
as a single tool to formulate a query. By introducing additional visualizations which
allow selections on the current search result, the problem is introduced that users
may not be able anymore to focus on which visualization is responsible for a change
in the search results. Thus, either the different visualizations are synchronized, i. e.
both change when a selection is conducted, or only one visualization can be used
for interactions which apply to the query.

Lastly, the user interface should be better integrated in the application systems
used by the target users. This leads to a closer integration which helps users to focus
on the queries when they occur during their work tasks.

Part III

Outlook

Chapter 7

Conclusion

The main goal of this thesis was the analysis of difficulties and problems of retrieving
information in an enterprise setting and the conception of a search framework to
support users in coping with these complex search situations.

The analysis covered various search scenarios from the industrial partners par-
ticipating in the joint research project FORFLOW as well as multiple studies that
analyzed user search behavior. By examining these search scenarios, requirements
for an enterprise search engine could be identified that support interactive search
processes in complex work situations.

Furthermore, the thesis introduced modern search paradigms such as exploratory
search and faceted search and gave examples of implementations. Additionally, an
overview about the topic of enterprise search and its challenges was given. Different
types of currently available commercial enterprise search systems were introduced
along with their abilities and limitations.

The main part of this thesis focused on the introduction of the LFRP-search
framework which aims for a better provision of existing information by combin-
ing multiple known search paradigms. Thus, the acronym LFRP defines the four
constituent parts on which the framework is built on. The multi-layer functionality
supports users in stating queries which comprise multiple different artifact types.
Therewith, users can query for artifacts by filtering the result set by facets defined
in related artifact layers or switch the search result artifact type during the query
based on a result set of related artifacts.

The faceted search paradigm provides users with an intuitive way of composing
queries iteratively based on facets which are describing the search results. By pro-
viding users with a clear metaphor on how filter criteria can be added and removed
from the query, users can easily comprehend which effect a specific search criterion
will have on the search result if chosen.

The ranking functionality enhances the search options by providing users with a
tool to add preferences on facet values based on user preference functions which are
integrated with the other major parts of the framework. This functionality allows
users to easily add and remove importance from certain search criteria in compari-
son to the binary view of boolean selections.

The concept of parallel coordinates is used to represent the search space in show-

168 | Conclusion

ing both the query as well as the search results in a graphical way which allows users
to discover dependencies between facets and artifacts. In addition, the visualization
acts as the primary input to create and change the user query.

In this thesis a two-step approach was chosen to demonstrate the functionality
and expressiveness of the framework. First, the framework was described formally
by introducing the notion of artifacts and their characteristics as well as the formal-
ized query model of the framework. For that, a representation of SQL statements
was chosen to describe the available query options.

Second, the prototypical framework implementation was described to show the
feasibility of the query model. Here, the focus lay on the query framework and the
respective user interface using the parallel coordinates visualization.

The combination of these two parts offers knowledge workers a toolset to formu-
late complex queries in an interactive fashion to effectively and efficiently retrieve
information in an enterprise setting.

The evaluation of the framework based on the criteria of Tunkelang [2009]
showed a general applicability of the framework for search situations which de-
mand a higher user involvement as propagated by the HCIR community. The user
interface of the framework was mirrored against general characteristics for search
user interfaces [Shneiderman et al., 1997] which were mainly fulfilled.

The LFRP-search framework offers a comprehensive set of functions to improve
information access and retrieval. Nevertheless, the conception of the framework
only marks the beginning of further areas which have to be addressed. In the fol-
lowing, several promising fields for research are proposed.

• Assessment of the applicability of the framework in other domains. The
scenarios which were examined in this publication covered the engineering
domain. The framework itself was developed generically so that it can be ap-
plied to different domains. Thus, other information-oriented domains such as
medical imaging can benefit from a search solution such as the LFRP-search
framework. To support the diagnosis of illnesses, a search scenario could deal
with the analysis of computed tomography images. Doctors would be able to
search for similar images from earlier injuries from other patients based on an
example image from the current patient. The framework then would support
doctors in accessing past indications and diagnoses from former courses of ill-
nesses.
The applicability in this exemplary domain as well as other should be evalu-
ated further.

• Collaborative information seeking. An interesting research field is the col-
laborative information seeking domain which examines situations where mul-
tiple people are occupied with searching information together. Current search
systems lack the support for these types of scenarios and users often resort to
sending single search results back and forth between the participating users.
To prevent this cumbersome exchange of results, the search user interface of
the LFRP-framework could be enhanced by groupware functionality tailored
to search needs. This could include project spaces where collaborating users

Conclusion | 169

can save search results as well as queries in order to share them with each
other as sketched above with the dashboard enhancement in Section 5.3.5 on
page 146. This approach would help in situation where users are co-located
or distributed. Golovchinsky et al. [2009] introduce a taxonomy of collabora-
tion in online information seeking along four dimension to provide an initial
classification of current search systems.

• Integration of context-based information. The integration of contextual in-
formation about users can help to improve search results. Currently, the LFRP
prototype only resorts to using information which is solely provided by the
users themselves. Due to the aforementioned label effect, users are often not
stating all the information which would be necessary to satisfy their informa-
tion need. Context-based IR can help to include information about the users
and their search tasks by automatically augmenting the search query with ad-
ditional information. Section 2.6.6 on page 51 gave a brief overview of which
contextual information can be considered in search scenarios in enterprise re-
lated settings, an examination for the field of product development was given
in [Eckstein and Henrich, 2008a].
One downside of such an automatism is the reduction of transparency of the
search engine in providing results whose determination is more difficult to
comprehend for the users. A graduated approach can be the display of these
determined factors to the users which then can decide whether they include
the additional criteria or not.

• Integration in application landscape. An important aspect which was only
marginally touched is the integration of the framework in an existing applica-
tion landscape. Both the integration of the search tool into existing applica-
tions to make searching easier for end users as well as providing a standalone
search tool which allows users to access the host systems that contain the
found search results has to be considered.

• Performance improvements. The current realization of the LFRP proto-
type for the front and the back end mainly aimed for the demonstration of
the capabilities of the framework, neglecting in-depth performance consid-
erations. The current implementation relies on a combined approach of an
object-oriented database and a full text index (which internally uses an in-
verted index for the storage and retrieval of textual contents). Dash et al.
[2008] show how faceted search can be achieved with good performance us-
ing Apache Solr.
Further efforts should be made in evaluating whether other types of access
structures would improve the retrieval performance of the framework.
Another significant aspect are the used similarity search algorithms which can
negatively affect performance. This effect can be reduced by providing users
with initial faceted filtering options which reduce the amount of potential re-
sults which have to be considered for similarity search.

• Additional user evaluation of the search interface. This publication intro-
duced an approach to realize the LFRP-search framework in a user interface

170 | Conclusion

and showed its compliance with formal evaluation criteria. Additionally, a
user evaluation is recommended to discover further areas of improvement of
the whole framework.

In summary, this publication tried to sensitize the reader that complex search
situations as found in organizations can be supported by search user interfaces, but
for certain information needs additional user efforts are necessary to specify their
information needs. The LFRP-search framework tries to bring users and search user
interfaces closer together by using each other’s comparative advantage. The search
engine can process large amounts of data quickly and present it in a way which pro-
vides users with additional information about correlations and dependencies. The
users then can make their conclusions about the given results and make decisions
on how to refine the search query to satisfy their information needs.

On a broader scale, the chosen approach will help to improve the real-time access
of large data sets in organizations providing the ability to get more detailed insights
into crucial data. Connecting multiple streams of data help organizations to make
better, informed decision leading to a more “intelligent” organization. The LFRP-
search framework provides a building block of a comprehensive information access
strategy for the enterprise. This thesis should not mark an ending but a starting
point for further research to make Bush’s vision of the memex come true in the
enterprise.

Part IV

Appendix

Appendix A

List of Abbreviations

ACL Access Control List
API Application Programming Interface
ATC Air Traffic Control
BI Business Intelligence
BPEL Business Process Execution Language
CAD Computer-Aided Design
CADK Content Adapter Development Kit
CAS Content Acquisition System
CBIR Content-Based Image Retrieval
CLIR Cross-Language Information Retrieval
CM Content Management
CRM Customer Relationship Management
CSS Cascading Style Sheet
CSV comma-separated values
DBM Database Management
DDC Dewey Decimal Classification
DfX Design for X
DLS document level security
DM Document Management
DWH Data Warehouse
ECM Enterprise Content Management
EIS Executive Information System
ER Entity Relationship
ERP Enterprise Resource Planning
ESS Exploratory Search System
ETL Extract, Transform, and Load
EVE Endeca Virtual Engine
GSA Google Search Appliance
HCI Human-Computer Interaction
HCIR Human-Computer Information Retrieval
HFC Hierarchical Faceted Categories
HITS Hyperlink-Induced Topic Search

174 | List of Abbreviations

HTML Hyper Text Markup Language
IA Information Access
IAP Information Access Platform
IDE integrated development environment
IGES Initial Graphics Exchange Specification
IR Information Retrieval
ITL Information Transformation Layer
JAX-RPC Java API for XML-based RPC
JAX-WS Java API for XML-Web Services
JDBC Java Database Connectivity
JMS Java Message Service
JT Jupiter Tessellation
HTTP Hypertext Transfer Protocol
LDAP Lightweight Directory Access Protocol
LFRP Multi-Layer Faceted Search with Ranking using Parallel Coordinates
LM language modeling
MAMI Monitoring and Management Interface
MDM Master Data Management
MVC Model-View-Controller
NLP Natural Language Processing
NTLM NT LAN Manager
ODBC Open Database Connectivity
OEM Original Equipment Manufacturer
OLAP Online Analytical Processing
OWA Ordered Weighted Averaging
OWL Web Ontology Language
PDF Portable Document Format
PDM Product Data Management
PLM Product Lifecycle Management
PKI Public Key Infrastructure
POS Part-of-speech
QbE Query-by-Example
RDBMS Relational database management system
RDF Resource Description Framework
REST Representational State Transfer
RMI Remote Method Invocation
RSS Really Simple Syndication
RSV Retrieval-Status-Value
SAML Security Assertion Markup Language
SBA Search-Based Applications
SCA Service Component Architecture
SMILA SeMantic Information Logistics Architecture
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SCM Supply Chain Management

List of Abbreviations | 175

SPI Service Provider Interface
SQL Structured Query Language
SRM Supplier Relationship Management
SSO Single Sign-On
STEP STandard for the Exchange of Product model data
SVM Support Vector Machine
TREC Text REtrieval Conference
UDC Universal Decimal Classification
UIMA Unstructured Information Management Architecture
UML Unified Modeling Language
URL Uniform Resource Locator
VDI Verein Deutscher Ingenieure
WSDL Web Services Description Language
XML Extensible Markup Language
XML-RPC XML-Remote Procedure Call

Appendix B

LFRP–Search Framework Schema

B.1 LFRP XML Schema

1 <?xml ver s ion=” 1.0 ” ?>
<xs:schema xmlns:xs=” h t t p : //www.w3. org /2001/XMLSchema”

3 targetNamespace=” h t t p : //www. fo r f l ow . org ”
xmlns=” h t t p : //www. fo r f l ow . org ”

5 elementFormDefault=” q u a l i f i e d ”>

7 <xs :anno ta t ion>
<xs:documentat ion xml: lang=” en ”>

9 Schema fo r the LFRP−search framework .
</ xs:documentat ion>

11 </ xs :anno ta t ion>

13 <xs :e lement name=” f a c e t d e s c r i p t i o n ” type=” FacetDescr ip t ionType ” />

15 <xs:complexType name=” Face tDescr ip t ionType ”>
<xs :sequence>

17 <xs :e lement name=” f a c e t s ” type=” FacetsType ” />
<xs :e lement name=” e n t i t i e s ” type=” En t i t i e sType ” />

19 </ xs :sequence>
</ xs:complexType>

21
<xs:complexType name=” FacetsType ”>

23 <xs :sequence>
<xs :e lement name=” f a c e t ” type=” Face tDe f in i t i onType ”

25 maxOccurs=” unbounded ” />
</ xs :sequence>

27 </ xs:complexType>

29 <xs:complexType name=” Face tDe f in i t i onType ”>
<xs :sequence>

31 <xs :e lement name=” v i s u a l ” type=” VisualType ” minOccurs=”0”
maxOccurs=”1” />

<xs :e lement name=” ru l e ” type=” Creat ionRule ” minOccurs=”0”
maxOccurs=”1” />

33 </ xs :sequence>
<x s : a t t r i b u t e name=” id ” type=” x s : s t r i n g ” use=” requ i red ” />

178 | LFRP–Search Framework Schema

35 <x s : a t t r i b u t e name=” type ” use=” requ i red ” type=” FacetType ” />
<x s : a t t r i b u t e name=” mul t i Indexab le ” type=” xs :boolean ” use=” requ i red ”

/>
37 <x s : a t t r i b u t e name=” s i m i l a r i t y T y p e ” type=” S imi l a r i t yType ”

use=” op t iona l ” />
39 <x s : a t t r i b u t e name=” documentType ” type=” DocumentType ”

use=” op t iona l ” />
41 <x s : a t t r i b u t e name=” weightingEnabled ” type=” xs :boolean ” />

</ xs:complexType>
43

<xs:complexType name=” VisualType ”>
45 <xs :sequence>

<xs :e lement name=” comparators ” type=” ComparatorsType ” />
47 <xs :e lement name=” v i s u a l i z a t i o n t y p e s ” type=” V i sua l i z a t i onType s ” />

</ xs :sequence>
49 <x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” use=” requ i red ” />

<x s : a t t r i b u t e name=” iconPath ” type=” x s : s t r i n g ” />
51 <x s : a t t r i b u t e name=” mult iValued ” type=” xs :boolean ” use=” requ i red ” />

<x s : a t t r i b u t e name=” multiValueOp ”>
53 <xs:s impleType>

<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
55 <xs:enumerat ion value=”AND” />

<xs:enumerat ion value=”OR” />
57 <xs:enumerat ion value=”AND OR” />

</ x s : r e s t r i c t i o n>
59 </ xs:s impleType>

</ x s : a t t r i b u t e>
61 </ xs:complexType>

63 <xs:complexType name=” ComparatorsType ”>
<xs :sequence>

65 <xs :e lement name=” comparator ” type=” ComparatorType ”
maxOccurs=” unbounded ” />

