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Abstract
Inductive functional programming systems can be characterised by two diametric ap-
proaches: Either they apply exhaustive program enumeration which uses input/output
examples (IO) as test cases, or they perform an analytical, data-driven structural gen-
eralisation of the IO examples.
Enumerative approaches ignore the structural information provided with the IO exam-

ples, but use type information to guide and restrict the search. They use higher-order
functions which capture recursion schemes during their enumeration, but apply them
randomly in a uninformed manner.
Analytical approaches on the other side heavily exploit this structural information,

but have ignored the benefits of a strong type system so far and use recursion schemes
only either fixed and built in, or selected by an expert user.
In category theory universal constructs, such as natural transformations or type mor-

phisms, describe recursion schemes which can be defined on any inductively defined data
type. They can be characterised by individual universal properties. Those type mor-
phisms and related concepts provide a categorical approach to functional programming,
which is often called categorical programming.
This work shows, how categorical programming can be applied to Inductive Program-

ming, and how universal constructs, such as catamorphisms, paramorphisms, and type
functors, can be used as recursive program schemes for inductive functional program-
ming. The use of program schemes for Inductive Programming is not new. The special
appeal and the novelty of this work is that, contrary to previous approaches, the pro-
gram schemes are neither fixed, nor selected by an expert user: The applicability of those
recursion schemes can be automatically detected in the given IO examples of a target
function by checking the universal properties of the corresponding type morphisms. Ap-
plying this to the analytical system Igor II, both, the capabilities and the expressiveness
can be extended without paying it by efficiency.
An extension of the analytical functional inductive programming system Igor II is

proposed and its algorithms described. An empirical evaluation demonstrates the im-
provements with respect to efficiency and effectiveness that can be achieved by the use
of type morphisms for Igor II due to reduction of the search space complexity.
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Kurzfassung
Systeme zur induktiven Programmsynthese werden bezüglich zweier gegensätzlicher An-
sätze beschrieben: Enumerative Systeme zählen Programme vollständig auf und verwen-
den Eingabe/Ausgabe (E/A) Beispiele lediglich zum Testen; analytische, datengetriebene
Systeme hingegegen generieren ein Programm durch strukturelle Generalisierung der
E/A Beispiele.
Aufzählende Ansätze ignorieren die in den E/A Beispielen enthaltene strukturelle

Information völlig, benutzen aber Typinformation, um den Suchraum zu beschränken
und die Suche zu steuern. Sie verwenden Funktionen höherer Ordnung als rekursive
Programmschemata während der Aufzählung, wenden diese aber beliebig und nicht ziel-
gerichtet an.
Analytische Ansätze hingegen nutzen extensiv die strukturelle Information der E/A

Beispiele, vernachlässigen aber die Vorzüge eines starken Typsystems. Programmsche-
mata verwenden sie lediglich starr und fest codiert oder durch Auswahl eines Experten.
In der Kategorientheorie beschreiben universelle Konstrukte wie zum Beispiel natür-

liche Transformationen und Typmorphismen Rekursionsschemata auf beliebigen, induk-
tiv definierten Datentypen. Diese Konstrukte zeichnen sich durch spezifische, universelle
Eigenschaften aus.
Diese Arbeit zeigt, wie Catamorphismen, Paramorphismen und Typfunktoren als uni-

verselle Konstrukte in der induktiven Programmsynthese als rekursive Programmsche-
mata verwendet werden können. Die Verwendung von Schemata in der induktiven Pro-
grammierung ist an sich nichts Neues, die Innovation liegt jedoch in der Art und Weise
der Einführung der Schemata. Im Gegensatz zu herkömmlichen Ansätzen wird weder ein
festes Schema verwendet, noch wählt ein Experte ein Schema aus. Die vorliegende Arbeit
zeigt, dass die Anwendbarkeit eines bestimmten Schemas sich aus den E/A Beispielen
einer konkreten Zielfunktion ableiten lässt, wenn man die universellen Eigenschaften das
dem Programmschema entsprechenden Typmorphismus in den Beispielen erfüllen kann.
Im Folgenden wird eine Erweiterung des funktionalen, induktiven Programmsynthe-

sesystems Igor II vorgestellt und der neue Algorithmus beschrieben. Ein empirischer
Vergleich untermauert die Vorzüge der Erweiterung und macht die Steigerung der Ef-
fizienz und der Effektivität, die durch die Verwendung von Typmorphismen durch Kom-
plexitätsreduktion des Suchraums erzielt werden kann, deutlich.
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1. Introduction
Inductive Programming can be considered as a subfield of artificial intelligence (AI)
and especially machine learning (ML). It aims to generate programs from an incom-
plete specification, i.e. usually from a set of input/output examples only. Figure 1.1
depicts a set of input/output examples for a function last to retrieve the last element
of a list and a recursive definition of this function1.

last : : [α] → α
last (a:[]) = a
last (a:b:[]) = b
last (a:b:c:[]) = c

⇒ last (a:[]) = a
last (x:xs) = last xs

Figure 1.1.: From an incomplete specification to a recursive program.

The task itself is typical for machine learning: Given an extensional definition, i.e. a
set of examples, find an intensional definition, i.e. a (recursive) program. This program,
however, should not only be able to simply reproduce them, but also explain them and
contain explicit knowledge that was only implicit in the examples.
In the previous example of learning the function last as shown in Figure 1.1, appar-

ently the learned function was expected not only to correctly compute the last element
of lists up to three elements, but also for lists with arbitrary length. It is obvious, that
in practise it is impossible to define a general algorithm that generates any program
from examples.
However, Inductive Programming differs in two main points from standard machine

learning. Firstly, the resulting program is required to be 100% correct on the provided
examples. Standard machine learning algorithms try to minimise a classification error
on a test set. Apparently in Inductive Programming, there is no correctness in the
sense that the generated output is indeed exactly the program the user had in mind.
A generated program failing to compute the provided examples correctly has already
proven to be incorrect.
Furthermore, contrary to other machine learning algorithms, the object language of

an IP system can usually be arbitrarily extended. Consider for example a decision tree
learner or a linear regression learner. The object language, i.e. the language bias, of the
former can be defined as a tree with nested attribute-value-tests on the inner nodes and
class value assignments on the leaves. The language bias of linear regression is simply
the set of all linear functions. The task of the learner is to adjust the coefficients in such
a way that the overall error is minimised.

1The syntax used is Haskell. A short reference is given in Appendix A.
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In Inductive Programming there does not exist such a clear language bias, because
the object language can be more or less chosen at will, depending how much knowledge
is put a priori into the IP algorithm. It can be either quite restrictive, assuming specific
knowledge of the domain to reduce search to a minimum, or it can assume no knowl-
edge at all to be able to theoretically generate any program. The former is of limited
capabilities, the latter will sooner or later lead to a combinatorial explosion of the space
of candidate programs.

1.1. Motivating Example — Specific a priori Knowledge
One common solution to the combinatorial explosion is to consider oneself satisfied to
generate only specific programs, i.e. only those following a certain schema. Or put
differently, if it is known that the desired program follows a specific schema, this schema
will be used. For the case of the introductory last-example, a primitive recursive
schema as shown in Listing 1.1 can be considered. It used appropriate definitions of
the functions isAtomic to check whether an input cannot be decomposed anymore,
solve to compute the output given an atomic input, decompose to decompose an
input in an atomic and a non-atomic part, where the latter is passed to a recursive call,
and compose to compose the result of the recursive call with the atomic part of the
decomposition.

Listing 1.1: Primitive recursive schema with head-tail decomposition.
1 f l
2 | isAtomic l = solve l
3 | otherwise = let (hl ,tl) = decompose l
4 tl ’ = f tl
5 in compose hl tl ’

Although it is still not trivial to find an appropriate instantiation of this schema
to learn primitive recursive programs from example, it is quite feasible. The relevant
functions can be defined as follows, where isAtomic checks whether a list is a singleton,
solve simply returns its input, i.e. the single element of a singleton list, decompose is
simple head-tail decomposition of lists, and compose returns always its second input,
i.e. the result of the recursive call. Their definitions are shown in Listing 1.2.

Listing 1.2: Appropriate instantiation of schema of Listing 1.1 for last

1 isAtomic l = case l of
2 [a] → True
3 _owise → False
4 solve [e] = e
5 decompose l = (head l, tail l)
6 compose _ r = r

Of course, generating programs by instantiating a fixed schema is quite limited, be-
cause any program not following this schema cannot be generated by such an algorithm.
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1.2. Motivating Example — No a priori Knowledge
One can take on another extreme and naïve approach and assume no knowledge at all.
Simply all possible programs could be enumerated and checked whether by chance a
program that is consistent with our input/output examples has been created.
From combinatory logic the primitive combinators of the untyped SKI calculus by

Curry [23], which is known to be equivalent to λ calculus, and thus Turing complete,
can be used. Although this may seem rather artificial, it demonstrates the extent of
those approaches.
The SKI calculus consists of three combinators, i.e. functions with no free variables.

Applying arguments to a combinator is expressed by juxtaposition. All combinators are
left-associative; parenthesis may be used to explicitly state associativity. The enumera-
tion of correct SKI terms can easily be done by induction over the following grammar:

〈expr〉 ::= 〈var〉 | S | K | I | 〈expr〉〈expr〉

Variables 〈var〉 denote some arbitrary SKI expression:

〈var〉 ::= x | y | z | . . .

For each combinator a reduction rule is defined to specify its operational semantics
by stating expression replacements:

Ix → x

Kxy → x

Sxyz → (xz)(yz)

Although programs in the SKI calculus are very easy to enumerate, its programs are
huge. The equivalent of the two-lines-Haskell-definition of last in SKI2 consists of
about 3300 combinators, including representations for lists, Booleans, conditionals, head-
tail decomposition, and a fixed point combinator. This would require to check about
5 × 101574 possible candidate programs3. Assuming one could generate and test 109

candidates a second, it still would take more than 1500 times longer than the expected
lifetime of the earth4.

1.3. Dealing with Combinatorial Explosion in Practice
Both examples show the extreme: Using a fixed schema is far too limited, mindless
enumeration far beyond efficiency. So how to cope with the combinatorial explosion

2The curious reader may be referred to Appendix B
3Ignoring the general undecidability of this equational theory.
4Generous estimates say the earth exists since 5 × 109 years and it will take again as long for her to
be swallowed by an expanding sun.
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of the search space? As usual, a solution lies in the happy medium. However, for any
method this implies sacrificing some of its strengths by improving some of its weaknesses.
Seldom there is such thing as a free lunch.
Using type information when enumerating programs ensures the generation of type-

correct programs only, for example. This reduces the search space, but does not restrict
the solution space (cf. MagicHaskeller or PolyGP in Section 2.2.3.5). So there
is no risk of accidentally removing the solution from the search space when reducing
it. Another benefit of type information is that it is easily available in strongly typed
languages like Haskell. MagicHaskeller and PolyGP for example exploit Has-
kell’s strong type system. Once the specification has been successfully type checked, it
is not too difficult to make this information also available for the synthesis process. Type
constraints then simply prohibit the generation of programs that are not well-typed.
In Artificial Intelligence, usually heuristics are applied during search. This also keeps

the search space unchanged, but uses additional knowledge. This knowledge was a priori
researched by an expert programmer and compiled into a rating function to provide
guidance during the search space traversal. It can be seen as a compass roughly pointing
into the correct direction.
Other approaches delegate more responsibility to the user. For example could he be

required to provide negative examples. This has shown to be quite useful in the inductive
logic programming (cf. Section 2.2.1.1), when learning concepts or relations, to prune
irrelevant branches of the search space. When learning programs, i.e. functions, negative
examples convey no additional information, because for a given input there can be only
a single output.
A second possibility is to give an expert user the possibility to restrict the search space

problem-specifically. In analogy to our motivating example in the previous Section 1.2,
the user would need to give a new grammar each time depending on the problem. This
is done by the G∀st system (cf. G∀st in Section 2.2.3.3). Or the user can choose from
a set of predefined program schemes or templates according to his knowledge about his
program in mind (cf. Dialogs in Section 2.2.3.1). Problems arise however, if the user
is not such an expert as required and provides an inappropriate schema or grammar. In
the best case this only deteriorates the efficiency, in the worst the synthesis fails.
In the domain of automated theorem proving (ATP) similar problems arise. Here

the aim is to split a goal, which is to prove, into subgoals which then may be proven
automatically. For this purpose high level tactics are used, i.e. programmed strategies
to split a goal into subgoals. Milner firstly used tactics in the theorem prover LCF
[88] which were later adopted for HOL [38], Isabelle [108] and their combination
Isabelle/HOL[102], or NuPRL[19]. Although some tactics are applied automatically
an automated theorem prover still relies on an expert user to apply appropriate tactics
interactively.
Proof Planning [16, 15] tries to apply planning methods to guide the search of a

proof in ATP. A proof plan can be considered as a plan or an outline of a proof. To prove
a conjecture, proof planning first constructs the proof plan for a proof and then uses
it to guide the construction of the proof itself. It has been implemented in Clam, the
proof planner of the Oyster System [17]. Although several approaches have been made
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to construct a proof plan automatically [124, 27], e.g. from examples [18, 56, 91, 90], it
still requires an expert to construct an appropriate proof plan.

1.4. Contribution
After all it does not seem possible to gain efficiency without giving up expressiveness.
Or at least, it always involves the help of an informed user. It would be desirable,
similar to tactics in theorem proofing, to use high-level schemas, or program patterns,
but applying them without the help of a user. The question is, though, how to obtain
this information? One can show that the necessary information is just available in a
strong type system as it is used by e.g. Haskell.

Listing 1.3: input/output examples of the function lasts

1 lasts : : [[a]] → [a]
2 lasts [] = []
3 lasts [[a]] = [a]
4 lasts [[a,b]] = [b]
5 lasts [[a,b,c]] = [c]
6 lasts [[b],[a]] = [b,a]
7 lasts [[c],[a,b]] = [c,b]
8 lasts [[c,d],[b]] = [d,b]
9 lasts [[a,b],[c,d]] = [b,d]

10 lasts [[c],[d,e],[f]] = [c,e,f]
11 lasts [[c,d],[e,f],[g]] = [d,f,g]

Consider the examples for lasts in Listing 1.3, which show a modification of our first
function last. Now last is applied to each list inside a list. A functional programmer
would immediately see a well known pattern, the so called map-pattern, which applies a
function to each element in a list. He derives this knowledge from the type information
of the target function, knowing that map is a polymorphic higher-order function, defined
on arbitrary lists:

map : : (α →β) → [α] → [β]
map _ [] = []
map f (x:xs) = (f x) : (map f xs)

A simple solution would use the higher-order function map in Haskell:
lasts = map last

A similar problem would be the function length , which examples are shown in List-
ing 1.4. A common way to define length is to use the higher-order function foldr
(cf. Appendix A.6.1) which for each element in the given list constantly increments the
default value zero by one. The function const ignores its second input and always
returns its first.

length = foldr (const (+1)) 0
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Listing 1.4: input/output examples of the function length

1 length : : [a] → Int
2 length [] = 0
3 length [a] = 1
4 length [a,b] = 2
5 length [a,b,c] = 3
6 length [a,b,c,d] = 4
7 length [a,b,c,d,e] = 5

Both functions used higher-order functions to incorporate a schema for structural re-
cursion on lists. Once it is clear that a function follows a certain higher-order scheme,
only its arguments have to be determined and the synthesis effort decreases. This is the
usual benefit one gets from the use of program schemes. The novelty presented in this
work is that for the selection of an appropriate schema, neither an expert user nor addi-
tional knowledge is required. This work makes furthermore the following contributions:

• It recalls the well known fact that for any inductively defined data type so called
type morphisms exist and that they are distinguished by universal properties.
Those type morphisms do not only capture program schemes for structural recur-
sion, but also for primitive recursion and many other.

• Given the input/output examples of some function together with its type, it shows
that it is possible to automatically detect whether this function can be expressed
by a morphism by checking its universal properties in the given set of examples.

• This gives rise to a shortcut operator in the IP system Igor II. If the universal
properties of type morphism hold for a set of examples at some state in the search
space, Igor II can skip several subsequent search steps. At this point Igor II needs
only to synthesise the argument function of the higher-order scheme implementing
this specific type morphisms.

• It describes the algorithms for operators for three of those morphisms (catamor-
phism, type functor, paramorphism).

• It underpins in an empirical evaluation that with this approach improvements in
efficiency are not at the cost of expressiveness. It shows that due to the use of type
morphisms the Igor II algorithm is now both, faster and more powerful w.r.t. the
programs synthesisable.

The reminder of this thesis is organised as follows. Chapter 2 gives the reader a short
introduction into the basic concepts of IP (Section 2.1) and the main approaches to IP
(Section 2.2). Then the theoretical foundations for terms and term rewriting (Chapter 3)
and category theory (Chapter 4) are laid down, before the main Igor II-algorithm can be
recapitulated in Chapter 5 and the extensions can be described in Chapter 6. Chapter 7
evaluates the new algorithms. Finally, Chapter 8 concludes.
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2. Inductive Programming
Traditionally, the first appearance of Inductive Programming (IP) or Inductive
Program Synthesis (IPS) is dated back into the late 1970s, when Summers put IP
on a strong theoretical foundation introducing his Thesys system [128]. Although this
field can now look back on more than four decades of more or less continuous research,
there is no precise, comprehensive, and widely agreed definition or understanding of the
term Inductive Programming. Considering everything the term Inductive Programming
is attached to, one looks on a conglomerate of techniques and methods from various
disciplines for solving problems of different domains. This is not a satisfying way to
approach its meaning, because as soon as one topic is examined more closely, immediately
adjacent fields that might be considered as IP, but are not coined IP, may be identified.
A first profound study about inductive inference was published by Angluin and Smith

[3] motivated by the problem of finding patterns common to strings [2]. However, one
can say that the term Inductive Programming first occurred in a paper by Partridge
[107] and was taken up again by Flener and Partridge in their introductory article of a
special issue on Inductive Programming in Automated Software Engineering [32].
Starting in the 80s, often motivated by theories and methods of inductive inference

introduced by Angluin and Smith, Inductive Programming also got a connotation, which
was also considered as Programming by Example, cf. Myers et al. in [101].
The understanding of researchers dealing with this topic was that of programming in

the user interface [40] and was tackled quite problem-specific. The idea was to cap-
ture the users intention by analysing his actions in a demonstrational interface. The
terms Programming by Demonstration used by Myers [99], Programming by Direct Ma-
nipulation [123], or Finzer and Gould’s methodology of Programming by Rehearsal [29]
describes this quite well.
The focus was mostly on detecting repetitive user actions [25, 24], providing the basis

for end-user programming [40, 39], learning macros in text editors [80, 103], or guessing
and predicting user actions and intentions [26, 85, 99, 100, 101].
However, with focus on an end-user, this ignored the strong relation to software en-

gineering and the synthesis, i.e. the (semi-)automatic generation of code from a specifi-
cation, as emphasised by Partridge [107]. He stressed induction as a scientific principle
in contrast to deduction. Inductive inference—as a reasoning technique from specific
to general—is, similar to abductive inference and analogical inference, per se unsound.
Thus, instead of deducing a program from an assumed-to-be-complete specification, the
focus is to infer a program from a known-to-be-incomplete specification. In this case
incomplete means that the specification does not fully and unambiguously define the
program behaviour.
In Deductive Program Synthesis, given a complete specification, all programs derived
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from the specification must be equivalent. In Inductive Program Synthesis this is not
necessarily the case. Usually, a program is specified incompletely in terms of input/out-
put (IO) examples as an incomplete specification, which normally does not cover the
compete domain of the target program. This can be compared with extrapolation or
regression in mathematics.

2.1. Basic Concepts
Before it is possible to talk about specific IP systems and discuss their different ap-
proaches, some basic IP concepts need to be fixed. As mentioned before, IP infers
programs by generalising over an incomplete specification. The problem at hand, i.e.
the program the specifier has in mind, is usually called the target (program).
An incomplete specification usually comprises only examples of the program behaviour

on a part of the program’s domain. In most cases simple input/output examples describe
the desired behaviour of the target program. Sometimes also exemplary computation
traces are used. Usually type information and data type definitions are also considered
as part of the specification.
Given such a set of IO examples, unless the examples do not cover a restricted do-

main completely, the problem is normally under-specified, as there are infinitely many,
semantically different programs satisfying such a specification. In fact the IO examples
themselves are also a program trivially satisfying the given specification. However, there
are no objective criteria to determine which program the specifier really had in mind.
Strictly speaking, there is usually nothing like a unique and correct solution to the in-
duction problem, i.e. a unique program compliant with the specification. Therefore, a
program satisfying the specification at hand is called an hypothesis. The language in
which those hypotheses are described is called hypothesis language or target lan-
guage.
However, when doing IPS a probably infinite set of hypothesis is quite unsatisfying

as output of an IP system, or a machine learning algorithm in general. Thus, a learner
generalising over such a specification needs to make some assumptions. The concept of
inductive bias [89] captures exactly the assumptions made by a learner a priori.
Two kinds of inductive bias can be distinguished. The first is the so called language

bias (or restriction bias). As the name suggests, it poses a restriction on the language
used to represent the hypothesis considered. It may for example only allow first-order
Horn clauses as hypothesis, require hypotheses to follow some syntactical restrictions,
or being expressed in a subset of some other language, etc. This kind of bias is quite
easy to grasp, because it is impossible to learn something which cannot be expressed in
the hypothesis language.
The second bias, the so called preference bias (or search bias), is more crucial, as

it decides on success and failure of an IP system. Briefly, it determines which hypotheses
are preferred over others, and additionally guides the search through the hypotheses
space, i.e. the space of all hypotheses, by imposing an order on them. In the sim-
plest case, the preference bias applies Occam’s razor which states that “entia praeter

26



2.2. Approaches to IP

necessitatem non sunt multiplicanda”, i.e. it prefers the simplest hypothesis. However,
preferring the least general hypotheses, or those with minimal costs, w.r.t. a fitness- or
cost-function, are conceivable, too.
Apart from examples for the target program, often additional, problem specific knowl-

edge, so called background knowledge, can be provided to an IP system. Listing 2.1
shows some IO examples for the function reverse. Examples for last as shown on List-
ing 2.2 are given as background knowledge. A possible candidate solution could look
like the program shown in Listing 2.3. Haskell syntax is used here.

Listing 2.1: IO examples for reverse

1 reverse : : [a] → [a]
2 reverse [] = []
3 reverse [a] = [a]
4 reverse [a,b] = [b,a]
5 reverse [a,b,c] = [c,b,a]
6 reverse [a,b,c,d] = [d,c,b,a]

Listing 2.2: IO examples for last

1 last : : [a] → a
2 last [a] = a
3 last [a,b] = b
4 last [a,b,c] = c
5 last [a,b,c,d] = d

Listing 2.3: Possible candidate solution
1 reverse [] = []
2 reverse (a0:a1) =
3 last (a0:a1) : reverse (sub (a0:a1))
4 sub [_] = []
5 sub (a0:(a1:a2)) = a0 : sub (a1:a2)

Listing 2.3 shows another feature of some IP systems: The invention of so called
subfunctions. These are auxiliary functions which are neither target function nor
defined in the background knowledge. Lines 4 and following in Listing 2.3 show the
definition of such a subfunction which was introduced on the fly by the IP system.

2.2. Approaches to IP
When regarding different approaches to IP, they can traditionally be characterised by two
orthogonal dimensions. The first is the kind of the target or object language, shown in
the vertical dimension of Table 2.1, which are usually declarative languages. Therefore,
one can distinguish between functional, logic, and functional-logic IP systems.
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analytical generate & test
systematically evolutionary

functional
Igor
Igor II
Thesys

G∀st
MagicHaskeller

Adate
PolyGP

logic Dialogs
Dialogs-II
Golem

Ffoil
Progol
Atre

functional-
logic Flip

Table 2.1.: Classification of IP systems

The second describes the way an IP algorithm traverses its search space. This is shown
in the horizontal dimension of Table 2.1. Either this is done more analytical, and thus
data-driven, i.e. the structure of the data given in the specification guides the search.
Contrarily, the system may follow a generate and test approach by simply enumerating
and testing all correct programs exhaustively. If this is done systematically, usually by
some size complexity measure, in most cases additional restrictions are used, because the
search space is tremendous. If a system operates on a rather unrestricted search-space,
genetic algorithms are used to more or less randomly traverse the program space.
In the context of this work it is useful to bring in and examine a third dimension:

Namely the language bias, or the use of additional knowledge. Saying this, not back-
ground knowledge is meant, but knowledge that is not specific to a certain synthesis
problem.
Usually, the language bias was mostly considered together with the hypothesis or

object language, as it tendentially comprises some restriction of the class of synthesisable
programs. Traditionally, this was done by a fixed program scheme for a well-defined class
of programs. However, other approaches were used, such as the use of type information,
or user selected program schemes, which are not as restrictive as a hard-coded language
bias.
The next sections discuss the different object languages (Subsection 2.2.1), the differ-

ent strategies to traverse the search space (Subsection 2.2.2), and finally Subsection 2.2.3
will examine the use of additional knowledge for the synthesis process.
Hereby in each subsection only those systems are considered that are not of interest

in subsequent ones, such that at the end Subsection 2.2.3 describes only those systems
in more detail that are of interest from the perspective of the use of program schemes
and type information.
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2.2.1. Object Language
Traditionally, most IP systems use declarative languages as target or object languages,
i.e. as language of their generated programs, because only in declarative languages the ex-
pression of a data type value, e.g.
(a:(b:(c:[]))), represents not only an object of the given type, but also conveys
all information about the construction of this value. Since all data type values are com-
posed of data type constructors, there is only a single way to construct such a value by
successive constructor applications. Especially analytic approaches make excessive use
of this paradigm.
However, let us first concentrate on the different object languages, because every type

of declarative language, be it logic, functional, or functional-logic, has its own character-
istics which fosters language-specific program representations and inference mechanisms.

2.2.1.1. Inductive Logic Programming

One line of research is the field of Inductive Logic Programming (ILP), a term which
was first coined by Muggleton [94]. Though, ILP has a focus on non-recursive concept
learning problems, there has also been research in inducing recursive logic programs on
inductive data types in the field of ILP, see Flener and Yilmaz [34] for an overview.
In ILP, all examples, background knowledge, and hypothesis are represented as definite

Horn clauses in a subset of first order logic. Definite Horn clauses have the form H ∨
¬B1 ∨ . . . ∨ ¬Bn, where the positive literal H is called the head and represents the
predicate, or relation to be learnt.
Given a set of clauses B representing the background knowledge, a set of positive

examples E+, and a set of negative examples E−, the task in the typical ILP setting is
about finding the simplest consistent hypothesis H such that

B ∧H |= E+ and B ∧H 6|= E−.

Or in other words, the hypothesis H is complete and consistent with respect to the
training data given B. Finding this simplest consistent hypothesis H is done by search.
Therefore, the hypothesis space, i. e. all possible Horn clauses that can be learnt, are par-
tially ordered in a lattice based on θ-subsumption [114]. Also based on θ-subsumption,
additionally a syntactic notion of generality is introduced which makes it possible to sys-
tematically search this lattice, from general-to-specific or vice versa, for an appropriate
hypothesis.
Well known ILP systems are Quinlan’s Foil/Ffoil [115, 116], Progol developed

by Muggleton [95, 96], Muggleton and Firth [93], and Golem developed by Muggleton
and Feng [97]. A relatively young analytical system is the schema-guided, interactive,
inductive, and abductive recursion synthesiser Dialogs-II (Dialogue-based Inductive
and Abductive LOGic program Synthesiser)[30, 135]. Dialogs-II will be discussed
as an schema-guided, interactive analytical IP system later on (see 2.2.3.1). A system
specialised on recursive rules is Atre by Malerba [83].
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Most of the ILP systems are geared towards learning relational predicates and not
programs in a functional sense. This has two consequences which both hamper many
ILP systems. First, many ILP systems, excluding Progol, require both, positive and
negative examples. The latter are used to prune overly general rules. This is easy
and intuitive when learning relational predicates. In a setting where the goal is to
learn programs, given one input there is exactly one correct output, but infinitely many
incorrect outputs, i.e. negative examples. Thus, giving just random negative examples
does not help the system in generalising correctly. Giving appropriate negative examples
is extremely tedious and requires expert knowledge about the IP algorithm at hand.
Second, most ILP systems have adopted a strategy called sequential covering. In

each iteration of their algorithms, one rule is learned which covers some positive and no
negative examples. Then all examples covered by this rule are removed and the algo-
rithm starts again. Considering rules independently might be appropriate for learning
relations. In the case of (mutual) recursive programs, where rules have a high inter-
dependency, this is in most cases not successful, because interdependencies between IO
examples are ignored.
Various empirical studies showed that the outdated, though prominent ILP systems

are superseded by modern functional approaches [51, 52, 54].

2.2.1.2. Functional Programming

IP systems with a functional language as object language make up the largest part.
Apart from the ILP hype in the 90s, functional languages are the language of choice for
many IP systems.
This ranges from the early Lisp-programs [128, 58, 8], to evolutionary systems in ML

[104], λ-abstractions in Haskell [138], or the polymorphic-typed λ calculus System F
[10], to systems with a strong focus on term-rewriting in Maude [69], or systems that
make heavily use of type information in Haskell [63] or Clean [74].
An early survey about inductive synthesis of Lisp programs was written by Smith

[125]. A more up-to-date survey of program synthesis techniques, with most of them in
a functional setting, can be found in [66, 67]. Section 2.2.2 discusses those systems in
more detail.

2.2.1.3. Functional Logic Programming

The aim of functional logic programming is to combine the most important concepts
of functional languages with those of logic languages, to support features like function
inversion, existential variables, and non-deterministic search from logic languages and
efficient operational behaviour and evaluation strategies from functional languages.
As functional logic programming is not a run-of-the-mill programming paradigm, so

are there only a few Inductive Functional Logic Programming (IFLP) systems.
Notably Flip by Hernández-Orallo and Ramírez-Quintana [41, 42] is an implemented

representative of the approach. In functional logic languages, narrowing combines reso-
lution from logic programming and term reduction from functional programming. Flip
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uses its inverse, analog to inverse resolution, called inverse narrowing to solve the induc-
tion problem.
A paper by Bowers et al. [14] describes a framework for higher-order inductive pro-

gramming, in the functional logic programming language Escher, which allows to aug-
ment the usual functional programming syntax with predicates. Due to the fact that
Escher claims to have high meta-programming facilities this would be a promising sys-
tem. Unfortunately, its algorithm lacks crucial parts and it has never been implemented.

2.2.2. Search-Space Traversal
2.2.2.1. Generate and Test Approaches

With the trailblazing work by Koza [75, 76, 77, 78], founding the field of Genetic Pro-
gramming (GP), evolutionary methods entered the field of IP. Inspired by evolution in
biology, evolutionary methods build populations of possible candidate programs or indi-
viduals. Programs are usually represented as syntax trees, with functions on the inner
nodes and constants and variables on the leafs. Instead of systematically traversing the
search space, a general Monte Carlo search is applied. Individuals are randomly modified
by biological inspired operators such as reproduction, selection, crossover, and mutation.
In each iteration, always the “fittest” individuals of one population are evolved, hoping
that finally a desirable program will be created.
Although, GP is applied to various problems in different domains, having standard

libraries in every major programming language, it is preferably used to evolve arithmetic
expressions. Consider the arithmetic expression of a function pentA to compute the
area of a regular pentagon with side length t in Figure 2.1b. Representing arithmetic
expressions as term trees as shown in Figure 2.1c, and using the examples (Figure 2.1a)
for testing, a genetic algorithm would soon come to a solution similar to the tree in
Figure 2.1c. For this purpose it composes and recombines elements from a fixed collection
of symbols, the so called terminal set, and a set of function symbols, the function set,
containing at least {t, 1, 2, . . . , 4, 5, . . . , 25, . . .} and {∗,+, div, pow, sqrt}, respectively.
Through this focus on numerical problems, recursion is a less important issue. How-

ever, it is occasionally discussed for numerical data [60] or for restricted embedding of
functions into object-oriented languages [1], but it is easier to model iterations or rep-
etitions by loops with carefully crafted termination criteria [77] compared to recursion.
Koza [76] for example, evolves a recursive program to check the parity of a binary digit
of size n. For digits of size n+ 1 a new program would be necessary.
So it is commonly agreed that the recursive program learning problem is very difficult

for GP, because this can lead to nonterminating programs, which are impossible to test,
and thus it is difficult to assign a fitness value to non-terminating functions. However,
recursion is crucial when dealing with programs on structural data.
One possibility in GP is to allow non-terminating recursion and use a time limit

for executing individual programs. This done in Adate by Olsson [104, 105]. Wong
and Mun [134] proposed a method to detect structural similarities of non-terminating
programs, and to modify the GP-algorithm on-the-fly to prevent the generation of future

31



2. Inductive Programming

t pentA(t)
1 1.7205
2 6.8820
3 15.4843
4 27.5276
5 43.0119

(a) examples

pentA(t) = t2

4 ∗
√

25 + 10 ∗
√

5

(b) arithmetic expression

pentA(t)

∗

div
pow

t 2

4

sqrt

+

25 ∗

10 sqrt

5
(c) term tree

Figure 2.1.: The area of a regular pentagon with side length t, as examples (a), as arith-
metic expression (b), and its term tree representation (c)

programs with similar structure.
Another approach avoids non-termination by including special recursion operators in

the terminal set. This leads to an extension called Strongly Typed Genetic Pro-
gramming (STGP) [92]. Traditionally, GP systems face a limitation called closure,
meaning that all variables, constants, arguments of functions and return values must
have the same type. STGP lifts this restriction, such that they can be of any a priori
fixed type.
Work by Yu and Clack paved the way for PolyGP by Yu [138, 137] which uses

well-known higher-order functions such as map or fold, capturing termination in recur-
sion schemes. Similarly, the system by Binard and Felty [10, 9] provides higher-order
programming capabilities within the polymorphic λ-calculus F .
Nevertheless are GP algorithms quite time-intensive, because they only use a minimum

of the information available in the IO examples. Attempts to marry GP approaches,
represented by the Adate system and analytical approaches, represented by Igor II,
have been conducted by Crossley et al. [22, 21].

2.2.2.2. Analytical Approaches

As already mentioned, the foundation of IP, and in particular functional IP, was laid by
Summers [128] with its seminal Thesys system. He developed a theoretical framework
to automatically synthesise S-expressions in Lisp from exemplary computation traces
only. Summers’ system worked in two steps. In the first, for each IO example a so
called program fragment, consisting of Lisp primitives, predicates and McCarthy condi-
tionals, was constructed, computing the exact output for the specific input. In a second
step, these fragments were analysed for recurrences in their expression, and detected
recurrences were folded into a recursive definition.
The underlying program scheme of Summers’ approach was quite restricted, so Ko-
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dratoff et alter proposed various generalisations of Summers’ approach based on the so
called BMWk1-algorithm [58, 59, 70, 71]. BMWk was taken up again by Le Blanc [81]
and generalised further.
Summers’ approach avoided search completely by sticking to a restrictive program

scheme. Work by Biermann [8] was also based on exemplary computation traces, similar
to Summers’ first step, but used them to speed up search by pruning an exhaustive
program space of a well-defined program class.
Another system heavily inspired by Summers’ approach is Igor I [119, 98, 69]. Which

also follows a two-step approach. Given IO examples are transformed into a finite
approximating term of a recursive program scheme, a special kind of term-rewriting
system. In a second step this finite approximating term was analysed for recurrences
which finally were folded in a recursive definition. Igor I is more powerful then Thesys,
because its program scheme is less restricted and the IO examples need not to be ordered
linearly. However, it suffers from the first step being its bottleneck, because it turned
out that generating this finite approximating term is anything but trivial.
Its successor Igor II [65, 121, 69] finally overcomes this two-step approach by com-

bining analytical methods and an integrated search in the space of rules or unfinished
programs. It is described in detail in Chapter 5.

2.2.3. Schema-based Language Bias and Use of Additional
Knowledge

In this subsection we talk about IP systems that have a schema-based language bias or
use, apart from background knowledge, additional information.

2.2.3.1. Dialogs-II

Dialogs-II [135, 30] is an ILP system interactively querying the user for required ex-
amples. In terms of Flener and Yilmaz it is schema-guided, i.e. a schema is chosen by
an informed user. This is contrary to systems with hard-wired schemas which are called
schema-based (cf. the early analytic approaches). Flener et al. [33, 36, 35, 31] did vari-
ous research to capture general knowledge about structured program design principles as
well as domain specific knowledge in programming schemes, such as divide-and-conquer,
together with formal semantics to reason about its correctness.
The basic idea is that a scheme fixes the control flow of a program. If, furthermore,

the induction argument and its decomposition function is given by the user, examples
for the target function can be used to abduce examples fur subfunctions.
Consider the clause template shown in Figure 2.2, notated in Prolog-syntax, which

constitutes a divide-and-conquer scheme assuming the user to have chosen a decompo-
sition predicate which decomposes an input type into a single atomic element and two
sub-parts of the same type. X is always the input variable and the output is bound
to Y . If X is primitive, i.e. it is minimal or atomic in such a sense that it cannot be

1Boyer-Moore-Wegbreit-Kodratoff
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r(X, Y ) ← prim(X), solve(X, Y )
r(X, Y ) ← ¬prim(X), dec(X,H,X1, X2), r(X1, Y1),

r(X2, Y2), comp(H,Y1, Y2, Y )

Figure 2.2.: Divide-and-conquer clause template as used by Dialogs-II

decomposed anymore, the output can directly be computed from it. The predicate solve
binds the output to Y . If it is not primitive, X is decomposed into H, X1, and X2.
Recursive calls to r bind the sub-solutions for X1 and X2 to Y1 and Y2, respectively. The
predicate comp binds the composition of H, Y1, and Y2 to the output variable Y .
Given such a template and the decomposition predicate, the only open or undefined

predicates are solve for the base case and comp for composing the partial results.
However, the system is constructed to allow an expert user to make additional, domain

specific knowledge available for the synthesis process. Despite that, the system cannot
determine if a program scheme is appropriate or not.

2.2.3.2. PolyGP

PolyGP [139, 136] is a GP system with a polymorphic type system á la Girard-Reynolds
[117, 37], able to evolve programs containing higher-order functions. It is of special
interest for us, because it can use well known Haskell higher-order functions such
as foldr, map, or scanl as recursion schemes [138]. Equipped with a user-defined
terminal set T , and a function set F , its generated programs have the following syntax:

exp :: c constant ∈ T
| x identifier ∈ T
| f function symbol ∈ F
| exp1 exp2 function application of one expression to another
| λx.exp λ abstraction

Each program expression is associated with a type, which abstract syntax is defined
as follows:

σ :: τ primitive built-in type
| α type variable
| α→ β function type
| [α] list type with elements of type α
| (α→ β) bracketed function type

All user-provided constants, variables, and function symbols have to be attached with
a type: constants and variables with a primitive type, function symbols with a function
type. Together they comprise the context Γ. The following well-known typing rules
apply:
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• For any constant, or variable t ∈ T :

Γ ` t :: τ (t :: τ) ∈ T

The type of a constant or variable in the set of terminal set is the type attached
to it.

• For any function symbol f ∈ F :

Γ ` f :: τ (f :: τ) ∈ F

Similarly, the type of a function is the function-type attached to it in the set of
function symbols.

• For any application exp1 exp2 :

Γ ` exp1 :: σ → τ Γ ` exp2 :: σ
Γ ` exp1 exp2 :: τ

For any application of two expressions, if the type of the first expression is a
function type : σ → τ , and the type of the second expression is σ, the type of their
application is τ .

• For any abstraction λx.expr :

Γ, x :: σ ` expr :: τ
Γ ` λx.expr :: σ → τ

x 6∈ Γ

Given a variable of type σ that is not already used in Γ and an expression expr of
type τ , the type of the abstraction λx.expr is the function type σ → τ .

Its general algorithm is typical. First an initial population of n randomly generated,
type-correct programs up to a predefined maximal length are created. For type unifica-
tion Robinson’s algorithm [118] is used. Then several cross-over and mutation operators
are applied to the fittest individuals, w.r.t. a user-provided fitness-function, until an
individual with maximal fitness occurs.
Despite there is no limit to PolyGP’s expressiveness as a GP system in general, it

suffers from the usual drawbacks of GP approaches. Success or failure crucially depends
on the terminal set and the function set provided by the user. Are they too restrictive,
the desired program is not contained in the induced search space. Are they too general,
the search gets lost in space. Therefore, it requires the user to carefully craft these sets.
Furthermore, there is still some amount of randomness involved, as the initial population
is randomly generated.
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2.2.3.3. G∀st

G∀st [73] is an automatic tool for software testing implemented in the functional lan-
guage Clean2 [111]. The user expresses properties about functions and data types in
first order logic. G∀st automatically and systematically [72] generates appropriate test
data, evaluates the properties for these values, and analyses the test results.
In general, given a logic expression such as for example ∀t : T.P (t), G∀st evaluates

the predicate P (t) for a large number of values t of type T , where G∀st represents the
predicate P as a function T → Bool. The system uses the potentially infinite list of all
possible values of type T as test suite and conducts n tests for some large fixed number
n. The test may result in three possible outcomes: Proof if for a type, which number
of values is less or equal than n, the test succeeded for all values in the test suite. Pass
indicates that no counterexamples are found in the first n tests. Fail indicates that at
least one counterexample was found during the first n tests.
The idea behind G∀st is to state a property about the desired target function and

let the system proof this property by providing such a function. For example properties
for the factorial function f can be stated, such that P (f) = f(2) = 2 ∧ f(4) = 24 ∧
f(6) = 729, which becomes ∃f.P (f). However, test systems are normally geared towards
finding counterexamples and proving by contradiction, so it is more convenient to try to
proof ¬∃f.P (f) or even more suitable ∀f.¬P (f), which is equivalent with the following
proposition for G∀st:

prop : : (Int → Int) → Bool
prop f = not (f 2 ≡ 2 ∧ f 4 ≡ 24 ∧ f 4 ≡ 24)

However, functional test systems in general have difficulties to generate and print
functions. Therefore, instead of a property prop over function of type Int → Int,
a property over a inductively defined data type Func, representing functions of type
Int → Int, is used. The type Func represents the grammar of the target language
(cf. Figure 2.3), and the function apply turns an instance of this data type into an
actual function.

prop ’ : : Fun → Bool
prop ’ d = not (f 2 ≡ 2 ∧ f 4 ≡ 24 ∧ f 4 ≡ 24)

where f = apply d

A hand-crafted grammar as shown in Figure 2.3 defines the target language of the
candidate functions. It must be assured that it only describes terminating functions.
In the case of the here described integer domain it will only construct terminating
(primitive recursive) functions. Either they are non-recursive or they have an explicit
stop criterion by carrying the number of further allowed recursive calls around. The
conditional part is true if x ≤ c for x being the function argument, and c being some
integer constant. The then-part is a normal non-recursive expression, where the else-
part contains only one recursive call of the form f(x−d), for some small positive number
d. The expressions are either a variable, an integer constant, or a binary operator

2The syntax of Clean is very similar to that of Haskell. Thus, Haskell’s syntax is used to describe
problems in Clean, too.
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Fun :: f(x) =(Expr | RFun)
RFun :: if(x ≤ IConst) then Expr else Expr2

IConst :: Positive_Integer
Expr :: Variable | Integer | BinOP Expr

Expr2 :: Variable | Integer |
BinOP (Variable | Integer | f(x− Integer))

BinOP e :: e+ e | e− e | e ∗ e

Figure 2.3.: Grammar of the type Fun representing candidate programs

applied to an expression. In this example binary operators for addition, subtraction,
and multiplication are supported.
This grammar can directly be mapped into an inductive data type. The type Fun can

now be recursively enumerated, starting with the terminals. Integers are enumerated up
to a fixed integer n.
Although this grammar can easily be extended, from an IP perspective this is a

bit unsatisfying though. An expert user has to put a lot problem specific knowledge
into the problem specification in advance. However, this approach allows more control
over the syntax of the generated function. So in general they are more readable for
many users and the class of synthesisable functions is better describable. Furthermore,
G∀st is really tuned for enumeration and generates solutions much faster on the same
domain. However, it is nearly sure that the enumeration time of G∀st would deteriorate
extremely if the grammar is sufficiently expressive and complex.

2.2.3.4. Djinn

A very interesting system, though not an IP system in the strict sense but rather a
deductive system, is Djinn by Augustsson [5]. Djinn is a theorem prover in Has-
kell, generating Haskell expressions for a given type exploiting the Curry-Howard
isomorphism.
The Curry-Howard isomorphism states an astonishing correspondence between type

theory and proof theory. For instance, minimal propositional logic corresponds to sim-
ply typed λ-calculus, first-order logic corresponds to dependent types, second-order logic
corresponds to polymorphic types, etc. This also extends to the level of syntax, where
types correspond to formulas, expressions to proofs, and term reduction to proof nor-
malisation.
In the same way as a proof for B can be derived from A and a proof for A→ B, one

can obtain a value f x of type B from a value x of type A and a function f of type A →
B. Thus, in the same way as deriving a proof for A→ B from a proof of B assuming A,

it is possible to derive a function (λx → e) of type A → B by constructing a value
e of type B using a variable x of type A.
In Djinn the user gives a types at the prompt and the systems returns a term of that
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type if one exists. Djinn interprets a Haskell type as a logic formula and then uses a
decision procedure for Intuitionistic Propositional Calculus. This decision procedure is
based on LJT, a modification of Gentzen’s LJ sequent calculus by Dyckhoff [28], which
ensures termination. Theoretically, Djinn will always find a function if one exists, and
if none exists, Djinn will tell so. The decision procedure has been extended to generate
a proof object (i.e., a lambda term) as solution. It is this lambda term (in normal form)
that constitutes the Haskell code. Given the type of a polymorphic function f : : a →

a, Djinn generates the identity function as the sole solution.

Djinn> f ? a->a
f :: a -> a
f x1 = x1

Or it can uncurry a function

Djinn> uncurry ? (a -> b -> c) -> ((a,b) -> c)
uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry x1 (v3, v4) = x1 v3 v4

and induce a case distinction:

Djinn> either ? (a -> b) -> (c -> b) -> Either a c -> b
either :: (a -> b) -> (c -> b) -> Either a c -> b
either x1 x2 x3 = case x3 of

Left l4 -> x1 l4
Right r5 -> x2 r5

Djinn will always find a (total) function if one exists. If multiple functions exist, the
system will only return one of them according to its search strategy.

Djinn> cons ? a -> [a] -> [a]
cons :: a -> [a] -> [a]
cons _ x2 = x2

Sure, this is not the desired function cons to insert an element at the front of a list, but
it is a very simple function with this type. Similarly, the only Church numerals Djinn
can find are 0 and 1.

Djinn> :set +multi
Djinn> num ? (a -> a) -> (a -> a)
num :: (a -> a) -> a -> a
num x1 x2 = x1 x2
-- or
num _ x2 = x2

Djinn also allows to add new function types to construct the results.
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Djinn> foo :: Int -> Char
Djinn> bar :: Char -> Bool
Djinn> f ? Int -> Bool
f :: Int -> Bool
f x3 = bar (foo x3)

However, this is less powerful as it might seem at the first place, because Djinn does
not instantiate polymorphic functions, but only uses those functions with exactly the
type stated. Obviously, there is no polymorphic function to convert arbitrary types.

Djinn> cast ? a -> b
-- cast cannot be realized.

A more complex example is the generation of returnS , bindS in the state monad,
which allows to encapsulate in Haskell state-full computations in a monadic type
type S s a = (s → (a, s))

Djinn> type S s a = (s -> (a, s))
Djinn> returnS ? a -> S s a
returnS :: a -> S s a
returnS x1 x2 = (x1, x2)
Djinn> bindS ? S s a -> (a -> S s b) -> S s b
bindS :: S s a -> (a -> S s b) -> S s b
bindS x1 x2 x3 =

case x1 x3 of
(v4, v5) -> x2 v4 v5

Although Djinn is a neat demonstration of the power of types and the Howard-Curry
isomorphisms, its limitations are quite obvious. Recursive functions are far beyond its
scope, but it might be a good starting point in combination with other IP approaches.

2.2.3.5. MagicHaskeller

MagicHaskeller [63, 62, 61] is an IP system based on systematic and exhaustive
enumeration and test of candidate programs. Simply put, the basic idea of functional
programming done by MagicHaskeller is to exploit a strong type system just as solv-
ing a jigsaw puzzle: By repetitive combination of unifying functions and their arguments,
expressions are constructed until eventually the intended program is obtained.
Based on a user-defined library containing primitive expression, MagicHaskeller

systematically enumerates all those de Bruijn lambda-expressions that can be built from
primitives from the given library. This is an infinite stream of functions which can
be constructed by function composition and function application of expressions in the
library and which unify with a given target type, i.e. the type of the target function.
Finally, all those functions are filtered which pass a user-defined test, usually correctly
compute the given IO examples.
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Katayama [64] reformulated its search, similar to Djinn, under Curry-Howard iso-
morphism such that systematic and exhaustive search corresponds to the generation of
infinite streams of proofs under second-order intuitionistic propositional logic.

MagicHaskeller’s elegance lies in its efficient implementation of this enumeration
and ingeniously interleaving these infinite streams. A naïve approach would soon run
into spacial problems. Its breadth-first search is based on Spivey’s algebraic approach
for search monads [127, 126] combined with a type-checking monad transformer [82].
To avoid re-computation of subexpressions, Katayama uses a special memoization [63]
technique based on generalised tries [45].
Similar to Igor II, a minimal specification library consists of complete definitions of

relevant type constructors. However, also a recursion scheme is required. Usually this
is the type specific paramorphism. Furthermore, arbitrary function definitions may be
added. Listing 2.4 shows a small library including the constructors and the paramor-
phism for natural numbers and lists. Given the following test function3

λf → f [] ≡ []
∧ (f [1 : : Int] ≡ [3 : : Int ])
∧ (f [1 ,2] ≡ [3 ,4])
∧ (f [1 ,2 ,3] ≡ [3 ,4 ,5]) ,

MagicHaskeller quickly finds a lambda expression satisfying this test:
λa → list_para a [] (λb c d → succ (succ b) : d)

In contrast to PolyGP (2.2.3.2), MagicHaskeller is less prone to be overwhelmed
with too much background knowledge. Although the size of its provided library strongly
influences its synthesis time, always only those library functions are used which have
the appropriate type, while all others are ignored. PolyGP would simply mingle all
elements in the terminal and function sets into its initial population.

Listing 2.4: Example library for MagicHaskeller
1 module Library where
2

3 zero : : Int
4 zero = 0
5

6 succ : : Int → Int
7 succ = succ
8

9 nat_para : : Int → α → (Int → α →α) →α
10 nat_para = λi x f →
11 if i ≡ 0
12 then x
13 else f (i -1) ( nat_para (i -1) x f)
14

15 nil : : [α]

3The explicit typing resolves ad-hoc polymorphism, because digits in Haskell are overloaded
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16 nil = []
17

18 cons : : α → [α] → [α]
19 cons = (:)
20

21 list_para : : [β] →α → (β → [β] →α →α) →α
22 list_para = λl x f →
23 case l of
24 [] → x
25 a:m → f a m ( list_para m x f)
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3. Terms and Term Rewriting
This chapter formally introduces the concepts of a term and term rewriting and its basic
notions. Since Igor II is a functional IP system, it strongly builds upon terms which
describe the syntax of an arbitrary functional programming language. For our purpose,
term rewriting gives them their operational semantics and helps us to define a functional
program as a term rewriting system. In general, this chapter fixes the syntactic part of
problems and algorithms described in other chapters, as well as the operational semantics
w.r.t. term rewriting. Approaching problems from a term rewriting perspective can also
be seen as adopting a micro perspective, i.e. looking at how a problem is solved. This
we need later in the Chapters 5, and 6.1.2. The nomenclature and definitions follow the
standard text books on this topic by Baader and Nipkow [6] or Terese [129].

3.1. Terms
Before we can talk about term rewriting, we need to have a clear understanding of terms
which make the syntax of any functional programming language. Intuitively, terms are
built from function symbols and variables. Given a binary function symbol f and two
variables x and y, then f(x, y) is a term. To prevent ambiguities, we need to be sure
which function symbols are available in a certain context and what arity they have. This
is fixed by a signature.

Definition 3.1.1. Let a signature Σ be a set of function symbols, where each symbol
f ∈ Σ is associated with a fixed natural number, the arity, indicating the number of
arguments it is supposed to have. Function symbols with arity 0, i.e. nullary (0-ary)
symbols, are called constant symbols or just constants.

However, functions are usually not defined for the whole domain, but only for a subset
of it, so functions taking arbitrary terms as input are too general. So the domain is in
fact an indexed family or collection of sets, a so called sorted set. Let us recall some
standard terminology.

Definition 3.1.2. For a set S, let an S-sorted set be an S-indexed family of sets
(Xs)s∈S. For S-sorted sets S and Y , an S-sorted mapping φ : X → Y is defined by
the family of mappings (φs : Xs → Ys)s∈S.

Definition 3.1.3. A many-sorted signature Σ is a pair Σ := (S,Ω), where

• S is a set (of sort names); and

• Ω is an S∗ × S-sorted set (of function symbols).
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S∗ is the finite, possibly empty sequence of elements of S and × the product of two sets.

Notation: Saying that f : s1 × . . . × sn → s is in Σ = (S,Ω) means that it holds
that s1 . . . sn ∈ S∗, s ∈ S, and f ∈ Ωs1...sn,s. The f is said to have arity n and (result)
sort s. The abbreviation f : s will be used for f : ε → s where ε denotes the empty
sequence. However, to avoid confusions with a colon being the operator to name a rule
(cf. Definition 3.3.2), we will also write t :: s to denote that the term t is of sort (or
type) s. Usually the semantics should be clear from the context though.

From now on, all signatures are considered to be sorted. After this formal preparatory
work, we are now well-equipped to continue with a definition of terms. In general, terms,
or sorted terms, are strings of symbols from an alphabet. The symbols are drawn from a
signature Σ = (S,Ω) and a countably infinite s-sorted set of variables X , assumed to
be disjoint from the function symbols in the signature Σ.

Definition 3.1.4. The set of terms over a signature Σ = (S,Ω) and an S-sorted set of
variables X is indicated as TΣ(X ) and defined inductively:

(i) x ∈ TΣ(X ) for every x ∈ X (i.e. every variable is a term).

(ii) Given an n-ary function symbol f : s1 × . . . × sn → s, f ∈ Ω, and terms ti : si, i ∈
{11, . . . , 1n}, ti ∈ TΣ(X ), then f(t1, . . . , tn) ∈ Σ is a term of sort s (i.e. the applica-
tion of function symbols to terms yields terms).

(iii) These are all terms.

Terms containing no variables are called closed or grounded. Terms in which no
variable occurs more than once are called linear.

Notation: In the context of terms, variables will be usually denoted by x, y, z, x′, y′′, . . .,
etc., or indexed x0, x1, x2, . . . if needed. The symbols f, g, h, . . . stand for function sym-
bols, a, b, c, . . . are constants. If appropriate we will use more meaningful names, e.g. 0
for a constant or + for a binary function. We will also use infix or postfix when in the
context the meaning is clear.

We also need to be able to address parts of terms or subterms. For this purpose, terms
suggest for a straight forward representation as trees. Function symbols are parent
nodes, and arguments are child nodes. Figure 3.1 depicts the structure of the term
f(g(y, h(a)), x) represented as a tree. Each subterm can now be addressed by a unique
position. The term itself has the position ε. The first argument of a function symbol at
position p has the position p1, the second the position p2, and so on. By induction over
the structure of a term, we can give a more formal definition of subterms and positions.

Definition 3.1.5. Let Σ be a signature, and X a set of variables, and furthermore are
s, t ∈ TΣ(X ).

1. For a term s, let Pos (s) be the set of positions as sequences over an alphabet of
natural numbers which is defined by induction as follows:
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Figure 3.1.: The term f(g(y, h(a)), x) represented as tree with positions.

(i) If s = x ∈ X , then Pos (s) := {ε}, where ε be the empty sequence.
(ii) If s = f(s1, . . . , sn), then

Pos (s) := {ε} ∪
n⋃
i=1
{ip | p ∈ Pos (si)}.

The terms si are called arguments, and the symbol f is the head symbol, root,
or simply the head. The position ε is the root position.

2. The size |s| of a term s is the cardinality of Pos (s).

3. For a position p ∈ Pos (s), the subterm of s at position p, denoted by s|p, is
defined by induction on the length of p:

s|ε := t,
f(s1, . . . , sn)|iq := si|q.

4. For p ∈ Pos (s), a term obtained by replacing the subterm at position p by
t is denoted by s[t]p, i.e.

s[t]ε := s,
f(s1, . . . , sn)[t]iq := f(s1, . . . , si[t]q, . . . , sn).

5. The set of all variables occurring in s is denoted by Var (s), s.t.

Var (s) := {x ∈ X | there exists p ∈ Pos (s) s.t. s|p = x}.

6. When we talk about identity of two terms s and t, we mean syntactic identity
and denote it by s ≡ t.
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Notation: We may call a sequence of terms or arguments t1, . . . , tn a (term) vector
and may abbreviate it by t. The element at position i is denoted by t|i. The position
ε is undefined.

Specific subterms on arbitrary positions are best described together with their context
they are occurring in. Let for our purpose a context be a term with zero or more
occurrences of a special symbol � (called hole), i.e. a term over an extended signature
Σ∪{�}. If C is a context containing exactly n holes, then C[t1, . . . , tn] denotes the result
of replacing each hole from left to right by t1, . . . , tn. If there is exactly one occurrence
of � in C, we call C a one-hole context. If t ∈ TΣ(X ) can be written as t ≡ C[s],
s is a subterm of t written s ⊆ t. For the trivial context C = �, for any term t it
holds that C[t] ≡ t, so t ⊆ t. Another subterm s of t different from t is called a proper
subterm, written s ⊂ t.

3.2. Substitution, Matching, and Generalisation
Replacing variables in a term by other terms is called substitution. In particular, a
substitution only affects variables so it may be defined using the set of variables X as
domain i.e. σ : X → TΣ(X ). Usually it is defined as a finite set of variable assignments
{x1 7→ t1, . . . , xn 7→ tn}. It acts as identity on all variables not mentioned. Assume a
signature Σ to be given.

Definition 3.2.1. A substitution is a function on terms σ : TΣ(X ) → TΣ(X ) defined
as a variable assignment A = {x1 7→ t1, . . . , xn 7→ tn} s.t.

σ(x) ≡ t, for (x 7→ t) ∈ A,
σ(x) ≡ x, for (x 7→ t) 6∈ A for some t,
σ(c) ≡ c, for some constant termc,
σ(f(t1, . . . , tn)) ≡ f(σ(t1), . . . , σ(tn)).

Notation: Usually we write a substitution in postfix (tσ or tσ) instead of prefix (σt)
and drop the surrounding brackets.

Due to the fact that a substitution is interpreted as a set of variable assignments, it is
common sense that all variables in a term are replaced simultaneously. A substitution
that replaces variables by variables is called a (variable) renaming.

Definition 3.2.2. The finite set of those variables a substitution does not map to
themselves is the domain of σ, written Dom (σ).

We will tacitly mix both notations, i.e. assume a substitution σ to operate on terms,
but define it as a set of variable assignments with identity on all other terms and vari-
ables. This is more convenient for our later work and facilitates the definition of other
concepts, as e.g. the composition of two substitutions.

Definition 3.2.3. The composition στ of two substitutions σ and τ is defined as
στ(x) := σ(τ(x)).

46



3.3. First-Order Constructor Term Rewriting

More set theoretic, the composition στ of two substitutions σ and τ = {x1 7→
t1, . . . , xn 7→ tn} with disjoint domains yields the finite set of variable assignments s.t.
στ := {x1 7→ t1σ, . . . , xn 7→ tnσ} ∪ σ.
The concept of substitution gives rise to a partial ordering relation of terms, the so

called subsumption order.
Definition 3.2.4. Given two terms s and t. Let s ≡ tσ for some substitution σ. We
say the term t subsumes s and write s � t. The term t is also said to match its
(substitution) instance s. The term t is more general than the term s.
The subsumption order of terms extends naturally to substitutions.

Definition 3.2.5. For two substitutions we define σ � τ ⇔ (∃ρ).(σ = τρ) for some
substitution ρ. Similarly, if σ � τ we say τ is more general than σ.
Given two terms it may be interesting if there is a substitution which makes both

terms equal when applied.
Definition 3.2.6. Let s and t be terms, then a substitution σ is called a unifier if
sσ ≡ tσ. If σ is minimal w.r.t. the ordering on substitutions �, then σ is called a most
general unifier (mgu).
Given two terms, unification computes the most general unifier, i.e. a substitution

(if any) that equalises both terms. Conversely, the so called anti-unification computes
a term matching both of them. Such a term is a generalisation, but a simple variable
is also a valid generalisation, but matching every other term though. Therefore, it is
required to be minimal, or the least general, w.r.t. the ordering on terms �.
Definition 3.2.7. Given a set of terms S = {s1, . . . , sn}, then there exists a term t
subsuming all terms in S which itself is subsumed by every other term subsuming all
terms in S. The term t is called least general generalisation (lgg) of S [112, 113].

3.3. First-Order Constructor Term Rewriting
In the last sections we explained the basic syntax of terms and possible relations between
individual terms. In this section we will look in more detail on reduction rules, rewrite
relations and constructor (term rewriting) systems (CS). Since constructor systems are in
our main focus of interest, all other concepts like rules or reductions are introduced w.r.t.
them, although, they are in fact much more general and apply for any rewrite system.
Therefore, the reader should be aware that, compared to other textbooks, especially the
mentioned ones [6, 129], our definitions may be overly specific.
Before we come to constructor systems, we again have to define some basic building

blocks first.
Definition 3.3.1. Let Σ = (S,Ω) be a signature s.t. the function symbols Ω may be
partitioned into two disjoint set of defined function symbols D and constructor
symbols or just constructors C. Terms over a set of variables X and symbols from C
are called constructor terms and denoted by TC(X ).
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Notation: For convenience we may ambiguously identify both, a signature and the
set of function symbols by Σ. However, the semantics should always be clear from the
context. From now on, in the context of constructor term rewriting, assume an arbitrary,
but fixed, signature Σ = (S,Ω) to be given.

In general, a reduction rule is a pair of terms (l, r) over some signature where Var (r) ⊆
Var (l). In our case we are more specific and allow only constructor terms below the
root position of the left term l.

Definition 3.3.2. A reduction rule (or rewrite rule) for a signature Σ is a pair of
terms (l, r), usually written as l→ r. Under some circumstances we may want to name
a rule and write ρ : l → r. The term l is called the left-hand side (lhs), r the right-
hand side (rhs) of the rule (In plural we use lhss and rhss.). If the lhs l in ρ : l→ r
is linear, ρ is called left-linear.

Definition 3.3.3. For a rule f(p)→ r we may call p the pattern and f the head.

