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Chapter 1

Introduction and Motivation

Censoring of the dependent variable is a very common problem with micro-

data. In case of a censored variable, all values in a certain range are reported

as a single value, which means the variable is partly continuous but has multi-

ple observations at one point. This often occurs when the variable is zero for a

significant part of the population but many different positive outcomes can be

observed for the rest of the population. Common examples for this situation

are vacation expenditures, automobile expenditures, hours of work, or charita-

ble contributions. Wooldridge (2002, p. 517) calls this kind of variables ‘corner

solution outcome’. In such cases standard estimation techniques, like, e.g., or-

dinary least squares, are inconsistent because these methods fail to account

for the difference between limit observations and continuous observations.

Wooldridge (2002) defines a second category of censoring: data censoring. In

case of data censoring we have a variable with quantitative meaning, y∗. Due

to a data problem y∗ is censored from above and/or below and therefore can-

not be observed for some part of the population. If y∗ was observed for the

entire population, standard estimation techniques could be applied, but due

the censoring specific censored data models have to be adapted. Censoring

from below, also called left-censoring, frequently appears with environmental

data due to detection limits of laboratory assay procedures (see, e.g., Helsel

(1990) or Newton and Rudel (2007)). Censoring from above or right-censoring

is a common problem of survey data. An important example are the top-coded

income variables in the U.S. Current Population Survey (CPS) conducted by

the Census Bureau. Here, censoring is used as a measure to ensure confiden-

tiality of the respondents. Therefore, if earnings are to be analyzed from these

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

data, standard models cannot be applied.

Generally, the problem of data censoring concerning wage and income variables

occurs frequently in all fields of economics and sociology, where these variables

are in the center of interest of many studies. For a large number of research

questions, like analyzing the gender wage gap, assessing the determinants of

wage returns to education, evaluating the effects of changes in the institutional

and legal framework or several other applications, it is interesting to use wage

data. To address this kind of questions two types of data are usually used:

surveys and process generated data, i.e., administrative data. Administrative

data have several advantages over survey data, like a large number of obser-

vations, no nonresponse burden, and no problems with interviewer effects or

survey bias. Unfortunately, in many large administrative data sets of economic

or sociological interest some variables are not entirely available. This applies

prevalently to wage and earnings information, which are often top-coded or

right-censored due to manifold reason. The data may not be available due

the data collection process, artificially censored to ensure confidentiality, or

just not reliable because high wage earners tend above average not to answer

income questions.

An important example for this problem is the German IAB Employment Sam-

ple (IABS), which represents administrative data coming from the social se-

curity systems. Here, right-censoring of wages occurs due to the contribution

limit in the German social security system. This data set represents approx-

imately 80 percent of the employees in Germany. The IABS includes, among

others, information on age, sex, education, wage, and the occupational group

(see Bender et al. (2000)) and is based on the register data of the German

social insurance system. The contribution rate of this insurance is charged as

a percentage of the gross wage. Therefore, if the gross wage is higher than the

current contribution limit only the amount of the ceiling is liable for the con-

tribution. In 2010, the contribution limit in the unemployment and pension

insurance system is fixed at a monthly income of 5,500 euros in West Germany

and at 4,650 euros in East Germany. Therefore, since wages are only recorded

up to the contribution limit, the wage information in the sample is censored

at this limit.

Due to its importance for all kind of researchers in Germany, the thesis focuses

on the right-censored wage variable in the IAB Employment Sample. Never-

theless, all suggested approaches are generally valid for all kind of data sets
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faced with censoring from above or below.

In the literature a wide range of models to handle censored data is proposed.

The most famous is without any doubt the censored regression model first pro-

posed by Tobin (1958). Other models include Powell’s (1984) censored least

absolute deviation method (CLAD) or the iterative linear programming algo-

rithm by Buchinsky (1994). While most of these models are intended to be used

for direct estimation, we use an alternative approach. We treat the problem

of censored wages as a missing data problem and impute the censored wages

using multiple imputation. The theory and principle of multiple imputation

originates from Rubin (1978) and involves replacing each missing value by a

number of imputed values yielding to m imputed data sets. This number may

be rather small; usually m = 5 times can be regarded as an adequate number.

Here, the goal is not to provide an estimation method that is applicable to get

the estimates of interest for a particular research question, but to provide a

complete data set that can be used by researcher to examine a variety of re-

search questions. Once the data are imputed, these analyses can be performed

applying standard methods and models. Therefore, multiple imputation has

the advantage that analysts do not have to familiarize themselves with multi-

ple imputation or other models for censored data. As the data can be analyzed

like any complete data set, multiply imputed data create new potential for a

wide range of research questions. Even research questions, for which no appli-

cable models for the analysis of incomplete data exist, can be easily examined

using multiply imputed data and standard estimation techniques.

Gartner (2005) proposes a non-Bayesian single imputation approach to solve

the problem of censored wages in the IAB Employment Sample. As it will

be discussed later, single imputation has some serious drawbacks. The main

criticism is that single imputed data yield biased variance estimates making

multiple imputation generally preferable (see, e.g., Little and Rubin (1987,

2002)). The main argument to impute missing values multiply is to be able to

calculate correct variance estimates. Here, the uncertainty due to the impu-

tation can be reflected in the final variance estimates by adding a correction

term based on the variance between the results of the m different imputations.

A multiple imputation method for right-censored wages based on draws of a

random variable from a truncated distribution and Markov chain Monte Carlo

techniques is suggested by Gartner and Rässler (2005). Both approaches that

are suggested in the literature to solve the censoring in the IABS assume ho-
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moscedasticity of the residuals. But contrary to this assumption, the variance

of income is usually smaller in lower wage categories than in higher categories,

thus assuming homoscedasticity in an imputation model is highly question-

able. This becomes evident if one thinks of the wage dispersion within edu-

cation groups. While in lower groups, there is generally little wage inequality,

wages of highly skilled employees, for example holding an university degree,

may differ significantly. Therefore, in this thesis new imputation methods al-

lowing for heteroscedasticity are suggested. In a first step a single imputation

procedure is developed. Furthermore a new multiple imputation approach will

be presented. First simulation studies show that in case of heteroscedasticity

this approach is superior to the two approaches assuming homoscedasticity.

Moreover, it does not matter if the algorithm considering heteroscedasticity is

chosen in a homoscedastic case, since it just represents a generalization of the

homoscedastic approach and therefore works well in case of homoscedasticity.

Whereas one goal of this thesis is to present new imputation approaches that

are applicable for right-censored wages, a main objective will be also to con-

firm the validity of multiple imputation approaches in general and to show

the superiority of the new approach considering heteroscedasticity in a wide

range of situations. In a series of simulation studies different approaches are

evaluated to confirm the quality of the multiply imputed data. Besides simu-

lated data, uncensored wage information of the German Structure of Earnings

Survey (GSES) 2001 is employed to assess the quality of imputation. Later,

the external complete wage information is also used for the imputation model.

The first reason to do so is to try to develop an even more robust imputation

technique, the second is to have a benchmark for the proposed approaches,

that work without external information.

The thesis is organized as follows. Chapter 2 gives an overview on German

databases that are applicable to analyze research questions concerning wages.

First, we distinguish between survey and register data. Second, the data stem-

ming from the German Federal Employment Agency, including the IAB Em-

ployment Sample is presented and its potential for analyses discussed. In

Chapter 3, the German social insurance system is briefly described in order to

explain why censoring occurs in the IAB Employment Sample. This explana-

tion is followed by some examples of other wage data affected by censoring in

order to illustrate that the necessity of appropriate solutions to handle censored

data is not restricted to the German data. On the contrary, the imputation
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approaches addressed here are applicable to various surveys and other kind

of data sets whose potential is hindered by censoring. Chapter 4 discusses

censored models applicable to the analysis of various research questions. To

assess the potential of multiply imputed wages in the IAB Employment Sam-

ple, Chapter 5 gives an overview of studies based on the wage data of the

IABS. These studies are presented to illustrate the variety of analyses that are

performed using the IABS and the multitude of techniques that are applied

to handle the censoring. This overview shows that multiply imputed wages

generate new potential in various fields. Beyond, by means of this overview

one can easily see that multiple imputed data simplify the analysis of wages

in the IAB Employment Sample. Before specific imputation approaches for

right-censored wages are presented, Chapter 6 offers an introduction to multi-

ple imputation in general. The chapter starts with the explanation of different

missing-data mechanism, continues by exposing rather simple imputation ap-

proaches and finally addresses the theory of multiple imputation. Chapter

7 introduces imputation approaches for right-censored wages. This chapter

starts with explaining approaches assuming homoscedasticity of the residuals

and later presents new approaches considering heteroscedasticity. Chapter 8

to 10 evaluate these approaches and confirm the superiority of the new mul-

tiple imputation approach considering heteroscedasticity. Chapter 8 describes

a series of simulation studies to compare the different approaches. The first

two simulation studies are based on simulated wage data generated using the

IABS, the following simulation studies are based on the German Structure of

Earnings Survey, which contains uncensored information on wages. In Chap-

ter 9, alternative approaches to the approach considering heteroscedasticity are

suggested and evaluated. Finally Chapter 10 presents some real world exam-

ples. The first part of the chapter compares results of three research questions

used as examples. Results based on original complete data, censored data,

and multiply imputed complete data are compared to demonstrate once more

the validity of imputed data. The second part reviews recent studies based

on one of the imputation approaches, that were discussed in this thesis. The

conclusion summarizes the main findings and gives an outlook towards future

steps. These involve providing access to the proposed imputation algorithms

and multiply imputed versions of the IAB Employment Sample to researchers

both at the IAB and other research institutions.
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Chapter 2

Wage Data

By definition, wage is the financial compensation a worker receives in exchange

for his labor, hence it is a central element of the labor market and examining

wages is a central issue in labor economics and labor market research. For

that reason several data sources exist, that cover the broad range of different

aspects related to the analysis of wages. This chapter gives an overview on

this kind of data sources in Germany starting with survey data and followed

by register or administrative data sets. Finally, the Chapter ‘Wage Data’

introduces the register data of the German Federal Employment Agency, that

are stored, edited and released to researchers at the Institute for Employment

Research.

2.1 Wage Information in Surveys and Register

Data in Germany

To address questions concerning wages, two types of data are usually used:

surveys and process generated data, i.e., administrative data. In Germany,

several data sources for both types of data exist. In order to be able to classify

advantages and disadvantages of administrative data in general and the data

of German Federal Employment Agency in particular, this section briefly de-

scribes the most important ones. Some of the data sets cover several sources of

income and are not restricted to wages or labor earnings. Many report income

at the individual and household level. As we are interested in data to analyze

wages, we report here mainly surveys and administrative data that admit to

analyze individual income from the labor market.

7
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2.1.1 Surveys

As Lewis-Beck et al. explain “The social survey is a widely used method of

collecting and analyzing social data for academic, government, and commercial

research” (Lewis-Beck et al., 2004, p. 1102). Surveys are widely accepted as a

means of collecting information about populations, but also face criticism due

to some shortcomings. For, instance methods of collecting survey data may be

subject to error due to sampling problems and flawed data collection instru-

ments and methods. Especially the reliability of high wages is questionable in

surveys. In a study examining consistency of income in 2002 across eight major

U.S. surveys, Czajka and Denmead (2008) found out that a large percentage

of yearly incomes is divisible by 5,000, suggesting that many respondents are

rounding when reporting income. Nevertheless, we briefly describe the most

important German surveys containing wage and income information.

German Socio-Economic Panel Study (GSOEP)

The German Socio-Economic Panel Study (GSOEP) is intended to offer mi-

crodata for research in the social and economic sciences. It is not restricted

to the field of employment and wages, but includes as well information on

other fields such as living conditions, values, or willingness to take risks. The

GSOEP is not only used for basic academic research but also for policy-related

social reports. It is conducted annually as a longitudinal study of private

households since 1984 in West Germany and since 1990 in East Germany. In

1984, 5,921 households with 12,290 individual respondents participated in the

‘SOEP West’, in 2007 3,337 households with 5,963 respondents were still par-

ticipating. In the ‘SOEP East’ sample, 2,179 house-holds with 4,453 members

responded in the first year 1990; in 2007, 1,654 households and 3,067 indi-

viduals still participated. The GSOEP contains, apart from other sources of

income like social security transfers, information on the gross and net monthly

labor market income of all household members. Since 2002, a subsample of

high income households which is selected independently from all other subsam-

ples is added in order to oversample these households. Originally, the selection

scheme required that the responding household had a monthly income of at

least 7,500 DM (3,835 euros) to be relevant this subsample. From 2003, only

households with a net monthly income of at least 4,500 euros were included.

Further advantages of this survey are its panel design and the information on
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the household context. Besides, it is referred to as the largest survey of foreign-

ers and immigrants in Germany. As it is conducted as a survey the problems

concerning the reliability of the wage information applies to this data set as

well. More information on the survey and current results can be found in

Headey and Holst (2008) or Haisken-DeNew and Frick (2005). A scientific

use file is released by the research data center of the GSOEP at the German

Institute for Economic Research (DIW) in Berlin.

Income and Expenditure Survey (IES)

The Income and Expenditure Survey (IES) is a data source applicable to the

analysis of the different components of household income, income tax, welfare

contributions and benefits received, savings, and the structure and develop-

ment of household consumption. It has been conducted since 1962/63 in West

Germany and since 1994 in East Germany. Since the wave of 1973, it is carried

out every five years. About 0.2 percent of all households in Germany partici-

pate in each wave. The IES is a proportional sample as households are chosen

according to a quota plan. The aim of this survey is to cover in-depth data on

income and expenditure of private households. It is mainly used for income

analysis, but provides information on a wider range of research fields such

as the composition of households, participation in professional life, consumer

goods consumption, wealth, level of assets and debt of private households and,

as previously mentioned, type and level of income, including labor market earn-

ings. A problem of this survey is that households with a monthly net income

above 18,000 euros are not included because these data are considered as not

statistically reliable. Another drawback is that foreign citizens in Germany are

not sampled representatively. Hence, this data do not allow to study income

of foreigners or to compare income of foreign and German citizens. The data

can only be accessed by appointment with the Federal Statistical Office by

members of independent German research institutions.

Microcensus

The Microcensus is an official survey conducted by the Federal Statistical Of-

fice and is intended to give a snapshot of the entire population by questioning

one part of it. Its purpose is to provide statistical information on the eco-

nomic and social situation of the population as well as on employment, the



10 CHAPTER 2. WAGE DATA

labor market, and education in order to update the results of the population

census. The Microcensus is a representative one percent random sample of

all households in Germany, which are about 390,000 households with 830,000

persons in total, including about 150,000 persons in about 72,000 households

in East Germany. It is carried out once a year since 1957 (Schwarz, 2001).

Every household stays in the sample for four years and every year 25 percent

of the included households are exchanged. All members of the household are

interviewed, information for other household members is permitted only under

specific premises. The details provided - especially those on employment - refer

to a specific report week, normally the last week of April. Main topics of the

Microcensus are sociodemographic characteristics (age, sex, nationality, etc.),

economic and social situation of individual, household and family contexts,

labor market status, questions on general and vocational level of qualification.

It also contains information on income, but restricted to the total individual

and household net income, including all sources of income. Another disad-

vantage is that income is asked in classes of 200 euros. A drawback of the

Microcensus is that the access is restricted since it is not a voluntary survey.

Therefore, the original data of Microcensus is de facto anonymized. In the

form of a scientific use file, which contains an anonymized 70 percent sample

of the 1 percent sample and just represents a cross-section, it can be obtained

by German research institutions.

The German Structure of Earnings Survey (GSES)

The German Structure of Earnings Survey was conducted in 1990, 1992, 1995,

and 2001 in establishments of the manufacturing industry and the service sec-

tor. For 2006 it reports wages from all sectors. The data for 2001 can be

obtained as a scientific use file from the research data center of the German

Statistical Office. All other years can only be accessed on-site. The Ger-

man Structure of Earnings Survey is designed as a linked employer-employee

data set and contains information on about 22,000 establishments and more

than 846,000 employees. The GSES includes information on the individuals

(e.g., sex, age, education, children), on the job (e.g., occupation, job level,

performance group, working times, tenure), on earnings (e.g., gross wage, net

wage, income taxes, social security contributions) and additionally on the es-

tablishment (e.g., number of employees). Since the collection of the GSES is
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performed at the individual level, the latter provides a comprehensive data set

to analyze possible merits to the workplace and personal characteristics. The

GSES includes all employees covered by social insurance. The survey is con-

ducted in establishments with at least 10 employees. Thus, the sample covers

approximately 90 percent of all workers.

The survey is therefore suitable to examine a broad range of questions con-

cerning wages. For more details see Forschungsdatenzentrum der Statistischen

Landesämter (2006). This survey will play an important role later, when we

perform simulation studies to compare different imputation approaches for cen-

sored wages. As the structure of this survey is very similar to the variables in

the IAB Employment Sample and as it contains uncensored wage information

for all employees it is especially appropriate to evaluate the performance of

imputation approaches.

Further Surveys

Apart from these surveys several other surveys include questions on earnings on

income. One example is the German General Social Survey (ALLBUS/GGSS),

which is similar to the American General Social Survey (GSS). Its intention

is to collect and disseminate high quality information on attitudes, behavior,

and social structure in Germany. Since 2004, the European Union Statistics on

Income and Living Conditions (EU-SILC) is conducted in 13 member states of

the European Union and includes questions on income as well. In the German

wage literature these surveys do not play an important role compared to the

surveys discussed previously.

2.1.2 Register Data

Register data, also called administrative or process-generated data, have sev-

eral advantages, like a large number of observations, no nonresponse burden

and no problems with interviewer effects or survey bias. Especially when data

are collected for official reasons, for example for taxation or for calculating

unemployment benefits, there is a high interest and relevance for all involved

persons to report accurate information and generate correct data. This applies

especially to wages and other sources of income, for which reason register data

are especially suitable to address questions concerning wages and earnings.

Sometimes, e.g., in the German social insurance, some additional variables
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are asked to the employers concerning job classification, education, national-

ity or other characteristics of their employees, which increase the value of an

administrative data for research issues. One shortcoming of this additional

information may be that it is not of primary interest to calculate contribu-

tions and benefits, but only asked for statistical reasons. If information is

collected for statistical reasons only, it may not be as reliable as those vari-

ables collected for the official process. A further advantage of register data is

the almost complete absence of panel mortality.

Wage and Income Tax Statistics

The German Wage and Income Tax Statistics report detailed information on

all persons liable to income tax as well as on the amount, distribution, and

taxation of their income with liability to taxation. Its primary aim is to as-

sist political and fiscal decisions and to allocate tax revenues to the states

(‘Länder’) and communities, but it is also distributed as a public use file and

a scientific use file through the research data centers of the German Statis-

tical Office. It is conducted every three years as a secondary statistic from

the taxation records of the state revenue authorities. Public and scientific use

files are currently available for the years 1992, 1995, 1998, and 2001. The

Wage and Income Tax Statistics are a census with about 30 million records,

comprising up to 400 variables on about 40 million persons and therefore are

the largest secondary statistic on income in Germany (Merz et al., 2005). The

data contain information, for example, on taxable wages and income, income

tax, social transfer income, but also on socio-demographic characteristics like

sex, age, religion, children, location, industry or profession of the tax payers.

More details on this data source can be found in Statistische Ämter des Bundes

und der Länder (2009)(only partly in English). Comprising a large number of

items, the German Wage and Income Tax Statistics represent an applicable

data set for a broad range of research questions. This involves not only fiscal

questions, but also questions related to the income distribution. A main ad-

vantage is that it covers also recipients of high incomes in a very accurate way

as it is based on the records of the revenue authorities. Another advantage is

that not only the wages of employees can be examined, but also the income of

self-employed. Serious drawbacks of this data source are that it is conducted

only every three years and that different years can not easily be compared
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due to frequent changes in the income tax law. Hence, it is mainly useful for

regional comparisons.

Further Register Data

Further administrative data in Germany containing wage information are for

example the Social Welfare Statistics and the Housing Allowance Statistics.

Moreover, the branches of the German social security insurance system record

administrative data to be able to satisfy their duties. Some of these data

are edited and released for researchers. One of these administrative data are

the data of the German Federal Employment Agency, which stem from the

employment notifications of employers to the employment agency. Edited data

sets based on these notifications are provided by the Research Data Center of

the German Federal Employment Agency, which is located at the Institute for

Employment Research (IAB), the research institute of the Federal Employment

Agency. These data and their advantages and disadvantages are discussed in

detail in the next section.

2.2 Register Data of the German Federal Em-

ployment Agency at the Institute for Em-

ployment Research

The Institute for Employment Research provides via its Research Data Center

data on individuals, households, and establishments, as well as data that com-

prise both establishment and personal information. Some of the data come

from surveys like for example the IAB Establishment Panel or the panel study

‘Labour Market and Social Security’ (PASS). Most of the data are process

generated and originate from two different sources: One part of the data are

collected in the notification process of the social security system, the other

part comes from the internal procedures of the Federal Employment Agency

for computer-aided benefit allowance, job placement, and administration of

employment and training measures.

The IAB files the social security notifications and provides these data in the

form of a history data set known as the Employment History (BeH). Another

database, the Benefit Recipient History (LeH), originates from the internal
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data processing modules of the Federal Employment Agency. These databases,

BeH and LeH, are linked to form the Employee and Benefit Recipient History

(BLH), from which several specific samples are generated:

• The Establishment History Panel (BHP) which is an aggregation of the

BLH to the establishment level.

• The linked employer-employee data of the IAB (LIAB) that are formed

by matching data from the BLH with the IAB Establishment Panel.