67 </ xs :sequence>
</ xs:complexType>

69
<xs:complexType name=” ComparatorType ”>

71 <x s : a t t r i b u t e name=” d e f a u l t ” type=” xs :boolean ” />
<x s : a t t r i b u t e name=” classname ” type=” x s : s t r i n g ” use=” requ i red ” />

73 </ xs:complexType>

75 <xs:complexType name=” V i s u a l i z a t i o nTy pe s ”>
<xs :sequence minOccurs=”1” maxOccurs=” unbounded ”>

77 <xs :e lement name=” v i s u a l i z a t i o n t y p e ” type=” V i sua l i za t i onType ” />
</ xs :sequence>

79 </ xs:complexType>

81 <xs:complexType name=” En t i t i e s Typ e ”>
<xs :sequence>

83 <xs :e lement name=” e n t i t y ” type=” e n t i t y t y p e ” maxOccurs=” unbounded ”
/>

</ xs :sequence>
85 </ xs:complexType>

LFRP–Search Framework Schema | 179

87 <xs:complexType name=” e n t i t y t y p e ”>
<xs :sequence>

89 <xs :e lement name=” f a c e t ” type=” FacetRefType ” minOccurs=”0”
maxOccurs=” unbounded ” />

<xs :e lement name=” r e l a t i o n f a c e t ” type=” Relat ionFacetType ”
minOccurs=”0” maxOccurs=” unbounded ” />

91 <xs :e lement name=” dependency ” type=” DependencyType ” minOccurs=”0” /
>

<xs :e lement name=” parent−e n t i t y ”>
93 <xs:complexType>

<x s : a t t r i b u t e name=” id ” type=” x s : s t r i n g ” use=” requ i red ” />
95 </ xs:complexType>

</ xs :e lement>
97 </ xs :sequence>

<x s : a t t r i b u t e name=” id ” type=” x s : s t r i n g ” use=” requ i red ” />
99 <x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” use=” requ i red ” />

<!−−
101 d e c l a r e s t h i s e n t i t y as roo t e l ement o f the h i e r a r c h y . Only one

e n t i t y should be roo t
103 −−>

<x s : a t t r i b u t e name=” root ” type=” xs :boolean ” d e f a u l t=” f a l s e ” />
105 </ xs:complexType>

107 <xs:complexType name=” FacetRefType ”>
<x s : a t t r i b u t e name=” requ i red ” type=” xs :boolean ” use=” requ i red ” />

109 <x s : a t t r i b u t e name=” id ” type=” x s : s t r i n g ” use=” requ i red ” />
</ xs:complexType>

111
<xs:complexType name=” Relat ionFacetType ” >

113 <xs:complexContent>
<x s : ex t en s i on base=” FacetRefType ”>

115 <x s : a t t r i b u t e name=” t o E n t i t y I d ” type=” x s : s t r i n g ” />
<x s : a t t r i b u t e name=” t o E n t i t y F a c e t I d ” type=” x s : s t r i n g ” />

117 </ x s : ex t en s i on>
</ xs:complexContent>

119 </ xs:complexType>

121
<xs:complexType name=” DependencyType ”>

123 <xs :sequence>
<xs :e lement name=” from ”>

125 <xs:complexType>
<x s : a t t r i b u t e name=” id ” type=” x s : s t r i n g ” use=” requ i red ” />

127 </ xs:complexType>
</ xs :e lement>

129 <xs :e lement name=” mapping ” type=” DependencyMappingType ”
maxOccurs=” unbounded ” />

131 </ xs :sequence>
</ xs:complexType>

133
<xs:complexType name=” DependencyMappingType ”>

135 <xs :sequence>
<xs :e lement name=” value ” type=” x s : s t r i n g ” />

137 <xs :e lement name=” to ” type=” x s : s t r i n g ” />

180 | LFRP–Search Framework Schema

</ xs :sequence>
139 </ xs:complexType>

141 <xs:s impleType name=” FacetType ”>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

143 <xs:enumerat ion value=”NOMINAL”></ xs:enumerat ion>
<xs:enumerat ion value=”ORDINAL”></ xs:enumerat ion>

145 <xs:enumerat ion value=”FUNCTION INTERVAL”></ xs:enumerat ion>
<xs:enumerat ion value=”DATE”></ xs:enumerat ion>

147 <xs:enumerat ion value=”TEXT QUERY”></ xs:enumerat ion>
<xs:enumerat ion value=”QUERY BY EXAMPLE”></ xs:enumerat ion>

149 </ x s : r e s t r i c t i o n>
</ xs:s impleType>

151
<xs:s impleType name=” DocumentType ”>

153 <x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
<xs:enumerat ion value=”TEXT”></ xs:enumerat ion>

155 <xs:enumerat ion value=”CAD MODEL”></ xs:enumerat ion>
<xs:enumerat ion value=”TECHNICAL DRAWING”></ xs:enumerat ion>

157 </ x s : r e s t r i c t i o n>
</ xs:s impleType>

159
<xs:s impleType name=” S imi l a r i t yType ”>

161 <x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
<xs:enumerat ion value=”TEXT”></ xs:enumerat ion>

163 <xs:enumerat ion value=”GEOMETRY 2D”></ xs:enumerat ion>
<xs:enumerat ion value=”GEOMETRY 3D”></ xs:enumerat ion>

165 <xs:enumerat ion value=”TOPOLOGY 2D”></ xs:enumerat ion>
<xs:enumerat ion value=”TOPOLOGY 3D”></ xs:enumerat ion>

167 </ x s : r e s t r i c t i o n>
</ xs:s impleType>

169
<xs:complexType name=” V i sua l i za t i onType ”>

171 <x s : a t t r i b u t e name=” facetType ” type=” Visua lFacetType ” />
<x s : a t t r i b u t e name=” d e f a u l t ” type=” xs :boolean ” d e f a u l t=” f a l s e ” />

173 </ xs:complexType>

175 <xs:s impleType name=” Visua lFacetType ”>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

177 <xs:enumerat ion value=”NOMINAL”></ xs:enumerat ion>
<xs:enumerat ion value=”ORDINAL”></ xs:enumerat ion>

179 <xs:enumerat ion value=”FUNCTION INTERVAL”></ xs:enumerat ion>
<xs:enumerat ion value=”DATE”></ xs:enumerat ion>

181 </ x s : r e s t r i c t i o n>
</ xs:s impleType>

183 </ xs:schema>

Listing B.1: XML Schema for the LFRP-search framework.

LFRP–Search Framework Schema | 181

B.2 Example Schema for the Domain of Product De-
velopment

This exemplary schema for the LFRP-search framework describes exemplary facets
and an entity hierarchy of artifacts for the domain of product development. Many
of these artifacts and facets were identified in the different sub-projects of the joint
research project FORFLOW1.

1 <?xml ver s ion=” 1.0 ” ?>
< f a c e t d e s c r i p t i o n xmlns=” h t t p : //www. fo r f low . org ”

3 xmlns :x s i=” h t t p : //www.w3. org /2001/XMLSchema−i n s t ance ”
xs i : schemaLocat ion=” h t t p : //www. fo r f low . org facetSchema . xsd ”>

5
<!−− < f a c e t d e s c r i p t i o n>−−>

7 < f a c e t s>
<!−− input s i m i l a r i t y f a c e t s s t a r t −−>

9 <f a c e t id=”3dGeometry ” type=”QUERY BY EXAMPLE” s i m i l a r i t y T y p e=”
GEOMETRY 3D”

documentType=”CAD MODEL” mul t i Indexab le=” f a l s e ” weightingEnabled=”
t rue ”>

11 <v i s u a l name=”3D GEO−S i m i l a r i t y ” iconPath=” images/ f a c e t s /
qbe cad geometry . png” mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
13 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . search . f a c e t . comparator .
NumericalComparator ” />

15 </ comparators>
<v i s u a l i z a t i o n t y p e s>

17 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
d e f a u l t=” t rue ” />

19 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

21 </ f a c e t>

23 <f a c e t id=”2dGeometry ” type=”QUERY BY EXAMPLE” s i m i l a r i t y T y p e=”
GEOMETRY 2D”

documentType=”TECHNICAL DRAWING” mul t i Indexab le=” f a l s e ”
25 weightingEnabled=” t rue ”>

<v i s u a l name=”2D GEO−S i m i l a r i t y ” iconPath=” images/ f a c e t s /
qbe drawing geometry . png” mult iValued=” t rue ” multiValueOp=”OR”>

27 <comparators>
<comparator d e f a u l t=” t rue ”

29 classname=” org . fo r f l ow . search . f a c e t . comparator .
NumericalComparator ” />

</ comparators>
31 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
33 d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
35 </ v i s u a l>

</ f a c e t>

1For more information refer to Section 1.5 on page 10.

182 | LFRP–Search Framework Schema

37
<f a c e t id=”2dTopology ” type=”QUERY BY EXAMPLE” s i m i l a r i t y T y p e=”

TOPOLOGY 2D”
39 documentType=”TECHNICAL DRAWING” mul t i Indexab le=” f a l s e ”

weightingEnabled=” t rue ”>
41 <v i s u a l name=”2D TOP−S i m i l a r i t y ” iconPath=” images/ f a c e t s /

qbe drawing topology . png” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

43 <comparator d e f a u l t=” t rue ”
classname=” org . fo r f l ow . search . f a c e t . comparator .

NumericalComparator ” />
45 </ comparators>

<v i s u a l i z a t i o n t y p e s>
47 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”

d e f a u l t=” t rue ” />
49 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
51 </ f a c e t>

53 <f a c e t id=” t ex t que ry ” type=”TEXT QUERY” weightingEnabled=” t rue ”
documentType=”TEXT” mul t i Indexab le=” f a l s e ”>

55 <v i s u a l name=” Text query ” iconPath=” images/ f a c e t s / t ex t que ry . png”
mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
57 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . search . f a c e t . comparator .
NumericalComparator ” />

59 </ comparators>
<v i s u a l i z a t i o n t y p e s>

61 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
d e f a u l t=” t rue ” />

63 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

65 </ f a c e t>

67
<!−− a t t r i b u t e f a c e t d e f i n i t i o n −−>

69 <f a c e t id=” a r t i f a c t I d ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
</ f a c e t>

71
<f a c e t id=” a r t i f a c t T y p e ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

73 <v i s u a l name=” A r t i f a c t Type ” mult iValued=” t rue ”
multiValueOp=”AND”>

75 <comparators>
<comparator d e f a u l t=” t rue ”

77 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
79 </ comparators>

<v i s u a l i z a t i o n t y p e s>
81 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
83 </ v i s u a l>

</ f a c e t>

LFRP–Search Framework Schema | 183

85
<f a c e t id=” a r t i f a c t P a t h ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

87 </ f a c e t>

89 <!−− path to an ove rv i ew page o f the a r t i f a c t con ta ined in the
sys tem the s ea r ch framework i s embedded in −−>

91 <f a c e t id=” embeddedSystemPath ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”
>

</ f a c e t>
93

<f a c e t id=” a r t i f a c t H i e r a r c h y P a t h ” type=”NOMINAL” mul t i Indexab le=”
f a l s e ”>

95 </ f a c e t>

97 <f a c e t id=” gu iDes c r i p t i on ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
</ f a c e t>

99
<!−− document f a c e t s −−>

101 <f a c e t id=” documenttype ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=”Document Type ” mult iValued=” t rue ” multiValueOp=”OR”>

103 <comparators>
<comparator d e f a u l t=” t rue ”

105 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
107 </ comparators>

<v i s u a l i z a t i o n t y p e s>
109 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
111 </ v i s u a l>

</ f a c e t>
113

<f a c e t id=” f i l e name ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
115 </ f a c e t>

117 <f a c e t id=” f i l e t y p e ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” F i l e Type ” mult iValued=” t rue ” multiValueOp=”OR”>

119 <comparators>
<comparator d e f a u l t=” t rue ”

121 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
123 </ comparators>

<v i s u a l i z a t i o n t y p e s>
125 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
127 </ v i s u a l>

</ f a c e t>
129

<f a c e t id=” c r e a t i o n d a t e ” type=”DATE” mul t i Indexab le=” f a l s e ”>
131 <v i s u a l name=” Creat ion Date ” mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
133 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

184 | LFRP–Search Framework Schema

135 <comparator classname=” org . fo r f l ow . s o r t a b l e . DateComparator ” />
</ comparators>

137 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”DATE”

139 d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

141 </ v i s u a l>
</ f a c e t>

143
<f a c e t id=” c rea t ing phase ” type=”ORDINAL” mul t i Indexab le=” f a l s e ”>

145 <v i s u a l name=” Creat ion Phase ” mult iValued=” t rue ” multiValueOp=”OR”
>

<comparators>
147 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
149 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
</ comparators>

151 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”ORDINAL” d e f a u l t=” t rue ” />

153 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

155 </ f a c e t>

157 <f a c e t id=” degreeOfConcreteness ” type=”ORDINAL” mul t i Indexab le=”
f a l s e ”>

<v i s u a l name=” Concreteness ” mult iValued=” t rue ” multiValueOp=”OR”>
159 <comparators>

<comparator d e f a u l t=” t rue ”
161 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

163 </ comparators>
<v i s u a l i z a t i o n t y p e s>

165 <v i s u a l i z a t i o n t y p e facetType=”ORDINAL”
d e f a u l t=” t rue ” />

167 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

169 </ f a c e t>

171 <f a c e t id=” con ten tDesc r ip t i on ” type=”ORDINAL” mul t i Indexab le=” f a l s e ”
>

<v i s u a l name=” Content Desc r i p t i on ” mult iValued=” t rue ” multiValueOp
=”OR”>

173 <comparators>
<comparator d e f a u l t=” t rue ”

175 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
177 </ comparators>

<v i s u a l i z a t i o n t y p e s>
179 <v i s u a l i z a t i o n t y p e facetType=”ORDINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
181 </ v i s u a l>

LFRP–Search Framework Schema | 185

</ f a c e t>
183

<f a c e t id=” purposeOfUse ” type=”ORDINAL” mul t i Indexab le=” f a l s e ”>
185 <v i s u a l name=” Purpose ” mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
187 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
189 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
</ comparators>

191 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”ORDINAL” d e f a u l t=” t rue ” />