Notation: In some cases, when we talk about an arbitrary set of rules R, we may
nevertheless pose some restrictions on it. For this purpose we denote with Rf,p a set of
rules with head f and pattern p.

Since a left-hand side of a rule usually contains variables, an application of a rewrite
rule is quite intuitive. Given a term t that matches the lhs of a rule ρ : l → r with
substitution σ, the term t can be rewritten to rσ. The result is an atomic reduction step
lσ →ρ r

σ. The lhs lσ is called a redex (from reducible expression), the right-hand side
rσ is called contractum.

Definition 3.3.4. Given a term t, a reduction step (or rewrite step) according to a
rule ρ : l→ r, rewrites the redex to the contractum within an arbitrary context:

C[lσ]→ρ C[rσ]

We call →ρ the one-step reduction relation or just reduction generated by ρ.

Several (constructor) rewrite rules make up a constructor (term rewriting) system.

Definition 3.3.5. A constructor (term rewriting) system (CS) over a signature
Σ = (S,Ω) with Ω = D∪C and D∩C = ∅ , is a pair R = (Σ, R) consisting of a signature
Σ and a set of rewrite rules R. For any rule ρ : l→ r ∈ R following restrictions apply:

(i) l ≡ f(p) and f : s1 × . . . × sn → s ∈ Σ, the term p|i ∈ TC(X ) with p|i : si for
i = 1 . . . n,

(ii) r ∈ TΣ(X ) with r : s, i.e. r is of type s,

(iii) ρ is left-linear, and

(iv) l 6∈ X with Var (r) ⊆ Var (l).
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The one-step reduction relation of R, denoted by → (or →R if we are more specific),
is defined as the union ⋃{→ρ| ρ ∈ R}. So there is a one-step reduction in R, whenever
there is a one-step reduction of a rule ρ in R.
Concatenating multiple reductions we can generate a (possible infinite) reduction

sequence or reduction t0 → t1 → t2 → . . . tn. If there is a finite reduction sequence
t0 → . . . → tn we may write t0 � tn to emphasise that there are multiple reductions
and call tn a reduct of t0. If tn is not a redex, i.e. not an instance of a lhs, of any rule
in R we call tn a normal form (of t0). If there is a reduction sequence s.t. s� t and t
is a normal form we say s normalises to t and write s !→ t .

Notation: Even if s � t or s !→ t we still may write s → t for the sake of brevity if
the meaning is clear from the context.

Definition 3.3.6. A CS is called confluent if for all its rules, any two redexes have a
common reduct. It is normalising if for any terms s there is a term t, such that s !→ t.
If it is both normalising and confluent, it is complete.

A sufficient criteria for confluence is that no two lhss of a CS overlap, i.e. do not
unify. If a CS is confluent, each term has at most one normal form. If such a unique
normal form for a term t exists, we denote it by t ↓.

Definition 3.3.7. We call a CS (Σ, R) terminating if and only if, there exists a well-
founded order < on TΣ(X ), s.t. t > u for every t, u ∈ TΣ(X ) for which t→R u.

A strict order < is called well-founded if it does not have an infinite ascending
sequence t0 > t1 > t2 . . .. For a given CS a compatible reduction order is a well-founded
order s.t. the CS is terminating. If the CS terminates all terms have normal forms.
Thus, each term has a unique normal form, if the CS is complete.

Definition 3.3.8. A reduction order on TΣ(X ) is a well founded order < on TΣ(X )
that is

• closed under substitutions, i.e. for an arbitrary substitution σ, if t < u then tσ < sσ

• closed under contexts, i.e. for an arbitrary context C, if t < s then C[t] < C[s].

Definition 3.3.9. A reduction order < on TΣ(X ) is called compatible with a CS (Σ, R)
if l > r for every rewrite rule l→ r in R.

Functional programming is the main application of CS, which are left-linear and con-
fluent. We call such CSs orthogonal1. Thus, for our purpose, a functional program is
a constructor system, which is left-linear and no two lhss overlap.

1Orthogonality is in fact less restricted than in our definition, but it suffices for us.
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3.4. General Remarks on Notation
If it is necessary to make the relation to functional programming more precise and avoid
ambiguities with functional types we may also write l = r and call it equation or simply
rule instead of rewrite rule l→ r.
We will also call things as they are, and may call a set of n ≥ 1 rules with the same

head (but different pattern) a function definition or just function, f may then also
be called function head.
If in some context it is unambiguous, we may also treat the symbol = as a distinguished

symbol of some signature, so assume l = r to be a single term. In this case all concepts
and operations on terms naturally extend to rules and equations, respectively.
To facilitate speaking about terms and rules, we will use many concepts in a “func-

tional” manner. If for example, r is a rule and f is a concept, applying r to f as argument
means “f of r”. For example head(r) denotes the head of the rule, i.e. the head of its
lhs. Similarly, lhs(r) and rhs(r) would denote the lhs and the rhs of r, respectively.
If the semantics is clear from the context, we may extend this to multiple arguments.

For example shall lgg(l1, l2, l3) denote the least general generalisation of the terms l1, l2
and l3.
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Chapter 3 already introduced the theory needed to describe our problem and later our
algorithms from a syntactic point of view. Term rewriting is appropriate to explain how
it is done. To describe what is done, i.e. to look at the problem from a semantic point of
view, concepts from category theory have shown to be quite suitable. The following
sections introduce necessary concepts from category theory, relate them to functional
programming, and provide the theoretical background for our algorithms. They follow
the standard texts by Barr and Wells [7] and Pierce [110].

4.1. Category Theory
Originally, categories were introduced in a mathematical context as a generalisation of
set theory to describe mathematical structures and their relationships in an abstract way.
Despite its abstractness and generality—or even because of it—it took a great influence
on the design and implementation techniques of (especially functional) programming
languages. Instead of reasoning about properties of certain objects, category theory
more or less neglects the individual structure of objects and focuses only on the relations
among themselves. In this way, it achieves its high level of abstractness and generality.

4.1.1. Categories
In one sentence, a category consists of objects related to each other by arrows (or mor-
phism), including identity arrows and the composition of morphisms.

Definition 4.1.1. A category C consists of

(i) a set of objects;

(ii) a set of arrows;

(iii) two operations assigning to each arrow f an object dom f , its domain, and an
object cod f , its codomain (f : A → B denotes an arrow with dom f = A and
cod f = B);

(iv) an associative composition operator assigning to any pair of arrows f and g,
with cod f = dom g, a composite arrow g ◦ f : dom f → cod g, s.t. for any three
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arrows f : A→ B, g : B → C, and h : C → D

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

(v) for each object A, it consists of an identity arrow idA : A→ A, s.t. for any arrow
f : A→ B

idB ◦ f = f and f ◦ idA = f.

Example 4.1.1
An intuitive example of a category is the category of sets Set. Objects in Set are
sets, a morphism f : A→ B is a total function mapping from A into B. Composition of
morphisms is the set-theoretic composition of functions. Identity morphisms are identity
functions.

A common way to display categories is in form of commuting diagrams. Below the
diagrams of categories with one, two and three objects are shown.

A

idA

A

idA

B

idB
f

A

idA

C

idC

B

idB
f

h g

Definition 4.1.2. A diagram in a category C is a collection of vertices and edges
labelled with morphisms and objects of C, respectively. If and only if an edge is labelled
with a morphisms f and f has the domain A and the codomain B, then the edge is an
arrow starting at a vertex labelled with A and pointing to a vertex labelled with B.

Diagrams are widely used to state and prove certain properties of categories or cat-
egorial constructions. Saying that a diagram commutes suffices often to prove certain
properties.

Definition 4.1.3. A diagram in a category C is said to commute, if for any pair of
vertices X and Y , all paths from X to Y are equal, in the sense that any path from X
to Y is an arrow and all these arrows are equal in C.

4.1.2. Universal Constructions
As already mentioned, commuting diagrams allow to reason about objects in a category
and their relationships to each other, or briefly, about the structure of a category. How-
ever, apart from morphisms, no other concept has been introduced so far which may
induce a structure on a category. A broad range of so called universal constructions
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are known to characterise the structure of a category. Only those universal constructions
are introduced here which are needed later to elaborate this work.
The simplest of those universal constructions is the initial object and its dual, the

terminal object.

Definition 4.1.4. An initial object of a category is an object 0, s.t. for every object
A, there is exactly one arrow from 0 to A.

Definition 4.1.5. Dually, an object 1 is called a terminal or final object if, for every
object A, there exists exactly one arrow from A to 1.

Categories can be seen as a generalisation of sets. So it is not surprising that, similar
to sets, products and sums can be defined for categories, too.

Definition 4.1.6. Given two objects A and B, their product is the object A × B
together with two projections fstA×B : A × B → A and sndA×B : A × B → B, s.t. for
any object C and arrows f : C → A and g : C → B there exists a unique mediating
arrow 〈f, g〉 : C → A×B that makes the following diagram commute.

A A×B B

C

f g
〈f, g〉

fstA,B sndA,B

Thus, satisfying the universal property, s.t. for h = 〈f, g〉

fstA,B ◦ h = f and sndA,B ◦ h = g (prod-UniProp)

for all h : C → A×B.

The function 〈f, g〉 is called “the pairing of” or “fork of functions f and g”.

Corollary 4.1.1 From the diagram above, a couple of useful laws for products can
directly be obtained.

• Cancellation: This follows directly from Equation prod-UniProp.

fstA,B ◦ 〈f, g〉 = f

sndA,B ◦ 〈f, g〉 = g
(prod-Cancel)

• Reflection: Assume f = fstA,B and g = sndA,B in 〈fstA,B, sndA,B〉, then

idA×B = 〈f, g〉. (prod-Refl)
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• Fusion: Assuming 〈j, k〉 ◦m = h in Equation prod-UniProp and use it in Equa-
tion prod-Cancel, the equations

j ◦m = f

k ◦m = g
⇒ 〈j, k〉 ◦m = 〈f, g〉, (prod-Fuse)

can be obtained. They are equivalent to

〈j, k〉 ◦m = 〈j ◦m, k ◦m〉.

Given two morphisms, their product can be defined as a morphism between two prod-
uct objects in terms of projections.

Definition 4.1.7. Let A×C and B×D be product objects, then for any pair of arrows
f : A→ B and g : C → D their product arrow f × g : A× C → B ×D is defined as

f × g = 〈f ◦ fstA,C , g ◦ sndA,C〉, (prod-Arrow)

making the following diagram commute:

A A× C C

B B ×D D

f gf × g

fstA,C sndA,C

fstB,D sndB,D

Putting the rules from the definitions 4.1.6 and 4.1.7 together, the following absorp-
tion law for products can be obtained:

(f × g) ◦ 〈h, k〉 = 〈f ◦ h, g ◦ k〉. (prod-Absorp)

Dual to a product of objects, which relates to the Cartesian product on sets, is the
sum of two object, relating to the disjoint union of sets.

Definition 4.1.8. Given two objects A and B, their sum or coproduct is the object
A + B together with two injections inlA,B : A → A + B and inrA,B : B → A + B, s.t.
for any object C and arrow f : A→ C and g : B → C there exists a unique mediating
arrow [f, g] : A+B → C that makes the following diagram
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A A+B B

C

f g[f, g]

inlA,B inrA,B

commute. Hence, the coproduct is defined by the universal property, s.t. for h = [f, g]

h ◦ inlA,B = f and h ◦ inrA,B = g (sum-UniProp)

for all h : A+B → C.

The function [f, g] is called the “case analysis for” or “the join of the functions f
and g”.

Corollary 4.1.2 Again, in analogy to products, a couple of useful laws for coproducts
can directly be obtained from the diagram above.

• Cancellation: This follows directly from Equation sum-UniProp.

[f, g] ◦ inlA,B = f

[f, g] ◦ inrA,B = g
(sum-Cancel)

• Reflection: Assume f = inlA,B and g = inrA,B, then

id = [inlA,B, inrA,B]. (sum-Refl)

• Fusion: Taking h = m ◦ [j, k] in Equation sum-UniProp, the equations

m ◦ j = f

m ◦ k = g
⇒ m ◦ [j, k] = [f, g], (sum-Fuse)

can be obtained. They are equivalent to

m ◦ [j, k] = [m ◦ j,m ◦ k].

Similar to products, the sum of objects extends naturally to morphisms.

Definition 4.1.9. Let A + C and B + D be sum objects, then for any pair of arrows
f : A→ B and g : C → D their sum arrow or coproduct arrow f+g : A+C → B+D
is defined as

f + g = [inlB,D ◦ f, inrB,D ◦ g], (sum-Arrow)
making the following diagram commute:
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A A+ C C

B B +D D

f gf + g

inlA,C

inlB,D

inrA,C

inrB,D

Hence, for any morphisms h : B → E and k : D → F it holds:

(f + g) ◦ (h+ k) = f ◦ h+ g ◦ k (sum-Comp)

Similar to products, the rules from the definitions 4.1.8 and 4.1.9 can be used to obtain
an absorption law for coproducts :

[f, g] ◦ (h+ k) = [f ◦ h, g ◦ k]. (sum-Absorp)

4.1.3. Functors
In general, category theory does not impose any restrictions on the objects in a cate-
gory, only on the morphisms: For any two morphisms, there must be a composite in the
category, and any object must have an identity arrow. Thus, nothing speaks against a
category of categories Cat, whilst a sensible structure-preserving mapping between
categories can be defined to represent morphisms in Cat. Such mappings between cate-
gories are called functors, mapping objects to objects and morphisms to morphisms.

Definition 4.1.10. Let C and D be two categories. A functor F : C → D maps every
C-object A to a D-object F(A) and every C-morphism f : A → B to a D-morphism
F(f) : F(A)→ F(B), s.t. for all C-objects A and C-morphisms f and g identities

F(idA) = idF(A) (func-Id)

and composition
F(g ◦ f) = F(g) ◦ F(f) (func-Comp)

are preserved.

Notation: The parenthesis in functor applications may be dropped, writing FA in-
stead of F(A). The composition of two functors F and G (“G after F”) is written using
juxtaposition GF just as in normal functor application of objects and morphisms. GFA
may be parsed as G(FA) or (GF)A, both meaning the same.

Some special functors of interest will be introduced now. They are of importance
later. Endofunctors map from a category in the same category. Furthermore, there are
identity and constant functors, as well as binary functors.
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Definition 4.1.11. Let C be a category, a functor F : C → C is called an endofunctor.

Definition 4.1.12. The endofunctor Id : C → C is the identity functor, s.t. for any
C-object A and C-morphisms f :

(i) IdA = A, and

(ii) Idf = f .

Definition 4.1.13. For a C-object A the endofunctor KA : C → C is called the constant
functor, s.t. for any C-object B and C-morphisms f :

(i) KAB = A, and

(ii) KAf = idA.

Definition 4.1.14. A bifunctor † : C × C → C is a binary functor, s.t. if for any
C-morphisms f : A→ C and g : B → D, f † g : A †B → C †D is preserving identities

id † id = id, (bifunc-Id)

and composition

(f † g) ◦ (h † j) = (f ◦ h) † (g ◦ j). (bifunc-Comp)

Looking at a bifunctor more closely, it becomes apparent that it has been used already,
without explicitly naming it. Both, sum and product can bee seen as a bifunctor. They
map two objects to their product, respectively sum, and likewise morphisms.

Definition 4.1.15. If each pair of objects in C has products, one says the C has products.
Using the product arrow defined in Equation prod-Arrow × extends to a bifunctor
C × C → C. It is defined pointwise as:

(F× G)h = Fh× Gh.

Of course, this also applies to sums.

Definition 4.1.16. We say that C has sums or has coproducts if each pair of objects in
C has sum. By Equation sum-Arrow of a coproduct arrow, + extends to a bifunctor
C × C → C, being pointwise defined as:

(F + G)h = Fh+ Gh.

Notation: In cases where the infix notation of a bifunctor is inappropriate we will
write F(A,X) for a bifunctor F : C × C → C. When the first argument of a bifunctor
is arbitrary but fixed, FAX is written instead and treated as it were a parameterised
endofunctor. Consequently, FAf = F(idA, f).

A special class of functors is worth mentioning. Functors exclusively built from iden-
tities, constants, products, and coproducts are called polynomial functors.
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Definition 4.1.17. A polynomial functor is defined inductively:

• Given an arbitrary object A, the identity functor Id and the constant functor KA

are polynomial;

• if F and G are polynomial, then their composition FG, their product F× G, and
their coproduct F + G are polynomial.

Example 4.1.2
Consider a functor defined by FX = 1 + (A × X) and Ff = id1 + (idA × f). It is a
polynomial functor, because F = K1 + (KA × Id), where + and × are pointwise.

The last piece of category theoretic basics we need are natural transformations. Natu-
ral transformations are structure-preserving mappings between functors. They map each
object of one category to an object of another category, s.t. its structure is preserved.

Definition 4.1.18. Given two functors F,G : A → B between two categories A and B,
a transformation from F to G is a collection of arrows φA : FA → GA one for each
object A in A. A transformation is called natural if

Gf ◦ φA = φB ◦ Ff

for all arrows f : A→ B in A, s.t. the following diagram commutes:

FA GA

FB GB

φA

Ff

φB

Gf

Natural transformations can be seen as functions which are independent on the struc-
ture of their argument elements. For example in functional programming languages, all
polymorphic functions are natural transformations [133].

4.2. Functional Programming and Category Theory
Functional Programming and Category Theory are closely related and their interde-
pendencies are especially researched in Constructive Algorithmics. The Bird-Meertens
formalism [13, 11] makes use of such an algebraic approach to calculate programs from a
specification and prove their correctness. For a comprehensive study of type morphisms
see Vene [131]. By now, category theory has found it’s way into functional programming
through Meijer et al. [87].
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The following section will borrow those concepts from the previously mentioned au-
thors and will introduce them in the context of this work. At some points it is suitable
to be more specific and refer to, or give examples in a specific functional programming
language. The language of choice is Haskell [57]. For the standard introduction see
Bird [12], a more recent introduction with focus on real applications was written by
O’Sullivan et al. [106]. In Appendix A a short reference can be found.

4.2.1. Primitive Data Types and Functions
In general, the essence of functional programming is captured within a fixed category C,
where types are objects and total functions are morphisms of C. The values constituting
a type A are represented by morphisms in this category from the terminal object to A.
Thus, a value a of type A is a morphism a : 1 → A. Applying a function f : A → B to
a value a of type A is identified by composing the two morphisms a and f in C to f ◦ a.
Lifting values (points) to functions leads to a so called point-free style of programming,
where functions can exclusively be described by functional composition.
When considering only total functions, this easily can be motivated by identifying C

with the category of sets Set, which has sets as objects and total functions between
those sets as morphisms. Primitive data types like sums and products are represented
by (categorial) products and coproducts, function types by exponentials and so forth.
However, it is permissible to be more general here. For example, C is not necessarily
required to have exponentials, i.e. be Cartesian closed, well-pointed, and be locally
small. C only needs to be distributive, i.e. C has finite products and finite coproducts,
and consequently terminal and initial objects, and the distribution of products over
coproducts.

Notation: From now on, if not specifically stated otherwise, our categories are dis-
tributive!

Definition 4.2.1. A category C with products and coproducts is distributive if there
are two unique isomorphisms

distr : A× (B + C)→ (A×B) + (A× C)
defined as distr = [id× inlB,C , id× inrB,C ] and with inverse

distr−1 : (A×B) + (A× C)→ A× (B + C),

and
null : A× 0→ 0

with inverse
null−1 : 0→ A× 0.

Thus, in C there are natural isomorphisms resulting into the following equivalences:

A× (B + C) ∼= (A×B) + (A× C)
A× 0 ∼= 0,
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as well as

A× (B × C) ∼= (A×B)× C
A×B ∼= B × A
A× 1 ∼= A

A+ (B + C) ∼= (A+B) + C

A+B ∼= B + A

A+ 0 ∼= A,

which follow from the fact that C has products and coproducts with terminal and initial
objects.

4.2.2. Inductive Data Types
The last ingredient of our categorical model of a functional programming language are
inductively defined data types. Inductive types are generated by constructors and come
equipped with a scheme for structural recursion induced by these constructors. From
a categorical point of view they correspond to initial objects in a category of functor-
algebras.

Definition 4.2.2. Given an endofunctor F : C → C, an F-algebra A = (A,ϕ) is a tuple
consisting of an object A, the carrier of the algebra, and a morphism ϕ : FA→ A which
represents the algebraic structure of A.

Given two algebras, a structure preserving mapping, i.e. a homomorphism, can be
defined between them.

Definition 4.2.3. Let A = (A,ϕ) and B = (B,ψ) be two F-algebras, a homomorphism,
called F-morphism, between them is a morphism f : A→ B, s.t.

f ◦ ϕ = ψ ◦ Ff,

which makes the following diagram commute:

FA A

FB B

ϕ

Ff f

ψ

The collection of all algebras induced by a functor F itself gives rise to a category, where
objects are F-algebras and arrows are homomorphisms between them, because identity
arrows are homomorphisms and composed homomorphisms are homomorphisms, too.

Definition 4.2.4. AlgF is the category of functor algebras with F-algebras as objects
and F-morphisms as arrows.
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The category AlgF may or may not contain initial objects, i.e. initial F-algebras, but
if they exist, they are uniquely defined up to isomorphism. Such an initial algebra is
called the initial algebra. The existence of initial objects in AlgF depends on the functor
F and especially for polynomial functors of a distributive category they exist [84]1.

Definition 4.2.5. An initial F-algebra is an initial object in the category AlgF and
denoted by µF = (µF, inF) with carrier µF and algebraic structure inF.

Notation: If the morphism ϕ that gives an F-algebra A = (A,ϕ) its structure is fully
defined with domain and codomain, ϕ may denote both, the morphism and the algebra.

4.2.3. Structural Recursion via Catamorphisms
By definition, initial objects have a unique arrow to every other object in the category,
and so do initial F-algebras.

Definition 4.2.6. Given an endofunctor F : C → C and the initial algebra µF =
(µF, inF), for any F-algebra A = (A,ϕ) there exists a unique morphism f : µF → A,
s.t.

f ◦ inF = ϕ ◦ Ff ⇐⇒ f = LϕMF,

making the diagram commute:

FµF µF

FA A

inF

Ff f

ϕ

The distinguished morphism f : µF → A which is witness of initiality is called F-
catamorphism2 or F-fold of ϕ. The unique catamorphism f solely depends on the
structure of F and the mediating morphism ϕ. Therefore, it is denoted by putting this
mediating arrow into banana-brackets LϕMF. Catamorphisms, like other constructions by
universal properties, satisfy special fusion and reflection laws.

Corollary 4.2.1 Let (µF, inF) be an initial F-algebra.

• Cancellation: For any F-algebra ϕ : FA→ B

LϕMF ◦ inF = ϕ ◦ FLϕMF (cata-Self)
1In fact, if F is ω-cocontinuous, i.e. the base category is a partial ordering and F is monotonic (pre-
serving colimits of ω-chains), the initial algebras are guaranteed to exist and polynomial functors
are ω-cocontinuous [131], i.e. preserve the monotonicity.

2The word catamorphism comes from the Greek work κατα meaning ’downwards’.
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• Reflection:
id = LidMF (cata-Refl)

• Fusion: For any F-algebras ϕ : FA→ A, ψ : FB → B and an arrow f : A→ B

f ◦ ϕ = ψ ◦ Ff ⇒ f ◦ LϕMF = LψMF (cata-Fuse)

Let us summarise the rules from Corollary 4.2.1 in the following diagram.

FµF µF

FA A

FB B

inF

F LϕMF LϕMF

LψMF
ϕ

F f f

ψ

The cata-Self rule follows directly from the catamorphism definition and its unique-
ness. However, when read from left to right, it can also be seen as a reduction rule for
terms where a catamorphism is applied to a data constructor. The reduction recurses
into the term, replacing all constructors with an algebra with the same signature.
The cata-Refl equation states that when constructors are replaced by themselves,

nothing is changed.
The cata-Fuse law simply says that if between two arbitrary algebras a homomor-

phism f : A→ B exists, f composed with a catamorphism from the initial algebra to A
must yield a direct catamorphism to B, because of uniqueness.
Intuitively, the initial algebra inF : FµF→ µF represents the collection of constructors

for an inductively defined type µF. The catamorphism is the witness of initiality and
corresponds to a simple, structurally defined recursive function. The result type A and
the step function ϕ are modelled by an algebra (A,ϕ) which together with the initial
algebra uniquely define the catamorphism.
Formally this can be justified by the fact that inF is an isomorphism which was first

stated by Lambek [79].

Theorem 4.2.1. The initial algebra inF : FµF→ Fµ is an isomorphism with inverse

in−1
F = LF inFMF (in-inv-Def)
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Proof. It is necessary to show that in−1
F : µF → FµF is the pre- and post-inverse of

inF : FµF→ µF:

=⇒ 

inF ◦ in−1
F

= [in-inv-Def]

inF ◦ LF inFMF

= [cata-Fuse]



f ◦ ϕ = ψ ◦ Ff

≡ [f = ψ = inF]

inF ◦ ϕ = inF ◦ F inF

≡ [ϕ = F inF]

inF ◦ F inF = inF ◦ F inF

⇒ [cata-Fuse]

inF ◦ LF inFMF = LinFMF

LinFMF

= [cata-Refl]

id

For proving the post-inverse, the previous step can be used.

⇐= For proving the post-inverse, the previous step can be used.

in−1
F ◦ inF

= [in-inv-Def]

LF inFMF ◦ inF

= [cata-Self]

F inF ◦ F LF inFMF

= [func-Comp]

F(inF ◦ LF inFMF)

= [=⇒ , see above]

F id

= [func-Id]

id
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Thus, the carrier µF of the algebra inF is a fixed point of the functor F, i.e. the
initial algebra inF : FµF→ µF is an isomorphisms with inverse in−1

F = LF inFMF. Roughly
speaking, µF is the least fixed point, because it is initial in AlgF. See [79] for a full
proof.
Theorem 4.2.1 generalises the notion of the least fixed point from lattice theory in

such a sense that if the base category is a preorder and consequently an endofunctor is
a monotonic functor, i.e. it preserves the preorder, then the carrier of the initial algebra
is the least fixed point of the given functor.
Before deepening these findings with some examples, it may be convenient to sum-

marise the last theoretical part. Any arbitrary functor F induces F-algebras which form
the category AlgF with F-algebras as objects and F-homomorphisms as arrows. Depend-
ing on the functor F, the category AlgF may have initial objects. If an initial object
exists, there is also a witnessing morphism to any other object in AlgF which is called
F-catamorphism. Inductive data types can be interpreted as F-algebras induced by a
polynomial functor. Also, they are the least fixed point of this functor. Categories of
polynomial functor algebras have initial objects, namely the least fixed point of this
functor, which are the inductive data types.

Example 4.2.1
The initial algebras in a distributive category are named by type declarations common
in functional programming. For the sake of simplicity, just assume Set as our base
category. In Haskell for example, the type of natural number Nat may be defined as
Peano’s integers by the following syntax:

Nat = Zero | Succ Nat

We won’t let confuse ourselves by Haskell’s convention to write constructors in
upper case, because all it defines can be interpreted as a homomorphism to the set
of natural numbers N = {0, 1, 2, . . .} with a constant function zero and the successor
function succ:

zero = 0
succ n = n + 1.

The data type declaration simply defines the initial algebra inN = [zero, succ] : NNat →
Nat of the functor N defined by

N = K1 + Id , s.t.

NA = 1 + A , and
Nf = id1 + f.

The constructors of the corresponding data type are:

zero : Nat
succ : Nat → Nat.
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The functor N is polynomial, so the category AlgN has an initial object. It is the fixed
point µN of the functor N and is now simply called Nat. Assume now an arbitrary
algebra ϕ such that the following diagram commutes:

NNat Nat

NC C

[zero, succ]

Nf f

ϕ

Note that for any algebra (C,ϕ) of the functor N : Set→ Set the object NC is a sum
and any morphism out of NC, i.e. any algebra ϕ, is a join of two functions ϕ = [c, h],
where c : 1→ C and h : C → C, s.t. the diagram commutes:

1 Nat Nat

1 C C

zero

id1 f f

succ

hc

The relation of the last two diagrams can exactly be formalised by spelling out the
function f defined by f = LϕM = L[c, h]M. Starting with the definition of the catamor-
phism, simplification reveals:
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

f ◦ inN = ϕ ◦ Nf

≡ [definition of N]

f ◦ inN = ϕ ◦ (id1 + f)

≡ [definition of ϕ]

f ◦ inN = [c, h] ◦ (id1 + f)

≡ [sum-Absorp]

f ◦ inN = [c ◦ id1, h ◦ f ]

≡ [inN = [zero, succ]]

f ◦ [zero, succ] = [c ◦ id1, h ◦ f ]

≡ [sum-Fuse]

[f ◦ zero, f ◦ succ] = [c ◦ id1, h ◦ f ]

≡ [sum-Cancel]

f ◦ zero = c ◦ id1 and f ◦ succ = h ◦ f

So for any algebra ϕ = [c, h] in AlgN the function f is exactly defined by the universal
property

f ◦ zero = c
f ◦ succ = h ◦ f.

The function f can be turned into a higher-order Haskell function foldn parametrised
with two arguments, i.e. a function and a constant as shown in Listing 4.1.

Listing 4.1: Catamorphism for Peano Integers
1 foldn : : (α →α) → α → Nat → α
2 foldn h c Zero = c
3 foldn h c (Succ p) = h (foldn h c p)

Thus, foldn f c i yields the result of applying i-times the function f to the default
value c. Let now f = LϕM = L[c, h]M be defined as the partial function foldn h c of
type Nat → α. For example, addition and multiplication of two natural numbers can
be defined as catamorphisms:

add ,mult : : Nat → Nat → Nat
add a b = foldn Succ a b
mult a b = foldn (add a) Zero b .

Example 4.2.2
A further example is the data type of cons-lists over arbitrary but fixed elements A. Let
LA : Set→ Set be a bifunctor parameterised in A and defined as
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LA = K1 + (KA × Id) , s.t.

LAX = 1 + (A×X) , and
LAf = id1 + (idA × f).

As before, the initial LA-algebra (µLA, inLA
) will be renamed for convenience s.t. the

data type of lists with elements of type A is called ListA with constructors

nil : ListA
cons : A× ListA → ListA

For an arbitrary algebra ϕ the following diagram commutes:

LAListA ListA

LAC C

[nil, cons]

LAf f

ϕ

To get a better understanding let us this time make the application of the functor LA
explicit and spell everything out in all details:

1 + (A× ListA) ListA

1 + (A× C) C

[nil, cons]

id1 + (idA × LϕMLA) LϕMLA

ϕ

Because the algebra ϕ is an arrow out of a sum, it must be a join of two functions
c : 1 → C and h : A × C → C s.t. ϕ = [c, h]. The catamorphism f = L[c, h]MLA is
the unique solution of the equation system which can be obtained by spelling out the
commuting condition of the diagram above as in Example 4.2.2:

f ◦ nil = c
f ◦ cons = h ◦ (idA × f).

In functional programming f is known as foldr and in Haskell defined as a higher
order function, s.t. foldr f c takes a function f : : α → β → β and a default
value c : : α as input and returns a function of type c : : [α] → β.
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Listing 4.2: Catamorphism on Lists
1 foldr : : (α → β → β) → α → [α] → β
2 foldr f c [] = c
3 foldr f c (x:xs) = x ‘f‘ (foldr f c xs)

Intuitively, foldr replaces all nil constructors by the provided default value and all
cons constructors by a call to its argument function.
Let us now be even more concrete and assume length = LϕMLA : ListA → Nat to be a

homomorphism between lists and natural numbers. The issue is described in the next
diagram. To improve readability and get a more intuitive understanding the sums on
the left side “swing out” to the right side making the functor application explicit:

1 ListA A× ListA

1 Nat A× Nat

nil

id1 length idA × length

cons

hc

The question which now arises is “How does the algebra [c, h] look like?”. Well, this
completely depends on the semantics of length. Since the empty list has length zero, it
must hold that c = zero. The length of any non-empty list is one plus the length of the
list with the first element removed. Putting it into a function yields h = succ ◦ sndA,Nat .
So length = L[zero, succ ◦ sndA,Nat ]MLA or without catamorphism:

length ◦ nil = zero
length ◦ cons = succ ◦ snd ◦ (idA × length),

which is the same as foldr (Succ ◦ snd) Zero in Haskell.

Example 4.2.3
Another typical example of an inductive data type induced by a bifunctor are binary
node trees. Given the parameterised bifunctor

BA = K1 + (KA × Id× Id) , s.t.

BAX = 1 + (A×X ×X) , and
BAf = id1 + (idA × f × f).

Then the initial BA-algebra [empty, node] with constructors

empty : BTreeA
nodeA : A× BTreeA × BTreeA → BTreeA,

defines the data type of binary node trees with A-elements BTreeA = µBA.
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For an arbitrary BA-algebra (C,ϕ) with ϕ = [c, h] the catamorphism f = L[c, h]MBA is
the unique solution for the equation system stating its universal properties:

f ◦ empty = c
f ◦ node = h ◦ (idA × f × f).

Take for example the function mirror : BTreeA → BTreeA which swaps left and right
branches in the whole tree. Using the BA-catamorphism it can be defined as

mirror = L[empty, node ◦ swap]MBA ,

where swap simply exchanges the third and the second argument of a triple.

4.2.4. Type Functors
So far, only initial algebras of bifunctors which where parameterised in their first argu-
ment have been considered. Keeping the arguments of the bifunctor unfixed, it is possible
to be more general and reason not only about a single initial functor algebra, but about
a whole collection of them. Such a collection of initial algebras can be interpreted as a
polymorphic data type, e.g. lists in general.
So let F be a binary functor, then inA : F(A,TA)→ TA is the collection of initial alge-

bras induced by F, i.e. all types with the same structure induced by F, but parameterised
in A.
Section 4.1.3 already pointed out earlier that there is a close relationship between

polymorphic types and natural transformation. It should intuitively be clear that it
must be possible to somehow naturally transform a list of characters into a list of say,
natural numbers.
Assume a bifunctor F and two arbitrary F-algebras

inA : F(A,TA)→ TA and inB : F(B,TB)→ TB. For a function f : A→ B and given an
FA-algebra ϕ, the functor Tf : TA → TB can be defined as an FA-catamorphisms with
Tf = LϕMFA s.t. the following diagram commutes:

FATA

FATB

TA

TB

inA

FATf

ϕ

Tf = LϕMFA

Making use of the fact that TB is the carrier of an initial algebra inB, the mediating
function ϕ can be defined in terms of inB and F. In the following diagram the left part
commutes because of equation bifunc-Comp, the right part commutes because:

Tf ◦ inA = inB ◦ F(f, idTB) ◦ F(idA,Tf) = inB ◦ F(f,Tf).
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F(A,TA) F(A,TA)

F(A,TB) F(B,TB)

TA

TB

inA

F(f,Tf)

id

F(idA,Tf)

F(f, idTB) inB

Tf

Thus, given a bifunctor F and a function f : A → B, there exists a transformation
between any two F-algebras Tf = LinB ◦ F(f, idTB)MFA with Tf : TA → TB. Further
more, the construct T is indeed a functor, if it can bee proven that it preserves identities
and composition.

Theorem 4.2.2. Given a bifunctor F which induces a collection of initial algebras
in : F(A,TA)→ TA, the mapping T can be extended from objects to initial algebras s.t.

TA = µF,

is an endofunctor

Tf = LinB ◦ F(f, id)MF. (tyfunc-Def)

The functor T is called the type functor of F.

Proof. To show that the functor T preserves composition, it is necessary to show that
there is a homomorphism from Tf ◦ Lin ◦ F(g, id)MF to Lin ◦ F(f ◦ g, id)MF and use cata-
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Fuse.

Tf ◦ Tg

= [tyfunc-Def]

Tf ◦ Lin ◦ F(g, id)MF

= [cata-Fuse]



Tf ◦ in ◦ F(g, id)

= [tyfunc-Def]

Lin ◦ F(f, id)MF ◦ in ◦ F(g, id)

= [cata-Self]

in ◦ F(f, id) ◦ F(id, Lin ◦ F(f, id)MF) ◦ F(g, id)

= [tyfunc-Def]

in ◦ F(f, id) ◦ F(id,Tf) ◦ F(g, id)

= [bifunc-Comp]

in ◦ F(f ◦ g, id) ◦ F(id,Tf)

Lin ◦ F(f ◦ g, id)MF

= [tyfunc-Def]

T(f ◦ g)

Proof. The functor T preserves identities:

Tid

= [tyfunc-Def]

Lin ◦ F(id, id)MF

= [bifunc-Id]

LinMF

= [cata-Self]

id

Having shown that T is indeed a functor, the initial algebra in : F(A,TA) → TA is,
according to Definition 4.1.18, a natural transformation.

Tf ◦ in = in ◦ F(f, id) ◦ F(id,Tf) = in ◦ F(f,Tf).
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Example 4.2.4
Behind this theoretical construct lies a technique every functional programmer uses in
his daily work. Consider our previous introduced functor for lists LA : Set→ Set which
is parameterised in A and defined as LAX = 1 + (A×X) and LAf : id1 + (idA× f). For
the functor LA our functor T is defined as

Tf = L[nil, cons] ◦ (id1 + (f × idLA
))MLA

After some simplification and renaming, things become self-evident:

map f = L[nil, cons ◦ (f × idLA
)]MLA ,

This would implement the well-known map-function, which iterates over a list and applies
the provided function on each element, in Haskell as:

map f [] = []
map f (x:xs) = (f x) : (map f xs)

4.2.5. Paramorphisms
Catamorphisms, however, capture only structural recursive functions over an inductive
data type. There are recursive functions, though, with an inductive type as source
which are not a catamorphism. Consider a function fac : : Int → Int computing
the factorial of a given natural number:

fac 0 = 1
fac (n+1) = (n+1) ∗ fac(n)

It is obvious that the factorial of a natural number n does not only depend on the
factorial of its predecessor n − 1, but also on n itself. So the recursive scheme does
not follow a catamorphism, where the result depends on a constant part and the result
of a recursive call only. The factorial function is the standard example of a primitive
recursive function, which is more general than mere structural recursion.
However, it is possible to derive a catamorphic solution for the factorial by pairing

the factorial and the number, allowing the catamorphisms to compute both in parallel:

fac = fst ◦ L[λx.(1, 0), λ(f, n).((n+ 1) ∗ f, n+ 1)]M
Meertens [86] showed that this trick of pairing the intermediate result of a primitive

recursive function and its input can be done for any inductive type.

Theorem 4.2.3. Given two arbitrary arrows f : µF → A and ϕ : F(A × µF) → A, it
holds that:

f ◦ inF = ϕ ◦ F〈f, id〉 ⇐⇒ f = fst ◦ L〈ϕ, inF ◦ F(snd )〉MF.

The left side states, that f can be expressed by a catamorphism of the functor F. The
fork of f and id simply builds the pair of applying a value to f and the value itself. The
right side says that f can be expressed by composing the projection to the first element
and a catamorphism.
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Proof. This equivalence is proved showing the left and the right identity.

=⇒ , assuming: f ◦ inF = ϕ ◦ F〈f, id〉



f

= [prod-Cancel]

fst ◦ 〈f, id〉

= [Definition 4.2.6]



〈f, id〉 ◦ in

= [prod-Fuse]

〈f ◦ in, in〉

= [func-Id]

〈f ◦ in, in ◦ Fid〉

= [prod-Cancel]

〈f ◦ in, in ◦ F(snd ◦ 〈f, id〉)〉

= [assumption]

〈ϕ ◦ F〈f, id〉, in ◦ F(snd ◦ 〈f, id〉)〉

= [func-Comp]

〈ϕ ◦ F〈f, id〉, in ◦ Fsnd ◦ F〈f, id〉〉

= [prod-Fuse]

〈ϕ, in ◦ Fsnd 〉 ◦ F〈f, id〉

fst ◦ L〈ϕ, in ◦ F(snd )〉M
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⇐= , assuming: f = fst ◦ L〈ϕ, in ◦ F(snd )〉M


f ◦ in

= [assumption]

fst ◦ L〈ϕ, in ◦ Fsnd 〉M ◦ in

= [Definition 4.2.6]

fst ◦ 〈ϕ, in ◦ Fsnd 〉 ◦ FL〈ϕ, in ◦ Fsnd 〉M

= [prod-Cancel]

ϕ ◦ FL〈ϕ, in ◦ Fsnd 〉M

= [prod-Fuse]

ϕ ◦ F〈fst ◦ L〈ϕ, in ◦ Fsnd 〉M, snd ◦ L〈ϕ, in ◦ Fsnd 〉M〉

= [assumption]

ϕ ◦ F〈f, snd ◦ L〈ϕ, in ◦ Fsnd 〉M〉

= [cata-Fuse]


snd ◦ 〈ϕ, in ◦ Fsnd 〉

= [prod-Cancel]

in ◦ Fsnd

ϕ ◦ F〈f, LidM〉

= [cata-Refl]

ϕ ◦ F〈f, id〉

Let this function f which provides a primitive recursive scheme for arbitrary inductive
data types formally be defined as follows.

Definition 4.2.7. Given an endofunctor F : C → C and the initial algebra µF =
(µF, inF), for any F-algebra A = (A,ϕ), s.t. ϕ : F(A×µF)→ A, the arrow 〈|ϕ |〉 : µF→ A
is defined as:

〈|ϕ |〉 = fst ◦ L〈ϕ, inF ◦ F(snd )〉MF

An arrow of the form 〈|ϕ |〉 is called paramorphism. This is due to Meertens [86],
who derived it from the Greek preposition παρα meaning “near to”, “at the side of”, or
“towards”.
Looking at the definition of the paramorphism in particular, it is apparent that The-

orem 4.2.3 already states its universal property.
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Corollary 4.2.2 Given an endofunctor F : C → C and the initial algebra µF = (µF, inF),
for any morphism ϕ : (A×µF)→ A the paramorphism f = 〈|ϕ |〉F : µF→ A is the unique
morphism s.t. the following diagram commutes:

FµF µF

F(A× µF) A

inF

F〈f, id〉 f = 〈|ϕ |〉F

ϕ

From the diagram in Corollary 4.2.2 it is immediately apparent that the sole difference
between a catamorphism and a paramorphism is the amount of information available
to the mediating function ϕ. While a catamorphism simply gets a value of type FA, a
paramorphism has additionally a value of type FµF available to combine the intermediate
results.
As in previous sections, some examples of paramorphisms for different inductive data

types will be given.
Example 4.2.5
Consider the type of natural numbers Nat, as e.g. defined in Example 4.2.1. Given an
arbitrary algebra ϕ = [c, h] with c : 1 → A and h : A × Nat → A, the paramorphism
〈| [c, h] |〉 : Nat → A is the unique morphism solving the following equation system:

f ◦ zero = c
f ◦ succ = h ◦ 〈f, id〉.

This primitive recursive scheme corresponds to the factorial function which can be
defined as a paramorphism as follows.

fac = 〈| [succ ◦ zero, λ(f, n).mult(succn, f)] |〉N,
where mult : Nat × Nat → Nat is the multiplication of two natural numbers as defined
in Example 4.2.1.
Example 4.2.6
Similarly, referring to the functor LE for lists over elements of type E from Example 4.2.2,
given an arbitrary algebra ϕ = [c, h] with c : 1 → A and h : E × A × ListE → A,
the paramorphism 〈| [c, h] |〉 : ListE → A is the unique morphism solving the following
equation system:

f ◦ nil = c
f ◦ cons(x, xs) = h(x, f(xs), xs).

The typical example of a paramorphism on lists is tails : ListE → ListListE
, returning

the tails of all sublists of a list. The paramorphic definition is:
tails = 〈| [cons(nil, nil), λ(x, ys, xs).cons(cons(x, xs), ys)] |〉LE
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Example 4.2.7
As described in Example 4.2.3, the initial algebra of the functor BE is the data type
of binary trees BTreeE, containing elements of type E in its nodes. Given an arbitrary
algebra ϕ = [c, h] with c : 1→ A and h : E ×A×BTreeE ×A×BTreeE → A, the para-
morphism 〈| [c, h] |〉 : TreeE → A is the unique morphisms solving the following equation
system:

f ◦ empty = c
f ◦ node(e, l, r) = h(e, f(l), l, f(r), r).

The function subtrees : BTreeE → ListBTreeE
returning a list of all subtrees for a given

input tree is defined as the paramorphism:

subtrees = 〈| [c, h] |〉BE

c = cons(empty, nil)
h = λ(e, fl, f, fr, r).cons(node(e, l, r), f l ++fr)

The function ++ denotes list concatenation.
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5. The Igor II Algorithm
Igor II [65, 69, 121] is an analytical, functional inductive programming system. It
combines several methodologies. On the one hand, it is based on the pure analytical
procedure of recurrence detection. This technique was also used by its predecessor Igor I
[68, 69, 98, 119], which itself was heavily inspired by Summers’s Thesys system [128].
On the other hand, it integrates a search in the space of rules or unfinished programs.
This allows using background knowledge during the synthesis process and overcomes its
predecessors restrictions to be fixed to a specific program scheme. From the beginning on,
all Igor versions aimed for extending the expressiveness of analytical systems without
being hampered by the restrictions of fixed program schemes and without falling back
to generate-and-test.
This chapter recapitulates the basic Igor II algorithm which serves as bedrock for

extensions and improvements presented later on. Although this chapter is based on the
thesis by Kitzelmann [66] and will borrow many terms and concepts, not all features
described there have been re-implemented in the Haskell version Igor IIH, or they
may differ from the implementation described in [66]. It is meant to be the starting
point of the formalisation of extensions as described in Chapter 6.
Section 5.1 defines the problem specification used by Igor II, in Section 5.2 Igor II’s

main algorithm is described, whereas Section 5.3 formally defines the refinement opera-
tors used by the system. Section 5.4 shall give a very intuitive understanding of Igor II
by demonstrating an exemplary synthesis process as a hand simulation.

5.1. Definition of a Problem Specification
Igor II synthesises functions from incomplete specifications given as input/output (IO)
examples which describe the behaviour of these functions on a part of their domain only.
These IO examples are given as a CS which incompletely specifies the problem.

Definition 5.1.1. A specification is an orthogonal CS over a signature Σ. As defined
in Definition 3.3.1, D and C are the sets of defined function symbols and constructor
symbols, respectively. Each rule r in CS is called (IO) example or (IO) equation. If
the lhs of r is ground, we call r ground. Otherwise it is a non-ground example or an
IO pattern. The lhs of any r ∈ CS is called input, the rhs is the output.

In general Igor II allows both, ground and non-ground IO examples. The intuitive se-
mantics of non-ground examples are that one non-ground example describes all matching
ground examples. Listing 5.1 shows examples of n ground examples for computing the

77



5. The Igor II Algorithm

last element of a two-element list. Listing 5.2 shows the equivalent non-ground example.
Note that terms starting with small caps are variables in Haskell.

Listing 5.1: n ground examples for last on a two-element list.
1 last [1 ,1] = 1
2 last [1 ,2] = 2
3 last [1 ,3] = 3
4 . . .
5 last [2 ,1] = 1
6 last [2 ,2] = 2
7 . . .
8 last [3 ,1] = 1
9 . . .

Listing 5.2: A single non-ground example for last on a two-element list.
1 last [a,b] = b

Igor II gets two specifications as input: the target specification Φ and the back-
ground specification or background knowledge B. The defined function symbols
DΦ of Φ are called target functions or targets.
In the Haskell re-implementation Igor IIH, as well as in its extension Igor II+,

additionally type information Θ is required. The type information Θ represents infor-
mation about the types of all terms, used data types and their constructors, type classes,
and type class instances (cf. Appendix A).
The result of a synthesis is a CS P , which redefines all target functions in Φ, maybe

using functions from B. “Redefines” means here that P may consist of different rules
not in Φ and B, but given an input it computes the same output as Φ, if Φ is defined
on this input. If this holds, we say P is correct w.r.t. Φ.

Definition 5.1.2. A CS P is correct w.r.t. a CS Φ, if for any term s the following
holds:

s→Φ t⇒ s�P t

This definition, however, is only applicable if P is indeed a terminating and especially
a closed CS. If the CS P contains open, i.e. unfinished rules, there is no properly defined
rewrite relation →P .

Definition 5.1.3. A rule r is an open rule or an unfinished, if Var (rhs(r)) \Var (lhs(r)) 6=
∅. A CS which contains at least one open rule is called an open CS or an unfinished
CS.

Intuitively we say a CS P , that possibly contains unfinished rules, is extensional correct
if it is possible, after one rewrite step in P , to rewrite an input correctly to its specified
output only using the specification Φ now.
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Definition 5.1.4. Given a specification Φ, we say a (possibly unfinished) rule f(p) = t
is extensionally correct w.r.t. Φ, if and only if for any rule (f(i) = o) ∈ Φ s.t.
f(i) ≡ f(p)σ for a substitution σ with Dom (σ) = Var (f(p)), there exists a substitution
θ with Dom (θ) = Var (t) \Var (f(p)), s.t. tσθ →Φ o.

A (candidate) CS is said to be extensional correct w.r.t. Φ, if all its rules are extensional
correct and each input of Φ matches some lhs of the candidate CS.

Definition 5.1.5. Given a specification Φ, a CS P is extensional correct w.r.t. Φ, if
and only if:

• Each rule in P is extensional correct w.r.t. Φ, and

• each lhs of Φ matches a lhs of P .

The task of constructing an orthogonal and terminating CS P given a specification of
the target Φ and some background knowledge is defined as the induction problem.

Definition 5.1.6. Given a target specification Φ and a background specification B with
disjoint sets of defined function symbols DΦ ∩ DB = ∅, the induction problem is to
find a CS P with defined functions DP , s.t. :

(i) P is orthogonal,

(ii) DP ∩ DB = ∅, and

(iii) P ∪B is correct w.r.t. Φ.

Such a CS P complying to the restrictions defined above is called a solution (of the
induction problem).

Example 5.1.1
Consider a function lasts which returns all last elements of a list of lists. Listings 5.3,
5.4, and 5.5 are its target specification Φ, its background specification B, and its type
information Θ, respectively. Listing 5.6 shows a solution of this induction problem. Note
that DP ⊃ DΦ , i.e. additional functions have been introduced.

Listing 5.3: Target specification Φ for lasts

1 lasts [] = []
2 lasts [[a]] = [a]
3 lasts [[a,b]] = [b]
4 lasts [[a,b,c]] = [c]
5 lasts [[b],[a]] = [b,a]
6 lasts [[c],[a,b]] = [c,b]
7 lasts [[c,d],[b]] = [d,b]
8 lasts [[a,b],[c,d]] = [b,d]
9 lasts [[c],[d,e],[f]] = [c,e,f]

10 lasts [[c,d],[e,f],[g]] = [d,f,g]
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Listing 5.4: Background specification B for lasts

1 last (a:[]) = a
2 last (a:b:[]) = b
3 last (a:b:c:[]) = c

Listing 5.5: Data type information Θ for lasts

1 data [α] = [] | α : [α]
2

3 lasts : : [[α]] → [α]
4 last : : [α] → [α]

Listing 5.6: Solution CS P for lasts

1 lasts [] = []
2 lasts i@((x0:x1):x2) = fun1 i : fun2 i
3 fun1 ((x0:x1):x2) = last (x0:x1)
4 fun2 ((x0:x1):x2) = lasts x2

5.2. Main Loop and χinit

The search of a solution CS itself is organised as a uniform-cost search. Starting from a
root node, the search tree is traversed by expanding at each step the node with minimal
costs. Each node in the tree represents an hypothesis as a probably unfinished CS, where
unfinished means that at least one rule in CS has a variable in its rhs which does not
occur on its lhs. All hypotheses are extensional correct w.r.t. the given specification Φ.
The search starts with the initial CS P , which contains the least general generalisation

of all rules of a given target function name in the target specification. It is computed
by the function initialCandidate (Algorithm 1). Let Φ(f) denote the subset of Φ
containing all rules which head is f , i.e.

Φ(f) := {ρ | head(ρ) = f, ρ← Φ}.

Definition 5.2.1. Given a target specification Φ with defined functions DΦ, the initial
rule operator χinit is defined as

χinit(Φ(f)) := {lgg(Φ(f)) | f ∈ DΦ}.

The application of χinit to a specification Φ without specifying a function name is
defined as

χinit(Φ) := {lgg(Φ(f)) | f ← DΦ}.

Given a set of specifications {Φ1, . . . ,Φn} we generalise χinit to χINIT, defined as

χINIT(Φ1, . . . ,Φn) := {χinit(Φ1), . . . , χinit(Φn)}.
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Remark: Technically speaking is the result of χinit not a left-linear CS, because com-
puting the least general generalisation may introduce one variable multiple times if the
respective terms subsumed by this variable are identical. However, it won’t hurt if we
silently ignore this and agree to rename all variables at the end to restore left-linearity.

Algorithm 1: initialCandidate(Φ)
input : a target specification Φ
output : an initial CS P containing one rule for each defined function
P ← ∅1

foreach f ∈ DΦ do insert lgg(Φ(f)) into P2

return P3

In each iteration of the algorithm, all CS with minimal costs are selected. If one of
them is closed, it is returned as solution, which is correct w.r.t. Φ. Otherwise, one of
them is chosen and one of its open rules is selected for development. We call this CS
and this rule candidate constructor system and candidate rule, respectively. All
other hypotheses are left unchanged.
The costs of a candidate CS are the number of maximal general patterns. The

motivation behind this is that a maximal general pattern, i.e. a pattern that does not
match any other pattern in the CS, can be considered as a case distinction. Thus,
according to Occam’s razor, it is desirable to have as few cases as possible. Otherwise,
the algorithm would tend to prefer the most specific patterns, and thus reproduce the
IO examples. As a machine learning algorithm, preferring maximal general patterns is
Igor II’s inductive bias.
To break ties the minimal number of open rules, the minimal number of free variables,

and the minimal number of total rules are preferred successively.
Several operators are applied to the candidate rule, replacing it by one or more suc-

cessor rules. Due to the fact that the operators are not applied exclusively, but quasi
in parallel, i.e. each operator is applied to the same candidate CS, multiple successor
CSs are generated from one candidate CS. All successor CS are required to remain
extensional correct w.r.t. the given specification Φ.
Algorithm 2 describes this outer main loop. Since some operators introduce new

defined functions, we will attach a specification Φ to each candidate program P . This
facilitates writing the algorithm.

5.3. Synthesis Operators
After selecting a candidate CS, four operators are applied to an open candidate rule.
Each of them generating one or more successor rule sets, eventually with new corre-
sponding specifications.
Given a candidate CS P with specification Φ and selected candidate rule ρ : f(p)→ t,

the specification subset covered by ρ, or the IO examples covered by ρ, is the set
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Algorithm 2: Igor II main loop.
input : a target specification Φ
input : a background specification B
input : type information Θ
require
:

DΦ ∩ DB = ∅

output : (maximal general) CS P
ensure : P satisfies Definition 5.1.6
〈P,Φ〉 ← initialCandidate (Φ)1

P ← {〈P,Φ〉}2

while 〈P,Φ〉 open do3

r ← open rule from P4

S ← successorRuleSets (r,Φ, B); // cf. Alg. 35

remove 〈P,Φ〉 from P6

foreach 〈S, φS〉 ∈ S do7

P ′ ← (P\{r}) ∪ S8

insert 〈P ′,Φ ∪ φS〉 into P9

end10

〈P,Φ〉 ← a maximal general CS (with corresponding specification) in P11

end12

return P13

Φ(ρ), defined by
Φ(ρ) := {ϕ | ϕ← Φ, lhs(ϕ) � f(p)}.

It contains all IO examples whose lhs match the lhs of the open rule ρ. The rule ρ is
called covering rule, the set Φ(ρ) covered rules or covered rule set. The Algorithm 5.3
describes how all operators (χsplit,χsubfn,χdirect, and χcall) are applied to an open rule “in
parallel”. This means that given one candidate rule, successors w.r.t. all operators are
computed. Note that χdirect is a special case of χcall, i.e. χcall is only applied if χdirect
yields no result.

5.3.1. Split operator χsplit

The operator χsplit splits a rule by pattern refinement, introducing a case distinction.
Since in functional languages cases are usually modelled by rules with the same head,
but different patterns, χsplit induces a partitioning on the set of rules covered by the
candidate rule. Since a covering rule ρ is the lgg of all its covered rules, a variable at
position p on the lhs of ρ means that there are at least two rules in Φ(ρ) which differ
at this position p. We call p a pivot position.

Definition 5.3.1. Given a rule ρ and an arbitrary covered rule ϕ ∈ Φ(ρ), a position
p ∈ Pos (lhs(ρ))) is a pivot position if ρ|p ∈ Var (ρ), i.e. the subterm of ρ at position
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Algorithm 3: successorRuleSets(r,Φ, B)
input : an open rule r
input : a target specification Φ
input : a background specification B
output : a set of successor rules with corresponding specification
S1 ← χsplit(r,Φ)1

S2 ← χsubfn(r,Φ)2

S3 ← χdirect(r,Φ, B)3

if S3 = ∅ then S3 ← χcall(r,Φ, B)4

return S1 ∪ S2 ∪ S35

p is a variable, and root(ϕ|p) ∈ CΦ, i.e. the subterm of ρ at position p has a constructor
at the root position.

An equivalence relation ∼p between any two terms ϕ and ϕ′ in Φ(ρ) is defined upon
a pivot position p by

ϕ ∼p ϕ′ ⇐⇒ ϕ|p ≡ ϕ′|p.
The expression Φ(ρ)/∼p denotes the quotient set of Φ(ρ) w.r.t. ∼p. The operator χsplit
computes the quotient set of Φ(ρ) for all pivot positions of ρ and applies χINIT to each
of them. This is described in Algorithm 4.

Definition 5.3.2. Given a candidate CS 〈P,Φ〉, and a candidate rule ρ, the splitting
operator χsplit(ρ,Φ) is defined as:

χsplit(ρ,Φ) := {χINIT(〈Φ(ρ)/∼p〉) | p is a pivot position of Φ(ρ)}.

Example 5.3.1
Listing 5.7 shows some IO examples of a function reverse on lists.

Listing 5.7: IO examples of reverse

1 reverse [] = []
2 reverse (d: []) = (d:[])
3 reverse (c: d:[]) = (d:c:[])
4 reverse (b:c:d:[]) = (d:c:b:[])

These examples are covered by the rule:
reverse x = y

The term x at the root position of the argument is on a pivot position, because x is
a variable, and in each covered examples there is a constructor, either (:) or [], at
the pivot position1. Thus, the first IO example would be in one equivalent class of
the quotient set, all other examples in another, yielding the following new initial rules
computed by χinit:

1Note that the cons-constructor (:) is, as usually, written in infix!
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reverse [] = []
reverse (x:xs) = (y:ys)

Algorithm 4: The splitting operator χsplit

input : an open rule ρ
input : a specification Φ
output : A finite set S = {〈S1, ∅〉, . . . , 〈Sn, ∅〉} of successor rule sets and empty

specifications
S ← ∅1

foreach p ∈ Pos (lhs(ρ)) do2

if ∀ϕ ∈ Φ(ρ). ρ|p ∈ Var (ρ) ∧ root(ϕ|p) ∈ CΦ then3

S ← {χINIT(φ) | φ← (Φ(ρ)/∼p)}4

insert 〈S, ∅〉 into S5

end6

end7

return S8

5.3.2. Subfunction operator χsubfn

Recall that in each iteration of the Igor II algorithm, the aim is to close an open rule, i.e.
remove unbound variables. This may be done by replacing each subterm on the rhs of a
covering rule which contains an open variable, by a call to some function. This function
f is unknown yet, though. However, we can abduce IO examples for it by analysing the
terms of the covering rule’s covered IO examples. Solving the new induction problem
for the function f is done in succeeding iterations using the given examples.

Example 5.3.2
Look again at the reverse-examples in Listing 5.7 of the previous Example 5.3.1 except
the first one. They are all in the second subset of the quotient set induced by the
described pivot position, and thus covered by reverse (x:xs) = y:ys. This rule is
unfinished due to two unbound variables on the rhs. Now, we close them by replacing
the variables with two auxiliary functions.

reverse (x:xs) = fun1 (x:xs) : fun2 (x:xs)

Solving fun1 and fun2 are treated as new induction problems, but hereto we need IO
examples for these functions. Given the same input as reverse , fun1 needs to compute
the subterm at the position of y in the accordant outputs of reverse . This leads to
following example equations:

fun1 (d:[]) = d
fun1 (c:d:[]) = d
fun1 (b:c:d:[]) = d
fun1 (a:b:c:d:[]) = d
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Similar, we can obtain the relevant examples for fun2:
fun2 (d:[]) = []
fun2 (c:d:[]) = (c:[])
fun2 (b:c:d:[]) = (c:b:[])
fun2 (a:b:c:d:[]) = (c:b:a:[])

Finally, we have to add the initial rules for fun1 and fun2 to our currently processed
hypotheses:

fun1 (x:xs) = d
fun2 (x:xs) = ys

We formally define the subfunction operator as follows in Definition 5.3.3, Algorithm 5
computes χsubfn.

Definition 5.3.3. Given a candidate CS 〈P,Φ〉, a background specification B s.t. DΦ∩
DB = ∅, and a candidate rule ρ : f(p) = c(t1, . . . , tn), where c ∈ CΦ. Let I = {i ∈ [1..n] |
Var (ti) 6⊆ Var (p)} be the set of all positions on the rhs of the candidate rule ρ that
contain unbound variables.
Let further be {gi}i∈I a set of new function symbols neither occurring in P , nor in B,

i.e. gi 6∈ DP∪B ∪ CP∪B ∪ X = ∅. Then the subfunction operator χsubfn is defined as

χsubfn(ρ,Φ, B) := {〈{f(p) = c(t′1, . . . , t′n)} ∪ PS, φS〉},

where

• for all j ∈ [1..n], t′j =

gj(p) if j ∈ I
tj otherwise,

• φS = {gj(i) = oj | j ← I, (f(i) = c(o1, . . . , on))← Φ(ρ)}, and

• PS is an initial candidate CS of φS.

If there is no constructor symbol at the root position of the rhs of the candidate rule
ρ, χsubfn returns the empty set ∅.