• The Integrated Employment Biographies sample of the IAB (IEBS), gen-

erated by matching spells of Employment History (BeH), the Benefit Re-

cipient History (LeH), participants in measures and the applicants pool.

• The IAB Employment Samples (IABS) which are drawn from the Em-

ployee and Benefit Recipient History (BLH).

While most of the administrative or process-generated data of the Institute

for Employment Research can be accessed only by internal researchers or on-

site at the Research Data Center of the Federal Employment Agency at the

Institute for Employment Research, the IABS is also provided in several ver-

sions as a scientific use file. It is therefore an important database for many

studies of economic interest concerning the German labor market conducted

by researchers of the Institute for Employment Research as well as by ex-

ternal researchers.1 All data sets that are based (or partly based) on the

Employment History (BeH) coming from the social security notifications con-

tain information on wages. In principle the problem of censoring occurs in all

these administrative data sets based on these notifications that contain wage

information. Even if all proposed imputation procedures are applicable for all

administrative data sets provided by the Institute of Employment Research,

due to its importance for all kind of researchers, in the following, the focus will

be on the IAB Employment Samples.

1More details on the data sets and on the ways to access them can be found at the
website of Research Data Centre of the Federal Employment Agency at the Institute for
Employment Research (http://fdz.iab.de/en.aspx).
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2.3 The IAB Employment Sample (IABS)

As mentioned, the German IAB Employment Samples (IABS) are random

samples drawn from the IAB Employee History with additional information

on benefit recipients and hence are samples of all employees covered by social

security. Consequently, self-employed, family workers, and civil servants are

not included and therefore the data represent approximately 80 percent of all

employees in Germany (see Bender et al. (2000)). Since 1999, also marginal

employment (‘Geringfügige Beschäftigung’) with earnings of 400 euros or less

per month, which is not fully liable to social insurance, is included. The

IAB Employment Samples comprise a continuous flow of data on employment

subject to social security as well as on receipt of unemployment benefits, un-

employment assistance, and maintenance allowance, and contain additionally

a number of establishment characteristics. Key variables are for example:

• gender

• age

• nationality

• marital status

• number of children

• school education and professional qualifications

• type of employment (especially differentiation between employment cov-

ered by social security and marginal employment)

• person group

• gross earnings subject to social security

• profession

• occupational status (including full or part-time employment)

• start and end date of employment

• industry
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• establishment location

• establishment size

The IABS is provided as a scientific use file in three versions and one weakly

anonymized version that can only be accessed on-site and subsequently by

remote data access. Table 2.1 gives an overview over of these four different

versions. The main difference between the versions is the anonymization pro-

cess. In the scientific use files some variables are aggregated in order to prevent

the identification of individuals. In the basic file 75-95 the regional variable

is highly aggregated and allows only to separate between East and West Ger-

many. In the regional aggregation anonymization concerns the industry and

occupation variables. The weakly anonymized version is not aggregated. Be-

cause the samples are drawn from the longitudinal processed database of em-

ployment notifications, all version contain not only cross-sectional information,

but represent panel data. A detailed description of the employment sample

can be found in Drews (2007, 2008) or Schönberg (2009). In the following

chapters, the weakly anonymized version will be considered as the IAB Em-

ployment Sample.

Originating from the employer notifications, the IABS has one big advantage

such that it covers all employees subject to social security in Germany for

a long time period. It contains very reliable information on a broad range of

variables and therefore is optimally qualified for the analysis of various research

questions. The main advantage for wage analysis is that information on the

employment history and especially wages is measured more precisely than in

surveys like the GSES or GSOEP.

One important disadvantage is caused by the contribution limit of the German

social security system. The contribution rate of the insurance is charged as

a percentage of the gross wage. If the gross wage is higher than the current

contribution limit only the amount of the ceiling is liable for the contribution.

In 2010, the contribution limit in the unemployment insurance system is fixed

in West Germany at a monthly income of 5,500 euros. Therefore as wages

are only recorded up to the contribution limit, the wage information in this

sample is censored at this limit. To illustrate this problem, Figure 2.1 shows

the distribution of wages in the IAB Employment Sample in 2000. To be

able to analyze wages based on this data set and to be able to access the

whole potential of the data, one has to find appropriate techniques that yield
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Figure 2.1: Distribution of daily wages in logs in the IAB Employment Sample

(IABS) in West Germany 2000.

unbiased results in the case of censoring. The censoring and its impacts are

discussed in detail in the next chapter.



Chapter 3

Censoring in Wage Data

Many data sets collected by economists or social scientists are incomplete in

some way for different reasons. Two specific cases of incomplete data are

truncation and censoring. Truncation occurs if all observations for both the

dependent and explanatory variables lying outside some range are completely

missing. An important example in the literature is the New Jersey negative

income tax experiment. Only families with incomes lower than 1.5 times the

1967 poverty were included in this study, families with higher incomes were

not selected (see, e.g., Robins (1985) or Maddala (2001)). Therefore, the data

contain no information at all for these families. If we have information on the

explanatory variable for all individuals, but the dependent variable is missing

for some individuals, censoring occurs. In the case of censoring the distribution

of the data on the dependent variable is cut off outside of some range. Therefore

we observe multiple observations at the endpoint of that range. The advantage

in this case is that we know the number of (missing) observations and the value

for all explanatory variables, even if the dependent variable is censored. Li

and Racine describe the situation of censoring as follows: “Strictly speaking, a

sample has been censored if no observations have been systematically excluded,

but some of the information has been suppressed. Envision a censor who reads

your mail and blacks out part of it - you still get your mail, although some

parts of it are illegible” (Li and Racine, 2007, p. 331). Many examples in the

empirical literature deal with dependent variables that are zero for a significant

fraction of the observations. In this case conventional regression methods

are not able to account for the difference between limit (zero) and nonlimit

(continuous) observations. The first important studies dealing with this kind

19



20 CHAPTER 3. CENSORING IN WAGE DATA

of problem are Tobin (1958) examining household purchases of durable goods

or Fair (1977, 1978) analyzing the number of extramarital affairs.

In the situation of the register data of the German Federal Employment Agency

coming from the German social security insurance system we find a censoring

of wages, one of the key variables for many research questions of economic

interest. The wages are not left-censored at zero as discussed in the examples

above, but we observe data censoring at the right. The following chapter

describes this situation in detail.

3.1 The German Social Insurance System

In Germany nearly 90 percent1 of the population is covered by either compul-

sory or voluntary social insurance (Deutsche Sozialversicherung, 2009) which

consists of five branches. The social insurance schemes are primarily financed

through contributions paid by employees and employers. The branches of so-

cial insurance include:

• Statutory unemployment insurance: insures employees’ livelihood in case

of unemployment,

• Statutory pension insurance: insures aged members and cases of reduced

earning capacity. Upon an employees’ death, it insures his or her sur-

vivors as well,

• Statutory health insurance: supports maintenance and restoration of

good health and eases the financial consequences of illness,

• Statutory accident insurance: helps an employee regain his earning abil-

ity after a (work-related) accident,

• Statutory long-term care insurance: provides financial support for those

dependent on care and assistance from others.

The social insurance funds are generally financed equally by contributions from

insured fund members and their employers. Contributions are calculated as

1Even if only 80 percent of employees are covered by social insurance, nearly 90 percent
of the population are covered by social security, because children are insured without con-
tribution if at least one parent is covered and families are over-represented as insurants in
the social security system.
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percentage of the gross wage, but only up to a contribution limit. For higher

earnings the contribution rate remains the same. As the exact wage is not

needed to calculate the contribution, wages are in those cases only recorded up

to this limit and are consequently censored on the IAB Employment Sample.

The level of the contribution limit differs from branch to branch. Decisive

for the extent of censoring in the IAB Employment Sample are the limits in

the unemployment and pension insurance branches, which are identical. The

ceilings of the unemployment and pension branch are decisive, because these

insurances have the highest ceilings. The relevant limits are shown in the

following section for the years 1975 to 2010. Constantly updated figures can

be found in Deutsche Rentenversicherung (2010).

3.2 Contribution Limits and Censoring

The contribution limits are constantly adjusted, typically every year. Table

3.1 and Table 3.2 show the upper contribution limits in the statutory pension

insurance of workers and employees for West Germany from 1975 and for East

Germany from 1990, the year of the reunification. Until 2001, the ceilings are

shown in German mark (DM), since 2002 in euros (e)2. In 2010, the current

contribution limit in West Germany is fixed at a yearly wage of 66,000 euros

and a monthly wage of 5,500 euros. In East Germany it is fixed at a yearly

wage of 55,800 euros and a monthly wage of 4,650 euros. Daily values were

calculated by division of the yearly values by the number of calendar days (i.e.,

365, 366 in leap years).

An exception is the statutory pension insurance for miners, where the con-

tribution limits are higher. For 2010, it is fixed for West Germany at 81,600

euros per year and for East Germany at 68,400 euros. This additional contri-

bution limit is relevant in only very few cases, which are difficult to identify.

Because these cases cannot be distinguished from misreporting of wages that

are higher than the actual contribution limit, these special cases are normally

disregarded. Instead the limits of the pension insurance of workers and em-

ployees are used for all cases. Misreported wages and contributions liable to

the miners insurance are accordingly cut off at this ceiling.

The wage is reported by the employer for the entire period of employment in

2The relation of the German mark to the euro is officially fixed at 1.95583.
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Contribution Limits West Germany

Upper earnings limits
Year Month Day

DM DM DM
1.1. to 31.12.1975 33,600 2,800 92.05
1.1. to 31.12.1976 37,200 3,100 101.64
1.1. to 31.12.1977 40,800 3,400 111.78
1.1. to 31.12.1978 44,400 3,700 121.64
1.1. to 31.12.1979 48,000 4,000 131.51
1.1. to 31.12.1980 50,400 4,200 137.70
1.1. to 31.12.1981 52,800 4,400 144.66
1.1. to 31.12.1982 56,400 4,700 154.52
1.1. to 31.12.1983 60,000 5,000 164.38
1.1. to 31.12.1984 62,400 5,200 170.49
1.1. to 31.12.1985 64,800 5,400 177.53
1.1. to 31.12.1986 67,200 5,600 184.11
1.1. to 31.12.1987 68,400 5,700 187.40
1.1. to 31.12.1988 72,000 6,000 196.72
1.1. to 31.12.1989 73,200 6,100 200.55
1.1. to 31.12.1990 75,600 6,300 207.12
1.1. to 31.12.1991 78,000 6,500 213.70
1.1. to 31.12.1992 81,600 6,800 222.95
1.1. to 31.12.1993 86,400 7,200 236.71
1.1. to 31.12.1994 91,200 7,600 249.86
1.1. to 31.12.1995 93,600 7,800 256.44
1.1. to 31.12.1996 96,000 8,000 262.30
1.1. to 31.12.1997 98,400 8,200 269.59
1.1. to 31.12.1998 100,800 8,400 276.16
1.1. to 31.12.1999 102,000 8,500 279.45
1.1. to 31.12.2000 103,200 8,600 281.97
1.1. to 31.12.2001 104,400 8,700 286.03

e e e
1.1. to 31.12.2002 54,000 4,500 147.95
1.1. to 31.3.2003 61,200 5,100 167.67
1.4. to 31.12.2003 61,200 5,100 167.67
1.1. to 31.12.2004 61,800 5,150 168.85
1.1. to 31.12.2005 62,400 5,200 170.96
1.1. to 31.12.2006 63,000 5,250 172.60
1.1. to 31.12.2007 63,000 5,250 172.60
1.1. to 31.12.2008 63,600 5,300 173.77
1.1. to 31.12.2009 64,800 5,400 177.53
since 1.1.2010 66,000 5,500 180.82

Table 3.1: Contribution limits West Germany
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Contribution Limits East Germany

Upper earnings limits
Year Month Day

DM DM DM
1.7. to 31.12.1990 32,400 2,700 88.77
1.1. to 30.6.1991 36,000 3,000 98.63
1.7. to 31.12.1991 40,800 3,400 111.78
1.1. to 31.12.1992 57,600 4,800 157.38
1.1. to 31.12.1993 63,600 5,300 174.25
1.1. to 31.12.1994 70,800 5,900 193.97
1.1. to 31.12.1995 76,800 6,400 210.41
1.1. to 31.12.1996 81,600 6,800 222.95
1.1. to 31.12.1997 85,200 7,100 233.42
1.1. to 31.12.1998 84,000 7,000 230.14
1.1. to 31.03.1999 86,400 7,200 236.71
1.4. to 31.12.1999 86,400 7,200 236.71
1.1. to 31.12.2000 85,200 7,100 232.79
1.1. to 31.12.2001 87,600 7,300 240.00

e e e
1.1. to 31.12.2002 45,000 3,750 123.29
1.1. to 31.12.2003 51,000 4,250 139.73
1.1. to 31.12.2004 52,200 4,350 142.62
1.1. to 31.12.2005 52,800 4,400 144.66
1.1. to 31.12.2006 52,800 4,400 144.66
1.1. to 31.12.2007 54,600 4,550 149.59
1.1. to 31.12.2008 54,000 4,500 147.54
1.1. to 31.12.2009 54,600 4,550 149.59
since 1.1.2010 55,800 4,650 152.88

Table 3.2: Contribution limits East Germany
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one year. If the person is employed the whole year, the reporting refers to

the entire year, if the employment is shorter, to the period the person was

employed within the current year (of course several periods of employment

within one year are possible). If the wage for the reported period exceeds

the income threshold, it will be censored. In this case, the employer reports

only the amount up to the ceiling in accordance with reporting rules. In some

cases the reported earnings may lie above the income threshold as since 1984

employers have to include special payments for the year in the notifications and

add them to the wage. As the wage refers to the entire period of employment,

the daily wage as it can finally be found in the IABS represents an average

daily wage over the reported period. This information is important because

the wage may vary over the year for example if there is a raise of salary. In rare

special cases the average daily wage may be biased due to a change from an

uncensored wage to a censored wage during the reporting period. Misreporting

of wages due to other cases than described above on the other hand is very

unlikely, even if erroneous messages can never be prevented completely. But

since the notifications are relevant to calculate security allowances, however,

the error rate can be expected to be rather small. An additional problem

with the wage information is that the change of the reporting system in 1984

(inclusion of bonus payments) leads to a structural break.

Because the data contain all employment spells of the persons included in the

sample, for every individual several independent spells may be observed in one

year. Therefore, researcher usually create cross-sections in every year for a

reference date, e.g., June 30. Then, the average wage for the particular year,

is the average wage of the employment spell that covers the reference date.

<25 25-34 35-44 45-54 55+
Low/intermed. school 0 .003 .008 .012 .17
Vocational training .001 .021 .068 .116 .150
Upper school .010 .110 .232 .331 .371
Upper school

and vocational training .003 .110 .283 .393 .470
Technical college .024 .190 .450 .558 .604
University degree .056 .256 .549 .686 .769

Table 3.3: Fractions of censored wages in the IAB Employment Sample (Males
in West Germany)
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To illustrate the problem of censoring, Table 3.3 shows descriptive information

about the fraction of censored incomes of six educational and five age groups

among male West German residents holding a full-time job covered by social

security on June 30th 2000. The figures show the necessity to impute the

missing wage information (or adjust for missingness in a different way) in

order to obtain unbiased results. While, in total, 11 percent of all employees

have censored wage observations, in some subgroups the fraction of missing

wages may be much higher. Especially for analyzing high-skilled employees

(with technical college degree or university degree), the table clearly indicates

the necessity to correct for the censoring, best to impute.

3.3 Censored Wage Data in Other Countries

The problem of censored wage or income variables is not only known with the

German IAB data, but is a common problem in several data sets. These prob-

lems originate not necessarily from a contribution limit in the social security

system. Most researchers are familiar with the top-coding of income variables

in the U.S. March Current Population Survey (CPS) conducted by the Census

Bureau. In the CPS censoring is used as a measure to ensure confidentiality.

In Austria on the other hand, where a social security insurance system similar

to the German exists, wages recorded in order to release administrative data

sets of economic interest are censored due to a contribution limit as well.

3.3.1 U.S. Current Population Survey (CPS)

The U.S. Current Population Survey is a survey conducted by the United

States Census Bureau. It is a representative sample of all households in the

United States and is collected since 1942 by the U.S. Census Bureau. It is the

primary data source used by public policy researchers and administrators to

investigate yearly trends in average income and its distribution in the United

States (Larrimore et al., 2008). It is also used by the Bureau of Labor Statis-

tics to monthly report the employment situation and contains, among others,

questions on the employment status and on weekly and hourly earnings. In ev-

ery month of March it contains additional questions on income in the previous

calendar year. Unlike the IAB Employment Sample, the Current Population

Survey comprises not only one source of income but, starting in 1975, 11
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sources and since 1987 24 sources of income are recorded (Burkhauser et al.,

2008). In the case of the Current Population Survey, wages and other sources

of income are not censored due to the process of collecting the data, as in the

case of the IAB Employment Sample. Since the CPS is conducted as a survey,

high values are not censored, because they are not asked or not reported, but

are topcoded before publishing the data as a public use file in order to ensure

the confidentiality of the respondents. To protect the confidentiality of its re-

spondents the Census Bureau topcodes the highest values from each source of

income that it collects (Burkhauser and Larrimore, 2008). In the public use

file, the highest values are topcoded for each source of household income, not

simply the high total household income values. One drawback of this proceed-

ing is that it complicates the aggregation of multiple income sources to the

total household income, because each of the sources may be topcoded. An-

other problem is that the topcode values are inconsistently defined over years.

Therefore, the proportion of individuals with topcoded household income in

each CPS ranges between 2.1 percent and 5.7 percent over the period from

1995 to 2005 (Jenkins et al., 2009), which leads to artificial increases and de-

creases in mean income. This drawback is to some extent reduced since the

introduction of cell means which are provided since 1995 based on the internal

data. Until 1994, the topcode value defined for the specific source of income

was assigned to all observations above this value. Since 1995, all high values

in the public use data are substituted by a cell mean value derived from the

internal data (Burkhauser and Larrimore, 2008; Burkhauser et al., 2008). The

introduction cannot solve the problem of topcoding completely as the internal

data are themselves censored, even if to a lesser degree. Initially the internal

data were censored due to data-storage limitations in the computing systems of

the 1970s. Therefore, written records were truncated to 5 digits (Burkhauser

et al., 2008). Even if these storage limitations are not a constraint anymore, the

Census Bureau continues this censoring practice. In 1985, values higher than

250,000 U.S. dollars in each source of income were still censored, mainly due

to concerns about data reliability of individuals who report an extremely high

income. From then the limits were increased constantly to keep the percent-

age of censored individuals in the internal data below 1 percent. Burkhauser

et al. (2008) also mention that despite the Census Bureau’s attempt to allevi-

ate the problem of topcoding, their cell means have generally been ignored by

researchers, since time-inconsistencies arise from using unadjusted public use
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data for 1995 and before and CPS data with imputed cell means from 1996.

Some solutions that are used to analyze the CPS public use data - even if

there inconsistencies between different years (apart from using cell means) -

are for example measuring inequality with the ratio between the 90th and the

10th percentile of the wage distribution or artificially truncating the data by

removing the highest and lowest two percent of observations. Another method

is to artificially lower the topcodes in the data for each year to create a series

with constant percentage of people with topcoded data in each year, which is

referred to as the ‘consistent topcoding method’. This method is intended to

solve at least the problem of inconsistent censoring points over the years. All

these solutions have their drawbacks, but are preferable to using unadjusted

data. More sophisticated approaches to handle the presence of censoring, in-

cluding multiple imputation, will be discussed later.

3.3.2 U.S. Social Security Administration Earnings

Records (SSA)

The problem of censoring appears also in another U.S. database, where the

reason of the censoring is similar to the German data. The Social Security

Administration (SSA) collects data on social security earnings coming from

the social security tax records. One shortcoming of the SSA earnings data is

that many records are censored at the maximum taxable earnings level of the

social security. At least 32 percent of the observations in the sample are cen-

sored, with a maximum of censored records reaching more than 50 percent in

some years (Chay and Powell, 2001). In this database not only censoring from

the right, but also from the left occurs, as the SSA earnings data also contain

records that are censored at zero. This situation occurs with individuals earn-

ing a rather low income, which is not in the taxed sector, or individuals out

of labor force or experiencing a year-long spell of unemployment. According

to Chay and Honoré (1998) about 15 percent of the sample has no earnings

in the covered sector. The SSA administrative records supply accurate infor-

mation on income but compared to a survey lack demographic information

(Fisher, 2007). Therefore, in a joint project of the Census Bureau and the

Social Security Administration, respondents to the March Current Population

Survey were matched to the SSA earnings history for some years using the

social security number (Chay and Honoré, 1998).
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3.3.3 Austrian Social Security Database (ASSD)

In Austria data for all workers, called the Austrian Social Security Database

(ASSD), are collected based on the employer notifications by the social se-

curity authority. It is provided as a matched firm-worker data set, contain-

ing the labor market history of almost 11 million individuals and 2,2 million

firms. The data contain information on all workers, except for self-employed,

civil servants, and marginal workers. These data cover longitudinal (earnings

and employment) information necessary to assess the pension benefits and are

provided by the Austrian Social Security Agency (‘Hauptverband der österre-

ichischen Sozialversicherungträger’). The data set comprises the individual’s

detailed employment and earnings history, a worker’s (anonymized) social se-

curity number, and a limited set of socio-demographic characteristics (such as

age, sex, and broad occupation). The ASSD covers all employees in the pri-

vate sector in Austria from January 1972. As in Germany, the data are mainly

collected for reasons of social security insurance. Hence, the wage information

is censored due to contribution ceiling in the social insurance system, which

resembles the German system. In 2007, the ceiling was fixed at 53,760 euros

per year. Following Hofer and Weber (2002), the data set contains at most

15 percent censored wage observations per year. For further details on the

Austrian data see Humer et al. (2007) or Zweimüller et al. (2009).
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Modeling Censored Data

Applying standard estimation methods to censored data leads to seriously

biased estimations results. Chay and Powell (2001), for example, show that

the results of an ordinary least squares (OLS) analysis of censored data implies

only little decrease of the earnings gap between black and white workers in the

United States in the 1960s. On the other hand, estimates from models that

account for censoring suggest that the difference between earnings of black and

white decreased significantly after 1964. In case of censoring, the mean of a

censored dependent variable in the observed data differs from the actual mean

of that variable, which cannot be observed due to the censoring. Consequently,

the variation of the dependent variable in the observed data will understate

the true variation and the application of ordinary least squares methods (or

other classical methods) will, in general, yield parameter estimates that are

biased towards zero (see, e.g, Li and Racine (2007)). Figure 4.1 illustrates

how OLS estimation based on a right-censored dependent variable tends to

underestimate the slope of the regression line and accordingly the parameter

estimates as well if the observations above y = a are omitted. If all observations

above the ceiling are set to the value of this ceiling, it is also obvious that the

regression line will be shifted towards zero. Burkhauser et al. (2008) show in a

study analyzing the income inequality in the United States over three decades

(1975-2004), that using unadjusted topcoded wage information from the public

use data of the CPS leads to lower estimated levels of inequality and potentially

affects estimates of trends over time. In the study they compare estimation

results from different methods for addressing topcoding (e.g., using the cell

mean imputation series) and from different versions of the CPS, including the

29
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true line

estimated line

y
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a

Figure 4.1: Bias of estimation based on censored data

internal version. Further examples that illustrate the problem of estimation

results biased towards zero can be found in Greene (2008).