193 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

195 </ f a c e t>

197 <f a c e t id=” degreeOfCrossL inking ” type=”ORDINAL” mul t i Indexab le=”
f a l s e ”>

<v i s u a l name=” Degree Cross−Links ” mult iValued=” t rue ” multiValueOp=
”OR”>

199 <comparators>
<comparator d e f a u l t=” t rue ”

201 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
203 </ comparators>

<v i s u a l i z a t i o n t y p e s>
205 <v i s u a l i z a t i o n t y p e facetType=”ORDINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
207 </ v i s u a l>

</ f a c e t>
209

<f a c e t id=” developmentStatus ” type=”ORDINAL” mul t i Indexab le=” f a l s e ”>
211 <v i s u a l name=” Development S ta tus ” mult iValued=” t rue ” multiValueOp=

”OR”>
<comparators>

213 <comparator d e f a u l t=” t rue ”
classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

215 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

</ comparators>
217 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”ORDINAL”
219 d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
221 </ v i s u a l>

</ f a c e t>
223

<f a c e t id=” d o c u m e n t l i f e c y c l e s t a t e ” type=”ORDINAL” mul t i Indexab le=”
f a l s e ”>

225 <v i s u a l name=”Document LC” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

227 <comparator d e f a u l t=” t rue ”
classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

186 | LFRP–Search Framework Schema

229 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

</ comparators>
231 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”ORDINAL” d e f a u l t=” t rue ” />
233 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
235 </ f a c e t>

237 <f a c e t id=” document degree of matur i ty ” type=”FUNCTION INTERVAL”
mul t i Indexab le=” f a l s e ”>

<v i s u a l name=”Document DoM” mult iValued=” t rue ” multiValueOp=”OR”>
239 <comparators>

<comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

241 </ comparators>
<v i s u a l i z a t i o n t y p e s>

243 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
d e f a u l t=” t rue ” />

245 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

247 </ f a c e t>

249 <f a c e t id=” drawing number ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Drawing No” mult iValued=” t rue ” multiValueOp=”OR”>

251 <comparators>
<comparator d e f a u l t=” t rue ”

253 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
255 </ comparators>

<v i s u a l i z a t i o n t y p e s>
257 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
259 </ v i s u a l>

</ f a c e t>
261

<!−− person f a c e t s −−>
263 <f a c e t id=” surname ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

<v i s u a l name=”Surname” mult iValued=” t rue ” multiValueOp=”OR”>
265 <comparators>

<comparator d e f a u l t=” t rue ”
267 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

269 </ comparators>
<v i s u a l i z a t i o n t y p e s>

271 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

273 </ v i s u a l>
</ f a c e t>

275
<f a c e t id=” r o l e ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

277 <v i s u a l name=” Role ” mult iValued=” t rue ” multiValueOp=”OR”>

LFRP–Search Framework Schema | 187

<comparators>
279 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
281 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
</ comparators>

283 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

285 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

287 </ f a c e t>

289 <f a c e t id=” department ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Department ” mult iValued=” t rue ” multiValueOp=”OR”>

291 <comparators>
<comparator d e f a u l t=” t rue ”

293 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
295 </ comparators>

<v i s u a l i z a t i o n t y p e s>
297 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
299 </ v i s u a l>

</ f a c e t>
301

<!−− produc t f a c e t s −−>
303 <f a c e t id=” product name ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

</ f a c e t>
305

<f a c e t id=” product group ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
307 <v i s u a l name=” Product Group ” mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
309 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
311 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
</ comparators>

313 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

315 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

317 </ f a c e t>

319 <f a c e t id=” p r o d u c t g r a n u l a r i t y ” type=”NOMINAL” mul t i Indexab le=” f a l s e
”>

<v i s u a l name=” Granu la r i t y ” mult iValued=” t rue ” multiValueOp=”OR”>
321 <comparators>

<comparator d e f a u l t=” t rue ”
323 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

325 </ comparators>
<v i s u a l i z a t i o n t y p e s>

188 | LFRP–Search Framework Schema

327 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

329 </ v i s u a l>
</ f a c e t>

331
<f a c e t id=” procurement type ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

333 <v i s u a l name=” Procurement Type ” mult iValued=” t rue ”
multiValueOp=”OR”>

335 <comparators>
<comparator d e f a u l t=” t rue ”

337 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
339 </ comparators>

<v i s u a l i z a t i o n t y p e s>
341 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL”

d e f a u l t=” t rue ” />
343 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
345 </ f a c e t>

347 <f a c e t id=” func t ion ” type=”NOMINAL” mul t i Indexab le=” t rue ”>
<v i s u a l name=” Product Funct ion ” mult iValued=” t rue ”

349 multiValueOp=”OR”>
<comparators>

351 <comparator d e f a u l t=” t rue ”
classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

353 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

</ comparators>
355 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
357 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
359 </ f a c e t>

361 <f a c e t id=” weight ” type=”FUNCTION INTERVAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Weight ” mult iValued=” t rue ” multiValueOp=”OR”>

363 <comparators>
<comparator classname=” org . fo r f l ow . s o r t a b l e .

NumericalComparator ” />
365 </ comparators>

<v i s u a l i z a t i o n t y p e s>
367 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”

d e f a u l t=” t rue ” />
369 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
371 </ f a c e t>

373 <f a c e t id=” s e a l t y p e ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Seal Type ” mult iValued=” t rue ” multiValueOp=”OR”>

375 <comparators>
<comparator d e f a u l t=” t rue ” classname=” org . fo r f l ow . s o r t a b l e .

FacetCountComparator ” />

LFRP–Search Framework Schema | 189

377 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

</ comparators>
379 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
381 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
383 </ f a c e t>

385 <f a c e t id=” outs ideRadius ” type=”FUNCTION INTERVAL” mul t i Indexab le=”
f a l s e ”>

<v i s u a l name=” Outer Radius ” mult iValued=” t rue ” multiValueOp=”OR”>
387 <comparators>

<comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

389 </ comparators>
<v i s u a l i z a t i o n t y p e s>

391 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
d e f a u l t=” t rue ” />

393 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

395 </ f a c e t>

397 <f a c e t id=” motion type ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Motion Type ” mult iValued=” t rue ” multiValueOp=”OR”>

399 <comparators>
<comparator d e f a u l t=” t rue ”

401 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
403 </ comparators>

<v i s u a l i z a t i o n t y p e s>
405 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
407 </ v i s u a l>

</ f a c e t>
409

<f a c e t id=” ins ideRad ius ” type=”FUNCTION INTERVAL” mul t i Indexab le=”
f a l s e ”>

411 <v i s u a l name=” Inner Radius ” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

413 <comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

</ comparators>
415 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
417 d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
419 </ v i s u a l>

</ f a c e t>
421

<f a c e t id=” t h i c k n e s s ” type=”FUNCTION INTERVAL” mul t i Indexab le=” f a l s e
”>

423 <v i s u a l name=” Thickness ” mult iValued=” t rue ” multiValueOp=”OR”>

190 | LFRP–Search Framework Schema

<comparators>
425 <comparator classname=” org . fo r f l ow . s o r t a b l e .

NumericalComparator ” />
</ comparators>

427 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”

429 d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

431 </ v i s u a l>
</ f a c e t>

433
<f a c e t id=” he ight ” type=”FUNCTION INTERVAL” mul t i Indexab le=” f a l s e ”>

435 <v i s u a l name=” Height ” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

437 <comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

</ comparators>
439 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
441 d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
443 </ v i s u a l>

</ f a c e t>
445

<f a c e t id=” thread ing type ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
447 <v i s u a l name=” Threading Type ” mult iValued=” t rue ” multiValueOp=”OR”

>
<comparators>

449 <comparator d e f a u l t=” t rue ”
classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

451 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

</ comparators>
453 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
455 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
457 </ f a c e t>

459 <f a c e t id=” nominal thread diameter ” type=”FUNCTION INTERVAL”
mul t i Indexab le=” f a l s e ”>

<v i s u a l name=”nom. Thread Diameter ” mult iValued=” t rue ”
multiValueOp=”OR”>

461 <comparators>
<comparator classname=” org . fo r f l ow . s o r t a b l e .

NumericalComparator ” />
463 </ comparators>

<v i s u a l i z a t i o n t y p e s>
465 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”

d e f a u l t=” t rue ” />
467 </ v i s u a l i z a t i o n t y p e s>

</ v i s u a l>
469 </ f a c e t>

LFRP–Search Framework Schema | 191

471 <f a c e t id=” screw type ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Screw Type ” mult iValued=” t rue ” multiValueOp=”OR”>

473 <comparators>
<comparator d e f a u l t=” t rue ”

475 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
477 </ comparators>

<v i s u a l i z a t i o n t y p e s>
479 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
481 </ v i s u a l>

</ f a c e t>
483

<f a c e t id=” head shape ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
485 <v i s u a l name=”Head Shape ” mult iValued=” t rue ” multiValueOp=”OR”>

<comparators>
487 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
489 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
</ comparators>

491 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

493 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

495 </ f a c e t>

497 <f a c e t id=” head height ” type=”FUNCTION INTERVAL” mul t i Indexab le=”
f a l s e ”>

<v i s u a l name=”Head Height ” mult iValued=” t rue ” multiValueOp=”OR”>
499 <comparators>

<comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

501 </ comparators>
<v i s u a l i z a t i o n t y p e s>

503 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
d e f a u l t=” t rue ” />

505 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

507 </ f a c e t>

509 <f a c e t id=” length threaded end ” type=”FUNCTION INTERVAL”
mul t i Indexab le=” f a l s e ”>

<v i s u a l name=” Threaded End Length ” mult iValued=” t rue ” multiValueOp
=”OR”>

511 <comparators>
<comparator classname=” org . fo r f l ow . s o r t a b l e .

NumericalComparator ” />
513 </ comparators>

<v i s u a l i z a t i o n t y p e s>
515 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”

d e f a u l t=” t rue ” />
517 </ v i s u a l i z a t i o n t y p e s>

192 | LFRP–Search Framework Schema

</ v i s u a l>
519 </ f a c e t>

521 <f a c e t id=” head diameter ” type=”FUNCTION INTERVAL” mul t i Indexab le=”
f a l s e ”>

<v i s u a l name=”Head Diameter ” mult iValued=” t rue ” multiValueOp=”OR”>
523 <comparators>

<comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

525 </ comparators>
<v i s u a l i z a t i o n t y p e s>

527 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL”
d e f a u l t=” t rue ” />

529 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

531 </ f a c e t>

533 <f a c e t id=” knur l t ype ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Knurl Type ” mult iValued=” t rue ” multiValueOp=”OR”>

535 <comparators>
<comparator d e f a u l t=” t rue ”

537 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
539 </ comparators>

<v i s u a l i z a t i o n t y p e s>
541 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
543 </ v i s u a l>

</ f a c e t>
545

<f a c e t id=” r o l l i n g e l e m e n t t y p e ” type=”NOMINAL” mul t i Indexab le=”
f a l s e ”>

547 <v i s u a l name=” Ro l l i ng Element ” mult iValued=” t rue ” multiValueOp=”OR
”>

<comparators>
549 <comparator d e f a u l t=” t rue ”

classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
551 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
</ comparators>

553 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

555 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

557 </ f a c e t>

559 <!−− p r o j e c t f a c e t s −−>
<f a c e t id=” project name ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

561 <v i s u a l name=” P r o j e c t Name” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

563 <comparator d e f a u l t=” t rue ”
classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

565 <comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

LFRP–Search Framework Schema | 193

” />
</ comparators>

567 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

569 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

571 </ f a c e t>

573 <f a c e t id=” s t a r t d a t e ” type=”DATE” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” S t a r t Date ” mult iValued=” t rue ” multiValueOp=”OR”>

575 <comparators>
<comparator classname=” org . fo r f l ow . s o r t a b l e . DateComparator ” />

577 </ comparators>
<v i s u a l i z a t i o n t y p e s>

579 <v i s u a l i z a t i o n t y p e facetType=”DATE” d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

581 </ v i s u a l>
</ f a c e t>

583
<f a c e t id=” f i n i s h d a t e ” type=”DATE” mul t i Indexab le=” f a l s e ”>

585 <v i s u a l name=” F in i sh Date ” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

587 <comparator classname=” org . fo r f l ow . s o r t a b l e . DateComparator ” />
</ comparators>

589 <v i s u a l i z a t i o n t y p e s>
<v i s u a l i z a t i o n t y p e facetType=”DATE” d e f a u l t=” t rue ” />

591 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

593 </ f a c e t>

595 <f a c e t id=” p r o j e c t d e g r e e o f m a t u r i t y ” type=”FUNCTION INTERVAL”
mul t i Indexab le=” f a l s e ”>

<v i s u a l name=” P r o j e c t DoM” mult iValued=” t rue ” multiValueOp=”OR”>
597 <comparators>

<comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

599 </ comparators>
<v i s u a l i z a t i o n t y p e s>

601 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL” d e f a u l t=” t rue
” />

</ v i s u a l i z a t i o n t y p e s>
603 </ v i s u a l>

</ f a c e t>
605

<f a c e t id=” p r o j e c t d e s c r i p t i o n ” type=”NOMINAL” mul t i Indexab le=” t rue ”
>

607 </ f a c e t>

609 <!−− mate r i a l f a c e t s −−>
<f a c e t id=” material name ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

611 </ f a c e t>

613 <f a c e t id=” mater ia l group ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=” Mater ia l Group ” mult iValued=” t rue ” multiValueOp=”OR”

194 | LFRP–Search Framework Schema

>
615 <comparators>

<comparator d e f a u l t=” t rue ”
617 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

619 </ comparators>
<v i s u a l i z a t i o n t y p e s>

621 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

623 </ v i s u a l>
</ f a c e t>

625
<f a c e t id=” dens i t y ” type=”FUNCTION INTERVAL” mul t i Indexab le=” f a l s e ”>

627 <v i s u a l name=” Dens i ty ” mult iValued=” t rue ” multiValueOp=”OR”>
<comparators>

629 <comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

</ comparators>
631 <v i s u a l i z a t i o n t y p e s>

<v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL” d e f a u l t=” t rue
” />

633 </ v i s u a l i z a t i o n t y p e s>
</ v i s u a l>

635 </ f a c e t>

637 <f a c e t id=” eModulus ” type=”FUNCTION INTERVAL” mul t i Indexab le=” f a l s e ”
>