5.3.3. Function call introduction with χdirect and χcall

So far, none of the operators introduced used background knowledge. The operator
χsplit does not introduce new functions at all, and χsubfn virtually reuses existing IO
examples. Instead of replacing only subterms with unbound variables, the function
call operator completely discards a rhs of an open rule and tries to replace it by a
call to a defined function, i.e. a previously introduced subfunction, a function from the
background knowledge, or a recursive call to the target function itself.
We distinguish two possibilities: A direct call, and a call via subfunction. Given a

rule ρ : f(p) = t, the direct call produces a rule of the form ρ : f(p) = f ′(p′). It is direct,
because the arguments p′ of the call to f ′ are directly constructed from the pattern p.
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Algorithm 5: The subfunction operator χsubfn

input : an open rule ρ : f(p) = t
input : a target specification Φ
input : a background specification B
require
:

DΦ ∪ DB = ∅

output : Either the empty set ∅, or the set {〈S, φS〉} containing a pair of a
successor rule set with according new specification subset

switch t do1

case c(t1, . . . , tn)2

φS ← ∅3

foreach j ∈ [1..n] do4

if Var (tj) 6⊆ Var (p) then5

gj ← a new defined symbol, s.t. gj 6∈ (DP∪B ∪ CP∪B ∪ X )6

φS ← φS ∪ {gj(i) = oj |7

j ← I,8

(f(i) = c(o1, . . . , on))← Φ(ρ)}9

t′j ← gj(p)10

else11

t′j ← tj12

end13

PS ← initialCandidate(φS) return14

{〈{f(p) = c(t′1, . . . , t′n)} ∪ PS, φS〉}
end15

otherwise16

return ∅17

end18

end19

If the call is via a subfunction a rule ρ : f(p) = f ′(g1(p), . . . , gn(p)) is produced, where
for each argument i of f ′ a new subfunction gi(p) is constructed which takes the original
input p and produces the specific input for the ith argument.
In both cases, it is required that each rhs in Φ(ρ) matches a rhs of f ′ in such a way

that the lhss of Φ(ρ) are mapped appropriately instantiated to the according lhss of
f ′.
When we allow calls to any previously defined functions, we have to take care not

to destroy the properties of our solution CS postulated in Definition 5.1.6. It demands
completeness w.r.t. a given target specification, which includes that the CS is terminat-
ing. Calls to previously defined functions exactly jeopardise termination, because they
allow recursion, directly or via subfunctions, or even mutual recursion.
In Definition 3.3.7 we have already stated the properties for a terminating CS, i.e. that

there exists a well-founded reduction-order (Def. 3.3.8) that is compatible (Def. 3.3.9)
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with the CS.
In practise, this means that given a candidate rule f(p) = t, the operator χdirect

replaces its rhs t only by those calls f ′(p′) which assure that if pσ is an input for f ,
then p′σ is an input for f ′ for some substitution σ and f(p)σ > f ′(p′)σ w.r.t. a reduction
order >.
Similarly, χcall replaces the open rhs t only by those function calls f ′(g1(p), . . . , gn(p)),

s.t. if pσ is an input for f , then p′σ is the corresponding output of f , if and only if for
some substitution σ pσ is the input for gi with corresponding output oi and f(p)σ >
f ′(o1, . . . , on)σ w.r.t. a reduction order >.
However, recursion can occur indirectly in form of mutual recursion, too. Therefore,

the conditions above apply to any call to a function f ′ ∈ DΦ of specification Φ of the
candidate CS. The only exception is a call to a function f ∈ DB, because we assume
only terminating functions in the background knowledge.
Given a fixed reduction order for all rules in a CS, the condition above together

with extensional correctness (Def. 5.1.5) assures termination of the inputs specified.
The default reduction order of Igor II is the order (s1, . . . , sn) > (t1, . . . , tn), if
and only if |Pos (s1)| > |Pos (t1)|, or if |Pos (s1)| = |Pos (t1)| then (s2, . . . , sn) >
(t2, . . . , tn). Similarly, (s1, . . . , sn) < (t1, . . . , tn), if and only if |Pos (s1)| < |Pos (t1)|, or
if |Pos (s1)| = |Pos (t1)| then (s2, . . . , sn) < (t2, . . . , tn). This is called the argument-
wise order.
An alternative, the so called linear reduction order is implemented for s = (s1, . . . , sn)

and t = (t1, . . . , tn) s > t, if and only if ∑n
i |Pos (s)| > ∑n

i |Pos (t)|.

Definition 5.3.4. Let 〈P,Φ〉 be a candidate CS with corresponding specification, let
further be B a background specification, s.t. DΦ ∩DB = ∅, C := CP ∪ CB, ρ : f(p) = t is
a candidate rule in P , and Φ(ρ) the examples covered by ρ.
The direct-call operator χdirect(ρ,Φ, B) yields a (possibly empty) set of singleton

rule sets and empty specifications. Each successor rule in a singleton rule set has the
form f(p) = f ′(p′), where f ′ ∈ DΦ∪B and p ∈ TC(Var (p)). This set is uniquely defined
as:

〈{f(p) = f ′(p′)}, ∅〉 ∈ χdirect(ρ,Φ, B),
if and only if for each candidate rule (f(i) = o) ∈ Φ(ρ) there is a rule (f ′(i′) = o′) ∈
Φ∪B, s.t. the following conditions are satisfied. Let σ be a substitution which matches
a candidate rule ρ : f(p) = t with the according specification rule (f(p) = o) ∈ Φ(ρ),
i.e. f(i) = o ≡ f(p)σ = tσ:

(i) tσ ≡ o′τ for a substitution τ , with Dom (τ) = Var (o′).

(ii) f ′(p′) � f ′(i′)τ and f ′(p′)σ ≡ f ′(i′)τθ for any substitution θ with Dom (θ) =
Var (f ′(i′)) \Var (o′).

(iii) If f ′ ∈ DΦ, then f(p)σ > f ′(p′)σ w.r.t. some reduction order >.

Condition (i) states that, given the new rule ρ′ : f(p) = f ′(p′), for any example
(f(p)σ = tσ) ∈ Φ(ρ) covered by the old rule ρ with substitution σ, f ′(p′) must reduce
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to tσ. This can be checked extensionally on Φ(f ′): There must be a rule f ′(i′) = o′, s.t.
its output subsumes tσ with substitution τ .
Condition (ii) states that, if condition (i) holds, the argument p′ of the call matches

indeed the desired inputs for f ′, i.e. those inputs of f ′ which compute the required
outputs o′τ , i.e. those indeed covered by ρ. The additional substitution θ instantiates
those variables occurring in o′ which are not affected by τ . This occurs if f ′(i′) = o′ is
not ground. Actually, these variables may be instantiated arbitrarily since the output
is independent of them; at least as long as f ′ 6∈ DB. Examples of a direct call can be
found in a hand simulation in the next section (5.4.3 and 5.4.4).

Algorithm 6: The direct call operator χdirect

input : candidate rule ρ : f(p) = t
input : target specification Φ
input : background specification B
output : a (possibly empty) set S = {〈{ρ′1}, ∅〉, . . . , 〈{ρ′n}, ∅〉} of pairs of singleton

successor rule sets and empty specifications.
S ← ∅1

foreach f ′ ∈ DΦ∪B do2

r ← min
r∈Φ(ρ)

|Pos (lhs(r))|, i.e. covered rule with the smallest lhs
3

σ ← substitution s.t. f(p)σ ≡ lhs(r)4

foreach (f ′(i′) = o′) ∈ Φ(f ′) with f ′(i′) < lhs(r) do5

θ ← substitution s.t. o′θ ≡ rhs(r)6

P ← makePatterns(i′θ, σ)7

end8

foreach p′ ∈ P do9

τ ← a substitution s.t. f ′(p′)σ ≡ f ′(i′)τθ10

if tσ ≡ o′τθ then11

insert 〈{f(p) = f ′(p′)}, ∅〉 into S12

end13

end14

end15

return S16

Some explanations for Algorithm 6 may be necessary. The algorithm iterates over
all defined function symbols of the current specification and the background knowledge
(line 2). The pattern p′ for the call to f ′ is first of all constructed only w.r.t. one covered
example of ρ, namely that with the smallest lhs (line 3), because the pattern is meant
to be as general as possible. Later (line 11) only the compatible patterns, i.e. those
which satisfy condition (i) of Definition 5.3.4, are kept. Possible patterns are generated
(line 7) for any covered example that satisfies the reduction order as stated in condition
(iii) of Definition 5.3.4. Another remark is necessary for θ as computed in line 6. The
substitution is chosen in such a way that we achieve a renaming of variables in terms of
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ρ, i.e. we normalise all variables that won’t be captured by τ .
The auxiliary function makePatterns defined in Algorithm 7 is straight forward. It

can be seen as inverting a substitution application. Given the result term t and the
substitution σ, the task is to find a term (probably containing variables) which yields
the result term t after applying the substitution σ. If we can find our target term in one
of the variable assignments, we return the variable (line 3). Otherwise, we invert the
substitution recursively over the structure of t, apply makePatterns to all its subterms
(line 10), and combine the results under the root symbol (line 13), because it was not
affected by the substitution. Similarly, if t is a constant (line 6), we return it, as it was
not affected by σ, too.

Algorithm 7: makePatterns(t, σ)
input : a linear term t
input : a substitution σ
output : a (possibly empty) set T of terms p, s.t. p � t, s.t. sσ ≡ t

T ← ∅1

foreach variable assignment (x 7→ t′) ∈ σ do2

if t′ = t then insert x into T3

end4

switch t do5

case t = c(), i.e. is a constant6

insert t into T7

case t = c(t1, . . . , tn)8

foreach i = [1..n] do9

Ti ← makePatterns(ti, σ)10

end11

foreach (s1, . . . , sn) ∈ T1 × . . .× Tn do12

insert c(s1, . . . , sn) into T13

end14

end15

end16

return T17

As the operator for a direct call χdirect, the operator χcall introduces a call to a pre-
viously defined function. However, the arguments for the call are not constructed using
bindings to the pattern variables of the current candidate rule, but via subfunctions
which take the same input as the calling function.

Definition 5.3.5. Let 〈P,Φ〉 be a candidate CS with corresponding specification, B a
background specification, s.t. DΦ ∩DB = ∅, ρ : f(p) = t a candidate rule in P , and Φ(ρ)
the examples covered by ρ. Let further be {gi}i∈N a set of new function symbols neither
occurring in P nor in B, i.e. gi 6∈ DP∪B ∪ CP∪B ∪ X ). Then the result of function call
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operator χcall is the (possibly empty) set containing all elements of the form

〈{f(p) = f ′(g1(p), . . . , gn(p))} ∪ PS, φS〉 ∈ χcall(ρ,Φ, B),

where f ′ ∈ DΦ∪B with arity n, if and only if there is a total mapping µ : Φ(r) 7→
(Φ ∪ B)(f ′) s.t. for each (f(i) = o) ∈ Φ(ρ)) and µ(f(i)) := (f ′(i) = o′) the following
conditions are satisfied:

(i) Var (f ′(i)) ≡ Var (o′),

(ii) o ≡ o′τ for some substitution τ , and

(iii) if f ′ ∈ DΦ, then f(i) > f ′(i′)τ w.r.t. a reduction order >.

If there exists such a mapping µ, then

• φS := {gj(i) = i′jτ | j ← [1..n],
(ϕ : f(i) = o)← Φ(ρ),
(f ′(i′1, . . . , i′n) = o′)← µ(ϕ)}, and

• PS is the initial candidate CS of φS.

The operator χcall is based on the idea, that given a covering rule ρ and for each
covered rule in Φ(ρ) there is a rule of some defined function f ′, s.t. the rhs of this f ′-
rule subsumes the rhs of one covered rule, we can use f ′ to compute the same outputs
as with ρ. Thus, we introduce a new rule f(p) = f ′(g1(p), . . . , gn(p)) where each gi(p)
reduces to the appropriate input argument for f ′.
Algorithm 8 computes the function call operator χcall. It iterates over all defined func-

tion symbols, i.e. all function calls possible. An auxiliary function possibleMapping,
defined in Algorithm 9, computes for the current defined function symbol a mapping
µ̂ : φ(ρ) 7→ P(Φ ∪ B)2 (line 3), which maps each IO example f(i) = o ∈ Φ(ρ) to all
examples of f ′. It assures that conditions (i) and (ii) of Definition 5.3.5 are satisfied. In
the second loop (line 4) only those examples are selected that satisfy condition (iii) of
Definition 5.3.5 (line 5). In the innermost loop (line 8) the corresponding function call
and the specification for all new introduced subfunctions are constructed and added to
the result set.

5.4. A Synthesis Example
This section demonstrates one run of the Igor IIH algorithm on a simple example. It
is based in a perviously published tool demo [47]. For now, only the operators for par-
titioning χsplit, for introducing auxiliary functions χsubfn, and calls to previously defined
functions χdirect and χcall will be used. The introduction of a higher order schema (χcata),
as presented in Chapter 6, will be considered later in Section 6.4.4.

2P(S) denotes the power set of S.
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Algorithm 8: Function call operator χcall

input : an open rule ρ : f(p) = t
input : a target specification Φ
input : a background specification B
output : a set S = {〈Si, φi〉, . . . , 〈Sn, φn〉} containing pairs of a successor rule set

with according new specification subset
S ← ∅1

foreach f ′ ∈ Dφ∪B do2

µ̂← possibleMappings(ρ,Φ ∪B, f ′)3

foreach mapping (µ : Φ(ρ) 7→ Φ ∪B) with µ(ϕ) ∈ µ̂(ϕ) for all ϕ ∈ Φ(ρ) do4

if all {(f ′ ∈ DB ∨ f(i) > f ′(i′)) ∧ o ≡ o′τ |5

(f ′(i′) = o′)← µ(f(i) = o)} then6

φS ← ∅7

foreach j ∈ [1..n] do8

gj ← a new defined symbol, s.t. gj 6∈ (DP∪B ∩ CP∪B ∩ X )9

φS ← φS ∪
{
gj(i) = i′τj |10

(ϕ : f(i) = o)← Φ(ρ),11

(f ′(i′1, . . . , i′n) = o′)← µ(ϕ),12

o ≡ o′τ}13

end14

PS ← initialCandidate(φS)15

insert 〈{f(p) = f ′(g1(p), . . . , gn(p))} ∪ PS, φS〉 into S16

end17

end18

end19

return S20

The example problem is the function lasts of type [[a]] → [a], getting a list of
lists and returning a list of all last elements. The type information Θ defines the types
of all defined functions and the data type definition and is shown in Listing 5.83.

Listing 5.8: Type information θ
1 data [α] = α |α : [α] -- built in
2 lasts : : [[a]] → [a]
3 last : : [a] → a

The target specification is depicted in Listing 5.9. Note that we use some syntactic
sugar for lists to keep the examples readable. As before, list (a:b:c:d:[]) is abbre-
viated by [a,b,c,d], and (:) denotes an infix cons operator. We switch between the

3The list type is special in Haskell and built in. Therefore, it is built into Igor IIH, too, and it is not
necessary to explicitly define it. We just mention it to be self contained. In fact, it is not possible
to redefine lists in Haskell like this.
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Algorithm 9: possibleMapping(r, φ, f ′)
input : an open rule ρ : f (p) = t
input : a set of specification rules φ
input : a defined function symbol f ′ ∈ Dφ
output : a total mapping µ̂ : φ(ρ) 7→ P(φ)
µ̂← ∅1

foreach (f(i) = o) ∈ φ(ρ) do2

Pf(i) ← ∅3

foreach (f ′(i′ = o′) ∈ φ with Var (f ′(i′)) ≡ Var (o′) do4

if o ≡ o′τ for any substitution τ then5

insert f ′(i′) = o′ into Pf(i)6

end7

insert (f(i) = o) 7→ Pf(i) into µ̂8

end9

end10

return µ̂11

two representations where appropriate. Variables are written in small caps in Haskell.

Listing 5.9: Target specification Φ
1 lasts [] = []
2 lasts [[a]] = [a]
3 lasts [[a,b]] = [b]
4 lasts [[a,b,c]] = [c]
5 lasts [[b],[a]] = [b,a]
6 lasts [[c],[a,b]] = [c,b]
7 lasts [[c,d],[b]] = [d,b]
8 lasts [[a,b],[c,d]] = [b,d]
9 lasts [[c],[d,e],[f]] = [c,e,f]

10 lasts [[c,d],[e,f],[g]] = [d,f,g]

Listing 5.10 defines the background specification B containing the examples for the
background knowledge function last. Sure, Igor II could solve the problem without
additional help and with this function as additional knowledge there is not much left for
Igor II, but we want to keep the simulation as clear as possible.

Listing 5.10: Background specification B
1 last [a] = a
2 last [a,b] = b
3 last [a,b,c] = c
4 last [a,b,c,d] = d

The initial hypothesis is a single rule covering all examples of the target function, but
with an unbound variable on the rhs (cf. Listing 5.11).
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Listing 5.11: Initial Hypothesis H0 : χinit

1 lasts x = y

To keep track of the operator application we will label the resulting hypothesis H
with the sequence of operator applications H : χ ◦ χ ◦ . . .. If we want to make clear
to which rule an operator was applied, we will write the rule number as superscript to
the function composition operator ◦, i.e. χ n◦ χ. When applying χsplit, χdirect, or χcall
we add the variable w.r.t. which the partitioning was performed, and the corresponding
called function as subscript. Now we start to stepwise develop our initial hypothesis. In
each iteration of the algorithm all available operators are applied to the currently best
hypothesis.

5.4.1. Iteration 1
The initial hypothesis H0 is the only one in our search space at the moment, covering
all example equation of lasts.

Partitioning We start with the partition operator. There is only the variable x on the
lhs of the rule in H0. This rule is the lgg of rules {1 . . . 10} of the example equations
of lasts, which explains this variable, because rule 1 has the constructor [] on the
position where rules 2 to 10 have the symbol (:). This induces a partition of all
examples into the subsets {1} and {2 . . . 10}. Generalising both subsets, we get a new
hypothesis with specialised patterns as shown in Listing 5.12.

Listing 5.12: H1 : χsplit,x
1◦ χinit

1 lasts [] = []
2 lasts ((x0:x1):x2) = (y:ys)

Auxiliary Introduction The rule 1 in hypothesis H0 has a variable at the root position
of the rhs, so the operator A is not applicable.

Function Call In rule 1 of hypothesis H0 the rhs can not be replaced by a call to the
background last, because of different output types. A recursive call to lasts would
be conceivable, but since the argument must decrease according to the reduction order
in size to prevent non-termination, this is not allowed here.

5.4.2. Iteration 2
Still only one hypothesis, namely H1, is in our hypotheses space and rule 2 is the sole
open one.
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Partitioning The lhs of rule 2 contains three variables, so we can generate successor
hypotheses partitioning w.r.t. to each of them.
The first variable x0 does not induce a partition, because at this position all example

equations contain a variable.
Partitioning w.r.t. the second variable x1 separates all rules which have a one-element

list as first element as input from those with more. The induced partitioning subsets are
{2, 5, 6, 9} and {3, 4, 7, 8, 10} of the original IO examples, leading to the new hypothesis
shown in Listing 5.13.

Listing 5.13: H2 : χsplit,x1
2◦ χsplit,x

1◦ χinit

1 lasts [] = []
2 lasts ([x]:xs) = (x:ys)
3 lasts ((x0:(x1:x2)):x3) = (x4:x5)

Partitioning w.r.t. the third variable i.e. variable x2, separates all rules with a singleton
input list from those with more. The induced partitioning subsets are {2, 3, 4} and
{5, . . . , 10}, leading to a new hypothesis as shown in Listing 5.14:

Listing 5.14: H3 : χsplit,x2
2◦ χsplit,x

1◦ χinit

1 lasts [] = []
2 lasts [x0:x1] = [x2]
3 lasts ((x0:x1):((x2:x3):x4)) = (x5:(x6:x7))

One can see that the partitions get more and more fragmented, and finally will lead
to an overfitting. However, Igor II’s bias is to prefer those hypotheses, which have the
least number of partitions.

Auxiliary Introduction The rule number 2 of our current hypothesis H1 has the infix
constructor symbol (:) at root position. So we can replace both subterms, subsumed
by y and ys, respectively, by calls to the auxiliary functions fun1 and fun2.
We do not have both of them, yet. To treat them as new induction problems, we

need example equations for them. Consider fun1 first. Using the input of our target
function, fun1 has to compute the first element in the output list. Listing 5.15 shows
the resulting IO examples.

Listing 5.15: Abduced IOs for fun1

1 fun1 [[a]] = a
2 fun1 [[a,b]] = b
3 fun1 [[a,b],[c,d]] = b
4 fun1 [[b],[a]] = b
5 fun1 [[a,b,c]] = c
6 fun1 [[c],[a,b]] = c
7 fun1 [[c],[d,e],[f]] = c
8 fun1 [[c,d],[b]] = d
9 fun1 [[c,d],[e,f],[g]] = d
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Listing 5.16 shows the IO examples of fun2. The function fun2 removes the first
element of the input list and returns the rest.

Listing 5.16: Abduced IOs for fun2

1 fun2 [[a]] = []
2 fun2 [[a,b]] = []
3 fun2 [[a,b,c]] = []
4 fun2 [[b],[a]] = [a]
5 fun2 [[c],[a,b]] = [b]
6 fun2 [[c,d],[b]] = [b]
7 fun2 [[a,b],[c,d]] = [d]
8 fun2 [[c],[d,e],[f]] = [e,f]
9 fun2 [[c,d],[e,f],[g]] = [f,g]

With these additional example equations for the new auxiliary functions we can de-
velop our new hypothesis. The variables in the rhs of H1’s second rule have been
replaced by calls to auxiliary functions. The initial rules for fun1 and fun2 have been
included in the new hypothesis of Listing 5.17, too.

Listing 5.17: H4 : χsubfn
2◦ χsplit,x

1◦ χinit

1 lasts [] = []
2 lasts i@((x0:x1):x2) = fun1 i : fun2 i
3 fun1 ((x0:x1):x2) = x3
4 fun2 ((x0:x1):x2) = x3

The @ is not supported by Igor II, but is a common syntax in Haskell to bind a
complex pattern to a simple variable. This keeps our code a little less messy.

Function Call Because of type mismatch, a call to last is not allowed. Also not to
lasts, because we cannot find both, a matching rhs and a smaller lhs for all equations
covered by our rule 2.

5.4.3. Iteration 3
Now there are three hypotheses in the search space, but only H4 (Listing 5.17) has the
least number of partitions. However both, the third and the forth rule, are open and
one is chosen arbitrarily. So we continue by developing rule 3 of fun1.

Partitioning Rule 3 of H4 (Listing 5.17) contains three variables. The first variable
x0 does not induce a partition, because at this position all example equations contain a
variable.
Partitioning w.r.t. to x1 also induces two subsets of the example equation of fun1.

Namely one where the first element is a singleton list {1, 4, 6, 7} and the other where the
first element is a list with at least two elements {2, 3, 5, 8, 9}. We replace rule 3 of H4
in Listing 5.17 by two successor rules in H5 in Listing 5.18.
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Listing 5.18: H5 : χsplit,x2
3◦ χsubfn

2◦ χsplit,x
1◦ χinit

1 lasts [] = []
2 lasts i@((x0:x1):x2) = fun1 i : fun2 i
3 fun1 ([x0]:x1) = x0
4 fun1 ((x0:x1:x2):x3) = x4
5 fun2 ((x0:x1):x2) = x3

Partitioning w.r.t. to x2 induces two subsets of the examples of fun1. One where all
inputs are a singleton list {1, 2, 5} and another where the input list has at least two
elements {3, 4, 6, 7, 8, 9}. Refer to H6 in Listing 5.19.

Listing 5.19: H6 : χsplit,x3
3◦ χsubfn

2◦ χsplit,x
1◦ χinit

1 lasts [] = []
2 lasts i@((x0:x1):x2) = fun1 i : fun2 i
3 fun1 [x0:x1] = x2
4 fun1 ((x0:x1):((x2:x3):x4)) = x5
5 fun2 ((x0:x1):x2) = x3

Auxiliary Introduction This operator is again not applicable, because the rhs is a
variable and does not have a constructor at root position.

Function Call Considering the examples of function fun1: Calls to lasts and fun2
are not possible due to type constraints, but to last. Matching the rhss of fun1 against
the rhss of last, Igor II detects that it is possible to compute the output of fun1 by
a call to last. It also detects that the argument for the call can be directly constructed
from variables and constructors from the lhs of the covering rule 3. Thus, no auxiliary
function is needed and the rhs can be replaced, which leads to a new hypothesis H7
presented in Listing 5.20.

Listing 5.20: H7 : χdirect,last
3◦ χsubfn

2◦ χsplit,x
1◦ χinit

1 lasts [] = []
2 lasts i@((x0:x1):x2) = fun1 i : fun2 i
3 fun1 ((x0:x1):x2) = last (x0:x1)
4 fun2 ((x0:x1):x2) = x3

5.4.4. Iteration 4
The search space now contains five hypotheses H2, H3, H5, H6 and H7, where all but H7
have three partitions, which has only two. So the only rule in this hypothesis (rule 4) is
developed.
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Partitioning The patterns of the induced partitions in rule 4 of H7 and Rule 3 of H4 are
the same and only the rhss of the example equations covered by them are different, of
course. Therefore, we have done this partitioning before and the construction of resulting
hypotheses H8 and H9 is straight forward and reveals nothing new. As partitioning
increases the costs and other hypotheses have less patterns, we can omit them here.

Auxiliary Introduction This operator is not applicable here.

Function Call Now it is only the function lasts to which a call is allowed and ap-
plicable. Again, Igor II can directly construct the argument for the call from variables
and constructors from the lhs of the covering rule 4. So no auxiliary function is needed
and we can close our current rule and make a new hypothesis. The resulting hypothesis
H10 is shown in Listing 5.21.

Listing 5.21: H10 : χdirect,lasts
4◦ χdirect,last

3◦ χsubfn
2◦ χsplit,x

1◦ χinit

1 lasts [] = []
2 lasts i@((x0:x1):x2) = fun1 i : fun2 i
3 fun1 ((x0:x1):x2) = last (x0:x1)
4 fun2 ((x0:x1):x2) = lasts x2

5.4.5. Iteration 5
At the beginning of this iteration Igor II finds the best hypothesis H10 closed. It still
has only two partitions compared to the others with three. So H10 is returned as the
final solution.
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6. Guiding Igor II’s Search with Type
Morphisms

Chapter 5 introduced the basic Igor II-algorithm as it has been re-implemented in
Haskell for this work. It serves as a reference foundation on which the extensions
introduced in this chapter are built on. The main point where the original Igor II al-
gorithm, as presented in [66], was modified is the way how new successor rule sets are
computed. Instead of calling successorRuleSets directly (cf. Algorithm 3), a new op-
erator χcata which uses type morphisms, especially catamorphisms, as recursive program
schemes to guide the search is used. Only if the operator for type morphisms introduc-
tion is not applicable, the successor rule sets are computed as usual. The modification
of Algorithm 3 is shown in Algorithm 10.

Algorithm 10: successorRuleSets’(r,Φ, B,Θ)
input : an open rule r
input : a target specification Φ
input : a background specification B
input : type information Θ
output : a set of successor rules with corresponding specification
S ← χcata(r,Φ,Θ)1

if S = ∅ then2

S ← successorRuleSets(r,Φ, B)3

end4

return S5

Section 6.1 describes how catamorphisms on arbitrary inductively defined data types
can be detected in a given set of IO examples. Section 6.2 formally defines the new
operator, where Section 6.3 proposes some modifications of this operator. It describes
how catamorphisms on lists and the detection of natural transformation represented by
type functors can be seen as special cases of this operator. It also explains how χcata can
be generalised to detect paramorphisms, which describe some form of primitive recursion
on inductive types. Section 6.4 gives some illustrating examples on well known inductive
types and continues the hand simulation of the Igor II algorithm from Section 5.4, now
using the new operator χcata.
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6.1. Data-Driven Detection of Arbitrary Catamorphisms
Chapter 4 formalised inductive data types as fixed points of a polynomial functor F and
introduced catamorphisms as unique morphisms from a inductive data type to any other
type which is an F-algebra.
This chapter develops how this can be used for inductive program synthesis, especially

as an extension of the Igor II algorithm. It is based on prior published work [48, 49, 50].
It first takes on a macro view and analyses the semantics of this task from a categorical
perspective (Subsection 6.1.1), then it changes to a micro view to concentrate on the
syntactic level in a term rewriting perspective (Subsection 6.1.2). The reader is asked
to refer to the examples in Section 6.4 at any time.

6.1.1. The Categorical Perspective
The starting point for Igor II is always the specification Φ containing IO examples Φ(f)
which partially define a target function f : A→ B. Furthermore, let A be the fixed point
of a polymorphic functor F, s.t. A = µF. This can be again described in the following,
now well known, commuting diagram.

FµF µF

FB B

inF

Ff f

ϕ

It is known that, given ϕ, f can be expressed as a catamorphism s.t. f = LϕMF. The
function ϕ is unknown, though. However, its IO behaviour can be abduced from the
examples in Φ(f) using the following equality:

ϕ ◦ Ff ◦ in−1
F = f, (6.1)

where in−1
F is the inverse of the isomorphism inF (cf. Definition in-inv-Def), and thus

cod f = cod ϕ
dom (Ff ◦ in−1

F ) = dom f

cod (Ff ◦ in−1
F ) = dom ϕ,

where dom and cod in this case not only refer to the object, i.e. type, in our category,
but in this special case really extend to the term level of the target function’s IOs.
The set of IO examples for ϕ is completely determined by Φ(f) and the function

Ff ◦ in−1
F . For each rule ρ ∈ Φ(f) there is an IO example for ϕ sharing its rhs, whereas

its lhs is the result of applying the lhs of ρ to Ff ◦ in−1
F . To define f as a catamorphism

in terms of ϕ three steps are necessary:
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1. Abduce IO examples for ϕ, s.t. for each rule ρ ∈ Φ(f)
a) its rhs is kept, and
b) its new lhs is constructed by applying the old lhs of ρ to Ff ◦ in−1

F .

2. Re-express f as LϕMF.

3. Use Igor II to synthesise ϕ.

Hence, to obtain the appropriate IO examples for ϕ, figuratively speaking, one just
needs to follow the arrows from the diagram above counterclockwise starting from µF.
Recall that our category of choice is distributive. Therefore, there are polynomial

inductive data types, i.e. types, only built from primitive types by products and co-
products. The functors inducing those types are polynomial too, i.e. only built from
products, coproducts, the identity functor, and the constant functor. Referring to
the diagram above, one can say that for the functor F of the F-algebra it holds that
F = F1 + · · · + Fn, i.e. F is the coproduct of n functors Fi for i = 1 . . . n. Similar,
inF = [c1, . . . , cn] is the sum of n constructors. According to Definition in-inv-Def, it
holds that in−1

F = LF[c1, . . . , cn]MF. Hence, the mediating function of the catamorphism
ϕ : FB → B is in fact a case distinction ϕ = [ϕ1, . . . , ϕn]. For each coefficient of the
type FA there exists one function ϕi : FiB → B. Equation 6.1 can be spelled out to:

ϕ ◦ Ff ◦ in−1
F = [ϕ1, . . . , ϕn] ◦ [F1f, . . . ,Fnf ] ◦ LF[c1, . . . , cn]MF = f. (6.2)

Therefore, abducing IO examples for ϕ splits up into the task of abducing IO examples
for n functions ϕi : FB → B, for i = 1 . . . n, i.e. one for each constructor of µF, or
summand of F. We will come back to this later in the next section (6.1.2). To spare
subscripts, for now it suffices to keep this in mind and consider the coproducts only.
To abduce IO examples for each ϕi from the inputs of f , we need to statically evaluate

ϕ ◦ Ff ◦ in−1
F , using the IOs of f , as much as possible. The original inputs given in Φ(f)

are taken and first in−1
F is applied to deconstruct the inductive type µF into a sum of

product types. The function inF is an isomorphism, and thus defining in−1
F by itself.

Where inF fuses a product from FµF into a value of type µF, via in−1
F it is possible to

break up a value of type µF to retrieve this product.
The mapping from FµF to FB is determined by F and our target function f . FµF is

a sum of products, because F is polynomial, i.e. is a sum of functors. Hence Ff is a
sum, too. Consequently, the structure of FµF and FB are identical. The only difference
is that wherever there is a summand of type µF in the sum of FµF, the corresponding
summand in FB is of type B. Hence, Ff maps values of type µF to values of type B,
and acts as identity on all others.
We said that ϕ is a sum, because F is a sum. If for ϕi the corresponding functor Fi is

a constant functor KA, it holds that ϕi : A→ B and that ϕi takes the same input as f
to compute the same output, because Fif = idA.
If the functor is the identity functor IdµF, it holds that Fif = f . Again, ϕi computes

the same output tas f but with a different input. This input, however, can be computed
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by evaluating in−1
F on an input term of f , taking the corresponding summand of Fif

from this result, and evaluating it on Φ(f). If we do this for each IO example of f , we
get the corresponding IOs for ϕi.
If Fi is a product functor, where each coefficient is, again, either a constant functor or

the identity functor. The input for ϕi is a product, i.e. a nested tuple too. By applying
the procedure above for each coefficient, the corresponding coefficients for the input of
ϕi can be abduced in the same way. Examples for these procedures can be found in
Subsections 6.4.1, 6.4.2, and 6.4.3, respectively.
Thus, given a specification Φ, type information Θ, and a candidate rule ρ : f(p) = t,

one can construct a rule ρ′ : f(p) = L[ϕ1, . . . , ϕn]M p, and abduce corresponding specifi-
cations Φ(ϕi) with i ∈ [1..n] and initial rules for each new subfunction ϕi.

6.1.2. The Term Rewriting Perspective
However, with category theory we won’t get any further, so lets put on the term rewriting
goggles. Let Φ be a target specification, Θ the corresponding type information and
ρ : f(p) → t a candidate rule. Let further be any rule in Φ(ρ) of the form f(i) = o.
Assume further, to avoid complicating things with even more indices, p to be a vector
with only one field, i.e. f has arity 1 for now. Let p be of type α, i.e. (p :: α), and α be
an inductive data type. Let Θ(α) be the set of constructors of α, i.e.

Θ(α) := {c1, . . . , cm}.

Since all terms subsumed by p are of the same type α, its type constructors induce
a natural partitioning into m disjoint subsets. The constructor is always at the root
position of the first (and only) argument, so this partitioning is the quotient set of Φ(ρ)
w.r.t. ∼pos (cf. Definition 5.3.1) for pos = 1, i.e.

Φ(ρ)/ ∼pos= {Φ(ρ)c1 , . . . ,Φ(ρ)cm}.

So for each constructor symbol cj, with j ∈ [1..m], there is one quotient. The lhss of
all rules in one quotient Φ(ρ)cj

are subsumed by a term, say cj(p′
j).

Each quotient of the example equations Φ(ρ)cj
gives rise to a new mediating function

ϕj. The example equations can be abduced using the examples in Φ(ρ)cj
which are of the

form f(cj(p′j)) = o. We create an new set of examples φj, such that for each equation
r ∈ Φ(ρ)cj

we build an equation ϕj(q) = o, where o is the rhs of r and q := (q1, . . . , qn)
is (at the moment) a vector containing a single n-ary nested tuple.
For i = [1..n], if the ith argument of the constructor cj in r, i.e. p′

j|i, is of type α and
there is an equation f(p) = o in Φ(ρ) s.t. pσ ≡ p′

j|i for some substitution σ, we assign
qi to oσ. If p′

j|i is not of type α then qi is assigned to p′
j|i.

In plain words, an m-ary constructor term cj(p′
j) which is input to f is transformed

to an m-ary nested tuple and given as input to ϕj. That is, we apply in−1
F . Each direct

subterm t of cj of type α is replaced by the result of a recursive call to f , i.e. by the rhs
of the equation of f that subsumes t. All other direct subterms are kept unchanged.
This is the application of Ff .
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Thus, for each constructor symbol of the inductive type α we get one function. The
coproduct of those functions, i.e. a case distinction on the constructor symbol, is exactly
the mediating function needed for the catamorphism.
The function f was said to have only one argument for the sake of simplicity. If f has

now n arguments, and the nth is of an inductive type, and assuming the quotient set
is computed w.r.t. n, then all other arguments are transferred unchanged to the IO ex-
amples of the mediating functions ϕj. So if the candidate rule is ρ : f(p1, . . . , pn) =
o and the catamorphism is applied to pn, all mediating functions are of the form
ϕj(p1, . . . , pn−1, p

′
j) = o′, where the terms p1, . . . , pn−1 subsume the same subterms as

in ρ, and then p′j is the argument for the catamorphism. When calling the catamorphism,
the mediating functions are partially applied, s.t. ρ′ : f(p1, . . . , pn) = L[ϕ1(p1, . . . , pn−1), . . . ,
ϕn−1(p1, . . . , pn−1)]Mpn. Keep this in mind when we soon relax this and allow the cata-
morphism applied to any argument.

6.2. Formal Definition of the Operator χcata

The previous section described now the structure of an inductive data type can be used
to introduce type morphisms as program schemes. This section gives a formal definition
of an operator χcata for Igor II to introduce catamorphisms on those types.
To give a formal definition of the new operator χcata, one more assumption is needed.

The operator χcata, which introduces primitive structural recursion for a specific induc-
tive data type, assumes the recursion scheme, i.e. the catamorphism, to be defined in
the target language, Haskell in our case. This requires to extend the language bias of
Igor II. In the current Igor II re-implementation in Haskell primitive structural re-
cursion is defined via the polymorphic function cata from the Generics . Pointless
library1. It also provides an operator for a join on functiosn (⊕), which is required to
define the mediating function of a catamorphisms as a sum of functions. For lists, the
better known function foldr, map, and filter are used, which are just specialised
catamorphisms for lists. For now let L Mα denote the catamorphisms of a type α and [ ]
the sum operator for functions.

Definition 6.2.1. Let 〈P,Φ〉 be a candidate CS and the corresponding specification, let
Θ contain the corresponding type information, let ρ : f(p1, . . . , pn) = t be a candidate
rule in P with n arguments, and Φ(ρ) the examples covered by ρ. Let pi be any argument
of type α, an inductive type with catamorphism L Mα and type constructor Θ(α) =
{c1, . . . , cm}.
Assume further L Mα to be a polymorphic function defining the catamorphism for

the inductive type α and [ϕ1, . . . , ϕm] to be the sum of the functions ϕ1, . . . , ϕm. The
structural recursion operatorχcata is defined as the (possibly empty) set

χcata(ρ,Φ,Θ) := {〈{ρ′} ∪ PS , φS〉},

if and only if
1Available from hackageDB : : [ Package ], the GHC library data base.
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(i) Φ(ρ)/ ∼i = {Φ(ρ)c1 , . . . ,Φ(ρ)cm} and Φ(ρ)cj
6= ∅ for all j ∈ [1..m], i.e. for each

constructor cj ∈ Θ(α) there exists a non-empty quotient, and

(ii) for all (f(si, . . . , si−1, cj(a1, . . . , ak), si+1, . . . , sn) = o) ∈ Φ(ρ)cj
, with j ∈ [1..m],

there exists a mapping µ : TΣ(X ) 7→ TΣ(X ) for all al with l ∈ [1..k] defined as:

µ(a) =


if a :: α then o′σ for any substitution σ s.t. for all

(f(p) = o′) ∈ Φ(ρ) it holds that
f(s1, . . . , si−1, a, si+1, . . . , sn)) ≡ f(p)σ,

if a 6:: α then a.

If conditions (i) and (ii) are satisfied, then:

• ρ′ : f(p1, . . . , pn) = L[ϕ1(p1, . . . , pi−1, pi+1, . . . , pn),
. . . ,
ϕm(p1, . . . , pi−1, pi+1, . . . , pn)]Mα pi,

• φSj
:= {ϕj(s1, . . . , si−1, si+1, . . . , sn, s

′
i) = o} for all

(f(s1, . . . , si−1, cj(a1, . . . , ak), si+1, . . . , sn)) = o) ∈ Φ(ρ)cj

and j ∈ [1..m], where s′i = (µ(a1), . . . , µ(ak))),

• φS =
m⋃
j=1

φSj
, and

• PS is the initial candidate CS of φS .

To prevent the catamorphism to be partially undefined, condition (i) demands each
constructor of α must occur in some rule of Φ(ρ) at position i at least once. Condition
(ii) assures that there is indeed evidence in Φ(ρ) that justifies the application of a
structural recursive program scheme. Given a catamorphisms L[ϕ1, . . . , ϕm]Mα, for a rule
f(s1, . . . , si−1, cj(a1, . . . , ak), si+1, sn) = o, the mediating function ϕj for the constructor
cj accepts a tuple (a sum) (µ(a1), . . . , µ(ak)) as input, where each al, for l = [1..k], which
is of type α is replaced by the corresponding term a recursive call to f would yield. If
al is not of type α, then µ is the identity. The task of each ϕj is just to combine the
intermediate results, s.t. it yields the corresponding output o.
Algorithm 12 describes the computation of χcata. The outermost loop (line 2) iterates

over all arguments of the candidate rule ρ and checks for each if a structural recursive
scheme is applicable. It checks if a catamorphism is defined for the type of the cur-
rent argument i and whether for each constructor of the type, there is a non-empty
quotient w.r.t. ∼i. The next loop (line 7) iterates over all quotients and abduces IO
examples for each function ϕj in L[ϕ1, . . . , ϕm]M if possible, i.e. if condition (ii) as stated
in Definition 6.2.1 is satisfied (line 9). The case that the condition is not satisfied coin-
cides with makeMediatorArg returning an undefined value (⊥). The auxiliary function
makeMediatorArg constructs the appropriate argument for each mediating function ϕj
(line 12) or returns undefined (⊥) if condition (ii) in Definition 6.2.1 cannot be satisfied.
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In the case that for some quotient Φ(ρ)cj
no appropriate arguments can be constructed,

the local variables are reset and the loop (line 18) is exited. No structural recursion
scheme is introduced for this argument.
Algorithm 11 implements the condition (ii) of Definition 6.2.1: The decomposition

of the argument the catamorphism is applied to and the construction of the appropri-
ate arguments for each ϕ. Actually, it applies the morphism Ff ◦ in−1

F described in
Equation (6.2). Note that if a catamorphism is applied to a constant constructor, the
morphism Ff ◦ in−1

F maps it to the unit type (), and so does makeMediatorArg.

Algorithm 11: makeMediatorArg(t, i, φ))
input : a term vector p = (s1, . . . , sn)
input : a position i
input : specification φ
output : undefined (⊥) or (possibly empty) tuple of terms p′

switch t = p[i] do1

case c(a1, . . . , ak)2

let µ(a) =



o′σ if a and t have the same type and there is a σ s.t.
f(si, . . . , si−1, a, si+1, . . . , sk)) ≡ f(p′)σ for some
(f(p′) = o′) ∈ φ,

a if a and t have not the same type
⊥ otherwise3

if for i = [1..k] any µ(ai) = ⊥ then4

return ⊥5

else6

return (µ(a1), . . . , µ(ak))7

end8

otherwise9

return ()10

end11

end12
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Algorithm 12: Structural recursion introduction operator χcata

input : an open rule ρ : f(p1, . . . , pn) = t
input : a target specification Φ
input : corresponding type information Θ
output : a finite (possibly empty) set S = {〈Sl, φl〉}l∈N containing pairs of a

successor rule set with corresponding new specification subsets
S ← ∅1

for i ∈ [1..n] do2

m← |Θ(α)|, the number of constructors of the type α3

if pi :: α ∧ defined L Mα ∧ |Φ(ρ)/ ∼i| = m ∧ ∀s ∈ (Φ(ρ)/ ∼i). s 6= ∅ then4

φi ← ∅5

Pi ← ∅6

foreach Φ(ρ)cj
∈ Φ(ρ)/ ∼n with j ∈ [1..m] do7

ϕj ← a new defined function symbol, s.t. ϕj 6∈ (DP∪B ∪ CP∪B ∪ X )8

if ∀(f(p) = o) ∈ Φ(ρ)cj
. makeMediatorArg(p, i,Φ(ρ))6= ⊥ then9

φ←
{
ϕj(p1, . . . , pi−1, pi+1, . . . , pn−1, p

′
j) = o |10

(f(p) = o)← Φ(ρ)cj
,11

p′j ← makeMediatorArg(p, i,Φ(ρ))}12

Pi ← Pi∪ initialCandidate(φ)13

φi ← φi ∪ φ14

else15

φi ← ∅16

Pi ← ∅17

break18

end19

end20

end21

if φi 6= ∅ ∧ Pi 6= ∅ then22

insert 〈{f(p1, . . . , pn) =23

L[ϕn(p1, . . . , pi−1, pi+1, . . . , pn−1), . . . ,24

ϕm(p1, . . . , pi−1, pi+1, . . . , pn−1)]Mα pi} ∪ Pi, φi〉25

into S26

end27

end28

return S29
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6.3. Modifications

The previous Section 6.2 defined the operator χcata as general as possible for arbitrary
inductively defined data types. In this section we will present some modifications which
use specialised catamorphisms for lists. This also allows to specialise catamorphisms to
natural transformations on lists.
The implementation of catamorphisms in the target language Haskell is based on the

polymorphic function cata. Although it is very general and captures catamorphisms
on arbitrary inductive data types, even for experienced programmers it looks a bit
unfamiliar.
Especially for the list type the functions foldr, map, and filter , together imple-

menting the reduce-map-filter pattern, are much more often in use. Using those functions
instead would not only improve the readability of the synthesised program, but again,
also would reduce the complexity of the problem.
In the case of map for example, the fact that the partial results returned from a

recursive call need to be combined into a value of the original type is already captured
in the scheme and need not to be generated in subsequent iteration of the synthesis
algorithm.
Similarly, the notion of type functors are usually captured in Haskell by the type

class Functor and the class function fmap. They can be seen as a generalisation of map
for other types. Furthermore, as described in Section 4.2.4, are type functors special
catamorphisms describing a natural transformation on the target type. Both would
simplify the synthesis process: Using fmap directly for types parameterised in one type
which are instance of the class Functor , or extending the mediating function for
cata as described in Equation (tyfunc-Def).

6.3.1. Catamorphism on Lists

This subsection is mainly based on the first paper published about the use of list cata-
morphisms for IP [49]. Only the syntax has been adjusted.
Assume that in our target language there is a data type for lists over arbitrary ele-

ments of the same type and a type for Boolean values. Thus, one can say that the set of
constructor symbols contains at least two designated constructor symbols for construct-
ing lists: nil, cons ∈ C denoting the empty list and the insertion of an element into a list,
respectively, and two constructors for True and False, i.e. true, false ∈ C. The set of
defined function symbols contains a ternary higher-order symbol for foldr and two bi-
nary higher-order symbols for map and filter , respectively, i.e. foldr ,map, filter ∈ D,
where foldr, map, and filter are defined as explained in Section A.6.1.
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6.3.1.1. Simplification using foldr

Recall from Example 4.2.2 that foldr’s universal property can be captured in the
following equations:

foldr ◦ nil = v
foldr ◦ cons = fun ◦ (idA × foldr).

Given a candidate rule ρ : f(p) = t, a corresponding specification Φ, and the position
i of an argument of ρ of type list, then be Φ(ρ)/∼i := {Φ(ρ)cons,Φ(ρ)nil} the quotient
set w.r.t. position i, containing one non-empty quotient for each constructor. For the
sake of simplicity assume p ≡ (l), i.e. f has only one input argument, and consequently
be i = 1. Since f must be a function, the quotient for the empty list constructor nil
Φ(ρ)nil := f(nil) = v contains exactly one rule with v as an output term. This fixes the
default value of foldr, and thus satisfies the first part of the universal property.
To satisfy the second part, it must hold that and for each f(cons(x, xs)) = o ∈ Φ(ρ)cons

with x, xs ∈ TC(X ), there exists another example equation (f(xs′) = o′) ∈ Φ(ρ) such
that f(xs′)σ ≡ f(xs) for some substitution σ. Then it is possible to abduce an example
fun(x, o′σ) = o for each rule in Φ(ρ)cons for a new defined function symbol fun. The
original function f can now be rewritten to f(l) = foldr(fun, v, l).
Example 6.3.1
Consider the following target specification Φ of the function reverse , and the corre-
sponding type information Θ, shown in the Listings 6.1, and Listing 6.2 respectively. No
background specification B is provided.

Listing 6.1: Specification Φ for reverse

1 reverse [] = []
2 reverse (d:[]) = (d:[])
3 reverse (c:d:[]) = (d:c:[])
4 reverse (b:c:d:[]) = (d:c:b:[])
5 reverse (a:b:c:d:[]) = (d:c:b:a:[])

Listing 6.2: Type information Θ for Φ of reverse as shown in Listing 6.1
1 data [α] = [] | α:[α]
2 reverse : : [α] → [α]
3 last : : [α] → α

We can now try to satisfy the universal property of foldr using the IO examples of
reverse . Obviously, reverse is defined on the empty list, so the default value v is
fixed to []. Now a function fun is required which composes the first element of the
input list with the result of the recursive call of the rest list. Following the procedure
described above, this yields:

fun d [] = (d:[])
fun c (d:[]) = (d:c:[])
fun b (d:c:[]) = (d:c:b:[])
fun a (d:c:b:[]) = (d:c:b:a[])
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The function reverse in our current hypotheses can now be rewritten. The function
fun is still undefined, because its initial rule, as Igor II would compute it, contains
open variables:

reverse x = foldr fun [] x
fun x xs = (d:ys)

It is obvious, that fun = snoc, i.e. it is a function inserting an element at the end
of a list. So it is renamed it for better readability. After some more iterations, Igor II
would terminate with the following solution. Note that snoc is solved using foldr,
too.

reverse x = foldr snoc [] x
snoc x0 x1 = foldr fun ’ [x0] x1
fun ’ x0 x1 = snoc x0 x1

6.3.1.2. Simplification using map

In the previous subsection (6.3.1.1), we have abduced the IO examples for an auxiliary
function fun according to the universal properties of foldr. If each rule ρ ∈ Φ(fun) is
of the form ρ : fun(a1, a2) = cons(x, xs), for a1, a2, x, xs ∈ TC(X ), and a2 ≡ xs, one
can define example equations Φ(fun′) for a modified function fun′ such that for each
ρ ∈ Φ(s) there is a rule ρ′ ∈ Φ(fun′) of the form ρ′ : fun′(a1) = x, then f can be modified
to f(x) = map(fun′, x).
Example 6.3.2
Consider the target specification Φ shown in Listing 6.3 of a simple function incr of
type [Nat] → [Nat] incrementing each Peano integer in a list. The corresponding
type information Θ is shown in Listing 6.4.

Listing 6.3: Specification Φ for incr

1 incr [] = []
2 incr (Z:[]) = ((S Z):[])
3 incr ((S Z):[]) = ((S(S Z)):[])
4 incr (Z:(S Z):[]) = ((S Z):(S(S Z)):[])
5 incr ((S Z):Z:[]) = ((S(S Z)):(S Z):[])

Listing 6.4: Type information Θ for Φ of incr as shown in Listing 6.3
1 data [α] = [] | α:[α]
2 data Nat = Z | S Nat
3 incr : : [Nat] → [Nat]

It is easy to check that incr satisfies our universal property and fun is our new, abduced
auxiliary function with the following IO examples:

fun Z [] = ((S Z):[])
fun (S Z) [] = ((S(S Z)):[])
fun Z ((S(S Z)):[]) = ((S Z):(S(S Z)):[])
fun (S Z) ((S Z):[]) = ((S(S Z)):(S Z):[])

109



6. Guiding Igor II’s Search with Type Morphisms

However, for all outputs of fun, (:) is the constructor at root positions and the sec-
ond argument occurs unchanged at the second position below root. Thus, fun can be
simplified to fun ’ by dropping the second argument. Its new IOs are shown below.

fun ’ Z = (S Z)
fun ’ (S Z) = S(S Z)
fun ’ Z = (S Z)
fun ’ (S Z) = S(S Z)

Now the initial rule for incr can be modified using map. Adding the initial rule for
fun ’ yields the following program:
incr x = map fun ’ x
fun ’ x = S x

Note that the initial rule for fun ’ is immediately closed by anti-unification.

6.3.1.3. Simplification using filter

Similarly, assume one can part Φ(fun) from Subsection (6.3.1.1) into n non-trivial
equivalence classes w.r.t. equality on the second argument (≡2), s.t. (Φ(fun)/ ≡2) :=
{Φ(fun)1, . . . ,Φ(fun)n}. Assume further, that each equivalence class Φ(fun)i for i =
1, . . . , n can be further parted into two non-empty disjoint sets Φ(fun)>i and Φ(fun)⊥i .
Each rule ρ ∈ Φ(fun)>i must be of the form ρ : fun(a1, a2) = cons(x, xs), s.t. a1 ≡ x and
a2 ≡ xs, and each rule ρ ∈ Φ(fun)⊥i must also be of the form ρ : fun(a1, a2) = xs, where
a2 ≡ xs.
One can see that the second argument occurs always unchanged either at root posi-

tions, or below the cons. Since we are in a functional setting and processing lists, it is
possible to deduce that whether the first argument is contained in the output depends
on a predicate on it.
So we can again define example equations Φ(fun′) for a modified function fun′ such

that for each ρ ∈ Φ(fun)>i there is an ρ ∈ Φ(fun′) of the form fun′(a1) = true, and for
each ρ ∈ Φ(fun)⊥i there is an ρ′ ∈ Φ(fun′) of the form fun′(a1) = false. Now, f can be
reformulated to f(x) = filter(fun′, x).

Example 6.3.3
Consider a function zeros of type zeros : : [Nat] → [Nat] filtering out all zeros
from a list of Peano integers. It is easy to check that this function obeys the universal
property of foldr and the abduced auxiliary function fun would be as follows:

fun Z [] = (Z:[])
fun (S Z) [] = []
fun (S(S Z)) [] = []

fun Z (Z:[]) = (Z:Z:[])
fun (S Z) (Z:[]) = (Z:[])
fun (S(S Z)) (Z:[]) = (Z:[])

The example equations of fun can be partitioned w.r.t. equality on the second argument,
as the layout suggests. Now, whether the first argument occurs in the output below the
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root position or not, this depends only on a predicate on this term. Thus, fun can be
simplified to fun ’, by dropping the second argument s.t.

fun Z = True
fun (S Z) = False
fun (S(S Z)) = False

We add an initial rule for it, modify the current rule, and construct a new hypotheses
as before:

zeros x = filter fun ’ x
fun ’ x = y

Subsequent iterations of the Igor II-algorithm would then close the unfinished rule
of the function fun ’, yielding the following solution:

zeros x = filter fun ’ x
fun ’ Z = True
fun ’ (S x) = False

6.3.2. Using natural transformation with χtyfunc

Recall from Section 4.2.4 that given a bifunctor F and two arbitrary F-algebras
inA : F(A,TA)→ TA and inB : F(B,TB) → TB with type functor T, that given a
function f : A → B and a FA-algebra ϕ, one could define Tf : TA → TB as an FA-
catamorphisms with Tf = LϕMFA s.t. the following diagram commutes:

FATA

FATB

TA

TB

inA

FATf

ϕ

Tf = LϕMFA

From Equation tyfunc-Def we also know that

ϕ = inB ◦ F(f, id)

is exactly the algebra, s.t. Tf : TA→ TB is a natural transformation.
How can we exploit this for IP? Assume we get two types TA and TB which are

“instances” of the same polymorphic type. Think of (Tree Int) and (Tree Bool)
and the polymorphic type (Tree α), for instance. Given the specification Φ of a
function Tf :: TA→ TB, to check whether Tf is a natural transformation we just need
to check for all rules ρ ∈ Φ(Tf) if for all positions p ∈ (Pos (lhs(ρ)) ∪ Pos (rhs(ρ)))
either lhs(ρ)|p :: TA⇐⇒ rhs(ρ)|p :: TB or lhs(ρ)|p :: A ⇐⇒ rhs(ρ)|p :: B. This checks
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whether Tf is really a structure preserving mapping, which maps any subterm on the
left-hand side of type TA (A) to a subterm of type TB (B). We can express Tf using
the type functor, s.t. Tf = LinB ◦ F(f, id)MFA after abducing IO examples for f . Let us
formally define an operator for Igor II to introduce natural transformations.

Definition 6.3.1. Let 〈P,Φ〉 be a candidate CS with corresponding specification, let Θ
contain the corresponding type information, be ρ : Tf(p1, . . . , pn) = o a candidate rule
in P with n arguments, and be Φ(ρ) the examples covered by ρ. Assume pi to be of type
TA with defined catamorphism. Let further be o of type TB, and let Θ(TA) and Θ(TB)
denote the initial F-algebras inA and inB, i.e. the sum of the constructors of Θ(TA)
and Θ(TB), respectively. Let the operator for natural transformation introduction
χtyfunc be defined as the possibly empty set, s.t.

χtyfunc(ρ,Φ,Θ) := {〈{ρ′} ∪ PS , φS〉},

if and only if for all rules (Tf(s1, . . . , sn) = t) ∈ Φ(ρ), and all position l ∈ (Pos (s|i) ∪
Pos (t)) it holds that

si|l :: TA⇐⇒ o|l :: TB ∨ si|l :: A ⇐⇒ t|l :: B,

then

• ρ′ : Tf(p1, . . . , pn) = LinB ◦ F(f(pi, . . . , pi−1, pi+1, . . . , pn), id)MFA pi,

• φS := ⋃{f(s1, . . . , si−1, si+1, . . . , sn, si|l) = t|l} for all (Tf(s1, . . . , sn) = t) ∈ Φ(ρ)
and all position l ∈ (Pos (si) ∪ Pos (t)) where si|l :: A ⇐⇒ t|l :: B, and

• PS is the initial candidate CS of φS .
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Algorithm 13: Natural transformation introduction operator χtyfunc

input : an open rule ρ : f(p1, . . . , pn) = o
input : a target specification Φ
input : corresponding type information Θ
output : a finite (possibly empty) set S = {〈Pl, φl〉}l∈N containing pairs of a

successor rule set with corresponding new specification subsets
S ← ∅1

foreach i ∈ [1..n] do2

φi ← ∅3

fi ← a new defined function symbol, s.t. φj 6∈ (DP∪B ∪ CP∪B ∪ X )4

if pi :: Tα ∧ o :: Tβ ∧ defined L MTα then5

foreach (Tf(s1, . . . , sn) = t) ∈ Φ(ρ) and each position6

l ∈ (Pos (si) ∪ Pos (t)) do
if si|l :: α⇐⇒ t|l :: β then7

φi ← φi ∪ {f(s1, . . . , si−1, si+1, . . . , sn, si|l) = t|l}8

else if si|l :: Tα⇐⇒ t|l :: Tβ then9

// noop
else10

φi ← ∅11

break12

end13

end14

end15

Pi ← initialCandidate(φi)16

inβ ← Θ(Tβ)17

insert18

〈{Tf(p1, . . . , pn) = Linβ ◦ F(fi(pi, . . . , pi−1, pi+1, . . . , pn), id)MFA pi}19

∪Pi, φSi
〉20

into S21

end22

return S23
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6.3.3. Primitive recursion via Paramorphisms with χpara

Section 4.2.5 defined paramorphisms and their relation to catamorphisms and already
pointed out that their only difference is the amount of information available to their
mediating functions. Thus, it is very easy to extend the operator χcata to a new operator
for primitive recursion χpara. Let, 〈| |〉α denote the paramorphisms of a type α.

Definition 6.3.2. Let 〈P,Φ〉 be a candidate CS and the corresponding specification,
let Θ contain the corresponding type information, be ρ : f(p1, . . . , pn) = t a candidate
rule in P with n arguments, and be Φ(ρ) the examples covered by ρ. Let pi be any
argument of type α, an inductive type with paramorphism 〈| |〉α and type constructor
Θ(α) = {c1, . . . , cm}.
The polymorphic function 〈| |〉α defines the paramorphism for the inductive type α

and [ϕ1, . . . , ϕm] to be the sum of the functions ϕ1, . . . , ϕm. The primitive recursion
operator χpara is exactly defined as χcata (cf. Definition 6.2.1), s.t.

χpara(ρ,Φ,Θ) := {〈{ρ′} ∪ PS , φS〉},

with the following differences:

1. ρ′ : f(p1, . . . , pn) = 〈| [ϕ1(p1, . . . , pi−1, pi+1, . . . , pn), . . . ,
ϕm(p1, . . . , pi−1, pi+1, . . . , pn)] |〉α pi,

2. φSj
:= {ϕj(s1, . . . , si−1, si+1, . . . , sn, s

′
i) = o}

for all (f(si, . . . , si−1, cj(a1, . . . , ak), si+1, . . . , sn)) = o) ∈ Φ(ρ)cj

and j ∈ [1..m], where s′i = (si, µ(a1), . . . , µ(ak))),
and si = cj(a1, . . . , ak).

So we (1) apply a paramorphism instead of a catamorphism, and (2) when abducing the
IO examples from a rule (f(si, . . . , si−1, si, si+1, . . . , sn), we simply carry the argument
si over to the IO examples of the mediating functions.

One practical remark need to be made here. Catamorphisms reduce complexity by
splitting up the argument. The operator χpara however, rather adds more information
in each step and may tend to clutter the mediating functions and the hypothesis more
and more which leads to more algorithm loop cycles.

6.4. Igor II in Action — Illustrating Examples
The previous sections formally described the detection of type morphisms from both,
the categorical and the term rewriting perspective, but without taking the inductive
programming system Igor II into account. This section shows by three examples for
the most common inductive types how, given examples for a specific target function, the
catamorphism can be detected.
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6.4.1. Filling a list with Zeros
An example of a simple catamorphism over natural numbers the following function which
takes a number as input and returns a list containing the respective amount of zeros.
Natural numbers, as previously, are represented as Peano’s integers. List are defined as
usual.

data [α] = [] | (α : [α]) --quasi Haskell
data Nat = Z | (S Nat)

The IO examples for this simple function are the following.

nzeros : : Nat → [Nat]
nzeros Z = []
nzeros (S Z) = [Z]
nzeros (S(S Z)) = [Z,Z]
nzeros (S(S(S Z))) = [Z,Z,Z]
nzeros (S(S(S(S Z)))) = [Z,Z,Z,Z]

As already described, the starting point for Igor II is the least general generalisation
of the given IO examples of nzeros :

nzeros : : Nat → [Nat]
nzeros x = y

The straight forward solution Igor II would find without using catamorphisms applies
the usual case distinction on the constructors together with a recursive call:

nzeros (Z) = []
nzeros (S a) = Z : ( nzeros a)

This scheme can be captured by our hand-crafted catamorphism on Peano integers
from Listing 4.1.

nzeros : : Nat → [Nat]
nzeros a = foldn h c

where
c = []
h = (Z:)

However, our aim is not to invent a type-specific catamorphism each type, but use a
general polymorphic implementation, as e.g. that from the Pointless Haskell library.
The function cata is a generic, polymorphic implementation of catamorphisms on in-
ductive data types (see Subsection A.6.3).

Listing 6.5: The function nzeros defined as catamorphism.
1 nzeros = cata ⊥ (c a ⊕ h a)
2 c _ = []
3 h x = (Z:x)

Although the latter is based on more general constructs than the further, both take
a coproduct of functions as argument, which contains one function per input type’s
constructor.
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Since we are in an IP context, we just need IO examples for c and h to induce them.
The construction of these examples is guided by the type functor inducing the input
type.
Consider the following commuting diagram, which depicts the current problem. All

we need to do now is, figuratively speaking, to traverse both diagrams starting from
Nat to ListNat to. The left diagram counterclockwise, the right clockwise. The rest is
syntactic manipulation of terms. If we traverse it counterclockwise, we abduce the IO
for the base case, i.e. function c, which needs to output the empty list when given Zero
as input. To abduce the inputs for h, we first remove one constructor application of the
corresponding input, evaluate the result on the IOs of nzeros , and relate this with the
corresponding output of the original IO example.