In the last decades a large number of innovative approaches has been proposed

to handle the presence of censoring. Before multiple imputation is considered in

detail as an approach to deal with censoring and the advantages are discussed,

this section gives an overview on parametric, semiparametric, and nonpara-

metric approaches, that have been suggested in the literature. The discussion

of these methods is followed by an overview on quantile regression methods

that are applicable to censored data.

4.1 Parametric Approaches

Parametric approaches provide an adjustment mechanism that overcomes the

bias that would arise from the direct application of standard methods, like for

example ordinary least squares, in the presence of censoring. The regression

model for censored data is referred to as the censored regression model or the

tobit model. The model was first proposed by Tobin (1958) and usually is

described for the case of left-censoring at zero, but can be easily adapted for

presence of right-censoring. Detailed instructions on implementing this model

can be found for instance in Greene (2008) or Li and Racine (2007).

The starting point for the model is that there is a latent variable y∗ which

cannot be observed in some cases (in this example all cases with y∗ < 0) even
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if the covariates in x are observable. In a truncated distribution, only the

part of the distribution above y∗ = 0 would be relevant, as we would confine

our attention only to the observed observations. When data are censored, the

distribution is a mixture of discrete and continuous distributions. To analyze

this distribution, we define a new random variable y transformed from the

original one, y∗. We consider the ‘latent variable model’ given by

y∗i = x
′

iβ + εi, i = 1, ..., n (4.1)

where β is a vector of parameters, x is a vector of observed explanatory vari-

ables and εi is a mean zero disturbance term with εi ∼ N(0, σ2). As we handle

a censored variable, we do not observe y∗i , rather we observe yi given by

yi =

{
y∗i if y∗i > 0

0 if y∗i ≤ 0
(4.2)

where i = 1, ..., n. It is obvious that estimating the parameter β by regressing

the observed yi on xi, the resulting ordinary least squares estimator is biased

and inconsistent.

Censored regression models are generally applicable for three situations:

• left-censoring at a non-zero limit

• left-censoring at zero (‘corner solution outcome’)

• right-censoring at a non-zero limit

The three different situation are now described in detail starting with left-

censoring at a non-zero limit. We can estimate β and σ2 for all three situations

by maximum likelihood. For this, we need the density of the uncensored

observations, which is the same as that for y∗i ,

f(yi) = fN(yi;µ = x′iβ, σ
2) = ϕ

(
yi − x′iβ

σ

)
1

σ
if yi > a, (4.3)

For the censored observations, we need the probability that yi equals the cen-

soring value a, given xi,

f(yi) = P (y∗i ≤ a) = Φ

(
a− x′iβ

σ

)
if yi = a. (4.4)
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These two parts can be combined to obtain the density of y∗i , given xi and a.

The censored regression model is incorporated in all important software pack-

ages and can be estimated via maximum likelihood. The maximum likelihood

function is given by

L(β, σ2) =
∏
yi>a

1√
2πσ2

e
− 1

2

(
yi−x′iβ

σ

)2 ∏
yi=a

Φ

(
a− x′iβ

σ

)
. (4.5)

Φ(.) is the standard normal cumulative distribution function and ϕ(.) is the

standard normal density function. For an observation randomly drawn from

the population,

E(yi|xi) = a · P (yi = a) + E(yi > a) · P (yi > a)

= a · Φ(a∗) + (x′iβ + σλ(a∗))(1 − Φ(a∗))

where λ(a∗) =
ϕ(a∗)

1 − Φ(a∗)
and a∗ =

a− x′iβ

σ
. (4.6)

The log-likelihood for observation i can be obtained by taking the natural log

of the density of each i. Then, the log-likelihood for the censored regression

model for left-censoring at a is

ln L(β, σ2) =
∑
yi>a

−1

2

(
ln(2π) + ln σ2 +

(yi − x′iβ)2

σ2

)
+

∑
yi=a

ln

(
Φ

(
a− x′iβ

σ

))
. (4.7)

The first part corresponds to the classical regression for the nonlimit observa-

tions and the second part to the relevant probabilities for the limit observa-

tions. The likelihood is a nonstandard type because it represents a mixture

of discrete and continuous distributions. Amemiya (1973) proves that this

likelihood estimator suggested by Tobin for this model is consistent and max-

imizing log L produces an estimator with all desirable properties attained by

maximum likelihood estimation.

This general censored regression for left-censoring can be applied the special

case of censoring at zero as well. Although censored regression models often

generally are referred to as tobit models, the following model originally de-

scribes the tobit model. We assume that a variable is zero for a significant
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part of the population, but many different positive outcomes can be observed

for the rest of the population. Then, the density of the uncensored observations

is

f(yi) = ϕ

(
yi − x′iβ

σ

)
1

σ
if yi > 0, (4.8)

and the probability that yi equals the censoring value 0 is

f(yi) = P (y∗i ≤ 0) = Φ

(
0 − x′iβ

σ

)
if yi = 0. (4.9)

Combing the two parts again yields the likelihood function

L(β, σ2) =
∏
yi>0

1√
2πσ2

e
− 1

2

(
yi−x′iβ

σ

)2 ∏
yi=0

Φ

(
−x′iβ
σ

)

=
∏
yi>0

1√
2πσ2

e
− 1

2

(
yi−x′iβ

σ

)2 ∏
yi=0

(
1 − Φ

(
x′iβ

σ

))
(4.10)

and the expected value of yi given xi

E(yi|xi) = E(yi > 0) · P (yi > 0)

= (x′iβ + σλ(a∗))

(
1 − Φ

(
−x′iβ
σ

))
= (x′iβ + σλ(a∗))Φ

(
x′iβ

σ

)

where λ(a∗) =
ϕ
(

−x′
iβ

σ

)
1 − Φ

(
−x′

iβ

σ

) =
ϕ
(

x′
iβ

σ

)
Φ
(

x′
iβ

σ

) . (4.11)

The log-likelihood for the tobit model is given by

ln L(β, σ2) =
∑
yi>0

−1

2

(
ln(2π) + ln σ2 +

(yi − x′iβ)2

σ2

)
+

∑
yi=0

ln

(
1 − Φ

(
x′iβ

σ

))
. (4.12)

In the situation of wages in the IAB Employment Sample, we find a right-

censoring at a non-zero censoring point. The model for this situation is now
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described in detail. Here, the density of the uncensored observations is given

by

f(yi) = fN(yi;µ = x′iβ, σ
2) = ϕ

(
yi − x′iβ

σ

)
1

σ
if yi < a (4.13)

and the probability that yi equals the censoring value a is

f(yi) = P (y∗i ≥ a) = P (yi = a) = 1 − P (y∗i < a)

= 1 − P (yi < a) = 1 − Φ

(
a− x′iβ

σ

)
if yi = a. (4.14)

The likelihood function is given by

L(β, σ2) =
∏
yi<a

1√
2πσ2

e
− 1

2

(
yi−x′iβ

σ

)2 ∏
yi=a

(
1 − Φ

(
a− x′iβ

σ

))
, (4.15)

and the expected value is

E(yi|xi) = E(yi|yi < a) · P (y < a) + a · P (yi = a)

= (x′iβ + σλ(a∗))Φ(a∗) + a(1 − Φ(a∗))

where λ(a∗) =
ϕ(a∗)

1 − Φ(a∗)
and a∗ =

a− x′iβ

σ
. (4.16)

The log-likelihood for right-censoring at a non-zero threshold is

ln L(β, σ2) =
∑
yi<a

−1

2

(
ln(2π) + ln σ2 +

(yi − x′iβ)2

σ2

)
+

∑
yi=a

ln

(
1 − Φ

(
a− x′iβ

σ

))
. (4.17)

Heckman (1979) suggests an alternative two-step estimation, here described

for censoring at zero. It involves first estimating the unobserved term λi via

maximum likelihood using a probit model with outcome 0 if the observation

is censored and 1 otherwise. In the second step yi = x′iβ + σλ̂i + εi is esti-

mated using only the observations for which yi > 0. Details on all estimation

approaches for censored regression models or tobit models can be found in

Amemiya (1984, 1985).
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The censored regression or tobit estimator is a parametric estimator because

it specifies a functional form for both the regression equation and for the

distribution of the error process. A drawback of this model is that maximum

likelihood estimators are potentially inconsistent when εi is heteroscedastic.

In many empirical problems, the distribution of the errors is not known or

is subject to heteroscedasticity of unknown form (Chay and Powell, 2001).

Thus semiparametric estimation methods that provide consistent estimates for

censored data even when the error distribution is nonnormal or heteroscedastic

have been developed. These approaches are discussed in the following section.

4.2 Semiparametric Approaches

Generally, semiparametric estimators for censored data can be computed by al-

ternating between a ’recensoring’ step, in which the data are ‘trimmed’ to com-

pensate for the censoring problem, and a ‘regression’ step using the trimmed

data to obtain coefficient estimates (Chay and Powell, 2001). A complete

discussion of various alternative estimators can be found in Powell (1994).

Semiparametric estimators assume a functional form for the regression but no

functional form for the error process and therefore have the advantage that

no assumption on the error term is needed. As such, they are robust to non-

normality and heteroscedasticity.

Powell (1984) proposed the censored least absolute deviations (CLAD) estima-

tion method. For the linear model, the method of least absolute deviations ob-

tains regression coefficient estimates by minimizing the sum of absolute resid-

uals. It is based on a generalization of the sample median to the regression

context as least squares is a generalization of the sample mean to the linear

model. If the latent variable y∗ was observed, the median of this variable would

be the function x′β under the condition that the errors have a zero median.

In this case, the least absolute deviations method could be applied to estimate

the unknown coefficients by minimizing the sum of absolute residuals. In the

case of censoring, the median is unaffected as long as the regression function

x′β is in the uncensored region. On the other hand, the estimation may get a

bit complicated if the regression function x′β is below the lower threshold (or

above the upper threshold in case of right-censoring) and consequently more

than 50 percent of the distribution accumulate at the censoring point. A so-

lution for this case, but not limited to this case, can be found in Buchinsky
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(1994).

Buchinsky proposes the iterative linear programming algorithm (ILPA) to ob-

tain Powell’s estimator. ILPA is based on iterating between the deletion of

observations of the regression function x′β that are outside the uncensored re-

gion and estimating the coefficients using least absolute deviations applied to

the remaining observations. In the first step, a median regression is computed

using the whole data set. Based on the estimated parameters, all observations

with a censored predicted value are deleted. From this truncated data set, the

median regression is estimated again. In the third step, go back to the whole

data set and delete again all observations with a censored predicted value using

the updated parameters and repeat the sample truncating step. The iteration

process can be stopped when two sets of consecutive iterations are the same.

Buchinsky (1994) shows that a local minimum is guaranteed if the number of

iterations is finite. A disadvantage of this approach is that additional obser-

vations have to be removed in order to analyze the desired research question.

A discussion of and extensions to Powell’s and Buchinsky’s methods can be

found in Berg (1998) or Paarsch (1984).

Based on a symmetric trimming idea, the symmetrically censored least squares

(SCLS) estimation method is another approach to handle censored data, pro-

posed by Powell (1986). The idea of this approach is to restore symmetry

by ’symmetrically censoring’ the dependent variable y from below the point

2x′β − a, where a is the censoring point and the censoring appears in the up-

per part. We assume that the latent variable y∗ is symmetrically distributed

around the regression function x′β. That means the data are trimmed, so

that the regression function is equidistant from both censoring points. Chay

and Powell (2001) explain that since the ‘recensored’ dependent variable is

now symmetrically distributed around the regression function, the regression

coefficients can be estimated by ordinary least squares. Afterwards, iterating

between censoring the dependent variable symmetrically using the current es-

timates and least squares estimation of the regression coefficients using the

trimmed data yields the SCLS estimator.

The motivation of identically censored least absolute deviations (ICLAD) and

identically censored least squares (ICLS) estimation methods is similar to the

’symmetric trimming’ idea. The latter are proposed by Honoré and Powell

(1994). In contrast to the SCLS estimator, these estimators involve recen-

soring the dependent variable for pairs of observations. Then, the regression
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coefficients can be estimated by finding the value of β that minimizes the sum

of absolute (ICLAD) or squared (ICLS) differences of the identically censored

residuals across all distinct pairs of observations. As with SCLS the ICLS and

ICLAD estimators can be calculated by iterating the identically censoring step

and the least squares or least absolute deviations regression.

A further estimation method is proposed by Newey (1991) based on GMM that

also allows for heavy censoring of the data. Chen and Kahn (2000) consider

semiparametric estimation procedures with nonparametric heteroscedasticity.

Kaplan and Meier (1958) provide estimators to determine the distribution of

survival times after receiving treatment when data are censored for example

due to loss of contact to individuals.

4.3 Nonparametric Approaches

Besides these approaches, several nonparametric approaches for censored re-

gression have been proposed, which are described again for the case of left-

censoring. Lewbel and Linton (2002) suggest a censored regression model of

the form yi = max{a, g(xi) + εi}, where g(·) is the conditional expectation for

the uncensored population and a the censoring point, which is presumed to

be a known constant. If E(εi) = 0, the function g(xi) equals the regression

function of the uncensored population. Lewbel and Linton (2002) propose

a two-step procedure to estimate the function g(·). Further details on this

approach can be found in Lewbel and Linton (2002) or Li and Racine (2007).

Another nonparametric approach is proposed by Chen et al. (2005), which is

an extension of the nonparametric location-scale model which is usually of the

form

yi = g(xi) + σ(xi)εi, (4.18)

to handle censored data. It is motivated by problems in which main interest

lies in the estimation of a location function in regions where it is less than the

censoring point (Li and Racine, 2007). Chen et al. consider the model

y∗i = g(xi) + σ(xi)εi, (4.19)

yi = max{y∗i , 0}, (4.20)
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where y∗i is an unobserved latent variable, yi is the observed dependent variable

equal to y∗i if it exceeds the censoring point and equals zero otherwise. xi is

an observed q-dimensional random vector and εi is a mean zero, random dis-

turbance term that is distributed independently of xi. Under some conditions

g(xi) can be identified and estimated after imposing a local restriction, namely

that the median of εi is zero and that g(x) can be identified on the entire sup-

port of x, not just the region exceeding the censoring point. An overview on

nonparametric estimation of censored and truncated regression models can be

found in Chen (2010). A drawback of these nonparametric solutions compared

to other approaches is that they cannot be easily implemented by researchers

using standard software packages.

4.4 Censored Quantile Regression

Quantile regression was introduced in the 1970s by Koenker and Basset (1978)

and was further developed by a series of researchers. In the field of quantile

regression several estimation methods that can be employed in case of censoring

have been proposed. Censored quantile regression is based on Powell (1984,

1986). Starting with the model

Qτ (yi|xi) = max{ai, x
′
iβ(τ)} (4.21)

where ai is again the censoring point. The censoring point can be different

for individuals and not necessarily has to be 0. τ in parentheses denotes

the dependence on the corresponding quantile with 0 < τ < 1. The Powell

estimator minimizes ∑
ρτ (yi −max{ai, x

′
iβ(τ)}, (4.22)

where ρτ (ε) = (τ − 1(ε ≤ 0)). As all other approaches the Powell estima-

tor can be redefined as well for the case of right-censoring. The median or

censored absolute deviation estimator (CLAD), which is discussed in Section

4.2, is a special case of this estimator with τ = 1/2. Under weak regular-

ity conditions, Powell’s estimator has desirable large sample properties, but

undesirable properties in small samples. In addition, numerical optimization

based on the Powell estimator is arduous, even with modern computers (see

for example Haupt and Ludsteck (2007)). To avoid these computational prob-

lems the semiparametric two-step estimators have been developed. A further
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suggestion of Chernozhukov and Hong (2002), which is based on Buchinsky

and Hahn (1998) and Khan and Powell (2001) uses a three-step estimation

procedure. This approach reaches the asymptotic efficiency of Powell’s esti-

mator, but avoids its difficulties. In the first step a logit or probit regression

explaining not-censoring is estimated with the form

δi = p(x′iγ) + εi (4.23)

where δi is the indicator of not-censoring. Now, a sample J0 = {i : p(x′iγ̂) >

1−τ+c} is selected, where c is strictly between 0 and τ and not too small. The

practical choice of c is discussed in Chernozhukov and Hong (2002). The idea

behind this approach is similar to the ILPA method proposed by Buchinsky

(1994). The sample is here restricted by removing observations with a high

probability to be censored. The goal of the first step is to select some, not

necessarily the largest, subset of observations to obtain a consistent but inef-

ficient initial estimator β̂0(τ). Then, in the second step the initial estimator

β̂0(τ) can be obtained by the standard quantile regression

min
∑
iϵJ0

ρτ (yi − x′iβ). (4.24)

In the next step, select J1 = {i : x′iβ̂0(τ) > ai + δn}, where δn is a small

positive number and ai the censoring point. That means again a percentage of

the observations is discarded. In the third step finally the quantile regression

is performed with J1 in place of J0 to obtain the final estimation results.

4.5 Advantages and Disadvantages of Models

for Censored Data

The models discussed in this chapter provide solutions for the problem of cen-

sored wages for many research questions. But we have to consider that these

models cannot be applied for every possible research question and require very

specific knowledge to be able to perform them. A serious drawback is that most

of them are not implemented in standard software packages. Moreover, these

models are only applicable for direct analysis of a specific research question

and do not generally provide potential for a wide range of research questions.
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Besides, many of the models have the disadvantage that additional observa-

tions have to be discarded in order to be able to perform unbiased estimation

or that they require a lot of computational power.

In some studies researchers therefore simply avoid the problem of censoring

by using a restricted sample for the analysis. In these studies, for example,

only young people just entering the labor market are examined and it is ar-

gued that they normally start with wages significantly lower than the censoring

point (see, e.g., Stevens (2007)). In other studies, the analysis sample is re-

stricted to employees without university or technical college degree (see, e.g.,

Möller (2005a,b)). The same argumentation could be used for example if only

women were in the focus of a research question. Certainly, the fraction of

censored wages may be lower in these groups, but this approach cannot solve

the problem of censoring completely and it is surely not a solution that can be

used as a general guideline for the analysis of censored data like, e.g., wages

in the IAB Employment Sample. Another simple approach that cannot be

recommended as a general valid solution and is used to handle censored wages

mainly in U.S. studies based on the CPS survey, is to replace censored wages

by the ceiling times a factor, e.g 1.33 (Devereux, 2002; Juhn et al., 1993), 1.4

(Lemieux, 2006) or 1.5 (Autor et al., 2008; Katz and Murphy, 1992).

Later we present multiple imputation approaches for censored wages. We will

show that multiple imputation can ease the treatment of censored variables

because it represents a flexible technique that allows the application of stan-

dard estimation techniques also for data sets with censoring or other kinds of

missing values. Once the data are imputed, the analysts are free to perform

any desired analysis using standard complete data models. Then, researchers

not necessarily require specific knowledge about missing data techniques to

be able to analyze originally censored data. Additionally, we present a se-

ries of simulation studies that confirm the validity of the suggested multiple

imputation approaches.



Chapter 5

Selected Studies Based on

Censored IAB Data

Apart from (multiple) imputation and the approaches described in the pre-

ceding chapter, variations of these approaches and further methods are used

in the literature to handle censored data. Before we discuss in detail multiple

imputation and the special case of imputation for censored wages, this chap-

ter gives an overview on studies that are based on censored wage data. The

goal is to discuss different methods that are applied to analyze censored wages

in order to classify the advantages and disadvantages of our approaches and

to illustrate the analytical potential of the IAB data. This chapter seeks to

demonstrate the variety of wage analyses and related topics that could ben-

efit from the availability of properly imputed wages. Studies are described

from recent years that are based on administrative data of the German Fed-

eral Employment Agency and the Institute for Employment Research and a

broad range of research questions dealing with wages are examined. For these

studies, the method applied, the database, and the main findings are briefly

summarized. For studies based on the weakly anonymized version of the IAB

Employment Sample, we refer to the latter just as IAB Employment Sample.