<v i s u a l name=”E Modulus ” mult iValued=” t rue ” multiValueOp=”OR”>
639 <comparators>

<comparator classname=” org . fo r f l ow . s o r t a b l e .
NumericalComparator ” />

641 </ comparators>
<v i s u a l i z a t i o n t y p e s>

643 <v i s u a l i z a t i o n t y p e facetType=”FUNCTION INTERVAL” d e f a u l t=” t rue
” />

</ v i s u a l i z a t i o n t y p e s>
645 </ v i s u a l>

</ f a c e t>
647

<!−− f a c e t s which r e p r e s e n t r e l a t i o n s −−>
649

<!−− author f a c e t f o r documents −−>
651 <f a c e t id=” author ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>

<v i s u a l name=” Author ” mult iValued=” t rue ” multiValueOp=”OR”>
653 <comparators>

<comparator d e f a u l t=” t rue ”
655 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

657 </ comparators>
<v i s u a l i z a t i o n t y p e s>

659 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

LFRP–Search Framework Schema | 195

661 </ v i s u a l>
</ f a c e t>

663
<!−− Works in f a c e t f o r p e r son s −−>

665 <f a c e t id=” w o r k s i n p r o j e c t ” type=”NOMINAL” mul t i Indexab le=” f a l s e ”>
<v i s u a l name=”Works in ” mult iValued=” t rue ” multiValueOp=”OR”>

667 <comparators>
<comparator d e f a u l t=” t rue ”

669 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
671 </ comparators>

<v i s u a l i z a t i o n t y p e s>
673 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
675 </ v i s u a l>

</ f a c e t>
677

<!−− Used in f o r m a t e r i a l s p o i n t i n g to p roduc t s −−>
679 <f a c e t id=” i s u sed in p roduc t g roup ” type=”NOMINAL” mul t i Indexab le=”

f a l s e ”>
<v i s u a l name=” Used in Product Group ” mult iValued=” t rue ”

multiValueOp=”OR”>
681 <comparators>

<comparator d e f a u l t=” t rue ”
683 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />

<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator
” />

685 </ comparators>
<v i s u a l i z a t i o n t y p e s>

687 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />
</ v i s u a l i z a t i o n t y p e s>

689 </ v i s u a l>
</ f a c e t>

691
<!−− I s made o f (mat e r i a l) f o r p roduc t s −−>

693 <f a c e t id=” i s made o f mate r i a l g roup ” type=”NOMINAL” mul t i Indexab le=
” f a l s e ”>

<v i s u a l name=” I s made of Mater ia l Group ” mult iValued=” t rue ”
multiValueOp=”OR”>

695 <comparators>
<comparator d e f a u l t=” t rue ”

697 classname=” org . fo r f l ow . s o r t a b l e . FacetCountComparator ” />
<comparator classname=” org . fo r f l ow . s o r t a b l e . AlphaNumComparator

” />
699 </ comparators>

<v i s u a l i z a t i o n t y p e s>
701 <v i s u a l i z a t i o n t y p e facetType=”NOMINAL” d e f a u l t=” t rue ” />

</ v i s u a l i z a t i o n t y p e s>
703 </ v i s u a l>

</ f a c e t>
705 </ f a c e t s>

707 <!−− e n t i t y d e f i n i t i o n s −−>

196 | LFRP–Search Framework Schema

<e n t i t i e s>
709 <e n t i t y id=” a r t i f a c t ” name=” A r t i f a c t ” root=” t rue ”>

<f a c e t requ i red=” t rue ” id=” a r t i f a c t I d ” />
711 <f a c e t requ i red=” t rue ” id=” a r t i f a c t P a t h ” />

<f a c e t requ i red=” t rue ” id=” a r t i f a c t T y p e ” />
713 <f a c e t requ i red=” f a l s e ” id=” embeddedSystemPath ” />

<f a c e t requ i red=” f a l s e ” id=” a r t i f a c t H i e r a r c h y P a t h ” />
715 <f a c e t requ i red=” f a l s e ” id=” gu iDes c r i p t i on ” />

717 <dependency>
<from id=” a r t i f a c t T y p e ” />

719 <mapping>
<value>PRODUCT</ value>

721 <to>product</ to>
</mapping>

723 <mapping>
<value>DOCUMENT</ value>

725 <to>document</ to>
</mapping>

727 <mapping>
<value>PERSON</ value>

729 <to>person</ to>
</mapping>

731 <mapping>
<value>MATERIAL</ value>

733 <to>mater i a l</ to>
</mapping>

735 <mapping>
<value>PROJECT</ value>

737 <to>p r o j e c t</ to>
</mapping>

739 </dependency>
<parent−e n t i t y id=” a r t i f a c t ” />

741 </ e n t i t y>

743 <e n t i t y id=” person ” name=” Person ”>
<f a c e t requ i red=” t rue ” id=” r o l e ” />

745 <f a c e t requ i red=” f a l s e ” id=” surname ” />

747 <dependency>
<from id=” r o l e ” />

749 <mapping>
<value>Employee</ value>

751 <to>employee</ to>
</mapping>

753 </dependency>
<parent−e n t i t y id=” a r t i f a c t ” />

755 </ e n t i t y>

757 <e n t i t y id=” employee ” name=” Employee ”>
<f a c e t requ i red=” f a l s e ” id=” department ” />

759
<!−− r e l a t i o n s to o the r l a y e r s −−>

761 <r e l a t i o n f a c e t requ i red=” f a l s e ” id=” w o r k s i n p r o j e c t ” t o E n t i t y I d=”

LFRP–Search Framework Schema | 197

p r o j e c t ” t o E n t i t y F a c e t I d=” project name ” />

763 <parent−e n t i t y id=” person ” />
</ e n t i t y>

765
<e n t i t y id=” p r o j e c t ” name=” P r o j e c t ”>

767 <f a c e t requ i red=” f a l s e ” id=” project name ” />
<f a c e t requ i red=” f a l s e ” id=” s t a r t d a t e ” />

769 <f a c e t requ i red=” f a l s e ” id=” f i n i s h d a t e ” />
<f a c e t requ i red=” f a l s e ” id=” p r o j e c t d e g r e e o f m a t u r i t y ” />

771 <f a c e t requ i red=” f a l s e ” id=” p r o j e c t d e s c r i p t i o n ” />

773 <parent−e n t i t y id=” a r t i f a c t ” />
</ e n t i t y>

775
<e n t i t y id=” mate r i a l ” name=” Mater ia l ”>

777 <f a c e t requ i red=” f a l s e ” id=” material name ” />
<f a c e t requ i red=” f a l s e ” id=” mater ia l group ” />

779 <f a c e t requ i red=” f a l s e ” id=” dens i t y ” />
<f a c e t requ i red=” f a l s e ” id=” eModulus ” />

781
<!−− r e l a t i o n s to o the r l a y e r s −−>

783 <r e l a t i o n f a c e t requ i red=” f a l s e ” id=” i s u sed in p roduc t g roup ”
t o E n t i t y I d=” product ” t o E n t i t y F a c e t I d=” product group ” />

785 <parent−e n t i t y id=” a r t i f a c t ” />
</ e n t i t y>

787
<e n t i t y id=” document ” name=”Document ”>

789 <f a c e t requ i red=” t rue ” id=” documenttype ” />
<f a c e t requ i red=” f a l s e ” id=” f i l e name ” />

791 <f a c e t requ i red=” f a l s e ” id=” f i l e t y p e ” />
<f a c e t requ i red=” f a l s e ” id=” c r e a t i o n d a t e ” />

793 <f a c e t requ i red=” f a l s e ” id=” c rea t ing phase ” />
<f a c e t requ i red=” f a l s e ” id=” degreeOfConcreteness ” />

795 <f a c e t requ i red=” f a l s e ” id=” con ten tDesc r ip t i on ” />
<f a c e t requ i red=” f a l s e ” id=” purposeOfUse ” />

797 <f a c e t requ i red=” f a l s e ” id=” degreeOfCrossL inking ” />
<f a c e t requ i red=” f a l s e ” id=” developmentStatus ” />

799 <f a c e t requ i red=” f a l s e ” id=” d o c u m e n t l i f e c y c l e s t a t e ” />
<f a c e t requ i red=” f a l s e ” id=” document degree of matur i ty ” />

801
<!−− r e l a t i o n s to o the r l a y e r s −−>

803 <r e l a t i o n f a c e t requ i red=” f a l s e ” id=” author ” t o E n t i t y I d=” person ”
t o E n t i t y F a c e t I d=” surname ” />

805 <dependency>
<from id=” documenttype ” />

807 <mapping>
<value>TECHNICAL DRAWING</ value>

809 <to>drawing</ to>
</mapping>

811 </dependency>
<parent−e n t i t y id=” a r t i f a c t ” />

198 | LFRP–Search Framework Schema

813 </ e n t i t y>

815 <e n t i t y id=” drawing ” name=” Technica l Drawing ”>
<f a c e t requ i red=” f a l s e ” id=” drawing number ” />

817 <parent−e n t i t y id=” document ” />
</ e n t i t y>

819
<e n t i t y id=” product ” name=” Product ”>

821 <f a c e t requ i red=” t rue ” id=” product group ” />
<f a c e t requ i red=” t rue ” id=” procurement type ” />

823 <f a c e t requ i red=” f a l s e ” id=” product name ” />
<f a c e t requ i red=” f a l s e ” id=” p r o d u c t g r a n u l a r i t y ” />

825 <f a c e t requ i red=” f a l s e ” id=” func t ion ” />
<f a c e t requ i red=” f a l s e ” id=” weight ” />

827
<!−− r e l a t i o n s to o the r l a y e r s −−>

829 <r e l a t i o n f a c e t requ i red=” f a l s e ” id=” i s made o f mate r i a l g roup ”
t o E n t i t y I d=” mate r i a l ” t o E n t i t y F a c e t I d=” material name ” />

831 <dependency>
<from id=” product group ” />

833 <mapping>
<value>Seal</ value>

835 <to>s e a l</ to>
</mapping>

837 <mapping>
<value>Bearing</ value>

839 <to>bear ing</ to>
</mapping>

841 <mapping>
<value>Screw</ value>

843 <to>screw</ to>
</mapping>

845 </dependency>

847 <parent−e n t i t y id=” a r t i f a c t ” />
</ e n t i t y>

849
</ e n t i t y>

851
<e n t i t y id=” s e a l ” name=” Seal ”>

853 <f a c e t requ i red=” f a l s e ” id=” motion type ” />
<f a c e t requ i red=” f a l s e ” id=” outs ideRadius ” />

855 <f a c e t requ i red=” t rue ” id=” s e a l t y p e ” />

857 <dependency>
<from id=” s e a l t y p e ” />

859 <mapping>
<value>O−Ring</ value>

861 <to>oRing</ to>
</mapping>

863 <mapping>
<value>Disk</ value>

865 <to>d i sk</ to>

LFRP–Search Framework Schema | 199

</mapping>
867 <mapping>

<value>F loa t ing Ring Seal</ value>
869 <to>f l o a t i n g R i n g S e a l</ to>

</mapping>
871 </dependency>

<parent−e n t i t y id=” product ” />
873 </ e n t i t y>

875 <e n t i t y id=” oRing ” name=”O−Ring ”>
<f a c e t requ i red=” f a l s e ” id=” ins ideRad ius ” />

877 <f a c e t requ i red=” f a l s e ” id=” t h i c k n e s s ” />

879 <parent−e n t i t y id=” s e a l ” />
</ e n t i t y>

881
<e n t i t y id=” d i sk ” name=” Disk ”>

883 <f a c e t requ i red=” f a l s e ” id=” ins ideRad ius ” />
<f a c e t requ i red=” f a l s e ” id=” he ight ” />

885
<parent−e n t i t y id=” s e a l ” />

887 </ e n t i t y>

889 <e n t i t y id=” f l o a t i n g R i n g S e a l ” name=” F loa t ing Ring Seal ” >
<parent−e n t i t y id=” s e a l ” />

891 </ e n t i t y>

893 <e n t i t y id=” bear ing ” name=” Bearing ”>
<f a c e t requ i red=” t rue ” id=” r o l l i n g e l e m e n t t y p e ” />

895
<dependency>

897 <from id=” r o l l i n g e l e m e n t t y p e ” />
<mapping>

899 <value>Needle Bearing</ value>
<to>needleBear ing</ to>

901 </mapping>
<mapping>

903 <value>Cyl inder R o l l e r Bearing</ value>
<to>c y l i n d e r R o l l e r B e a r i n g</ to>

905 </mapping>
<mapping>

907 <value>B a l l Bearing</ value>
<to>ba l lBea r ing</ to>

909 </mapping>
</dependency>

911
<parent−e n t i t y id=” product ” />

913 </ e n t i t y>

915 <e n t i t y id=” needleBear ing ” name=” Needle Bearing ” >
<parent−e n t i t y id=” bear ing ” />

917 </ e n t i t y>

919 <e n t i t y id=” c y l i n d e r R o l l e r B e a r i n g ” name=” Cyl inder R o l l e r Bearing ” >

200 | LFRP–Search Framework Schema

<parent−e n t i t y id=” bear ing ” />
921 </ e n t i t y>

923 <e n t i t y id=” ba l lBea r ing ” name=” B a l l Bearing ” >
<parent−e n t i t y id=” bear ing ” />

925 </ e n t i t y>

927 <e n t i t y id=” screw ” name=” Screw ”>
<f a c e t requ i red=” f a l s e ” id=” thread ing type ” />

929 <f a c e t requ i red=” f a l s e ” id=” nominal thread diameter ” />
<f a c e t requ i red=” t rue ” id=” screw type ” />

931
<dependency>

933 <from id=” screw type ” />
<mapping>

935 <value>Headscrew</ value>
<to>headScrew</ to>

937 </mapping>
<mapping>

939 <value>Stud Screw</ value>
<to>studScrew</ to>

941 </mapping>
</dependency>

943
<parent−e n t i t y id=” product ” />

945 </ e n t i t y>

947 <e n t i t y id=” headScrew ” name=”Head Screw ”>
<f a c e t requ i red=” t rue ” id=” head shape ” />

949 <f a c e t requ i red=” f a l s e ” id=” head height ” />

951 <dependency>
<from id=” head shape ” />

953 <mapping>
<value>Hexagon Head Screw</ value>

955 <to>hexagonHeadScrew</ to>
</mapping>

957 <mapping>
<value>Cyl inder Head Bo l t</ value>

959 <to>cy l inderHeadBol t</ to>
</mapping>

961 <mapping>
<value>Knurled Thumb Screw</ value>

963 <to>knurledThumbScrew</ to>
</mapping>

965 </dependency>

967 <parent−e n t i t y id=” screw ” />
</ e n t i t y>

969
<e n t i t y id=” studScrew ” name=” Stud Screw ”>

971 <f a c e t requ i red=” f a l s e ” id=” length threaded end ” />
<parent−e n t i t y id=” screw ” />

973 </ e n t i t y>

LFRP–Search Framework Schema | 201

975 <e n t i t y id=” hexagonHeadScrew ” name=” Hexagon Head Screw ”>
<parent−e n t i t y id=” headScrew ” />

977 </ e n t i t y>

979 <e n t i t y id=” cy l inderHeadBol t ” name=” Cyl inder Head Bo l t ”>
<f a c e t requ i red=” f a l s e ” id=” head diameter ” />

981 <parent−e n t i t y id=” headScrew ” />
</ e n t i t y>

983
<e n t i t y id=” knurledThumbScrew ” name=” Knurled Thumb Screw ”>

985 <f a c e t requ i red=” f a l s e ” id=” head diameter ” />
<f a c e t requ i red=” f a l s e ” id=” knur l t ype ” />

987 <parent−e n t i t y id=” headScrew ” />
</ e n t i t y>

989
</ e n t i t i e s>

991
</ f a c e t d e s c r i p t i o n>

Listing B.2: Example schema for the LFRP-search framework applied to the domain
of product development.