1 Nat Nat

1 ListNat ListNat

zero

id1 nzeros

zero−1 succ−1

nzeros

succ

hc

To solve nzeros using a polymorphic catamorphism, we proceed in three steps.

Applying zero−1 and succ−1 We part the original set of IO examples depending on the
constructor at the root position of its input argument. Furthermore, we discard
each constructor and keep only the product of its arguments, i.e. either the unit
type if the input was already Zero, or the predecessor of the input number.

Resolving the functor N Terms of the target type in these products are replaced by
the result of a recursive call to the target function, nzeros in this case.
If they consist of a constant constructor, they are replaced by the unit type.

Applying c and h Here we use Igor II recursively to synthesise c and h.

Igor II closes its initial rule from nzeros , by introducing the catamorohism and two,
yet unknown, functions.

nzeros = cata (⊥ : : Nat) (c ⊕ h)

In subsequent iterations it will synthesise the functions c and h using the following
abduced IO examples.

c () = []

h [] = [Z]
h [Z] = [Z,Z]
h [Z,Z] = [Z,Z,Z]
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The mediating argument functions c and h are very simply and Igor II can directly
solve them by antiunification when constructing their initial rule. The final solution is
shown in Listing 6.5.

6.4.2. The length of a List
Consider the problem of computing the length of a list. The data type definition of a
list with elements of type α is standard. Either the list is empty or an element of type α
is inserted at the front of an α-list ([α]). Natural numbers are represented as Peano’s
integers.

data [α] = [] | (α : [α]) --quasi Haskell
data Nat = Z | (S Nat)

Four simple IO equations together with the type of the function specify the problem
of computing the length of a list.

length : : [α] → Nat
length [] = Z
length (a:[]) = (S Z)
length (a:b:[]) = (S(S Z))
length (a:b:c:[]) = (S(S(S Z)))

Without catamorphisms, Igor II would find the following straight forward solution
applying the usual case distinction on the constructors together with a recursive call:

length [] = Z
length (_:xs) = S ( length xs)

A functional programmer, however, used to think in terms of recursion schemes and
higher-order functions, maybe would come to an alternative solution. It is common to
define length pointfree in terms of the higher-order function foldr (see Listing 4.2).

length = foldr h c
where
c = Z
h _ n = S n

As mentioned before, we would like to use a general polymorphic implementation, as
shown in Listing 6.6 which uses functions from the pointless-haskell library.

Listing 6.6: The function length defined as catamorphism.
1 length = cata (⊥ : : [α]) (c ⊕ h)
2 where
3 c _ = Z
4 h (_,n) = S n

As before, both take in fact a coproduct of functions as argument, which consists
of as many functions as the input type’s number of constructors. The last one is the
solution we are aiming for, so lets see how Igor II can take advantage of detecting the
list catamorphism when synthesising length .
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Igor II starts with the least general generalisation of the given IO examples of length .
From the type information we know that the input type of α-lists [α] is an inductive
type, so catamorphisms are applicable. The list type has two constructors, so the me-
diating function of its catamorphism consists of a sum of two functions c and h. Since
we are in an IP context, we just need IO examples for c and h to induce them. The
construction of these examples is guided by the type functor inducing the input type.
Again, we argue on the following commuting diagram, which depicts the current prob-

lem. Recall that ListA is the fixed point of the bifunctor LA parameterised in A and
defined as LAX = 1 + (A × X) and LAf : id1 + (idA × f). All we need to do now is,
figuratively speaking, to traverse both diagrams starting from ListA to Nat. The left
diagram counterclockwise, the right clockwise. The rest is syntactic manipulation of
terms.

1 ListA A× ListA

1 Nat A× Nat

nil
id1 length

nil−1 cons−1

idA × length

cons

hc

To solve length using a polymorphic catamorphism, we proceed in three steps.

Applying nil−1 and cons−1 We part the original set of IO examples depending on the
constructor at the root position of its input argument. Furthermore, we discard
each constructor and keep only the product of its arguments.

Resolving the functor LA Terms of the target type in these products are replaced by
the result of a recursive call to the target function, length in this case. If they
consist of a constant constructor, they are replaced by the unit type.

Applying c and h Here we use Igor II recursively to synthesise c and h.

Igor II closes its initial rule from length .
length = cata (⊥ : : [α]) (c ⊕ h)

In subsequent iterations it will synthesise the functions c and h using the following
abduced IO examples.

c () = Z

h (a,Z) = (S Z)
h (a,(S Z)) = (S(S Z))
h (a,(S(S Z))) = (S(S(S Z)))
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However, we can easily see that both functions are already solved when they are
antiunified for the initial hypothesis. We have shown the final result already in the
beginning of this section in Listing 6.6.

6.4.3. Mirroring Binary Trees
Consider another recursive problem to mirror binary trees, where either the tree is empty
or it contains a node holding an element of type α and two subtrees.

data Tree α = E | N α (Tree α) (Tree α)

Again, four simple equations specify the problem of mirroring a tree.
mirror : : (Tree α) → (Tree α)
mirror E = E
mirror (N a E E) = (N a E E)
mirror (N b (N a E E) (N c E E)) =

(N b (N c E E) (N a E E))
mirror (N d (N b (N a E E) (N c E E))

(N f (N e E E) (N g E E))) =
(N d (N f (N g E E) (N e E E))

(N b (N c E E) (N a E E)))

The next diagram depicts the problem. The data type TreeA is induced by the pa-
rameterised bifunctor BAX = 1 + (A×X ×X) and BAf = id1 + (idA × f × f).
The constructors E and N correspond to the function emptyE and nodeE and mirror

is the function f = L[g, h]M.

1 TreeE E × TreeE × TreeE

1 TreeE E × TreeE × TreeE

emptyE

id1 f

empty−1
E node−1

E

nodeE

idE × f × f

g h

We proceed in the same manner as described above. We resolve the arrows by travers-
ing the diagram.

Applying empty−1
E and node−1

E We part the original set of IO examples depending on
the constructor at the root position of its input argument and apply the inverse
constructors to the inputs.

Resolving the functor BE Terms of type Tree α are replaced by the result of a recur-
sive call to the target function, mirror in this case. If they consist of a constant
constructor, they are replaced by the unit type.
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Applying g and h Here we use Igor II recursively to synthesise c and h.

The result are the following sets of IO examples for g and h. The function g is
becomes a constant function, solved per definition, and constituting the base case. For
h, the outputs remain the same, but the inputs are turned into nested tuples where all
tree-subterms were replaced by there mirror image, i.e. the result of a recursive call.

g () = E

h (a, (E,E)) = (N a E E)
h (b, ((N a E E), (N c E E))) =

(N b (N c E E) (N a E E))
h (d, ((N b (N c E E) (N a E E))

, (N f (N g E E) (N e E E)))) =
(N d (N f (N g E E) (N e E E))

(N b (N c E E) (N a E E)))

Computing the lgg of all examples of h reveals that it is solved too, because all
variables are already bound. The function mirror can now be written using a generic
implementation of catamorphisms on inductive data types.

mirror t = cata (⊥ : : (Tree α)) (g ⊕ h) t
where
g _ = E
h (x, (t1 , t2 )) = N x t2 t1

6.4.4. A Synthesis Example revisited
The synthesis example in Section 5.4 used only the four operators of the base algorithm
as defined in Chapter 5. Using the new operator χcata would have changed the synthesis
process and the result completely. Continuing the example synthesis, the following shows
how the use of the new operator changes the algorithm behaviour.

6.4.4.1. Alternative Iteration 1

We enter again, directly after constructing the initial candidate H0 in Listing 5.11 from
Section 5.4, into the first iteration. Checking the conditions for χcata, we easily see
that lasts is defined for the empty list []. Now we need to find a function fun3
such that lasts (x:xs) = fun x (lasts xs) for each example equation covered
by the pattern on the lhs. We see that this is true for all example equations, namely
{1 . . . 10}. Listing 6.7 shows the accordingly abduced example equations for our new
auxiliary rule.

Listing 6.7: fun3

1 fun3 [a] [] = a:[]
2 fun3 [a,b] [] = b:[]
3 fun3 [a,b,c] [] = c:[]
4 fun3 [b] [a] = b:[a]
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5 fun3 [c] [b] = c:[b]
6 fun3 [c,d] [b] = d:[b]
7 fun3 [a,b] [d] = b:[d]
8 fun3 [c] [e,f] = c:[e,f]
9 fun3 [c,d][f,g] = d:[f,g]

Already now, we could rewrite the initial rule to lasts x = foldr fun3 [] x, but
we can simplify it even more. Note that the second argument of fun3 occurs unchanged
in the output, so only the first argument is modified. The formatting of fun3 is supposed
to illustrate this. The first argument of fun3 came from the first element in the argument
list of lasts, the second argument is the result of the recursive call with the rest list.
Thus, fun3 modifies always the first element and inserts it at the front of the result list
of the recursive call. This is exactly how the function map is defined. Therefore, it is
admissible to always ignore the second argument for the auxiliary function fun3 in an
alternative function fun∗3. Its IO examples are shown in Listing 6.8.

Listing 6.8: fun∗3
1 fun∗3 [a] = a
2 fun∗3 [a,b] = b
3 fun∗3 [a,b,c] = c
4 fun∗3 [b] = b
5 fun∗3 [c] = c
6 fun∗3 [c,d] = d
7 fun∗3 [a,b] = b
8 fun∗3 [c] = c
9 fun∗3 [c,d] = d

Instead of foldr we now use map to rewrite the initial rule and create a new hypothesis.

Listing 6.9: H1,alt : χcata
1◦ χinit

1 lasts x = map fun∗3 [] x
2 fun∗3 (x:xs) = y

6.4.4.2. Alternative Iteration 2

It is apparent from the example equations that fun∗3 is last. So Igor II will detect a
call to the background knowledge as similarly already described in the third iteration
(5.4.3). We spare the details and finish with the final solution (Listing 6.10) which is
output at the beginning of the third iteration.

Listing 6.10: H2,alt : χdirect,last
2◦ χcata

1◦ χinit

1 lasts x = map fun∗3 [] x
2 fun∗3 (x:xs) = last (x:xs)
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In the last section, we’ve described an extension of the Igor II algorithm to detect the
applicability of recursive schemes in the given set of IO examples. To avoid ambiguities,
let Igor II refer to the original Igor II algorithm as described by Kitzelmann [66] and
let Igor IIH refer to its re-implementation in Haskell. Igor II+ denotes the Has-
kell implementation using the extensions as described in Chapter 6. If it is necessary
to be more precise Igor II+C denotes the extension using catamorphisms and Igor II+P
denotes the extension with paramorphisms. Now the extended system will be evaluated
to provide evidence for the resulting improvements in efficiency and expressiveness.
Section 7.1 explains the design of the empirical evaluation, justifies the choice of the

benchmark systems, explains necessary settings and options of those systems, describes
the aim of this benchmark study and introduces the benchmark problems and the system
specific specifications. Section 7.2 presents the empirical results and comments on the
runtimes, efficiency and successes of the different systems. All synthesised programs
of the specific systems are shown in Appendix F. Section 7.3 mentions some ideas for
further implementations of the algorithm and summarises the improvements of Igor II+C
and Igor II+P w.r.t. the old algorithm Igor IIH.

7.1. The Evaluation Design
An impartial empirical evaluation of IP systems is quite difficult, because both, the
language and the restriction bias of two IP systems may be completely different and
consequently the amount of additional information, like types, background knowledge,
or even mode declarations for predicates in ILP which determine the bound and unbound
variables, varies from system to system.
In various previous, elaborate studies and empirical evaluations, we’ve already com-

pared Igor II/Igor II+ with other standard IP systems in a unifying framework which
tries to take each system’s individual peculiarities into account [51, 52, 54]. The results
were quite clear. In general, Igor II needs less information than other IP systems, i.e.
just the examples and the type information. It is faster or about as fast as and even more
powerful than the traditional ILP systems and other analytic approaches. Of course,
search-based, and especially evolutionary approaches, are much more powerful, but for
problems which lie within the scope of Igor II they where substantially slower.
Our focus of interest lies on IP systems which may adopt a schema-based language

bias and which make additionally use of supplementary knowledge, especially type infor-
mation or user hints, to apply these schemes. Section 2.2.3 has already introduced those
systems for which this applies. However, Igor II+ is, to our present knowledge, the
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only IP system that is able to apply a program scheme automatically, without specific
user interaction or explicit inclusion. Dialogs-II requires the user to choose a scheme
and MagicHaskeller, PolyGP, and G∀st could only use them if they are provided
explicitly in their specification or if they are hard coded into their language bias.
In fact, MagicHaskeller is the only system able to synthesise programs with about

as little knowledge as Igor II/Igor IIH in general. The previously mentioned evalua-
tions have already shown that Igor II outperforms Dialogs-II w.r.t. expressiveness and
time efficiency. For PolyGP or G∀st, it is necessary to specifically adjust the language
bias to a certain problem to produce satisfying results at all. If the language bias is
too general, in fact as general as it is for MagicHaskeller or Igor II/Igor IIH, both
systems struggle with the combinatorial explosion of the search space.

7.1.1. Benchmark Systems and Settings
Due to the arguments mentioned above, the performance of the new Igor II extensions,
i.e. Igor II+, will be evaluated against two benchmarks.
The first is the Igor IIH system without the new extensions for type morphisms

introduction. The more efficient re-implementation in Haskell will be used here. It
is clear that this depends not on the implementation but on the language choice: A
compiled Haskell program is faster than interpreted Maude code (cf. Hofmann et al.
[53] for a comparison). Its core algorithm, as described in Chapter 5, corresponds to
Kitzelmann’s [66] with some deviations, which are described in the following.

Maximum depth The operator χsubfn is cost-neutral and does not increase the costs
associated with a hypothesis. Kitzelmann uses a maximum depth to cap the
maximum number of subfunction introductions to prevent infinite sequences of
subfunction applications. In the Haskell re-implementation such a maximum
bound does not exist. However, as described in Section 5.2, the number of rules
in a hypothesis is included into the cost function, i.e. χsubfn is not cost neutral
anymore. If two hypotheses have the same number of patterns, the hypothesis
with the least number of rules is preferred.

Rapid rule-splitting extension This extension, as proposed by Kitzelmann, has been
included in Igor IIH under the name greedy rule splitting. Assume a lhs has
more than one pivot position as required by the χsplit operator (cf. Definition 5.3.1).
The usual way is to create for each pivot position one hypothesis partitioning the
examples w.r.t. this position. Greedy rule splitting creates only one hypothesis,
which however induces a partitioning w.r.t. all pivot positions.

Conditional equations This extension is not supported by Igor IIH.

Extensional quantified variables Not supported by Igor IIH.

If not stated differently, no specific settings were made and the default argument-wise
reduction order (cf. Section 5.3.3) is used.

124



7.1. The Evaluation Design

The second benchmark system is MagicHaskeller, which exhaustively, but still
efficiently, enumerates de-Bruijn-style λ-expression in the strongly typed language Has-
kell (cf. Section 2.2.3.5). Its specification consists of the constructors of all used data
types and a type specific recursion scheme (catamorphism or paramorphism), which may
also be used for case distinctions and data type deconstruction.

7.1.2. Purpose of Benchmarks
Comparing Igor II+ against Igor IIH aims to show the improvements in efficiency and
expressiveness that can be achieved with data-driven detection of program schemes. To
assess the improvement in efficiency the iterations needed to solve a specific problem
will be compared. The runtimes in both cases lie in most cases within the range of
milliseconds, and therefore differences measured in fractions of seconds are considered
as not conclusive enough.
Comparing Igor II+ against MagicHaskeller aims to underpin the advantage of

an analytical, data-driven strategy compared to mere enumeration. It is intuitively
clear that systematic search should be more efficient than enumeration. However, one
can argue, that with syntactically simple problems there should not be a big difference.
Furthermore, contrary to Igor IIH, MagicHaskeller is unable to invent auxiliary

subfunctions, i.e. use functions that were not provided by the user in advance. Com-
paring the analytical Igor IIH with function invention (FI) against the enumerative
MagicHaskeller without function invention (FI) on the one side, and the use of
catamorphisms and paramorphisms on the other side splits up in six test scenarios de-
picted in Table 7.1. One can already be excluded from the beginning, because using
MagicHaskeller without any recursion schemes at all does not make much sense.
Concerning Igor II+ using paramorphisms, another remark in necessary. The use

of paramorphisms is still experimental. Although, their introduction similar to cata-
morphisms is implemented and works correctly, their use requires a more sophisticated
reduction order. Recall from Section 4.2.5 that the difference between catamorphisms
and paramorphisms is the amount of information available to a recursive call. In fact,
in a recursive call to a paramorphism all subterms of the original input are available.
An invented subfunction may at this point easily recombine them to the original input,
and thus causing a non-terminating hypothesis. This would require a more complex
reduction order keeping track of the arguments used for morphisms, but this has not
been solved yet. A lot solutions with correctly introduced paramorphisms are expected
to use subfunctions which lead to non-termination.

7.1.3. Benchmark Problem Specifications
As it has been already pointed out in the beginning, it is quite difficult to compare
different IP systems based on identical specifications. The amount of knowledge pre-
sented to both systems has been kept as comparable and equal as possible. Both were
given the same set of IO examples: Igor IIH as equations and MagicHaskeller as
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× L·M 〈|·|〉

FI Igor IIH Igor II+Ca Igor II+P b
FI — MH using L·M MH using 〈|·|〉

No recursion scheme (×), cata- (L·M), and paramorphism (〈|·|〉)
MH MagicHaskeller

With (FI) and without FI function invention
aOption :s +enhanced bOption :s +enhanced, :s +para

Table 7.1.: Classify systems into test scenarios.

a higher-order test function, accepting a function as input and returning whether this
function computed all IOs correctly.

Igor IIH gets the whole specification with all used data types and type class instance
declarations as a valid Haskell module. With this specification Igor IIH naturally
had already all necessary information about the type constructors and recursion schemes
available. When requested to solve a particular problem, eventually with some back-
ground knowledge, no problem specific adoption is necessary.
The same information was provided to MagicHaskeller explicitly within its library,

which was changed depending on a specific problem, though. To compensate for pattern
matching, which MagicHaskeller is natively unable to perform, for each type either
a recursion scheme (catamorphisms, or paramorphisms) or all relevant deconstructors,
as in the case of tuples, have been provided.
After loading the specification of all problems, Igor IIH synthesised them all at once

in batch mode. MagicHaskeller was given as much problems at once as possible, but
it tends to run out of memory quickly. This is aggravated by polymorphic functions as
for example the pair function (,), because in fact it can in always be used. Therefore,
contrary to Igor IIH, for each problem it was given an individual library set, consisting of
only those constructors and schemes of those types actually occurring in the IO examples.
Igor IIH always had all type information of the whole specification available, but used
only as much as necessary to solve the problem. See Appendix C and Appendix D for
MagicHaskeller’s and Igor IIH’s specification, respectively.

MagicHaskeller performs memoization during synthesis and caches subexpres-
sions. On the one side this may speed up the generation of subsequent programs. On
the other side the cache is never emptied. Thus, the chance to run out of memory in-
creases over time. Therefore, if one problem ran out of memory in batch mode, it was
tested alone again. Only if finally all available memory did not suffice, it is stated.

MagicHaskeller version 0.8.5 from hackageDB : : [ Package ]1 and Igor IIH ver-
sion 0.8.0 from the homepage of the DFG-project Effiziente Algorithmen zur induktiven
Programmsynthese2 (SCHM 1239/6 10/2007 – 9/2011) have been used. The manual of
the Igor IIH system is shown in Appendix E.

1http://hackage.haskell.org/package/MagicHaskeller
2http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html
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The benchmark problems itself are a collection of mostly recursive programs using
the most frequent inductive data types such as natural numbers represented as Peano
integers, lists, and binary (node) trees. Some user-defined types for specific problems
or mixed types are also included, as well as classification problems on tuples. Many of
these function are standard functions present in base packages of functional languages.
Others are common benchmarks used in IP and ILP context. It is noteworthy that our
focus was not on complex problems in the sense of program size, but in the sense of
structural or intellectual complexity. For example the function evenParity is not a
big program w.r.t. lines of code, nevertheless its recursive solution is not immediately
apparent in the first place.
Table 7.2 shows the name, the type, and a short description of each problem function.

The following paragraphs provide some additional explanations for selected problems.

Functions on mixed inputs The function pepper originated from a colloquium held
at the group ÜBB of Prof. Peter Pepper at TU Berlin. It annotates all elements with an
index and the index of its predecessor. The variant pepperF only adds the index.

Listing 7.1: Definition of pepper

1 pepper : : Nat → [a] → [(Nat , Maybe (a,Nat))]
2 pepper i [] = [(i, Nothing )]
3 pepper i (x:xs) = (i,Just (x,S i)):( pepper (S i) xs)
4

5 pepperF = (map onlyIdx ◦ ) ◦ pepper
6 where
7 onlyIdx =
8 λ(l,r) → (l, maybe (Just ◦ fst) Nothing r)

Functions on other data types The functions in this group are inspired by cognitive
psychology, human problem solving, natural language processing and AI planning and
were part of a joint publication with Ute Schmid and Emanuel Kitzelmann [120] and
have been elaborated in more detail in [66].
Humans’ problem solving, reasoning and verbal behaviour often show a high degree of

systematication and productivity which can best be characterised by a competence level
reflected by a set of recursive rules. Speed-up effects in problem solving are explained
by a general rule acquisition mechanism, which extracts such rules from only positive
examples from the environment. In [120] analytical inductive programming has been
suggested as a model of such a rule acquisition device. Similarly, in AI planning macro
learning was modelled as composition of primitive operators to more complex ones.
The function rocket is a simple planning benchmark to illustrate the so called Suss-

man anomaly, a weakness of noninterleaved planning. The problem is to transport a
number of objects from earth to moon where the rocket can only fly in one direction.
That is, the problem cannot be solved by first solving the goal “object 1 on the moon” by
loading it, moving it to the moon and then unloading it. Because with this strategy there
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is no possibility to transport further objects from earth to moon. The correct procedure
is first to load all objects, then to fly to the moon and finally, to unload the objects.
The state is modelled by an inductive data type representing the action which can be
performed by a planner: Loading (LOD), Flying (FLY), Unloading (UNL). The Cargo is
a list of objects. The function rocket takes a cargo list and some state as input and
returns a state in which the appropriate actions have been performed. Listing 7.2 shows
the data type definitions and the examples.

Listing 7.2: Data types and examples for the rocket problem.
1 data State = START | LOD Object State
2 | UNL Object State | FLY State
3 data Object = O1 | O2 | O3 | O4
4 data Cargo = NOCARGO | IN Object Cargo
5

6 rocket : : Cargo → State → State
7 rocket NOCARGO s = FLY s
8 rocket (IN x NOCARGO ) s =
9 UNL x (FLY (LOD x s))

10 rocket (IN x (IN y NOCARGO )) s =
11 UNL x (UNL y (FLY (LOD y (LOD x s))))
12 rocket (IN x (IN y (IN z NOCARGO ))) s =
13 UNL x (UNL y (UNL z (
14 FLY (LOD z (LOD y (LOD x s)))))

The function sentence models the problem of learning a phrase-structure grammar.
Learning word-category associations has been avoided and the provided examples ab-
stract from concrete words. In particular, the function generates words (or sentences) of
the target grammar of particular depths. Figure 7.1 shows the grammar to be learned
and the corresponding examples that were provided as specification are shown in List-
ing 7.3. The abstract example sentence structures correspond to sentences as described
by Covington [20]:

1. The dog chased the cat.

2. The girl thought the dog chased the cat.

3. The butler said the girl thought the dog chased the cat.

The Towers of Hanoi puzzle is modelled by a function taking a stack of discs and
three pegs (source, auxiliary, and target) and returning a sequence of Move actions.
Concerning the discs a small semantical trick has been used. Whereas (D(D D0))
represents a stack of discs, with the smallest disc D0 on top and the largest (D(D
D0)) right at the bottom, when given as input of hanoi, it represents just the largest
disc, when given as input to the move action MV. For example line 9 and following in
Listing 7.4 reads as follows. The sequence of corresponding actions is read backwards.
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S → NP VP
NP → D N
VP → V NP | V S

non-terminal : Sentence, Noun Phrase, Verb Phrase
terminal : Determinant, Verb, Noun

Figure 7.1.: A phrase-structure grammar for the function sentence

To solve the problem of moving the stack of two discs from peg src to
peg dst using peg aux in some context s, after moving the smallest disc D0
from src to aux in some context s, move the disc next in size D D0 from
src to dst, and finally move the smallest disc D0 from aux to dst.

Listing 7.3: IO examples for the function sentence

1 sentence : : Nat → [Char]
2 sentence Z = [ ’D’, ’N’, ’V’, ’D’, ’N’]
3 sentence (S Z) = [ ’D’, ’N’, ’V’, ’D’, ’N’
4 , ’V’, ’D’, ’N’]
5 sentence (S( S Z)) = [ ’D’, ’N’, ’V’, ’D’, ’N’
6 , ’V’, ’D’, ’N’, ’V’, ’D’, ’N’]

Listing 7.4: Data types and examples for the hanoi problem.
1 data Disc = D0 | D Disc
2 data Action = NOOP | MV Disc Peg Peg Action
3 data Peg = PegA | PegB | PegC
4

5 hanoi : : Disc → Peg → Peg → Peg
6 → Action → Action
7 hanoi D0 src aux dst s = MV D0 src dst s
8 hanoi (D D0) src aux dst s =
9 MV D0 aux dst

10 (MV (D D0) src dst
11 (MV D0 src aux s))
12 hanoi (D(D D0)) src aux dst s =
13 MV D0 src dst
14 (MV (D D0) aux dst
15 (MV D0 aux src
16 (MV (D(D D0)) src dst
17 (MV D0 dst aux
18 (MV (D D0) src aux
19 (MV D0 src dst s))))))
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UCI repository The problems in this category are data sets from the UCI machine
learning repository3. In these standard noise-free classification problems the task is to
learn a multi-valued class attribute based on a nominal attribute vector. The concepts
enjoySports and playTennis are from Mitchell [89]. Of course, those concepts
are originally non-recursive, but Igor II will demonstrate that those problems can be
learned based, on a small set of examples, as a special case.

Table 7.2.: Description of functions

functions on natural numbers

ack Nat → Nat → Nat The Ackermann function.
add Nat → Nat → Nat Addition on natural numbers.
even Nat → Bool Is the number even?
eq Nat → Nat → Bool Equality on natural numbers.
gaussSum Nat → Nat Sum of all naturals from 0 to n.
fact Nat → Nat The factorial function.
fib Nat → Nat The nth number in the Fibonacci sequence.
geq Nat → Nat → Bool Greater-or-equal.
mult Nat → Nat → Nat Multiplication on naturals.
odd Nat → Bool Is the number odd?
sub Nat → Nat → Nat Subtraction on natural numbers.

predicates, functions on Booleans

andL [Bool] → Bool Conjunction of a lists of Booleans.
and Bool → Bool →

Bool
Conjunction of two Booleans.

evenParity [Bool] → Bool Check whether the number of True ele-
ments is even.

negateAll [Bool] → [Bool] The complement of all Booleans in a list.
nandL [Bool] → Bool Negated conjunction of a lists of Booleans.
norL [Bool] → Bool Negated disjunction of a lists of Booleans.
or Bool → Bool →

Bool
Disjunction of two Booleans.

orL [Bool] → Bool Disjunction of a list of Booleans.

functions on lists

append [a] → [a] → [a] Appending two lists.
evenLength [a] → Bool Is the length of the list even?

Continued on next page

3http://archive.ics.uci.edu/ml/
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Table 7.2 – continued from previous page
Name Type Description

evenpos [a] → [a] Select all elements at even positions.
halves [a] → ([a],[a]) Splits a list in two halves.
init [a] → [a] Removes the last element from a list.
inits [a] → [[a]] All initial segments of the input list, shortest

first.
intersperse a → [a] → [a] Intersperses the given element between all

two consecutive elements in the list
last [a] → a The last element of a list.
lastM [a] → Maybe a last, defined as total function.
multfst [a] → [a] Replaces all elements by the first one.
multlst [a] → [a] Replaces all elements by the last one.
oddpos [a] → [a] Selects all elements at odd positions.
pack [a] → [[a]] Wraps all elements into singletons.
subseqs [a] → [[a]] All subsequences of a list, aka power set on

lists.
reverse [a] → [a] Reverses a list.
shiftl [a] → [a] Shifts all elements to the left, by inserting

the first at the end.
shiftr [a] → [a] Shifts all elements to the right, by inserting

the last at the front.
snoc a → [a] → [a] Inserts an element at the end.
swap [a] → [a] Swaps every two subsequent elements.
switch [a] → [a] Switches the first with the last element.
split [a] → ([a],[a]) Computes the lists of elements at odd and

even positions.
tail [a] → [a] Removes the first element.
tails [a] → [[a]] map tail
unzip [(a,a)] →

([a],[a])
Computes the list of first and second projec-
tions.

weave [a] → [a] → [a] Combines two lists by interleaving their ele-
ments.

zip [a] → [a] →
[(a,a)]

Computes the list of corresponding pairs.

functions on lists of lists

concat [[a]] → [a] Concatenates all lists.
lasts [[a]] → [a] map last
mapCons a → [[a]] → [[a]] Inserts the element at front of each list.
mapTail [[a]] → [[a]] map tail

Continued on next page
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Table 7.2 – continued from previous page
Name Type Description

transpose [[a]] → [[a]] Transposes a matrix.
weaveL [[a]] → [a] Turns a matrix into a list by appending its

columns.

functions on naturals and lists

addN Nat → [Nat] →
[Nat]

Increments all elements by a given number.

alleven [Nat] → Bool Are all numbers even?
allodd [Nat] → Bool Are all numbers odd?
evens [Nat] → [Nat] Selects all even numbers.
incr [Nat] → [Nat] Increments all numbers in a list by one.
length [a] → Nat The length of a list.
lengths [[a]] → [Nat] map length
nthElem [a] → Nat → a Returns the nth element.
oddslist [Nat] → Bool Are all elements odd?
odds [Nat] → [Nat] Selects all odd elements.
drop Nat → [a] → [a] Drops the first n elements of a list
splitAt Nat → [a] →

([a],[a])
Splits a list before a given position.

sum [Nat] → Nat The sum of a list of integers.
replicate a → Nat → [a] A list of length n containing only the given

element.
take Nat → [a] → [a] Takes the first n elements.
zeros [Nat] → [Nat] Removes all non-zero integers from a list.

functions on trees

preorder (NTree a) → [a] Preorder traversal of a binary tree.
inorder (NTree a) → [a] Inorder traversal of a binary tree.
postorder (NTree a) → [a] Postorder traversal of a binary tree.
mirror (NTree a) →

(NTree a)
Mirrors a binary tree by swapping all its sub-
trees.

functions on mixed inputs

pepper Nat → [a] →
[(Nat ,Maybe

(a,Nat))]

Annotates each element with an index and
the index of its predecessor.

pepperF Nat → [a] →
[(Nat ,Maybe a)]

Indexes all elements starting by the given
number.

Continued on next page
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Table 7.2 – continued from previous page
Name Type Description

functions on other data types

rocket Cargo → State →
State

The planning problem of loading a rocket
and flying it to the moon.

hanoi Disc → Peg → Peg
→ Peg → Action →

Action

Recursive definition of The Tower of Hanoi
problem.

sentence Nat → [Char] Enumerating all sentences of a grammar (cf.
Figure 7.1).

functions for UCI classification problems

balloons (Color , Size , Act ,
Age) → Inflate

UCI classification problem

playTennis (Weather ,
Weather , Weather ,
Weather ) → Bool

Classification problem [89]

enjoySport (Weather , Weather ,
Weather , Weather ,
Weather , Weather )

Classification problem [89]

lenses (LAge ,
LPrescription ,
LAstigmatic ,
LTears ) → LCLType

UCI classification problem

7.2. Empirical Results
This section presents the results of the empirical analysis. All tests have been conducted
under Ubuntu 7.10 on an Intel Dual Core 2.33 GHz with 4GB memory. No test has been
stopped abortively, but run until it either produced a result or run out of memory.
Kitzelmann already showed that Igor II can use background knowledge. Therefore,

it was only given if necessary, i.e. if Igor II could not abduce sufficient IO examples
to learn it by itself. Consider for example the function postorder for postorder tree
traversal. Listing 7.5 shows the abduced IOs of a required auxiliary function Igor II
needs to invent. In fact, fun is the function append to concatenate lists. However,
these IOs are insufficient for Igor II to learn append . Igor II cannot detect recursive
regularities, because these are not the first k examples w.r.t. the input data type list. It
cannot find evidence how to solve fun [a] [] for example, which is crucial to detect
a recursive regularity. Therefore, append has been provided as background knowledge.
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Name Sections Options
Igor IIH 5 :s simplify
Igor II+C 5, 6.2, 6.3.1 :s simplify; :s +enhanced
Igor II+P 5, 6.3.3 :s simplify; :s +enhanced; :s +para

Table 7.3.: Different flavours of Igor IIH and their settings.

Listing 7.5: Abduced IOs for auxiliary function in postorder

1 fun : : [a] → [a] → [a]
2 fun [] [] = []
3 fun [a] [b] = [a,b]
4 fun [a,b] [c,d] = [a,b,c,d]
5 fun [a,b,c][d,e,f] = [a,b,c,d,e,f]

Some functions have been synthesised simultaneously by Igor IIH. This is indicated
by multiple target function names in the tables.
As already mentioned, Igor IIH was run three times with different settings: Once

without type morphism, once with catamorphisms and type functors on lists, and fi-
nally only with paramorphisms. Note, that the use of type morphisms is still greedy.
If the algorithm detects applicability of a morphism, it tries to use it without back-
tracking. Table 7.3 gives an overview of the different Igor IIH implementations, their
options, and which section describes their algorithm. Igor IIH represents the algorithm
as described in Section 5. Igor II+C is equivalent to the original algorithm from Section 5
with extensions for catamorphisms as described in Section 6.2, special treatment of lists
catamorphisms and list type functors as described in Section 6.3.1. Igor II+P extends
Igor IIH only with the algorithm described in Section 6.3.3.
Subsection 7.2.1 compares the different flavours (plain vanilla, catamorphisms, para-

morphisms) of Igor IIH with MagicHaskeller using paramorphisms and Magic-
Haskeller using catamorphisms.
With runtimes below one second Igor IIH is already quite fast. Improvements due

to the new extension lie in the range of milliseconds which is not a reliable indicator to
measure the improvement. Therefore, Section 7.2.2 compares the number of algorithm
loop cycles of the different Igor IIH version.

7.2.1. Runtimes and Success
This section comments the results shown in Table 7.5. For each example function, the
systems with the fastest result are highlighted with a green background. If additional
options were required to successfully synthesise the function, it is indicated by indices
and explained at the bottom of the table.
Table 7.4 summarises the outcome with simple statistical measures over all correctly

synthesised problems. It states the total time, maximum and minimum individual run-
time, mean, median, standard deviation, the number of correctly synthesised programs,
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Name Σ max min ∅ x̃ σ ⊕ ⊕/N

IH 40.5067 17.3651 0.0001 0.5957 0.0080 2.8406 68 80.95%
I+C 25.5419 16.1490 0.0001 0.3361 0.0001 1.9472 76 90.48%
I+P 310.1139 161.7141 0.0001 5.6384 0.0040 28.7866 55 65.48%
HP 754.4210 272.6490 0.0010 13.9708 0.2460 49.0317 54 64.29%
HC 572.5930 167.0460 0.0001 12.7243 0.1880 34.8618 45 53.57%

IH Igor IIH · I+C Igor II+C · I+P Igor II+P
HP MagicHaskeller with 〈|·|〉 · HC MagicHaskeller with L·M

Σ total runtime max maximum
min minimum ∅ mean x̃ median

σ standard deviation ⊕ absolute successes ⊕/N success rate

Table 7.4.: Runtime statistics for the different systems in seconds based on the number
of successfully synthesised programs of totally N = 84 problems.

and the success rate. It is quite clear that Igor II outperforms MagicHaskeller,
both in time efficiency and success rate. Even the experimental paramorphism feature
is better than MagicHaskeller. Compared to Igor IIH, Igor II+ shows significant
improvements on nearly all measures. The overall runtime was nearly halved from 40.5
seconds to 25.5 seconds. The mean runtime was reduced by about a third from 2.8
seconds to 1.9 seconds. A reduction of the dispersion of runtimes could decrease the
median runtime to 0.0001s. Ultimately, the success rate could be raised by ten per-
centage points. The relatively poor performances of Igor II+P arises from the share of
non-terminating programs due to an inapprorpiate reduction order as already indicated
in Subsection 7.1.2.
The following paragraphs compare the systems individually and comment on individ-

ual phenomenons and deviations from the overall impression of Table 7.4.

MagicHaskeller vs. Igor II In general one can say that MagicHaskeller is slower
and tends to run out of memory more quickly than Igor II. Both, the runtimes and the
memory leaks strongly depend on the problem specific data types and libraries. The
more polymorphic they are, the harder it is for MagicHaskeller to quickly find a
solution. Furthermore, the search space tends to explode faster, simply because the
number of alternative programs is much greater.
Consider for example the group of predicates and functions on Booleans. The library

contained only the morphisms for lists, the Boolean values and a conditional expres-
sion. Thus, it provided very little polymorphism but much guidance by these types.
Arbitrary lists or general tuples as used in the UCI problems, however show much more
polymorphism and more possibilities for type alternatives due to weak guidance by the
types. This leads to longer runtimes, and obviously to more stack overflows. Similarly,
for function on mixed inputs and other user defined data types the libraries were more
extensive than e.g. for the predicates.
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Another observation is that MagicHaskeller is faster but less successful when us-
ing catamorphisms than with paramorphisms. Compared to catamorphisms, paramor-
phisms are not more polymorphic w.r.t. the amount of different type variables, but they
have more arguments. Admittedly, once one argument is fixed, the type of other argu-
ments with the same type variable is determined. However, to compute these arguments,
further functions are needed which may contain type variables which are undetermined
at this point. This, of course, increases the amount of search involved, but this is made
up by a more expressive recursion scheme. If a catamorphism is rather unsuitable, it is
hard for MagicHaskeller to compensate this by search.
Only on some instances MagicHaskeller is faster or as fast as Igor II. Most of

them were problems where additional background knowledge was provided, e.g.
gaussSum , fact, or mult. So given the appropriate primitives, MagicHaskeller is
unsurprisingly fast. On most problems (length , concat , gaussSum) where Magic-
Haskeller outperformed Igor II, the difference is virtually negligible.
Finally, there is only one problem, mult, where MagicHaskeller was successful,

but all Igor II-systems were not. Natural numbers are inherently Igor II’s weak point.
Obviously, when represented as integers there is no structure at all, because from a term
perspective, there is no difference between, say 1 and 2. Such a representation suits
better for MagicHaskeller’s enumerative approach, because basic primitives such as
0, 1, and + suffice to quickly build more complex functions such as mult. Representing
those primitives as Peano integers makes no big difference for MagicHaskeller. For
the Igor II systems, however, such a representation still provides only a little structural
guidance, and thus leading to vast search with many alternatives which makes it hard
for Igor II to detect structural similarities in the output terms of a set of IOs.

Igor II+ vs. Igor IIH The original Igor IIH algorithm performs only on a few prob-
lems better than the new, extended one. Only the numerical problems, such as ack,
eq, and geq and hanoi on user defined data types, Igor II+ was unable to solve with
catamorphisms but succeeded without. This is simply because those problems do not
follow a catamorphic recursive scheme. Equality on natural numbers requires simulta-
neous reduction of the input arguments. Such a scheme is not covered by a catamor-
phism, nevertheless it is possible to satisfy its universal properties on those examples.
Catamorphisms are applied greedily, so once a universal property could be satisfied no
backtracking is done. Igor II+ then fails to close all hypotheses due to other restric-
tions (reduction order, etc.), and step by step the whole search space is discarded and
Igor II+ terminates with an empty search space for eq and geq.
Programs for ack and hanoi require functions as base cases, i.e. the default value of

the catamorphisms is not constant. For example, the base case of ack is defined as
ack Z n = S n

and for hanoi it is
hanoi D0 a0 _ a2 a3 = MV D0 a0 a2 a3
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So both have a function call, in this case a constructor application, instead of a constant
value as base case. Again, this is not covered by catamorphisms.
Although it is possible to solve rocket with catamorphisms, Igor IIH was much

faster without. This, however, could be explained by the fact that the domain was
especially engineered to perfectly fit Igor IIH requirements. Forcing Igor II+ to use
catamorphisms seems to hamper the system on this particular example.
On most other examples, Igor II+ was faster, sometimes as fast as, and only in single

cases unsignificantly slower than Igor IIH.

Igor II+
C vs. Igor II+

P As already mentioned, the use of paramorphisms is at the moment
just an experimental feature. Although a paramorphism will be introduced correctly
according to its universal properties, in some cases non-terminating programs are syn-
thesised. The problem is that paramorphisms, contrary to catamorphisms, pass both,
the original input and its decomposition to its mediating functions. At the moment, it
happens quite often that Igor II+P in consecutive auxiliary functions just recomposes the
original input and than trivially detects the applicability of a recursive call to the target
function. Consider for example the following solution for mult with paramorphisms.

mult a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = Z
fun2 a0 (Z, _) = a0
fun2 (S a0) (S _, S a2) = mult (S a0) (S (S a2))

The second argument of fun2 is a pair of the result of the recursive call of the
decomposed input and the original input. The recursive call, however, recomposes the
original input when calling mult recursively. To prevent this, the reduction order has to
be extended. A simple approach would prohibit any argument of a recursive call to be
syntactically greater then any input argument of the calling function, but this postpones
the non-terminating recursive call just one level in the calling hierarchy. To fix this, a
reduction order has to keep track of individual terms or input arguments. Once used in
a paramorphism, it must assure that it will always decrease in size in any subsequent
call.
Nevertheless, the results promise paramorphisms to be a good support for the struc-

tural recursive scheme of catamorphisms. Some functions that were unsolvable (eq,
geq) with catamorphisms were solvable with paramorphisms. For others, their partial
solutions look quite promising and may be successful, once the reduction-order problem
is solved. Contrary to Igor IIH and Igor II+C , it was possible to synthesise weave with
the default reduction order and no additional settings.
For the successfully solved problems, the runtimes were as fast as or insignificantly

slower than with Igor II+C . Only synthesising drop, lengths , and sub took more time
than with Igor II+C . One reason for longer runtimes, especially for functions on lists, is
the use of type functors. Igor II+C privileges lists in the sense that it uses the Haskell
functions foldr, filter , and map. The latter, implementing the type functor on lists,
allows to more efficiently synthesise natural transformations of lists. Type functors are
not supported by Igor II+P and need to be synthesised “afoot”.
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Table 7.5.: Overview of runtimes in seconds.

Name Back IH I+C I+P HP HC

functions on natural numbers

ack — 0.9081d ∅ 22.0054ea 272.6490 81.3010
add — 0.7480 0.0001 0.0001 0.0680 0.0160
even — 0.0040 0.0001 0.0001 0.0120 ∅
even, odd — 0.0040 0.0001 0.0001 — —
eq — 0.4120 2.3081eb 0.0280 ∅ ∅
gaussSum add 0.0240 0.1000 0.0040 0.0040 0.0040
fact mult 16.2290 16.1490 0.0040ea 0.0280 28.9100
fib add 0.6360 0.6200 0.8561ea 214.9530 77.7570
geq — 0.0320 0.1400eb 0.0440 ∅ ∅
mult — ∅ ∅ 0.0120ea 6.3480 2.8520
mult add ∅ ∅ 0.0160ea 0.2960 0.2040
odd — 0.0001 0.0001 0.0001 0.0120 ∅
sub — ∅ 0.0001 145.5011 ∅ ∅

predicates, functions on booleans

andL — 0.0040 0.0001 0.0040 0.1240 0.0080
and — 0.0001 0.0001 0.0001 0.0080 0.0040
evenParity — ∅ 0.0040 2.2921ea 8.3210 0.2680
negateAll — 0.0080 0.0001 0.0040 0.4560 0.1080
nandL — 0.0040 0.0001 0.0040 0.1320 0.0080
norL — 0.0040 0.0001 0.0040 0.1240 0.0040
or — 0.0001 0.0001 0.0001 0.0080 0.0040
orL — 0.0040 0.0001 0.0040 0.1280 0.0080

functions on lists

append — 2.3481 2.3321 0.0001 0.1080 0.0080
evenLength — 0.0040 0.0001 0.0001 0.0120 ∅
evenpos — 0.0040 0.0001 0.0080ea 5.1560 3.8680
halves — 224.3940e ∅ 0.0120ea ∅ ∅
init — 0.0040 0.0001 0.0001 2.6400 3.8960
init, last — 0.0040 0.0040 0.0040 — —
inits — 0.0920e 0.0001 0.0080 ∅ ∅
intersperse — 0.0080e 0.0001 0.0001ea 2.6280 1.7600
last — 0.0001 0.0001 0.0001 ∅ ∅
lastM — 0.0040 0.0001 0.0040 0.0440 ∅

Continued on next page
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Table 7.5 – continued from previous page
Name Back IH I+C I+P HP HC

multfst — 0.0120 0.0001 0.0200 1.8600 0.1560
multlst — 0.0080 0.0001 0.0001 0.1240 0.0680
oddpos — 0.0160 0.0120 0.0520 4.9680 3.8640
pack — 0.0080 0.0001 0.0040 4.1760 2.1840
subseqs append 0.1560e 0.0040 0.0320ea ∅ ∅
reverse — 0.0240 0.0001 0.0040ea 0.0400 0.0200
shiftl — 0.0040 0.0040 0.0040ea 1.8520 167.0460
shiftl, shiftr — 0.0240 0.0040 0.0080 — —
shiftr — 0.0120 0.0040 0.0001 25.2500 37.6300
snoc — 0.0040 0.0001 0.0001 0.0440 0.0280
swap — 0.0080 0.0280 0.0040ea ∅ ∅
switch — 0.0280 0.0160 0.0040ea ∅ ∅
split — 0.0200 0.0001 0.0001 ∅ ∅
tail — 0.0040 0.0001 0.0001 0.0010 3.2680
tails — 0.0040 0.0001 0.0001 0.0520 7.9040
unzip — 0.0240 0.0040 0.0240 ∅ ∅
weave — 0.0480c 0.0440c 0.0240 ∅ ∅
zip — 0.0640 0.0560 0.0600 ∅ ∅

functions on lists of lists

concat — 0.4640 0.0840 0.1000ea 2.5880 0.0720
lasts — 0.0080 0.0001 0.0080 25.7460 2.5520
mapCons — 0.0040 0.0001 0.0001 0.0560 0.0320
mapTail — 0.0040 0.0001 0.0001 0.0640 ∅
transpose — ∅ 0.0160 0.1840ed ∅ ∅
weaveL — ∅ ∅ ∅ ∅ ∅

functions on naturals and lists

addN — 0.3560 0.0001 0.3600 4.1880 1.3600
alleven — 0.0120 0.0001 0.0120ed 4.1000 ∅
allodd — ∅ 0.0001 0.0080ed 3.8680 ∅
evens — 0.0400 0.0001 2.4642ed ∅ ∅
incr — 0.0040 0.0001 0.0001 0.0160 0.0160
length — 0.0040 0.0001 0.0001 0.0040 0.0001
lengths — 17.3651 0.0001 1.7801 1.7040 0.7080
nthElem — 0.0040 0.0040 0.0001 ∅ ∅
oddslist — ∅ 0.0040 0.0080ed 4.3200 ∅
odds — 0.0440 0.0001 4.9083e ∅ ∅
drop — ∅ 0.0001 161.7141 0.0240 ∅

Continued on next page

139



7. Evaluation

Table 7.5 – continued from previous page
Name Back IH I+C I+P HP HC

splitAt — ∅ 0.2440 ∅ ∅ ∅
sum — 0.0080 0.0001 0.0960e 0.9600 0.0480
replicate — 0.0040 0.0001 0.0001 0.0080 0.0040
take — 0.0080 0.0040 0.1680 19.4130 6.0920
zeros — 0.0040 0.0001 0.0001 0.2200 0.1960

functions on trees

preorder append 0.0120 0.0040 0.0080 0.2720 0.1880
inorder append 0.1240e 0.0080 0.0280ea 0.2760 0.1880
postorder append, snoc 13.9929e 0.0400 0.0120ea 0.2760 0.1840
mirror — 0.0080 0.0001 0.0001 0.0360 0.0160

functions on mixed inputs

pepper — 0.0520 0.0240 0.0040ea ∅ ∅
pepperF — 0.0520 0.0040 0.0040ea ∅ ∅

functions on other data types

rocket — 0.0040 5.4763 0.0280 133.6560 137.7810
hanoi — 0.0640 ∅ ∅ ∅ ∅
sentence — 0.0120 0.0001 0.0001 ∅ ∅

functions forUCI classification problems

balloons — 0.0080 0.0040 0.0040 ∅ ∅
playTennis — 0.0160 0.0160 0.0160 ∅ ∅
enjoySport — 0.0040 0.0001 0.0001 ∅ ∅
lenses — 0.2400 0.2200 0.2200 ∅ ∅

∅ stack overflow — no value × not applicable
aInapropriate reduction order bexhausted search space

cLinear reduction order dgreedy-rule-splitting ewrong
fastest wrong

IH Igor IIH · I+C Igor II+C · I+P Igor II+P
HP MagicHaskeller with 〈|·|〉 · HC MagicHaskeller with L·M

140



7.2. Empirical Results

Name Σ max min ∅ x̃ σ ⊕ ⊕/N

Igor II 4036 2049 0 59.3529 5 269.0267 68 80.95%
Igor II+C 2141 908 0 28.1711 3 119.6794 76 90.48%
Igor II+P 402 206 0 7.3091 2 27.3542 55 65.48%

Σ total loops max maximum min minimum
∅ mean x̃ median

σ standard deviation ⊕ absolute successes ⊕/N success rate

Table 7.6.: Igor II loop cycle statistics for N = 84 example problems

7.2.2. Igor IIH Algorithm loop cycles

The last subsection compared the runtimes of the different systems on various example
problems. Since Igor IIH is already quite fast, a closer look on the algorithm loop cycles
needed to synthesise a particular problem may be desirable, making the improvements
more sensible.

Table 7.6 summarises the benchmark w.r.t. the loop cycles needed for all successfully
synthesised problems. It lists total number of loops, the maximum and the minimum6

loops needed for an individual problem, the mean and the median loop number, and
the standard deviation. It also recapitulates the absolute successes and the success rate.
Except for the success rates and the minimum number of loops, all measures could
be decreased by about 50% when using Igor II+ instead of Igor IIH. The maximum
dropped from 2049 to 908 cycles which dramatically affects the total number of loops
needed as well as the mean loops. 50% of all problems are now solved within 3 loops or
less. Again, using catamorphisms decreases the dispersion by sparing loops on complex,
long running problems.

Table 7.7 shows the algorithm loop cycles needed by the different Igor IIH versions
for each individual problem. Wrong results are also marked with (⊥) and highlighted
with a dark background. The symbol for the empty set (∅) indicates whether the system
runs out of memory during synthesis. MagicHaskeller is not able to simultaneously
synthesise multiple targets. Those problems have been skipped. This is indicated by the
symbol (×). The last two columns show the speedup of Igor II+C and Igor II+P w.r.t.
the original algorithm Igor IIH. The speedups of Igor II+C and Igor II+P w.r.t. Igor IIH
and in particular the symbols are defined as follows:

6The pathological minimum loop count of 0 arises during the synthesis of init , which is solved
immediately via antiunification.
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IH/I+ =



IH

I+ if IH > I+

− I+

IH
if IH < I+

1 if IH = I+

� if I+ failed
� if IH failed
× if both failed

,

where / is integer division, IH abbreviates the loop number of Igor IIH, I+ for Igor II+,
I+
C for Igor II+C , and I+

P for Igor II+P . Thus, a positive speedup is denoted by a positive
integer, a negative by a negative integer. A failure of Igor IIH and success of the new
Igor II+ is denoted by �, and vice verse by �. A failure of both is denoted by ×.

Table 7.7.: Overview of Igor II algorithm’s loop cycles and speedups.

Name Back IH I+C I+P IH/I+
C

IH/I+
P

functions on natural numbers

ack — 9 ∅ 2196⊥ � �
add — 6 1 1 6 6
even — 3 2 2 2 2
even, odd — 2, 2 2, 2 2, 2 1 1
eq — 245 703⊥ 4 � 61
gaussSum add 17 57 2 -3 9
fact mult 908 908 2⊥ 1 �
fib add 173 173 161⊥ 1 �
geq — 4 114⊥ 3 � 1
mult — ∅ ∅ 4⊥ × ×
mult add ∅ ∅ 4⊥ × ×
odd — 3 2 2 2 2
sub — ∅ 2 3 � �

predicates, functions on booleans

andL — 3 2 2 2 2
and — 1 1 1 1 1
evenParity — ∅ 4 3⊥ � ×
negateAll — 4 2 3 2 1
nandL — 3 2 2 2 2
norL — 3 2 2 2 2
or — 1 1 1 1 1

Continued on next page
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Table 7.7 – continued from previous page
Name Back IH I+C I+P IH/I+

C

IH/I+
P

orL — 3 2 2 2 2

functions on lists

append — 4 4 1 1 4
evenLength — 3 2 2 2 2
evenpos — 4 4 3⊥ 1 �
halves — 12742⊥ ∅⊥ 5⊥ × ×
init — 3 3 3 1 1
inits — 63⊥ 3 5 � 13
init, last — 3, 2 3, 2 3, 2 1 1
intersperse — 7⊥ 3 3⊥ � ×
last — 2 2 2 1 1
lastM — 4 3 3 1 1
multfst — 8 2 8 4 1
multlst — 6 2 3 3 2
oddpos — 11 11 23 1 -2
pack — 8 3 3 3 3
subseqs append 76⊥ 5 8⊥ � ×
reverse — 13 2 4⊥ 7 �
shiftl — 5 4 4⊥ 1 �
shiftl, shiftr — 5, 11 4, 5 4, 3 2 2
shiftr — 10 5 3 2 3
snoc — 4 1 1 4 4
swap — 6 17 4⊥ -3 �
switch — 13 14 4⊥ -1 �
split — 17 1 1 17 17
tail — 0 0 0 1 1
tails — 4 1 1 4 4
unzip — 13 4 13 3 1
weave — 4 4 3 1 1
zip — 6 6 6 1 1

functions on lists of lists

lasts — 6 3 4 2 2
mapCons — 5 1 1 5 5
mapTail — 3 1 1 3 3
transpose — ∅ 11 25⊥ � ×
weaveL — ∅ ∅ ∅ × ×

Continued on next page
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Table 7.7 – continued from previous page
Name Back IH I+C I+P IH/I+

C

IH/I+
P

functions on naturals and lists

addN — 18 2 10 9 2
alleven — 6 3 4⊥ 2 �
allodd — ∅ 3 4⊥ � ×
evens — 24 3 868⊥ 8 �
incr — 3 1 1 3 3
lengths — 2049 2 7 1025 293
nthElem — 2 4 2 -2 1
oddslist — ∅ 3 4⊥ � ×
odds — 19 3 876⊥ 6 �
splitAt — ∅ 43 ∅⊥ � ×
replicate — 3 1 1 3 3
zeros — 6 2 2 3 3

functions on trees

preorder append 5 3 3 2 2
inorder append 31⊥ 6 7⊥ � ×
postorder append, snoc 545⊥ 14 4⊥ � ×
mirror — 4 1 1 4 4

functions on mixed inputs

pepper — 28 12 2⊥ 2 �
pepperF — 28 3 2⊥ 9 �

functions on other data types

rocket — 3 495 10 -165 -3
hanoi — 13 ∅ ∅ � �
sentence — 13 1 1 13 13

functions for UCI classification problems

balloons — 5 5 5 1 1
playTennis — 18 18 18 1 1
enjoySport — 1 1 1 1 1
lenses — 206 206 206 1 1

Continued on next page
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Table 7.7 – continued from previous page
Name Back IH I+C I+P IH/I+

C

IH/I+
P

∅ stack overflow ⊥ failure
+/−N positive/negative speedup

� Igor IIH failed � Igor II+ failed × both failed
fastest failure

IH Igor IIH · I+C Igor II+C · I+P Igor II+P
IH/I+

C
speedup of I+

C w.r.t. IH · IH/I+
P

speedup of I+
p w.r.t. IH

Figure 7.8 and Figure 7.9 show the speedups of Igor II+C and Igor II+P , respectively,
as a histogram. Bars to the right represent positive, bars to the left negative speedups.
Bars to both sides with a speedup of 1 show that there is no difference between the
systems. Bars to the left or right labelled with −1 and 1, respectively, represent a small
change levelled out by integer division. There is no bar if both systems failed on a
particular problem.

As mentioned in Table 7.6, Igor II+C could solve more than 90% of the benchmark
problems. Among these, only for gaussSum , swap, switch , nthElem , and rocket
Igor II+C needed more loops than Igor IIH. Igor II+P , however, was faster than the
original algorithm on gaussSum , and failed only due to an inappropriate reduction
order on the others. This indicates that catamorphisms seem inappropriate on those
problems.

For about 2/3 of the remaining, successfully synthesised programs, the number of loop
cycles needed was at least halved when using Igor II+C . For about 20% of the problems
the speedups of factor 10 or more could be achieved. For highly structured inputs, as for
example lengths , splitAt , subseqs , transpose , or inits, the best improvements
could be achieved.

The histogram of Igor II+P speedups in Figure 7.9 looks worse than it actually is. Of
course, all the non-terminating solutions occur as failures resulting in negative speedups,
but with an appropriate reduction order they may turn into successes.
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Table 7.8.: Histogram of speedups for Igor II+C w.r.t. Igor IIH
ack �
eq �
geq �

hanoi �
rocket -165
swap -3

gaussSum with add -3
nthElem -2
switch -1
halves × halves

mult with add × mult with add
mult × mult

weaveL × weaveL
and 1 and

append 1 append
balloons 1 balloons

enjoySport 1 enjoySport
even, odd 1 even, odd
evenpos 1 evenpos

fact with mult 1 fact with mult
fib with add 1 fib with add

init, last 1 init, last
init 1 init
last 1 last

lenses 1 lenses
oddpos 1 oddpos

or 1 or
playTennis 1 playTennis

tail 1 tail
weave 1 weave

zip 1 zip
1 lastM
1 shiftl
2 alleven
2 andL
2 concat
2 evenLength
2 even
2 intersperse
2 lasts
2 nandL
2 negateAll
2 norL
2 odd
2 orL
2 pepper
2 preorder with append
2 shiftl, shiftr
2 shiftr
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Table 7.8 – continued from previous page
2 take
3 incr
3 length
3 mapTail
3 multlst
3 pack
3 replicate
3 sum
3 unzip
3 zeros
4 multfst
4 mirror
4 snoc
4 tails
5 inorder with append
5 mapCons
6 add
6 odds
7 reverse
8 evens
9 addN
9 pepperF
13 sentence
15 subseqs with append
17 split
21 inits
39 postorder with append, snoc

1025 lengths
� allodd
� drop
� evenParity
� oddslist
� splitAt
� sub
� transpose

n positive speedup (rounded to next integer)
-n negative speedup (rounded to next integer)
1 no speedup
� Igor IIH failed
� Igor II+C failed
× both failed
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Table 7.9.: Histogram of speedups for Igor II+P w.r.t. Igor IIH
ack �

alleven �
concat �

evenpos �
evens �

fact with mult �
fib with add �

hanoi �
odds �

pepperF �
pepper �
reverse �
shiftl �
sum �
swap �

switch �
rocket -3
oddpos -2
allodd × allodd

evenParity × evenParity
halves × halves

inorder with append × inorder with append
intersperse × intersperse

mult with add × mult with add
mult × mult

oddslist × oddslist
postord. w. app. snoc × postord. w. app. snoc

splitAt × splitAt
subseqs with append × subseqs with append

transpose × transpose
weaveL × weaveL

and 1 and
balloons 1 balloons

enjoySport 1 enjoySport
even, odd 1 even, odd
init, last 1 init, last

init 1 init
last 1 last

lenses 1 lenses
multfst 1 multfst

nthElem 1 nthElem
or 1 or

playTennis 1 playTennis
tail 1 tail

unzip 1 unzip
weave 1 weave

zip 1 zip
1 geq
1 lastM
1 negateAll
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Table 7.9 – continued from previous page
2 addN
2 andL
2 evenLength
2 even
2 lasts
2 multlst
2 nandL
2 norL
2 odd
2 orL
2 preorder with append
2 shiftl, shiftr
2 take
3 incr
3 length
3 mapTail
3 pack
3 replicate
3 shiftr
3 zeros
4 append
4 mirror
4 snoc
4 tails
5 mapCons
6 add
9 gaussSum with add
13 sentence
13 inits
17 split
61 eq
293 lengths
� drop
� sub

n positive speedup (rounded to next integer)
-n negative speedup (rounded to next integer)
1 no speedup
� Igor IIH failed
� Igor II+P failed
× both failed
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7.3. Improvement Remarks
This section drops some ideas to improve the Igor II+ algorithm and makes some re-
marks for further improvements which have not been implemented yet.

Conditional Rules The original Igor II-algorithm described by Kitzelmann [66] sup-
ported to some extent the synthesis of conditional equations, where partitioning
is done w.r.t. a predicate. This allows Igor II to learn functions like member to
check whether a list contains a certain element, or insertion into a ordered binary
tree. However, the induction of the partitioning predicate is not done data-driven,
but more or less in a generate-and-test manner, i.e. all partitions were generated
and then tried to find an appropriate predicate for each of them. Obviously, this
quickly hits the brick wall. It would be desirable to establish some concise criterion
upon which the partitioning and the predicate invention can be established and
assessed.

Automatic instance generation Igor II+ requires a data type to be instance of the
type classes Mu and PF if used for type morphisms. At the moment the user has to
write these instance declaration and describe a data type as a polynomial functor
and an initial algebra.
It is worth mentioning, that these instance declarations are totally canonic and it
is possible to automatically generate them. The author of the pointless-haskell7
library implemented the algorithm described by Hu et al. [55] in a tool called
DrHylo8. Since it is based on an outdated library, a re-implementation would be
required to be used with Igor II+.

Additional reduction order As already mentioned several times earlier, the failure of
Igor II+P is due to an inappropriate reduction order. To prevent the synthesis of
non-terminating programs, a more sophisticated reduction order is required, which
keeps track of which input argument is used in which type morphism, to ensure
that the corresponding terms really strictly decrease in size.

Automatic option inference Some problems were only synthesisable after setting ad-
ditional options such as “greedy rule splitting” (cf. 7.1.1) or setting an explicit
reduction order. It should be possible to infer both, the recursion argument of a
function and an appropriate reduction order by analysis of the IO examples.