5.1 Gender Wage Gap

The analysis of wage differences between men and women has a long tradition

in Germany and most other developed countries. The question of the gender

wage gap is examined comprehensively in the social sciences as well as in eco-

41
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nomics. Hence, a lot of studies concerning Germany using the IAB data can

be found in the literature, which are (apart from the problem of censoring)

an excellent database to examine this kind of questions. These studies apply

various solutions to the problem of censoring. The first and probably least

ambitious solution is to simply restrict the analysis to groups of persons where

censoring does not play a role or at least not an important role. Most of these

studies restrict the sample to persons with low and medium education and

simply leave out highly skilled persons. Another option would be as well to

drop some industries or occupations with a high wage level from the sample

to reduce the percentage of censoring. However, by doing this one loses infor-

mation and receives estimation results which are only representative for the

selected subgroups.

An example for this approach is a study of Black and Spitz-Oener (2007), who

examine the changes in the gender wage gap based on the IAB Employment

Sample applying an approach that uses direct measures of job tasks and gives

a characterization of how work for men and women has changed in recent

decades. They find out that the differences between men and women are less

pronounced in recent years and argue that a relative task change explains a

substantial fraction of the reduction of the gender wage gap. According to

this study women have witnessed relative increases in non-routine analytic

tasks and non-routine interactive tasks, which are associated with higher skill

levels. Due to the censoring they restrict the wage analysis to employees with

low and medium levels of education only and argue that “(t)he impact of this

restriction is less severe than it might first appear. The reason is that relative

changes in task inputs across the genders were most pronounced for low and

medium educated employees; hence, they appear to be the most interesting

groups to look at” (Black and Spitz-Oener, 2007, p. 11).

Jurajda and Harmgart (2004) compare the importance of occupational gender

segregation for the gender wage gap in East and West Germany using the

IAB Employment Sample. As the wages are censored from above they focus

their descriptive analysis on median wage gaps instead of mean wage gaps.

Furthermore the study examines the impact of possible sources of the observed

wage gap using logarithmic wage regressions. Specifically, they account for

occupational segregation, worker and firm characteristics and finally estimate a

logarithmic ordinary least squares regression. The effect of gender segregation

on wages is captured by conditioning on the ‘femaleness’ of the occupation,



5.1. GENDER WAGE GAP 43

which is measured by the percentage of females in a given group of employees,

e.g., in one occupation. Their main findings are that segregation is not related

to the West German wage gap, but in East Germany wages of both men and

women are higher in predominantly female occupations. In an additional step

they check the sensitivity of the OLS estimates to the top-coding of wages in

the IAB data. To do so, they compare the OLS results to those based on the

censored least absolute deviation (CLAD) estimator proposed by Powell (1984)

and claim that the new estimates show “little material difference” (Jurajda and

Harmgart, 2004, p. 17). They conclude that ignoring right-censoring has a

negligible quantitative effect on the estimated parameters, even if for example

the coefficient ‘Fraction of females in occupation’ changes from 0.037 to 0.043

for men in West Germany and from 0.124 to 0.097 for men in East Germany.

Another possibility that is used in a broad range of studies concerning gender

is to apply a tobit model. Heinze and Wolf (2006) apply a tobit model to the

linked employer-employee data of the IAB and show that the mean gender wage

gap within firms is smaller than the average overall gender wage gap and that

firms with formalized co-determination (workers’ council) and those covered

by collective wage agreements are more likely to have a smaller gender wage

gap. A further finding is that the wage differential between men and women

decreases with firm size and increases with the wage level. In another study,

Heinze and Wolf (2007), applying the same data set and using a tobit model

as well, calculate firm-specific gender wage gaps accounting for differences in

individual characteristics and show that innovative human resources practices

tend to limit the wage differential between men and women. Furthermore, in

a similar study Heinze (2009) examines the impact of the proportion of women

working within an establishment upon individual wages.

A number of studies use a simple (single) imputation procedure according to

Gartner (2005) to be able to analyze differences in wages. The basic principle

of this procedure is to first estimate a tobit model, where the dependent vari-

able is the log wage and the independent variables are those included in the

desired analyses. In the second step, for every censored observation a random

value is drawn from a normal distribution left-truncated at the social security

contribution ceiling (with predicted log wage as mean, and standard devia-

tion as estimated from the tobit model). Achatz et al. (2004) use the linked

employer-employee database (LIAB) for East and West Germany in 2000 and

this procedure to estimate a decomposition of the wage differential proposed
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by Blinder (1973) and Oaxaca (1973). They find that only one tenth of the

gender gap in wages is explained by human capital differences between men

and women. Furthermore, with increasing proportions of women within job

cells they observe decreasing wage levels for men and women but with higher

rates of decline for women than for men. Besides, the presence of workers’

councils has a positive impact on wage levels. Using the same data set and the

same imputation approach, Gartner and Stephan (2004) find as well that the

gender wage gap in Germany is smaller in firms covered by collective contracts

or having a workers’ council. The authors argue that these findings can be

explained in part by the fact that these institutions are associated with lower

unobserved productivity differences and less wage discrimination, and in part

because they compress the distribution of wage residuals.

Kluve and Schaffner (2007) apply a Blinder-Oaxaca method for tobit models

proposed by Bauer and Sinner (2005) to the IABS to decompose the gender

wage gap. The main result is that part of the observed gender wage gap can

be explained by segregation into more and less secure jobs. Since women select

themselves into more secure jobs than men and since workers with high injury

risks are compensated for the risk, including the injury risk, the explained

part of the gender wage gap increases by about three percentage points and

amounts to up to 12 percent of the whole explained part.

An overview of older studies concerning the gender wage gap based on data of

the Institute for Employment Research can be found in Hübler (2003).

5.2 Wage Inequality

Besides wage differentials between men and women, wage inequality in general

is another subject that is in the center of a number of studies based on the wage

information contained in the data of the Institute for Employment Research.

Many studies analyze the development of wage differences between and within

certain groups over several years.

Möller (2005a,b) investigates the wage dispersion between employees working

full-time in the lower and upper part of the wage distribution using the re-

gional file of the IAB Employment Sample. As a measure of wage dispersion

he compares the ratio of the 90th percentile to the median and the ratio of

the median to the 10th percentile in different years. This analysis is done

separately for men and women and three educational groups:
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• Low-skilled: with no vocational degree

• Medium-skilled: with vocational degree

• High-skilled: with university or technical college degree

Due to the censoring, results can only be shown for the groups of low and

medium skilled persons. In these groups, the 90th wage percentile is un-

censored and results can easily be calculated and reported. The 90th wage

percentile of high skilled employees is censored as approximately 45 percent of

wages of men in this group are censored. In this case, it is impossible to ob-

tain results without any correction for the censoring. In Chapter 10, it will be

shown that multiple imputation could be implemented in this case to receive

valid results for all groups. The main finding of the study is that from 1984

to 2001 a rising wage inequality can be observed in Germany in the examined

educational groups. This development is somewhat higher for low skilled em-

ployees than for medium skilled and somewhat more pronounced for women

than for men.

Dustmann et al. (2009) analyze the wage structure during the 1980s and 1990s

and find that wage inequality increased in the 1980s, but only at the top of

the distribution. In the early 1990s, wage inequality started to rise also at

the bottom of the distribution. They show that changes in the education and

age structure can explain a substantial part of the increase in inequality, in

particular at the top of the distribution. They additionally argue that, for

example, about one third of the increase in lower tail inequality in the 1990s

can be related to de-unionization and that fluctuations in relative supply play

an important role in explaining trends in the skill premium. The analysis is

based on the IAB Employment Sample. Due to the missing wage information

the 85th percentile is used as descriptive measure instead of the 90th percentile

and semi-parametric censored quantile regressions are applied.

Also based on the IAB Employment Sample Kohn (2006) studies the wage

structure in the German labor market for the years 1992 to 2001. The findings

are similar to the studies described above: While wage dispersion generally

rose, the increase was more pronounced in East Germany and occurred pre-

dominantly in the lower part of the wage distribution for women and in the

upper part for men. To reveal diverse age and skill patterns, censored quantile

wage regressions are used. Adapting a decomposition proposed by Machado
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and Mata (2005) to the case of censoring, Kohn finds that differences in the

composition of the work force had only a small impact on the observed wage

differentials between East and West Germany.

In a study comparing the structure of wages in different countries Lazear and

Shaw (2007) use the IAB linked employer-employee data to analyze the case of

Germany. Here, the missing wage information is imputed according to Gartner

(2005).

5.3 Central Wage Bargaining and Union

Wages

Another central issue of studies based on wage data is to analyze the impact

of trade unions and workers’ councils on wages. Fitzenberger and Kohn (2006)

examine the relationship between the level of union organization as a measure

of union power and the wage structure within and between segments of the

German labor market for 1985 to 1997 based on the IAB Employment Sample.

To the IAB data individual probabilities of membership in an union are merged

which were estimated in Beck and Fitzenberger (2004). The authors group

the data according to socio-demographic characteristics of the employees and

characteristics of their jobs and form cells with the dimensions time, age,

and industries. The specific wage level of each cell is estimated using a tobit

regression. The main findings are that a higher level of qualification wage

differentials can be found in segments with strong unions. In accordance with

a minimum wage character of union negotiated wages, the compression of the

wage distribution is more pronounced in the lower part of the wage distribution.

Union effects also vary with age of workers and over time.

Fitzenberger et al. (2001) apply a cohort analysis using censored quantile re-

gression to the IAB Employment Sample to test for uniform wage trends in

West Germany. Their results can be summarized as follows: Wages of workers

with medium skill level deteriorated slightly compared to high and low skill

levels during the 1970s and 1980s. However, compared to other countries, the

German wages were fairly stable.

A study of Braun and Scheffel (2007) is focuses on the effect of outsourcing

on the wage premium of collective bargaining agreements. It is based on the

linked employer-employee data (LIAB) and the missing wage information is
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imputed based on a tobit model (Gartner, 2005). They find that low skilled

workers experience a decline in the union wage premium when working in

industries with high outsourcing intensities, which applies to both firm- and

sector-level agreements. On the other hand, outsourcing has no negative effect

on the wages of employees not covered by collective bargaining agreements.

In contrast to low skilled workers, wages of medium skilled workers are not

affected by outsourcing, and highly skilled workers employed in industries with

a high level of outsourcing even gain rising wages.

5.4 Wage Rigidity

Bauer et al. (2007) examine real and nominal wage rigidities in West Germany

using the regional file of the IAB Employment Sample. Due to the censoring

they drop all individuals with a wage observation at the threshold or slightly

below and argue: “While this approach is common practice, it is important to

note that it changes the skill composition of the sample. High skilled workers

are removed more than proportionally. This might cause another selection bias

in our rigidity measures, if wage rigidity is correlated with the skill (or wage)

level” (Bauer et al., 2007, p. F513). Based on this restricted sample Bauer

et al. find that a substantial fraction of workers faces wage increases that are

caused by nominal and particularly real wage rigidity. Furthermore, the extent

of real rigidity rises with inflation and falls with regional unemployment; for

nominal rigidity the opposite holds. The conclusion of their findings is that

the incidence of wage rigidity, which accelerates unemployment growth, is most

likely minimized in a moderate inflation environment.

In another study, Knoppik and Beissinger (2003) examine downward nominal

wage rigidity, right-censored observations are dropped as well. The authors

admit that “(s)ince this leads to a substantial change in the skill structure of

the sample, where high-skilled employees are no longer properly represented,

the analysis is confined to unskilled and skilled male employees” (Knoppik

and Beissinger, 2003, p. 638). They conclude that there is a high degree of

downward nominal wage rigidity in the IAB Employment Sample.
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5.5 Labor Supply

An issue examined by Hirsch et al. (2006, 2008) in studies based on IAB data

is the question of labor supply to firms. In Hirsch et al. (2006), they use the

linked employer-employee data and wages imputed based on a tobit model.

Applying a structural estimation procedure based on a dynamic model of new

monopsony, the authors estimate the long-run wage elasticity of firms’ female

and male labor supplies. The estimated elasticities were found to be small (0.9-

2.4), whereas women’s elasticity is only about half the size of men’s. Hirsch

et al. argue that an implication of these findings is that the gender pay gap

could be the result of wage discrimination by profit-maximizing monopsonistic

employers.

In a second version of the paper (Hirsch et al., 2008), the estimation is not

based on imputed data. The authors here admit that using the censored wage

data without any correction would bias the estimates and add as explanation:

“However, any imputation of the censored values cannot completely remedy

this problem since it will introduce, by construction, some measurement error.

This will cause inconsistent estimates of wages if they are used as an explana-

tory variable” (Hirsch et al., 2008, p. 16). As a consequence, the analysis is

carried out only for individuals whose wages were below the threshold dur-

ing the examined period, which reduces the samples for men by 21.8 percent,

while for women only by 8.0 percent. The conclusion remains more or less the

same: labor supply elasticities are still small, but vary now from 1.9 to 3.7 and

women’s labor supply to the firm is again less elastic than men’s. In the paper,

there is no evidence that the mentioned measurement error would affect the

estimation results actually more severe than the bias due to the restriction of

the sample.

5.6 Regional Studies

As the IAB Employment Sample distinguishes 348 regional labor markets over

a long period, it is used for a series of regional studies as well. Three examples

dealing with regional wages will be discussed here. The first study, conducted

by Lehmer and Möller (2008), analyzes effects of inter-regional mobility on

earnings for different groups. The database for this paper is the regional file

of the IAB Employment Sample. Because of the censoring, a tobit estimation
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method is used. The authors find negative wage differentials of movers in the

year before migration and strong evidence for significant wage gains through

mobility. Additionally, a decomposition of Blinder-Oaxaca based on tobit esti-

mates is employed to reveal different group-specific rewards effects suggesting

a positive post-mobility wage differential of movers over the incumbent work-

force for some groups irrespective of the region of destination.

Lehmer and Ludsteck (2008) analyze extensively the effects of inter-regional

mobility on the earnings of skilled workers. The basic idea of this study is to

interact returns to inter-regional migration with employer changes to separate

the two effects. Lehmer and Ludsteck find that inter-regional mobility results

in positive additional returns compared to job mobility within a region in

general. The study is based on the IAB employment history data (BeH).

Due to the high proportion of censored wages in the group of highly-skilled

workers, the earnings analysis is restricted to the medium qualification group.

Summing up the main results, they find that both job mobility and regional

mobility lead to a wage increase in the year after changing firm relative to the

group of immobile workers. In addition, they find out, that contemporaneous

return for people moving to a different region is statistically significantly larger

in the aggregate level than for job movers that stay in the same region.

Lehmer and Möller (2009) review interrelations between the urban wage pre-

mium and firm-size wage differentials. A tobit estimation method is again used

to account for top-coding in the data, here the regional file 1975 to 2004 of the

IAB Employment Sample. The authors find clear evidence for the existence

of an urban wage premium in Germany. The raw wage premium amounts to

15.5 percent, controlling for personal characteristics, it can be reduced to ap-

proximately 13.5 percent. Firm-size categories in the econometric specification

additionally lower the magnitude of the urban wage premium by roughly one

fourth. However, firm-size differences between rural and urban areas explain

a significant part of the interregional wage differential.

5.7 Other Wage Analyses

To illustrate the wide range of question that can be examined by using the rich

IAB data and the multitude of solutions that can be applied to the problem

of censored wages, this last section summarizes further studies from various

fields of wage analysis.
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Based on the IAB Employment Sample, Stevens (2007) investigates the role

of economic conditions at entry into the labor market. As only men who do

not take higher education and enter the labor market in West Germany before

the age of 19, i.e., mainly at age between 16 and 18, are examined, censoring

really seems not to be a problem in this case. The study reports that overall

around 1 percent of earnings observations are censored from above in the used

sample (for males approximately 1.6 percent). As the examined group is only

rarely affected by censoring, standard regression methods are applied, where

the local unemployment rate at entry is a regressor. According to this paper

small but significant adverse effects of economic conditions at entry on earnings

are found. Moreover, this negative effect gains in strength throughout working

life.

Another topic of analyses based on IAB data are wage effects of immigration.

An example for this topic is a paper by Bonin (2005) based on the regional

file of the IAB Employment Sample (IABS-R) for the period 1975 to 1997.

Using single imputed wages, the study shows that penetration of migrants into

skill cells has no significant negative effect on the earnings and employment

opportunities of native men. Following Bonin, the results indicate that a 10

percent rise of the share of immigrants in the workforce would reduce wages

by less than one percent and not increase unemployment. For less qualified

and older workers, however, the effects appear to be stronger.

Ludsteck (2008) reviews the aggregate wage cyclicality and the wage curve

for establishment stayers and movers using the IAB Employment Sample for

the years from 1985 to 2004. The study finds that movers’ wage responses to

aggregate unemployment rate changes exceed those of stayers by about 30-40

percent and that the increments of movers over stayer responses to regional un-

employment shocks are considerably greater and amount to about 150 percent.

Ludsteck explains this finding by the importance of centralized wage bargain-

ing in Germany. In order to check if the censoring causes significant bias in

the analysis, the author implements the consistent Honoré (1992) fixed effects

GMM estimator as well, which can be thought of as a generalization for the

idea behind Powell’s trimmed least squares estimators for tobit models (with-

out fixed effects). This estimator is like Powell’s estimators semi-parametric

and it is not necessary to assume a parametric form for the disturbances nor

is it necessary to assume homoscedasticity. As differences between the Honoré

estimates and conventional OLS turned out to be negligible, the computation-
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ally less demanding OLS is applied.

Based on the panel information of the IAB Employment Sample Baltagi et al.

(2009) consider the West German wage curve. The authors choose to use the

censored wage information in the data set, i.e., the value of the threshold which

is reported for high income groups. To justify this approach it is stated that

“(t)ests were carried out using refined methods of dealing with this kind of

problem, i.e., multiple imputation of wages above the threshold. Using panel

data on a shorter time period these tests showed only very small changes in

the results on the wage curve” (Baltagi et al., 2009, p. 48). The main findings

of this study are that the wage equation is highly autoregressive but far from

unit root and moreover that the unemployment elasticity is significant but

relatively small.

Schönberg (2004) compares the sources of wage growth of young workers in the

United States and Germany, two countries with very different labor market

institutions. The analysis for Germany is based on the IAB Employment

Sample. Because of the censoring the empirical analysis is mainly restricted

to unskilled workers and workers with an apprenticeship and because of the

research question on those individuals who are observed from their entry in the

labor market onwards. This means that those individuals have to be at most

15 years old in 1975. The main findings are that in both countries and for all

educational groups general human capital accumulation is the most important

source of wage growth. 60 percent of total wage growth can be attributed to

human capital accumulation after ten years spent in the labor market. The

second main reason for wage growth for all education groups in both countries

is job search. Interestingly, wage growth due to job switching is roughly similar

for German apprentices and for US high school dropouts and graduates. The

analysis is done using a method of decomposing total wage growth into wage

growth due to general human capital accumulation, firm-specific human capital

accumulation, and job search proposed in the paper.

Schank et al. (2004) use the LIAB to demonstrate that exporting firms do not

pay higher wages compared to other firms. Existing wage premia disappear

when individual characteristics of the employees and of the work place are

controlled for. Due to the censoring, a tobit model is applied to estimate the

effects at the individual level. At the plant level, OLS is used, as the authors

argue that the distribution of the average wages analyzed at that level is not

censored. This becomes a problem if individual wages are aggregated to the
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plant level. The authors justify the use of aggregated wages by arguing that

“[o]nly one plant in the regression sample employs solely workers with censored

wages (and hence, only for this plant the average wage is censored). In other

plants, some of the workers earn wages that are censored, so that the average

reported wage is smaller than the average of the actual wages. However, we

have ignored any (small) bias arising from this underreporting since the bias

should be correlated with individual qualification for which we control in our

estimations and since there is no clear cut truncation point which could be

taken into account in the plant-level estimations” (Schank et al., 2004, p. 8).

Based on the linked employer-employee data Bauer and Bender (2001) examine

the effects of flexible workplaces on wages as well as on the wage structure

within firms. The empirical results suggest that workers benefit from flexible

workplace systems through higher wages and that there is an increase of within-

firm wage inequality through a relative increase in the wages at the upper parts

of an establishment’s wage distribution. The analysis is based on the censored

wages which “should bias the estimated coefficients on our variables indicating

the use of flexible workplace systems towards zero, particulary so for high-

skilled workers” (Bauer and Bender, 2001, p. 15). To prevent this bias, tobit

models are applied for the estimation.

Binder and Schwengler (2006) propose a procedure to adjust not the wage at

the individual level, but the mean of the gross wage for each region. The aim

of this study is to facilitate the comparison of mean earnings between regions.

As all incomes above the limit are censored in the IAB data, the yearly gross

wage per employee in a region in the data is lower than the ‘actual’ mean. To

represent the actual earning potential in the various regions as accurately as

possible, they suggest to correct the error induced by the censoring of some

individual wages. For each region a hypothetical income distribution curve is

searched, since the actual distributions above the threshold are not known.

This hypothetical distribution function is then on the cut-off point ‘extended’

under the assumption of a log normal distribution. Applying this method,

persons who are in the censored income class, are distributed according to the

log-normal distribution above the threshold in order to reach a realistic upward

correction of the regional average wage.