Bibliography

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From relations to
semistructured data and XML. Kaufmann, San Francisco, Calif., 2001.

Man Abrol, Neil Latarche, Uma Mahadevan, Jianchang Mao, Rajat Mukherjee, Prabhakar
Raghavan, Michel Tourn, John Wang, and Grace Zhang. Navigating large-scale semi-
structured data in business portals. In Proceedings of the 27th International Conference on
Very Large Data Bases, pages 663–666, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A System for Keyword-
Based Search over Relational Databases. In Proceedings of the 18th International Confer-
ence on Data Engineering, 26 February - 1 March 2002, San Jose, CA, pages 5–16. IEEE
Computer Society, 2002.

Saeema Ahmed. Understanding the use and reuse of experience in engineering design. PhD
thesis, University of Cambridge, Cambridge, 2001.

Saeema Ahmed, Ken M. Wallace, and Luciënne Blessing. Understanding the differences
between how novice and experienced designers approach design tasks. Research in Engi-
neering Design, 14(1):1–11, 2003.

Maryam Alavi and Dorothy E. Leidner. Review: Knowledge Management and Knowledge
Management Systems: Conceptual Foundations and Research Issues. MIS Quarterly, 26
(2):107–136, 2001.

Thomas J. Allen. Distinguishing engineers from scientists. In Ralph Katz, editor, Managing
professionals in innovative organizations, pages 3–18. Harper Business, New York, 1988.

Thomas J. Allen. Managing the flow of technology: Technology transfer and the dissemination
of technological information within the R&D organization. MIT Press, Cambridge, Mass.,
7. print. edition, 1995.

Omar Alonso, Ricardo Baeza-Yates, and Michael Gertz. Exploratory Search Using Timelines.
In SIGCHI 2007 Workshop on Exploratory Search and HCI Workshop, 2007.

Whit Andrews. Magic Quadrant for Information Access Technology, 2009. URL http:

//www.gartner.com/technology/media-products/reprints/vivisimo/169927.html.

Whit Andrews. MarketScope for Enterprise Search, 2010.

204 | BIBLIOGRAPHY

Peter Anick, J. D. Brennan, Rex A. Flynn, David R. Hanssen, B. Alvey, and Jonathan M.
Robbins. A direct manipulation interface for boolean information retrieval via natural
language query. In SIGIR ’90: Proceedings of the 13th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 135–150, New
York, NY, USA, 1990. ACM.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information retrieval. Addison-
Wesley, Harlow, 2008.

Peter Bailey, David Hawking, and Brett Matson. Secure search in enterprise webs: tradeoffs
in efficient implementation for document level security. In CIKM ’06: Proceedings of the
15th ACM international conference on Information and knowledge management, pages 493–
502, New York, NY, USA, 2006. ACM Press.

Peter Bailey, Nick Craswell, Arjen P. de Vries, and Ian Soboroff. Overview of the TREC
2007 Enterprise Track. In Proceedings of the 16th Text Retrieval Conference (TREC 2007),
Gaithersburg, USA, 2007.

Krisztian Balog. People Search in the Enterprise. PhD thesis, University of Amsterdam, 2008.

Krisztian Balog, Leif Azzopardi, and Maarten de Rijke. Formal models for expert finding in
enterprise corpora. In Susan Dumas, editor, SIGIR Seattle 2006, Special issue of the SIGIR
forum, pages 43–50, New York, NY, 2006. Association for Computing Machinery.

Krisztian Balog, Ian Soboroff, Paul Thomas, Peter Bailey, Nick Craswell, and Arjen P. de Vries.
Overview of the TREC 2008 Enterprise Track. In Proceedings of the 17th Text Retrieval
Conference (TREC 2008), Gaithersburg, USA, 2008.

Krisztian Balog, Arjen P. de Vries, Pavel Serdyukov, Paul Thomas, and Thijs Westerveld.
Overview of the TREC 2009 Entity Track. In Proceedings of the 18th Text Retrieval Confer-
ence (TREC 2009), Gaithersburg, USA, 2009.

Ramon C. Barquin and Herb A. Edelstein. Building, using, and managing the data warehouse.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

Madeleine Bates. Models of natural language understanding. Proceedings of the National
Academy of Sciences of the United States of America, 92(22):9977–9982, 1995.

Marcia J. Bates. The Design of Browsing and Berrypicking Techniques for the Online Search
Interface. Online Review, 13(5):407–424, 1989.

Marcia J. Bates. What is browsing-really? A model drawing from behavioural science re-
search. Information Research, 12(4):paper 330, 2007.

Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative analysis of
methodologies for database schema integration. ACM Computing Surveys (CSUR), 18(4):
323–364, 1986.

Matthias Beck and Burkhard Freitag. Weighted Boolean conditions for ranking. In ICDE ’08:
Proceedings of the 2008 IEEE 24th International Conference on Data Engineering Workshop,
pages 568–571, Washington, DC, USA, 2008. IEEE Computer Society.

BIBLIOGRAPHY | 205

Wolfgang Beitz, Klaus Ehrlenspiel, Jens Erb, Alexander Fink, Jürgen Gausemeier, Kerstin
Geiger, Hans Grabowski, Dirk Helbig, Johannes Klose, Lothar Krause, Udo Lindemann,
Werner Mattes, Robert Mertens, Robert Stößer, and Gunther Storz. New ways for product
development (Neue Wege zur Produktentwicklung). Raabe Fachverlag für Wissenschaftsin-
formation, 1997.

Nicholas J. Belkin. Interaction with texts: Information retrieval as information-seeking be-
havior. In Information Retrieval ’93. Von der Modellierung zur Anwendung., pages 55–66.
Universitätsverlag Konstanz, 1993.

Nicholas J. Belkin. (Somewhat) Grand Challenges for Information Retrieval. SIGIR Forum,
42(1):47–54, 2008.

Nicholas J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw. Combining the evidence of multiple
query representations for information retrieval. Information Processing & Management, 31
(3):431–448, 1995.

Nicholas J. Belkin, Michael Cole, and Jingjing Liu. A Model for Evaluation of Interactive
Information Retrieval. In Shlomo Geva, Jaap Kamps, Carol Peters, Tetsuya Sakai, Andrew
Trotman, and Ellen Voorhees, editors, Proceedings of the SIGIR 2009 Workshop on the
Future of IR Evaluation, pages 7–8, Amsterdam, The Netherlands, The Netherlands, 2009.
IR Publications.

Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas Neumann, Shila
Ofek-Koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Sznajder, and Sivan Yogev.
Beyond basic faceted search. In WSDM ’08: Proceedings of the International Conference on
Web Search and Web Data Mining, pages 33–44, New York, NY, USA, 2008. ACM.

Pia Borlund. The concept of relevance in IR. Journal of the American Society for Information
Science and Technology, 54:913–925, 2003a.

Pia Borlund. The IIR evaluation model: a framework for evaluation of interactive informa-
tion retrieval systems. Information Research, 8(3), 2003b.

Karl Bosch. Grundzüge der Statistik: Einführung mit Übungen. Oldenbourg, München/Wien,
München, 2., erg. aufl. edition, 1999.

Martin Braschler, Norman Briner, Hans Fischer, Markus Häni, Thomas Mandl, Peter
Schäuble, Markus Steinbach, and Jürg Stuker. Enterprise-Search-Systeme im inter-
nen Wissensmanagement: Ergebnisse einer Studie zu Perspektiven der Unternehmen.
Datenbank-Spektrum, 9(30), 2009.

Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. In Seventh International World-Wide Web Conference (WWW 1998), 1998.

Andrei Broder and Arthur Ciccolo. Towards the next generation of enterprise search tech-
nology. IBM Systems Journal, 43:451–454, 2004.

Vannevar Bush. As We May Think. Atlantic Monthly, (176):101–108, 1945.

206 | BIBLIOGRAPHY

Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan V. Vranic.
Feature-based similarity search in 3D object databases. ACM Comput. Surv., 37(4):345–
387, 2005.

Katriina Byström and Kalervo Järvelin. Task complexity affects information seeking and use.
Information Processing & Management, 31(2):191–213, 1995.

Jamie Callan. Distributed Information Retrieval. In Advances in Information Retrieval. The In-
formation Retrieval Series., volume 7, pages 127–150. Kluwer Academic Publishers, 2000.

Christopher S. Campbell, Paul P. Maglio, Alex Cozzi, and Byron Dom. Expertise identifica-
tion using email communications. In CIKM ’03: Proceedings of the twelfth international
conference on Information and knowledge management, pages 528–531, New York, NY,
USA, 2003. ACM.

Robert Capra, Gary Marchionini, Jung Sun Oh, Fred Stutzman, and Yan Zhang. Effects of
structure and interaction style on distinct search tasks. In JCDL ’07: Proceedings of the 7th
ACM/IEEE-CS joint conference on Digital libraries, pages 442–451, New York, NY, USA,
2007. ACM.

Robert G. Capra and Gary Marchionini. The relation browser tool for faceted exploratory
search. In JCDL ’08: Proceedings of the 8th ACM/IEEE-CS joint conference on Digital li-
braries, pages 420–420, New York, NY, USA, 2008. ACM.

Peter H. Carstensen. Towards Information Exploration Support for Engineering Designers.
Advances in Concurrent Engineering, pages 26–33, 1997.

Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: a new
approach to topic-specific Web resource discovery. Computer Networks, 31(11-16):1623–
1640, 1999.

Eugene Charniak. Statistical Techniques for Natural Language Parsing. AI Magazine, 18(4):
33–43, 1997.

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP tech-
nology. ACM SIGMOD Record, 26(1):65–74, 1997.

Hsinchun Chen, Andrea Houston, Robin R. Sewell, and Bruce R. Schatz. Internet Browsing
and Searching: User Evaluations of Category Map and Concept Space Techniques. JASIS,
49(7):582–603, 1998.

Edward C. Clarkson, Shamkant B. Navathe, and James D. Foley. Generalized formal mod-
els for faceted user interfaces. In JCDL ’09: Proceedings of the 2009 joint international
conference on Digital libraries, pages 125–134, New York, NY, USA, 2009. ACM.

Cyril W. Cleverdon and Michael Keen. Aslib Cranfield research project - Factors determining
the performance of indexing systems; Volume 2, Test results, 1966. URL http://hdl.

handle.net/1826/863.

Cyril W. Cleverdon, Jack Mills, and Michael Keen. Aslib Cranfield research project - Factors
determining the performance of indexing systems; Volume 1, Design; Part 1, Text, 1966a.
URL http://hdl.handle.net/1826/861.

BIBLIOGRAPHY | 207

Cyril W. Cleverdon, Jack Mills, and Michael Keen. Aslib Cranfield research project - Factors
determining the performance of indexing systems; Volume 1, Design; Part 2, Appendices,
1966b. URL http://hdl.handle.net/1826/862.

Edgar F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-line Analytical Processing)
to User-Analysts: An IT Mandate. Codd & Date, Inc, San Jose, 1993.

Thomas H. Cormen. Introduction to algorithms. MIT Press [u.a.], Cambridge, Mass., 2. ed.,
8. printing. edition, 2007.

Andrew W. Court, Stephen J. Culley, and Christopher A. McMahon. Information Access Dia-
grams: A Technique for Analyzing the Usage of Design Information. Journal of Engineering
Design, 7(1):55–75, 1996.

Nick Craswell, David Hawking, Anne-Marie Vercoustre, and Peter Wilkins. P@NOPTIC Ex-
pert: Searching for Experts Not Just For Documents. In AusWeb, pages 21–25, 2001.

Nick Craswell, Arjen P. de Vries, and Ian Soboroff. Overview of the TREC 2005 Enterprise
Track. In Proceedings of the 14th Text Retrieval Conference (TREC 2005), Gaithersburg,
USA, 2005a.

Nick Craswell, Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Relevance weighting
for query independent evidence. In SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 416–
423, New York, NY, USA, 2005b. ACM.

Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter/Gather: a
cluster-based approach to browsing large document collections. In SIGIR ’92: Proceedings
of the 15th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 318–329, New York, NY, USA, 1992. ACM.

Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. Automatic construction of
multifaceted browsing interfaces. In CIKM ’05: Proceedings of the 14th ACM international
conference on Information and knowledge management, pages 768–775, New York, NY,
USA, 2005. ACM.

Wisam Dakka, Rishabh Dayal, and Panagiotis G. Ipeirotis. Automatic Discovery of Useful
Facet Terms. In ACM SIGIR Workshop on Faceted Search, 2006.

Raymond D’Amore. Expertise community detection. In SIGIR ’04: Proceedings of the 27th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 498–499, New York, NY, USA, 2004. ACM.