Compute default value Catamorphisms require a default value for constant construc-
tors. Consider for example catamorphisms on lists and the following code example.
If the target function has, apart from the first argument of type list, a second, ad-
ditional argument, it may be the case that the default value of foldr depends on
this second input. Therefore, not only the synthesis of a mediating f is required
but also of another auxiliary d which computes the default value.

7http://hackage.haskell.org/package/pointless-haskell
8http://wiki.di.uminho.pt/twiki/bin/view/Personal/Alcino/DrHylo
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7.4. Discussion

g : : [α] → β → γ
g l e = foldr (f e) (d e) l
f : : β → α → γ → γ
f e a b = . . .
d : : β → γ
d a = . . .

Inventing an auxiliary function to compute the default value may enable Igor II+C
to solve ack and hanoi, because this was exactly the reason why it failed (cf.
Paragraph 7.2.1).

Backtracking At the moment, type morphisms are applied greedily. As the empirical
evaluation revealed, this may sometimes mislead the search and result in complete
failure of the synthesis. This is the case when universal properties of a morphism
apply, but the hypotheses cannot be finished in later steps due to other restrictions,
as for example requirements of the reduction order. It is desirable to have some
criteria to judge whether the application of a morphism fails or at least provide the
possibility of backtracking and continue the synthesis without type morphisms.

Ordering morphism When using multiple type morphisms it is desirable to check their
universal properties in a particular order. Type functors (6.3.1), for example, are
a special case of catamorphisms, which themselves generalise to paramorphisms.
Thus, it is suggestive to first check the applicability of type functors, then catamor-
phisms, and finally paramorphisms to apply the least general recursion scheme.

7.4. Discussion
The results of MagicHaskeller show the typical weakness of enumerative approaches:
They are fast and reliable, provided with appropriate primitives, but tend to get lost in
the search space quickly when given too general and unspecific information, especially
if there are too many polymorphic functions in its library.
Compared to MagicHaskeller, the analytical, data-driven approach of the Igor IIH

systems, are much more faster, more reliable and more successful in synthesising func-
tions from a selected set of IO examples. In general, the structure of IO examples
contains much information which can be successfully exploited to analytically reduce
and guide the search.
Catamorphisms are just one further step in this direction. Instead of only using

structural information which is explicitly encoded in terms representing IOs, they provide
means to use implicit structural information, as e.g. structural recursion scheme of a data
type. Their universal properties are an exclusive criteria of their applicability which can
be easily checked in the IO examples at hand.
The previous empirical tests showed that using type morphisms significantly improves

the efficiency and the effectiveness of the Igor II algorithm. It drastically reduces run-
times and algorithm loop cycles needed, but also allows to synthesise programs which

151



7. Evaluation

where beyond the scope before. The success can be explained by the following key
benefits of the use of type morphisms:

Complexity reduction Type morphisms are a suitable way to reduce the search space
complexity by providing guidance when the algorithm is overwhelmed by equiva-
lent alternatives. They help to quickly traverse such plateaus in the search space.
Where the original Igor II algorithm falls back to sequentially process all equiva-
lent alternatives, the universal properties and the introduction of type morphisms
directly lead the search to the rim of the plateau. They act like a signpost which
can be applied under specific circumstances and provide save conduct for the next
few steps. Although not matured, the experiments showed that paramorphisms
can complement catamorphisms conveniently. Appendix G shows some search tree
visualisations of different Igor II versions.

Gain in expressiveness Using type morphisms extends the expressiveness and the ca-
pabilities of the algorithm through the use of recursive program schemes. This
makes it possible to solve programs which where beyond its scope before. Apart
from adding explicitly recursive schemes to Igor II’s language bias, they extend
it in another, less apparent way.
Igor IIH cannot invent a new auxiliary function at the root position of a rule’s
right-hand side. Auxiliary functions require the abduction of appropriate IO exam-
ples, which is only possible if the new auxiliary functions occur below a constructor
symbol. For example, Igor IIH could never synthesise the solution of reverse
as shown in Listing 7.6, because solely from the IOs of reverse , there is now
a possibility to abduce appropriate IOs for snoc, if not provided as background
knowledge.
If you compare this with the equivalent program synthesised by Igor II+C which
is shown in Listing 7.7, exactly this happened. The auxiliary snoc occurs at the
root position. Here it is possible to abduce appropriate IOs, because the recursive
scheme of foldr, induced by its universal properties, provides Igor II+C exactly
with the information how to abduce IOs for snoc given IOs for reverse .

Listing 7.6: reverse using snoc and explicit recursion

1 reverse : : [α] → [α]
2 reverse [] = []
3 reverse (x:xs) = snoc x ( reverse xs)
4 snoc a [] = [a]
5 snoc a (x:xs) = x : (snoc a xs)

Listing 7.7: reverse with auxiliary foldr and snoc

1 reverse : : [α] → [α]
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2 reverse l = foldr snoc [] l
3 snoc a l = foldr fun [a] l
4 fun e (x:xs) = e:x:xs

Judging Igor II’s capability Another benefit of type morphisms is, that they allow to
describe classes of programs synthesisable by
Igor II+C . It is hard to exactly describe which programs Igor IIH is able to syn-
thesise and in general this is still not trivial to describe the class of all programs
Igor II+ can solve. However, now it is possible to tell that programs which follow
a catamorphism can now be solved by Igor II+C . This for the first time states a
positive criteria whether a problem can be solved.

Although it is said that there is no such thing as free lunch, this seems not to be
true for the use of type morphisms. In IP it is tacitly agreed that an improvement of
expressiveness has to be paid by a deterioration of efficiency and vice versa restricting the
language bias to keep the search space as small and search efficient goes at the expense
of expressiveness. No so with type morphisms. By skillfully exploiting all available
knowledge, both the explicit as well as the implicit, an improvement of the expressiveness
and the language bias of an IP system simultaneously leads to improvement in efficiency.

153





8. Conclusion
Inductive functional programming systems can be characterised by two diametric ap-
proaches: Either they apply exhaustive program enumeration which uses Input/Output
examples (IO) as test cases, or they perform an analytical, data-driven structural gen-
eralisation of the IO examples.
Enumerative approaches ignore the structural information provided with the IO exam-

ples, but use type information to guide and restrict the search. They use higher-order
functions which capture recursion schemes during their enumeration, but apply them
randomly in a uninformed manner.
Analytical approaches, on the other side, heavily exploit this structural information

but have ignored the benefits of a strong type system so far and use recursion schemes
only either fixed and built in, or selected by an expert user.
This work shows how universal constructs from category theory, such as catamor-

phisms, paramorphisms, and type functors, can be used as recursive program schemes
for inductive functional programming. The use of program schemes for Inductive Pro-
gramming is not new. The special appeal and the novelty of this work is that, contrary
to previous approaches, the program schemes are neither fixed, nor selected by an ex-
pert user: The applicability of those recursion schemes can be automatically detected in
the given IO examples of a target function by checking the universal properties of the
corresponding type morphisms.
An extension of the analytical functional inductive programming system Igor II was

proposed and explained how the applicability of those recursion schemes can be detected
in the given IO examples of the target function by checking universal properties of the
corresponding type morphisms. It shows that the capability and the expressiveness of
Igor II can be extended without deteriorating its efficiency.
A comprehensive empirical evaluation underpinned the benefits of extending the origi-

nal Igor II-algorithm. Type morphisms are a very suitable tool to increase the efficiency
by reducing the complexity of the search. They provide guidance in the search space
based on universal properties of the applied type morphisms. Once such a morphism
has been detected, only its mediating (argument) function has to be synthesised, which
usually is structurally less complex than the original one.
Furthermore, they extend the expressiveness of Igor II by extending its language

bias and quasi allowing to invent new auxiliary functions on root position of the right-
hand side of a rule. The recursion scheme provides sufficient information to abduce
appropriate IO examples for this new function. This was impossible before.
All in all, by skillfully exploiting all available knowledge, both the explicit as well

as the implicit, an improvement of the expressiveness and the language bias of an IP
system simultaneously leads to improvement in efficiency.
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Additionally, those recursion schemes allow for the first time to characterise some
program classes synthesisable by Igor II, namely those programs following a particular
type morphisms.
However, this categorical view on IP is not exhausted yet. More type morphisms

may be incorporated into the algorithm in the same way. Section 4.2 described that
type functors, which describe natural transformation in a functional language, are a
special case of catamorphisms and structural recursion, which themselves generalise to
paramorphisms and primitive recursion via tupling. Both have their duals for coinductive
types: anamorphisms and apomorphisms [132], which describe the construction of data
types instead of their destruction. Composing anamorphisms and catamorphism into
hylomorphisms, which require a conditional construct as e.g. if then else, allows to
describe primitive recursion without tupling but with an intermediate data structure [87].
Allegories, as the categories of relations, may give the theoretical foundations of learning
classifiers, similar to ILP, within this categorical framework [13]. Including exponentials
in the underlying base category may allow learning higher-order functions (cf. Vene
[131] describing the Ackermann function as higher-order catamorphism). Augusteijn [4]
describes sorting morphisms.
This should not be an end in itself, but push the boundary further towards the au-

tomated generation of functions from examples for practical applications. An empirical
study showed that IP systems cannot only support professional programmers, but they
also give more power to programming novices who are enabled to produce correct code
by providing input/output examples [44]. Other possible applications are the domain
of test-driven-development, the automatic generation of XSL templates from exemplary
user-interaction [46], structural generalisation for incident classification [122], and even
its utilisation in the domain of object-oriented programming seems further afar than it
actually is. Igor II is able to successfully synthesise functions in such a contest, applying
structural generalisation to object-oriented concepts such as message passing, method
calls, attributes, etc. [43].
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A. Haskell Reference
This appendix summarises the basic constructs of the purely functional programming
language Haskell. It is not intended to give a comprehensive introduction into this
language, but to serve as a reference to help the reader not familiar in particular with
Haskell, but also not completely unaware of functional programming in general, to
follow the code examples given in this text. For a more comprehensive introduction
the reader is referred to standard text books, as e.g. by Bird [12], O’Sullivan et al.
[106], or Thompson [130]. For the language and library specification see [109]. In
the Haskell Wiki1 a collection of various Haskell related books can be found at
http://www.haskell.org/haskellwiki/Books.

A.1. Types and Values
In Haskell, as a functional programming language, computation is done by evaluating
expressions yielding values. A value is an expression in a normal form that cannot
be evaluated further. An expression is a syntactic term built from functions and values.
Since Haskell is a strongly typed language, every expression has a type which describe
values, in some sense.
Names can be assigned to expression—or expressions bound to names—which are here

often called variables, but more precisely bindings or identifiers. Multiple equation
starting with the same identifier are called function definition, function binding, or
binding group. Following two simple function definitions:

five = 5
double x = 2∗x

It is important, that variables in Haskell are different from variables in other lan-
guages, because they really name an expression and do not allocate any memory. Thus,
a name is unique and cannot be assigned twice in the same scope. A binding can take
one or more arguments which are called variables. In fact, there is not much difference
between variables and bindings, only the way they are bound differs. Therefore, both
are written in lower case.

A.1.1. User-Defined Types and Synonyms
Types can be defined in Haskell with a data declaration. It consists of a type
constructor and multiple data constructors (or just constructors), both capitalised.

1http://www.haskell.org/haskellwiki/
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A type of different colours could be defined as follows:
data Colour = Red | Green | Blue | Yellow

The type constructor can take multiple types as arguments to create a parameterised
type, as e.g.

data Pair α = P α α

or as in a recursive definition:
data Tree α = Leaf α | Branch (Tree α) (Tree α)

Such types are called polymorphic types, because they are universally quantified over
all types.

Notation: Quantified type arguments are written in small Greek characters to facil-
itate the distinction to arguments of functions, i.e. bindings. As common in Haskell,
( : : ) (read “type of”) denotes the type of a term.

Thus, in some sense (Pair α) describes a family of types, because for every type α
there exists a pair of α:

P Red Green : : Pair Colour
P (P Red Green) (P Blue Yellow ) : : Pair (Pair Colour )

Another useful type-related construct is the the keyword type which defines type
synonyms, e.g. :

type ColouredPoint = Point Colour

A.1.2. Predefined and Built-In Types
Of course, Haskell comes equipped with some predefined and built-in types which will
be introduced now shortly.

The Unit Type is a special case of particular use, but simply emerges from Haskell’s
theoretical foundations. It only has a single value:

data () = ()

Booleans are represented by the values True and False of type Bool and defined
as:

data Bool = True | False
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Characters are denoted by Char, a value of type Char by writing the character in
single quotes, e.g. :

’a’ : : Char
’1’ : : Char
’!’ : : Char

Note that characters are really built in, but from a basic understanding Char can be
thought as an enumerated data type consisting only of nullary constructors:

data Char = ’a’ | ’b’ | ’c’ | . . . -- not
| ’A’ | ’B’ | ’C’ | . . . -- valid
| ’1’ | ’2’ | ’3’ | . . . -- Haskell
. . . -- syntax!

Integers are represented by their number. Integer is the name of the type, fixed
precision integers are of type Int. From the basic understanding of data types, they
would be consistently defined as:

data Int = -65532 | . . . | -1 | 0 | 1 | . . . | 65532-- invalid
data Integer = . . .-2 | -1 | 0 | 1 | 2 . . . -- syntax!

Lists are a comma separated sequence of values enclosed in squared brackets, e.g. :
[] : : [a]
[1] : : [ Integer ]
[’a’,’b’] : : [Char]

The empty list is denoted by [] and a typical example of a polymorphic type. Note
that the squared brackets are syntactic sugar, and lists can be treated as if they would
have been defined as

data [α] = [] | α : [α] -- not valid Haskell syntax

using the constructor [] and the right associative infix constructor (:). Thus, [1 ,2 ,3]
is equivalent to 1:2:3:[] .

Strings are just lists of characters and enclosed in double quotes, e.g. :
" Haskell is fun" : : String

As usual, String is a just a synonym for Char, as defined by
type String = [Char]

and "abc" is syntactic sugar for [’a’,’b’,’c’].
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Tuples are a comma separated sequence of values enclosed in parentheses, e.g. :
(1,’1’) : : (Integer ,Char)
("two" ,2,’2’) : : (String ,Integer ,Char)
((3,’3’),"foo" ,42, True) : : (( Integer ,Char),String , Integer

,Bool)

As with lists, they are built into the compiler, but the understanding is that they
would have been defined as:

data (α,β) = (α,β) -- not valid
data (α,β,γ) = (α,β,γ) -- Haskell
. . . -- syntax!

Sometimes, special prefix operators for tuples are used:
(,) a b = (a,b)
(,,) a b c = (a,b,c)
. . .

Disjoint sums are implemented in Haskell quite intuitively, because they can take
on a value either of the left type α or the right type β.

data Either α β = Left α | Right β

Either α β is often used to model exception, where the Left constructor is used to
hold an error value, and the Right constructor to hold a correct value.

Maybe is used to encapsulate optional values. The type Maybe α either contains a
value of type α or it is empty.

data Maybe α = Just α | Nothing

Function types are the type of function which map from one type to another. The
arrow → is the accordant type constructor. For example a function pair which constructs
a pair from its two arguments has type α → β → (α,β) defined as

pair : : α → β → (α,β)
pair a b = (a,b)

Note that → associates to the right, i.e. the type of pair is in fact α → (β → (α,
β)). Reading the type of pair like this, it is a function taking a value of type α and
returning a function of type β → (α,β).
Note that anywhere in the code, type annotations can be included using ( : : ) to

explicitly force the type of an expression. For example:
pair a b = ( (a : : Char) ,(b : : Int) )
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A.2.1. Lambda Abstractions
As indicated earlier, a function definition in Haskell is nothing but an expression
bound to a variable. However, it is possible to define an anonymous function, called
lambda abstraction. Usually, they are written (\a b → a ∗ b). However, the
fancier λ is used here. Keeping this in mind, we can bind an expression to mult.

mult a b = a ∗ b

Now mult can be used as a shorthand for:
λa b → a ∗ b

A.2.2. Infix, Prefix, and Sections
So far, all functions have been defined in prefix notation. Very naturally a function
can be defined in infix notation by putting the name (the identifier) between the first
and the second argument. The following definition is the standard definition in Has-
kell for function composition and also a typical example of a higher-order function,
i.e. a function taking functions as arguments:

( ◦ ) : : (β →γ) → (α → β) → (α →γ)
f ◦ g = λ x → f (g x)

In the type declaration it is required to enclose the function in parenthesis and explic-
itly make it prefix, which is necessary for the type declaration. This is called sectioning,
i.e. a section is a function with partially applied arguments. For example:

(x∗) ≈ λy → x∗y
(∗y) ≈ λx → x∗y
(∗) ≈ λx y → x∗y

Sectioning is especially useful with functions in infix notation, but practically any func-
tion can be turned into a section. For example, the previous function mult a function
double can be defined as:

double a = (mult 2) a

Vice versa, any function f can be made infix by enclosing it in backward quotes ‘f‘.
double a = 2 ‘mult ‘ a

A.2.3. Pointwise and Pointfree
Usually, functions are written curried, i.e. with multiple arguments:

mult : : Integer → Integer → Integer
mult a b = a ∗ b
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Uncurried, the same function would only take a single argument, namely a tuple:
mult : : (Integer , Integer ) → Integer
mult (a,b) = a ∗ b

Combining the use of uncurried functions, sections and function composition leads
to an interesting programming style called pointfree programming2. Consider for
example the following definition. It just names the expression which takes an integer
and quadruples it:

quadruplicate : : Integer → Integer
quadruplicate = (2∗) ◦ (2∗)

A.3. Pattern Matching, Case Expressions and Control
Structures

Pattern matching in Haskell is a quite simple and intuitive facility to determine
which equation of a function definition to evaluate, given a specific input. The arguments
after the identifier in a function binding are called patterns. Patterns may consist of the
constructors of any type, including tuples, strings, numbers, characters, etc., as well as
variable, which are bound after matching. For example:

f : : [α] → [α]
f [] = []
f(x:xs) = x:x:(f xs)

To facilitate the use of patterns, a couple of constructs exist.

As-patterns (@) allow to bind a pattern to a name and reuse it on the right-hand side
of the equation. So instead of

f (x:xs) = x:(x:xs)

on may write
f l@(x:xs) = x:l

Wildcards (_) match against any value, without binding it to a name. This often
makes code more readable, because it can emphasise that parts of the input do not
matter:

fst (a,_) = a
snd (_,b) = b

2Sometimes it is also referred to as pointless, because a program can get quite intricate if this becomes
rampant. Ironically, pointless programming usually leads to more points (◦).
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Case-Expressions (case of) can do a pattern matching in one equation instead of
splitting it into a binding group with multiple equations:

f l = case l of
[] → []

(x:xs) → x:x:xs

Case expressions are checked top-down, wildcards can be used for a default decision:
g b = case b of

True → "True"
_ → "False"

Conditionals (if _ then _ else) are just a shorthand for the case-expression
above:

g b = if b then "True" else "False"

Guards are constructs to avoid nested conditionals. As with patterns, they are evalu-
ated top-down, and the first that evaluates to True results in a successful match. Often
otherwise is used in the last guard for readability’s sake, which is simply defined as
otherwise = True. For example:

sign x | x > 0 = 1
| x ≡ 0 = 0
| otherwise = -1

Local variables can be defined in Haskell in two ways. With let-expressions it is
possible to make definitions local to an expression e.g. :

foo = let x = 2
y = 3

in x∗y

Another possibility to introduce local variables are where clauses, e.g. :
foo x = f (x + y)

where
y = 2
f x = if x ≡ 2 then "bar" else "baz"

It is important to notice, that where opens a new scope of variables, where let does
not.

A.4. Type Classes and Overloading
As previously mentioned is a type a collection of values. Furthermore, types which share
certain functionalities, i.e. functions, can be grouped to type classes. The following
class declaration can be read as “type α is instance of class Eq, if the two overloaded
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functions ( ≡ ) and ( 6≡ ) are defined on it”. Furthermore, two default implementations
are given.

class Eq α where
( ≡ ), ( 6≡ ) : : α →α → Bool

x 6≡ y = not (x ≡ y)
x ≡ y = not (x 6≡ y)

Since the default implementation are mutual recursive, at least one must be overwrit-
ten in an instance declaration:

instance Eq Bool where
x ≡ y = if x then y else not y

If type classes can depend on each other, they are called derived classes. The
simplest example of a derived class is the class of ordered types Ord which depends on
the equality class Eq. The following code reads as “a type α which is in class Eq is in
class Ord if the functions compare , <, ≤ , ≥ , >, max , min are defined on it”:

class (Eq α) ⇒ Ord α where
compare : : α → α → Ordering
(<), ( ≤ ), ( ≥ ), (>) : : α → α → Bool
max , min : : α → α → α

Instance declarations for some standard classes, as e.g. Eq ,Ord ,Show can automati-
cally be derived using deriving :

data Colour = Red | Green | Blue | Yellow
deriving (Ord ,Show)

Then, equality is just syntactic equality, the ordering is given by the constructor
definition, and instances of Show implement a function show : : (Show α) ⇒α →
String . This already exemplary shows the syntax of how polymorphic function types
can be constraint to certain type classes. Another common example is the elem function,
which checks whether an element is contained in a lost or not. It requires the type of
elements in the input list to be instance of Eq.

elem : : (Eq α) ⇒ α → [α] → Bool
a ‘elem ‘ [] = False
a ‘elem ‘ (x:xs) = a ≡ x ∨ a ‘elem ‘ xs

A.5. Modules
Related parts of Haskell programs are organised in modules. A single line comment
is starts with two dashes (--) and ends with a newline. Multiline comments are enclosed
in { - and -}. A module declaration starts with the keyword module and the qualified
name of the module. For example:

module MyModule where
. . .
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It is possible to hierarchically organise modules. Then, the qualified module name
must contain the complete path, where folders are separated by colons. For example, if
a Module “MyModule” lies in a folder “Package” below the top-level working directory
the following qualified name must be used.

module Package . MyModule where
. . .

A.5.1. Module exports
Per default, all declarations (of functions, types, classes) in a module are exported. To
limit the exports, an export list follows the module name as an export declaration.
The following example defines an ADT for points, exporting only the type Point, but
not its type constructor, and functions to construct, destruct and access points:

module Point (Point , topair , frompair , xcor , ycor) where

data Point α = P α α

topair : : P α → (α,α)
topair (P a b) = (a,b)

frompair : : (α,α) → P α
frompair (a,b) = P a b

xor , ycor : : P α → α
xcor (P a _) = a
ycor (P _ b) = b

Note that the data constructor P of the type Point is not exported, but hidden. To
explicitly export the type constructors, each must be included in the export list, e.g.
Point(P) or a wildcard must be used to export all type constructors of a given type,
e.g. Point (..).

A.5.2. Module imports
A import declaration starts with the keyword import followed by the module name.
If nothing is specified everything exported by that module is imported.

import Point

It is possible to get more control over the imports by explicitly listing or hiding identifiers.
-- import only the type Point
import Point (Point)

-- import all but the type Point
import Point hiding (Point)
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Per default a standard module called Prelude is imported. It contains all standard
functions defined in Haskell. Sometimes it is desired to avoid name clashes. Then
qualified imports can be used which additionally allows to rename modules.

module MyPair (Pair , pair , fst , snd) where

import qualified Prelude as P
import qualified Point

type Pair α = Point.Point α

pair : : α →α → Pair α
pair a b = Point. fromPair (a,b)

fst ,snd : : (Pair α) →α
fst = Point.xcor
snd = P.snd ◦ Point. topair

The code is a bit artificial, but it defines an ADT Pair based on Point by simply
using a type synonym for Pair. Its constructor pair is defined in terms of the function
frompair from the module Point, which was imported qualified. Furthermore, two
functions fst and snd are redefined, both in terms of the modules Point and Prelude .
To avoid names clashes with the Prelude it was imported qualified, too.

A.6. Recursion Schemes in Haskell
The various morphisms described in section 4.2 can all be implemented in Haskell as
recursion schemes.

A.6.1. Reduce-Map-Filter of Lists
One of the most basic recursion scheme is that for structural recursion over lists. With
catamorphism over lists the so called map-reduce-filter scheme can be implemented.
In Haskell reduce is usually known as foldr which replaces each cons-constructor
(:) of a list with a call to its first argument, and each empty list constructor [] with
its second argument:

foldr : : (α →β →β) →β → [α] →β
foldr _ z [] = z
foldr f z (x:xs) = x ‘f‘ (foldr f z xs)

Closely related to foldr is map, another name for the type functor of lists. It applies
its first argument to each element of its input list. In terms of foldr it would be defined
as:

map f = foldr (λ e l → (f e) : l) []

An alternative, but more readable definition is the following:
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map : : (α →β) → [α] → [β]
map _ [] = []
map f (x:xs) = f x : map f xs

Finally, if depending on a predicate certain elements are discarded from a list, the
higher-order function filter is used. Similar to map, it is a special catamorphism and
can be defined in terms of foldr:

filter p = foldr (λe l → if p then e:l else l)

The common definition is the following without catamorphism:
filter : : (α → Bool) → [α] → [α]
filter _p [] = []
filter p (x:xs)
| p x = x : filter p xs
| otherwise = filter p xs

A.6.2. The Functor class
The Functor class is used for types that can be mapped over, i.e. provides an interface
for the implementation of a type functor.

class Functor φ where
fmap : : (α →β) →φ α →φ β

Per convention, instances of Functor are required to satisfy the following laws:
fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

For each data type which has a type functor, it must be explicitly defined. The
standard definition for the type functor for lists is simply the function map from above.

instance Functor [α] where
fmap = map

Consider for example a data type for binary trees. Its type functor would be defined
as follows.

data Tree α = N | B α (Tree α) (Tree α)

instance Functor (Tree α) where
fmap f N = N
fmap f (B a l r) = B (f a) (fmap f l) (fmap f r)

A.6.3. Pointless Schemes
The pointless-haskell library pointless-haskell3 , available from
hackageDB4 is a pointfree combinator library for programming with recursion patterns

3http://hackage.haskell.org/package/pointless-haskell
4http://hackage.haskell.org
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defined as polytypic functions. A polytypic function is a function that is defined by
induction on the structure of user-defined data types.
Pointless-haskell uses two GHC extensions to define type operators and type families.

Type operators allow to define operators on data types similar to operators on expres-
sions. Indexed type families, or just type families, are a Haskell extension for ad-hoc
overloading of data types. Type families are parametric types that can be assigned spe-
cialised representations based on the type parameters they are instantiated with. They
are the data type analogue of type classes: families are used to define overloaded data
in the same way that classes are used to define overloaded functions. These options are
set via GHC pragmas in the header of a module declaration:
{-# OPTIONS_GHC -XTypeOperators -XTypeFamilies #-}

One of the main building blocks of this library is the type family PF of pattern functors
of data types. Instances of this type family consist of identity functors (Id), constant
functors (Const), sums of functors (⊕), products of functors (⊗), and composed functors
(:@:).
The second building block is the class Mu, providing the value-level translation

between data types and their representations as sum of products. It provides two class
functions. One for packing a sum of products into one equivalent data type (inn), and
one to unpack a data type into the equivalent sum of products (out). From a categorical
point of view, inn corresponds to the initial algebra of a data type, out is its inverse.
Listing A.1 shows some examples of the standard inductive types for natural numbers,
lists, and various trees follow, defining their instances of the type family PF and the type
class Mu.
Listing A.1: Type definitions and instance declarations for common inductive data types

as used with the pointless - haskell library.
1 import Generics . Pointless . Combinators
2 import Generics . Pointless . Functors
3 import Generics . Pointless . RecursionPatterns
4

5 --
6 -- data type definitions
7 --
8

9 -- Peano ’s Natural Numbers
10 data Nat = Z | S Nat deriving (Show)
11

12 -- Cons Lists
13 data List α = NilL | Cons α (List α)
14 deriving (Show)
15

16 -- Binary Node Trees
17 data NTree α = NilT | Node α (NTree α)(NTree α)
18 deriving (Show)
19
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20 -- Binary Leaf Trees
21 data LTree α = Leaf α | Branch (LTree α) (LTree α)
22 deriving (Show)
23

24 -- Rose Trees , arbitrary branching trees
25 data Rose α = Forest α [Rose α] deriving (Show)
26

27 --
28 -- defining type family instances of PF ,
29 -- and type class instances of Mu
30 --
31

32 type instance PF Nat = Const One ⊕ Id
33

34 instance Mu Nat where
35 inn (Left _) = Z
36 inn (Right p) = S p
37 out Z = Left ⊥
38 out (S p) = Right p
39

40 type instance PF (List α) =
41 Const One ⊕ (Const α ⊗ Id)
42

43 instance Mu (List α) where
44 inn (Left _) = NilL
45 inn (Right (a,l)) = Cons a l
46 out NilL = Left ⊥
47 out (Cons a l) = Right (a,l)
48

49 type instance PF (NTree α) =
50 Const One ⊕ (Const α ⊗(Id ⊗ Id))
51

52 instance Mu (NTree α) where
53 inn (Left _) = NilT
54 inn (Right (a,(l,r))) = Node a l r
55 out NilT = Left ⊥
56 out (Node a l r) = Right (a,(l,r))
57

58 type instance PF (LTree α) = Const α ⊕ (Id ⊗ Id)
59

60 instance Mu (LTree α) where
61 inn (Left a) = Leaf a
62 inn (Right (l,r)) = Branch l r
63 out (Leaf a) = Left a
64 out ( Branch l r) = Right (l,r)
65
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66 type instance PF (Rose α) = Const α ⊗ ( [] :@: Id )
67

68 instance Mu (Rose α) where
69 inn (a,rs) = Forest a rs
70 out ( Forest a rs) = (a,rs)

The details of the pointless-haskell library are not of special interest here, but giving
some examples of using catamorphisms and paramorphism might be suitable. The types
of the polymorphic functions cata and para, as shown in Listing A.2, are quite intricate,
so it might be wished-for to spend some words on them.
The type class Mu and the type family PF have already been introduced. The fur-

ther defines the initial algebra and its inverse of a type, the latter describes a type
as a functor pattern. The class Functor is just a polytypic extension of the class
Prelude . Functor . Both, cata and para, have a restricted type signature, s.t. α is
required to be an instance of Mu and PF, which itself must be a functor.
The first argument is a dummy value to force a type on the highly polymorphic

function. Usually an explicitly typed undefined value ⊥ is used. The second argument
is the mediating function, i.e. a join of multiple functions, for each type constructor
of α one. This is indicated by the types Generics . Pointless . Functors .F α β

and Generics . Pointless . Functors .F α (β,α), respectively, which are just an
internal shorthand to express the structurally equivalent sum of products for some data
type. The codomain of the mediating function is also the codomain of the morphism.
Finally, the third argument is the input type, the last is, of course, the output type.

Listing A.2: Types of cata and para

1 cata : : ( Generics . Pointless . Functors .Mu α,
2 Generics . Pointless . Functors . Functor
3 ( Generics . Pointless . Functors .PF α)) ⇒
4 α → ( Generics . Pointless . Functors .F α β → β) → α → β
5

6 para : : ( Generics . Pointless . Functors .Mu α,
7 Generics . Pointless . Functors . Functor
8 ( Generics . Pointless . Functors .PF α)) ⇒
9 α → ( Generics . Pointless . Functors .F α (β,α)

10 → β) →α →β

The catamorphisms for addition and multiplication of natural numbers (Example 4.2.1),
length of a list (Example 4.2.2), and for mirroring binary trees (Example 4.2.3) can be
defined as shown in Listing A.3.

Listing A.3: Examples for catamorphisms pointless - haskell library
1 add , mult : : Nat → Nat → Nat
2 add a = cata (⊥ : : Nat) (const a ⊕ S)
3 mult a = cata (⊥ : : Nat) (const Z ⊕ add a)
4

5 length : : [α] → Nat
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6 length = cata (⊥ : : [α]) (const Z ⊕ S ◦ snd)
7

8 mirror : : (NTree α) → (NTree α)
9 mirror =

10 cata (⊥ : : NTree α)
11 (const NilT ⊕ (λ(a ,(l,r)) → Node a r l))

The paramorphisms from Examples 4.2.5, Examples 4.2.6, and Examples 4.2.7, re-
spectively, would be defined using the pointless-haskell library as shown in Listing A.4.

Listing A.4: Examples for paramorphisms using the pointless - haskell library
1 fact : : Int → Int
2 fact =
3 para (⊥ : : Int)(( const 1) ⊕ (λ(a,b) → a ∗ (b+1)))
4

5 tail : : [a] → [a]
6 tail = para (⊥ : : [a]) (( const []) ⊕ snd ◦ snd)
7

8 tails = para (⊥ : : [Char ]) (f ⊕ g)
9 where

10 f _ = [[]]
11 g (x,(fxs ,xs)) = fxs:ys
12

13 subtrees = para (⊥ : : (NTree Int)) (f ⊕ g)
14 where
15 f _ = [NilT]
16 g (v ,((fl ,l) ,(fr ,r))) = (Node v l r):(fl++fr)
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For the curious reader, the equivalent of the Haskell program
last [x] = x
last (x:xs) = last xs

defined in the SKI calculus:
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(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))))) (S(S(KS) (S(S(KS) (S(KK)
(KS)))(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS)))))(S(S(KS) (S(S(KS) (S(KK) (KS)))
(S(S(KS) (S(KK) (KK))) (S(KK) (KK)))))(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))))) (S(S(KS) (S(S(KS) (S(KK) (KS)))
(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))))))) (S(S(KS) (S(S(KS) (S(KK)
(KS))) (S(S(KS) (S(KK)(KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KI))))))))))) (S(S(KS) (S(S(KS)
(S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK)
(KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK)(KK))))))) (S(S(KS) (S(S(KS) (S(KK)
(KS))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KI)))))))) (S(S(KS)(S(S(KS) (S(KK)
(KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS)))))
(S(S(KS) (S(KK) (KK))) (S(KK) (KI)))))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(KK)
(KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK)
(KK))) (S(KK) (KS))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK)
(KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK)(KK))))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KS))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))(S(KK)
(KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK)
(KK))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK)
(KS))))))))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK)
(KS)))))(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KS)))))
(S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS)))))))
(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK)(KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK)))))))))(S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS)
(S(KK) (KS)))(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK)(KK))))))) (S(S(KS) (S(S(KS)
(S(KK) (KS))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))))))))) (S(S(KS)(S(S(KS)
(S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK)(KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK)
(KS))) (S(S(KS)(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS)(S(S(KS) (S(KK) (KS)))
(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))))) (S(S(KS) (S(S(KS) (S(KK) (KS)))
(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS)))))(S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(KK) (KK))) (S(KK) (KK)))))(S(S(KS) (S(KK) (KK))) (S(KK) (KK))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK)
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(KK))) (S(KK) (KK))))) (S(S(KS) (S(KK)(KK))) (S(KK) (KK))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK)
(KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK)(KI)))))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(KK)
(KK))) (S(KK) (KI)))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KK))))))) (S(S(KS)(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KI)))))))) (S(KK) (KI))))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(KK) (KK)))(S(KK) (KI)))))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK)(KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))))) (S(KK)
(KI)))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))(KI)))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KS))))) (S(S(KS) (S(KK)
(KK))) (S(KK) (KI)))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KS))))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK)))(S(KK) (KK))))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KK))))))) (S(S(KS)(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(KK) (KK))) (S(KK) (KK))))) (S(S(KS) (S(KK) (KK)))
(S(KK) (KI)))))))) (S(KK) (KI)))))) I

Similarly, the equivalent of an exemplary input list [1 ,2 ,3 ,4]:
S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(KK) (KI)))) (S(S(KS) (S(KK) (KK))) (S(KK)I)))))
(S(S(KS) (S(KK) (KK))) (KI)) 1 (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(KK) (KI))))
(S(S(KS) (S(KK) (KK))) (S(KK)I))))) (S(S(KS) (S(KK) (KK))) (KI)) 2 (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(KK) (KI)))) (S(S(KS) (S(KK) (KK))) (S(KK)I))))) (S(S(KS) (S(KK) (KK))) (KI)) 3 (S(S(KS)
(S(S(KS) (S(KK) (KS))) (S(S(KS) (S(S(KS) (S(KK) (KS))) (S(KK) (KI)))) (S(S(KS) (S(KK) (KK))) (S(KK)I)))))
(S(S(KS) (S(KK) (KK))) (KI)) 4 (KK))))
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Listing C.1: MagicHaskeller specification
{--
After installation of MagicHaskeller run with:
ghci -fth -package MagicHaskeller Master_HaskellerP.hs
--}
{-# OPTIONS -XDeriveDataTypeable -XTemplateHaskell #-}
module Master_HaskellerP where

import MagicHaskeller hiding (listP)
import Test. QuickCheck
import Monad(liftM , liftM2 )
import Text. Printf
import Control . Exception
import System . CPUTime
import Generics . Pointless . Combinators
import Generics . Pointless . Functors
import Generics . Pointless . RecursionPatterns

-- ===================================================
-- Data type declarations
-- ===================================================

data Nat = Z | S Nat
deriving (Eq ,Ord ,Typeable ,Show)

data List a = NilL | Cons a (List a)
deriving (Eq ,Ord ,Typeable ,Show)

data NTree a = NilT | Node a (NTree a)(NTree a)
deriving (Eq ,Ord ,Typeable ,Show)

data LTree a = Leaf a | Branch (LTree a) (LTree a)
deriving (Eq ,Ord ,Typeable ,Show)

data Rose a = Forest a [Rose a]
deriving (Eq ,Ord ,Typeable ,Show)

data Object = O1 | O2 | O3
deriving (Eq ,Ord ,Typeable ,Show)

data Cargo = NOCARGO | IN Object Cargo
deriving (Eq ,Ord ,Typeable ,Show)

data State = START | LOD Object State
| UNL Object State | FLY State

deriving (Eq ,Ord ,Typeable ,Show)
data Disc = D0 | D Disc

deriving (Eq ,Ord ,Typeable ,Show)
data Action = NOOP | MV Disc Peg Peg Action

deriving (Eq ,Ord ,Typeable ,Show)
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data Peg = PegA | PegB | PegC
deriving (Eq ,Ord ,Typeable ,Show)

data Color = Purple | Yellow
deriving (Eq ,Ord ,Typeable ,Show)

data Size = Large | Small
deriving (Eq ,Ord ,Typeable ,Show)

data Act = Dip | Stretch
deriving (Eq ,Ord ,Typeable ,Show)

data Age = Adult | Child
deriving (Eq ,Ord ,Typeable ,Show)

data Inflate = FF | TT
deriving (Eq ,Ord ,Typeable ,Show)

data Weather = Sunny | Rain | Overcast | Hot | Cool
| Mild | Warm | Cold | High | Normal
| Weak | Strong | Change | Same

deriving (Eq ,Ord ,Typeable ,Show)
data LAge = Young | PrePresbyopic | Presbyopic

deriving (Eq ,Ord ,Typeable ,Show)
data LPrescription = Myope | Hypermetrope

deriving (Eq ,Ord ,Typeable ,Show)
data LAstigmatic = No | Yes

deriving (Eq ,Ord ,Typeable ,Show)
data LTears = Reduced | Norml

deriving (Eq ,Ord ,Typeable ,Show)
data LCLType = None | Hard | Soft

deriving (Eq ,Ord ,Typeable ,Show)

-- ===================================================
-- MagicHaskeller component library, mostly taken from
-- MakicHaskeller.LibTH
-- ===================================================

----------------------------------------------
-- natural numbers
----------------------------------------------

-- data Nat = Z | S Nat
-- deriving (Eq, Ord, Typeable, Show)

natC = $(p [|( Z :: Nat
, S :: Nat -> Nat
, nat_cata :: Nat -> (a -> a) -> a -> a

)|])

natP = $(p [|( Z :: Nat
, S :: Nat -> Nat
, nat_para :: Nat -> (Nat -> a -> a) -> a -> a
)|])

nat_cata :: Nat -> (a -> a) -> a -> a
nat_cata Z _ v = v
nat_cata (S x) f v = f ( nat_cata x f v)
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nat_para :: Nat -> (Nat -> a -> a) -> a -> a
nat_para Z _ v = v
nat_para (S x) f v = f (S x) ( nat_para x f v)

-- background knowledge
nadd = $(p [|( natadd :: Nat -> Nat -> Nat) |])
nmlt = $(p [|( natmlt :: Nat -> Nat -> Nat) |])

natadd :: Nat -> Nat -> Nat
natadd Z x = x
natadd x Z = x
natadd (S n) x = natadd n (S x)

natmlt :: Nat -> Nat -> Nat
natmlt Z _ = Z
natmlt _ Z = Z
natmlt (S n) x = natadd x ( natmlt n x)

----------------------------------------------
-- lists
----------------------------------------------

listC = $(p [|( [] :: [a]
, (:) :: a -> [a] -> [a]
, foldr ::

(b -> a -> a) -> a -> (->) [b] a)
|])

listP = $(p [|( [] :: [a]
, (:) :: a -> [a] -> [a]
, list_para ::

(->) [b] (a -> (b -> [b] -> a -> a) -> a)
)|])

list_para :: [b] -> a -> (b -> [b] -> a -> a) -> a
list_para [] x f = x
list_para (y:ys) x f = f y ys ( list_para ys x f)

-- background knowledge
lapp = $(p [|( (++) :: [a] -> [a] -> [a]) |])
lsnc = $(p [|( snc :: [a] -> a -> [a]) |])
llst = $(p [|( last :: [a] -> a)|])

snc :: [a] -> a -> [a]
snc = (. return ) . (++)

----------------------------------------------
-- Maybe
----------------------------------------------

mb = $(p [| ( Nothing :: Maybe a
, Just :: a -> Maybe a
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, maybe :: a -> (b->a) -> (->) (Maybe b) a
)|])

----------------------------------------------
-- Booleans
----------------------------------------------

bool = $(p [|( True :: Bool
, False :: Bool
, iF :: (->) Bool (a -> a -> a)
)|])

iF :: Bool -> a -> a -> a
iF True t f = t
iF False t f = f

----------------------------------------------
-- Node Trees
----------------------------------------------

-- data NTree a = NilT | Node a (NTree a)(NTree a)
ntree_para :: NTree a -> r

-> (a -> NTree a -> NTree a -> r -> r -> r) -> r
ntree_para NilT d _ = d
ntree_para (Node v l r) d f =

f v l r ( ntree_para l d f) ( ntree_para r d f)

ntree_cata :: NTree a -> r -> (a -> r -> r -> r) -> r
ntree_cata NilT d _ = d
ntree_cata (Node v l r) d f =

f v ( ntree_cata l d f) ( ntree_cata r d f)

ntreeC = $(p [|( NilT :: NTree a
, Node ::

a -> NTree a -> NTree a -> NTree a
, ntree_cata :: NTree a -> r

-> (a -> r -> r -> r) -> r
)|])

ntreeP = $(p [|( NilT :: NTree a
, Node ::

a -> NTree a -> NTree a -> NTree a
, ntree_para ::

NTree a -> r ->
(a -> NTree a -> NTree a -> r ->

r -> r) -> r
)|])

----------------------------------------------
-- pairs
----------------------------------------------

pair = $(p [| ( (,) :: a -> b -> ((,) a b)
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, fst :: ((,) a b) -> a
, snd :: ((,) a b) -> b
)|])

----------------------------------------------
-- Rocket types
----------------------------------------------

rockC = $(p [|( O1 :: Object , O2 :: Object , O3 :: Object
, NOCARGO :: Cargo
, IN :: Object -> Cargo -> Cargo
, START :: State
, LOD :: Object -> State -> State
, UNL :: Object -> State -> State
, FLY :: State -> State
, cargo_cata ::

Cargo -> a -> ( Object -> a -> a) -> a
, state_cata ::

State -> a -> ( Object -> a -> a)
-> ( Object -> a -> a) -> (a -> a) -> a

)|] )

rockP = $(p [|( O1 :: Object , O2 :: Object , O3 :: Object
, NOCARGO :: Cargo
, IN :: Object -> Cargo -> Cargo
, START :: State
, LOD :: Object -> State -> State
, UNL :: Object -> State -> State
, FLY :: State -> State
, cargo_para ::

Cargo -> a ->
( Object -> Cargo -> a -> a) -> a

, state_para ::
State -> a ->
( Object -> State -> a -> a) ->
( Object -> State -> a -> a) ->
(State -> a -> a) -> a

)|] )

cargo_cata :: Cargo -> a -> ( Object -> a -> a) -> a
cargo_cata NOCARGO x f = x
cargo_cata (IN o c) x f = f o ( cargo_cata c x f)

cargo_para :: Cargo -> a -> ( Object -> Cargo -> a -> a) -> a
cargo_para NOCARGO x f = x
cargo_para (IN o c) x f = f o c ( cargo_para c x f)

state_para :: State -> a -> ( Object -> State -> a -> a)
-> ( Object -> State -> a -> a)
-> (State -> a -> a) -> a

state_para START x l u f = x
state_para (LOD o s) x l u f =
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l o s ( state_para s x l u f)
state_para (UNL o s) x l u f =

u o s ( state_para s x l u f)
state_para (FLY s) x l u f =

f s ( state_para s x l u f)

state_cata :: State -> a -> ( Object -> a -> a)
-> ( Object -> a -> a) -> (a -> a) -> a

state_cata START x l u f = x
state_cata (LOD o s) x l u f =

l o ( state_cata s x l u f)
state_cata (UNL o s) x l u f =

u o ( state_cata s x l u f)
state_cata (FLY s) x l u f =

f ( state_cata s x l u f)

----------------------------------------------
-- Hanoi types
----------------------------------------------

hanC = $(p [|( PegA :: Peg , PegB :: Peg , PegC :: Peg
, D0 :: Disc

, D :: Disc -> Disc
, NOOP :: Action
, MV :: Disc -> Peg -> Peg -> Action -> Action
, disc_cata :: Disc -> (a -> a) -> a -> a
, action_cata ::

Action ->
a -> (Disc -> Peg -> Peg -> a -> a) -> a

)|])

hanP = $(p [|( PegA :: Peg , PegB :: Peg , PegC :: Peg
, D0 :: Disc , D :: Disc -> Disc
, NOOP :: Action

, MV :: Disc -> Peg -> Peg -> Action -> Action
, disc_para ::

Disc -> (Disc -> a -> a) -> a -> a
, action_para ::

Action -> a ->
(Disc -> Peg -> Peg -> Action ->

a -> a) -> a
)|])

disc_cata :: Disc -> (a -> a) -> a -> a
disc_cata D0 _ v = v
disc_cata (D x) f v = f ( disc_cata x f v)

disc_para :: Disc -> (Disc -> a -> a) -> a -> a
disc_para D0 _ v = v
disc_para (D x) f v = f (D x) ( disc_para x f v)
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action_cata ::
Action -> a -> (Disc -> Peg -> Peg -> a -> a) -> a

action_cata NOOP x f = x
action_cata (MV d p1 p2 a) x f =

f d p1 p2 ( action_cata a x f)

action_para ::
Action -> a -> (Disc -> Peg -> Peg -> Action -> a -> a) -> a

action_para NOOP x f = x
action_para (MV d p1 p2 a) x f =

f d p1 p2 a ( action_para a x f)

----------------------------------------------
-- Balloons types
----------------------------------------------

bals = $(p [|( Purple :: Color , Yellow :: Color
, Large :: Size , Small :: Size
, Dip :: Act , Stretch :: Act
, Adult :: Age , Child :: Age
, FF :: Inflate , FF :: Inflate
)|] )

----------------------------------------------
-- Sports types
----------------------------------------------

sports = $(p [|( Sunny :: Weather , Rain :: Weather
, Overcast :: Weather , Hot :: Weather
, Cold :: Weather , Mild :: Weather
, Warm :: Weather , Cold :: Weather
, High :: Weather , Normal :: Weather
, Weak :: Weather , Strong :: Weather
, Change :: Weather , Same :: Weather
)|])

----------------------------------------------
-- Lenses types
----------------------------------------------

lens = $(p [|( Young :: LAge , PrePresbyopic :: LAge
, Presbyopic :: LAge
, Myope :: LPrescription
, Hypermetrope :: LPrescription
, No :: LAstigmatic , Yes :: LAstigmatic
, Reduced :: LTears , Norml :: LTears
, None :: LCLType , Hard :: LCLType
, Soft :: LCLType
)|] )
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-- ===================================================
-- Helper functions to run and time MagicHaskeller
-- ===================================================

-- Haskeller does not allow variables, so we bind them
a = ’a’; b = ’b’; c = ’c’; d = ’d’; e = ’e’; f = ’f’;
g = ’g’; h = ’h’; i = ’i’; j = ’j’; k = ’k’; l = ’l’;
m = ’m’; n = ’n’; o = ’o’; s = ’s’; t = ’t’; u = ’u’;
v = ’v’; w = ’w’; x = ’x’; y = ’y’; z = ’z’; xs = "xs";
ys = "ys"; zs = "zs"; a11 = "a11"; a12 = "a12";
a13 = "a13"; a21 = "a21"; a22 = "a22"; a23 = "a23";
a31 = "a31"; a32 = "a32"; a33 = "a33"

-- timing helper
time :: IO t -> IO t
time a = do

start <- getCPUTime
v <- a
end <- getCPUTime
let diff = ( fromIntegral (end - start)) / (10^12)
printf "Time : %0.3f sec\n" (diff :: Double )
return v

runTest :: ( Typeable a) => (a -> Bool) -> IO ()
runTest = time . printOne

-- print name and background knowledge
putNam s b =

putStr $ "Name : " ++ s ++ "\nBack : " ++ b
-- test would run out of memory, just print dummy
-- result and time
putOoM = putStr " Result : OoM\nTime : NaN\n"
-- test would run out of memory in batch mode, do
-- it again manually
putMan =

putStr " Result : OoM , run alone\nTime : NaN\n"

-- set Haskellers program generator and momoization
initialize lb = setPG . mkMemo075 $ lb

-- shortcuts for libraries
-- Use with suffix ’P’ for para-, with suffix ’C’
-- for catamorphisms
llib = listP -- listC
nlib = natP -- natC
tlib = ntreeP -- ntreeC
rock = rockP --rockC
han = hanP -- hanC
blib = bool
mlib = mb
plib = pair
ulib = (bals ++ sports ++ lens)
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alib = (rock ++ han ++
$(p [|( ’D’ :: Char , ’N’ :: Char

,’V’ :: Char)|]) )
lib = (llib ++ nlib ++ tlib)

-- ===================================================
-- Calling the tests
-- ===================================================

main = do
initialize lib

functionsonnaturalnumbers
predicatesfunctionsonbooleans
functionsonlists
functionsonlistsoflists
functionsonnaturalsandlists
functionsontrees
functionsonmixedinputs
functionsonotherdatatypes
functionsforUCIclassificationproblems

functionsonnaturalnumbers = do
putStrLn " ------ functions on natural numbers ------"
initialize nlib >> putNam "ack" "<none >"

>> putMan -- >> runTest testACK
initialize nlib >> putNam "add" "<none >"

>> runTest testADD
initialize nlib >> putNam "eveN" "<none >"

>> runTest testEVEN
initialize nlib >> putNam "eq" "<none >"

>> putOoM -- >> runTest testEQ
initialize (nlib ++ nadd)

>> putNam " gaussSum " "add"
>> runTest testGAUSSSUM

initialize (nlib ++ nmlt) >> putNam "fact" "mult"
>> runTest testFACT

initialize (nlib ++ nadd) >> putNam "fib" "add"
>> putOoM -- >> runTest testFIB

initialize nlib >> putNam "geq" "<none >"
>> putOoM -- >> runTest testGEQ

initialize nlib >> putNam "mod" "<none >"
>> putOoM --" >> runTest testMOD

initialize nlib
>> putNam "mult" "<none >"
>> runTest testMULT

initialize (nlib ++ nadd) >> putNam "mult" "add"
>> runTest testMULT

initialize nlib >> putNam "odD" "<none >"
>> runTest testODD

initialize nlib >> putNam "sub" "<none >"
>> putOoM -- >> runTest testSUB
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predicatesfunctionsonbooleans = do
putStrLn " ---predicates , functions on booleans ---"
initialize (blib ++ llib)

>> putNam "andL" "<none >"
>> runTest testANDL

initialize (blib ++ llib) >> putNam "anD" "<none >"
>> runTest testAND

initialize (blib ++ llib)
>> putNam " evenParity " "<none >"
>> runTest testEVENPARITY

initialize (blib ++ llib)
>> putNam " negateAll " "<none >"
>> runTest testNEGATEALL

initialize (blib ++ llib)
>> putNam "nandL" "<none >"
>> runTest testNANDL

initialize (blib ++ llib)
>> putNam "norL" "<none >"
>> runTest testNORL

initialize (blib ++ llib)
>> putNam "or" "<none >"
>> runTest testOR

initialize (blib ++ llib)
>> putNam "orL" "<none >"
>> runTest testORL

functionsonlists = do
putStrLn " ---------- functions on lists ----------"
initialize lib >> putNam " appenD " "<none >"

>> runTest testAPPEND
initialize llib >> putNam " concaT " "<none >"

>> runTest testCONCAT
initialize llib

>> putNam " evenLength " "<none >"
>> runTest testEVENLENGTH

initialize llib >> putNam " evenpos " "<none >"
>> runTest testEVENPOS

initialize llib >> putNam " halves " "<none >"
>> putOoM -- >> runTest testHALVES

initialize llib >> putNam "iniT" "<none >"
>> runTest testINIT

initialize llib >> putNam "initS" "<none >"
>> putOoM -- >> runTest testINITS

initialize llib
>> putNam " interspersE " "<none >"
>> runTest testINTERSPERSE

initialize llib >> putNam "lasT" "<none >"
>> putOoM -- >> runTest testLAST

initialize llib >> putNam "lastM" "<none >"
>> runTest testLASTM
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initialize llib >> putNam "lasts" "<none >"
>> runTest testLASTS

initialize llib >> putNam " mapCons " "<none >"
>> runTest testMAPCONS

initialize llib >> putNam " multfst " "<none >"
>> runTest testMULTFST

initialize llib >> putNam " multlst " "<none >"
>> runTest testMULTLST

initialize llib >> putNam " oddpos " "<none >"
>> runTest testODDPOS

initialize llib >> putNam "pack" "<none >"
>> runTest testPACK

initialize (llib ++ lapp)
>> putNam " subseqs " " append "
>> putOoM -- >> runTest testSUBSEQS

initialize llib >> putNam " reversE " "<none >"
>> runTest testREVERSE

initialize llib >> putNam " shiftl " "<none >"
>> runTest testSHIFTL

initialize llib >> putNam " shiftr " "<none >"
>> putMan -- >> runTest testSHIFTR

initialize llib >> putNam "snoc" "<none >"
>> runTest testSNOC

initialize llib >> putNam "swap" "<none >"
>> putOoM -- >> runTest testSWAP

initialize llib >> putNam " switch " "<none >"
>> putOoM -- >> runTest testSWITCH

initialize (llib ++ plib)
>> putNam "split" "<none >"
>> putOoM -- >> runTest testSPLIT

initialize llib >> putNam "taiL" "<none >"
>> runTest testTAIL

initialize llib >> putNam "tailS" "<none >"
>> runTest testTAILS

initialize (llib ++ plib)
>> putNam "unzip" "<none >"
>> putOoM -- >> runTest testUNZIP

initialize llib
>> putNam "weave" "<none >"
>> putOoM -- >> runTest testWEAVE

initialize (llib ++ plib)
>> putNam "ziP" "<none >"
>> putOoM -- >> runTest testZIP

functionsonlistsoflists = do
putStrLn " ------ functions on lists of lists ------"
initialize llib >> putNam " mapTail " "<none >"

>> runTest testMAPTAIL
initialize llib >> putNam " transpose " "<none >"

>> putOoM -- >> runTest testTRANSPOSE
initialize llib >> putNam " weaveL " "<none >"
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>> putOoM -- >> runTest testWEAVEL

functionsonnaturalsandlists = do
putStrLn " ---functions on naturals and lists ---"
initialize (nlib ++ llib)

>> putNam "addN" "<none >"
>> runTest testADDN

initialize (nlib ++ llib)
>> putNam " alleven " "<none >"
>> runTest testALLEVEN

initialize (nlib ++ llib)
>> putNam " allodd " "<none >"
>> runTest testALLODD

initialize (nlib ++ llib)
>> putNam "evens" "<none >"
>> putOoM -- >> runTest testEVENS

initialize (nlib ++ llib)
>> putNam "incr" "<none >"
>> runTest testINCR

initialize (nlib ++ llib)
>> putNam " lengtH " "<none >"
>> runTest testLENGTH

initialize (nlib ++ llib)
>> putNam " lengths " "<none >"
>> runTest testLENGTHS

initialize (nlib ++ llib)
>> putNam " nthElem " "<none >"
>> putOoM -- >> runTest testNTHELEM

initialize (nlib ++ llib)
>> putNam " oddslist " "<none >"
>> runTest testODDSLIST

initialize (nlib ++ llib)
>> putNam "odds" "<none >"
>> putOoM -- >> runTest testODDS

initialize (nlib ++ llib)
>> putNam "droP" "<none >"
>> runTest testDROP

initialize (plib ++ nlib ++ llib)
>> putNam " splitAt " "<none >"
>> putOoM -- >> runTest testSPLITAT

initialize (nlib ++ llib)
>> putNam "suM" "<none >"
>> runTest testSUM

initialize (nlib ++ llib)
>> putNam " replicate " "<none >"
>> runTest testREPLICATE

initialize (nlib ++ llib)
>> putNam "takE" "<none >"
>> runTest testTAKE

initialize (nlib ++ llib)
>> putNam "zeros" "<none >"
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>> runTest testZEROS

functionsontrees = do
putStrLn " ---------- functions on trees ----------"
initialize (tlib ++ llib ++ lapp)

>> putNam " preorder " " append "
>> runTest testPREORDER

initialize (tlib ++ llib ++ lapp)
>> putNam " inorder " " append "
>> runTest testINORDER

initialize (tlib ++ llib ++ lapp ++ lsnc)
>> putNam " postorder " "append , snoc"
>> runTest testPOSTORDER

initialize tlib
>> putNam " mirror " "<none >"
>> runTest testMIRROR

functionsonmixedinputs = do
putStrLn " ------ functions on mixed inputs ------"
initialize (mlib ++ plib ++ llib ++ nlib)

>> putNam " pepper " "<none >"
>> putOoM -- >> runTest testPEPPER

initialize (mlib ++ plib ++ llib ++ nlib)
>> putNam " pepperF " "<none >"
>> putOoM -- >> runTest testPEPPERF

functionsonotherdatatypes = do
putStrLn " ---functions on other data types ---"
initialize alib >> putNam " rocket " "<none >"

>> runTest testROCKET
initialize alib >> putNam "hanoi" "<none >"

>> putOoM -- >> runTest testHANOI
initialize (nlib ++ alib ++ llib)

>> putNam " sentence " "<none >"
>> putOoM -- >> runTest testSENTENCE

functionsforUCIclassificationproblems = do
putStrLn

" ---functions forUCI classification problems ---"
initialize (blib ++ plib ++ ulib)

>> putNam " balloons " "<none >"
>> putOoM -- >> runTest testBALLOONS

initialize (blib ++ plib ++ ulib)
>> putNam " playTennis " "<none >"
>> putOoM -- >> runTest testPLAYTENNIS

initialize (blib ++ plib ++ ulib)
>> putNam " enjoySport " "<none >"
>> putOoM -- >> runTest testENJOYSPORT
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initialize (plib ++ ulib)
>> putNam " lenses " "<none >"
>> putOoM -- >> runTest testLENSES

-- ===================================================
-- Test definitions
-- ===================================================

testACK fun = (fun (Z) (Z) == (S Z)) && (fun (Z) (S Z) == (S(S Z))) &&
(fun (Z) (S(S Z)) == (S(S(S Z)))) && (fun (Z) (S(S(S Z))) == (S(S(

S(S Z))))) && (fun (Z) (S(S(S(S Z)))) == (S(S(S(S(S Z)))))) && (fun
(Z) (S(S(S(S(S Z))))) == (S(S(S(S(S(S Z))))))) && (fun (Z) (S(S(S(

S(S(S Z)))))) == (S(S(S(S(S(S(S Z)))))))) && (fun (S Z) (Z) == (S(S
Z))) && (fun (S Z) (S Z) == (S(S(S Z)))) && (fun (S Z) (S(S Z)) ==
(S(S(S(S Z))))) && (fun (S Z) (S(S(S Z))) == (S(S(S(S(S Z)))))) &&
(fun (S Z) (S(S(S(S Z)))) == (S(S(S(S(S(S Z))))))) && (fun (S Z) (

S(S(S(S(S Z))))) == (S(S(S(S(S(S(S Z)))))))) && (fun (S (S Z)) (Z)
== (S(S(S Z)))) && (fun (S (S Z)) (S Z) == (S(S(S(S(S Z)))))) && (
fun (S (S Z)) (S(S Z)) == (S(S(S(S(S(S(S Z)))))))) && (fun (S(S(S Z
))) (Z) == (S(S(S(S(S Z))))))

testADD fun = (fun Z Z == Z) && (fun Z (S Z) == (S Z)) && (fun Z (S(S
Z)) == (S(S Z))) && (fun Z (S(S(S Z))) == (S(S(S Z)))) && (fun (S Z
) Z == (S Z)) && (fun (S Z) (S Z) == (S(S Z))) && (fun (S Z) (S(S Z
)) == (S(S(S Z)))) && (fun (S Z) (S(S(S Z))) == (S(S(S(S Z))))) &&
(fun (S(S Z)) (S Z) == (S(S(S Z)))) && (fun (S(S Z)) Z == (S(S Z)))

&& (fun (S(S Z)) (S(S Z)) == (S(S(S(S Z))))) && (fun (S(S Z)) (S(S
(S Z))) == (S(S(S(S(S Z))))))

testEVEN fun = (fun Z == True) && (fun (S Z) == False) && (fun (S (S Z
)) == True) && (fun (S (S (S Z))) == False) && (fun (S (S (S (S Z))
)) == True) && (fun (S (S (S (S (S Z))))) == False)

testEQ fun = (fun Z Z == True) && (fun Z (S Z) == False) && (fun Z (S
(S Z)) == False) && (fun (S Z) Z == False) && (fun (S Z) (S Z) ==
True) && (fun (S Z) (S (S Z)) == False) && (fun (S (S Z)) Z ==
False) && (fun (S (S Z)) (S Z) == False) && (fun (S (S Z)) (S (S Z)
) == True)

testGAUSSSUM fun = (fun Z == Z) && (fun (S Z) == (S Z)) && (fun (S(S Z
)) == (S(S(S Z)))) && (fun (S(S(S Z))) == (S(S(S(S(S(S Z))))))) &&
(fun (S(S(S(S Z)))) == (S(S(S(S(S(S(S(S(S(S Z)))))))))))

testFACT fun = (fun Z == S(Z)) && (fun (S(Z)) == S(Z)) && (fun (S(S(Z)
)) == S(S(Z))) && (fun (S(S(S(Z)))) == S(S(S(S(S(S(Z))))))) && (fun