Table 5.7 briefly summarizes the studies described in this chapter. The table

additionally shows whether these studies make use of the longitudinal structure

of the data or use only cross-sectional information for one year. The overview
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underlines that the IAB data contain research potential for various fields of

economics and social sciences. From 2004 to 2008, 105 publications where

produced using the IABS by authors not affiliated to the IAB. Among them

12 were published in Social Sciences Citation Index (SSCI) listed journals and

11 in other refereed journals (Heining, 2010). For researchers affiliated to the

IAB no information on the number of publications is available, but the data

are also extensively used by these researchers. Accordingly, there is a broad

range of researchers that could benefit from multiply imputed wage data. The

following chapter introduces imputation techniques in general and multiple

imputation in particular.
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Chapter 6

Multiple Imputation

In general, multiple imputation is a statistical technique for analyzing incom-

plete data sets, e.g., data sets for which some values are missing. The missing-

ness can appear due to several reasons: Among many other reasons, subjects

may fail to provide data, individuals may drop out from an observational study

or some information may just not be reported because of legal reasons, like

it occurs in the case of censored wages. Application of the technique requires

three steps: imputation, performing the analysis m times, and combining the

results. The chapter gives an overview on different imputation approaches and

finally gives a brief introduction to multiple imputation. A detailed descrip-

tion about analysis of missing data can be found in Little and Rubin (1987,

2002) and an overview is given, e.g., in Rässler et al. (2008). Besides, Reiter

and Raghunathan (2007) describe some of the main adaptations of multiple

imputation.

6.1 Missing-Data Mechanisms

Before we discuss different imputation strategies, the first section distinguishes

various missing-data mechanisms. These mechanisms describe to what extent

missingness depends on the observed and/or unobserved data values and were

formalized first by Rubin (1976). Following this work, Little and Rubin (1987,

2002) distinguish three cases: missing completely at random (MCAR), miss-

ing at random (MAR), and not missing at random (NMAR). To be able to

distinguish these cases formally, let Y represent the N ×P matrix of complete

data and R represent the N × P matrix of indicator values for observed and
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missing values in Y. The missing-data mechanism gives the probability of the

matrix of indicator variables R, given Y and possible parameters governing

this process, ξ : f(R|Y, ξ).
Missing data for which missingness does not depend on any of the data values,

neither missing nor observed, is referred to as MCAR. In this case, the prob-

ability that data on a particular variable can be observed does not depend on

the value of that or any other variable: f(R|Y, ξ) = f(R|ξ). In many cases

the MCAR assumption is unrealistically restrictive and can be contradicted

by the observed data (see, e.g., Rässler et al. (2008)).

A different situation appears if the missingness can be explained by observed

values in the data, like for example gender, age, or social status. If the proba-

bility of units responding to items depend on observed values, but not on any

missing values then according to Little and Rubin (1987, 2002) the missing

data are MAR, but not necessarily MCAR because of the following dependence:

f(R|Y, ξ) = f(R|Yobs, ξ), where Yobs are observed values in Y , Y = (Yobs, Ymis),

and Ymis being the missing values in Y .

The data are finally NMAR, if, even given the observed values, missingness

still depends on data values that are missing. In addition to the concept of

MCAR, MAR and NMAR, Rubin (1976) introduced the concept of ignora-

bility. He shows that if the data are MAR and the parameters of the data

distribution, ψ, and the missing-data mechanism, ξ, are distinct, then valid

inferences about the distribution of the data can be obtained using a likelihood

function that does not contain a factor for the missing-data mechanism and

is simply proportional to f(Yobs|ψ) =
∫
f(Y |ψ)dYmis. He finds that in this

case the missing-data mechanism may be ‘ignored’ for likelihood or Bayesian

inference.

Often, it is reasonable to assume that the parameters of the data distribution

and the missing-data mechanism are distinct and the question of whether the

missing-data mechanism is ignorable often reduces to a question of whether the

missing data are MAR. Even when the ignorability assumption is not known

to be correct, it is common to make this assumption in analyses of incomplete

data as it can be advantageous to do so for a variety of reasons (Rässler et al.,

2008): The most convincing reason is that it can simplify analyses greatly.

Another reason is that the MAR assumption is often reasonable, especially

when there are fully observed covariates available in the analysis to ‘explain’

the reasons for the missingness and that MAR cannot be contradicted by the
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observed data without the incorporation of external assumptions. Besides,

even if the missingness is not MAR but NMAR, an analysis based on the

assumption of MAR can be helpful in reducing bias by imputing missing data

using relationships that are observed. The last reason that is mentioned, e.g.,

by Rässler et al. (2008) is that it is usually not easy to specify a correct

nonignorable model, even if the missing data are NMAR. The main problem

here is that any evidence concerning the relationship of missingness to the

missing values is absent because the missing values are (by definition) not

observed.

6.2 Handling Missing Data

Little and Rubin (1987, 2002) categorize methods for analyzing incomplete

data into four main groups:

• Simple methods like complete-case analysis and available-case analysis

• Weighting procedures

• Imputation-based procedures

• Multiple Imputation

In the following sections the basics of these approaches will be presented and

advantages and disadvantages will be discussed. An extensive introduction

and discussion of these approaches can be found in Rässler et al. (2008).

6.2.1 Simple Approaches

The simplest way to deal with missing data is the complete-case analysis. Here,

all cases with at least one missing value are deleted and only complete cases

are used for the analysis. This method therefore is sometimes called ‘listwise

deletion’. This procedure is generally biased if the missing data are not MCAR.

The degree of bias depends on different factors like the amount of missing data,

the degree to which the assumption of MCAR is violated and the particular

analysis that is implemented. Another disadvantage of this approach is that

even if it is unbiased, it can be highly inefficient, especially with multivariate
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data sets, where a large fraction of units may be subject to deletion even if

there are only missing values in some variables.

An alternative to the complete-case method is the available-case method, where

all units that have complete data on the variables that are needed for the analy-

sis are considered. In Rässler et al. (2008) this approach is called ‘complete-case

analysis restricted to the variables of interest’. The advantage of this method

is that an equal or higher number of data values are retained compared to

the complete-case analysis, but this becomes problematic when more than one

quantity is estimated and different estimates are combined or are supposed to

be comparable, as the sample base changes from estimation to estimation. As

complete-case and available-case analysis are often the default treatments of

missing data in software packages, like, e.g., STATA, they are easy to imple-

ment, but may have the discussed serious drawbacks. As they are the default

treatment in some software packages, sometimes it may occur that analysts

are not even aware of the bias that may arise, e.g., if units with single missing

values are automatically deleted.

6.2.2 Weighting Adjustments

Weighting adjustment can be interpreted as a modification of complete-case

analysis to remove bias when the missing data are not MCAR. It can be ap-

plied for example in case of unit nonresponse in surveys. Here, complete cases

are weighted based on background information that is available for all units in

the survey. One simple possibility to perform weighting adjustment is as fol-

lows: When a nonrespondent matches a respondent with respect to background

variables that are observed for both, the weight of the nonrespondent can be

simply added to the matching respondents weight and the nonrespondent can

be discarded (Rässler et al., 2008). As the matching is performed using ob-

served variables, this kind of weight adjustment implicitly assumes MAR. The

disadvantage of this approach is that it nearly always arises new problems,

mainly because discarding incomplete cases discards additional observed data

that are not used in creating the weighting adjustment.

6.2.3 Single Imputation

By applying single imputation, one value is imputed for each missing value.

Little and Rubin (2002, p. 72) summarizes guidelines for (single) imputations.
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They should be:

(1) conditional on observed variables

(2) multivariate to reflect associations among missing variables and

(3) randomly drawn from predictive distributions rather than means to en-

sure that correct variability is reflected.

The main advantage of single imputation is that the imputed data set is

straightforward to analyze using standard complete-data methods. Rässler

et al. (2008) describe a number of single imputation approaches.

The simplest single imputation method is to replace each missing value with

the mean of the observed values of the variable. This method meets none of

the guidelines formed by Little and Rubin (1987, 2002). Another method, re-

gression imputation refers to replacing the missing values with values predicted

from a regression of the variable containing missing values on other variables.

This method satisfies the first two guidelines. A special case of regression im-

putation is the cell mean imputation. Here, missing values are replaced with

the mean of that variable calculated within cells defined by categorical vari-

ables. Another method that can meet all three guidelines for single imputation,

when done properly, is stochastic regression imputation. Here, random noise

is added to the predicted value. An example for this approach is the method

proposed by Gartner (2005), which is addressed in the preceding chapter. The

last single imputation method is referred to as ‘hot-deck imputation’. Each

missing value is replaced here with a random draw from a pool of donors. The

donor pool consists of observed values of that variable stemming from units

similar to the unit with the missing value. They can be selected by choosing

units with complete data and similar observed values to the unit with miss-

ing values, for example by exact matching on their observed values or using

a distance measure (metric) on observed variables to define ‘similar’ (Rässler

et al., 2008). A special case of hot-deck imputation is the so-called ‘predictive

mean matching’. Here, the distance is defined as the difference between units

on the predicted value of the variable to be imputed (Rubin, 1986). Supposing

that it is properly done, hot-deck imputation can also satisfy the three guide-

lines for single imputation. If the single imputations have been done following

the guidelines of Little and Rubin (1987, 2002), then, according to Rässler

et al. (2008), analyzing the imputed data set with standard complete-data
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techniques is straightforward and can lead to approximately unbiased point

estimates under ignorability. An important disadvantage, however, is that the

analyses will nearly always result in estimated standard errors that are too

small, confidence intervals that are too narrow and p-values for hypothesis

tests that are too significant. The reason is that imputed data are treated by

standard complete-data analyses as if they were known with no uncertainty

(Little and Rubin, 1987, 2002). As a consequence single imputation is almost

always statistically invalid if it is followed by a complete-data analysis that

does not distinguish between real and imputed values.

Nevertheless, a series of special methods for variance estimations following

single imputations have been developed. The problem with these techniques

is that they are only appropriate for specific imputation procedures and es-

timation problems, but are not generally applicable for all estimation prob-

lems. Here, an imputed data set cannot be used for all kind of research ques-

tions without having detailed information on the imputation method used and

knowledge on imputation techniques. An alternative approach that is broadly

applicable but computationally intensive is to use replication techniques like

jackknife or bootstrap for variance estimation with separate imputation pro-

cedures for each replication.

Multiple imputation (MI) on the other hand, is a generally valid alternative,

which is compared to specific estimation procedures generally applicable and

compared to replication techniques less computationally intensive. Hence, it

is particulary useful in the context of creating data sets shared by many users,

as it could be the case with the IAB Employment Sample. The theory and

principle of multiple imputation originates from Rubin (1978) and involves

repeating the drawing of single imputations several times, but its exact validity

requires that the imputations are ‘proper’ (Rubin, 1987).

6.3 Principles of Multiple Imputation

Multiple imputation is an approach to complete missing data and to reflect

the added uncertainty due to the fact that the imputed values are not the

actual values. A big advantage is that it permits to analyze the imputed data

sets using standard complete-data methods. Rässler et al. (2008) argue that

in general, only MI and direct analysis can lead to valid inferences and add

that valid inferences have to satisfy the following three criteria:
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(a) approximately unbiased estimates of population estimates (e.g., means,

correlation coefficients),

(b) interval estimates with at least their nominal coverage (e.g., 95% intervals

for a population mean should cover the true population mean at least

95% of time) and

(c) tests of significance should reject at their nominal level or less frequently

when the null hypothesis is true (e.g., a 5% test of a zero population

correlation should reject at most 5% of the time when the population is

zero).

Resampling methods, like jackknife and bootstrap are able to satisfy criteria

(b) and (c) asymptotically, but cannot help to satisfy (a) in the presence of

missing data. Hot-deck imputation for example can satisfy criterion (a), but

fails to satisfy (b) and (c). As we want to develop a solution for the missing

wage information in the IAB Employment Sample, where the once imputed

censored wages can be used by several researchers for a broad range of research

questions applying standard methods and that fulfills all criteria discussed

above, MI is the most useful approach in this case. That is why, from now, we

focus on the advantages of MI.

MI was introduced by Rubin (1978) and discussed in detail in Rubin (1987,

2004b,a). It is a simulation technique that replaces the missing values Ymis

with m > 1 plausible values and therefore reveals and quantifies uncertainty

in the imputed values. For notational simplicity, we assume here ignorability

of the missing-data mechanism, even though this assumption is not necessary

for MI to be appropriate. Generally, a set of m imputations (i.e., each single

imputation for Ymis) creates m complete data sets: Y (1), ..., Y (m), where Y (m) =

(Yobs, Y
(m)
mis ). Typically m is fairly small, m = 5 is a standard number of

imputations to use. Each of the m imputations is done by properly drawn

(single) imputations. Such a proper imputation can be obtained by a random

draw from the ‘posterior predictive distribution’ of the missing data given the

observed data f(Ymis|Yobs). Often it is not possible to specify this distribution

directly. But it can be formally written as f(Ymis|Yobs) =
∫
f(Ymis, ψ|Yobs)dψ =∫

f(Ymis|Yobs, ψ)f(ψ|yobs)dψ. This expression effectively gives the distribution

of the missing values, Ymis, given the observed values, Yobs, under a model for Y

governed by the parameter ψ, f(Y |ψ)f(ψ), where f(ψ) is the prior distribution
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of ψ. The distribution f(Ymis|Yobs) is called ‘posterior’ because it is conditional

on the observed Yobs and ‘predictive’ as it predicts the missing Ymis.

For simple patterns of missing data, like with only one variable subject to miss-

ingness, a two-step procedure is then relatively straightforward to implement:

(a) First, we perform random draws of the parameter ψ according to the

observed-data posterior distribution f(ψ|Yobs), where ψ is the parameter

vector of the imputation model.

(b) Then, we perform random draws of Ymis according to their conditional

predictive distribution f(Ymis|Yobs, ψ).

The imputation can be made proper in Rubin’s sense if it reflects all un-

certainty, including in parameter estimation, by taking draws of ψ from its

posterior distribution, f(ψ|Yobs), before using ψ to impute the missing data,

Ymis, from f(Ymis|Yobs, ψ). Imputation methods are labeled as ‘improper’ by

Rubin (1987), if they do not account for all sources of variability. An example

for an improper method would be fixing ψ at a point estimate ψ̂ and then

drawing m imputations for Ymis independently from its posterior distribution,

f(Ymis|Yobs, ψ̂).

Finally, each of the m imputed data sets is analyzed as if there were no missing

data and the results of the m analyses have to be combined using combining

rules that will be discussed later.

If there are missing values in more than one variable, it is only straightfor-

ward to draw random samples from f(Ymis|Yobs) if the missing data follow a

monotone pattern. This situation appears for example in clinical trials, when

data are missing due to a patient dropout. Where once a patient drops out,

the patient never returns (Rässler et al., 2008). Here, the imputation can be

started by fitting an appropriate model to predict the variable with the fewest

missing values from all variables with no missing values. Then the missing

values for the variable with the second fewest missing values can be imputed

using the variables with no missing values and the first imputed variable. Now

we continue to impute the next most complete variable until all missing values

have been imputed. According to Rässler et al. (2008), imputation is proper

under this model and the collection of univariate prediction models defines the

implied full imputation model, f(Ymis|Yobs).

In a case where the missing data are not monotone, iterative computational

methods are generally necessary. Here, creating imputations generally involves



6.3. PRINCIPLES OF MULTIPLE IMPUTATION 65

iteration because it is often difficult to draw from the distribution f(Ymis|Yobs)

directly. In this case, the data-augmentation algorithm (Tanner and Wong,

1987) is often straightforward to implement. This algorithm briefly involves

iterating between randomly sampling missing data given a current draw of the

model parameters and randomly sampling model parameters given a current

draw of the missing data and a Markov Chain whose stationary distribution

f(Ymis|Yobs) is formed by the draws of Ymis.

Markov chain Monte Carlo (MCMC) in general is a method based on drawing

values of ψ from approximate distributions and then correcting those draws

to better approximate the target posterior distribution, f(ψ|y). Based on the

distribution of the sampled draws depending on the last value drawn, the

samples are drawn sequentially and the draws form a Markov chain. Hence, a

Markov chain is a sequence of random variables ψ(1), ψ(2), ..., for which for any

t, the distribution ψ(t) given all previous ψ′s depends only on the most recent

value, ψ(t−1). According to Gelman and Hill (2007) the key to the success of

this method is that the approximate distributions are improved at each step

in the simulation, converging to the target distribution

Further algorithms that apply Markov chain Monte Carlo methods to impute

missing values are the Gibbs sampler (Geman and Geman, 1984) and the

Metropolis-Hastings algorithm (Metropolis and Ulam, 1949; Hastings, 1970).

The Gibbs sampler is a special case of Markov chain simulation algorithms

that can be used to iteratively estimate parameters in any statistical model.

Markov chain simulation and the Gibbs sampler in particular can be thought

of as iterative imputation of unknown parameters (Gelman and Hill, 2007).

The Gibbs sampler updates the parameters one at a time or in batches using

their conditional distributions.

Alternatively to performing an imputation under one specified model, imputa-

tion can be done under potentially incomplete models like a potentially incom-

plete Gibbs sampler. These iterative simulation methods run a regression on

each variable that contains missing data on all other variables using previously

imputed values for these other variables. The regression can be for example

least squares, logistic etc. The regression and imputation step is then cycled

through all variables with missing values. These imputation methods, which

are not necessarily derived from a joint distribution for all of the data, pro-

vide very flexible tools for imputations. Computational guidance on creating

multiple imputations under a variety of models can be found in Schafer (1997).
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6.3.1 Combining Rules for Multiply Imputed Data

As mentioned before, multiple imputation consists of imputation, analysis,

and combination of the results. Imputation approaches have been discussed

above and, as we have discussed, analysis can be performed afterwards by

applying standard complete data methods. The m results of the analysis step

then have to be combined following combining rules first described by Rubin

(1987). To illustrate these rules, let θ represent the estimand (scalar) of interest

and θ̂ the standard complete data estimator of θ and let V̂ (θ̂) represent the

standard complete-data estimated variance of θ̂. Multiple Imputation has been

used to create m completed data sets. Accordingly, we receive m complete

data statistics applying the complete data analysis to each data set, say θ̂l

and V̂l, where l = 1, ...,m. The m sets of statistics are combined to obtain

the final point estimate θ̂MI = m−1
∑m

l=1 θ̂l and the corresponding variance

T = W + (1 + m−1)B, where W = m−1
∑m

l=1 V̂l is the ‘within-imputation’

variance, B = (m− 1)−1
∑m

l=1(θ̂ − θ̂MI)
2 is the ‘between-imputation’ variance

and the factor (1+m−1) reflects the fact that only a finite number of completed-

data estimates θ̂, l = 1, ...,m are averaged together to obtain the final point

estimate. Additionally, γ̂ = (1 +m−1)B/T is introduced, which estimates the

fraction of information about θ that is missing due to the missing data.

Based on θ̂MI , T and a student’s t reference distribution, inferences from the

multiply imputed data can be calculated. Interval estimates for θ for example

have the form θ̂MI ± t(1−α/2)
√
T , where t(1−α/2) is the (1−α/2) quantile

for the t distribution. Following Rubin and Schenker (1986) the degrees of the

t distribution can be approximates by the value νRS = (m− 1)γ̂−2, under the

assumption that with the complete data, a normal reference distribution would

have been appropriate. To allow for a t reference distribution with complete

data, Barnard and Rubin (1999) proposed the value νBR = (ν−1
RS + ν̂−1

obs)
−1

for degrees of freedom in the MI analysis, where ν̂obs = (1 − γ̂)(νcom)(νcom +

1)(νcom + 3), and νcom is the complete-data degrees of freedom. We can see

that the MI interval estimate is expected to produce a larger interval than

an estimate based only on a single imputation. The MI interval estimates are

widened to account for the missing data uncertainty. For additional combining

rules, e.g., for significance levels, see Rubin and Schenker (1991) or Little and

Rubin (1987, 2002).
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6.3.2 Advantages of Multiple Imputation

The main advantage of imputation, either single or multiple, that gives this

kind of procedures great inherent flexibility and makes imputation especially

attractive, when an imputed data set is supposed to be used by many different

users, is that the implicit or explicit model used for the imputation need not

necessarily be the same as the explicit or implicit model applied by the data

users in their analyses using the completed data (Rässler et al., 2008). Thus,

this feature makes multiple imputation a very appropriate approach to handle

censored wages in the IAB Employment Sample. Once the missing wage infor-

mation has been imputed, analysts are free to explore a variety of models for

analyzing the completed data. The same applies to the question of releasing

public and scientific use files in general. The analysts do not have to worry

about a possible bias due to the censoring (or other missing data problems)

or applying special censored data methods anymore, but can apply all kind of

standard methods using standard software packages. Many software packages,

like STATA (which is the main software used by researchers to analyze the

IAB Employment Sample), already include tools to apply the MI combining

rules.

One important restriction to the general applicability, which should not be

concealed, is that the formal derivation of procedures for analyzing multiply

imputed data is based on the assumption that the imputer’s and analyst’s

models are compatible. According to Meng (1994), for the resulting analyses

to be fully valid, the imputer’s and analyst’s model have to be ‘congenial’.