Debabrata Dash, Jun Rao, Nimrod Megiddo, Anastasia Ailamaki, and Guy Lohman. Dynamic
faceted search for discovery-driven analysis. In CIKM ’08: Proceeding of the 17th ACM
conference on Information and knowledge management, pages 3–12, New York, NY, USA,
2008. ACM.

Francisco del Rey-Chamorro and Ken M. Wallace. A Study of Information Retrieval in the
Aerospace Domain. In A. Folkeson, K. Gralen, M. Norell, and U. Sellgren, editors, Proceed-
ings of the 14th International Conference on Engineering Design (ICED ’03), pages 271–272,
2003.

208 | BIBLIOGRAPHY

Francisco del Rey-Chamorro and Ken M. Wallace. Understanding the search for informa-
tion in the aerospace domain. In A. Samuel and Lewis W., editors, Proceedings of the
International Conference on Engineering Design, ICED’05, pages 81–82, 2005.

Melvil Dewey. A Classification and Subject Index for Cataloguing and Arranging the Books
and Pamphlets of a Library: Dewey Decimal Classification. Kingsport Press, Inc., Kingsport,
Tennessee, 1876.

Byron Dom, Iris Eiron, Alex Cozzi, and Yi Zhang. Graph-based ranking algorithms for e-
mail expertise analysis. In DMKD ’03: Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery, pages 42–48, New York, NY, USA,
2003. ACM.

Daryl D’Souza, James Thom, and Justin Zobel. A Comparison of Techniques for Selecting
Text Collections. In ADC ’00: Proceedings of the Australasian Database Conference, page 28,
Washington, DC, USA, 2000. IEEE Computer Society.

D. Dubois and Henri Prade. A review of fuzzy set aggregation connectives. Information
Sciences, 36(1-2):85–121, 1985.

Raiko Eckstein and Andreas Henrich. An integrated context model for the product de-
velopment domain and its implications on design reuse. In D. Marjanovic, editor, 10th
International design conference, pages 761–768, 2008a.

Raiko Eckstein and Andreas Henrich. Reaching the Boundaries of Context-Aware IR: Accept-
ing Help from the User. In Proceedings of the 2nd Int. Workshop on Adaptive Information
Retrieval (AIR 2008), London, 2008b. BCS.

Raiko Eckstein and Andreas Henrich. Visual Browsing in Product Development Processes. In
The Design Society, editor, Proceedings of the 17th International Conference on Engineering
Design, pages 183–194, 2009.

Raiko Eckstein, Andreas Henrich, and Nadine Weber. Das LFRP-Framework zur Be-
herrschung komplexer Suchsituationen. In FG-IR, editor, LWA 2009, Darmstadt, 2009.
TU Darmstadt.

Robert M. Edsall. The parallel coordinate plot in action: design and use for geographic
visualization. Computational Statistics & Data Analysis, 43:605–619, 2003.

Richard Edwards. Technology Audit Google Search Appliance 6.0, 2009.

Endeca. Indexing Enterprise Content: White Paper, 2007. URL http://www.endeca.com/

resource-center-white-papers.htm.

Endeca. Endeca Information Access Platform: Whitepaper, 2008.

Endeca. Search Applications on the Endeca Information Access Platform: White Paper,
2009a. URL http://www.endeca.com/resource-center-white-papers.htm.

Endeca. Endeca IAP 6 Performance and Scale: Technical Data Sheet, 2009b. URL http:

//www.endeca.com/products-information-access-platform-mdex-engine.htm.

BIBLIOGRAPHY | 209

Endeca. The Discovery for Manufacturing Suite: White Paper, 2009c. URL http://www.

endeca.com/resource-center-white-papers.htm.

Daniel Ericson, Jimmy Johansson, and Matthew Cooper. Visual data analysis using tracked
statistical measures within parallel coordinate representations. In Proceedings of the Third
International Conference on Coordinated and Multiple Views in Exploratory Visualization,
pages 42–53, 2005.

Boris Evelson and Matthew Brown. Search + BI = Unified Information Access: Combining
Unstructured And Structured Info Delivers Business Insight, 2008.

Exalead. Exalead CloudView Platform Highlights: White Paper, 2009a. URL http://www.

exalead.com/software/forms/download.php?resourceid=22.

Exalead. Exalead CloudView Security: White Paper, 2009b. URL http://www.exalead.

com/software/forms/download.php?resourceid=15.

Exalead. Exalead CloudView Architecture: White Paper, 2009c. URL http://www.exalead.

com/software/forms/download.php?resourceid=2.

Exalead. Exalead CloudView Search edition Connectors & Formats: White Paper,
2009d. URL http://www.exalead.com/software/common/pdfs/products/cloudview/

Exalead-Connectors-and-Formats.pdf.

Ronald Fagin, Ravi Kumar, Kevin S. McCurley, Jasmine Novak, D. Sivakumar, John A. Tomlin,
and David P. Williamson. Searching the workplace web. In WWW ’03: Proceedings of the
12th international conference on World Wide Web, pages 366–375, New York, NY, USA,
2003. ACM.

Mohamed Farah and Daniel Vanderpooten. A Multiple Criteria Approach for Information
Retrieval. In Fabio Crestani, Paolo Ferragina, and Mark Sanderson, editors, String Pro-
cessing and Information Retrieval, 13th International Conference SPIRE 2006, Glasgow, UK,
October 11-13, 2006, pages 242–254. Springer Verlag, 2006.

Mohamed Farah and Daniel Vanderpooten. An outranking approach for rank aggregation
in information retrieval. In SIGIR ’07: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 591–598,
New York, NY, USA, 2007. ACM.

Susan Feldman. The high cost of not finding information. KM World, 13(3), 2004.

Susan Feldman and Chris Sherman. The High Cost of Not Finding Information: Technical
Report #29127, 2003.

Christiane Fellbaum. WordNet: An electronic lexical database. Language, speech, and com-
munication. MIT Press, Cambridge, Mass., 2. printing. edition, 1999.

Adam J. Ferrari, David Gourley, Keith Johnson, Frederick C. Knabe, Daniel Tunkelang, and
John S. Walter. Hierarchical data-driven navigation system and method for information
retrieval, 2006a.

210 | BIBLIOGRAPHY

Adam J. Ferrari, David J. Gourley, Keith A. Johnson, Frederick C. Knabe, Vinay B. Mohta,
Daniel Tunkelang, and John S. Walter. Hierarchical Data-Driven Search and Navigation
System and Method for Information Retrieval, 2006b.

Adam J. Ferrari, David Gourley, Keith Johnson, Frederick C. Knabe, Daniel Tunkelang, and
John S. Walter. Hierarchical Data-Driven Navigation System and Method for Information
Retrieval, 2007.

Raya Fidel and Maurice Green. The many faces of accessibility: engineers’ perception of
information sources. Information Processing & Management, 40(3):563–581, 2004.

Ken Fishkin and Maureen C. Stone. Enhanced dynamic queries via movable filters. In CHI
’95: Proceedings of the SIGCHI conference on Human factors in computing systems, pages
415–420, New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

University of California Flamenco Search Interface Project. Nobel Prize Winners (Fla-
menco), 2007. URL http://orange.sims.berkeley.edu/cgi-bin/flamenco.cgi/

nobel/Flamenco.

Manuel J. Fonseca and Joaquim A. Jorge. Towards content-based retrieval of technical
drawings through high-dimensional indexing. Computers & Graphics, 27(1):61–69, 2003.

Luanne Silvia Freund and Elaine G. Toms. Enterprise search behaviour of software engi-
neers. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 645–646, New York, NY, USA,
2006. ACM.

Luanne Silvia Freund, Elaine G. Toms, and Charles L. A. Clarke. Modeling task-genre rela-
tionships for IR in the workplace. In SIGIR ’05: Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval, pages
441–448, New York, NY, USA, 2005a. ACM Press.

Luanne Silvia Freund, Elaine G. Toms, and Julie Waterhouse. Modeling the Information
Behaviour of Software Engineers Using a Work-Task Framework. In Andrew In Grove,
editor, Proceedings 68th Annual Meeting of the American Society for Information Science
and Technology (ASIST) 42, Charlotte (US), 2005b.

Hermann Friedrich. Herausforderungen im Umfeld Enterprise Search. In Jörg Eberspächer
and Stefan Holtel, editors, Suchen und Finden im Internet, Springer-11775 /Dig. Serial],
pages 181–186. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007.

Eugene Garfield. Citation indexing - its theory and application in science, technology and
humanities. Information sciences series. Wiley, New York, 1979.

William Goffman. On Relevance As A Measure. Information Storage and Retrieval, 2(3):
201–204, 1964.

Gene Golovchinsky, Jeremy Pickens, and Maribeth Back. A Taxonomy of Collaboration in
Online Information Seeking. CoRR, abs/0908.0704, 2009.

Google Inc. Google Search Appliance 6 Datasheet, 2009a. URL http://www.google.com/

enterprise/pdf/gsa_datasheet.pdf.

BIBLIOGRAPHY | 211

Google Inc. Google Search Appliance Product Models, 2009b. URL http://www.google.

com/enterprise/pdf/gsa_product_models.pdf.

Martin Graham and Jessie Kennedy. Using Curves to Enhance Parallel Coordinate Visualisa-
tions. In 7th. International Conference on Information Visualization (IV’03), Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

Sharon L. Greene, Steven J. Devlin, Philip E. Cannata, and Louis M. Gomez. No IFs, ANDs,
or ORs: a study of databases querying. Int. J. Man-Mach. Stud., 32(3):303–326, 1990.

Uri Hanani, Bracha Shapira, and Peretz Shoval. Information Filtering: Overview of Issues,
Research and Systems. User Modeling and User-Adapted Interaction, 11(3):203–259, 2001.

Craig Harris, Alisdair Owens, Alistair Russell, and Daniel Alexander Smith. mSpace: Explor-
ing The Semantic Web. A Technical Report in Support of the mSpace software framework,
2004. URL http://eprints.ecs.soton.ac.uk/10359/.

Yusef Hassan-Montero and V́ıctor Herrero-Solana. Improving Tag-Clouds as Visual Infor-
mation Retrieval Interfaces. In Vincente P. Guerrero-Bote, editor, Current research in
information sciences and technologies, 2006.

Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular Brushing of Extended
Parallel Coordinates. In INFOVIS ’02: Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’02), page 127, Washington, DC, USA, 2002. IEEE Computer Society.

David Hawking. Challenges in enterprise search. In ADC ’04: Proceedings of the 15th Aus-
tralasian database conference, pages 15–24, Darlinghurst, Australia, Australia, 2004. Aus-
tralian Computer Society, Inc.

David Hawking, Cécile Paris, Ross Wilkinson, and MingFang Wu. Context in Enterprise
Search and Delivery. In Birger Larsen, editor, Proceedings of the ACM SIGIR 2005 Workshop
on Information Retrieval in Context (IRiX), pages 14–16, Salvador, Brazil, 2005.

Marti A. Hearst. TileBars: visualization of term distribution information in full text infor-
mation access. In CHI ’95: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 59–66, New York, NY, USA, 1995. ACM Press/Addison-Wesley
Publishing Co.

Marti A. Hearst. Next Generation Web Search: Setting Our Sites. IEEE Data Engineering
Bulletin, Special issue on Next Generation Web Search, . Luis Gravano (Ed.), 23(3):38–48,
2000.

Marti A. Hearst. Clustering versus faceted categories for information exploration. Commun.
ACM, 49(4):59–61, 2006a.

Marti A. Hearst. Design Recommendations for Hierarchical Faceted Search Interfaces. In
ACM SIGIR Workshop on Faceted Search, 2006b.

Marti A. Hearst. Search User Interfaces. Cambridge Univ. Press, Cambridge, 2009.

212 | BIBLIOGRAPHY

Marti A. Hearst and Jan O. Pedersen. Reexamining the cluster hypothesis: scatter/gather
on retrieval results. In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 76–84, New York,
NY, USA, 1996. ACM.

Marti A. Hearst, Ame Elliott, Jennifer English, Rashmi Sinha, Kirsten Swearingen, and Ka-
Ping Yee. Finding the flow in web site search. Communications of the ACM, 45(9):42–49,
2002.

Morten Hertzum and Annelise Mark Pejtersen. The information-seeking practices of engi-
neers: searching for documents as well as for people. Information Processing & Manage-
ment, 36(5):761–778, 2000.

Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-style keyword
search over relational databases. In VLDB ’2003: Proceedings of the 29th international
conference on Very large data bases, pages 850–861. VLDB Endowment, 2003.

Peter Ingwersen. Information Retrieval Interaction. Taylor Graham, 1992.

Peter Ingwersen. Polyrepresentation of information needs and semantic entities: elements
of a cognitive theory for information retrieval interaction. In SIGIR ’94: Proceedings of
the 17th annual international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 101–110, New York, NY, USA, 1994. Springer-Verlag New York,
Inc.

Peter Ingwersen and Kalervo Järvelin. The Turn - Integration of Information Seeking and
Retrieval in Context. Springer, 2005.

William H. Inmon. Building the data warehouse. Wiley computer publishing. Wiley, New
York, N.Y., 3. ed. edition, 2002.

Alfred Inselberg. The plane with parallel coordinates. The Visual Computer, Volume 1,
Number 4:69–91, 1985.

Alfred Inselberg. Visualization of concept formation and learning. Kybernetes, 34 Issue 1/2:
151–166, 2005.

Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In Arie E. Kaufman, editor, Visualization ’90, pages 361–378, Los
Alamitos, Calif., 1990. IEEE Computer Soc. Press.

Kalervo Järvelin and Peter Ingwersen. Information seeking research needs extension to-
wards tasks and technology. Information Research, 10(1), 2004.

Brian Johnson and Ben Shneiderman. Tree-Maps: a space-filling approach to the visualiza-
tion of hierarchical information structures. In VIS ’91: Proceedings of the 2nd conference on
Visualization ’91, pages 284–291, Los Alamitos, CA, USA, 1991. IEEE Computer Society
Press.

Steve Jones. Graphical query specification and dynamic result previews for a digital library.
In UIST ’98: Proceedings of the 11th annual ACM symposium on User interface software and
technology, pages 143–151, New York, NY, USA, 1998. ACM.

BIBLIOGRAPHY | 213

Mika Käki. Findex: search result categories help users when document ranking fails. In CHI
’05: Proceedings of the SIGCHI conference on Human factors in computing systems, pages
131–140, New York, NY, USA, 2005. ACM.