(S(S(S(S(Z))))) == S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S
(Z))))))))))))))))))))))))) && (fun (S(S(S(S(S(Z)))))) == S(S(S(S(S
(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(
S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S
(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(
S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(Z))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))

testFIB fun = (fun Z == Z) && (fun (S(Z)) == S(Z)) && (fun (S(S(Z)))
== S(Z)) && (fun (S(S(S(Z)))) == S(S(Z))) && (fun (S(S(S(S(Z)))))
== S(S(S(Z)))) && (fun (S(S(S(S(S(Z)))))) == S(S(S(S(S(Z))))))
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testGEQ fun = (fun Z Z == True) && (fun (S Z) Z == True) && (fun (S(S
Z)) Z == True) && (fun Z (S Z) == False) && (fun (S Z) (S Z) ==
True) && (fun (S(S Z)) (S Z) == True) && (fun Z (S(S Z)) == False)
&& (fun (S Z) (S(S Z)) == False) && (fun (S(S Z)) (S(S Z)) == True)

testMOD fun = (fun Z (S Z) == Z) && (fun (S Z) (S Z) == Z) && (fun (S(
S Z)) (S Z) == Z) && (fun (S(S(S Z))) (S Z) == Z) && (fun Z (S(S Z)
) == Z) && (fun (S Z) (S(S Z)) == (S Z)) && (fun (S(S Z)) (S(S Z))
== Z) && (fun (S(S(S Z))) (S(S Z)) == (S Z)) && (fun Z (S(S(S Z)))
== Z) && (fun (S Z) (S(S(S Z))) == (S Z)) && (fun (S(S Z)) (S(S(S Z
))) == (S(S Z))) && (fun (S(S(S Z))) (S(S(S Z))) == Z) && (fun Z (S
(S(S(S Z)))) == Z) && (fun (S Z) (S(S(S(S Z)))) == (S Z)) && (fun (
S(S Z)) (S(S(S(S Z)))) == (S(S Z))) && (fun (S(S(S Z))) (S(S(S(S Z)
))) == (S(S(S Z))))

testMULT fun = (fun Z Z == Z) && (fun Z (S Z) == Z) && (fun Z (S(S Z))
== Z) && (fun Z (S(S(S Z))) == Z) && (fun (S Z) Z == Z) && (fun (S
Z) (S Z) == (S Z)) && (fun (S Z) (S(S Z)) == (S(S Z))) && (fun (S

Z) (S(S(S Z))) == (S(S(S Z)))) && (fun (S(S Z)) Z == Z) && (fun (S(
S Z)) (S Z) == (S(S Z))) && (fun (S(S Z)) (S(S Z)) == (S(S(S(S Z)))
)) && (fun (S(S Z)) (S(S(S Z))) == (S(S(S(S(S(S Z))))))) && (fun (S
(S(S Z))) Z == Z) && (fun (S(S(S Z))) (S Z) == (S(S(S Z)))) && (fun

(S(S(S Z))) (S(S Z)) == (S(S(S(S(S(S Z))))))) && (fun (S(S(S Z)))
(S(S(S Z))) == (S(S(S(S(S(S(S(S(S Z))))))))))

testODD fun = (fun Z == False) && (fun (S Z) == True) && (fun (S (S Z)
) == False) && (fun (S (S (S Z))) == True) && (fun (S (S (S (S Z)))
) == False) && (fun (S (S (S (S (S Z))))) == True)

testANDL fun = (fun [] == True) && (fun [True] == True) && (fun [False
] == False) && (fun [True ,True] == True) && (fun [True ,False] ==
False) && (fun [False ,True] == False) && (fun [False ,False] ==
False) && (fun [True ,True ,True] == True) && (fun [False ,True ,True]
== False) && (fun [True ,False ,True] == False) && (fun [True ,True ,
False] == False) && (fun [True ,False ,False] == False) && (fun [
False ,True ,False] == False) && (fun [False ,False ,True] == False) &&

(fun [False ,False ,False] == False)
testSUB fun = (fun Z Z == Z) && (fun Z (S Z) == (S Z)) && (fun Z (S(S

Z)) == (S(S Z))) && (fun Z (S(S(S Z))) == (S(S(S Z)))) && (fun (S Z
) Z == Z) && (fun (S Z) (S Z) == Z) && (fun (S Z) (S(S Z)) == (S Z)
) && (fun (S Z) (S(S(S Z))) == (S(S Z))) && (fun (S(S Z)) Z == Z)
&& (fun (S(S Z)) (S Z) == Z) && (fun (S(S Z)) (S(S Z)) == Z) && (
fun (S(S Z)) (S(S(S Z))) == (S Z)) && (fun (S(S(S Z))) Z == Z) && (
fun (S(S(S Z))) (S Z) == Z) && (fun (S(S(S Z))) (S(S Z)) == Z) && (
fun (S(S(S Z))) (S(S(S Z))) == Z)

testAND fun = (fun True True == True) && (fun True False == False) &&
(fun False True == False) && (fun False False == False)

testEVENPARITY fun = (fun [] == True) && (fun [False] == True) && (fun
[True] == False) && (fun [False , False] == True) && (fun [False ,

True] == False) && (fun [True , False] == False) && (fun [True , True
] == True) && (fun [False , False , False] == True) && (fun [False ,
False , True] == False) && (fun [False , True , False] == False) && (
fun [False , True , True] == True) && (fun [True , False , False] ==
False) && (fun [True , False , True] == True) && (fun [True , True ,
False] == True)
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testNEGATEALL fun = (fun [] == []) && (fun [True] == [False ]) && (fun
[False] == [True ]) && (fun [False ,False] == [True ,True ]) && (fun [
False ,True] == [True ,False ]) && (fun [True , False] == [False ,True ])
&& (fun [True ,True] == [False , False ])

testNANDL fun = (fun [] == False) && (fun [True] == False) && (fun [
False] == True) && (fun [True ,True] == False) && (fun [True ,False]
== True) && (fun [False ,True] == True) && (fun [False ,False] ==
True) && (fun [True ,True ,True] == False) && (fun [False ,True ,True]
== True) && (fun [True ,False ,True] == True) && (fun [True ,True ,
False] == True) && (fun [True ,False ,False] == True) && (fun [False ,
True ,False] == True) && (fun [False ,False ,True] == True) && (fun [
False ,False ,False] == True)

testNORL fun = (fun [] == True) && (fun [True] == False) && (fun [
False] == True) && (fun [True ,True] == False) && (fun [True ,False]
== False) && (fun [False ,True] == False) && (fun [False ,False] ==
True) && (fun [True ,True ,True] == False) && (fun [False ,True ,True]
== False) && (fun [True ,False ,True] == False) && (fun [True ,True ,
False] == False) && (fun [True ,False ,False] == False) && (fun [
False ,True ,False] == False) && (fun [False ,False ,True] == False) &&

(fun [False ,False , False] == True)
testOR fun = (fun True True == True) && (fun True False == True) && (

fun False True == True) && (fun False False == False)
testORL fun = (fun [] == False) && (fun [True] == True) && (fun [False

] == False) && (fun [True ,True] == True) && (fun [True ,False] ==
True) && (fun [False ,True] == True) && (fun [False ,False] == False)

&& (fun [True ,True ,True] == True) && (fun [False ,True ,True] ==
True) && (fun [True ,False ,True] == True) && (fun [True ,True ,False]
== True) && (fun [True ,False , False] == True) && (fun [False ,True ,
False] == True) && (fun [False ,False ,True] == True) && (fun [False ,
False ,False] == False)

testAPPEND fun = (fun [][] == []) && (fun [][c] == [c]) && (fun [][c,d
] == [c,d]) && (fun [] [a,b,c] == [a,b,c]) && (fun [][a,b,c,d] == [
a,b,c,d]) && (fun [a][] == [a]) && (fun [a][c] == [a,c]) && (fun [a
,b][] == [a,b]) && (fun [a][c,d] == [a,c,d]) && (fun [a,b][d] == [a
,b,d]) && (fun [a,c,d][] == [a,c,d]) && (fun [a,b][c,d] == [a,b,c,d
]) && (fun [a,b,c][d] == [a,b,c,d]) && (fun [a,b,c,d][] == [a,b,c,d
])

testCONCAT fun = (fun [] == []) && (fun [[]] == []) && (fun [[] ,[]] ==
[]) && (fun [[] ,[a]] == [a]) && (fun [[] ,[a,b]] == [a,b]) && (fun

[[a]] == [a]) && (fun [[a] ,[]] == [a]) && (fun [[a],[b]] == [a,b])
&& (fun [[a],[c,d]] == [a,c,d]) && (fun [[c,d]]== [c,d]) && (fun [[
a,b] ,[]] == [a,b]) && (fun [[a,b],[c]] == [a,b,c]) && (fun [[a,b],[
c,d]] == [a,b,c,d])

testEVENLENGTH fun = (fun [] == True) && (fun [a] == False) && (fun [a
,b] == True) && (fun [a,b,c] == False) && (fun [a,b,c,d] == True)
&& (fun [a,b,c,d,e] == False) && (fun [a,b,c,d,e,f] == True)

testEVENPOS fun = (fun [] == []) && (fun [a] == []) && (fun [a,b] == [
b]) && (fun [a,b,c] == [b]) && (fun [a,b,c,d] == [b,d]) && (fun [a,
b,c,d,e] == [b,d]) && (fun [a,b,c,d,e,f] == [b,d,f])

testHALVES fun = (fun [] == ([], [])) && (fun [a] == ([a], [])) && (
fun [a,b] == ([a],[b])) && (fun [a,b,c] == ([a,b],[c])) && (fun [a,
b,c,d] == ([a,b],[c,d])) && (fun [a,b,c,d,e] == ([a,b,c],[d,e]))
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testINIT fun = (fun [a] == []) && (fun [a,b] == [a]) && (fun [a,b,c]
== [a,b]) && (fun [a,b,c,d] == [a,b,c])

testINITS fun = (fun [] == [[]]) && (fun [a] == [[] ,[a]]) && (fun [a,b
] == [[] ,[a],[a,b]]) && (fun [a,b,c] == [[] ,[a],[a,b],[a,b,c]]) &&
(fun [a,b,c,d] == [[] ,[a],[a,b],[a,b,c,d]])

testINTERSPERSE fun = (fun x [] == []) && (fun x [y] == [y]) && (fun x
[y,z] == [y,x,z]) && (fun x [y,z,v] == [y,x,z,x,v])

testLAST fun = (fun [a] == a) && (fun [a,b] == b) && (fun [a,b,c] == c
) && (fun [a,b,c,d] == d)

testLASTM fun = (fun [] == Nothing ) && (fun [a] == Just a) && (fun [a,
b] == Just b) && (fun [a,b,c] == Just c) && (fun [a,b,c,d] == Just
d)

testLASTS fun = (fun [] == []) && (fun [[a]] == [a]) && (fun [[a,b]]
== [b]) && (fun [[a,b,c]] == [c]) && (fun [[b],[a]] == [b,a]) && (
fun [[c],[a,b]] == [c,b]) && (fun [[a,b],[c,d]] == [b,d]) && (fun
[[c,d],[b]] == [d,b]) && (fun [[c],[d,e],[f]] == [c,e,f]) && (fun
[[c,d],[e,f],[g]] == [d,f,g])

testMAPCONS fun = (fun a [] == []) && (fun a [[]] == [[a]]) && (fun a
[xs] == [(a:xs)]) && (fun a [xs ,ys] == [(a:xs) ,(a:ys)]) && (fun a [
xs ,ys ,zs] == [(a:xs) ,(a:ys) ,(a:zs)])

testMULTFST fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] ==
[a,a]) && (fun [a,b,c] == [a,a,a]) && (fun [a,b,c,d] == [a,a,a,a])

testMULTLST fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] ==
[b,b]) && (fun [a,b,c] == [c,c,c]) && (fun [a,b,c,d] == [d,d,d,d])

testODDPOS fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] == [
a]) && (fun [a,b,c] == [a,c]) && (fun [a,b,c,d] == [a,c]) && (fun [
a,b,c,d,e] == [a,c,e])

testPACK fun = (fun [] == [[]]) && (fun [a] == [[a]]) && (fun [a,b] ==
[[a],[b]]) && (fun [a,b,c] == [[a],[b],[c]])

testSUBSEQS fun = (fun [] == [[]]) && (fun [a] == [[a] ,[]]) && (fun [a
,b] == [[a,b],[a],[b] ,[]]) && (fun [a,b,c] == [[a,b,c],[a,b],[a,c
],[a],[b,c],[b],[c] ,[]])

testREVERSE fun = (fun [] == []) && (fun [a] ==[a]) && (fun [a,b] == [
b,a]) && (fun [a,b,c] == [c,b,a]) && (fun [a,b,c,d] == [d,c,b,a])

testSHIFTL fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] == [
b,a]) && (fun [a,b,c] == [b,c,a]) && (fun [a,b,c,d] == [b,c,d,a])

testSHIFTR fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] == [
b,a]) && (fun [a,b,c] == [c,a,b]) && (fun [a,b,c,d] == [d,a,b,c])

testSNOC fun = (fun a [] == [a]) && (fun b [a] == [a,b]) && (fun c [a,
b] == [a,b,c]) && (fun d [a,b,c] == [a,b,c,d])

testSWAP fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] == [b,
a]) && (fun [a,b,c] == [b,a,c]) && (fun [a,b,c,d] == [b,a,d,c]) &&
(fun [a,b,c,d,e] == [b,a,d,c,e]) && (fun [a,b,c,d,e,f] == [b,a,d,c,
f,e])

testSWITCH fun = (fun [] == []) && (fun [a] == [a]) && (fun [a,b] == [
b,a]) && (fun [a,b,c] == [c,b,a]) && (fun [a,b,c,d] == [d,b,c,a])
&& (fun [a,b,c,d,e] == [e,b,c,d,a]) && (fun [a,b,c,d,e,f] == [f,b,c
,d,e,a])

testSPLIT fun = (fun [] == ([] ,[])) && (fun [x] == ([x] ,[])) && (fun [
x,y] == ([x],[y])) && (fun [x,y,z] == ([x,z],[y])) && (fun [x,y,z,v
] == ([x,z],[y,v]))
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testTAIL fun = (fun [a] == []) && (fun [a,b] == [b]) && (fun [a,b,c]
== [b,c]) && (fun [a,b,c,d] == [b,c,d])

testTAILS fun = (fun [] == [[]]) && (fun [a] == [[a] ,[]]) && (fun [a,b
] == [[a,b],[b] ,[]]) && (fun [a,b,c] == [[a,b,c],[b,c],[c] ,[]])

testUNZIP fun = (fun [(a,b)] == ([a],[b])) && (fun [(a,b) ,(c,d)] == ([
a,c],[b,d])) && (fun [(a,b) ,(c,d) ,(e,f)] == ([a,c,e],[b,d,f]))

testWEAVE fun = (fun [] [] == []) && (fun [a][] == [a]) && (fun [][c]
== [c]) && (fun [a][c] == [a,c]) && (fun [a,b][] == [a,b]) && (fun
[][c,d] == [c,d]) && (fun [a,b][c] == [a,c,b]) && (fun [a][c,d] ==
[a,c,d]) && (fun [a,b][c,d] == [a,c,b,d])

testZIP fun = (fun [] [] == []) && (fun [a] [] == []) && (fun [] [a]
== []) && (fun [a] [b] == [(a,b)]) && (fun [a,b] [c] == [(a,c)]) &&

(fun [a] [b,c] == [(a,b)]) && (fun [a,b] [c,d] == [(a,c) ,(b,d)])
testMAPTAIL fun = (fun [] == []) && (fun [(x:xs)] == [xs]) && (fun [(x

:xs) ,(y:ys)] == [xs ,ys]) && (fun [(x:xs) ,(y:ys) ,(z:zs)] == [xs ,ys ,
zs])

testTRANSPOSE fun = (fun [[ a11 ]] == [[ a11 ]]) && (fun [[a11 ,a12 ]] == [[
a11 ],[ a12 ]]) && (fun [[a11 ,a12 ,a13 ]] == [[ a11 ],[ a12 ],[ a13 ]]) && (
fun [[ a11 ],[ a21 ]] == [[a11 ,a21 ]]) && (fun [[a11 ,a12 ],[a21 ,a22 ]] ==
[[a11 ,a21 ],[a12 ,a22 ]]) && (fun [[a11 ,a12 ,a13 ],[a21 ,a22 ,a23 ]] == [[
a11 ,a21 ],[a12 ,a22 ],[a13 ,a23 ]]) && (fun [[ a11 ],[ a21 ],[ a31 ]] ==[[ a11 ,
a21 ,a31 ]]) && (fun [[a11 ,a12 ],[a21 ,a22 ],[a31 ,a32 ]] == [[a11 ,a21 ,a31
],[a12 ,a22 ,a32 ]]) && (fun [[a11 ,a12 ,a13 ],[a21 ,a22 ,a23 ],[a31 ,a32 ,a33
]] == [[a11 ,a21 ,a31 ],[a12 ,a22 ,a32 ],[a13 ,a23 ,a33 ]])

testWEAVEL fun = (fun [] == []) && (fun [[ a11 ]] == [a11 ]) && (fun [[
a11 ,a12 ]] == [a11 ,a12 ]) && (fun [[a11 ,a12 ,a13 ]] == [a11 ,a12 ,a13 ])
&& (fun [[ a11 ],[ a21 ]] == [a11 ,a21 ]) && (fun [[ a11 ,a12 ],[ a21 ]] == [
a11 ,a21 ,a12 ]) && (fun [[ a11 ],[a21 ,a22 ]] == [a11 ,a21 ,a22 ]) && (
fun [[a11 ,a12 ],[ a21 ,a22 ]] == [a11 ,a21 ,a12 ,a22 ]) && (fun [[ a11 ,
a12 ,a13 ],[ a21 ,a22 ]] == [a11 ,a21 ,a12 ,a22 ,a13 ]) && (fun [[ a11
],[ a21 ],[ a31 ]] == [a11 ,a21 ,a31 ]) && (fun [[a11 ,a12 ],[ a21 ],[ a31 ]]
== [a11 ,a21 ,a31 ,a12 ])

testADDN fun = (fun Z [] == []) && (fun (S Z) [] == []) && (fun (S(S Z
)) [] == []) && (fun Z [Z] == [Z]) && (fun Z [S Z] == [S Z]) && (
fun Z [S(S Z)] == [S(S Z)]) && (fun Z [Z,(S Z)] == [Z,(S Z)]) && (
fun Z [(S Z),Z] == [(S Z),Z]) && (fun (S Z) [Z,(S Z)] == [S Z,S(S Z
)]) && (fun (S Z) [(S Z),Z] == [S(S Z),S Z]) && (fun (S Z) [Z] == [
S Z]) && (fun (S Z) [S Z] == [S(S Z)]) && (fun (S Z) [S(S Z)] == [S
(S(S Z))]) && (fun (S(S Z)) [Z] == [S(S Z)]) && (fun (S(S Z)) [S Z]

== [S(S(S Z))]) && (fun (S(S Z)) [S(S Z)] == [S(S(S(S Z)))]) && (
fun (S(S Z)) [Z,(S Z)] == [S(S Z),S(S(S Z))]) && (fun (S(S Z)) [S(S

Z),Z] == [S(S(S(S Z))),S(S Z)])
testALLEVEN fun = (fun [] == True) && (fun [Z] == True) && (fun [S Z]

== False) && (fun [S(S Z)] == True) && (fun [S(S(S Z))] == False)
&& (fun [Z, Z] == True) && (fun [Z, S Z] == False) && (fun [Z, S(S
Z)] == True) && (fun [Z, S(S(S Z))] == False) && (fun [S Z, Z] ==
False) && (fun [S Z, S Z] == False) && (fun [S Z, S(S Z)] == False)

&& (fun [S Z, S(S(S Z))] == False) && (fun [S(S Z), Z] == True) &&
(fun [S(S Z), S Z] == False) && (fun [S(S Z), S(S Z)] == True) &&

(fun [S(S Z), S(S(S Z))] == False) && (fun [S(S(S Z)), Z] == False)
&& (fun [S(S(S Z)), S Z] == False) && (fun [S(S(S Z)), S(S Z)] ==

False) && (fun [S(S(S Z)), S(S(S Z))] == False)
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testALLODD fun = (fun [] == True) && (fun [Z] == False) && (fun [S Z]
== True) && (fun [S(S Z)] == False) && (fun [S(S(S Z))] == True) &&

(fun [Z, Z] == False) && (fun [Z, S Z] == False) && (fun [Z, S(S Z
)] == False) && (fun [Z, S(S(S Z))] == False) && (fun [S Z, Z] ==
False) && (fun [S Z, S Z] == True) && (fun [S Z, S(S Z)] == False)
&& (fun [S Z, S(S(S Z))] == True) && (fun [S(S Z), Z] == False) &&
(fun [S(S Z), S Z] == False) && (fun [S(S Z), S(S Z)] == False) &&
(fun [S(S Z), S(S(S Z))] == False) && (fun [S(S(S Z)), Z] == False)

&& (fun [S(S(S Z)), S Z] == True) && (fun [S(S(S Z)), S(S Z)] ==
False) && (fun [S(S(S Z)), S(S(S Z))] == True)

testEVENS fun = (fun [] == []) && (fun [Z] == [Z]) && (fun [S Z] ==
[]) && (fun [S(S Z)] == [S(S Z)]) && (fun [S(S(S Z))] == []) && (
fun [Z,Z] == [Z,Z]) && (fun [Z,S Z] == [Z]) && (fun [Z,S (S Z)] ==
[Z,S (S Z)]) && (fun [Z,S(S(S Z))] == [Z]) && (fun [S Z, Z] == [Z])

&& (fun [S Z, S Z] == []) && (fun [S Z, S (S Z)] == [S (S Z)]) &&
(fun [S Z, S(S(S Z))] == []) && (fun [S (S Z), Z] == [S (S Z),Z])
&& (fun [S (S Z), S Z] == [S (S Z)]) && (fun [S (S Z), S (S Z)] ==
[S (S Z),S (S Z)]) && (fun [S (S Z), S(S(S Z))] == [S (S Z)]) && (
fun [S( S (S Z)), Z] == [Z]) && (fun [S( S (S Z)), S Z] == []) && (
fun [S( S (S Z)), S (S Z)] == [S (S Z)]) && (fun [S( S (S Z)), S( S

(S Z))] == [])
testINCR fun = (fun [] == []) && (fun [Z] == [S Z]) && (fun [S Z] == [

S(S Z)]) && (fun [Z,S Z] == [S Z,S(S Z)]) && (fun [S Z,Z] == [S(S Z
),S Z])

testLENGTH fun = (fun [] == Z) && (fun [a] == S Z) && (fun [a,b] == S(
S Z)) && (fun [a,b,c] == S(S(S Z)))

testLENGTHS fun = (fun [] == []) && (fun [[]] == [Z]) && (fun [[a]] ==
[S Z]) && (fun [[b,a]] == [S(S Z)]) && (fun [[c,b,a]] == [S(S(S Z)

)]) && (fun [[] ,[]] == [Z, Z]) && (fun [[] ,[a]] == [Z,S Z]) && (fun
[[] ,[b,a]] == [Z,S(S Z)]) && (fun [[a] ,[]] == [S Z, Z]) && (fun [[

b],[a]] == [S Z,S Z]) && (fun [[c],[b,a]] == [S Z,S(S Z)]) && (fun
[[c,a] ,[]] == [S(S Z), Z]) && (fun [[b,a],[c]] == [S(S Z),S Z]) &&
(fun [[c,d],[b,a]] == [S(S Z),S(S Z)]) && (fun [[a],[b],[c]] == [S
Z, S Z, S Z])

testNTHELEM fun = (fun (x:xs) Z == x) && (fun (x:y:xs) (S Z) == y) &&
(fun (x:y:z:xs) (S (S Z)) == z) && (fun (x:y:z:u:xs) (S(S (S Z)))
== u) && (fun (x:y:z:u:v:xs) (S(S(S (S Z)))) == v)

testODDSLIST fun = (fun [] == True) && (fun [Z] == False) && (fun [S Z
] == True) && (fun [S(S Z)] == False) && (fun [S(S(S Z))] == True)
&& (fun [Z, Z] == False) && (fun [Z, S Z] == False) && (fun [Z, S(S

Z)] == False) && (fun [Z, S(S(S Z))] == False) && (fun [S Z, Z] ==
False) && (fun [S Z, S Z] == True) && (fun [S Z, S(S Z)] == False)
&& (fun [S Z, S(S(S Z))] == True) && (fun [S(S Z), Z] == False) &&
(fun [S(S Z), S Z] == False) && (fun [S(S Z), S(S Z)] == False) &&
(fun [S(S Z), S(S(S Z))] == False) && (fun [S(S(S Z)), Z] == False

) && (fun [S(S(S Z)), S Z] == True) && (fun [S(S(S Z)), S(S Z)] ==
False) && (fun [S(S(S Z)), S(S(S Z))] == True)

testODDS fun = (fun [] == []) && (fun [Z] == []) && (fun [S Z] == [S Z
]) && (fun [S(S Z)] == []) && (fun [S(S(S Z))] == [(S(S(S Z)))]) &&

(fun [Z,Z] == []) && (fun [Z,S Z] == [S Z]) && (fun [Z,S (S Z)] ==
[]) && (fun [Z,S(S(S Z))] == [S(S(S Z))]) && (fun [S Z, Z] == [S Z

]) && (fun [S Z, S Z] == [S Z, S Z]) && (fun [S Z, S (S Z)] == [(S
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Z)]) && (fun [S Z, S(S(S Z))] == [S Z, S(S(S Z))]) && (fun [S (S Z)
, Z] == []) && (fun [S (S Z), S Z] == [(S Z)]) && (fun [S (S Z), S
(S Z)] == []) && (fun [S (S Z), S(S(S Z))] == [(S(S (S Z)))]) && (
fun [S( S (S Z)), Z] == [S( S (S Z))]) && (fun [S( S (S Z)), S Z]
== [S( S (S Z)), S Z]) && (fun [S( S (S Z)), S (S Z)] == [(S(S(S Z)
))]) && (fun [S( S (S Z)), S( S (S Z))] == [S( S (S Z)), S( S (S Z)
)])

testDROP fun = (fun Z [] == []) && (fun Z [a] == [a]) && (fun (S Z) []
== []) && (fun (S (S Z)) [] == []) && (fun Z [a,b] == [a,b]) && (

fun Z [a,b,c] == [a,b,c]) && (fun (S Z) [a] == []) && (fun (S Z) [a
,b] == [b]) && (fun (S Z) [a,b,c] == [b,c]) && (fun (S (S Z)) [a]
== []) && (fun (S (S Z)) [a,b] == []) && (fun (S (S Z)) [a,b,c] ==
[c]) && (fun (S (S (S Z))) [] == []) && (fun (S (S (S Z))) [a] ==
[]) && (fun (S (S (S Z))) [a,b] == []) && (fun (S (S (S Z))) [a,b,c
] == [])

testSPLITAT fun = (fun Z [a] == ([] ,[a])) && (fun Z [a,b] == ([] ,[a,b
])) && (fun Z [a,b,c] == ([] ,[a,b,c])) && (fun (S Z) [a] == ([a
] ,[])) && (fun (S Z) [a,b] == ([a],[b])) && (fun (S Z) [a,b,c] ==
([a],[b,c])) && (fun (S(S Z)) [a] == ([a] ,[])) && (fun (S(S Z)) [a,
b] == ([a,b] ,[])) && (fun (S(S Z)) [a,b,c] == ([a,b],[c]))

testSUM fun = (fun [] == Z) && (fun [Z] == Z) && (fun [S Z] == S Z) &&
(fun [S(S Z)] == S(S Z)) && (fun [Z,Z] == Z) && (fun [Z,S Z] == S

Z) && (fun [Z,S(S Z)] == S(S Z)) && (fun [S Z,Z] == S Z) && (fun [S
Z,S Z] == S(S Z)) && (fun [S Z,S(S Z)] == S(S(S Z))) && (fun [S(S

Z),Z] == S(S Z)) && (fun [S(S Z),S Z] == S(S(S Z))) && (fun [S(S Z)
,S(S Z)] == S(S(S(S Z))))

testREPLICATE fun = (fun a Z == []) && (fun a (S Z) == [a]) && (fun a
(S (S Z)) == [a,a]) && (fun a (S (S (S Z))) == [a,a,a]) && (fun a (
S (S (S (S Z)))) == [a,a,a,a])

testTAKE fun = (fun Z [] == []) && (fun Z [a] == []) && (fun Z [b,c]
== []) && (fun (S Z) [] == []) && (fun (S Z) [d] == [d]) && (fun (S

Z) [e,f] == [e]) && (fun (S (S Z)) [] == []) && (fun (S (S Z)) [g]
== [g]) && (fun (S (S Z)) [h,i] == [h,i]) && (fun (S (S (S Z))) []
== []) && (fun (S (S (S Z))) [j] == [j]) && (fun (S (S (S Z))) [k,

l] == [k,l])
testZEROS fun = (fun [] == []) && (fun [Z] == [Z]) && (fun [S Z] ==

[]) && (fun [S(S Z)] == []) && (fun [S(S(S Z))] == []) && (fun [Z,S
Z] == [Z]) && (fun [Z,S(S Z)] == [Z]) && (fun [Z,S(S(S Z))] == [Z

]) && (fun [S Z,Z] == [Z]) && (fun [S(S Z),Z] == [Z]) && (fun [S(S(
S Z)),Z] == [Z]) && (fun [S Z,S Z] == []) && (fun [S(S Z),S Z] ==
[]) && (fun [S(S(S Z)),S Z] == []) && (fun [S Z,S(S Z)] == []) && (
fun [S(S Z),S(S Z)] == []) && (fun [S(S(S Z)),S(S Z)] == []) && (
fun [S Z,S(S(S Z))] == []) && (fun [S(S Z),S(S(S Z))] == []) && (
fun [S(S(S Z)),S(S(S Z))] == []) && (fun [Z,Z] == [Z,Z])

testPREORDER fun = (fun NilT == []) && (fun (Node a NilT NilT) == [a])
&& (fun (Node a(Node b NilT NilT)(Node c NilT NilT)) == [a,b,c])

&& (fun (Node a(Node b(Node c NilT NilT)(Node d NilT NilT))(Node e(
Node f NilT NilT)(Node g NilT NilT))) == [a,b,c,d,e,f,g])

testINORDER fun = (fun NilT == []) && (fun (Node a NilT NilT) == [a])
&& (fun (Node a(Node b NilT NilT)(Node c NilT NilT)) == [b,a,c]) &&

(fun (Node a(Node b(Node c NilT NilT)(Node d NilT NilT))(Node e(
Node f NilT NilT)(Node g NilT NilT))) == [c,b,d,a,f,e,g])
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testPOSTORDER fun = (fun NilT == []) && (fun (Node a NilT NilT) == [a
]) && (fun (Node a(Node b NilT NilT)(Node c NilT NilT)) == [b,c,a])

&& (fun (Node a(Node b(Node c NilT NilT)(Node d NilT NilT))(Node e
(Node f NilT NilT)(Node g NilT NilT))) == [c,d,b,f,g,e,a])

testMIRROR fun = (fun NilT == NilT) && (fun (Node a NilT NilT) == (
Node a NilT NilT)) && (fun (Node b(Node a NilT NilT)(Node c NilT
NilT)) == (Node b(Node c NilT NilT)(Node a NilT NilT))) && (fun (
Node d(Node b(Node a NilT NilT)(Node c NilT NilT))(Node f(Node e
NilT NilT)(Node g NilT NilT))) == (Node d(Node f(Node g NilT NilT)(
Node e NilT NilT))(Node b(Node c NilT NilT)(Node a NilT NilT))))

testPEPPER fun = (fun Z [] == [(Z, Nothing )]) && (fun Z [a] == [(Z,
Just (a, S Z)) ,(S Z, Nothing )]) && (fun Z [a,b] == [(Z, Just (a, S
Z)) ,(S Z, Just (b, S(S Z))) ,(S(S Z), Nothing )]) && (fun Z [a,b,c]
== [(Z, Just (a, S Z)) ,(S Z, Just (b, S(S Z))) ,(S(S Z), Just (c, S(
S(S Z)))) ,(S(S(S Z)), Nothing )]) && (fun Z [a,b,c,d] == [(Z, Just (
a, S Z)) ,(S Z, Just (b, S(S Z))) ,(S(S Z), Just (c, S(S(S Z)))) ,(S(S
(S Z)), Just (d, S(S(S(S Z))))) ,(S(S(S(S Z))), Nothing )])

testPEPPERF fun = (fun Z [] == [(Z, Nothing )]) && (fun Z [a] == [(Z,
Just a) ,(S Z, Nothing )]) && (fun Z [a,b] == [(Z, Just a) ,(S Z, Just

b) ,(S(S Z), Nothing )]) && (fun Z [a,b,c] == [(Z, Just a) ,(S Z,
Just b) ,(S(S Z), Just c) ,(S(S(S Z)), Nothing )]) && (fun Z [a,b,c,d]

== [(Z, Just a) ,(S Z, Just b) ,(S(S Z), Just c) ,(S(S(S Z)), Just d)
,(S(S(S(S Z))), Nothing )])

testROCKET fun = (fun NOCARGO START == FLY START) && (fun (IN O1
NOCARGO ) START == UNL O1 (FLY (LOD O1 START))) && (fun (IN O1 (IN
O2 NOCARGO )) START == UNL O1 (UNL O2 (FLY (LOD O2 (LOD O1 START))))
) && (fun (IN O1 (IN O2 (IN O3 NOCARGO ))) START == UNL O1 (UNL O2 (
UNL O3 (FLY (LOD O3 (LOD O2 (LOD O1 START)))))))

testHANOI fun = (fun D0 PegA PegB PegC NOOP == MV D0 PegA PegC NOOP)
&& (fun (D D0) PegA PegB PegC NOOP == MV D0 PegB PegC (MV (D D0)
PegA PegC (MV D0 PegA PegB NOOP))) && (fun (D(D D0)) PegA PegB PegC

NOOP == MV D0 PegA PegC (MV (D D0) PegB PegC(MV D0 PegB PegA (MV (
D(D D0)) PegA PegC (MV D0 PegC PegB(MV (D D0) PegA PegB (MV D0 PegA

PegC NOOP )))))))
testSENTENCE fun = (fun Z == [’D’, ’N’, ’V’, ’D’, ’N ’]) && (fun (S Z)

== [’D’, ’N’, ’V’, ’D’, ’N’, ’V’, ’D’, ’N ’]) && (fun (S( S Z)) ==
[’D’, ’N’, ’V’, ’D’, ’N’, ’V’, ’D’, ’N’, ’V’, ’D’, ’N ’])

testBALLOONS fun = (fun (Yellow ,( Small ,( Stretch ,Adult))) == True) && (
fun (Yellow ,( Small ,( Stretch ,Child))) == True) && (fun (Yellow ,(
Small ,(Dip ,Adult))) == True) && (fun (Yellow ,( Small ,(Dip ,Child)))
== True) && (fun (Yellow ,( Large ,( Stretch ,Adult))) == False) && (fun

(Yellow ,( Large ,( Stretch ,Child))) == False) && (fun (Yellow ,( Large
,(Dip ,Adult))) == False) && (fun (Yellow ,( Large ,(Dip ,Child))) ==
False) && (fun (Purple ,( Small ,( Stretch ,Adult))) == False) && (fun (
Purple ,( Small ,( Stretch ,Child))) == False) && (fun (Purple ,( Small ,(
Dip ,Adult))) == False) && (fun (Purple ,( Small ,(Dip ,Child))) ==
False) && (fun (Purple ,( Large ,( Stretch ,Adult))) == False) && (fun (
Purple ,( Large ,( Stretch ,Child))) == False) && (fun (Purple ,( Large ,(
Dip ,Adult))) == False) && (fun (Purple ,( Large ,(Dip ,Child))) ==
False)

testPLAYTENNIS fun = (fun (Sunny ,(Hot ,(High ,Weak))) == False) && (fun
(Sunny ,(Hot ,(High , Strong ))) == False) && (fun (Overcast ,(Hot ,(High ,
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Weak))) == True) && (fun (Rain ,(Mild ,(High ,Weak))) == True) && (fun
(Rain ,(Cool ,( Normal ,Weak))) == True) && (fun (Rain ,(Cool ,( Normal ,

Strong ))) == False) && (fun (Overcast ,(Cool ,( Normal , Strong ))) ==
True) && (fun (Sunny ,(Mild ,(High ,Weak))) == False) && (fun (Sunny ,(
Cool ,( Normal ,Weak))) == True) && (fun (Rain ,(Mild ,( Normal ,Weak)))
== True) && (fun (Sunny ,(Mild ,( Normal , Strong ))) == True) && (fun (
Overcast ,(Mild ,(High , Strong ))) == True) && (fun (Overcast ,(Hot ,(
Normal ,Weak))) == True) && (fun (Rain ,(Mild ,(High , Strong ))) ==
False)

testENJOYSPORT fun = (fun (Sunny ,(Warm ,( Normal ,( Strong ,(Warm ,Same)))))
== True) && (fun (Sunny ,(Warm ,(High ,( Strong ,(Warm ,Same))))) ==

True) && (fun (Rain ,(Cold ,(High ,( Strong ,(Warm , Change ))))) == False)
&& (fun (Sunny ,(Warm ,(High ,( Strong ,(Cool , Change ))))) == True)

testLENSES fun = (fun (Young ,( Myope ,(No , Reduced ))) == None) && (fun (
Young ,( Myope ,(No ,Norml))) == Soft) && (fun (Young ,( Myope ,(Yes ,
Reduced ))) == None) && (fun (Young ,( Myope ,(Yes ,Norml))) == Hard) &&

(fun (Young ,( Hypermetrope ,(No , Reduced ))) == None) && (fun (Young ,(
Hypermetrope ,(No ,Norml))) == Soft) && (fun (Young ,( Hypermetrope ,(
Yes , Reduced ))) == None) && (fun (Young ,( Hypermetrope ,(Yes ,Norml)))
== Hard) && (fun ( PrePresbyopic ,( Myope ,(No , Reduced ))) == None) && (
fun ( PrePresbyopic ,( Myope ,(No ,Norml))) == Soft) && (fun (
PrePresbyopic ,( Myope ,(Yes , Reduced ))) == None) && (fun (
PrePresbyopic ,( Myope ,(Yes ,Norml))) == Hard) && (fun ( PrePresbyopic
,( Hypermetrope ,(No , Reduced ))) == None) && (fun ( PrePresbyopic ,(
Hypermetrope ,(No ,Norml))) == Soft) && (fun ( PrePresbyopic ,(
Hypermetrope ,(Yes , Reduced ))) == None) && (fun ( PrePresbyopic ,(
Hypermetrope ,(Yes ,Norml))) == None) && (fun (Presbyopic ,( Myope ,(No ,
Reduced ))) == None) && (fun (Presbyopic ,( Myope ,(No ,Norml))) == None
) && (fun (Presbyopic ,( Myope ,(Yes , Reduced ))) == None) && (fun (
Presbyopic ,( Myope ,(Yes ,Norml))) == Hard) && (fun (Presbyopic ,(
Hypermetrope ,(No , Reduced ))) == None) && (fun (Presbyopic ,(
Hypermetrope ,(No ,Norml))) == Soft) && (fun (Presbyopic ,(
Hypermetrope ,(Yes , Reduced ))) == None) && (fun (Presbyopic ,(
Hypermetrope ,(Yes ,Norml))) == None)
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Listing D.1: Igor IIH specification
{-# OPTIONS_GHC

-XTypeOperators -XTypeFamilies -XDeriveDataTypeable
#-}
module Specifications where

import Generics . Pointless . Combinators
import Generics . Pointless . Functors
import Generics . Pointless . RecursionPatterns

import Data.List (nub , sort)
import Data. Typeable

-- ===================================================
-- data type definitions
-- ===================================================

-- Peano’s Natural Numbers
data Nat = Z | S Nat

deriving (Eq ,Ord ,Typeable ,Show)

-- Con Lists
data List a = NilL | Cons a (List a)

deriving (Eq ,Ord ,Typeable ,Show)

-- Binary Node Trees
data NTree a = NilT | Node a (NTree a)(NTree a)

deriving (Eq ,Ord ,Typeable ,Show)

-- Binary Leaf Trees
data LTree a = Leaf a | Branch (LTree a) (LTree a)

deriving (Eq ,Ord ,Typeable ,Show)

-- Rose Trees
data Rose a = Forest a [Rose a]

deriving (Eq ,Ord ,Typeable ,Show)

-- ===================================================
-- Defining pattern functor and initial algebras for
-- inductive types
-- ===================================================

type instance PF Nat = Const One :+: Id
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instance Mu Nat where
inn (Left _) = Z
inn (Right p) = S p
out Z = Left _L
out (S p) = Right p

type instance PF (List a) =
Const One :+: (Const a :*: Id)

instance Mu (List a) where
inn (Left _) = NilL
inn (Right (a,l)) = Cons a l
out NilL = Left _L
out (Cons a l) = Right (a,l)

-- Ordinary lists are built-in but semantically their
-- definition and instance declarations for PF and MU
-- would be as follows

-- data [a] = [] | a : [a]
-- type instance PF [a] =
-- Const One :+: (Const a :*: Id)
-- instance Mu [a] where
-- inn (Left _) = []
-- inn (Right (a,l)) = (a:l)
-- out [] = Left _L
-- out (a:l) = Right (a,l)

type instance PF (NTree a) =
Const One :+: (Const a :*: (Id :*: Id))

instance Mu (NTree a) where
inn (Left _) = NilT
inn (Right (a,(l,r))) = Node a l r
out NilT = Left _L
out (Node a l r) = Right (a,(l,r))

type instance PF (LTree a) = Const a :+: (Id :*: Id)
instance Mu (LTree a) where

inn (Left a) = Leaf a
inn (Right (l,r)) = Branch l r
out (Leaf a) = Left a
out ( Branch l r) = Right (l,r)

type instance PF (Rose a) = Const a :*: ( [] :@: Id )
instance Mu (Rose a) where

inn (a,rs) = Forest a rs
out ( Forest a rs) = (a,rs)

-- ===================================================
-- functions on natural numbers
-- ===================================================

-- The Ackermann function.
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ack :: Nat -> Nat -> Nat
ack (Z) (Z) = (S Z)
ack (Z) (S Z) = (S(S Z))
ack (Z) (S(S Z)) = (S(S(S Z)))
ack (Z) (S(S(S Z))) = (S(S(S(S Z))))
ack (Z) (S(S(S(S Z)))) = (S(S(S(S(S Z)))))
ack (Z) (S(S(S(S(S Z))))) = (S(S(S(S(S(S Z))))))
ack (Z) (S(S(S(S(S(S Z)))))) = (S(S(S(S(S(S(S Z)))))))
ack (S Z) (Z) = (S(S Z))
ack (S Z) (S Z) = (S(S(S Z)))
ack (S Z) (S(S Z)) = (S(S(S(S Z))))
ack (S Z) (S(S(S Z))) = (S(S(S(S(S Z)))))
ack (S Z) (S(S(S(S Z)))) = (S(S(S(S(S(S Z))))))
ack (S Z) (S(S(S(S(S Z))))) = (S(S(S(S(S(S(S Z)))))))
ack (S(S Z)) (Z) = (S(S(S Z)))
ack (S(S Z)) (S Z) = (S(S(S(S(S Z)))))
ack (S(S Z)) (S(S Z)) = (S(S(S(S(S(S(S Z)))))))
ack (S(S(S Z))) (Z) = (S(S(S(S(S Z)))))

-- Addition on natural numbers.
-- (using variables for fewer examples)
-- __HASKELLER_IGNORE__
add :: Nat -> Nat -> Nat
add x Z = x
add Z y = y
add (S Z) (S Z) = (S(S Z))
add (S Z) (S(S Z)) = (S(S(S Z)))
add (S Z) (S(S(S Z))) = (S(S(S(S Z))))
add (S(S Z)) (S Z) = (S(S(S Z)))
add (S(S Z)) (S(S Z)) = (S(S(S(S Z))))
add (S(S Z)) (S(S(S Z))) = (S(S(S(S(S Z)))))

-- Is the number even?
even :: Nat -> Bool
even Z = True
even (S Z) = False
even (S(S Z)) = True
even (S(S(S Z))) = False
even (S(S(S(S Z)))) = True
even (S(S(S(S(S Z))))) = False

-- Equality on natural numbers.
eq :: Nat -> Nat -> Bool
eq Z Z = True
eq Z (S Z) = False
eq Z (S(S Z)) = False
eq (S Z) Z = False
eq (S Z) (S Z) = True
eq (S Z) (S(S Z)) = False
eq (S(S Z)) Z = False
eq (S(S Z)) (S Z) = False
eq (S(S Z)) (S(S Z)) = True
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-- Sum of all natural numbers from 0 to $n$.
gaussSum :: Nat -> Nat
gaussSum Z = Z
gaussSum (S Z) = (S Z)
gaussSum (S(S Z)) =

(S(S(S Z)))
gaussSum (S(S(S Z))) =

(S(S(S(S(S(S Z))))))
gaussSum (S(S(S(S Z)))) =

(S(S(S(S(S(S(S(S(S(S Z))))))))))

-- BK for gaussSum
gaussAdd :: Nat -> Nat -> Nat
gaussAdd (S Z) Z = (S Z)
gaussAdd (S(S Z))(S Z) =

(S(S(S Z)))
gaussAdd (S(S(S Z)))(S(S(S Z))) =

(S(S(S(S(S(S Z))))))
gaussAdd (S(S(S(S Z))))(S(S(S(S(S(S Z)))))) =

(S(S(S(S(S(S(S(S(S(S Z))))))))))

-- The fatcorial function.
fact :: Nat -> Nat
fact Z = S(Z)
fact (S(Z)) = S(Z)
fact (S(S(Z))) = S(S(Z))
fact (S(S(S(Z)))) = S(S(S(S(S(S(Z))))))
fact (S(S(S(S(Z))))) =

S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(Z)))))))))))))))))))
)))))

fact (S(S(S(S(S(Z)))))) =
S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(

S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S
(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(
S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(Z))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))

-- The $n^{th}$ number in the Fibonacci sequence.
fib :: Nat -> Nat
fib Z = Z
fib (S(Z)) = S(Z)
fib (S(S(Z))) = S(Z)
fib (S(S(S(Z)))) = S(S(Z))
fib (S(S(S(S(Z))))) = S(S(S(Z)))
fib (S(S(S(S(S(Z)))))) = S(S(S(S(S(Z)))))

-- BK for fib
-- __HASKELLER_IGNORE__
fibAdd :: Nat -> Nat -> Nat
fibAdd Z (S Z) = (S Z)
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fibAdd (S Z) (S Z) = S(S Z)
fibAdd (S Z) (S(S Z)) = S(S(S Z))
fibAdd (S(S Z)) (S(S(S Z))) = S(S(S(S(S Z))))

-- Greater-or-equal.
geq :: Nat -> Nat -> Bool
geq Z Z = True
geq (S Z) Z = True
geq (S(S Z)) Z = True
geq Z (S Z) = False
geq (S Z) (S Z) = True
geq (S(S Z)) (S Z) = True
geq Z (S(S Z)) = False
geq (S Z) (S(S Z)) = False
geq (S(S Z)) (S(S Z)) = True

-- Multiplication on natural numbers.
mult :: Nat -> Nat -> Nat
mult Z Z = Z
mult Z (S Z) = Z
mult Z (S(S Z)) = Z
mult Z (S(S(S Z))) = Z
mult (S Z) Z = Z
mult (S Z) (S Z) = (S Z)
mult (S Z) (S(S Z)) = (S(S Z))
mult (S Z) (S(S(S Z))) = (S(S(S Z)))
mult (S(S Z)) Z = Z
mult (S(S Z)) (S Z) = (S(S Z))
mult (S(S Z)) (S(S Z)) = (S(S(S(S Z))))
mult (S(S Z)) (S(S(S Z))) = (S(S(S(S(S(S Z))))))
mult (S(S(S Z))) Z = Z
mult (S(S(S Z))) (S Z) = (S(S(S Z)))
mult (S(S(S Z))) (S(S Z)) = (S(S(S(S(S(S Z))))))
mult (S(S(S Z))) (S(S(S Z))) =

(S(S(S(S(S(S(S(S(S Z)))))))))

-- BK for mult
-- __HASKELLER_IGNORE__
multAdd :: Nat -> Nat -> Nat
multAdd (Z) (Z) =

Z
multAdd (S (Z)) (Z) =

S Z
multAdd (S (Z)) (S (Z)) =

S(S Z)
multAdd (S (Z)) (S(S (Z))) =

S(S(S Z))
multAdd (S(S (Z))) (Z) =

S(S Z)
multAdd (S(S (Z))) (S(S (Z))) =

S(S(S(S Z)))
multAdd (S(S (Z))) (S(S(S(S (Z))))) =
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S(S(S(S(S(S(S Z))))))
multAdd (S(S(S (Z)))) (Z) =

S(S(S Z))
multAdd (S(S(S (Z)))) (S(S(S (Z)))) =

S(S(S(S(S(S(S Z))))))
multAdd (S(S(S (Z)))) (S(S(S(S(S(S(S (Z)))))))) =

S(S(S(S(S(S(S(S(S(S Z)))))))))

-- Check whether the input is an odd number.
odd :: Nat -> Bool
odd Z = False
odd (S Z) = True
odd (S(S Z)) = False
odd (S(S(S Z))) = True
odd (S(S(S(S Z)))) = False
odd (S(S(S(S(S Z))))) = True

-- Subtraction on natural numbers.
sub :: Nat -> Nat -> Nat
sub Z Z = Z
sub Z (S Z) = (S Z)
sub Z (S(S Z)) = (S(S Z))
sub Z (S(S(S Z))) = (S(S(S Z)))
sub (S Z) Z = Z
sub (S Z) (S Z) = Z
sub (S Z) (S(S Z)) = (S Z)
sub (S Z) (S(S(S Z))) = (S(S Z))
sub (S(S Z)) Z = Z
sub (S(S Z)) (S Z) = Z
sub (S(S Z)) (S(S Z)) = Z
sub (S(S Z)) (S(S(S Z))) = (S Z)
sub (S(S(S Z))) Z = Z
sub (S(S(S Z))) (S Z) = Z
sub (S(S(S Z))) (S(S Z)) = Z
sub (S(S(S Z))) (S(S(S Z))) = Z

-- ===================================================
-- predicates, functions on booleans
-- ===================================================

-- Conjunction of a lists of booleans.
andL :: [Bool] -> Bool
andL [] = True
andL [True] = True
andL [False] = False
andL [True ,True] = True
andL [True ,False] = False
andL [False ,True] = False
andL [False ,False] = False
andL [True ,True ,True] = True
andL [False ,True ,True] = False
andL [True ,False ,True] = False
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andL [True ,True ,False] = False
andL [True ,False ,False] = False
andL [False ,True ,False] = False
andL [False ,False ,True] = False
andL [False ,False ,False] = False

-- Conjunction of two boolean values.
and :: Bool -> Bool -> Bool
and True True = True
and True False = False
and False True = False
and False False = False

-- Check whether the number og \lstln{True} elements
-- is even.
evenParity :: [Bool] -> Bool
evenParity [] = True
evenParity [False] = True
evenParity [True] = False
evenParity [False , False] = True
evenParity [False , True] = False
evenParity [True , False] = False
evenParity [True , True] = True
evenParity [False , False , False] = True
evenParity [False , False , True] = False
evenParity [False , True , False] = False
evenParity [False , True , True] = True
evenParity [True , False , False] = False
evenParity [True , False , True] = True
evenParity [True , True , False] = True

-- The complement of all booleans in a list.
negateAll :: [Bool] -> [Bool]
negateAll [] = []
negateAll [True] = [ False]
negateAll [False] = [True]
negateAll [False , False] = [True ,True]
negateAll [False ,True] = [True ,False]
negateAll [True ,False] = [False ,True]
negateAll [True ,True] = [False ,False]

-- Negated conjunction of a lists of booleans.
nandL :: [Bool] -> Bool
nandL [] = False
nandL [True] = False
nandL [False] = True
nandL [True ,True] = False
nandL [True ,False] = True
nandL [False ,True] = True
nandL [False ,False] = True
nandL [True ,True ,True] = False
nandL [False ,True ,True] = True
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nandL [True ,False ,True] = True
nandL [True ,True ,False] = True
nandL [True ,False ,False] = True
nandL [False ,True ,False] = True
nandL [False ,False ,True] = True
nandL [False ,False ,False] = True

-- Negated disjunction of a lists of booleans.
norL :: [Bool] -> Bool
norL [] = True
norL [True] = False
norL [False] = True
norL [True ,True] = False
norL [True , False] = False
norL [False ,True] = False
norL [False ,False] = True
norL [True ,True ,True] = False
norL [False ,True ,True] = False
norL [True ,False ,True] = False
norL [True ,True ,False] = False
norL [True ,False ,False] = False
norL [False ,True ,False] = False
norL [False ,False ,True] = False
norL [False ,False ,False] = True

-- Disjunction of two booleans.
or :: Bool -> Bool -> Bool
or True True = True
or True False = True
or False True = True
or False False = False

-- Disjunction of a list of booleans.
orL :: [Bool] -> Bool
orL [] = False
orL [True] = True
orL [False] = False
orL [True ,True] = True
orL [True ,False] = True
orL [False ,True] = True
orL [False , False] = False
orL [True ,True ,True] = True
orL [False ,True ,True] = True
orL [True ,False ,True] = True
orL [True ,True ,False] = True
orL [True ,False ,False] = True
orL [False ,True ,False] = True
orL [False ,False ,True] = True
orL [False ,False ,False] = False

-- ===================================================
-- functions on lists
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-- ===================================================

-- Appending two lists.
append :: [a] -> [a] -> [a]
append [][] = []
append [][c] = [c]
append [a][] = [a]
append [][c,d] = [c,d]
append [a][c] = [a,c]
append [a,b][] = [a,b]
append [] [a,b,c] = [a,b,c]
append [a][c,d] = [a,c,d]
append [a,b][d] = [a,b,d]
append [a,c,d][] = [a,c,d]
append [][a,b,c,d] = [a,b,c,d]
append [a][b,c,d] = [a,b,c,d]
append [a,b][c,d] = [a,b,c,d]
append [a,b,c][d] = [a,b,c,d]
append [a,b,c,d][] = [a,b,c,d]

-- Is the length of the list even?
evenLength :: [a] -> Bool
evenLength [] = True
evenLength [a] = False
evenLength [a,b] = True
evenLength [a,b,c] = False
evenLength [a,b,c,d] = True
evenLength [a,b,c,d,e] = False
evenLength [a,b,c,d,e,f] = True

-- Select all elements at even positions.
evenpos :: [a] -> [a]
evenpos [] = []
evenpos [a] = []
evenpos [a,b] = [b]
evenpos [a,b,c] = [b]
evenpos [a,b,c,d] = [b,d]
evenpos [a,b,c,d,e] = [b,d]
evenpos [a,b,c,d,e,f] = [b,d,f]

-- Split a list in two halves.
halves :: [a] -> ([a], [a])
halves [] = ([], [])
halves [a] = ([a], [])
halves [a,b] = ([a],[b])
halves [a,b,c] = ([a,b],[c])
halves [a,b,c,d] = ([a,b],[c,d])
halves [a,b,c,d,e] = ([a,b,c],[d,e])
halves [a,b,c,d,e,f] = ([a,b,c],[d,e,f])

-- Remove the last element from a list.
init :: [a] -> [a]
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init [a] = []
init [a,b] = [a]
init [a,b,c] = [a,b]
init [a,b,c,d] = [a,b,c]

-- All initial segments of the argument,
-- shortest first.
inits :: [a] -> [[a]]
inits [] = [[]]
inits [a] = [[] ,[a]]
inits [a,b] = [[] ,[a],[a,b]]
inits [a,b,c] = [[] ,[a],[a,b],[a,b,c]]
inits [a,b,c,d] = [[] ,[a],[a,b],[a,b,c],[a,b,c,d]]

-- Intersperse the given element between all two
-- consecutive elements in the list
intersperse :: a -> [a] -> [a]
intersperse x [] = []
intersperse x [y] = [y]
intersperse x [y,z] = [y,x,z]
intersperse x [y,z,v] = [y,x,z,x,v]

-- The last element of a list.
last :: [a] -> a
last [a] = a
last [a,b] = b
last [a,b,c] = c
last [a,b,c,d] = d

-- Last, but defined as total function.
lastM :: [a] -> Maybe a
lastM [] = Nothing
lastM [a] = Just a
lastM [a,b] = Just b
lastM [a,b,c] = Just c
lastM [a,b,c,d] = Just d

-- Replace all elements by the first.
multfst :: [a] -> [a]
multfst [] = []
multfst [a] = [a]
multfst [a,b] = [a,a]
multfst [a,b,c] = [a,a,a]
multfst [a,b,c,d] = [a,a,a,a]

-- Replace all elements by the last.
multlst :: [a] -> [a]
multlst [] = []
multlst [a] = [a]
multlst [a,b] = [b,b]
multlst [a,b,c] = [c,c,c]
multlst [a,b,c,d] = [d,d,d,d]
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-- Select all elements at even positions.
oddpos :: [a] -> [a]
oddpos [] = []
oddpos [a] = [a]
oddpos [a,b] = [a]
oddpos [a,b,c] = [a,c]
oddpos [a,b,c,d] = [a,c]
oddpos [a,b,c,d,e] = [a,c,e]

-- Wraps all elements into a singleton list.
pack :: [a] -> [[a]]
pack [] = [[]]
pack [a] = [[a]]
pack [a,b] = [[a],[b]]
pack [a,b,c] = [[a],[b],[c]]

-- All subsequences of a list, aka powerset on lists.
subseqs :: [a] -> [[a]]
subseqs [] = [[]]
subseqs [a] = [[a] ,[]]
subseqs [a,b] = [[a,b],[a],[b] ,[]]
subseqs [a,b,c] =

[[a,b,c],[a,b],[a,c],[a],[b,c],[b],[c] ,[]]

-- BK for subseqs
-- __HASKELLER_IGNORE__
subseqapp :: [a] -> [a] -> [a]
subseqapp [a][c] = [a,c]
subseqapp [a,b][c,d] = [a,b,c,d]
subseqapp [a,b,c,d][e,f,g,h] = [a,b,c,d,e,f,g,h]

-- Reverse of a list.
reverse :: [a] -> [a]
reverse [] = []
reverse [a] =[a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,a]
reverse [a,b,c,d] = [d,c,b,a]

-- Shift all elements to the left, by inserting
-- the first at the end.
shiftl :: [a] -> [a]
shiftl [] = []
shiftl [a] = [a]
shiftl [a,b] = [b,a]
shiftl [a,b,c] = [b,c,a]
shiftl [a,b,c,d] = [b,c,d,a]

-- Shift all elements to the right, by inserting
-- the last at the front.
shiftr :: [a] -> [a]
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shiftr [] = []
shiftr [a] = [a]
shiftr [a,b] = [b,a]
shiftr [a,b,c] = [c,a,b]
shiftr [a,b,c,d] = [d,a,b,c]

-- Inserts an element at the end.
snoc :: a -> [a] -> [a]
snoc a [] = [a]
snoc b [a] = [a,b]
snoc c [a,b] = [a,b,c]
snoc d [a,b,c] = [a,b,c,d]

-- Swaps every two concequitive elements.
swap :: [a] -> [a]
swap [] = []
swap [a] = [a]
swap [a,b] = [b,a]
swap [a,b,c] = [b,a,c]
swap [a,b,c,d] = [b,a,d,c]
swap [a,b,c,d,e] = [b,a,d,c,e]
swap [a,b,c,d,e,f] = [b,a,d,c,f,e]

-- Switches the first with the last element.
switch :: [a] -> [a]
switch [] = []
switch [a] = [a]
switch [a,b] = [b,a]
switch [a,b,c] = [c,b,a]
switch [a,b,c,d] = [d,b,c,a]
switch [a,b,c,d,e] = [e,b,c,d,a]
switch [a,b,c,d,e,f] = [f,b,c,d,e,a]

-- Computes the lists of elements at odd and even
-- positions
split :: [a] -> ([a],[a])
split [] = ([] ,[])
split [x] = ([x] ,[])
split [x,y] = ([x],[y])
split [x,y,z] = ([x,z],[y])
split [x,y,z,v] = ([x,z],[y,v])
split [x,y,z,v,w] = ([x,z,w],[y,v])
split [x,y,z,v,w,u] = ([x,z,w],[y,v,u])

-- Removes the first element
tail :: [a] -> [a]
tail [a] = []
tail [a,b] = [b]
tail [a,b,c] = [b,c]
tail [a,b,c,d] = [b,c,d]

-- \lstln{map tail}
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tails :: [a] -> [[a]]
tails [] = [[]]
tails [a] = [[a] ,[]]
tails [a,b] = [[a,b],[b] ,[]]
tails [a,b,c] = [[a,b,c],[b,c],[c] ,[]]

-- Compute the list first and second projections.
unzip :: [(a,a)] -> ([a], [a])
unzip [(a,b)] = ([a],[b])
unzip [(a,b) ,(c,d)] = ([a,c],[b,d])
unzip [(a,b) ,(c,d) ,(e,f)] = ([a,c,e],[b,d,f])
unzip [(a,b) ,(c,d) ,(e,f) ,(g,h)] =

([a,c,e,g],[b,d,f,h])

-- Combines two lists by interleaving their elements.
weave :: [a] -> [a] -> [a]
weave [] [] = []
weave [a][] = [a]
weave [][c] = [c]
weave [a][c] = [a,c]
weave [a,b][] = [a,b]
weave [][c,d] = [c,d]
weave [a,b][c] = [a,c,b]
weave [a][c,d] = [a,c,d]
weave [a,b][c,d] = [a,c,b,d]

-- Computes the list of corresponding pairs.
zip :: [a] -> [a] -> [(a,a)]
zip [] [] = []
zip [a] [] = []
zip [] [a] = []
zip [a] [b] = [(a,b)]
zip [a,b] [c] = [(a,c)]
zip [a] [b,c] = [(a,b)]
zip [a,b] [c,d] = [(a,c) ,(b,d)]

-- ===================================================
-- functions on lists of lists
-- ===================================================

-- Concatenate all lists.
concat :: [[a]] -> [a]
concat [] = []
concat [[]] = []
concat [[] ,[]] = []
concat [[] ,[a]] = [a]
concat [[] ,[a,b]] = [a,b]
concat [[a]] = [a]
concat [[a] ,[]] = [a]
concat [[a],[b]] = [a,b]
concat [[a],[c,d]] = [a,c,d]
concat [[c,d]] = [c,d]
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concat [[a,b] ,[]] = [a,b]
concat [[a,b],[c]] = [a,b,c]
concat [[a,b],[c,d]] = [a,b,c,d]