Uncongeniality refers to the situation when the model used by the analyst of

the data differs from the model used for the imputation. This can lead to

biased results, if the analyst’s model is more complex than the imputation

model and the imputation model omitted important relationships present in

the original data. When the imputer and the analyst are the same person or

at least communicate with each other, congeniality can easily be enforced. It

gets more complicate in the context of shared data sets. Thus, to promote

near-congeniality of the imputers’s and user’s implicit model, so that analy-

ses based on multiply imputed data will be at least approximately valid, the

imputer should include as rich a set of variables in the imputation model as

possible in order to accommodate the variety of analyses that might be carried

out by users (Rässler et al., 2008). If the analyst’s model is a sub-model of the
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imputer’s model, i.e., the imputation model contains a larger set of covariates

than the analyst’s model and the covariates are good predictors for the missing

values, then MI inference is superior to the best inference possible using only

the variables in the analyst’s model. Rubin (1996) calls this property super-

efficiency. If the imputation model does not contain all important correlates

of variables with missing data, which are used in the analyst’s model, the re-

sults will be biased. In the case of the IAB Employment Sample, where the

total number of variables in the data set is manageable, all variables should

be included in the imputation model, especially when the aim is to multiply

impute the censored wages in order to produce a scientific use file. If the in-

tention is to produce a complete data set for a specific research question, a

restricted imputation model following the analyst’s model can be used. For

research questions where additional information has to be merged to the IAB

Employment Sample, like for example regional unemployment information or

data stemming from the IAB establishment panel, larger imputation models

have to be applied. The user’s possibility to merge the IAB Employment Sam-

ple with other sources makes it difficult to find an imputation model that is

generally valid for all purposes. Even in this more complicated case, MI can

be easily applied, but an individual imputation model will have to be found in

those special cases.

6.3.3 Multiple Imputation for Censored Variables

Comparing the advantages and drawbacks of multiple imputation with other

approaches to handle censored data, MI provides an excellent and flexible

solution for censored wages in the IAB Employment Sample, although, the

situation with censored wages is slightly different to other missing data prob-

lems concerning wages. In most surveys with nonresponse concerning income

or wages the problem of missingness appears in high income groups as indi-

viduals with high incomes or wages tend to higher nonresponse rates. Here,

in most cases the imputation can still be performed using standard impu-

tation software, as the information is not missing completely from a certain

point. Regression-based imputation as well as other imputation methods like

hot-deck imputation could be applied for those kind of problems. In case of

censoring, we find a situation where standard programmes cannot be easily

applied, because virtually no information on high wages is available. For this



6.3. PRINCIPLES OF MULTIPLE IMPUTATION 69

situation, special methods have to be adapted. In the following chapter we

present regression-based approaches to apply the technique of multiple impu-

tation to the censored wages and finally perform a series of simulation studies

to confirm the necessity as well as the validity of these approaches.
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Chapter 7

Imputation for Right-Censored

Wages

Applications of multiple imputation for right-censored or truncated wages are

very rare in the literature so far. Apart from an approach proposed by Gartner

and Rässler (2005), that will be discussed later in detail, only few approaches

are noteworthy in this context. Jenkins et al. (2009) suggest a multiple impu-

tation approach for censored observations in the U.S. CPS to measure income

inequality using draws from generalized beta of the second kind distributions

to provide data sets that can be analyzed using complete data methods. The

approach is applied to the internal and public data series, but in both cases the

fraction of censored income is significantly lower than in the IAB Employment

Sample. The procedure consists of five steps. First, an imputation model

with a parametric functional form that is presumed to describe the income

distribution including right-censored observations is fitted. Second, a value is

drawn from the implied distribution using a randomization procedure for each

censored observation. Third, inequality indices and associated variances are

estimated based on complete data methods using the distribution comprising

imputed incomes for censored observations and observed incomes. In step four

the preceding steps are repeated 100 times and finally, the results from each

of the 100 data sets are combined. In this paper, Jenkins et al. (2009) show

that using CPS public use data with cell mean imputation may lead to in-

correct inferences about inequality differences, but also admit that researchers

using the public use data could build more sophisticated imputation models

to improve the quality of estimates derived. This is necessary to allow for

71
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example for subgroup differences by allowing for covariates in the estimation

of the parametric model.

Another study that is close to the censoring in the IAB Employment Sample

is by An and Little (2007). Here, multiple imputation is not applied due

to missing wages, but as a method of statistical disclosure control. They

use hot-deck multiple imputation and parametric multiple imputation based

on lognormal and power-transformed normal distributions in order to create

synthetic data for individuals with high incomes in the 1995 Chinese household

income project. Using the non-parametric hot-deck imputation procedure,

high income values are replaced with values randomly drawn with replacement

from the set of the deleted values. The parametric method is based on Bayesian

statistics and assumes a model for the data, draws model parameters from

their posterior distribution, and then imputes the deleted values with random

draws from the posterior predictive distribution. The context is different to

the IAB Employment Sample, as here multiple imputation is not a measure

to impute missing wages but a method to avoid artificial censoring due to

data protection and statistical disclosure control requirements. Therefore, the

values that have to be replaced are generally known and therefore can be used

for the imputation model. To be able to release data to the public, high income

data classified as sensitive, i.e., all observations from a certain cut-off point are

deleted, and MI is applied to fill in these values again. Then multiple imputed

data sets can be released to the public.

Heitjan and Rubin (1991) develop a generalization of the condition missing at

random (MAR) for coarsened data, which includes as special cases censored,

rounded, heaped, and partially categorized data. Rubin and Heitjan introduce

coarsened at random (CAR) to generalize the ideas of MAR and ignorable

missing-data to coarsened data. According to Heitjan (1994) the censoring

mechanism is CAR but not MAR, if the censoring does not depend on the

values of the outcome, although it can depend on the values of the covariates.

Generally, Little and Rubin (1987, 2002) define censored normal data as an

important special case of grouped normal data and describe Bayesian infer-

ence using the Gibbs’s sampler for data where some observation are grouped

into categories. These approaches can be easily transformed for the case of

right-censoring. Little and Rubin discuss for example in detail an approach

by Heeringa et al. (2002), who develop multiple imputations of coarsened and

missing data for 12 assets and liability variables in the U.S. Health and Retire-
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ment Survey, where data are a mixture of actual valued responses, bracketed

(or interval-censored) replies, and completely missing data. Here, an attrac-

tive feature of the Gibbs sampler is used: draws of the missing values can be

generated one variable at a time, conditionally on current draws of the pa-

rameters and the observed or drawn values of all the other variables. Since

the conditional distribution of any one variable given the others is normal,

interval-censored information about that variable is easily incorporated in the

draws. For the imputation based on Gibbs sampling, Gibbs’ sequences are cre-

ated with 20 different random starts to yield 20 multiply imputed data sets.

Comparing this approach to other missing data techniques, Heeringa et al.

(2002) show that complete-case as well as mean imputation analysis markedly

underestimates the distribution of household net worth. Hot-deck imputa-

tion produces lower estimated values for the mean and upper quantiles of the

distribution than the Bayes method.

Apart from applications for censored wage and income variables, several meth-

ods for the imputation of censored or coarsened variables are proposed in the

literature. An example for left-censored data are concentrations of pollutants

in the arctic, which are coarsened in the sense of being either fully missing or

below detection limits. Hopke et al. (2001) propose multiple imputation for

multivariate data with missing and below-threshold measurements to facilitate

scientific analysis in this case and create complete data by filling in missing

values so that standard complete-data methods can be applied. Multiple im-

putation is also used to analyze data in coarse categories, as it occurs with age

heaping. Heitjan and Rubin (1990) multiply impute heaped ages in a Tan-

zanian demographic data set with plausible true ages using different models,

i.e., a simple naive model and a complex model that relates true age to the

observed values of heaped age, sex, and anthropometric variables. Pan (2000)

proposes an iterative semiparametric method based on multiple imputation

for cox regression with interval-censored data, which can be easily applied by

taking advantage of routines for right-censored data that are implemented in

standard software packages. In addition to posterior computations for cen-

sored regression data (Wei and Tanner, 1990), Wei and Tanner (1991) present

semiparametric multiple imputation approaches for the analysis of censored

regression data by implementing two approximations to the data augmenta-

tion algorithm (Tanner and Wong, 1987) to the context of censored regression

data.
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In the following sections of this chapter, we describe imputation approaches

for the right-censored wages in the IAB Employment Sample. We apply two

approaches assuming homoscedasticity of the residuals, which we will be dis-

cussed in detail in the next section. We will show that the assumption of

homoscedasticity is highly questionable with wage data as the variance of in-

come is smaller in lower wage categories than in higher categories. That is why

we furthermore suggest a new single imputation approach and a new multiple

imputation approach allowing to control for heteroscedasticity.

Before we describe the approaches and develop the new imputation approaches,

we first need some notation that is valid for all methods that will be discussed

later. All of them assume that the wage y for every person i is given by

y∗i = x′iβ + εi where εi
iid∼ N(0, σ2), i = 1, ..., n, (7.1)

where x is a vector of covariates such as education, gender or age. Notice that

we will use a log transformation of the wages as well as further transformations,

like, e.g., a cube root transformation, that can (and will be) also used to

perform the imputation. As the wages in the IAB Employment Sample are

censored at the contribution limit a we observe the wage yobs,i = y∗i only if the

wage is lower than the threshold a. If the wage is censored, i.e., has a value

greater or equal to a, then we observe the limit a instead of the true wage y∗i :

yi =

{
yobs,i if y∗i ≤ a

a if y∗i > a
(7.2)

To be able to analyze wages with our data set, we first have to impute the

wages above a. We define yz = (yobs, z), where z is a truncated variable in the

range (a,∞).

According to Gartner and Rässler (2005) we regard the missingness mechanism

as not missing at random (NMAR, according to Little and Rubin (1987, 2002))

as well as missing by design: The former because the missingness depends on

the value itself; if the limit is exceeded, the true value will not be reported but

the value of the limit a. The latter occurs because the data are missing due to

the fact that they were not asked.
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7.1 Homoscedastic Imputation Approaches

for Right-Censored Wages

7.1.1 Homoscedastic Single Imputation

One possibility to impute the missing wage information is using a single impu-

tation approach. A homoscedastic single imputation based on a tobit model

is proposed by Gartner (2005). This kind of imputation method comes along

with the advantages of regression-based imputation, and is easy to implement.

However, it is a sort of an ad-hoc method, i.e., not realizing draws from the

proper posterior distribution as described in Section 6.3. Some studies based

on this approach are discussed in Chapter 5. Applying this method, a tobit

(or censored regression) model is used to estimate the parameter β and σ2 of

the imputation model. According to the estimated parameters the censored

wage z can be imputed by draws of a random value. As we know that the true

value is above the contribution limit, we have to draw a random variable from

a truncated normal distribution

zi ∼ Ntrunca(x
′
iβ̂, σ̂

2) if yi = a for i = 1, ..., n. (7.3)

This means we add an error term ε to the expected wage (see Gartner (2005)

for a description of drawings from a truncated distribution in STATA):

zi = x′iβ̂ + εi if yi = a for i = 1, ..., n (7.4)

As already mentioned before, using a single imputation approach, we have

to consider that this method may lead to biased variance estimations. Thus,

Little and Rubin (1987, 2002) suggest that the imputation should rather be

done in a multiple and Bayesian way according to Rubin (1978). Therefore,

it is preferable to use multiple imputation approaches to impute the missing

wage information.

7.1.2 Multiple Imputation Assuming Homoscedasticity

(MI-Hom)

Gartner and Rässler (2005) propose a multiple imputation approach based

on Markov chain Monte Carlo techniques. To perform multiple imputation
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for the censored values we need independent random draws from the posterior

predictive distribution f(Ymis|Yobs) of the missing data given the observed data.

Since it is often difficult to draw from f(Ymis|Yobs) directly, we could rather

apply the two-step procedure of drawing ψ from f(ψ|Yobs) and in the second

step drawing Ymis from f(Ymis|Yobs, ψ) to achieve imputations of Ymis from

their posterior predictive distribution as discussed in the preceding chapter.

In many situations the conditional predictive distribution f(Ymis|Yobs, ψ) is

rather straightforward; where in contrast, the corresponding observed-data

posteriors f(ψ|Yobs) are usually difficult to derive for the units with missing

data. This is the case especially when the data have a multivariate struc-

ture or a variable is censored like in the IAB Employment Sample. Then,

the observed-data posteriors are often no standard distributions from which

random draws can easily be generated. That is the reason to apply MCMC

techniques based on the Gibbs sampler to achieve the desired distributions

f(Ymis|Yobs) and f(ψ|Yobs) as stationary distributions of Markov chains, which

are based on the complete-data distributions and therefore are easier to com-

pute. By adapting starting values for ψ, we are able to start with draws for

Ymis from the conditional predictive distribution f(Ymis|Yobs, ψ) and to start

the Markov chain.

Chib (1992) proposes a Monte Carlo approach for tobit models that combines

the data augmentation strategy of Tanner and Wong (1987), which iterates

between randomly drawing missing data given a current draw of the model

parameters and randomly drawing model parameters given a current draw

of the missing data, and with a Gibbs sampler, which iteratively imputes

unknown parameters to yield an elegant solution to censored data problems,

which can be applied to the problem of censored wages: To start with, let Y =

(Yobs, Ymis) denote the random variables concerning the data with observed and

missing parts. In our specific situation this means that for all units with wages

below the limit a each data record is complete, i.e., Y = (Yobs) = (X,wage).

For every unit with a value of the limit a for its wage information we treat

the data record as partly missing, i.e. Y = (Yobs, Ymis) = (X, ?). X is observed

for all units. Thus, we have to multiply impute the missing data Ymis. Let

the index z denote estimates based on the imputed data after z is drawn and

added, i.e., Yz = (X,Z).

The conditional predictive distribution for observations with missing wage in-
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formation z is given by

f(z|y, β, σ2) =
fN(z|x′β, σ2)

1 − Φ(σ−1a− σ−1x′β)
(7.5)

where a < z <∞ and fN a normal distribution. According to Chib (1992) we

get a data augmentation algorithm based on the full conditional distributions:

f(β|y, z, σ2) = fN(β|β̂z, σ
2(X ′X)−1) (7.6)

f(σ2|y, z, β) = fG(σ2|n/2,
n∑

i=1

(yz − x′β)2/2) (7.7)

where β̂z = (X ′X)−1X ′yz is the usual OLS estimate based on the completed

data set and fG a gamma distribution. To receive valid imputations and ran-

dom draws of the parameters from their observed data distribution, Gartner

and Rässler (2005) propose the following MCMC technique.

Imputation model

To be able to start the imputation based on MCMC, we first need to adapt

starting values for β(0) and the variance σ2(0) from a ML tobit estimation, com-

parable to the first step of single imputation approach assuming homoscedas-

ticity. Second, in the imputation step, values for the missing wages are ran-

domly drawn from a truncated distribution in analogy to the single imputation

procedure

z
(t)
i ∼ Ntrunca(x

′
iβ

(t), σ2(t)) if yi = a for i = 1, ..., n. (7.8)

Then an OLS regression is computed based on the imputed data according to

β̂(t)
z = (X ′X)−1X ′y(t)

z . (7.9)

After this step, new random draws for the parameters can be produced accord-

ing to their complete data posterior distribution. To draw the variance σ2(t+1)

we need the inverse of a gamma distribution, which is produced as follows:

g ∼ χ2(n− k) (7.10)

σ−2(t+1) =
g

RSS
(7.11)
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where RSS is the residual sum of squares RSS =
n∑

i=1

(y
(t)
zi − x′iβ̂

(t)
z )2 and k is

the number of columns of X.

Now new random draws for the parameter β can be performed

β(t+1)|σ2(t+1) ∼ N(β̂(t)
z , σ2(t+1)(X ′X)−1). (7.12)

We perform repeatedly the imputation and the posterior-steps (7.8) to (7.12)

and create a Gibbs sampler. We start the Gibbs sampler with different values

β(0) and σ2(0) and let m independent chains run. In that case, we take the

endpoints as imputations. Another possibility is to monitor convergence and

dependence structure of the chain and after a burn-in period, we take every

1,000th imputation to obtain m complete data sets. For more details see

Gartner and Rässler (2005) or Jensen et al. (2010).

7.2 Heteroscedastic Imputation Approaches

for Right-Censored Wages

Regression disturbances whose variances are not constant across observations

are heteroscedastic (Greene, 2008). Heteroscedasticity arises in numerous ap-

plications. For example, even after accounting for firm size, greater variation

in the profits of large firms than in those of small firms can be expected.

According to Greene (2008), the variation of profits might also depend on

product diversification, research and development expenditure, and industry

characteristics. Therefore, variance might also vary across firms of similar

size. Another example where heteroscedasticity might arise is analyzing fam-

ily spending patterns. Here, greater variation in expenditure on high income

families can be found compared to low income ones due to greater dispersion

allowed by higher incomes (Prais and Houthakker, 1955). The same applies to

wages, where the variation in high income groups might also be higher than

in low income groups. Figure 7.1 plots the residuals against the fitted values

of the observed wages in the IAB Employment Sample for the year 2000 to

illustrate this problem. A linear regression of daily wages for males in West

Germany on a constant, age, squared age, nationality, six dummies for edu-

cation levels, and four categories of job level is applied to produce this plot.

Figure 7.2 shows the plot for daily wages in logs. These figures confirm that
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ues of observed daily wages in logs in

the IAB Employment Sample.

the assumption of homoscedasticity is highly questionable with this data set.

Even if the ordinary least squares estimator β is unbiased, consistent, and

asymptotically normal distributed in presence of heteroscedasticity (Greene,

2008), imputation results based on a regression model might be affected by

heteroscedasticity, especially as we add a residual term based on the estimated

variance by drawing a value from a truncated distribution. By applying a tobit

model, this becomes even more problematic, because here we assume the same

variation for the censored observations as for the observed observations, which

is highly questionable.

7.2.1 Single Imputation Considering Heteroscedasticity

Since we obviously have to assume that the variation of income is smaller in

lower wage categories than in higher categories, we extend our approach of

Section 7.1.1 to consider heteroscedasticity. Therefore, we first use another

single imputation procedure based on the first single imputation approach, a

method that does not presume homoscedasticity of the residuals.

We assume that the error variance is related to a number of exogenous vari-

ables, gathered in a vector w (not including a constant). We use a generalized

least squares model (GLS) for censored variables (e.g., intreg in STATA) to

estimate the parameters of the imputation model, β, like in the first approach,

and furthermore γ, here describing the functional form of the heteroscedas-

ticity. Then, the imputation can be done by draws from a truncated normal
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distribution, similar to the first approach,

zi ∼ Ntrunca(x
′
iβ̂, σ̂

2
i ) where σ̂2

i = ew′
iγ̂ if yi = a for i = 1, ..., n, (7.13)

where w is a vector of observed variables that is a function of x, e.g a subset

of x variables. To consider the heteroscedastic structure of the residuals, we

use here individual variances for every person to draw a random value. This

solution takes into consideration the existence of heteroscedasticity, yet it does

not solve the problem of biased variance estimations. Therefore, we have to

derive the Bayesian solution considering heteroscedasticity.

7.2.2 A First Simulation Study

Since we assume the necessity of an approach that does not presume ho-

moscedasticity and since Little and Rubin (1987, 2002) among others show

that single imputation approaches may lead to biased variance estimations, we

extend the MI-routine to a new multiple imputation approach. A first simula-

tion study using the first three approaches shows the need for this approach as

well. This simulation study points out that, in case of a homoscedastic struc-

ture of the residuals, the multiple imputation leads to better results than a

single imputation approach. However, in case of heteroscedasticity, the single

imputation considering heteroscedasticity is superior to the multiple imputa-

tion approach suggested by Gartner and Rässler (2005). This indicates the

necessity to develop another approach that combines these two properties: an

approach performing multiple imputation and considering heteroscedasticity.

7.2.3 Multiple Imputation for Right-Censored Wages

Considering Heteroscedasticity (MI-Het)

We develop this new method based on the multiple imputation approach pro-

posed by Gartner and Rässler (2005). The basic element of the new approach

is that we need additional draws for the parameters γ describing the het-

eroscedasticity.

Imputation model

We now start the imputation by adapting starting values for β(0) and γ(0)

from a GLS estimation for truncated variables like in the heteroscedastic single
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imputation approach. Then we draw values zi for the missing wages from a

truncated distribution using individual variances σ2
i = ew′

iγ and use them as

imputations, again like in the heteroscedastic single imputation model:

z
(t)
i ∼ Ntrunca(x

′
iβ

(t), σ
2(t)
i ) where σ

2(t)
i = ew′

iγ
(t)

if yi = a for i = 1, ..., n.

(7.14)

Then a GLS regression is computed based on the imputed data set (comparable

to the OLS regression in the homoscedastic multiple imputation approach) to

obtain β̂
(t)
z and γ̂(t). Additionally, we estimate the variance-covariance-matrix

of γ̂(t), V (γ̂(t)), to be able to perform the following steps. We produce new

random draws for the parameters according to their complete data posterior

distribution. As we now consider the existence of heteroscedasticity, some

modifications of the algorithm are necessary. In the next steps, we draw the

variance σ2(t+1) according to

g ∼ χ2(n− k) (7.15)

σ−2(t+1) =
g

RSS
(7.16)

where

RSS =
n∑

i=1

exp(ln ε̂2
i − w′

iγ̂
(t)) =

n∑
i=1

(y
(t)
zi − x′iβ̂

(t))2

ew′
iγ̂

(t)
. (7.17)

In an additional step, we have to perform random draws for γ

γ(t+1) ∼ N(γ̂(t), V̂ (γ̂(t))) (7.18)

Consequently, the parameters β can be drawn like in the Gartner and Rässler

(2005) approach, again with a slight modification compared to the homoscedas-

tic multiple imputation:

β(t+1)|γ(t+1), σ2(t+1) ∼ N(β̂(t)
z , σ2(t+1)

(
n∑

i=1

xix
′
i

ew′
iγ

(t+1)

)−1

). (7.19)

Again, we repeatedly perform the steps (7.14) to (7.19) and create a Gibbs

sampler to obtain m complete data sets as described in Section 7.1.2.
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All approaches described in this chapter are generally also applicable for left-

censoring. To perform an imputation for a left-censored variable, in the first

step a tobit model for left-censoring at a non-zero limit has to be estimated.