Diane Kelly and Jaime Teevan. Implicit Feedback for Inferring User Preference: A Bibliogra-
phy. SIGIR Forum, 37(2), 2003.

Werner Kießling and Gerhard Köstler. Preference SQL: design, implementation, experiences.
In VLDB ’02: Proceedings of the 28th international conference on Very Large Data Bases,
pages 990–1001. VLDB Endowment, 2002.

Won Kim and Jungyun Seo. Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. Computer, 24(12):12–18, 1991.

Ralph Kimball and Joe Caserta. The data warehouse ETL toolkit: Practical techniques for
extracting, cleaning, conforming, and delivering data. Timely, practical, reliable. Wiley,
Indianapolis, Ind., 2004.

Ralph Kimball and Margy Ross. The data warehouse toolkit: The complete guide to dimen-
sional modeling. Wiley, New York, 2nd ed. edition, 2002.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):
604–632, 1999.

Jonathan Koren, Yi Zhang, and Xue Liu. Personalized interactive faceted search. In WWW
’08: Proceeding of the 17th international conference on World Wide Web, pages 477–486,
New York, NY, USA, 2008. ACM.

Bill Kules and Ben Shneiderman. Users can change their web search tactics: Design guide-
lines for categorized overviews. Information Processing & Management, 44(2):463–484,
2008.

Bill Kules, Robert Capra, Matthew Banta, and Tito Sierra. What do exploratory searchers
look at in a faceted search interface? In JCDL ’09: Proceedings of the 2009 joint interna-
tional conference on Digital libraries, pages 313–322, New York, NY, USA, 2009. ACM.

Gloria J. Leckie, Karen E. Pettigrew, and Christian Sylvain. Modeling the Information Seek-
ing of Professionals: A General Model Derived from Research on Engineers, Health Care
Professionals, and Lawyers. The Library Quarterly, 66(2):161–193, 1996.

Joon Ho Lee. Properties of extended Boolean models in information retrieval. In SIGIR
’94: Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 182–190, New York, NY, USA, 1994. Springer-
Verlag New York, Inc.

Joon Ho Lee. Analyses of multiple evidence combination. In SIGIR ’97: Proceedings of the
20th annual international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 267–276, New York, NY, USA, 1997. ACM.

Christoph Marian Leszinski. Ein Visualisierungs- und Navigationsassistent für Produkt-
strukturen in der Produktentwicklung, volume 20006 of Schriftenreihe / Ruhruniversität
Bochum, Institut für Konstruktionstechnik. Shaker, Aachen, 2001.

214 | BIBLIOGRAPHY

Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song. RankSQL: Query
Algebra and Optimization for Relational Top-k Queries. In Fatma Özcan, editor, Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore,
Maryland, USA, June 14-16, 2005, pages 131–142. ACM, 2005.

Hans Peter Litz. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften. Olden-
bourg, München/Wien, München, 3., vollst. überarb. und erw. aufl. edition, 2003.

Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective keyword search in
relational databases. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 563–574, New York, NY, USA, 2006. ACM.

Craig Macdonald and Iadh Ounis. Voting for candidates: adapting data fusion techniques for
an expert search task. In CIKM ’06: Proceedings of the 15th ACM international conference
on Information and knowledge management, pages 387–396, New York, NY, USA, 2006.
ACM.

Fritz Machlup and Una Mansfield. The study of information: interdisciplinary messages. Wiley,
Chichester, 1984.

Wendy E. MacKay. Is paper safer? The role of paper flight strips in air traffic control. ACM
Transactions on Computer-Human Interaction (TOCHI), 6(4):311–340, 1999.

Thomas M. Mann. Visualization of search results from the World Wide Web. PhD thesis,
Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, 2001. URL http://kops.ub.

uni-konstanz.de/volltexte/2002/751.

Gary Marchionini. Information Seeking in Electronic Environments. Cambridge Univ. Press,
NY, Cambridge, 1995.

Gary Marchionini. Exploratory search: from finding to understanding. Commun. ACM, 49
(4):41–46, 2006a.

Gary Marchionini. Toward Human-Computer Information Retrieval. Bulletin of the American
Society for Information Science and Technology, (June/July), 2006b.

Gary Marchionini and Ben Brunk. Toward a General Relation Browser: A GUI for Informa-
tion Architects. Journal of Digital Information, 4(1), 2003.

Gary Marchionini and Ben Shneiderman. Finding Facts vs. Browsing Knowledge in Hyper-
text Systems. Computer, 21(1):70–80, 1988.

Gary Marchionini and Ryen White. Find What You Need, Understand What You Find. Inter-
national Journal of Human-Computer Interaction, 23(3):205–237, 2007.

J. R. Marsh. The capture and utilisation of design experience in engineering design. PhD thesis,
University of Cambridge, Cambridge, 1997.

David R. McGee, Philip R. Cohen, R. Matthews Wesson, and Sheilah Horman. Comparing
paper and tangible, multimodal tools. In CHI ’02: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 407–414, New York, NY, USA, 2002. ACM.

BIBLIOGRAPHY | 215

Michael J. McGuffin and m. c. schraefel. A comparison of hyperstructures: zzstructures,
mSpaces, and polyarchies. In HYPERTEXT ’04: Proceedings of the fifteenth ACM conference
on Hypertext and hypermedia, pages 153–162, New York, NY, USA, 2004. ACM.

Alistair McLean, Anne-Marie Vercoustre, and MingFang Wu. Enterprise PeopleFinder: Com-
bining Evidence from Web Pages and Corporate Data. In David Hawking, editor, Pro-
ceedings of the 8th Australasian Document Computing Conference (ADCS’03), Canberra,
Australia, 2003.

Markus Mechnich. A User Interface for Faceted Search Based on Parallel Coordinates in
Flash: Project work, 2008a.

Markus Mechnich. Design of a Backend Architecture for Faceted Search with Parallel Coor-
dinates on Large Datasets: Project work, 2008b.

Harald Meerkamm, Andreas Henrich, Stefan Jablonski, Helmut Krcmar, Udo Lindemann,
and Frank Rieg, editors. Flexible Process Support in Product Development (Flexible Prozes-
sunterstützung in der Produktentwicklung): Processes - Data - Navigation (Prozesse - Daten
- Navigation); FORFLOW ; Final Report 01.10.2006 - 30.09.2009. Shaker, Aachen, 2009.
ISBN 9783832286408.

Marina Meila and David Heckerman. An Experimental Comparison of Model-Based Cluster-
ing Methods. Machine Learning, 42(1):9–29, 2001.

Weiyi Meng, Clement Yu, and King-Lup Liu. Building efficient and effective metasearch
engines. ACM Comput. Surv., 34(1):48–89, 2002.

A. Michard. Graphical presentation of boolean expressions in a database query language:
design notes and an ergonomic evaluation. Behaviour & Information Technology, 1(3):
279–288, 1982.

Tom Michael Mitchell. Machine Learning. McGraw-Hill series in computer science. McGraw-
Hill, Boston, Mass., 2008.

Calvin N. Mooers. Mooers’ Law or Why Some Retrieval Systems Are Used And Others Are
Not. The Scientist, 11(2):1–10, 1959.

Rajat Mukherjee and Jianchang Mao. Enterprise Search: Tough Stuff. Queue, 2(2):36–46,
2004.

Henning Müller, Nicolas Michoux, David Bandon, and Antoine Geissbuhler. A review of
content-based image retrieval systems in medical applications–clinical benefits and future
directions. International Journal of Medical Informatics, 73(1):1–23, 2004.

Meinard Müller. Information retrieval for music and motion. Springer-Verlag Berlin Heidel-
berg, 1st edition, 2007.

Wolfgang Müller, Markus Zech, Andreas Henrich, and Daniel Blank. VisualFlamenco: De-
pendable, Interactive Image Browsing Based on Visual Properties. In IEEE, editor, Proceed-
ings of 6th International Workshop on Content-Based Multimedia Indexing, pages 568–575,
London, UK, 2008.

216 | BIBLIOGRAPHY

Jack Muramatsu and Wanda Pratt. Transparent Queries: investigation users’ mental models
of search engines. In SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 217–224, New
York, NY, USA, 2001. ACM.

Aaron Newman and Jeremy Thomas. Enterprise 2.0 implementation: [incorporate cutting-
edge Web 2.0 services within enterprise networks ; create internal social networks, blogs,
wikis, and mashups ; disseminate corporate information via RSS/Atom feeds ; manage Enter-
prise 2.0 risk, security, compliance, backups, and disaster recovery]. Network professional’s
library. McGraw-Hill, New York, 2009.

Ikujiro Nonaka and Hirotaka Takeuchi. The knowledge creating company: How Japanese
companies create the dynamics of innovation. Oxford Univ. Press, New York, 1995.

Ragnar Nordlie. ”User revealment”—a comparison of initial queries and ensuing question
development in online searching and in human reference interactions. In SIGIR ’99: Pro-
ceedings of the 22nd annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 11–18, New York, NY, USA, 1999. ACM.

Henrik Nottelmann and Norbert Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In SIGIR ’03: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval, pages 290–
297, New York, NY, USA, 2003. ACM.

Leslie Owens. The Forrester Wave: Enterprise Search, Q2 2008: for Information & Knowl-
edge Management Professionals, 2008.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Ci-
tation Ranking: Bringing Order to the Web, 1998. URL citeseer.ist.psu.edu/

page98pagerank.html.

Gerhard Pahl, Wolfgang Beitz, Jörg Feldhusen, Karl-Heinrich Grote, Ken M. Wallace, and
Luciënne T Blessing. Engineering design: A systematic approach. Springer, London, 3. ed.
edition, 2007.

Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Now Publishers, Hanover,
MA, 2008.

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object Exchange
Across Heterogeneous Information Sources. In ICDE ’95: Proceedings of the Eleventh In-
ternational Conference on Data Engineering, pages 251–260, Washington, DC, USA, 1995.
IEEE Computer Society.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In InfoScale ’06:
Proceedings of the 1st international conference on Scalable information systems, page 1,
New York, NY, USA, 2006. ACM.

Annelise Mark Pejtersen, Diane H. Sonnenwald, Jacob Buur, T. Govindaraj, and Kim Vi-
cente. The Design Explorer Project: Using a Cognitive Framework to Support Knowledge
Exploration. Journal of Engineering Design, 8(3):289–301, 1997.

BIBLIOGRAPHY | 217

Thomas E. Pinelli, Ann P. Bishop, Rebecca O. Barclay, and John M. Kennedy. The
information-seeking behavior of engineers. In Allen Kent, editor, Encyclopedia of Library
and Information Science: Vol. 52, pages 167–201. Dekker, New York, 1993.

Heinz-Jürgen Pinnekamp and Frank Siegmann. Deskriptive Statistik: Mit einer Einführung
in das Programm SPSS. Oldenbourg, München/Wien, München, 5., vollst. überarb. und
aktualisierte aufl. edition, 2008.

Peter Pirolli and Stuart K. Card. Information Foraging. Psychological Review, 106(4):643–
675, 1999.

Catherine Plaisant, Gary Marchionini, Tom Bruns, Anita Komlodi, and Laura Campbell.
Bringing treasures to the surface: iterative design for the Library of Congress National
Digital Library Program. In CHI ’97: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 518–525, New York, NY, USA, 1997. ACM.

Catherine Plaisant, Ben Shneiderman, Khoa Doan, and Tom Bruns. Interface and data ar-
chitecture for query preview in networked information systems. ACM Trans. Inf. Syst., 17
(3):320–341, 1999.

Wanda Pratt, Marti A. Hearst, and Lawrence M. Fagan. A knowledge-based approach to or-
ganizing retrieved documents. In AAAI ’99/IAAI ’99: Proceedings of the sixteenth national
conference on Artificial intelligence and the eleventh Innovative applications of artificial in-
telligence conference innovative applications of artificial intelligence, pages 80–85, Menlo
Park, CA, USA, 1999. American Association for Artificial Intelligence.

Marc Quantrill. Oh no, not more Web 2.0 jargon: effective enterprise search. Managing
Information, 15(8):56–58, 2008.

Sheizaf Rafaeli. Interactivity: From new media to communication. In J. M. Wiemann, S. Pin-
gree, and Robert P. Hawkins, editors, Sage Annual Review of Communication Research:
Advancing Communication Science: Merging Mass and Interpersonal Processes, volume 16
of Sage annual reviews of communication research, pages 110–134. Beverly Hills: Sage;
Sage, Newbury Park, 1988.

Shiyali Ramamrita Ranganathan. Colon Classification. Madras Library Association, Madras,
India, 1933.

Shiyali Ramamrita Ranganathan. Classification, Coding, and Machinery for Search. UNESCO,
Paris, France, 1950.

Romaric Redon, Andreas Larsson, Richard Leblond, and Barthélémy Longueville. VIVACE
Context Based Search Platform. In Boicho N. Kokinov, Daniel C. Richardson, Thomas
Roth-Berghofer, and Laure Vieu, editors, Modeling and Using Context, 6th International
and Interdisciplinary Conference, CONTEXT 2007, Roskilde, Denmark, August 20-24, 2007,
Proceedings, volume 4635 of Lecture Notes in Computer Science, pages 397–410, Berlin /
Heidelberg, 2007. Springer.

Harald Reiterer, Gabriela Tullius, and Thomas M. Mann. INSYDER: a content-based visual-
information-seeking system for the Web. International Journal on Digital Libraries, 5(1):
25–41, 2005.

218 | BIBLIOGRAPHY

Joan M. Reitz. Dictionary for library and information science. Libraries Unlimited, Westport,
Conn., 2004.

George Robertson, Kim Cameron, Mary Czerwinski, and Daniel Robbins. Polyarchy visual-
ization: visualizing multiple intersecting hierarchies. In CHI ’02: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 423–430, New York, NY, USA,
2002. ACM.

Stephen E. Robertson. The Probability Ranking Principle in IR. Jounal Of Documentation,
33:294–304, 1977.

Kenneth A. Ross and Angel Janevski. Querying Faceted Databases. In Christoph Bussler, Val
Tannen, and Irini Fundulaki, editors, Semantic Web and Databases, Second International
Workshop, SWDB 2004, Toronto, Canada, August 29-30, 2004, Revised Selected Papers,
volume 3372, pages 199–218. Springer, 2005.