-- \lstln{map last}
lasts :: [[a]] -> [a]
lasts [] = []
lasts [[a]] = [a]
lasts [[a,b]] = [b]
lasts [[a,b,c]] = [c]
lasts [[b],[a]] = [b,a]
lasts [[c],[a,b]] = [c,b]
lasts [[a,b],[c,d]] = [b,d]
lasts [[c,d],[b]] = [d,b]
lasts [[c],[d,e],[f]] = [c,e,f]
lasts [[c,d],[e,f],[g]] = [d,f,g]

-- Inerts the element at front of each list.
mapCons :: a -> [[a]] -> [[a]]
mapCons a [] = []
mapCons a [[]] = [[a]]
mapCons a [xs] = [(a:xs)]
mapCons a [xs ,ys] = [(a:xs) ,(a:ys)]
mapCons a [xs ,ys ,zs] = [(a:xs) ,(a:ys) ,(a:zs)]
mapCons a [xs ,ys ,zs ,ws] =

[(a:xs) ,(a:ys) ,(a:zs) ,(a:ws)]

-- \lstln{map tail}
mapTail :: [[a]] -> [[a]]
mapTail [] = []
mapTail [(x:xs)] = [xs]
mapTail [(x:xs) ,(y:ys)] = [xs ,ys]
mapTail [(x:xs) ,(y:ys) ,(z:zs)] = [xs ,ys ,zs]

-- Transpose a matrix.
transpose :: [[a]] -> [[a]]
-- one row
transpose [[ a11 ]] = [[ a11 ]]
transpose [[a11 ,a12 ]] = [[ a11 ],[ a12 ]]
transpose [[a11 ,a12 ,a13 ]] = [[ a11 ],[ a12 ],[ a13 ]]
-- two rows
transpose [[ a11]

,[a21 ]] = [[a11 ,a21 ]]
transpose [[a11 ,a12]

,[a21 ,a22 ]] = [[a11 ,a21]
,[a12 ,a22 ]]

transpose [[a11 ,a12 ,a13]
,[a21 ,a22 ,a23 ]] = [[a11 ,a21]

,[a12 ,a22]
,[a13 ,a23 ]]

-- three rows
transpose [[ a11]
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,[a21]
,[a31 ]] =[[ a11 ,a21 ,a31 ]]

transpose [[a11 ,a12]
,[a21 ,a22]
,[a31 ,a32 ]] = [[a11 ,a21 ,a31]

,[a12 ,a22 ,a32 ]]
transpose [[a11 ,a12 ,a13]

,[a21 ,a22 ,a23]
,[a31 ,a32 ,a33 ]] = [[a11 ,a21 ,a31]

,[a12 ,a22 ,a32]
,[a13 ,a23 ,a33 ]]

-- Turns a matrix into a list, by appending
-- its columns.
weaveL :: [[a]] -> [a]
weaveL [] = []
weaveL [[ a11 ]] = [a11]
weaveL [[a11 ,a12 ]] = [a11 ,a12]
weaveL [[a11 ,a12 ,a13 ]] = [a11 ,a12 ,a13]
weaveL [[ a11]

,[a21 ]] = [a11 ,a21]
weaveL [[ a11 ,a12]

,[a21 ]] = [a11 ,a21 ,a12]
weaveL [[ a11]

,[a21 ,a22 ]] = [a11 ,a21 ,a22]
weaveL [[a11 ,a12]

,[a21 ,a22 ]] = [a11 ,a21 ,a12 ,a22]
weaveL [[ a11 ,a12 ,a13]

,[a21 ,a22 ]] = [a11 ,a21 ,a12 ,a22 ,a13]
weaveL [[ a11 ,a12]

,[a21 ,a22 , a23 ]] = [a11 ,a21 ,a12 ,a22 ,a23]
weaveL [[ a11]

,[a21]
,[a31 ]] = [a11 ,a21 ,a31]

weaveL [[a11 ,a12]
,[a21]
,[a31 ]] = [a11 ,a21 ,a31 ,a12]

weaveL [[ a11]
,[a21 ,a22]
,[a31 ]] = [a11 ,a21 ,a31 ,a22]

weaveL [[ a11]
,[a21]
,[a31 ,a32 ]] = [a11 ,a21 ,a31 ,a32]

weaveL [[ a11]
,[a21 ,a22]
,[a31 ,a32 ]] = [a11 ,a21 ,a31 ,a22 ,a32]

weaveL [[a11 ,a12]
,[a21]
,[a31 ,a32 ]] = [a11 ,a21 ,a31 ,a12 ,a32]

weaveL [[a11 ,a12]
,[a21 ,a22]
,[a31 ]] = [a11 ,a21 ,a31 ,a12 ,a22]
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-- ===================================================
-- functions on naturals and lists
-- ===================================================

-- Increment all elements by a given number.
addN :: Nat -> [Nat] -> [Nat]
addN Z [] = []
addN (S Z) [] = []
addN (S(S Z)) [] = []
addN Z [Z] = [Z]
addN Z [S Z] = [S Z]
addN Z [S(S Z)] = [S(S Z)]
addN Z [Z,(S Z)] = [Z,(S Z)]
addN Z [(S Z),Z] = [(S Z),Z]
addN (S Z) [Z,(S Z)] = [S Z,S(S Z)]
addN (S Z) [(S Z),Z] = [S(S Z),S Z]
addN (S Z) [Z] = [S Z]
addN (S Z) [S Z] = [S(S Z)]
addN (S Z) [S(S Z)] = [S(S(S Z))]
addN (S(S Z)) [Z] = [S(S Z)]
addN (S(S Z)) [S Z] = [S(S(S Z))]
addN (S(S Z)) [S(S Z)] = [S(S(S(S Z)))]
addN (S(S Z)) [Z,(S Z)] = [S(S Z),S(S(S Z))]
addN (S(S Z)) [S(S Z),Z] = [S(S(S(S Z))),S(S Z)]

-- Are all numbers even?
alleven :: [Nat] -> Bool
alleven [] = True
alleven [Z] = True
alleven [S Z] = False
alleven [S(S Z)] = True
alleven [S(S(S Z))] = False
alleven [Z, Z] = True
alleven [Z, S Z] = False
alleven [Z, S(S Z)] = True
alleven [Z, S(S(S Z))] = False
alleven [S Z, Z] = False
alleven [S Z, S Z] = False
alleven [S Z, S(S Z)] = False
alleven [S Z, S(S(S Z))] = False
alleven [S(S Z), Z] = True
alleven [S(S Z), S Z] = False
alleven [S(S Z), S(S Z)] = True
alleven [S(S Z), S(S(S Z))] = False
alleven [S(S(S Z)), Z] = False
alleven [S(S(S Z)), S Z] = False
alleven [S(S(S Z)), S(S Z)] = False
alleven [S(S(S Z)), S(S(S Z))] = False

-- Are all numbers odd?
allodd :: [Nat] -> Bool
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allodd [] = True
allodd [Z] = False
allodd [S Z] = True
allodd [S(S Z)] = False
allodd [S(S(S Z))] = True
allodd [Z, Z] = False
allodd [Z, S Z] = False
allodd [Z, S(S Z)] = False
allodd [Z, S(S(S Z))] = False
allodd [S Z, Z] = False
allodd [S Z, S Z] = True
allodd [S Z, S(S Z)] = False
allodd [S Z, S(S(S Z))] = True
allodd [S(S Z), Z] = False
allodd [S(S Z), S Z] = False
allodd [S(S Z), S(S Z)] = False
allodd [S(S Z), S(S(S Z))] = False
allodd [S(S(S Z)), Z] = False
allodd [S(S(S Z)), S Z] = True
allodd [S(S(S Z)), S(S Z)] = False
allodd [S(S(S Z)), S(S(S Z))] = True

-- Select all even numbers.
evens :: [Nat] -> [Nat]
evens [] = []
evens [Z] = [Z]
evens [S Z] = []
evens [S(S Z)] = [S(S Z)]
evens [S(S(S Z))] = []
evens [Z,Z] = [Z,Z]
evens [Z,S Z] = [Z]
evens [Z,S(S Z)] = [Z,S(S Z)]
evens [Z,S(S(S Z))] = [Z]
evens [S Z, Z] = [Z]
evens [S Z, S Z] = []
evens [S Z, S(S Z)] = [S(S Z)]
evens [S Z, S(S(S Z))] = []
evens [S(S Z), Z] = [S(S Z),Z]
evens [S(S Z), S Z] = [S(S Z)]
evens [S(S Z), S(S Z)] = [S(S Z),S(S Z)]
evens [S(S Z), S(S(S Z))] = [S(S Z)]
evens [S( S(S Z)), Z] = [Z]
evens [S( S(S Z)), S Z] = []
evens [S( S(S Z)), S(S Z)] = [S(S Z)]
evens [S( S(S Z)), S( S(S Z))] = []

-- Increment al numbers in a list by one
incr :: [Nat] -> [Nat]
incr [] = []
incr [Z] = [S Z]
incr [S Z] = [S(S Z)]
incr [Z,S Z] = [S Z,S(S Z)]
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incr [S Z,Z] = [S(S Z),S Z]

-- The length of a list.
length :: [a] -> Nat
length [] = Z
length [a] = S Z
length [a,b] = S(S Z)
length [a,b,c] = S(S(S Z))

-- \lstln{map length}
lengths :: [[a]] -> [Nat]
-- 0 sublist
lengths [] = []
lengths [[]] = [Z]
-- 1 sublist
lengths [[a]] = [S Z]
lengths [[b,a]] = [S(S Z)]
lengths [[c,b,a]] = [S(S(S Z))]
-- 2 0/n sublists
lengths [[] ,[]] = [Z, Z]
lengths [[] ,[a]] = [Z,S Z]
lengths [[] ,[b,a]] = [Z,S(S Z)]
-- 2 1/n sublists
lengths [[a] ,[]] = [S Z, Z]
lengths [[b],[a]] = [S Z,S Z]
lengths [[c],[b,a]] = [S Z,S(S Z)]
-- 2 2/n sublists
lengths [[c,a] ,[]] = [S(S Z), Z]
lengths [[b,a],[c]] = [S(S Z),S Z]
lengths [[c,d],[b,a]] = [S(S Z),S(S Z)]
-- 3 1/1/1 sublists
lengths [[a],[b],[c]] = [S Z, S Z, S Z]

-- Return the $n^{th}$ element.
nthElem :: [a] -> Nat -> a
nthElem (x:xs) Z = x
nthElem (x:y:xs) (S Z) = y
nthElem (x:y:z:xs) (S(S Z)) = z
nthElem (x:y:z:u:xs) (S(S(S Z))) = u
nthElem (x:y:z:u:v:xs) (S(S(S(S Z)))) = v

-- Are all elements odd?
oddslist :: [Nat] -> Bool
oddslist [] = True
oddslist [Z] = False
oddslist [S Z] = True
oddslist [S(S Z)] = False
oddslist [S(S(S Z))] = True
oddslist [Z, Z] = False
oddslist [Z, S Z] = False
oddslist [Z, S(S Z)] = False
oddslist [Z, S(S(S Z))] = False
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oddslist [S Z, Z] = False
oddslist [S Z, S Z] = True
oddslist [S Z, S(S Z)] = False
oddslist [S Z, S(S(S Z))] = True
oddslist [S(S Z), Z] = False
oddslist [S(S Z), S Z] = False
oddslist [S(S Z), S(S Z)] = False
oddslist [S(S Z), S(S(S Z))] = False
oddslist [S(S(S Z)), Z] = False
oddslist [S(S(S Z)), S Z] = True
oddslist [S(S(S Z)), S(S Z)] = False
oddslist [S(S(S Z)), S(S(S Z))] = True

-- Select all odd elements.
odds :: [Nat] -> [Nat]
odds [] = []
odds [Z] = []
odds [S Z] = [S Z]
odds [S(S Z)] = []
odds [S(S(S Z))] = [(S(S(S Z)))]
odds [Z,Z] = []
odds [Z,S Z] = [S Z]
odds [Z,S(S Z)] = []
odds [Z,S(S(S Z))] = [S(S(S Z))]
odds [S Z, Z] = [S Z]
odds [S Z, S Z] = [S Z, S Z]
odds [S Z, S(S Z)] = [(S Z)]
odds [S Z, S(S(S Z))] = [S Z, S(S(S Z))]
odds [S(S Z), Z] = []
odds [S(S Z), S Z] = [(S Z)]
odds [S(S Z), S(S Z)] = []
odds [S(S Z), S(S(S Z))] = [(S(S(S Z)))]
odds [S( S(S Z)), Z] = [S( S(S Z))]
odds [S( S(S Z)), S Z] = [S( S(S Z)), S Z]
odds [S( S(S Z)), S(S Z)] = [(S(S(S Z)))]
odds [S( S(S Z)), S( S(S Z))] =

[S( S(S Z)), S( S(S Z))]

-- Drop the first \lstln{n} elements of a list
drop :: Nat -> [a] -> [a]
drop Z [] = []
drop Z [a] = [a]
drop (S Z) [] = []
drop (S(S Z)) [] = []
drop Z [a,b] = [a,b]
drop Z [a,b,c] = [a,b,c]
drop (S Z) [a] = []
drop (S Z) [a,b] = [b]
drop (S Z) [a,b,c] = [b,c]
drop (S(S Z)) [a] = []
drop (S(S Z)) [a,b] = []
drop (S(S Z)) [a,b,c] = [c]
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drop (S(S(S Z))) [] = []
drop (S(S(S Z))) [a] = []
drop (S(S(S Z))) [a,b] = []
drop (S(S(S Z))) [a,b,c] = []

-- Split a list before at given position.
splitAt :: Nat -> [a] -> ([a],[a])
splitAt Z [a] = ([] ,[a])
splitAt Z [a,b] = ([] ,[a,b])
splitAt Z [a,b,c] = ([] ,[a,b,c])
splitAt Z [a,b,c,d] = ([] ,[a,b,c,d])
splitAt (S Z) [a] = ([a] ,[])
splitAt (S Z) [a,b] = ([a],[b])
splitAt (S Z) [a,b,c] = ([a],[b,c])
splitAt (S Z) [a,b,c,d] = ([a],[b,c,d])
splitAt (S(S Z)) [a] = ([a] ,[])
splitAt (S(S Z)) [a,b] = ([a,b] ,[])
splitAt (S(S Z)) [a,b,c] = ([a,b],[c])
splitAt (S(S Z)) [a,b,c,d] = ([a,b],[c,d])
splitAt (S(S(S Z))) [a] = ([a] ,[])
splitAt (S(S(S Z))) [a,b] = ([a,b] ,[])
splitAt (S(S(S Z))) [a,b,c] = ([a,b,c] ,[])
splitAt (S(S(S Z))) [a,b,c,d] = ([a,b,c],[d])

-- The sum of a list of integers.
sum :: [Nat] -> Nat
sum [] = Z
sum [Z] = Z
sum [S Z] = S Z
sum [S(S Z)] = S(S Z)
sum [Z,Z] = Z
sum [Z,S Z] = S Z
sum [Z,S(S Z)] = S(S Z)
sum [S Z,Z] = S Z
sum [S Z,S Z] = S(S Z)
sum [S Z,S(S Z)] = S(S(S Z))
sum [S(S Z),Z] = S(S Z)
sum [S(S Z),S Z] = S(S(S Z))
sum [S(S Z),S(S Z)] = S(S(S(S Z)))

-- A list of length of length \lstln{n} containing
-- only the given element.
replicate :: a -> Nat -> [a]
replicate a Z = []
replicate a (S Z) = [a]
replicate a (S(S Z)) = [a,a]
replicate a (S(S(S Z))) = [a,a,a]
replicate a (S(S(S(S Z)))) = [a,a,a,a]

-- Take the first $n$ elements.
take :: Nat -> [a] -> [a]
take Z [] = []
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take Z [a] = []
take Z [b,c] = []
take (S Z) [] = []
take (S Z) [d] = [d]
take (S Z) [e,f] = [e]
take (S(S Z)) [] = []
take (S(S Z)) [g] = [g]
take (S(S Z)) [h,i] = [h,i]
take (S(S(S Z))) [] = []
take (S(S(S Z))) [j] = [j]
take (S(S(S Z))) [k,l] = [k,l]

-- Remove all non-zero integers from a list
zeros :: [Nat] -> [Nat]
zeros [] = []
zeros [Z] = [Z]
zeros [S x] = []
zeros [Z,S x] = [Z]
zeros [S x,Z] = [Z]
zeros [S x,S y] = []
zeros [Z,Z] = [Z,Z]

-- ===================================================
-- functions on trees
-- ===================================================

-- Preorder traversal of a binary tree.
preorder :: (NTree a) -> [a]
preorder NilT = []
preorder (Node a NilT NilT) = [a]
preorder (Node a

(Node b NilT NilT)
(Node c NilT NilT)) = [a,b,c]

preorder (Node a
(Node b

(Node c NilT NilT)
(Node d NilT NilT))

(Node e
(Node f NilT NilT)
(Node g NilT NilT))) = [a,b,c,d,e,f,g]

-- BK of preorder
-- __HASKELLER_IGNORE__
preapp :: [a] -> [a] -> [a]
preapp [] [] = []
preapp [a] [b] = [a,b]
preapp [a,b] [c,d] = [a,b,c,d]
preapp [a,b,c][d,e,f] = [a,b,c,d,e,f]

-- Inorder traversal of a binary tree.
inorder :: (NTree a) -> [a]
inorder NilT = []

231



D. IgorIIH Specification

inorder (Node a NilT NilT) = [a]
inorder (Node a

(Node b NilT NilT)
(Node c NilT NilT)) = [b,a,c]

inorder (Node a
(Node b

(Node c NilT NilT)
(Node d NilT NilT))

(Node e
(Node f NilT NilT)
(Node g NilT NilT))) = [c,b,d,a,f,e,g]

-- BK of inorder
-- __HASKELLER_IGNORE__
inapp :: [a] -> [a] -> [a]
inapp [] [] = []
inapp [x] [] = [x]
inapp [a] [b,c] = [a,b,c]
inapp [a,b] [c,d,e] = [a,b,c,d,e]
inapp [a,b,c] [d,e,f,g] = [a,b,c,d,e,f,g]

-- Postorder traversal of a binary tree.
postorder :: (NTree a) -> [a]
postorder NilT = []
postorder (Node a NilT NilT) = [a]
postorder (Node a

(Node b NilT NilT)
(Node c NilT NilT)) = [b,c,a]

postorder (Node a
(Node b

(Node c NilT NilT)
(Node d NilT NilT))

(Node e
(Node f NilT NilT)
(Node g NilT NilT))) = [c,d,b,f,g,e,a]

-- BK of postrder
-- __HASKELLER_IGNORE__
postapp :: [a] -> [a] -> [a]
postapp [] [] = []
postapp [a] [b] = [a,b]
postapp [a,b] [c,d] = [a,b,c,d]
postapp [a,b,c][d,e,f] = [a,b,c,d,e,f]

-- Mirror a binary tree by swapping all its subtrees.
mirror :: (NTree a) -> (NTree a)
mirror NilT = NilT
mirror (Node a NilT NilT) = (Node a NilT NilT)
mirror (Node b

(Node a NilT NilT)
(Node c NilT NilT)) = (Node b

(Node c NilT NilT)
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(Node a NilT NilT))
mirror (Node d

(Node b
(Node a NilT NilT)
(Node c NilT NilT))

(Node f
(Node e NilT NilT)
(Node g NilT NilT))) =

(Node d
(Node f

(Node g NilT NilT)
(Node e NilT NilT))

(Node b
(Node c NilT NilT)
(Node a NilT NilT)))

-- ===================================================
-- functions on mixed inputs
-- ===================================================

-- pepper i [] = [(i,Nothing)]
-- pepper i (x:xs) =
-- (i,Just (x,i+1)):(pepper’ (i+1) xs)
-- Annotate each element with an index and the index
-- of its predecessor.
pepper :: Nat -> [a] -> [(Nat , Maybe (a,Nat))]
pepper p [] = [(p, Nothing )]
pepper p [a] = [(p, Just (a, S p)) ,(S p, Nothing )]
pepper p [a,b] = [(p, Just (a, S p))

,(S p, Just (b, S(S p)))
,(S(S p), Nothing )]

pepper p [a,b,c] = [(p, Just (a, S p))
,(S p, Just (b, S(S p)))
,(S(S p), Just (c, S(S(S p))))
,(S(S(S p)), Nothing )]

pepper p [a,b,c,d] = [(p, Just (a, S p))
,(S p, Just (b, S(S p)))
,(S(S p), Just (c, S(S(S p))))
,(S(S(S p)), Just (d, S(S(S(S p)))))
,(S(S(S(S p))), Nothing )]

-- Index all elements starting by the given number.
pepperF :: Nat -> [a] -> [(Nat , Maybe a)]
pepperF p [] = [(p, Nothing )]
pepperF p [a] = [(p, Just a) ,(S p, Nothing )]
pepperF p [a,b] = [(p, Just a) ,(S p, Just b)

,(S(S p), Nothing )]
pepperF p [a,b,c] = [(p, Just a) ,(S p, Just b)

,(S(S p), Just c) ,(S(S(S p)), Nothing )]
pepperF p [a,b,c,d] = [(p, Just a) ,(S p, Just b)

,(S(S p), Just c) ,(S(S(S p)), Just d)

233



D. IgorIIH Specification

,(S(S(S(S p))), Nothing )]

-- ===================================================
-- functions on other data types
-- ===================================================

data Object = O1 | O2 | O3 | O4
deriving (Eq ,Ord ,Typeable ,Show)

data Cargo = NOCARGO | IN Object Cargo
deriving (Eq ,Ord ,Typeable ,Show)

data State = START | LOD Object State
| UNL Object State | FLY State

deriving (Eq ,Ord ,Typeable ,Show)

type instance PF Cargo =
Const One :+: (Const Object :*: Id)

instance Mu Cargo where
inn (Left _) = NOCARGO
inn (Right (o,c)) = IN o c
out NOCARGO = Left _L
out (IN o c) = Right (o,c)

type instance PF State =
Const One :+: (Const Object :*: Id)

instance Mu State where
inn (Left _) = START
inn (Right (o,s)) = LOD o s
out START = Left _L
out (LOD o s) = Right (o,s)

-- The planning problem of loading a rocket and
-- flying it to the moon.
rocket :: Cargo -> State -> State
rocket NOCARGO s = FLY s
rocket (IN x NOCARGO ) s =

UNL x (FLY (LOD x s))
rocket (IN x (IN y NOCARGO )) s =

UNL x
(UNL y

(FLY
(LOD y

(LOD x s))))
rocket (IN x (IN y (IN z NOCARGO ))) s =

UNL x
(UNL y

(UNL z
(FLY

(LOD z
(LOD y

(LOD x s))))))
rocket (IN w (IN x (IN y (IN z NOCARGO )))) s =

UNL w
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(UNL x
(UNL y

(UNL z
(FLY

(LOD z
(LOD y

(LOD x
(LOD w s))))))))

data Disc = D0 | D Disc
deriving (Eq ,Ord ,Typeable ,Show)

data Action = NOOP | MV Disc Peg Peg Action
deriving (Eq ,Ord ,Typeable ,Show)

data Peg = PegA | PegB | PegC
deriving (Eq ,Ord ,Typeable ,Show)

type instance PF Disc = Const One :+: Id
instance Mu Disc where

inn (Left _) = D0
inn (Right d) = D d
out D0 = Left _L
out (D d) = Right d

type instance PF Action =
Const One :+: (Const Disc :*:

(Const Peg :*: (Const Peg :*: Id)))
instance Mu Action where

inn (Left _) = NOOP
inn (Right (d,(p1 ,(p2 ,a)))) = MV d p1 p2 a
out NOOP = Left _L
out (MV d p1 p2 a) = Right (d,(p1 ,(p2 ,a)))

-- Recursive definition of The Tower of Hanoi problem.
hanoi :: Disc -> Peg -> Peg -> Peg -> Action -> Action
hanoi D0 src aux dst s = MV D0 src dst s
hanoi (D D0) src aux dst s =

MV D0 aux dst
(MV (D D0) src dst

(MV D0 src aux s))
hanoi (D(D D0)) src aux dst s =

MV D0 src dst
(MV (D D0) aux dst

(MV D0 aux src
(MV (D(D D0)) src dst

(MV D0 dst aux
(MV (D D0) src aux

(MV D0 src dst s ))))))
hanoi (D(D(D D0))) src aux dst NOOP =

MV D0 aux dst
(MV (D D0) src dst

(MV D0 src aux
(MV (D (D D0)) aux dst
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(MV D0 dst src
(MV (D D0) aux src

(MV D0 aux dst
(MV (D (D (D D0))) src dst

(MV D0 src aux
(MV (D D0) dst aux

(MV D0 dst src
(MV (D (D D0)) src aux

(MV D0 aux dst
(MV (D D0) src dst

(MV D0 src aux NOOP))))))))))))))

-- Enumerating all sentences of a grammar
-- Intended Grammar
-- S := NP VP
-- NP := D N
-- VP := V NP | V S
sentence :: Nat -> [Char]
sentence Z = [’D’, ’N’, ’V’, ’D’, ’N’]
sentence (S Z) = [’D’, ’N’, ’V’, ’D’, ’N’

, ’V’, ’D’, ’N’]
sentence (S( S Z)) = [’D’, ’N’, ’V’, ’D’, ’N’

, ’V’, ’D’, ’N’, ’V’, ’D’, ’N’]

-- ===================================================
-- functions forUCI classification problems
-- ===================================================

data Color = Purple | Yellow
deriving (Eq ,Ord ,Typeable ,Show)

data Size = Large | Small
deriving (Eq ,Ord ,Typeable ,Show)

data Act = Dip | Stretch
deriving (Eq ,Ord ,Typeable ,Show)

data Age = Adult | Child
deriving (Eq ,Ord ,Typeable ,Show)

data Inflate = FF | TT
deriving (Eq ,Ord ,Typeable ,Show)

-- UCI classification problem
balloons :: (Color ,Size ,Act ,Age) -> Inflate
balloons (Yellow ,Small ,Stretch ,Adult) = TT
balloons (Yellow ,Small ,Stretch ,Child) = TT
balloons (Yellow ,Small ,Dip ,Adult) = TT
balloons (Yellow ,Small ,Dip ,Child) = TT
balloons (Yellow ,Large ,Stretch ,Adult) = FF
balloons (Yellow ,Large ,Stretch ,Child) = FF
balloons (Yellow ,Large ,Dip ,Adult) = FF
balloons (Yellow ,Large ,Dip ,Child) = FF
balloons (Purple ,Small ,Stretch ,Adult) = FF
balloons (Purple ,Small ,Stretch ,Child) = FF
balloons (Purple ,Small ,Dip ,Adult) = FF
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balloons (Purple ,Small ,Dip ,Child) = FF
balloons (Purple ,Large ,Stretch ,Adult) = FF
balloons (Purple ,Large ,Stretch ,Child) = FF
balloons (Purple ,Large ,Dip ,Adult) = FF
balloons (Purple ,Large ,Dip ,Child) = FF

data Weather = Sunny | Rain | Overcast | Hot
| Cool | Mild | Warm | Cold | High
| Normal | Weak | Strong | Change | Same

deriving (Eq ,Ord ,Typeable ,Show)

-- Classification poblem (Mitchell)
playTennis :: (Weather , Weather , Weather , Weather )

-> Bool
playTennis (Sunny ,Hot ,High ,Weak) = False
playTennis (Sunny ,Hot ,High , Strong ) = False
playTennis (Overcast ,Hot ,High ,Weak) = True
playTennis (Rain ,Mild ,High ,Weak) = True
playTennis (Rain ,Cool ,Normal ,Weak) = True
playTennis (Rain ,Cool ,Normal , Strong ) = False
playTennis (Overcast ,Cool ,Normal , Strong ) = True
playTennis (Sunny ,Mild ,High ,Weak) = False
playTennis (Sunny ,Cool ,Normal ,Weak) = True
playTennis (Rain ,Mild ,Normal ,Weak) = True
playTennis (Sunny ,Mild ,Normal , Strong ) = True
playTennis (Overcast ,Mild ,High , Strong ) = True
playTennis (Overcast ,Hot ,Normal ,Weak) = True
playTennis (Rain ,Mild ,High , Strong ) = False

-- Classification poblem (Mitchell)
enjoySport :: ( Weather , Weather , Weather

, Weather , Weather , Weather )
-> Bool

enjoySport (Sunny ,Warm ,Normal ,Strong ,Warm ,Same) = True
enjoySport (Sunny ,Warm ,High ,Strong ,Warm ,Same) = True
enjoySport (Rain ,Cold ,High ,Strong ,Warm , Change ) = False
enjoySport (Sunny ,Warm ,High ,Strong ,Cool , Change ) = True

data LAge = Young | PrePresbyopic | Presbyopic
deriving (Eq ,Ord ,Typeable ,Show)

data LPrescription = Myope | Hypermetrope
deriving (Eq ,Ord ,Typeable ,Show)

data LAstigmatic = No | Yes
deriving (Eq ,Ord ,Typeable ,Show)

data LTears = Reduced | Norml
deriving (Eq ,Ord ,Typeable ,Show)

data LCLType = None | Hard | Soft
deriving (Eq ,Ord ,Typeable ,Show)

-- UCI classification problem
lenses :: (LAge , LPrescription , LAstigmatic , LTears )

-> LCLType
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lenses (Young ,Myope ,No , Reduced ) = None
lenses (Young ,Myope ,No ,Norml) = Soft
lenses (Young ,Myope ,Yes , Reduced ) = None
lenses (Young ,Myope ,Yes ,Norml) = Hard
lenses (Young , Hypermetrope ,No , Reduced ) = None
lenses (Young , Hypermetrope ,No ,Norml) = Soft
lenses (Young , Hypermetrope ,Yes , Reduced ) = None
lenses (Young , Hypermetrope ,Yes ,Norml) = Hard
lenses ( PrePresbyopic ,Myope ,No , Reduced ) = None
lenses ( PrePresbyopic ,Myope ,No ,Norml) = Soft
lenses ( PrePresbyopic ,Myope ,Yes , Reduced ) = None
lenses ( PrePresbyopic ,Myope ,Yes ,Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope ,No , Reduced ) = None
lenses ( PrePresbyopic , Hypermetrope ,No ,Norml) = Soft
lenses ( PrePresbyopic , Hypermetrope ,Yes , Reduced ) = None
lenses ( PrePresbyopic , Hypermetrope ,Yes ,Norml) = None
lenses (Presbyopic ,Myope ,No , Reduced ) = None
lenses (Presbyopic ,Myope ,No ,Norml) = None
lenses (Presbyopic ,Myope ,Yes , Reduced ) = None
lenses (Presbyopic ,Myope ,Yes ,Norml) = Hard
lenses (Presbyopic , Hypermetrope ,No , Reduced ) = None
lenses (Presbyopic , Hypermetrope ,No ,Norml) = Soft
lenses (Presbyopic , Hypermetrope ,Yes , Reduced ) = None
lenses (Presbyopic , Hypermetrope ,Yes ,Norml) = None
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Listing E.1: Igor IIH manual
.___ ._ ._
| | ____ ____ ._____| || | ._
| |/ __ \/ _ \| __ \ || | _| |__
| / /_/ ) <_> ) | \/ || |/_ _/
|___\___ /\ ____ /|__| |_||_| |_|

/_____/ v0 .8.0

Welcome to IgorII .
Type :h to get help.
IgorII > :v

Interactive commands (may be abbreviated ):
==========================================
:quit

Quit program .
:help

Show this help.
: verboseHelp

Show verbose help.
:load <path/to/file >

Load a spec file into context .
:reset

Reset the current context .
:batch <path/to/file >

Run a batch file
:yell " something "

Yell on command line.
:set <option >

Set options .
:info

Show current settings .
: generalise <tgts > [with <bgks >]

Start generalisation .
:test [<i>] <tgts > [with <bgks >] on "expr"

Test a generalised program .

Example Igor2 session :
==========================================

A typical Igor2 session would be as follows :

IgorII > :load expl/ Examples .hs
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File loaded in 1.0201 s
IgorII > :s + enhanced ; :s + simplify
IgorII > :g lasT

- - - - START SYNTHESIS WITH - - - -

Targets ’lasT ’
Background <none >
Simplified True
Greedy rule - splitting False
Enhanced True
Use paramorphisms False
Compare rec args AWise
DumpLog False
Debug False
Maximal tiers 0
Maximal loops -1

- - - - - - - FINISHED - - - - - - -

lasT in 2 loops
CPU: 0.0080 s

HYPOTHESIS 1 of 1

lasT [a0] = a0
lasT (_ : (a1 : a2)) = lasT (a1 : a2)

IgorII > :quit
Bye.

Explanation of Igor2 ’s commands :
==========================================

Generally commands can be abbreviated with the
first character of the long command preceeded by
a colon , e.g. ’:h’ for ’:help ’. Multiple commands
can be entered either one at a time , or together
separated by a semicolon . Passing commands to Igor2
in batch mode or at command -line is similar . Except
that you need to escape string quotes at command
line with ’\"’. For an example see the batch file

’expl/batch.txt ’

:quit
Quit the program .

:help
A short help text.

: verboseHelp
This longer helpt text.
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:load <path/to/file >
Load a specification file into Igor2 ’s context .
The file is required to be a correct Haskell
module and therefore has to type check. The I/O
for a target function must be non -recursive , of
course . All Prelude data types ([a], Bool ,
Maybe a, Either a b) can be used and further data
types can be defined in this module . Imports are
not supported , yet. Note that the path is not
expanded , so avoid ’~’ for your home directory .
Relativ paths do work , however use absolute paths
to be on the safe side.

:reset
Resets the current context , and sets all options
to their default values .

:batch <path/to/file >
Run all commands in the batch file until EOF , or
command is not exectuable , or ’:quit ’. Note that
the path is not expanded , so avoid ’~’.

:yell " something "
Print " something " one the prompt .

:set <option >
Set an option , where <option > is one of the
following .

+debug enable debug mode
-debug disable debug mode [ default ]
+ verbose chatty ouput
-verbose normal output [ default ]
+ typeCheck force typecheck of specifi -

cation [ default ]
-tyepcheck accepts _ANY_ specification ,

(use at own risk)
+ greedySplt Split rules greedily , i.e.

split one rule at all
possible pivot positions .
Results in one successor
with many patterns .

-greedySplt Split at only one pivot
position per rule , but make
one split for each pivot
position , results in
multiple successor
hypotheses with different
patterns . [ default ]

+ enhanced Enhanced mode , using type
morphisms as program schemes
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-enhanced normal mode , no morphisms
[ default ]

+para if in enhanced mode , use
paramorphisms instead of
catamorphisms

-para use catamorphisms [ default ]
+ dumpLog write a log file
-dumpLog do not write a log file

[ default ]
+ simplify simplify the result by

replacing constant function
calls

-simplify show Igor2 ’s original
solution [ default ]

colWidth =N set the width of your
display to N columns
[ default 80]

maxLoops =N stop the synthesis cycle
after N loops with a
( probably ) partial result
[ default ( -1)]

maxTiers =N A tiers is a set of
hypotheses with the same
heuristic value. This option
determines , how many tiers
are finished at most. N=0
just stops when one solution
has been found. For N>0 all
unfinished hypotheses which
are as good as the current
best are tried to finish if
they do not deteriorate .
Thus , the N-best hypotheses
are returned . However they
may be partial . For N<0
search continues unitil the
search space is exhausted .
[ default (0)]

dumpDir =" dir" This is the directory , where
the log files are dumped to
[ default "."]

redOrder =<mode > Sets the reduction order to
ensure termination of the
final program , arguments of
calling / called functions
have to be compared .
<mode > states how this is
done. Use " Linear " to
compare the total number of
constructor symbols in the
arguments . To compare the
number of constructor symbols
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argumentwise use "AWise"
[ default ]. Given two
left -hand sides a = (a1 a2
..) and b = (b1 b2 ..), then

a < b if a1 < b1 or a1 ==
b1 and a2 < b2 or a1 == b1
and a2 == b2 ... . This is
necessary , if the size of
arguments does not change
over all I/O examples , e.g.
if accumulator variables are
involved .

:info
Shows the current context with the I/O examples of
the functions in scope , if ’verbose ’ is on , or the
number of the examples , otherwise . Furthermore ,
the values of all options and flags are displayed
as well as specification details from the current
context .

: generalise <tgts > [with <bgks >]
Start Igor2 with one or more target functions to
generalise and optional functions as background
knowledge . <tgts > and <bgks > are list of names in
scope separated by commas .

:test [<i>] <tgts > [with <bgks >] on "cmd"
Test a previously generalised program . If there
were multiple hypotheses , <i> is the one you want
to test. If it is ommitted , all are tested . Please
note , that you have to exactly repeat the names of
target functions and backgroud knowledge of the
run you want to test. If the background knowledge
functions have already been synthesised , their
results are taken from the history , other wise the
I/O examples of them are used. Note , that this may
cause the interpreter to end with "Non - exhaustive
patterns "- errors . If the background functions had
multiple results , all combinations are tested .
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F. All Results and Synthesised
Programs

F.1. Programs for ack
Igor IIH

ack (Z) (Z) = S Z
ack (Z) (S a0) = S (S a0)
ack (S a0) (Z) = ack a0 (S Z)
ack (S a0) (S a1) = ack a0 (ack (S a0) a1)

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

ack a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 a1 = para ⊥ (fun3 a1 ⊕ fun4 a1) a0
fun2 a0 (S _, a2) = ack a0 (S a2)
fun3 _ _ = S Z
fun4 _ (S (Z), Z) = S (S Z)
fun4 _ (S (S _), S a1) = ack a1 (S (S a1))

MagicHaskeller with paramorphism

λa b → nat_para a (λc d e → nat_para e (λf g → d (S g)) (S Z)) (λc →
c) (S b)

MagicHaskeller with catamorphism

λa b → nat_cata a (λc d → nat_cata d (λe → c (S e)) (S Z)) (λc → c) (
S b)
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F.2. Programs for add
Igor IIH

add a0 (Z) = a0
add (Z) a0 = a0
add (S a0) (S a1) = S (add (S a0) a1)

-- alternative solution
add a0 (Z) = a0
add (Z) a0 = a0
add (S a0) (S a1) = S (add a0 (S a1))

Igor II+ with catamorphism

add a0 a1 = cata ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 _ = a0
fun2 (S _) (S a1) = S (S a1)

Igor II+ with paramorphism

add a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 _ = a0
fun2 (S _) (S a1 , _) = S (S a1)

MagicHaskeller with paramorphism

λa b → nat_para b (λc d e → S (d e)) (λc → c) a

MagicHaskeller with catamorphism

λa b → nat_cata b (λc d → S (c d)) (λc → c) a
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F.3. Programs for addN
Igor IIH

addN _ [] = []
addN a0 (a1 : a2) = fun1 a0 (a1 : a2) : addN a0 a2
fun1 a0 ((Z) : _) = a0
fun1 a0 ((S a1) : _) = S (fun1 a0 [a1])

Igor II+ with catamorphism

addN a0 a1 = map (fun1 a0) a1
fun1 a0 a1 = cata ⊥ (fun2 a0 ⊕ fun3 a0) a1
fun2 a0 _ = a0
fun3 _ a1 = S a1

Igor II+ with paramorphism

addN a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 a0 (a1 , (a2 , a3)) = fun3 a0 (a1 , (a2 , a3)) : a2
fun3 a0 (Z, (_, _)) = a0
fun3 a0 (S a1 , (_, _)) = S (fun3 a0 (a1 , ([], [])))

MagicHaskeller with paramorphism

λa b → nat_para a (λc d → list_para d [] (λe f g → S e : g)) b

MagicHaskeller with catamorphism

λa b → nat_cata a (λc → foldr (λd e → S d : e) [] c) b
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F.4. Programs for alleven
Igor IIH

alleven [] = True
alleven ((Z) : a0) = alleven a0
alleven ((S (Z)) : _) = False
alleven ((S (S a0)) : a1) = alleven (a0 : a1)

Igor II+ with catamorphism

alleven a0 = foldr fun1 True a0
fun1 a0 a1 = cata ⊥ (fun2 a1 ⊕ fun3 a1) a0
fun2 a0 _ = a0
fun3 a0 (False) = a0
fun3 (True) (True) = False

Igor II+ with paramorphism

alleven a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (Z, (True , [])) = True
fun2 (Z, (True , [_])) = True
fun2 (S a0 , (True , [])) = alleven [S a0]
fun2 (Z, (False , [S _])) = False
fun2 (S a0 , (True , [_])) = alleven [S a0]
fun2 (S _, (False , [S _])) = False

-- alternative solution
alleven a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (Z, (True , [])) = True
fun2 (Z, (True , [_])) = True
fun2 (S a0 , (True , [])) = alleven [S a0]
fun2 (Z, (False , [S _])) = False
fun2 (S a0 , (True , [_])) = fun2 (S a0 , (True , []))
fun2 (S _, (False , [S _])) = False

MagicHaskeller with paramorphism

λa → list_para a True (λb c d → nat_para b (λe f g h → f h g) (λe f →
f) False d)

MagicHaskeller with catamorphism

no result
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F.5. Programs for allodd
Igor IIH

no result

Igor II+ with catamorphism

allodd a0 = foldr fun1 True a0
fun1 a0 a1 = cata ⊥ (fun2 a1 ⊕ fun3 a1) a0
fun2 _ _ = False
fun3 a0 (False) = a0
fun3 (True) (True) = False

Igor II+ with paramorphism

allodd a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (Z, (True , [])) = False
fun2 (Z, (False , [_])) = False
fun2 (S a0 , (True , [])) = allodd [S a0]
fun2 (Z, (True , [S _])) = False
fun2 (S _, (False , [_])) = False
fun2 (S a0 , (True , [S _])) = allodd [S a0]

-- alternative solution
allodd a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (Z, (True , [])) = False
fun2 (Z, (False , [_])) = False
fun2 (S a0 , (True , [])) = allodd [S a0]
fun2 (Z, (True , [S _])) = False
fun2 (S _, (False , [_])) = False
fun2 (S a0 , (True , [S _])) = fun2 (S a0 , (True , []))

MagicHaskeller with paramorphism

λa → list_para a True (λb c d → nat_para b (λe f g h → f h g) (λe f →
f) d False)

MagicHaskeller with catamorphism

no result
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F.6. Programs for and
Igor IIH

and (False) _ = False
and (True) a0 = a0

-- alternative solution
and _ (False) = False
and a0 (True) = a0

Igor II+ with catamorphism

and (False) _ = False
and (True) a0 = a0

-- alternative solution
and _ (False) = False
and a0 (True) = a0

Igor II+ with paramorphism

and (False) _ = False
and (True) a0 = a0

-- alternative solution
and _ (False) = False
and a0 (True) = a0

MagicHaskeller with paramorphism

λa b → iF (iF b True False) a False

MagicHaskeller with catamorphism

λa b → iF (iF b True False) a False
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F.7. Programs for andL
Igor IIH

andL [] = True
andL (( False) : _) = False
andL (( True) : a0) = andL a0

Igor II+ with catamorphism

andL a0 = foldr fun1 True a0
fun1 (False) _ = False
fun1 (True) a0 = a0

-- alternative solution
andL a0 = foldr fun1 True a0
fun1 _ (False) = False
fun1 a0 (True) = a0

Igor II+ with paramorphism

andL a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (False , (_, _)) = False
fun2 (True , (a0 , _)) = a0

-- alternative solution
andL a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (a0 , (True , _)) = a0
fun2 (_, (False , _ : _)) = False

MagicHaskeller with paramorphism

λa → list_para a (λb → True) (λb c d e → iF b (d e) e) False

MagicHaskeller with catamorphism

λa → foldr (λb c → iF c b False) True a
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F.8. Programs for append
Igor IIH

append [] a0 = a0
append (a0 : a1) a2 = a0 : append a1 a2

Igor II+ with catamorphism

append [] a0 = a0
append (a0 : a1) a2 = a0 : append a1 a2

Igor II+ with paramorphism

append a0 a1 = para ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 a0 _ = a0
fun2 _ (a1 , (a2 , _)) = a1 : a2

MagicHaskeller with paramorphism

λa b → list_para a (λc → c) (λc d e f → c : e f) b

MagicHaskeller with catamorphism

λa b → foldr (λc d → c : d) b a
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F.9. Programs for balloons
Igor IIH

balloons (_, Large , _, _) = FF
balloons (Purple , Small , _, _) = FF
balloons (Yellow , Small , _, _) = TT

-- alternative solution
balloons (Purple , _, _, _) = FF
balloons (Yellow , Large , _, _) = FF
balloons (Yellow , Small , _, _) = TT

Igor II+ with catamorphism

balloons (_, Large , _, _) = FF
balloons (Purple , Small , _, _) = FF
balloons (Yellow , Small , _, _) = TT

-- alternative solution
balloons (Purple , _, _, _) = FF
balloons (Yellow , Large , _, _) = FF
balloons (Yellow , Small , _, _) = TT

Igor II+ with paramorphism

balloons (_, Large , _, _) = FF
balloons (Purple , Small , _, _) = FF
balloons (Yellow , Small , _, _) = TT

-- alternative solution
balloons (Purple , _, _, _) = FF
balloons (Yellow , Large , _, _) = FF
balloons (Yellow , Small , _, _) = TT
x

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.10. Programs for concat
Igor IIH

concat [] = []
concat [a0] = a0
concat [[], a0] = a0
concat [a0 : a1 , a2] = a0 : concat [a1 , a2]

Igor II+ with catamorphism

concat a0 = foldr fun1 [] a0
fun1 [] a0 = a0
fun1 (a0 : a1) a2 = a0 : fun1 a1 a2

Igor II+ with paramorphism

concat a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], _)) = a0
fun2 (a0 , (_ : _, [a1 : a2])) = concat [a0 , a1 : a2]

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para b (λe → e) (λe f g h → e : g
h) d)

MagicHaskeller with catamorphism

λa → foldr (λb c → foldr (λd e → d : e) c b) [] a
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F.11. Programs for drop

F.11. Programs for drop
Igor IIH

no result

Igor II+ with catamorphism

drop a0 a1 = cata ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 a0 _ = a0
fun2 _ [] = []
fun2 (_ : _) (_ : a3) = a3

Igor II+ with paramorphism

drop a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 (Z) (a0 , (_, a1)) = a0 : a1
fun2 (S a0) (_, (_, a3)) = drop a0 a3

MagicHaskeller with paramorphism

λa b → nat_para a (λc d → list_para d [] (λe f g → f)) b

MagicHaskeller with catamorphism

no result

255



F. All Results and Synthesised Programs

F.12. Programs for enjoySport
Igor IIH

enjoySport (Rain , Cold , High , Strong , Warm , Change ) = False
enjoySport (Sunny , Warm , _, Strong , _, _) = True

-- alternative solution
enjoySport (Rain , Cold , High , Strong , Warm , Change ) = False
enjoySport (Sunny , Warm , _, Strong , _, _) = True

Igor II+ with catamorphism

enjoySport (Rain , Cold , High , Strong , Warm , Change ) = False
enjoySport (Sunny , Warm , _, Strong , _, _) = True

-- alternative solution
enjoySport (Rain , Cold , High , Strong , Warm , Change ) = False
enjoySport (Sunny , Warm , _, Strong , _, _) = True

Igor II+ with paramorphism

enjoySport (Rain , Cold , High , Strong , Warm , Change ) = False
enjoySport (Sunny , Warm , _, Strong , _, _) = True

-- alternative solution
enjoySport (Rain , Cold , High , Strong , Warm , Change ) = False
enjoySport (Sunny , Warm , _, Strong , _, _) = True

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.13. Programs for eq

F.13. Programs for eq
Igor IIH

eq (Z) (Z) = True
eq (Z) (S _) = False
eq (S a0) a1 = eq a0 (fun72 (S a0) a1)
fun72 (S a0) (Z) = S a0
fun72 (S _) (S a1) = a1

-- alternative solution
eq (Z) (Z) = True
eq (Z) (S _) = False
eq (S a0) a1 = eq a0 ( fun312 (S a0) a1)
fun312 (S _) (Z) = S (S Z)
fun312 (S _) (S a1) = a1

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

eq a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 a1 = para ⊥ (fun3 a1 ⊕ fun4 a1) a0
fun2 (Z) (_, _) = False
fun2 (S a0) (_, a2) = eq a0 a2
fun3 _ _ = True
fun4 _ (_, _) = False

-- alternative solution
eq a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 a1 = para ⊥ (fun3 a1 ⊕ fun4 a1) a0
fun2 (Z) (_, _) = False
fun2 (S a0) (_, a2) = eq a2 a0
fun3 _ _ = True
fun4 _ (_, _) = False

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.14. Programs for even
Igor IIH

even (Z) = True
even (S (Z)) = False
even (S (S a0)) = even a0

Igor II+ with catamorphism

even a0 = cata ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (False) = True
fun2 (True) = False

Igor II+ with paramorphism

even a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (True , _) = False
fun2 (False , S _) = True

MagicHaskeller with paramorphism

λa → nat_para a (λb c → iF c False True) True

MagicHaskeller with catamorphism

no result
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F.15. Programs for even, odd

F.15. Programs for even, odd
Igor IIH

even (Z) = True
even (S a0) = odd a0
odd (Z) = False
odd (S a0) = even a0

Igor II+ with catamorphism

even a0 = cata ⊥ (fun2 ⊕ fun3) a0
odd a0 = cata ⊥ (fun4 ⊕ fun5) a0
fun2 _ = True
fun3 (False) = True
fun3 (True) = False
fun4 _ = False
fun5 (False) = True
fun5 (True) = False

Igor II+ with paramorphism

even a0 = para ⊥ (fun2 ⊕ fun3) a0
odd a0 = para ⊥ (fun4 ⊕ fun5) a0
fun2 _ = True
fun3 (_, a1) = odd a1
fun4 _ = False
fun5 (_, a1) = even a1

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.16. Programs for evenLength
Igor IIH

evenLength [] = True
evenLength [_] = False
evenLength (_ : (_ : a2)) = evenLength a2

Igor II+ with catamorphism

evenLength a0 = foldr fun1 True a0
fun1 _ (False) = True
fun1 _ (True) = False

Igor II+ with paramorphism

evenLength a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (_, (True , _)) = False
fun2 (_, (False , _ : _)) = True

MagicHaskeller with paramorphism

λa → list_para a True (λb c d → iF d False True)

MagicHaskeller with catamorphism

no result
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F.17. Programs for evenParity

F.17. Programs for evenParity
Igor IIH

no result

Igor II+ with catamorphism

evenParity a0 = foldr fun1 True a0
fun1 ( False) a0 = a0
fun1 (True) (False) = True
fun1 (True) (True) = False

-- alternative solution
evenParity a0 = foldr fun1 True a0
fun1 a0 (False) = a0
fun1 ( False) (True) = True
fun1 (True) (True) = False

Igor II+ with paramorphism

evenParity a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (False , (a0 , _)) = a0
fun2 (True , (a0 , _)) = evenParity [a0]

-- alternative solution
evenParity a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (False , (a0 , _)) = a0
fun2 (True , (_, a1)) = evenParity (True : a1)

MagicHaskeller with paramorphism

λa → list_para a (λb → True) (λb c d e → iF (d e) (iF b False e) b)
True

MagicHaskeller with catamorphism

λa → foldr (λb c → iF c (iF b False True) b) True a
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F. All Results and Synthesised Programs

F.18. Programs for evenpos
Igor IIH

evenpos [] = []
evenpos [_] = []
evenpos (_ : (a1 : a2)) = a1 : evenpos a2

Igor II+ with catamorphism

evenpos [] = []
evenpos [_] = []
evenpos (_ : (a1 : a2)) = a1 : evenpos a2

Igor II+ with paramorphism

evenpos a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (_, ([], a1)) = a1
fun2 (_, (_ : _, a3 : (_ : a4))) = evenpos (a3 : (a3 : (a3 : a4)))

MagicHaskeller with paramorphism

λa → list_para a (λb → []) (λb c d e → iF e (d False) (b : d True))
True

MagicHaskeller with catamorphism

λa → foldr (λb c d → foldr (λe f → b : c []) (c a) d) (λb → []) a []
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F.19. Programs for evens

F.19. Programs for evens
Igor IIH

evens [] = []
evens ((Z) : a0) = Z : evens a0
evens ((S (Z)) : a0) = evens a0
evens ((S (S (Z))) : a0) = S (S Z) : evens a0
evens ((S (S (S (Z)))) : a0) = evens a0

-- alternative solution
evens [] = []
evens ((Z) : a0) = Z : evens a0
evens ((S (Z)) : a0) = evens a0
evens ((S (S (Z))) : a0) = S (S Z) : evens a0
evens ((S (S (S (Z)))) : a0) = evens a0

Igor II+ with catamorphism

evens a0 = filter fun1 a0
fun1 a0 = cata ⊥ (fun2 ⊕ fun3) a0
fun2 _ = False
fun3 (False) = True
fun3 (True) = False

Igor II+ with paramorphism

evens a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (Z, ([], [])) = [Z]
fun2 (S (Z), ([], [])) = []
fun2 (Z, ([], [S _])) = [Z]
fun2 (Z, ([_], [a0])) = [Z, a0]
fun2 (S (S (Z)), ([], [])) = [S (S Z)]
fun2 (S a0 , ([], [S _])) = fun2 (S a0 , ([], []))
fun2 (S a0 , ([_], [a1])) = evens [S a0 , a1]
fun2 (S (S (S (Z))), ([], [])) = []

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.20. Programs for fact with mult

Igor IIH

fact (Z) = S Z
fact (S (Z)) = S Z
fact (S (S (Z))) = S (S Z)
fact (S (S (S (Z)))) = S (S (S (S (S (S Z)))))
fact (S (S (S (S (Z))))) =

S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S Z)))))))))))))))))))))))

fact (S (S (S (S (S (Z)))))) =
S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S Z))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))

)))))))))))))))))))))))))))))))))))))))))))))))
)))

Igor II+ with catamorphism

fact (Z) = S Z
fact (S (Z)) = S Z
fact (S (S (Z))) = S (S Z)
fact (S (S (S (Z)))) = S (S (S (S (S (S Z)))))
fact (S (S (S (S (Z))))) =

S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S Z)))))))))))))))))))))))

fact (S (S (S (S (S (Z)))))) =
S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S

(S (S (S (S (S (S (S (S Z))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))

)))))))))))))))))))))))))))))))))))))))))))))))
)))

Igor II+ with paramorphism

fact a0 = para ⊥ (fun2 ⊕ fun3) a0
fun2 _ = S Z
fun3 (S _, a1) = fact (S a1)

264



F.20. Programs for fact with mult

MagicHaskeller with paramorphism

λa → nat_para a (λb c → natmlt c b) (S Z)

MagicHaskeller with catamorphism

λa → nat_cata a (λb c → natmlt c (b (S c))) (λb → S Z) (S Z)
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F. All Results and Synthesised Programs

F.21. Programs for fib with add
Igor IIH

fib (Z) = Z
fib (S a0) = add (fun2 (S a0)) (fun3 (S a0))
fun2 (S (Z)) = Z
fun2 (S (S a0)) = fib a0
fun3 (S (Z)) = S Z
fun3 (S (S a0)) = fib (S a0)

Igor II+ with catamorphism

fib (Z) = Z
fib (S a0) = add (fun2 (S a0)) (fun3 (S a0))
fun2 (S (Z)) = Z
fun2 (S (S a0)) = fib a0
fun3 (S (Z)) = S Z
fun3 (S (S a0)) = fib (S a0)

Igor II+ with paramorphism

fib a0 = para ⊥ (fun2 ⊕ fun3) a0
fun2 _ = Z
fun3 (Z, Z) = S Z
fun3 (S _, S a1) = fib (S (S a1))

MagicHaskeller with paramorphism

λa → nat_para a (λb c d e → c e ( natadd e d)) (λb c → b) Z (S Z)

MagicHaskeller with catamorphism

λa → nat_cata a (λb c d → b d ( natadd d c)) (λb c → b) Z (S Z)
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F.22. Programs for gaussSum with add

F.22. Programs for gaussSum with add
Igor IIH

gaussSum (Z) = Z
gaussSum (S a0) = add (S a0) (fun3 (S a0))
fun3 (S (Z)) = Z
fun3 (S (S a0)) = add (S a0) (fun3 (S a0))

Igor II+ with catamorphism

gaussSum a0 = cata ⊥ (fun2 ⊕ fun3) a0
fun17 (S (Z)) = Z
fun17 (S (S (S a0))) = fun4 a0
fun2 _ = Z
fun3 a0 = add (fun4 a0) a0
fun4 a0 = S (fun7 a0)
fun7 (Z) = Z
fun7 (S a0) = fun4 (fun17 (S a0))

Igor II+ with paramorphism

gaussSum a0 = para ⊥ (fun2 ⊕ fun3) a0
fun2 _ = Z
fun3 (a0 , a1) = add (S a1) a0

MagicHaskeller with paramorphism

λa → nat_para a (λb c → natadd c b) Z

MagicHaskeller with catamorphism

λa → nat_para a (λb c → natadd c b) Z
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F. All Results and Synthesised Programs

F.23. Programs for geq
Igor IIH

geq _ (Z) = True
geq (Z) (S _) = False
geq (S a0) (S a1) = geq a0 a1

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

geq a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = True
fun2 (Z) (_, _) = False
fun2 (S a0) (True , a1) = geq a0 a1

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.24. Programs for halves

F.24. Programs for halves
Igor IIH

halves [] = ([], [])
halves [a0] = ([a0], [])
halves [a0 , a1] = ([a0], [a1])
halves [a0 , a1 , a2] = ([a0 , a1], [a2])
halves [a0 , a1 , a2 , a3] = ([a0 , a1], [a2 , a3])
halves (a0 : (a1 : (a2 :

(a3 : (a4 : a5))))) = ([a0 , a1 , a2], a3 : (a4 : a5))

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

halves a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = ([], [])
fun2 (a0 , (([] , []) , [])) = ([a0], [])
fun2 (a0 , ((_ : _, _), a1 : a4)) = halves (a0 : (a1 : a4))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.25. Programs for hanoi
Igor IIH

hanoi (D0) a0 _ a2 a3 = MV D0 a0 a2 a3
hanoi (D a0) a1 a2 a3 a4 =

hanoi a0 a2 a1 a3
(MV (D a0) a1 a3

(hanoi a0 a1 a3 a2 a4))

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

no result

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result

270



F.26. Programs for incr

F.26. Programs for incr
Igor IIH

incr [] = []
incr (a0 : a1) = S a0 : incr a1

Igor II+ with catamorphism

incr a0 = map fun1 a0
fun1 a0 = S a0

Igor II+ with paramorphism

incr a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , (a1 , _)) = S a0 : a1

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → S b : d)

MagicHaskeller with catamorphism

λa → foldr (λb c → S b : c) [] a

271



F. All Results and Synthesised Programs

F.27. Programs for init
Igor IIH

init [_] = []
init (a0 : (a1 : a2)) = a0 : init (a1 : a2)

Igor II+ with catamorphism

init [_] = []
init (a0 : (a1 : a2)) = a0 : init (a1 : a2)

Igor II+ with paramorphism

init [_] = []
init (a0 : (a1 : a2)) = a0 : init (a1 : a2)

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para c (λe → []) (λe f g h → h : g
e) b)

MagicHaskeller with catamorphism

λa → foldr (λb c d → foldr (λe f → b : c d) d (c a)) (λb → []) a []
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F.28. Programs for init, last

F.28. Programs for init, last
Igor IIH

init [_] = []
init (a0 : (a1 : a2)) = a0 : init (a1 : a2)
last [a0] = a0
last (_ : (a1 : a2)) = last (a1 : a2)

Igor II+ with catamorphism

init [_] = []
init (a0 : (a1 : a2)) = a0 : init (a1 : a2)
last [a0] = a0
last (_ : (a1 : a2)) = last (a1 : a2)

Igor II+ with paramorphism

init [_] = []
init (a0 : (a1 : a2)) = a0 : init (a1 : a2)
last [a0] = a0
last (_ : (a1 : a2)) = last (a1 : a2)

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.29. Programs for inits
Igor IIH

inits [] = [[]]
inits [a0] = [[], [a0]]
inits [a0 , a1] = [[], [a0], [a0 , a1]]
inits [a0 , a1 , a2] = [[], [a0], [a0 , a1], [a0 , a1 , a2]]
inits [a0 , a1 , a2 , a3] =

[[], [a0], [a0 , a1], [a0 , a1 , a2], [a0 , a1 , a2 , a3]]

Igor II+ with catamorphism

inits a0 = foldr fun1 [[]] a0
fun1 a0 ([] : a1) = [] : fun2 a0 ([] : a1)
fun2 a0 ([] : a1) = map (fun3 a0) ([] : a1)
fun3 a0 a1 = a0 : a1

Igor II+ with paramorphism

inits a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = [[]]
fun2 (a0 , ([[]] , [])) = [[], [a0]]
fun2 (a0 , ( [] : ([_] : _)

, a1 : a3)) = inits (a0 : (a1 : a3))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.30. Programs for inorder with append

F.30. Programs for inorder with append
Igor IIH

inorder (NilT) = []
inorder (Node a0 a1 a2) =

append (fun6 (Node a0 a1 a2)) (fun7 (Node a0 a1 a2))
fun6 (Node a0 (NilT) (NilT)) = [a0]
fun6 (Node _ (Node a1 a2 a3) (Node _ _ _)) =

inorder (Node a1 a2 a3)
fun7 (Node _ (NilT) (NilT)) = []
fun7 (Node a0 (Node _ _ _) (Node a4 a5 a6)) =

a0 : inorder (Node a4 a5 a6)

Igor II+ with catamorphism

inorder a0 = cata ⊥ (fun2 ⊕ fun3) a0
fun2 _ = []
fun3 (a0 , ([], [])) = [a0]
fun3 (a0 , (a1 : a2 , a3 : a4)) = append (a1 : a2) (a0 : (a3 : a4))

Igor II+ with paramorphism

inorder a0 =
para ⊥ (fun2 ⊕ fun3) a0

fun2 _ = []
fun3 (a0 , (([] , NilT), ([], NilT))) = [a0]
fun3 (a0 , ( (_ : _, Node a3 a4 a5)

, (_ : _, Node a8 a9 a10))) =
inorder (Node a0 (Node a3 a4 a5) (Node a8 a9 a10))

MagicHaskeller with paramorphism

λa → ntree_para a [] (λb c d e f → e ++ (b : f))

MagicHaskeller with catamorphism

λa → ntree_cata a [] (λb c d → c ++ (b : d))
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F. All Results and Synthesised Programs

F.31. Programs for intersperse
Igor IIH

intersperse _ [] = []
intersperse a0 (a1 : a2) = a1 : fun1 a0 (a1 : a2)
fun1 _ [_] = []
fun1 a0 (_ : (a2 : a3)) = a0 : intersperse a0 (a2 : a3)

Igor II+ with catamorphism

intersperse a0 a1 = foldr (fun1 a0) [] a1
fun1 _ a1 [] = [a1]
fun1 a0 a1 (a2 : a3) = a1 : (a0 : (a2 : a3))