Then, the following steps can be performed as described above. An additional

adjustment is only necessary concerning the draws for the missing values from

a truncated normal distribution. Instead of using a normal distribution trun-

cated at the left, a distribution truncated at the right has to be applied.

Having finally developed this multiple imputation approach considering het-

eroscedasticity, we are able to apply four different approaches to impute cen-

sored wage information in the IAB Employment Sample: A single imputation

and a multiple imputation approach assuming homoscedasticity of the resid-

uals and moreover a single imputation and a multiple imputation approach

considering heteroscedasticity. As the results of the first simulation study have

revealed to use an approach that multiply imputes the missing wages and does

not assume homoscedasticity, we expect our new approach to have advantages

in the imputation quality compared to the other approaches. To examine this

hypothesis and the imputation quality of these approaches in general, in the

following chapters several simulation studies are presented.



Chapter 8

Validation of the Approaches

To evaluate the different approaches and to show the relevance (and superior-

ity) of the new approach, it seems to be an appropriate proceeding to perform

a series of simulation studies. The aim of this chapter is to demonstrate that

estimation of, e.g., an OLS regression based on multiply imputed wages leads

results comparable to an estimation based on the complete data before dele-

tion. The first simulation is based on the IAB Employment Sample itself. A

serious drawback of this simulation study is that the IAB Employment Sam-

ple is censored and we cannot compare the imputation results with results

based on the original data before censoring. Therefore, we use this data set

to create complete (control) populations with different characteristics. In the

second step, we use the uncensored wage information of the German Structure

of Earnings Survey as complete population, which will artificially be censored

and the deleted wages will be imputed applying the different approaches. Fi-

nally, the results of the imputation procedures can be compared with results

based on the original (complete) data. Based on the GSES, we perform several

simulation studies to compare the different imputation approaches (considering

heteroscedasticity vs. assuming homoscedasticity) under different imputation

models and different transformations of the wage data (i.e., log and cube root

transformation). To improve the readability, Table 8.1 gives an overview of all

simulation studies that will be presented in this chapter.

83
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Data

set

Main question Results

in Table

1 IABS SI and MI for a homoscedastic data set 8.2

2 IABS SI and MI for a heteroscedastic data set 8.3

3 GSES MI based on a lognormal transformation 8.5

4 GSES MI based on a cube root transformation 8.6

5 GSES MI and GLS estimation in the analysis step 8.7

6 GSES MI using a limited set of variables 8.8

7 GSES MI in education groups 8.9

8 GSES Large imputer’s model and small analyst’s

model - Example 1

8.10

9 GSES Large imputer’s model and small analyst’s

model - Example 2

8.11

10 GSES Differing imputer’s and analyst’s model 8.12

11 GSES Log transformation in the imputation step and

cube root transformation in the analysis step

8.13

12 GSES Cube root transformation in the imputation

step and log transformation in the analysis step

8.14

Table 8.1: Simulation studies in Chapter 8
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8.1 Simulation Study using the IAB Employ-

ment Sample

Before we use uncensored wage information from an income survey, the first

simulation study is based on the IAB Employment Sample. In a first step,

this simulation study is intended to confirm the necessity of the new multiple

imputation approach considering heteroscedasticity.

8.1.1 Creating a Complete Population

To perform the simulation study based on the IAB Employment Sample, a

complete, i.e., the true population is created in order to be able to compare

the results of the different approaches with a complete database. As the wage

information in our sample is right-censored, we first have to impute our sample

to obtain this database. The fact that the data set has to be imputed before

starting the simulation study allows us to create two true populations with

different characteristics: We create one data set where homoscedasticity is ex-

istent and another with heteroscedasticity of the residuals. To obtain the first

data set (data set A) we use the homoscedastic single imputation procedure

as described in Section 7.1.1 to impute new wages for every person regardless

if the wage was originally censored or not, according to

ynew ∼ N(x′iβ, σ
2), (8.1)

again with β and σ2 from a tobit estimation based on the right-censored sam-

ple. To receive the second data set (data set B), the heteroscedastic single

imputation method described in Section 7.2.1 is used in order to receive a

control population with heteroscedasticity of the residuals1, according to

ynew ∼ N(x′iβ, σ
2
i ). (8.2)

These two data sets will later be used as complete populations where random

samples are repeatedly drawn from. The random samples will be censored and

the different approaches will be applied. Since we know the “truth” from our

constructed population, we can compare the results based on the uncensored

samples and the imputations with it.

1Performing a Breusch-Pagan-test for heteroscedasticity in the applied model using data
set B, the hypothesis of homoscedasticity is rejected.
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8.1.2 Simulation Study

Having created a complete data set without censored wages, we define a new

limit and delete the wages above this limit. Afterwards, the missing wages are

imputed using the different approaches.

To simplify the simulation design, we restrict the data for the simulation to

male West-German residents. We use all workers holding a full-time job cov-

ered by social security effective on June 30th 2000. The data set contains

214,533 persons: 23,685 or 11 percent of them with censored wages.

The analysts model for the simulation study is in principle based on the well-

known Mincer wage equation, which dates back to Mincer (1958) and models

the statistical relationship between market wages, education, and experience.

Our model contains additional variables in order to underline the applicability

of multiply imputed wage for the analysis including a broad range of variables.

For the simulation study we assume a model - simulating an analysis which

is typically done with wage data - containing the wages in logs as dependent

variable and as covariates:

X=(age, age2, 7 education categories, 5 job level categories, nationality

(German/Non-German)).

For the categorial variable education ‘education missing’ is used as reference

category, for the variable job level the category ‘trainee’. In many stud-

ies based on the IAB Employment Sample, units with missing education

information are dropped or imputed using correction rules proposed by

Fitzenberger et al. (2006). Other studies create an additional category for

units with missing education information (e.g., Dustmann et al. (2009) for

analyses with the LIAB). As in the first step, a new wage is created for

every individual to receive a complete population, there is no essential need

to drop these units and therefore the latter approach is applied here. As

imputation model we apply the same model as the analysis model. Describing

the heteroscedasticity, we assume a model containing the same set of variables.

Step 1: Drawing of a random sample

In the first step a random sample of n=21,453 persons is drawn without

replacement from the population of N=214,533 persons (equivalent to 10

percent). This 10 percent random sample is kept to illustrate the results of the



8.1. SIMULATION STUDY USING THE IABS 87

different imputations later. For the simulation study we define a new thresh-

old. To point out the differences between the four approaches we choose a limit

lower than in the original IAB Employment Sample (censoring the highest

30 percent of incomes appears adequate) and delete the wages above this limit.

Step 2: Imputation of the missing wage information

The deleted wage information above the threshold of this (now again right-

censored) sample is imputed by using the four different approaches described

above:

• Homoscedastic single imputation

• Heteroscedastic single imputation

• Multiple imputation assuming homoscedasticity

• Multiple imputation considering heteroscedasticity

For the multiple imputation approaches we set m=5, i.e., applying one of the

single imputation methods, one complete data set is obtained and applying

one of the multiple imputation methods, m=5 complete data sets are obtained.

These imputed data sets can now be used to evaluate the quality of the

different approaches by comparing them with the original complete population.

Step 3: Analysis of the results

To analyze the results of the four approaches, we run OLS regressions using the

analysis model on the imputed data sets and the 10 percent complete random

sample on the one side, as well as on the complete ‘true’ population on the

other side. Afterwards, we are able to evaluate which approach delivers the

best imputation quality compared to the original complete data. Therefore,

we compare β̂ - estimated based on the imputed data sets - with the parameter

β of the regression on the complete population; we calculate the corresponding

confidence intervals and count the so-called coverage, which contains the infor-

mation, whether the ‘true value’ lies within the central 95 percent confidence

interval of the estimated values.

Since the multiple imputation approaches lead to five complete data sets, the

estimations have to be done five times as well. Afterwards, the results have

to be combined using the combining rules first described by Rubin (1987) and
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Figure 8.1: Design of the simulation study

that are shortly described in Section 6.3.1 To make it explicit, the multiple

imputation point estimate for β is the average of the m = 5 point estimates

β̂MI =
1

m

m∑
t=1

β̂(t). (8.3)

The variance estimate associated with β̂MI has two components. The within-

imputation-variance is the average of the complete-data variance estimates,

W =
1

m

m∑
t=1

v̂ar(β̂(t)). (8.4)

The between-imputation variance is the variance of the complete-data point

estimates

B =
1

m− 1

m∑
t=1

(β̂(t) − β̂MI)
2. (8.5)

Subsequently the total variance is defined as

T = W +
m+ 1

m
B. (8.6)
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For large sample sizes, tests and two-sided (1−α)∗100% interval estimates for

multiply imputed data sets can be calculated based on Student’s t-distribution

according to

(β̂MI − β)/
√
T ∼ tv and β̂MI ± tv,1−α/2

√
T (8.7)

with the degrees of freedom

v = (m− 1)(1 +
W

(1 +m−1)B
)2. (8.8)

We save for every approach in every iteration the estimate β̂ (or β̂MI in case of

the multiple imputation approaches) and the corresponding standard error of

β̂, as well as the 95 percent confidence interval based on β̂. Besides, we keep

the information if the confidence interval based on β̂ contains the parameter

β of the original data set.

Step 4: 1000 iterations

The whole simulation procedure - consisting of drawing a random sample,

imputing the data using the different approaches, running a regression on

the different imputed data sets and calculating the confidence intervals - is

repeated 1000 times. Finally, the fraction of confidence intervals based on β̂

or β̂MI containing the true parameter β can be calculated for the different

approaches. The results of these iterations are described in the following

section.

8.1.3 Results

This section contains tables showing the results of the simulation study com-

paring the four different approaches. The first column presents the true param-

eters β of the original complete population. The following columns show the

estimates β̂ (here the average of the 1000 iterations) of the regression using the

10 percent complete random samples (‘before censoring’) and the regressions

using the data sets imputed by the different approaches. The tables show as

well the fraction of iterations where the 95 percent confidence interval based

on β̂ contains β, i.e., the so-called coverage.
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Homoscedastic data set

Table 8.2 shows the results of the simulation based on the homoscedastic data

set A. As expected, the simulation study shows the necessity of a multiple

imputation approach, since the coverage of the two multiple imputation ap-

proaches is higher compared to the single imputations throughout almost all

variables. Using a homoscedastic data set, the results do not show serious

differences between the homoscedastic and the heteroscedastic multiple im-

putation. We receive a coverage for both of these approaches of around 95

percent (between 0.922 and 0.965) - similar to the coverage received by the es-

timations using the complete random samples before censoring (between 0.948

and 0.965) - which refers to a good imputation quality. The coverage of the

single imputations is for most of the variables lower than 0.95 - which indi-

cates underestimated variances. Consequently, it can be concluded that, in any

case, it is advisable to use a multiple imputation approach. Moreover, it does

not matter if the algorithm considering heteroscedasticity is chosen in the ho-

moscedastic case, since it just represents a generalization of the homoscedastic

approach and therefore works also in case of homoscedasticity.

Heteroscedastic data set

The results based on the heteroscedastic data set B (Table 8.3) show a different

situation. The results recommend as well the use of a multiple imputation ap-

proach, since the coverage of the single imputation approaches is again lower

than 0.95 for all variables. Concerning the heteroscedastic structure of the

residuals, it reveals the necessity of an approach considering heteroscedastic-

ity. The homoscedastic approaches lead in several cases to a considerably lower

coverage than the procedures that consider heteroscedasticity. The coverage

of the heteroscedastic multiple imputation approach amounts again to around

95 percent and is similar to the coverage based on the complete samples before

censoring (the coverage ranges between 0.917 and 0.97, except the dummy for

the highest education level where the coverage is 0.896). Thus we see that,

in this case, the coverage of the multiple imputation approach assuming ho-

moscedasticity is lower (between 0.478 and 0.948, for some variables even lower

than the coverage received by the heteroscedastic single imputation approach,

where the coverage ranges between 0.718 and 0.948). Therefore, the results

suggest the use of an approach considering heteroscedasticity to impute the
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missing wage information in case of either an homoscedastic or heteroscedastic

structure of the residuals.

The results of the simulation study can be summarized as follows: The missing

wage information should be imputed multiply, because single imputations may

lead to biased variance estimations. Furthermore, the imputation should be

done considering heteroscedasticity. As the assumption of homoscedasticity is

highly questionable with wage data, the simulation study shows it is prefer-

able to use the new approach considering heteroscedasticity, as this approach

is more general. In case of homoscedastic residuals the same quality of im-

putation results can be expected compared to the Gartner and Rässler (2005)

approach. But if heteroscedasticity is existent, the simulation results shown in

Table 8.3 confirm the necessity of our new approach.

8.2 Simulation using External Data

For the simulation study described above data sets with synthetic wage infor-

mation were used. That means we generated for every individual a wage using

a single imputation approach and deleted this information again if the wage is

above a ceiling. A disadvantage of this proceeding is that the data-generating

process is known when we start to impute the deleted wage information again.

One could argue in this case, that we do not simulate the situation we normally

have when we impute the censored wages in the IAB employment register. In

order to impute the missing wages in this register, we need to find an appro-

priate imputation model that is a good predictor for the wage. In contrast to

the first simulation study, normally we do not already know a model that we

can use as imputation model. That means finding a suitable imputation model

is a very sensitive part of the imputation procedure. Since in the case of the

first simulation study we have information on the data-generating process, we

do not have to care about finding a suitable model.

To confirm that the proposed multiple imputation approach works even if a

suitable imputation model is a priori unknown, we perform further simulation

studies using data from an income survey (German Structure of Earnings Sur-

vey, GSES) with uncensored wage information, which was already addressed

in Chapter 2. This data set allows us to compare the different imputation

approaches again using a complete population. We truncate the wage variable

at a ceiling and recover the deleted information using different approaches.
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Afterwards we compare again the imputed data sets to the original complete

data set in analogy to the first simulation study. The advantage of this pro-

ceeding is that we simulate a situation where the data-generating process is

unknown and that we nevertheless have a complete population to compare the

imputation approaches.

For the analyses and simulation studies, the GSES 2001 in the weakly

anonymized version of the scientific use file is used. Fitzenberger and Reize

(2002) compare in detail the IABS and the GSES. They conclude that due

to the differences in the sampling design, there are some minor differences

in the structure of wages between the two data sets. But qualitatively the

results concerning the wage structure are fairly identical. To simplify the sim-

ulation design and to keep the sample comparable to the IAB Employment

Sample, for the following simulation studies the sample is restricted again to

male West-German residents holding a full-time job covered by social security.

We exclude executive managers according to §5(3) of the German Industrial

Constitution Act (‘Betriebsverfassungsgesetz’). The first reason to drop this

group is that nearly half of these persons have a reported social security contri-

bution of zero, for which reason it is questionable whether all these persons are

generally subject to statutory social security insurance and therefore are not

necessarily covered by the IAB Employment Sample. Second and even more

important, the data quality in this group seems to be very questionable. Ac-

cording to the German Industrial Constitution Act, there is a reference wage

of 6871.76 euros, which is meant to indicate the minimum monthly wage of an

executive manager according to §5(3) of the German Industrial Constitution

Act. But on the contrary, only 38 percent of all persons in this group have a

wage above this reference wage. Due to these problems, in preceding versions

of the GSES this group was excluded or artificially censored. The version of

2001 is the first version to include this group without any restrictions. Hence

this group, which represents less than 3 percent of all persons in the data set,

is dropped.

We additionally exclude trainees undergoing an apprenticeship or professional

training because these persons receive wages clearly lower than the contribution

limit. The final sample contains 368,337 persons. The GSES reports the

monthly gross wage. In analogy to the IAB Employment Sample we use the

daily gross wage, which is calculated as the monthly gross wage divided by 31

(the wage in the GSES is reported for the month of October).
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Figure 8.2: Kernel density estimates of wages up to the contribution limit in

the IABS and GSES (2001)

To illustrate that the distribution of wages is fairly similar, Figure 8.2 shows the

distribution of wages in the two samples in the region up to the ceiling, where

the data sets are comparable before the imputation of the censored wages in the

IAB Employment Sample. For the density plot the same sample restrictions

as described above apply. Table 8.4 gives an impression on some descriptive

statistics of the two data sets used for the simulation studies to show the

comparability of the IAB Employment Sample and the German Structure of

Earnings Survey. The table shows the shares of education groups and job level

groups as well as the average age of employees in these two data sets. For the

descriptions all observations in the IABS were used, equal if censored or not.

These brief descriptions also underline the utility of the GSES for evaluating

imputation approaches meant to solve the problem of censored wages in the

IAB Employment Sample.

In the following sections, several simulation studies based on the GSES will

be presented. The aim of these analyses is to confirm again the necessity and

validity of the new multiple imputation approach considering heteroscedastic-

ity under different situations and to be able to give a guideline, which wage

transformations and imputation models are most appropriate to impute the

missing wage information. Another intention to perform simulation studies
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IABS GSES
Low/intermed. school 15.06 14.83
Vocational training 68.93 69.33
Upper school 0.81 0.78
Upper school

and vocational training 3.72 3.77
Technical college 4.78 5.58
University degree 6.71 5.70
Blue collar level 1 23.35 24.58
Blue collar level 2 32.44 32.62
Blue collar level 3 2.86 2.95
White collar 41.32 39,85
Age (in years) 40.32 40.36

Table 8.4: Comparison of shares of education groups, shares of job levels
groups, and average age (IABS and GSES 2001)

in several variations is to point out that the imputation procedures are ro-

bust to various situations. First, different transformation of wages, i.e., log

and cube root transformation, are compared using an imputation model that

contains a rich set of covariates. To evaluate the imputation results, ordinary

least squares regression as well as generalized least squares regression will be

applied. In the second step, the imputation model will be varied, e.g., simpler

imputation models will be examined, to see if for some research questions a

more limited model yields a sufficient imputation quality. Finally, the impact

of differing imputation and analysis models will be examined, which reflects

some simple cases of uncongeniality. Of course, this series of simulation stud-

ies cannot cover all possible imputation designs that might be intended to be

performed by data distributing organization or researchers. But the variety

of analyses that will be carried out underlines the applicability of multiple

imputation in general and of the approach considering heteroscedasticity in

particular to solve the problem of censored wages.

For the simulation studies, we truncate the wage variable at a ceiling (we delete

the wages above the 85 percent quantile comparable to the top-coding in the

IABS) and impute the deleted information using the two different multiple

imputation approaches. As the first simulation study based on the IAB Em-

ployment Sample has already confirmed the hypothesis that multiple imputa-

tion is superior to single imputation, the following simulation studies focus on



8.2. SIMULATION USING EXTERNAL DATA 97

the multiple imputation approaches. We delete the 15 percent highest wages

instead of applying the real contribution limit of the current year, to have

a certain percentage of censored wages that is independent from the chosen

simulation sample. In the real world, the share of censored wages varies from

research question to research question. If, for example, certain groups are ex-

cluded from the analysis, the share might be higher or lower. To eliminate any

suspicion that samples with a low share of censored observations are chosen

for evaluating the approaches, we choose the 85 percent quantile as ceiling. In

our sample consisting of full-time employed males in West Germany the real

share of censored observations would be even less than 15 percent.

The simulation studies consist again of four steps. First we draw 10 percent

random samples from the complete population repeatedly, delete the wages

above the defined ceiling and impute the wages again using the two multiple

imputation approaches. The whole procedure is again repeated 1,000 times.

Then we compare the imputed data sets with the complete population calcu-

lating the coverage as described before .

8.2.1 Simulation Study Based on a Log Transformation

For the first simulation study we assume an imputation model containing the

wages in logs as dependent variable and a rich set of covariates:

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

For the categorial variables always the first category is used as reference cat-

egory. Note that, compared to the simulation studies based on the IABS,

we have one education category less because persons with missing education

information are dropped and one job level category less because trainees are

dropped. ‘Contract type’ represents a dummy for fixed-term employment con-

tracts. For the model describing the functional form of the heteroscedasticity,

we assume for all simulation studies a subset of these variables:

W=(age, age2, 6 education categories, 4 job level categories, 4 region dum-

mies, contract type).

A log transformation implies that the wages are log-normal distributed, re-

flecting the right skewness of the distribution. This assumption is standard in
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Figure 8.3: Kernel density estimates of original wage versus imputed wage

the German wage literature. To analyze the results we use the same model as

the imputation model. In the first simulation study, we apply OLS regression

in the analysis step. Therefore, the true parameters β are again obtained from

an OLS regression based on the complete population using the analysis model.

To give a first impression of the imputation quality, Figure 8.3 plots the original

wages versus the imputed wages. The line referred to as imputed wage reflects

the result of the first iteration of the simulation study. Up to the censoring

point, the wages are identical as we only need to impute the censored values.

The two lines that describe the censored part of the distribution indicate a

good imputation quality, although they are not completely identical.

Table 8.5 shows the results of the corresponding simulation study. We receive

a coverage for both imputation approaches around 95 percent for most of

the variables - similar to the coverage received by the estimations using the

random samples before censoring - which refers to a good imputation quality.