Ian Ruthven and Mounia Lalmas. A survey on the use of relevance feedback for information
access systems. Knowl. Eng. Rev., 18(2):95–145, 2003.

Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science (JASIS), 41(4):288–297, 1990.

Gerard Salton, Anita Wong, and Chung-shu Yang. A vector space model for automatic index.
Communications of the ACM, 18(11):613–620, 1975.

Gerard Salton, Edward A. Fox, and Harry Wu. Extended Boolean information retrieval.
Communications of the ACM, 26(11):1022–1036, 1983.

Mark Sanderson and Bruce Croft. Deriving concept hierarchies from text. In SIGIR ’99:
Proceedings of the 22nd annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 206–213, New York, NY, USA, 1999. ACM.

Tefko Saracevic. Relevance: A Review of the Literature and a Framework for Thinking on the
Notion in Information Science. Part II: Nature and Manifestations of Relevance*. Journal
of the American Society for Information Science and Technology, 58(13):1915–1933, 2007.

Prabir Sarkar and Amaresh Chakrabarti. Understanding Search in Design. In Jean-
Claude Bocquet, editor, Proceedings of the International Conference on Engineering Design,
ICED’07, Paris, France, 2007.

Linda Schamber, Michael Eisenberg, and Michael S. Nilan. A re-examination of relevance:
toward a dynamic, situational definition. Information Processing & Management, 26(6):
755–776, 1990.

Markus Schichtel. Product data modelling in practice (Produktdatenmodellierung in der
Praxis). Hanser, München u.a., 1st edition, 2002.

m. c. schraefel, Maria Karam, and Shengdong Zhao. Listen to the Music: Audio Preview
Cues for Exploration of Online Music. In Interact 2003 - Bringing the Bits Together, 2003.

m. c. schraefel, Max L. Wilson, and Maria Karam. Preview Cues: Enhancing Access to
Multimedia Content, 2004. URL http://eprints.ecs.soton.ac.uk/9253/.

BIBLIOGRAPHY | 219

m. c. schraefel, Max L. Wilson, Alistair Russell, and Daniel A. Smith. mSpace: Improving In-
formation Access to Multimedia Domains with MultiModal Exploratory Search. Commun.
ACM, 49(4):47–49, 2006.

Joseph A. Shaw and Edward A. Fox. Combination of Multiple Searches. In Proceedings of
the Second Text REtrieval Conference (TREC-2), pages 243–252. NIST, Maryland, 1993.

Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183–236, 1990.

Ben Shneiderman. Dynamic Queries for Visual Information Seeking. IEEE Softw., 11(6):
70–77, 1994.

Ben Shneiderman. The eyes have it: a task by data type taxonomy for information visual-
izations. In Proc. of the 1996 IEEE Symp. on Visual Languages, pages 336–343, 1996.

Ben Shneiderman and Catherine Plaisant. Designing the user interface: Strategies for effective
human-computer interaction. Pearson/Addison-Wesley, Boston, 4th edition, 2005.

Ben Shneiderman, Don Byrd, and Bruce Croft. Clarifying Search: A User-Interface Frame-
work for Text Searches. D-Lib Magazine, January 1997, 1997.

Luo Si and Jamie Callan. A semisupervised learning method to merge search engine results.
ACM Trans. Inf. Syst., 21(4):457–491, 2003.

Harri Siirtola. Direct manipulation of parallel coordinates. In 4th. International Conference
on Information Visualization (IV’00), pages 373–378, 2000.

Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Analysis of a very
large web search engine query log. SIGIR Forum, 33(1):6–12, 1999.

Vineet Sinha and David R. Karger. Magnet: supporting navigation in semistructured data
environments. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international con-
ference on Management of data, pages 97–106, New York, NY, USA, 2005. ACM.

Ian Soboroff, Arjen P. de Vries, and Nick Craswell. Overview of the TREC 2006 Enterprise
Track. In Proceedings of the 15th Text Retrieval Conference (TREC 2006), Gaithersburg,
USA, 2006.

Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model independent assertions for
integration of heterogeneous schemas. The VLDB Journal, 1(1):81–126, 1992.

Karen Sparck Jones, Stephen G. Walker, and Stephen E. Robertson. A probabilistic model of
information retrieval: development and comparative experiments. Information Processing
& Management, 36(6):779–808, 2000.

Robert Spence and Lisa Tweedie. The Attribute Explorer: information synthesis via explo-
ration. Interacting with Computers, 11(2):137–146, 1998.

Amanda Spink, T. D. Wilson, Nigel Ford, Allen Foster, and David Ellis. Information seeking
and mediated searching study. Part 3. Successive searching. Journal of the American
Society for Information Science and Technology, 53(9):716–727, 2002.

220 | BIBLIOGRAPHY

Anselm Spoerri. InfoCrystal: a visual tool for information retrieval & management. In
CIKM ’93: Proceedings of the second international conference on Information and knowledge
management, pages 11–20, New York, NY, USA, 1993. ACM.

Dirk Stelzer. Informationsbedarf. In Peter Mertens and Andrea Back, editors, Lexikon der
Wirtschaftsinformatik, pages 238–239. Springer, Berlin, 2001.

Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677–
680, 1946.

Emilia Stoica and Marti A. Hearst. Nearly-Automated Metadata Hierarchy Creation. In The
Companion Proceedings of HLT-NAACL ’04, Boston, pages 117–120, 2004.

Emilia Stoica, Marti A. Hearst, and Megan Richardson. Automating Creation of Hierarchical
Faceted Metadata Structures. In Proceedings of NAACL-HLT, Rochester NY, 2007.

Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil,
Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. C-Store: A Column-
oriented DBMS. In Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten,
Per-Åke Larson, and Beng Chin Ooi, editors, Proceedings of the 31st International Confer-
ence on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages
553–564. ACM, 2005.

Alistair G. Sutcliffe, Mark Ennis, and J Hu. Evaluating the effectiveness of visual user inter-
faces for information retrieval. International Journal of Human-Computer Studies, 53(5):
741–763, 2000.

Arlene G. Taylor. Introduction to cataloging and classification. Library and information sci-
ence text series. Libraries Unlimited, Englewood, Colorado, 8th ed. edition, 1992.

Robert S. Taylor. The process of asking questions. American Documentation, 13(4):391–396,
1962.

Melanie Tory, Simeon Potts, and Torsten Moller. A Parallel Coordinates Style Interface for Ex-
ploratory Volume Visualization. IEEE Transactions on Visualization and Computer Graphics,
11(1):71–80, 2005.

Edward Rolf Tufte. The visual display of quantitative information. Graphics Press, Cheshire,
Conn., 1983.

Edward Rolf Tufte. Envisioning information. Graphics Press, Cheshire, Conn., 1990.

Daniel Tunkelang. Reconsidering Relevance and Embracing Interaction. Bulletin of the
American Society for Information Science and Technology, 36(1):20–23, 2009.

Howard Turtle. Natural language vs. Boolean query evaluation: a comparison of retrieval
performance. In SIGIR ’94: Proceedings of the 17th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 212–220, New York,
NY, USA, 1994. Springer-Verlag New York, Inc.

BIBLIOGRAPHY | 221

Anthony Unwin, Martin Theus, and Heike Hofmann, editors. Graphics of Large Datasets -
Visualizing a Million. Springer Science+Business Media, LLC, 2006.

Pertti Vakkari. Task complexity, problem structure and information actions: Integrating
studies on information seeking and retrieval. Information Processing & Management, 35
(6):819–837, 1999.

Hans van Halteren, Jakub Zavrel, and Walter Daelemans. Improving Accuracy in NLP
Through Combination of Machine Learning Systems. Computational Linguistics, 27(2):
199–229, 2001.

VDI. Design engineering methodics; setting up and use of design catalogues (Konstruktion-
smethodik - Methodisches Entwickeln von Lösungsprinzipien VDI 2222 Blatt 2), 1982.

VDI. Systematic approach to the development and design of technical systems and prod-
ucts (Methodik zum Entwicklen und Konstruieren technischer Systeme und Produkte VDI
2221), 1993.

VDI. Methodic development of solution principles (Konstruktionsmethodik - Methodisches
Entwickeln von Lösungsprinzipien VDI 2222 Blatt 1), 1997.

Brian C. Vickery. Faceted classification: A guide to construction and use of special schemes,
volume 5. Aslib, London, 1960.

Brian C. Vickery. Faceted classification schemes, volume 5 of Rutgers series on systems for the
intellectual organization of information. Graduate School of Library Science Rutgers, New
Brunswick, NJ, 1966.

Friedrich Vogel. Formeln, Definitionen, Erläuterungen, Stichwörter und Tabellen, volume 2 of
Beschreibende und schließende Statistik / von Friedrich Vogel. Oldenbourg, München/Wien,
München, 12., vollst. überarb. und erw. aufl. edition, 2000.

Peter von der Lippe. Deskriptive Statistik: 25 Übersichten. Fischer, Stuttgart, 1993.

Ken M. Wallace and Saeema Ahmed. How Engineering Designers Obtain Information. In
Udo Lindemann, editor, Human behaviour in design, Engineering online library, pages
184–194. Springer, Berlin, 2003.

Nadine Weber and Andreas Henrich. Retrieval of technical drawings in DXF format - con-
cepts and problems. In Alexander Hinneburg, editor, LWA 2007, Halle, 2007. Universität
Halle.

Nadine Weber, Raiko Eckstein, and Andreas Henrich. Searching Multiple Artifacts: A Com-
prehensive Framework for Complex Search Situations. In Proceedings of Eighth Interna-
tional Conference FQAS 2009 - Flexible Query Answering Systems, Roskilde, Denmark, 2009.

Edward J. Wegman. Hyperdimensional Data Analysis Using Parallel Coordinates. Journal of
the American Statistical Association, 85(411):664–675, 1990.

David White. Enterprise Search: Discover the Next Opportunity for
Growth, 2009. URL http://www.aberdeen.com/launch/report/benchmark/

6098-RA-enterprise-search-unstructured-data.asp.

222 | BIBLIOGRAPHY

Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the Query–Response Paradigm.
Morgan & Claypool Publishers, 2008.

Rolf Wigand, Arnold Picot, and Ralf Reichwald. Information, organization and management:
Expanding markets and corporate boundaries. Wiley series in information systems. Wiley,
Chichester, 1st edition, 1997.

Max L. Wilson and m. c. schraefel. mSpace: What do Numbers and Totals Mean in a Flexible
Semantic Browser. In The 3rd International Semantic Web User Interaction Workshop at
ISWC2006, 2006.

Max L. Wilson and m. c. schraefel. A longitudinal study of exploratory and keyword search.
In Proceedings of the 2008 Joint Conference on Digital Libraries, pages 52–56, New York,
NY, 2008. ACM.

Max L. Wilson, Paul André, and m. c. schraefel. Backward highlighting: enhancing faceted
search. In UIST ’08: Proceedings of the 21st annual ACM symposium on User interface
software and technology, pages 235–238, New York, NY, USA, 2008. ACM.

Kent Wittenburg, Tom Lanning, Michael Heinrichs, and Michael Stanton. Parallel bargrams
for consumer-based information exploration and choice. In Proceedings of the 14th Annual
ACM Symposium on User Interface Software and Technology, volume Vol. 3, Iss. 2 of CHI
letters, pages 51–60, New York, NY, 2001. ACM Press.

Allison Woodruff, Andrew Faulring, Ruth Rosenholtz, Julie Morrsion, and Peter Pirolli. Using
thumbnails to search the Web. In CHI ’01: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 198–205, New York, NY, USA, 2001. ACM.

Ronald R. Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern., 18(1):183–190, 1988.

Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti A. Hearst. Faceted metadata for image
search and browsing. In CHI ’03: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 401–408, New York, NY, USA, 2003. ACM Press.

Dawit Yimam and Alfred Kobsa. DEMOIR: A Hybrid Architecture for Expertise Modeling
and Recommender Systems. In Proceedings of the 9th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2000. (WET ICE 2000)., pages
67–74, 2000.

Degi Young and Ben Shneiderman. A graphical filter/flow representation of Boolean queries:
a prototype implementation and evaluation. J. Am. Soc. Inf. Sci., 44(6):327–339, 1993.

Oren Zamir and Oren Etzioni. Grouper: A Dynamic Clustering Interface to Web Search
Results. Computer Networks, 31(11-16):1361–1374, 1999.

Hua-Jun Zeng, Qi-Cai He, Zheng Chen, Wei-Ying Ma, and Jinwen Ma. Learning to cluster
web search results. In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 210–217, New
York, NY, USA, 2004. ACM.

BIBLIOGRAPHY | 223

Pavel Zezula, Giuseppe Amato, Michal Batko, and Vlastislav Dohnal. Similarity Search The
Metric Space Approach. Springer Science+Business Media Inc, Boston, MA, 2006.

Junliang Zhang and Gary Marchionini. Evaluation and evolution of a browse and search
interface: Relation Browser++. In dg.o 2005: Proceedings of the 2005 national confer-
ence on Digital government research, pages 179–188. Digital Government Society of North
America, 2005.

Lorri Zipperer. The Creative Professional and Knowledge. Special Libraries, 84(2):69–78,
1993.

Fritz Zwicky. Discovery, Invention, Research Through the Morphological Approach. Macmillan,
1969.

ISBN 978-3-86309-017-3

ISSN 1867-7401

21,70 Euro

In recent years information produced in organizations steadily incre-
ased. In order to stay competitive, companies have a growing interest
in reusing existing knowledge from past projects. In contrast, the
complexity of information in modern organizations often exceeds the
capabilities of the currently deployed enterprise search solutions. The
publication outlines difficulties and challenges for search engines in an
enterprise setting and proposes the LFRP-framework that supports ex-
ploratory searches in an organizational setting which is built on top of
four pillars.

1. The multi-layer functionality allows users to formulate complex
search queries referring to more than one result type.

2. The search paradigm of faceted searching supports users in formula-
ting search queries incrementally.

3. By combining the concept of faceted search with the capability to in-
fluence the search result order based on filter criteria, users can define
weights for criteria values in a fine-grained way.

4. The visualization type of parallel coordinates is used for visual query
formulation as well as for a representation of the search results enabling
users to discover relationships between search results.

The framework enables users to access large linked data sets by navi-
gation and constitutes a contribution to a comprehensive information
strategy for organizations.

UNIVERSITY OF BAMBERG PRESS