Igor II+ with paramorphism

intersperse a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 _ (a1 , ([], [])) = [a1]
fun2 a0 (a1 , (_ : a3 , a2 : _)) = a1 : (a0 : (a2 : a3))

-- alternative solution
intersperse a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 _ (a1 , ([], [])) = [a1]
fun2 a0 (a1 , (_ : a3 , a2 : _)) = a1 : (a0 : (a2 : a3))

MagicHaskeller with paramorphism

λa b → list_para ( list_para b [] (λc d e → a : (c : e))) b (λc d e → d
)

MagicHaskeller with catamorphism

λa b → foldr (λc d → c : foldr (λe f → a : d) d d) [] b

276



F.32. Programs for last

F.32. Programs for last
Igor IIH

last [a0] = a0
last (_ : (a1 : a2)) = last (a1 : a2)

Igor II+ with catamorphism

last [a0] = a0
last (_ : (a1 : a2)) = last (a1 : a2)

Igor II+ with paramorphism

last [a0] = a0
last (_ : (a1 : a2)) = last (a1 : a2)

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.33. Programs for lastM
Igor IIH

lastM [] = Nothing
lastM [a0] = Just a0
lastM (_ : (a1 : a2)) = lastM (a1 : a2)

Igor II+ with catamorphism

lastM a0 = foldr fun1 Nothing a0
fun1 a0 ( Nothing ) = Just a0
fun1 _ (Just a1) = Just a1

Igor II+ with paramorphism

lastM a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = Nothing
fun2 (a0 , (Nothing , [])) = Just a0
fun2 (_, (Just a1 , _ : _)) = Just a1

-- alternative solution
lastM a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = Nothing
fun2 (a0 , (Nothing , [])) = Just a0
fun2 (_, (Just a1 , _ : _)) = Just a1

MagicHaskeller with paramorphism

λa → list_para a Nothing (λb c d → list_para c (Just b) (λe f g → d))

MagicHaskeller with catamorphism

no result
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F.34. Programs for lasts

F.34. Programs for lasts
Igor IIH

lasts [] = []
lasts ([a0] : a1) = a0 : lasts a1
lasts ((_ : (a1 : a2)) : a3) = lasts ((a1 : a2) : a3)

Igor II+ with catamorphism

lasts a0 = map fun1 a0
fun1 [a0] = a0
fun1 (_ : (a1 : a2)) = fun1 (a1 : a2)

Igor II+ with paramorphism

lasts a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 ([a0], (a1 , _)) = a0 : a1
fun2 (_ : (a1 : a2), (_, a4)) = lasts ((a1 : a2) : a4)

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para b (λe f → f) (λe f g h i → g
h (e : h)) d d)

MagicHaskeller with catamorphism

λa → foldr (λb c → foldr (λd e → foldr (λf g → e) (d : c) e) [] b) []
a
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F. All Results and Synthesised Programs

F.35. Programs for length
Igor IIH

length [] = Z
length (_ : a1) = S ( length a1)

Igor II+ with catamorphism

length a0 = foldr fun1 Z a0
fun1 _ a1 = S a1

Igor II+ with paramorphism

length a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = Z
fun2 (_, (a1 , _)) = S a1

MagicHaskeller with paramorphism

λa → list_para a Z (λb c d → S d)

MagicHaskeller with catamorphism

λa → foldr (λb c → S c) Z a
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F.36. Programs for lengths

F.36. Programs for lengths
Igor IIH

lengths [] = []
lengths (a0 : a1) = fun1 (a0 : a1) : fun2 (a0 : a1)
fun1 ([] : _) = Z
fun1 [_ : a1] = S (fun1 [a1])
fun1 ((_ : a1) : (_ : a3)) = S (fun1 (a1 : a3))
fun2 [_] = []
fun2 [[], a0] = [ fun741 [[], a0]]
fun2 ((_ : _) : (a2 : a3)) = lengths (a2 : a3)
fun741 [[], []] = Z
fun741 [[], _ : a1] = S ( fun741 [[], a1])

Igor II+ with catamorphism

lengths a0 = map fun1 a0
fun1 a0 = foldr fun2 Z a0
fun2 _ a1 = S a1

Igor II+ with paramorphism

lengths a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , (a1 , a2)) = fun3 (a0 , (a1 , a2)) : a1
fun3 ([], (_, _)) = Z
fun3 (_ : a1 , (_, _)) = S (fun3 (a1 , ([], [])))

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para b Z (λe f g → S g) : d)

MagicHaskeller with catamorphism

λa → foldr (λb c → foldr (λd e → S e) Z b : c) [] a
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F. All Results and Synthesised Programs

F.37. Programs for lenses
Igor IIH

lenses (_, _, _, Reduced ) = None
lenses (_, Hypermetrope , No , Norml) = Soft
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses ( PrePresbyopic , Myope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , Hypermetrope , Yes , Norml) = Hard
lenses (Young , Myope , No , Norml) = Soft

-- alternative solution
lenses (_, _, _, Reduced ) = None
lenses (_, Hypermetrope , No , Norml) = Soft
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses ( PrePresbyopic , Myope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , Hypermetrope , Yes , Norml) = Hard
lenses (Young , Myope , No , Norml) = Soft

-- alternative solution
lenses (_, _, _, Reduced ) = None
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , _, No , Norml) = Soft
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Hypermetrope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , _, No , Norml) = Soft
lenses (Young , Hypermetrope , Yes , Norml) = Hard

Igor II+ with catamorphism

lenses (_, _, _, Reduced ) = None
lenses (_, Hypermetrope , No , Norml) = Soft
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses ( PrePresbyopic , Myope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , Hypermetrope , Yes , Norml) = Hard
lenses (Young , Myope , No , Norml) = Soft

-- alternative solution
lenses (_, _, _, Reduced ) = None
lenses (_, Hypermetrope , No , Norml) = Soft
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
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F.37. Programs for lenses

lenses ( PrePresbyopic , Myope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , Hypermetrope , Yes , Norml) = Hard
lenses (Young , Myope , No , Norml) = Soft

-- alternative solution
lenses (_, _, _, Reduced ) = None
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , _, No , Norml) = Soft
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Hypermetrope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , _, No , Norml) = Soft
lenses (Young , Hypermetrope , Yes , Norml) = Hard

Igor II+ with paramorphism

lenses (_, _, _, Reduced ) = None
lenses (_, Hypermetrope , No , Norml) = Soft
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses ( PrePresbyopic , Myope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , Hypermetrope , Yes , Norml) = Hard
lenses (Young , Myope , No , Norml) = Soft

-- alternative solution
lenses (_, _, _, Reduced ) = None
lenses (_, Hypermetrope , No , Norml) = Soft
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses ( PrePresbyopic , Myope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , Hypermetrope , Yes , Norml) = Hard
lenses (Young , Myope , No , Norml) = Soft

-- alternative solution
lenses (_, _, _, Reduced ) = None
lenses (_, Myope , Yes , Norml) = Hard
lenses ( PrePresbyopic , _, No , Norml) = Soft
lenses ( PrePresbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Hypermetrope , No , Norml) = Soft
lenses (Presbyopic , Hypermetrope , Yes , Norml) = None
lenses (Presbyopic , Myope , No , Norml) = None
lenses (Young , _, No , Norml) = Soft
lenses (Young , Hypermetrope , Yes , Norml) = Hard

MagicHaskeller with paramorphism
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F. All Results and Synthesised Programs

no result

MagicHaskeller with catamorphism

no result
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F.38. Programs for mapCons

F.38. Programs for mapCons
Igor IIH

mapCons _ [] = []
mapCons a0 (a1 : a2) = (a0 : a1) : fun1 a0 (a1 : a2)
fun1 _ [[]] = []
fun1 a0 (_ : a2) = fun1 a0 ([] : a2)

-- alternative solution
mapCons _ [] = []
mapCons a0 (a1 : a2) = (a0 : a1) : fun1 a0 (a1 : a2)
fun1 _ [[]] = []
fun1 a0 (_ : a2) = mapCons a0 a2

Igor II+ with catamorphism

mapCons a0 a1 = map (fun1 a0) a1
fun1 a0 a1 = a0 : a1

Igor II+ with paramorphism

mapCons a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 a0 (a1 , (a2 , _)) = (a0 : a1) : a2

MagicHaskeller with paramorphism

λa b → list_para b [] (λc d e → (a : c) : e)

MagicHaskeller with catamorphism

λa b → foldr (λc d → (a : c) : d) [] b
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F. All Results and Synthesised Programs

F.39. Programs for mapTail
Igor IIH

mapTail [] = []
mapTail ((_ : a1) : a2) = a1 : mapTail a2

Igor II+ with catamorphism

mapTail a0 = map fun1 a0
fun1 (_ : a1) = a1

Igor II+ with paramorphism

mapTail a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (_ : a1 , (a2 , _)) = a1 : a2

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para b d (λe f g → f : d))

MagicHaskeller with catamorphism

no result
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F.40. Programs for mirror

F.40. Programs for mirror
Igor IIH

mirror (NilT) = NilT
mirror (Node a0 a1 a2) = Node a0 ( mirror a2) ( mirror a1)

Igor II+ with catamorphism

mirror a0 = cata ⊥ (fun1 ⊕ fun2) a0
fun1 _ = NilT
fun2 (a0 , (a1 , a2)) = Node a0 a2 a1

Igor II+ with paramorphism

mirror a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = NilT
fun2 (a0 , ((a1 , _), (a3 , _))) = Node a0 a3 a1

MagicHaskeller with paramorphism

λa → ntree_para a NilT (λb c d e f → Node b f e)

MagicHaskeller with catamorphism

λa → ntree_cata a NilT (λb c d → Node b d c)
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F. All Results and Synthesised Programs

F.41. Programs for mult
Igor IIH

no result

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

mult a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = Z
fun2 a0 (Z, _) = a0
fun2 (S a0) (S _, S a2) = mult (S a0) (S (S a2))

MagicHaskeller with paramorphism

λa b → nat_para b (λc d e → nat_para (d e) (λf g → S g) e) (λc → Z) a

MagicHaskeller with catamorphism

λa b → nat_cata b (λc d → nat_cata (c d) (λe → S e) d) (λc → Z) a
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F.42. Programs for mult with add

F.42. Programs for mult with add
Igor IIH

no result

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

mult a0 a1 = para ⊥ (fun2 a0 ⊕ fun3 a0) a1
fun2 _ _ = Z
fun3 a0 (Z, _) = a0
fun3 (S a0) (S _, S a2) = mult (S a0) (S (S a2))

MagicHaskeller with paramorphism

λa b → nat_para ( natadd b Z) (λc d → natadd d a) Z

MagicHaskeller with catamorphism

λa b → nat_cata ( natadd b Z) (λc → natadd c a) Z
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F. All Results and Synthesised Programs

F.43. Programs for multfst
Igor IIH

multfst [] = []
multfst (a0 : a1) = a0 : multfst (fun2 (a0 : a1))
fun2 [_] = []
fun2 (a0 : (_ : a2)) = a0 : a2

Igor II+ with catamorphism

multfst a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 _ (a1 : a2) = a1 : (a1 : a2)

Igor II+ with paramorphism

multfst a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , (a1 , a2)) = a0 : multfst (fun4 (a0 , (a1 , a2)))
fun4 (_, ([], [])) = []
fun4 (a0 , (_ : _, _ : a3)) = a0 : a3

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para d [b] (λe f g → b : g))

MagicHaskeller with catamorphism

λa → foldr (λb c → foldr (λd e → d : c) c a) [] a
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F.44. Programs for multlst

F.44. Programs for multlst
Igor IIH

multlst [] = []
multlst (a0 : a1) = fun1 (a0 : a1) : multlst a1
fun1 [a0] = a0
fun1 (_ : (a1 : a2)) = fun1 (a1 : a2)

Igor II+ with catamorphism

multlst a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 a0 (_ : a2) = a0 : (a0 : a2)

Igor II+ with paramorphism

multlst a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (_, (a1 : a2 , _ : _)) = a1 : (a1 : a2)

-- alternative solution
multlst a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (_, (a1 : a2 , _ : _)) = a1 : (a1 : a2)

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para d b (λe f g → e) : d)

MagicHaskeller with catamorphism

λa → foldr (λb c → foldr (λd e → d) b c : c) [] a
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F. All Results and Synthesised Programs

F.45. Programs for nandL
Igor IIH

nandL [] = False
nandL (( False) : _) = True
nandL (( True) : a0) = nandL a0

Igor II+ with catamorphism

nandL a0 = foldr fun1 False a0
fun1 (False) _ = True
fun1 (True) a0 = a0

Igor II+ with paramorphism

nandL a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = False
fun2 (False , (_, _)) = True
fun2 (True , (a0 , _)) = a0

MagicHaskeller with paramorphism

λa → list_para a (λb → False) (λb c d e → iF b (d e) e) True

MagicHaskeller with catamorphism

λa → foldr (λb c → iF b c True) False a
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F.46. Programs for negateAll

F.46. Programs for negateAll
Igor IIH

negateAll [] = []
negateAll (a0 : a1) = fun1 (a0 : a1) : negateAll a1
fun1 (( False) : _) = True
fun1 (( True) : _) = False

Igor II+ with catamorphism

negateAll a0 = map fun1 a0
fun1 (False) = True
fun1 (True) = False

Igor II+ with paramorphism

negateAll a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (False , (a0 , _)) = True : a0
fun2 (True , (a0 , _)) = False : a0

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → iF b False True : d)

MagicHaskeller with catamorphism

λa → foldr (λb c → iF b False True : c) [] a
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F. All Results and Synthesised Programs

F.47. Programs for norL
Igor IIH

norL [] = True
norL (( False) : a0) = norL a0
norL (( True) : _) = False

Igor II+ with catamorphism

norL a0 = foldr fun1 True a0
fun1 (False) a0 = a0
fun1 (True) _ = False

Igor II+ with paramorphism

norL a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (False , (a0 , _)) = a0
fun2 (True , (_, _)) = False

MagicHaskeller with paramorphism

λa → list_para a (λb → True) (λb c d e → iF b False (d True)) True

MagicHaskeller with catamorphism

λa → foldr (λb c → iF b False c) True a

294



F.48. Programs for nthElem

F.48. Programs for nthElem
Igor IIH

nthElem (a0 : _) (Z) = a0
nthElem (_ : (a1 : a2)) (S a3) = nthElem (a1 : a2) a3

Igor II+ with catamorphism

nthElem (a0 : a1) a2 =
cata ⊥ (fun1 (a0 : a1) ⊕ fun2 (a0 : a1)) a2

fun1 (a0 : _) _ = a0
fun2 (_ : (a1 : _)) _ = a1
fun2 (_ : (_ : (a2 : _))) _ = a2
fun2 (_ : (_ : (_ : (a3 : _)))) _ = a3
fun2 (_ : (_ : (_ : (_ : (a4 : _))))) _ = a4

Igor II+ with paramorphism

nthElem (a0 : a1) a2 =
para ⊥ (fun1 (a0 : a1) ⊕ fun2 (a0 : a1)) a2

fun1 (a0 : _) _ = a0
fun2 (_ : (a1 : a2)) (_, a4) = nthElem (a1 : a2) a4

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.49. Programs for odd
Igor IIH

odd (Z) = False
odd (S (Z)) = True
odd (S (S a0)) = odd a0

Igor II+ with catamorphism

odd a0 = cata ⊥ (fun1 ⊕ fun2) a0
fun1 _ = False
fun2 (False) = True
fun2 (True) = False

Igor II+ with paramorphism

odd a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = False
fun2 (False , _) = True
fun2 (True , S _) = False

MagicHaskeller with paramorphism

λa → nat_para a (λb c → iF c False True) False

MagicHaskeller with catamorphism

no result

296



F.50. Programs for oddpos

F.50. Programs for oddpos
Igor IIH

oddpos [] = []
oddpos (a0 : a1) = a0 : oddpos (fun4 (a0 : a1))
fun4 [_] = []
fun4 (_ : (_ : a2)) = a2

Igor II+ with catamorphism

oddpos [] = []
oddpos (a0 : a1) = a0 : oddpos (fun4 (a0 : a1))
fun4 [_] = []
fun4 (_ : (_ : a2)) = a2

Igor II+ with paramorphism

oddpos a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , (a1 , a2)) = a0 : oddpos (fun6 (a0 , (a1 , a2)))
fun6 (_, ([], [])) = []
fun6 (_, (_ : _, _ : a3)) = a3

-- alternative solution
oddpos a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , (a1 , a2)) = a0 : oddpos (fun6 (a0 , (a1 , a2)))
fun6 (_, ([], [])) = []
fun6 (_, (_ : _, _ : a3)) = a3

MagicHaskeller with paramorphism

λa → list_para a (λb → []) (λb c d e → iF e (d False) (b : d True))
False

MagicHaskeller with catamorphism

λa → foldr (λb c d → foldr (λe f → b : c []) (c a) d) (λb → []) a a
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F. All Results and Synthesised Programs

F.51. Programs for odds
Igor IIH

odds [] = []
odds ((Z) : a0) = odds a0
odds ((S (Z)) : a0) = S Z : odds a0
odds ((S (S (Z))) : a0) = odds a0
odds ((S (S (S (Z)))) : a0) = S (S (S Z)) : odds a0

-- alternative solution
odds [] = []
odds ((Z) : a0) = odds a0
odds ((S (Z)) : a0) = S Z : odds a0
odds ((S (S (Z))) : a0) = odds a0
odds ((S (S (S (Z)))) : a0) = S (S (S Z)) : odds a0

Igor II+ with catamorphism

odds a0 = filter fun1 a0
fun1 a0 = cata ⊥ (fun2 ⊕ fun3) a0
fun2 _ = True
fun3 (False) = True
fun3 (True) = False

Igor II+ with paramorphism

odds a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (Z, (a0 , _)) = a0
fun2 (S (Z), (a0 , _)) = S Z : a0
fun2 (S (S (Z)), (a0 , _)) = a0
fun2 (S (S (S (Z))), (a0 , _)) = S (S (S Z)) : a0

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.52. Programs for oddslist

F.52. Programs for oddslist
Igor IIH

no result

Igor II+ with catamorphism

oddslist a0 = foldr fun1 True a0
fun1 a0 a1 = cata ⊥ (fun2 a1 ⊕ fun3 a1) a0
fun2 _ _ = False
fun3 a0 (False) = a0
fun3 (True) (True) = False

Igor II+ with paramorphism

oddslist a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (Z, (True , [])) = False
fun2 (Z, (False , [_])) = False
fun2 (S a0 , (True , [])) = oddslist [S a0]
fun2 (Z, (True , [S _])) = False
fun2 (S _, (False , [_])) = False
fun2 (S a0 , (True , [S _])) = fun2 (S a0 , (True , []))

-- alternative solution
oddslist a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = True
fun2 (Z, (True , [])) = False
fun2 (Z, (False , [_])) = False
fun2 (S a0 , (True , [])) = oddslist [S a0]
fun2 (Z, (True , [S _])) = False
fun2 (S _, (False , [_])) = False
fun2 (S a0 , (True , [S _])) = oddslist [S a0]

MagicHaskeller with paramorphism

λa → list_para a True (λb c d → nat_para b (λe f g h → f h g) (λe f →
f) d False)

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.53. Programs for or
Igor IIH

or (False) a0 = a0
or (True) _ = True

-- alternative solution
or a0 (False) = a0
or _ (True) = True

Igor II+ with catamorphism

or (False) a0 = a0
or (True) _ = True

-- alternative solution
or a0 (False) = a0
or _ (True) = True

Igor II+ with paramorphism

or (False) a0 = a0
or (True) _ = True

-- alternative solution
or a0 (False) = a0
or _ (True) = True

MagicHaskeller with paramorphism

λa b → iF (iF b True False) True a

MagicHaskeller with catamorphism

λa b → iF (iF b True False) True a
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F.54. Programs for orL

F.54. Programs for orL
Igor IIH

orL [] = False
orL (( False) : a0) = orL a0
orL (( True) : _) = True

Igor II+ with catamorphism

orL a0 = foldr fun1 False a0
fun1 (False) a0 = a0
fun1 (True) _ = True

-- alternative solution
orL a0 = foldr fun1 False a0
fun1 a0 (False) = a0
fun1 _ (True) = True

Igor II+ with paramorphism

orL a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = False
fun2 (False , (a0 , _)) = a0
fun2 (True , (_, _)) = True

-- alternative solution
orL a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = False
fun2 (a0 , (False , _)) = a0
fun2 (_, (True , _ : _)) = True

MagicHaskeller with paramorphism

λa → list_para a (λb → False) (λb c d e → iF b True (d True)) True

MagicHaskeller with catamorphism

λa → foldr (λb c → iF c True b) False a
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F.55. Programs for pack
Igor IIH

pack [] = [[]]
pack [a0] = [[a0]]
pack (a0 : (a1 : a2)) = [a0] : pack (a1 : a2)

Igor II+ with catamorphism

pack a0 = foldr fun1 [[]] a0
fun1 a0 [[]] = [[a0]]
fun1 a0 ([a1] : a2) = [a0] : ([a1] : a2)

Igor II+ with paramorphism

pack a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = [[]]
fun2 (a0 , ([[]] , [])) = [[a0]]
fun2 (a0 , ([_] : a2 , a1 : _)) = [a0] : ([a1] : a2)

-- alternative solution
pack a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = [[]]
fun2 (a0 , ([[]] , [])) = [[a0]]
fun2 (a0 , ([_] : a2 , a1 : _)) = [a0] : ([a1] : a2)

MagicHaskeller with paramorphism

λa → list_para a (λb → b) (λb c d e → [b] : d []) [a]

MagicHaskeller with catamorphism

λa → foldr (λb c d → [b] : c []) (λb → b) a [a]
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F.56. Programs for pepper

F.56. Programs for pepper
Igor IIH

pepper a0 a1 = fun1 a0 a1 : fun2 a0 a1
fun1 a0 [] = (a0 , Nothing )
fun1 a0 (a1 : _) = (a0 , Just (a1 , S a0))
fun2 _ [] = []
fun2 a0 (a1 : a2) =

fun7 a0 (a1 : a2) : fun2 (fun28 a0 (a1 : a2)) a2
fun28 a0 [_] = a0
fun28 a0 (_ : (_ : _)) = S a0
fun7 a0 [_] = (S a0 , Nothing )
fun7 a0 (_ : (a2 : _)) = (S a0 , Just (a2 , S (S a0)))

Igor II+ with catamorphism

pepper a0 a1 = foldr fun1 [(a0 , Nothing )] a1
fun1 a0 ((a1 , a2) : a3) =

(a1 , Just (a0 , S a1)) : fun4 a0 ((a1 , a2) : a3)
fun4 a0 ((a1 , a2) : a3) = map (fun5 a0) ((a1 , a2) : a3)
fun5 _ (a1 , Nothing ) = (S a1 , Nothing )
fun5 _ (_, Just (a2 , S a1)) = (S a1 , Just (a2 , S (S a1)))

Igor II+ with paramorphism

pepper a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 _ = [(a0 , Nothing )]
fun2 a0 (a1 , ((a0 , _) : _, a4)) = pepper a0 (a1 : a4)

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.57. Programs for pepperF
Igor IIH

pepperF a0 a1 = fun1 a0 a1 : fun2 a0 a1
fun1 a0 [] = (a0 , Nothing )
fun1 a0 (a1 : _) = (a0 , Just a1)
fun2 _ [] = []
fun2 a0 (a1 : a2) =

fun7 a0 (a1 : a2) : fun2 (fun28 a0 (a1 : a2)) a2
fun28 a0 [_] = a0
fun28 a0 (_ : (_ : _)) = S a0
fun7 a0 [_] = (S a0 , Nothing )
fun7 a0 (_ : (a2 : _)) = (S a0 , Just a2)

Igor II+ with catamorphism

pepperF a0 a1 = foldr fun1 [(a0 , Nothing )] a1
fun1 a0 ((a1 , a2) : a3) =

(a1 , Just a0) : fun4 a0 ((a1 , a2) : a3)
fun4 a0 ((a1 , a2) : a3) = map (fun5 a0) ((a1 , a2) : a3)
fun5 _ (a1 , a2) = (S a1 , a2)

Igor II+ with paramorphism

pepperF a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 _ = [(a0 , Nothing )]
fun2 a0 (a1 , ((a0 , _) : _, a4)) = pepperF a0 (a1 : a4)

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.58. Programs for playTennis
Igor IIH

playTennis (Overcast , _, _, _) = True
playTennis (Rain , _, _, Strong ) = False
playTennis (Rain , _, _, Weak) = True
playTennis (Sunny , _, High , _) = False
playTennis (Sunny , _, Normal , _) = True

Igor II+ with catamorphism

playTennis (Overcast , _, _, _) = True
playTennis (Rain , _, _, Strong ) = False
playTennis (Rain , _, _, Weak) = True
playTennis (Sunny , _, High , _) = False
playTennis (Sunny , _, Normal , _) = True

Igor II+ with paramorphism

playTennis (Overcast , _, _, _) = True
playTennis (Rain , _, _, Strong ) = False
playTennis (Rain , _, _, Weak) = True
playTennis (Sunny , _, High , _) = False
playTennis (Sunny , _, Normal , _) = True

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.59. Programs for postorder with append, snoc

Igor IIH

postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
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(Node a1
(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
postorder (Node a0

(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

-- alternative solution
postorder (NilT) = []
postorder (Node a0 (NilT) (NilT)) = [a0]
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postorder (Node a0
(Node a1 (NilT) (NilT))
(Node a2 (NilT) (NilT))) = [a1 , a2 , a0]

postorder (Node a0
(Node a1

(Node a2 (NilT) (NilT))
(Node a3 (NilT) (NilT)))

(Node a4
(Node a5 (NilT) (NilT))
(Node a6 (NilT) (NilT)))) = [a2 , a3 , a1 , a5 , a6 , a4 , a0]

Igor II+ with catamorphism

postorder a0 = cata ⊥ (fun3 ⊕ fun4) a0
fun3 _ = []
fun4 (a0 , ([], [])) = [a0]
fun4 (a0 , (a1 : a2 , a3 : a4)) =

a1 : append (snoc a3 a2) (snoc a0 a4)

Igor II+ with paramorphism

postorder a0 = para ⊥ (fun3 ⊕ fun4) a0
fun3 _ = []
fun4 (a0 , (([] , NilT), ([], NilT))) = [a0]
fun4 (a0 , ((_ : _, Node a3 a4 a5)

,(_ : _, Node a8 a9 a10))) =
postorder (Node a0 (Node a3 a4 a5) (Node a8 a9 a10))

MagicHaskeller with paramorphism

λa → ntree_para a [] (λb c d e f → snc (e ++ f) b)

MagicHaskeller with catamorphism

λa → ntree_cata a [] (λb c d → snc (c ++ d) b)
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F.60. Programs for preorder with append
Igor IIH

preorder (NilT) = []
preorder (Node a0 a1 a2) = a0 : append ( preorder a1) ( preorder a2)

Igor II+ with catamorphism

preorder a0 = cata ⊥ (fun2 ⊕ fun3) a0
fun2 _ = []
fun3 (a0 , (a1 , a2)) = a0 : append a1 a2

Igor II+ with paramorphism

preorder a0 = para ⊥ (fun2 ⊕ fun3) a0
fun2 _ = []
fun3 (a0 , ((a1 , _), (a3 , _))) = a0 : append a1 a3

MagicHaskeller with paramorphism

λa → ntree_para a [] (λb c d e f → b : (e ++ f))

MagicHaskeller with catamorphism

λa → ntree_cata a [] (λb c d → b : (c ++ d))
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F.61. Programs for replicate
Igor IIH

replicate _ (Z) = []
replicate a0 (S a1) = a0 : replicate a0 a1

Igor II+ with catamorphism

replicate a0 a1 = cata ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 a0 a1 = a0 : a1

Igor II+ with paramorphism

replicate a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 a0 (a1 , _) = a0 : a1

MagicHaskeller with paramorphism

λa b → nat_para b (λc d → a : d) []

MagicHaskeller with catamorphism

λa b → nat_cata b (λc → a : c) []
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F.62. Programs for reverse
Igor IIH

reverse [] = []
reverse (a0 : a1) = fun1 (a0 : a1) : reverse (fun5 (a0 : a1))
fun1 [a0] = a0
fun1 (_ : (a1 : a2)) = fun1 (a1 : a2)
fun5 [_] = []
fun5 (a0 : (a1 : a2)) = a0 : fun5 (a1 : a2)

Igor II+ with catamorphism

reverse a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 a0 (a1 : a2) = a0 : (a1 : a2)

Igor II+ with paramorphism

reverse a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (a0 , (_ : _, a3 : a4)) = reverse (a0 : (a3 : a4))

MagicHaskeller with paramorphism

λa → list_para a (λb → b) (λb c d e → d (b : e)) []

MagicHaskeller with catamorphism

λa → foldr (λb c d → c (b : d)) (λb → b) a []

311



F. All Results and Synthesised Programs

F.63. Programs for rocket
Igor IIH

rocket ( NOCARGO ) a0 = FLY a0
rocket (IN a0 a1) a2 = UNL a0 ( rocket a1 (LOD a0 a2))

Igor II+ with catamorphism

rocket a0 a1 = cata ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 a0 _ = FLY a0
fun14 a0 (a1 , UNL a2 a3) =

fun3 a0 (a1 , fun20 a0 (a1 , UNL a2 a3))
fun2 a0 (a1 , a2) = UNL a1 (fun3 a0 (a1 , a2))
fun20 a0 (_, UNL _ (UNL a3 a4)) =

UNL a3
(fun14 a0 (a3 , UNL a3 (fun20 (LOD a3 a0) (a3 , UNL a3 a4))))

fun20 a0 (_, UNL _ (FLY (LOD _ a0))) = FLY a0
fun3 a0 (a1 , FLY a0) = FLY (LOD a1 a0)
fun3 a0 (a1 , UNL a2 a3) =

fun2 (LOD a1 a0) (a2 , fun14 a0 (a1 , UNL a2 a3))

Igor II+ with paramorphism

rocket a0 a1 = para ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 a0 _ = FLY a0
fun2 a0 (a1 , (a2 , a3)) = UNL a1 (fun3 a0 (a1 , (a2 , a3)))
fun3 a0 (a1 , (FLY a0 , NOCARGO )) = FLY (LOD a1 a0)
fun3 a0 (a1 , (UNL _ _, IN a2 a4)) =

UNL a2 ( rocket a4 (LOD a2 (LOD a1 a0)))

MagicHaskeller with paramorphism

λa b → cargo_para a (λc → FLY c) (λc d e f → UNL c (e (LOD c f))) b

MagicHaskeller with catamorphism

λa b → cargo_para a (λc → FLY c) (λc d e f → UNL c (e (LOD c f))) b

312



F.64. Programs for sentence

F.64. Programs for sentence
Igor IIH

sentence (Z) = [’D’, ’N’, ’V’, ’D’, ’N’]
sentence (S a0) = ’D’ : (’N’ : (’V’ : sentence a0))

Igor II+ with catamorphism

sentence a0 = cata ⊥ (fun1 ⊕ fun2) a0
fun1 _ = [’D’, ’N’, ’V’, ’D’, ’N’]
fun2 (’D’ : (’N’ : (’V’ :

(’D’ : (’N’ : a0))))) =
’D’ : (’N’ : (’V’ : (’D’ : (’N’ : (’V’ : (’D’ : (’N’ : a0)))))))

Igor II+ with paramorphism

sentence a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = [’D’, ’N’, ’V’, ’D’, ’N’]
fun2 (’D’ : (’N’ : (’V’ :

(’D’ : (’N’ : a0)))), _) =
’D’ : (’N’ : (’V’ : (’D’ : (’N’ : (’V’ : (’D’ : (’N’ : a0)))))))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.65. Programs for shiftl
Igor IIH

shiftl [] = []
shiftl [a0] = [a0]
shiftl (a0 : (a1 : a2)) = a1 : shiftl (a0 : a2)

Igor II+ with catamorphism

shiftl a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 a0 [a1] = [a0 , a1]
fun2 a0 (a1 : (a2 : a3)) = a1 : (a0 : (a2 : a3))

Igor II+ with paramorphism

shiftl a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (a0 , (_ : _, a3 : a4)) = shiftl (a0 : (a3 : a4))

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para c [b] (λe f g → e : g))

MagicHaskeller with catamorphism

λa → foldr (λb c d → foldr (λe f → b : c d) (c (b : d)) d) (λb → b) a
[]
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F.66. Programs for shiftl, shiftr
Igor IIH

shiftl [] = []
shiftl [a0] = [a0]
shiftl (a0 : (a1 : a2)) = a1 : shiftl (a0 : a2)
shiftr [] = []
shiftr (a0 : a1) = fun8 (a0 : a1) : fun9 (a0 : a1)
fun8 [a0] = a0
fun8 (_ : (a1 : a2)) = fun8 (a1 : a2)
fun9 [_] = []
fun9 (a0 : (a1 : a2)) = a0 : fun9 (a1 : a2)

Igor II+ with catamorphism

shiftl a0 = foldr fun2 [] a0
shiftr a0 = foldr fun6 [] a0
fun2 a0 a1 = foldr fun3 [a0] a1
fun3 a0 [a1] = [a0 , a1]
fun3 a0 (a1 : (a2 : a3)) = a1 : (a0 : (a2 : a3))
fun6 a0 a1 = foldr fun7 [a0] a1
fun7 a0 [a1] = [a0 , a1]
fun7 a0 (a1 : (a2 : a3)) = a0 : (a2 : (a1 : a3))

Igor II+ with paramorphism

shiftl a0 = para ⊥ (fun2 ⊕ fun3) a0
shiftr a0 = para ⊥ (fun9 ⊕ fun10) a0
fun10 (a0 , ([], [])) = [a0]
fun10 (a0 , (a1 : a2 , _ : _)) = a1 : (a0 : a2)
fun2 _ = []
fun3 (a0 , ([], [])) = [a0]
fun3 (a0 , (_ : _, a3 : a4)) = shiftl (a0 : (a3 : a4))
fun9 _ = []

-- alternative solution
shiftl a0 = para ⊥ (fun2 ⊕ fun3) a0
shiftr a0 = para ⊥ (fun9 ⊕ fun10) a0
fun10 (a0 , ([], [])) = [a0]
fun10 (a0 , (a1 : a2 , _ : _)) = a1 : (a0 : a2)
fun2 _ = []
fun3 (a0 , ([], [])) = [a0]
fun3 (a0 , (_ : _, a3 : a4)) = shiftl (a0 : (a3 : a4))
fun9 _ = []

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.67. Programs for shiftr
Igor IIH

shiftr [] = []
shiftr (a0 : a1) = fun1 (a0 : a1) : fun2 (a0 : a1)
fun1 [a0] = a0
fun1 (_ : (a1 : a2)) = fun1 (a1 : a2)
fun2 [_] = []
fun2 (a0 : (a1 : a2)) = a0 : fun2 (a1 : a2)

Igor II+ with catamorphism

shiftr a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 a0 [a1] = [a0 , a1]
fun2 a0 (a1 : (a2 : a3)) = a0 : (a2 : (a1 : a3))

Igor II+ with paramorphism

shiftr a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (a0 , (a1 : a2 , _ : _)) = a1 : (a0 : a2)

-- alternative solution
shiftr a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (a0 , (a1 : a2 , _ : _)) = a1 : (a0 : a2)

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → list_para d [b] (λe f g → e : (b : f)))

MagicHaskeller with catamorphism

λa → foldr (λb c d → c (foldr (λe f g → g : f e) (λe → []) a b)) (λb
→ b) a a
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F.68. Programs for snoc
Igor IIH

snoc a0 [] = [a0]
snoc a0 (a1 : a2) = a1 : snoc a0 a2

Igor II+ with catamorphism

snoc a0 a1 = foldr fun1 [a0] a1
fun1 a0 (a1 : a2) = a0 : (a1 : a2)

Igor II+ with paramorphism

snoc a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 a0 _ = [a0]
fun2 _ (a1 , (a2 : a3 , _)) = a1 : (a2 : a3)

MagicHaskeller with paramorphism

λa b → list_para b [a] (λc d e → c : e)

MagicHaskeller with catamorphism

λa b → foldr (λc d → c : d) [a] b
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F.69. Programs for split
Igor IIH

split a0 = (fun1 a0 , fun2 a0)
fun1 [] = []
fun1 [a0] = [a0]
fun1 (a0 : (_ : a2)) = a0 : fun1 a2
fun2 [] = []
fun2 [_] = []
fun2 (_ : (a1 : a2)) = a1 : fun2 a2

Igor II+ with catamorphism

split a0 = foldr fun1 ([], []) a0
fun1 a0 (a1 , a2) = (a0 : a2 , a1)

Igor II+ with paramorphism

split a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = ([], [])
fun2 (a0 , ((a1 , a2), _)) = (a0 : a2 , a1)

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.70. Programs for splitAt
Igor IIH

no result

Igor II+ with catamorphism

splitAt a0 (a1 : a2) =
cata ⊥ (fun1 (a1 : a2) ⊕ fun2 (a1 : a2)) a0

fun1 (a0 : a1) _ = ([], a0 : a1)
fun11 (_ : _) ([], _ : _) = []
fun11 (_ : (a1 : a2)) (_ : a3 , a4 : a5) =

a1 : fun11 (a1 : a2) (a3 , a4 : a5)
fun2 (a0 : a1) (a0 : a1 , []) = (a0 : a1 , [])
fun2 (a0 : a1) (a2 , a3 : a4) =

(a0 : fun11 (a0 : a1) (a2 , a3 : a4), a4)

Igor II+ with paramorphism

no result

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.71. Programs for sum
Igor IIH

sum [] = Z
sum ((Z) : a0) = sum a0
sum ((S a0) : a1) = S (sum (a0 : a1))

Igor II+ with catamorphism

sum a0 = foldr fun1 Z a0
fun1 a0 a1 = cata ⊥ (fun2 a0 ⊕ fun3 a0) a1
fun2 a0 _ = a0
fun3 _ a1 = S a1

Igor II+ with paramorphism

sum a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = Z
fun2 (a0 , (Z, _)) = a0
fun2 (a0 , (S _, [S a1])) = sum [a0 , S a1]

-- alternative solution
sum a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = Z
fun2 (a0 , (Z, _)) = a0
fun2 (a0 , (S _, [S a1])) = sum [S a1 , a0]

MagicHaskeller with paramorphism

λa → list_para a Z (λb c d → nat_para d (λe f g → S (f g)) (λe → e) b
)

MagicHaskeller with catamorphism

λa → foldr (λb c → nat_cata c (λd → S d) b) Z a
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F.72. Programs for sub

F.72. Programs for sub
Igor IIH

no result

Igor II+ with catamorphism

sub a0 a1 = cata ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 a0 _ = a0
fun2 _ (Z) = Z
fun2 (S _) (S a1) = a1

Igor II+ with paramorphism

sub a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = Z
fun2 (Z) (_, a0) = S a0
fun2 (S a0) (_, a2) = sub a0 a2

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.73. Programs for subseqs with append
Igor IIH

subseqs [] = [[]]
subseqs [a0] = [[a0], []]
subseqs [a0 , a1] = [[a0 , a1], [a0], [a1], []]
subseqs [a0 , a1 , a2] =

[[a0 , a1 , a2], [a0 , a1], [a0 , a2], [a0], [a1 , a2], [a1], [a2], []]

Igor II+ with catamorphism

subseqs a0 = foldr fun2 [[]] a0
fun2 a0 (a1 : a2) = append (fun3 a0 (a1 : a2)) (fun4 a0 (a1 : a2))
fun3 a0 (a1 : a2) = map (fun8 a0) (a1 : a2)
fun4 a0 (a1 : a2) = map (fun9 a0) (a1 : a2)
fun8 a0 a1 = a0 : a1
fun9 _ a1 = a1

Igor II+ with paramorphism

subseqs a0 = para ⊥ (fun2 ⊕ fun3) a0
fun2 _ = [[]]
fun3 (a0 , ([[]] , [])) = [[a0], []]
fun3 (a0 , ((_ : _) : (_ : _), a1 : a2)) = subseqs (a0 : (a1 : a2))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.74. Programs for swap

F.74. Programs for swap
Igor IIH

swap [] = []
swap [a0] = [a0]
swap (a0 : (a1 : a2)) = a1 : (a0 : swap a2)

Igor II+ with catamorphism

swap a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 a0 [a1] = [a0 , a1]
fun2 a0 [a1 , a2] = [a1 , a2 , a0]
fun2 a0 [a1 , a2 , a3] = [a3 , a2 , a1 , a0]
fun2 a0 (a1 : (a2 : (a3 : (a4 : a5)))) =

a4 : (a2 : fun2 a1 (a3 : (a0 : a5)))

Igor II+ with paramorphism

swap a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (a0 , (_ : _, a3 : a4)) = swap (a0 : (a3 : a4))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.75. Programs for switch
Igor IIH

switch [] = []
switch (a0 : a1) = fun1 (a0 : a1) : switch (fun5 (a0 : a1))
fun1 [a0] = a0
fun1 (_ : (a1 : a2)) = fun1 (a1 : a2)
fun5 [_] = []
fun5 (a0 : (a1 : a2)) = a0 : switch (fun5 (a1 : a2))

Igor II+ with catamorphism

switch a0 = foldr fun1 [] a0
fun1 a0 a1 = foldr fun2 [a0] a1
fun2 a0 [a1] = [a0 , a1]
fun2 a0 [a1 , a2] = [a0 , a1 , a2]
fun2 a0 (a1 : (a2 : (a3 : a4))) = a0 : (a2 : (a1 : (a3 : a4)))

Igor II+ with paramorphism

switch a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (a0 , ([], [])) = [a0]
fun2 (a0 , (_ : _, a3 : a4)) = switch (a0 : (a3 : a4))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.76. Programs for tail

F.76. Programs for tail
Igor IIH

tail (_ : a1) = a1

Igor II+ with catamorphism

tail (_ : a1) = a1

Igor II+ with paramorphism

tail (_ : a1) = a1

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → c)

MagicHaskeller with catamorphism

λa → foldr (λb c d → foldr (λe f → b : c d) (c a) d) (λb → []) a []
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F. All Results and Synthesised Programs

F.77. Programs for tails
Igor IIH

tails [] = [[]]
tails (a0 : a1) = (a0 : a1) : tails a1

Igor II+ with catamorphism

tails a0 = foldr fun1 [[]] a0
fun1 a0 (a1 : a2) = (a0 : a1) : (a1 : a2)

Igor II+ with paramorphism

tails a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = [[]]
fun2 (a0 , (_ : a2 , a1)) = (a0 : a1) : (a1 : a2)

MagicHaskeller with paramorphism

λa → a : list_para a [] (λb c d → c : d)

MagicHaskeller with catamorphism

λa → foldr (λb c → foldr (λd e → (b : d) : c) c c) [[]] a
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F.78. Programs for take

F.78. Programs for take
Igor IIH

take (Z) _ = []
take (S _) [] = []
take (S a0) (a1 : a2) = a1 : take a0 a2

Igor II+ with catamorphism

take a0 a1 = cata ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 _ _ = []
fun2 a0 [] = foldr (fun4 []) [] a0
fun2 (a0 : a1) (a0 : _) = a0 : a1
fun4 [] a0 _ = [a0]

Igor II+ with paramorphism

take a0 a1 = para ⊥ (fun1 a0 ⊕ fun2 a0) a1
fun1 _ _ = []
fun2 (Z) (_, ([], _)) = []
fun2 (S a0) (a1 , (_, a2)) = a1 : take a0 a2

MagicHaskeller with paramorphism

λa b → nat_para a (λc d e → list_para e [] (λf g h → f : d g)) (λc →
[]) b

MagicHaskeller with catamorphism

λa b → nat_cata a (λc d → foldr (λe f → e : c f) [] d) (λc → []) b
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F. All Results and Synthesised Programs

F.79. Programs for transpose
Igor IIH

no result

Igor II+ with catamorphism

transpose ((a0 : a1) : a2) =
fun1 ((a0 : a1) : a2) : fun2 ((a0 : a1) : a2)

fun1 ((a0 : a1) : a2) = map fun3 ((a0 : a1) : a2)
fun10 ((a0 : (a1 : a2)) : a3) = map fun13 ((a0 : (a1 : a2)) : a3)
fun13 (_ : (a1 : a2)) = a1 : a2
fun2 ([_] : _) = []
fun2 ((a0 : (a1 : a2)) : a3) =

transpose (fun10 ((a0 : (a1 : a2)) : a3))
fun3 (a0 : _) = a0

Igor II+ with paramorphism

transpose ((a0 : a1) : a2) =
fun1 ((a0 : a1) : a2) : fun2 ((a0 : a1) : a2)

fun1 [[a0]] = [a0]
fun1 ([a0] : ([a1] : a2)) = a0 : fun1 ([a1] : a2)
fun1 [a0 : (_ : _)] = [a0]
fun1 ((a0 : (a1 : a2)) :

((a3 : (_ : _)) : a6)) = a0 : fun1 ((a3 : (a1 : a2)) : a6)
fun2 [[_]] = []
fun2 ([_] : ([_] : _)) = []
fun2 [_ : (a1 : a2)] = transpose [a1 : a2]
fun2 ((_ : (a1 : a2)) :

((_ : (a4 : a5)) : a6)) =
transpose ((a1 : a2) : transpose (fun2 ((a4 : (a4 : a5)) : a6)))

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.80. Programs for unzip

F.80. Programs for unzip
Igor IIH

unzip ((a0 , a1) : a2) =
(a0 : fun3 ((a0 , a1) : a2), fun2 ((a0 , a1) : a2))

fun2 [(_, a1)] = [a1]
fun2 ((a0 , a1) : ((_, a3) : a4)) = a1 : fun2 ((a0 , a3) : a4)
fun3 [(_, _)] = []
fun3 ((_, a1) : ((a2 , _) : a4)) = a2 : fun3 ((a2 , a1) : a4)

Igor II+ with catamorphism

unzip ((a0 , a1) : a2) = (fun1 ((a0 , a1) : a2), fun2 ((a0 , a1) : a2))
fun1 ((a0 , a1) : a2) = map fun3 ((a0 , a1) : a2)
fun2 ((a0 , a1) : a2) = map fun6 ((a0 , a1) : a2)
fun3 (a0 , _) = a0
fun6 (_, a1) = a1

Igor II+ with paramorphism

unzip ((a0 , a1) : a2) =
(a0 : fun3 ((a0 , a1) : a2), fun2 ((a0 , a1) : a2))

fun2 [(_, a1)] = [a1]
fun2 ((a0 , a1) : ((_, a3) : a4)) = a1 : fun2 ((a0 , a3) : a4)
fun3 [(_, _)] = []
fun3 ((_, a1) : ((a2 , _) : a4)) = a2 : fun3 ((a2 , a1) : a4)

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.81. Programs for weave
Igor IIH

weave [] a0 = a0
weave (a0 : a1) a2 = a0 : weave a2 a1

Igor II+ with catamorphism

weave [] a0 = a0
weave (a0 : a1) a2 = a0 : weave a2 a1

Igor II+ with paramorphism

weave a0 a1 = para ⊥ (fun1 a1 ⊕ fun2 a1) a0
fun1 a0 _ = a0
fun2 a0 (a1 , (_, a3)) = a1 : weave a0 a3

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F.82. Programs for weaveL

F.82. Programs for weaveL
Igor IIH

no result

Igor II+ with catamorphism

no result

Igor II+ with paramorphism

no result

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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F. All Results and Synthesised Programs

F.83. Programs for zeros
Igor IIH

zeros [] = []
zeros ((Z) : a0) = Z : zeros a0
zeros ((S _) : a1) = zeros a1

-- alternative solution
zeros [] = []
zeros ((Z) : a0) = Z : zeros a0
zeros ((S _) : a1) = zeros a1

Igor II+ with catamorphism

zeros a0 = filter fun1 a0
fun1 (Z) = False
fun1 (S _) = True

Igor II+ with paramorphism

zeros a0 = para ⊥ (fun1 ⊕ fun2) a0
fun1 _ = []
fun2 (Z, (a0 , _)) = Z : a0
fun2 (S _, (a1 , _)) = a1

MagicHaskeller with paramorphism

λa → list_para a [] (λb c d → nat_para b (λe f → d) (Z : d))

MagicHaskeller with catamorphism

λa → foldr (λb c → nat_cata b (λd → c) (Z : c)) [] a
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F.84. Programs for zip

F.84. Programs for zip
Igor IIH

zip [] _ = []
zip [_] [] = []
zip (a0 : a1) (a2 : a3) = (a0 , a2) : zip a1 a3

Igor II+ with catamorphism

zip [] _ = []
zip [_] [] = []
zip (a0 : a1) (a2 : a3) = (a0 , a2) : zip a1 a3

Igor II+ with paramorphism

zip [] _ = []
zip [_] [] = []
zip (a0 : a1) (a2 : a3) = (a0 , a2) : zip a1 a3

MagicHaskeller with paramorphism

no result

MagicHaskeller with catamorphism

no result
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G. Search Space Visualisations
This chapter presents some examples of Igor II’s search tree visualisations created with the
tool istviewer1 which was implemented by Olga Yanenko. They give a good impression of the
complexity reduction that can be achieved by the use of type morphisms.

A thin node represents an unfinished hypothesis, a bold node a hypothesis where all equa-
tions are closed. The root node is the initial hypothesis and the the final solution is marked
with a black dot. Different line styles represent different successor operators. The colour indi-
cates the heuristic value of a hypothesis: green for few patterns, red for many patterns. The
numbers shows the chronological order in which the hypotheses have been processed.

Note that these are only small examples containing only a few loop cycles of the Igor II-
algorithm. Many other contain just too many nodes to visualise them on one page. However,
even those small examples show how the original algorithm is hampered by many equivalent
hypotheses. This is especially apparent in Figure G.3 or in Figure G.2 depicting the search
space of evens and addN , respectively.

1http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html
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G. Search Space Visualisations

(a) Igor IIH

(b) Igor II+C

Figure G.1.: Visualisation of the search space for add of Igor IIH without (a) and of
Igor II+C with catamorphisms (b).
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(a) Igor IIH

(b) Igor II+C

Figure G.2.: Visualisation of the search space for addN of Igor IIH without (a) and of
Igor II+C with catamorphisms (b).
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G. Search Space Visualisations

(a) Igor IIH

(b) Igor II+C

Figure G.3.: Visualisation of the search space for evens of Igor IIH without (a) and of
Igor II+C with catamorphisms (b).
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(a) Igor IIH

(b) Igor II+C

Figure G.4.: Visualisation of the search space for inits of Igor IIH without (a) and of
Igor II+C with catamorphisms (b).
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G. Search Space Visualisations

(a) Igor IIH

(b) Igor II+C

Figure G.5.: Visualisation of the search space for sentence of Igor IIH without (a)
and of Igor II+C with catamorphisms (b).

(a) Igor IIH

(b) Igor II+C

Figure G.6.: Visualisation of the search space for split of Igor IIH without (a) and of
Igor II+C with catamorphisms (b).
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(a) Igor IIH

(b) Igor II+C

Figure G.7.: Visualisation of the search space for unzip of Igor IIH without (a) and of
Igor II+C with catamorphisms (b).
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:, 52
Θ(α), 106
Φ(ρ), 86
Φ(ρ)/∼p, 87
Φ(ρ)cj , 106
Φ(f), 84
≡, 50
λ, 179
P(S), 94
µF, 64
�, see subsumption
|·|, 49
∼p, 87
�, 50
⊂, 50
⊆, 50
l = r, see equation
s[t]p, 49
s|p, 49
: : , 176
�, 53
χdirect, 91
χINIT, 84
χcall, 94
χcata, 108
χinit, 84
χpara, 118
χsplit, 87
χsubfn, 89
χtyfunc, 116
0, see initial object
⊗, 186
⊕, 186
_, 181
(), 176
--, 183
::, 48, 178

‘_‘, 179
!→, 53
→R, 53
→ρ, 52
→, 53
l→ r, see rewrite rule
Σ, 47
1, see terminal object
t, 50

absorption
coproducts, 60
products, 58

ack
description, 134
synthesised, 245

Adate, 36
add

description, 134
synthesised, 246

addN
description, 136
synthesised, 247

AI, see artificial intelligence
AI planning, 131
algebra, 64
alleven

description, 136
synthesised, 248

allodd
description, 136
synthesised, 249

and
description, 134
synthesised, 250

andL
description, 134
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synthesised, 251
append

description, 135
synthesised, 252

argument, 49
arity, 47
arrow, 55

identity, 56
artificial intelligence, 21
as-pattern, 180
ATP, see automated theorem proving
Atre, 34
automated theorem proving, 24

background
knowledge, 31, 82
specification, 82

balloons
description, 137
synthesised, 253

bifunctor, 61
binding, 175

function, 175
group, 175

Bool , 176

C, 52
cancellation

catamorphism, 65
coproduct, 59
product, 57

candidate, 85
carrier, 64
case analysis, 59
case-expression, 181
case of, 181
Cat, 60
category, 55

distributive, 63
of F-algebras, 64
of categories, 60
of sets, 56
theory, 55

Char , 177
Clam, 25
class , 182
class declaration, 182

Clean, 34
closed, 48
codomain, 55
cognitive psychology, 131
comment, 183
commute, 56
commuting diagram, 56
compatible, 53
complete, 53
composite, 55
composition

of substitutions, 51
operator, 55

concat
description, 136
synthesised, 254

conditional, 181
confluent, 53
Const , 186
constant, 47

functor, 61
symbol, 47

constructor, 52, 175
symbol, 52
term, 52

constructor system, 52
candidate, 85
open, 82
successor, 85
unfinished, 82

constructor term rewriting
first-order, 51
system, see constructor system

context, 50
contractum, 52
coproduct

arrows, 59
correct w.r.t. , 82
costs

of candidates, 85
CS, see constructor system

extensional correct, 83
curried, 180

D, 52
data

constructor, 175
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declaration, 175
data , 175
definition

function, 175
derived class, 182
deriving , 182
diagram, 56
Dialogs-II, 34
distributive category, 63
Djinn, 42
Dom (·), 50
domain, 50, 55
drop

description, 136
synthesised, 255

Either α β, 178
endofunctor, 60
enjoySport

description, 137
synthesised, 256

ε, 49
Eq, 182
eq

description, 134
synthesised, 257

equation, 54, 81
ground, 81

Escher, 35
evaluate, 175
even

description, 134
synthesised, 258

even, odd
synthesised, 259

evenLength
description, 135
synthesised, 260

evenParity
description, 134
synthesised, 261

evenpos
description, 135
synthesised, 262

evens
description, 136
synthesised, 263

example, 81
export declaration, 183
expression, 175

F-algebra
initial, 64

AlgF, 64
F-catamorphism, 65
F-fold, 65
F-morphism, 64
fact

description, 134
fact with mult

synthesised, 264
FAf , 61
F(A,X), 61
FAX, 61
Ffoil, 34
fib

description, 134
fib with add

synthesised, 266
filter , 185
final object, 57
Flip, 35
Foil, 34
foldr , 184
fork

of functions, 57
function, 54

composition, 179
definition, 54
head, 54
set, 35
symbol, 47
symbol, defined, 52
type, 178

function call operator, 94
Functor , 185
functor, 60

identity, 60
fusion

catamorphism, 65
coproduct, 59
product, 57

G∀st, 40
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gaussSum
description, 134

gaussSum with add
synthesised, 267

Genetic Programming, 35
geq

description, 134
synthesised, 268

Golem, 34
GP, see Genetic Programming
greedy rule splitting, 128
guard, 181

halves
description, 135
synthesised, 269

hanoi
description, 137
synthesised, 270

Haskell, 34
head, 52

symbol, 49
hiding , 184
HOL, 24
hole, 50
human problem solving, 131
hypotheses space, 31
hypothesis, 30

language, 30

Id, 60
Id, 186
identifier, 175
identity

arrow, 56
functor, 60

IFLP, see Inductive Functional Logic Pro-
gramming

if then else , 181
Igor I, 37
Igor II, 37
Igor IIH, 127
Igor II+C , 127, 138
Igor II+P , 127, 138
Igor II+, 128
ILP, see Inductive Logic Programming
import , 183

import declaration, 183
incr

description, 136
synthesised, 271

indexed type families, 186
induction problem, 83
Inductive

Functional Logic Programming, 35
Logic Programming, 33
Program Synthesis, 29
Programming, 29

inductive bias, 30
inF, 64
infix notation, 179
init

description, 135
synthesised, 272

init, last
synthesised, 273

initial
initial F-algebra, 64
object, 57
rule operator, 84

inits
description, 135
synthesised, 274

injection, 58
inn, 186
inorder

description, 137
inorder with append

synthesised, 275
input, 81
instance, 51

declaration, 182
instance , 182
Int, 177
Integer , 177
intersperse

description, 135
synthesised, 276

IO
equation, 81
example, 81
pattern, 81

IP, see Inductive Programming
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IPS, see Inductive Program Synthesis
Isabelle, 24

join
of functions, 59

K·, 61

lambda abstraction, 179
language bias, 30
language processing, 131
last

description, 135
synthesised, 277

lastM
description, 135
synthesised, 278

lasts
description, 136
synthesised, 279

LCF, 24
least general generalisation, 51
Left , 178
left-hand side, 52
left-linear, 52
length

description, 136
synthesised, 280

lengths
description, 136
synthesised, 281

lenses
description, 137
synthesised, 282

let, 181
lgg, see least general generalisation
lhs, see left-hand side
lhss, see left-hand side
Lisp, 34
list type, 177
local variable, 181

machine learning, 21
MagicHaskeller, 44
map, 185
map-reduce-filter, 184
mapCons

description, 136

synthesised, 285
mapping

sorted, 47
mapTail

description, 136
synthesised, 286

match, 51
Maude, 34
Maybe α, 178
mediating arrow, 57, 58
mgu, see most general unifier
mirror

description, 137
synthesised, 287

ML, see machine learning
ML, 34
module, 183

export, 183
import, 183

module , 183
more general, see subsumption
most general unifier, 51
Mu, 186
mult

description, 134
synthesised, 288

mult with add
synthesised, 289

multfst
description, 135
synthesised, 290

multlst
description, 135
synthesised, 291

nandL
description, 134
synthesised, 292

natural
language processing, 131
transformation, 62

natural transformation introduction, 116
negateAll

description, 134
synthesised, 293

norL
description, 134
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synthesised, 294
normal form, 53
normalise, 53
normalising, 53
nthElem

description, 136
synthesised, 295

object, 55
initial, 57

odd
description, 134
synthesised, 296

oddpos
description, 135
synthesised, 297

odds
description, 136
synthesised, 298

oddslist
description, 136
synthesised, 299

one-hole context, 50
one-step reduction relation, 52
operator

direct-call, 91
function call, 94
initial rule, 84
splitting, 87
subfunction, 89

or
description, 135
synthesised, 300

Ord, 182
orL

description, 135
synthesised, 301

orthogonal, 54
out, 186
output, 81
overlap, 53
Oyster, 25

pack
description, 135
synthesised, 302

pairing

of functions, 57
paramorphism, 78
pattern, 52

matching, 180
pepper

description, 137
synthesised, 303

pepperF
description, 137
synthesised, 304

PF, 186
pivot position, 86
playTennis

description, 137
synthesised, 305

pointfree programming, 180
PolyGP, 36, 38
polymorphic type, 176
polynomial functor, 61
polytypic, 186
Pos (·), 49
position, 49
postorder

description, 137
postorder with append, snoc

synthesised, 306
preference bias, 31
prefix notation, 179
Prelude , 184
preorder

description, 137
preorder with append

synthesised, 309
primitive recursion operator, 118
problem solving, 131
product

arrows, 58
bifunctor, 61
objects, 58
of objects, 57

Progol, 34
projection, 57
Proof Planning, 25

qualified imports, 184

redex, 52
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reduct, 53
reduction, 52, 53

rule, 52
step, 52

reduction order
argument-wise, 91
linear, 91

reduction order, 53
default, 91
implementation, 91

reduction sequence, 53
reflection

catamorphism, 65
coproduct, 59
product, 57

renaming, 50
replicate

description, 136
synthesised, 310

restriction bias, 30
reverse

description, 135
synthesised, 311

rewrite
rule, see reduction rule
step, see reduction step

Rf,p, 52
rhs, see right-hand side
rhss, see right-hand side
Right , 178
right-hand side, 52
rocket, 132
rocket

description, 137
synthesised, 312

root, 49
root position, 49
rule, 54

candidate, 85
covered, 86
covering, 86
extensionally correct, 83
open, 82
successor, 85
unfinished, 82

search bias, 31

section, 179
sectioning, 179
sentence

description, 137
synthesised, 313

sequential covering, 34
Set, 56
set

sorted, 47
set,terminal, 35
shiftl

description, 135
synthesised, 314

shiftl, shiftr
synthesised, 315

shiftr
description, 135
synthesised, 316

Show , 182
signature, 47

many-sorted, 47
SKI calculus, 23
snoc

description, 135
synthesised, 317

solution, 83
specification, 81

target, 82
specification subset, 85
split

description, 135
synthesised, 318

splitAt
description, 136
synthesised, 319

splitting operator, 87
STGP, see Strongly Typed Genetic Program-

ming
Strongly Typed Genetic Programming, 36
structural recursion operator, 108
structure

of an algebra, 64
sub

description, 134
synthesised, 321

subfunction, 31
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subfunction operator, 89
subseqs

description, 135
subseqs with append

synthesised, 322
substitution, 50

instance, 51
subsumes, 51
subsumption

substitutions, 51
terms, 51

subterm, 48–50
at position, 49
proper, 50
replacing at position, 49

successor
constructor system, 85
rule, 85

sum
arrows, 59
bifunctor, 61
objects, 58

sum
description, 136
synthesised, 320

Sussman anomaly, 132
swap

description, 135
synthesised, 323

switch
description, 135
synthesised, 324

tactic, 24
tail

description, 135
synthesised, 325

tails
description, 136
synthesised, 326

take
description, 136
synthesised, 327

target, 30, 82
function, 82
language, 30
program, 30

specification, 82
TC(X ), 52
term, 47–48

closed, 48
ground, 48
linear, 48
size, 49
syntactic identity, 50
vector, 50

terminal
object, 57

terminal set, 35
terminating, 53
terms, 50
Thesys, 37
Towers of Hanoi, 133
transformation, 62

natural, 62
transpose

description, 136
synthesised, 328

tuple type, 178
TΣ(X ), 48
type, 175

class, 182
constructor, 175
disjoint sum, 178
families , see indexed type families
functor, 74
operator, 186

type , 176

Uncurried, 180
unifier, 51
unit type, 176
universal constructions, 56
unzip

description, 136
synthesised, 329

value, 175
Var (·), 49
variable, 48, 175

occurring in term, 49
renaming, 50

vector, 50

weave
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description, 136
synthesised, 330

weaveL
description, 136
synthesised, 331

well-founded, 53
where , 181
wildcard, 181

X , 48

zeros
description, 136
synthesised, 332

zip
description, 136
synthesised, 333
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