Only for some variables we find a considerably lower coverage. In these cases

the coverage for both imputation approaches is lower (except for the dummy

for region 2, where the coverage of the homoscedastic approach is significantly

lower). To make it more explicit, the coverage is sometimes lower for industries

with a rather little number of employees, i.e., industry 18, which refers to water

supply, and industries with a high share of censored wages and a high dispersion
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Figure 8.4: Distribution of β̂MI in the analysis step of the simulation study

of wages, i.e., industry 35, which refers to lawyers and market researchers.

The highly aggregated region dummies in the GSES on the other hand can

also be problematic for the imputation because there is a high wage dispersion

within these regions. Nevertheless, taking into consideration the results of

the first simulation study, it can be concluded that it is still advisable to use

the multiple imputation approach considering heteroscedasticity to impute the

missing wage information in the IABS.

Additionally, Figure 8.4 shows the distribution of the estimate β̂MI , which is

estimated for education level 6 (university degree) and age in the analysis step

of each iteration of the simulation study using the wages imputed considering

heteroscedasticity to illustrate the variation of this estimate over the 1000

iterations. The dashed line refers to the ‘true’ parameter based on the original

complete data set, which is used as reference to calculate the coverage rate.

8.2.2 Simulation Study Based on a Cube Root Trans-

formation

So far, we have assumed a log-normal distribution of the wages and have ap-

plied a log transformation of the wages because this transformation is standard

in the German wage literature. To assume normality or log-normality of the

distribution becomes especially problematic for the treatment of outliers. Ac-

cording to Gelman et al. (2003) the normal distribution is notoriously sensitive

to outliers, what means that a single outlier can strongly affect the inference
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0345 0.0346 0.965 0.0352 0.962 0.0348 0.972

education3 0.0596 0.0592 0.963 0.0501 0.919 0.0530 0.943

education4 0.0713 0.0714 0.964 0.0639 0.860 0.0633 0.838

education5 0.1370 0.1374 0.962 0.1495 0.657 0.1462 0.799

education6 0.1770 0.1771 0.956 0.1776 0.951 0.1772 0.948

level2 0.0105 0.0106 0.962 0.0099 0.962 0.0095 0.967

level3 0.0371 0.0382 0.969 0.0399 0.961 0.0395 0.964

level4 0.0201 0.0212 0.977 0.0094 0.963 0.0055 0.940

group2 -0.0947 -0.0948 0.952 -0.0926 0.933 -0.0925 0.927

group3 -0.1899 -0.1897 0.947 -0.1866 0.902 -0.1866 0.891

group4 -0.3098 -0.3098 0.964 -0.3065 0.924 -0.3071 0.929

group5 0.3875 0.3863 0.969 0.3956 0.964 0.3866 0.967

group6 0.1412 0.1401 0.963 0.1488 0.964 0.1498 0.957

group7 0.0479 0.0469 0.971 0.0589 0.952 0.0613 0.943

group8 -0.1702 -0.1713 0.967 -0.1589 0.957 -0.1554 0.936

group9 -0.3394 -0.3400 0.969 -0.3280 0.954 -0.3253 0.945

age 0.0247 0.0247 0.961 0.0253 0.931 0.0247 0.976

sqage -0.0003 -0.0003 0.958 -0.0003 0.866 -0.0003 0.969

region2 0.0369 0.0368 0.956 0.0463 0.300 0.0408 0.853

region3 0.0038 0.0037 0.947 0.0081 0.801 0.0062 0.930

region4 0.0517 0.0516 0.959 0.0529 0.944 0.0471 0.679

industry2 -0.0407 -0.0404 0.958 -0.0403 0.954 -0.0401 0.950

industry3 -0.1097 -0.1094 0.945 -0.1140 0.926 -0.1135 0.929

industry4 0.0053 0.0054 0.959 0.0044 0.964 0.0060 0.961

industry5 0.0765 0.0773 0.976 0.0729 0.950 0.0712 0.936

industry6 0.0788 0.0791 0.968 0.0827 0.950 0.0824 0.950

industry7 0.0636 0.0641 0.968 0.0701 0.860 0.0692 0.889

industry8 -0.0145 -0.0146 0.956 -0.0115 0.949 -0.0112 0.935

industry9 -0.0157 -0.0158 0.969 -0.0129 0.963 -0.0120 0.961

industry10 0.0252 0.0257 0.957 0.0301 0.903 0.0303 0.899

industry11 -0.0356 -0.0355 0.960 -0.0329 0.946 -0.0324 0.937

industry12 -0.0029 -0.0027 0.949 0.0015 0.890 0.0015 0.885

industry13 -0.0166 -0.0166 0.953 -0.0174 0.961 -0.0187 0.947

industry14 -0.0278 -0.0275 0.960 -0.0276 0.968 -0.0277 0.965

industry15 -0.0408 -0.0404 0.956 -0.0371 0.946 -0.0373 0.948

industry16 0.0341 0.0343 0.951 0.0369 0.950 0.0367 0.947

industry17 -0.0727 -0.0722 0.967 -0.0718 0.970 -0.0703 0.957

industry18 -0.0100 -0.0096 0.958 0.0047 0.426 0.0053 0.372

industry19 -0.0219 -0.0216 0.955 -0.0170 0.906 -0.0163 0.882

industry20 -0.1047 -0.1047 0.967 -0.1045 0.965 -0.1034 0.960

industry21 -0.0874 -0.0866 0.933 -0.0863 0.927 -0.0853 0.910

industry22 -0.1124 -0.1124 0.965 -0.1163 0.939 -0.1151 0.948

industry23 -0.0549 -0.0546 0.959 -0.0566 0.968 -0.0565 0.959

industry24 -0.1604 -0.1599 0.954 -0.1608 0.958 -0.1593 0.954

industry25 -0.2215 -0.2215 0.960 -0.2206 0.953 -0.2198 0.947

industry26 -0.0560 -0.0558 0.968 -0.0557 0.962 -0.0545 0.950

industry27 -0.0454 -0.0449 0.958 -0.0493 0.927 -0.0486 0.940

industry28 -0.0865 -0.0863 0.971 -0.0845 0.966 -0.0839 0.963

industry29 -0.0697 -0.0696 0.958 -0.0669 0.934 -0.0659 0.923

industry30 -0.0705 -0.0700 0.954 -0.0806 0.829 -0.0782 0.886

industry31 -0.0673 -0.0670 0.952 -0.0658 0.946 -0.0652 0.947

industry32 -0.0662 -0.0653 0.874 -0.0699 0.888 -0.0685 0.875

industry33 0.0112 0.0113 0.966 0.0114 0.955 0.0114 0.961

industry34 -0.0948 -0.0945 0.967 -0.0879 0.885 -0.0840 0.780

industry35 -0.0019 -0.0015 0.964 -0.0183 0.702 -0.0192 0.636

industry36 -0.2604 -0.2603 0.944 -0.2639 0.943 -0.2629 0.951

contract -0.1114 -0.1117 0.941 -0.1139 0.948 -0.1111 0.958

cons 4.0440 4.0447 0.958 4.0331 0.936 4.0445 0.972

Table 8.5: Simulation results based on a lognormal transformation
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for all the parameters in the model, even those with little connection to the

outlying data point. This problem arises as well by using transformations

of a normal distribution. When imputing right-censored wages, extremely

high values are therefore an important issue. As it is questionable whether

the log transformation is really an applicable assumption, we test another

transformation, which is less sensitive to extreme values, the cube root of the

wages. Schwartz (1985) for example shows that the cube root of income ex-

hibits additional statistical properties that make it perhaps a more suitable

transformation for multivariate analyses of income. Apart from applying this

transformation the simulation design is the same as in the simulation study

described before. That means we assume an imputation and analysis model

containing the cube root of wages as dependent variable and as covariates

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

Table 8.6 shows the results of the second simulation study. The coverage is for

most variables again similar to the coverage received by the estimations using

the complete random samples before censoring. But here we also have to

state some coverage rates that are significantly lower. Especially the coverage

of 0.151 for education level 6 received by the imputation approach assuming

homoscedasticity of the residuals indicates a serious problem. It seems that

this approach does not perform satisfyingly for this group with a high share of

censored wages. Some rather low coverage rates can be again found for both

approaches concerning some industry dummies. In conclusion, the coverage

rates resulting from an imputation based on cube root transformed wages

are somewhat lower than based on a log transformation. Consequently, the

log transformation seems to be more appropriate for German wage data than

the cube root transformation. Figure 8.5 confirms the finding that the log

transformation is more appropriate for the German wage data. Normal Q-Q

plots compare randomly generated, independent standard normal data on the

vertical axis to the wage distribution of the different transformations and the

original wages in the complete GSES on the horizontal axis. The linearity of

the points suggests that the log transformed wages are approximately normally

distributed, while the cube root transformed are a bit further away from being

normally distributed.
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0489 0.0490 0.964 0.0493 0.966 0.0491 0.966

education3 0.0952 0.0947 0.959 0.0723 0.819 0.0800 0.890

education4 0.1106 0.1108 0.966 0.0902 0.544 0.0931 0.670

education5 0.2188 0.2195 0.959 0.2170 0.959 0.2259 0.920

education6 0.2893 0.2895 0.955 0.2560 0.151 0.2744 0.783

level2 0.0187 0.0189 0.967 0.0166 0.944 0.0165 0.942

level3 0.0633 0.0645 0.969 0.0641 0.971 0.0664 0.971

level4 0.0407 0.0419 0.972 0.0148 0.916 0.0116 0.905

group2 -0.1416 -0.1418 0.951 -0.1368 0.873 -0.1366 0.873

group3 -0.2767 -0.2764 0.951 -0.2693 0.823 -0.2690 0.817

group4 -0.4271 -0.4271 0.967 -0.4214 0.914 -0.4209 0.906

group5 0.6298 0.6285 0.968 0.5864 0.769 0.5982 0.869

group6 0.2103 0.2091 0.967 0.2225 0.960 0.2256 0.946

group7 0.0634 0.0623 0.970 0.0888 0.918 0.0912 0.905

group8 -0.2590 -0.2603 0.963 -0.2315 0.898 -0.2285 0.884

group9 -0.4817 -0.4822 0.970 -0.4547 0.925 -0.4521 0.911

age 0.0352 0.0352 0.956 0.0357 0.944 0.0352 0.960

sqage -0.0004 -0.0004 0.954 -0.0004 0.846 -0.0004 0.947

region2 0.0485 0.0484 0.956 0.0640 0.134 0.0592 0.478

region3 0.0029 0.0029 0.945 0.0116 0.597 0.0074 0.863

region4 0.0765 0.0763 0.954 0.0737 0.916 0.0699 0.689

industry2 -0.0592 -0.0588 0.958 -0.0567 0.944 -0.0570 0.949

industry3 -0.1598 -0.1595 0.941 -0.1626 0.942 -0.1634 0.942

industry4 0.0055 0.0057 0.962 0.0052 0.964 0.0061 0.962

industry5 0.1316 0.1327 0.974 0.1112 0.832 0.1138 0.871

industry6 0.1214 0.1218 0.966 0.1246 0.958 0.1245 0.962

industry7 0.1009 0.1017 0.969 0.1039 0.952 0.1046 0.956

industry8 -0.0276 -0.0277 0.963 -0.0197 0.869 -0.0200 0.885

industry9 -0.0292 -0.0294 0.967 -0.0203 0.930 -0.0201 0.929

industry10 0.0330 0.0339 0.958 0.0430 0.862 0.0429 0.870

industry11 -0.0564 -0.0561 0.962 -0.0483 0.866 -0.0485 0.886

industry12 -0.0045 -0.0041 0.957 0.0040 0.835 0.0037 0.845

industry13 -0.0198 -0.0197 0.952 -0.0238 0.939 -0.0245 0.941

industry14 -0.0403 -0.0398 0.960 -0.0403 0.965 -0.0402 0.969

industry15 -0.0605 -0.0600 0.958 -0.0516 0.916 -0.0523 0.915

industry16 0.0479 0.0481 0.954 0.0521 0.947 0.0523 0.945

industry17 -0.1104 -0.1098 0.967 -0.1037 0.931 -0.1036 0.924

industry18 -0.0208 -0.0203 0.956 0.0099 0.111 0.0097 0.127

industry19 -0.0382 -0.0377 0.955 -0.0262 0.776 -0.0265 0.793

industry20 -0.1548 -0.1548 0.962 -0.1492 0.943 -0.1494 0.950

industry21 -0.1257 -0.1248 0.954 -0.1194 0.935 -0.1197 0.942

industry22 -0.1675 -0.1674 0.966 -0.1677 0.956 -0.1685 0.958

industry23 -0.0791 -0.0785 0.960 -0.0804 0.965 -0.0810 0.961

industry24 -0.2406 -0.2401 0.959 -0.2317 0.882 -0.2327 0.908

industry25 -0.3112 -0.3112 0.952 -0.3033 0.929 -0.3042 0.938

industry26 -0.0858 -0.0856 0.968 -0.0807 0.926 -0.0809 0.936

industry27 -0.0667 -0.0660 0.958 -0.0710 0.934 -0.0714 0.936

industry28 -0.1319 -0.1316 0.967 -0.1231 0.907 -0.1240 0.922

industry29 -0.1090 -0.1087 0.956 -0.0973 0.809 -0.0982 0.839

industry30 -0.1085 -0.1077 0.957 -0.1153 0.928 -0.1173 0.919

industry31 -0.1053 -0.1048 0.951 -0.0929 0.865 -0.0953 0.907

industry32 -0.0772 -0.0763 0.947 -0.0786 0.949 -0.0794 0.956

industry33 0.0307 0.0309 0.962 0.0258 0.935 0.0263 0.944

industry34 -0.1535 -0.1531 0.963 -0.1247 0.335 -0.1260 0.429

industry35 0.0101 0.0106 0.961 -0.0237 0.420 -0.0237 0.440

industry36 -0.3403 -0.3401 0.951 -0.3397 0.946 -0.3409 0.947

contract -0.1462 -0.1464 0.961 -0.1476 0.956 -0.1473 0.966

cons 3.8243 3.8247 0.955 3.8172 0.953 3.8273 0.958

Table 8.6: Simulation results based on a cube root transformation
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Figure 8.5: Normal Q-Q plot comparing randomly generated, independent

standard normal data to the wage distribution
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Additionally a simulation study using the original wages without any trans-

formation was performed. Here, we receive an imputation quality that is con-

siderably lower. These results indicate the relevance of an appropriate trans-

formation. The corresponding simulation results can be found in Table A.1 in

the appendix.

8.2.3 GLS Estimation in the Analysis Step

As we assume a heteroscedastic distribution of the residuals, one could argue

that not only the imputation step has to be done considering heteroscedas-

ticity, but the analysis step also has to be done based on generalized least

squares regression. The impact of a questionable homoscedasticity assump-

tion is somewhat less severe in this case, as censoring does not play a role in

the analysis step anymore. Because we observe the entire wage distribution

now, we do not have to make assumptions on the distribution of the residuals

based only on the lower part of the distribution. Another reason to apply OLS

in the analysis step is that in most studies concerning wages based on the IAB

Employment Sample homoscedasticity of the residuals is assumed. Therefore,

when we simulate an analysis that is typically done withe these data, it makes

sense to apply OLS regression. Nevertheless, there are reasonable arguments

to repeat the simulation study with this variation in the analysis step. Apart

from the estimation based on GLS regression in the analysis step, the same

simulation design as in the simulation study based on a log transformation is

applied. As imputation and analysis model we use again the model containing

the wages in logs as dependent variable and as covariates

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

The true parameters β are now obtained from a GLS regression based on the

complete population using the analysis model. Table 8.7 shows the results of

this simulation study. The results indicate that there is no significant difference

in the coverages whether an OLS regression or an GLS regression is applied in

the analysis step. Qualitatively the results show the same imputation quality,

whereas results of the approach considering heteroscedasticity are superior

compared to the approach assuming homoscedasticity of the residuals. Some

coverage rates turn out a little smaller in this simulation study compared to the
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0323 0.0328 0.945 0.0333 0.939 0.0328 0.952

education3 0.0570 0.0562 0.957 0.0490 0.929 0.0524 0.951

education4 0.0685 0.0685 0.963 0.0629 0.904 0.0625 0.885

education5 0.1347 0.1353 0.953 0.1484 0.572 0.1447 0.755

education6 0.1748 0.1749 0.947 0.1773 0.938 0.1760 0.938

level2 0.0143 0.0142 0.951 0.0135 0.944 0.0133 0.945

level3 0.0448 0.0456 0.938 0.0463 0.944 0.0463 0.945

level4 0.0264 0.0271 0.950 0.0156 0.925 0.0124 0.895

group2 -0.0940 -0.0941 0.961 -0.0921 0.953 -0.0916 0.941

group3 -0.1912 -0.1904 0.950 -0.1876 0.898 -0.1874 0.889

group4 -0.3082 -0.3073 0.931 -0.3038 0.874 -0.3039 0.876

group5 0.3809 0.3802 0.947 0.3919 0.911 0.3801 0.937

group6 0.1332 0.1326 0.942 0.1431 0.918 0.1431 0.912

group7 0.0458 0.0450 0.947 0.0564 0.916 0.0589 0.899

group8 -0.1769 -0.1779 0.943 -0.1646 0.915 -0.1615 0.884

group9 -0.3439 -0.3453 0.927 -0.3319 0.904 -0.3300 0.885

age 0.0257 0.0255 0.928 0.0263 0.885 0.0258 0.921

sqage -0.0003 -0.0003 0.929 -0.0003 0.842 -0.0003 0.922

region2 0.0363 0.0365 0.948 0.0453 0.330 0.0391 0.885

region3 0.0046 0.0051 0.941 0.0091 0.789 0.0070 0.910

region4 0.0510 0.0508 0.947 0.0523 0.932 0.0465 0.668

industry2 -0.0425 -0.0425 0.947 -0.0406 0.944 -0.0395 0.930

industry3 -0.1107 -0.1106 0.940 -0.1142 0.947 -0.1122 0.952

industry4 0.0053 0.0052 0.961 0.0052 0.967 0.0074 0.960

industry5 0.0800 0.0808 0.936 0.0760 0.920 0.0731 0.884

industry6 0.0764 0.0771 0.952 0.0802 0.928 0.0792 0.938

industry7 0.0643 0.0645 0.980 0.0714 0.876 0.0713 0.870

industry8 -0.0210 -0.0207 0.975 -0.0172 0.941 -0.0170 0.939

industry9 -0.0147 -0.0152 0.976 -0.0125 0.979 -0.0113 0.974

industry10 0.0246 0.0250 0.961 0.0293 0.921 0.0296 0.919

industry11 -0.0345 -0.0345 0.969 -0.0320 0.957 -0.0307 0.933

industry12 -0.0017 -0.0017 0.961 0.0031 0.898 0.0039 0.855

industry13 -0.0156 -0.0162 0.958 -0.0154 0.966 -0.0151 0.962

industry14 -0.0289 -0.0293 0.967 -0.0272 0.966 -0.0259 0.958

industry15 -0.0397 -0.0398 0.971 -0.0355 0.953 -0.0344 0.937

industry16 0.0332 0.0335 0.957 0.0356 0.958 0.0352 0.960

industry17 -0.0732 -0.0727 0.963 -0.0711 0.960 -0.0692 0.938

industry18 -0.0041 -0.0030 0.967 0.0077 0.650 0.0081 0.617

industry19 -0.0230 -0.0226 0.971 -0.0173 0.922 -0.0164 0.897

industry20 -0.1077 -0.1079 0.961 -0.1053 0.961 -0.1030 0.940

industry21 -0.0874 -0.0854 0.919 -0.0846 0.919 -0.0829 0.909

industry22 -0.1118 -0.1117 0.957 -0.1147 0.945 -0.1126 0.955

industry23 -0.0547 -0.0547 0.966 -0.0558 0.967 -0.0547 0.958

industry24 -0.1623 -0.1619 0.953 -0.1635 0.956 -0.1626 0.957

industry25 -0.2215 -0.2210 0.918 -0.2191 0.911 -0.2167 0.901

industry26 -0.0574 -0.0569 0.961 -0.0573 0.963 -0.0566 0.960

industry27 -0.0495 -0.0486 0.958 -0.0524 0.949 -0.0521 0.949

industry28 -0.0838 -0.0837 0.976 -0.0834 0.972 -0.0824 0.970

industry29 -0.0634 -0.0637 0.971 -0.0616 0.967 -0.0605 0.962

industry30 -0.0800 -0.0790 0.943 -0.0852 0.940 -0.0827 0.957

industry31 -0.0679 -0.0672 0.959 -0.0651 0.947 -0.0640 0.941

industry32 -0.0563 -0.0542 0.798 -0.0603 0.771 -0.0566 0.806

industry33 0.0175 0.0171 0.937 0.0196 0.940 0.0205 0.926

industry34 -0.0864 -0.0864 0.956 -0.0805 0.918 -0.0767 0.810

industry35 -0.0005 -0.0005 0.944 -0.0170 0.679 -0.0173 0.631

industry36 -0.2482 -0.2480 0.847 -0.2504 0.841 -0.2455 0.814

contract -0.1054 -0.1054 0.940 -0.1102 0.951 -0.1076 0.965

cons 4.0173 4.0206 0.954 4.0054 0.923 4.0141 0.948

Table 8.7: Simulation results based on GLS estimation in analysis step



106 CHAPTER 8. VALIDATION OF THE APPROACHES

one based on a log transformation, but this can be explained by the complete

data coverage (before censoring), which is in general a little lower here.

8.2.4 Reduced Set of Variables in the Model

In Chapter 6, we have discussed that the imputer’s model should include as rich

a set of variables in the imputation model as possible in order to accommodate

the variety of analyses that might be carried out by the analyst. That is

why a rather rich set of variables was chosen for the first simulation studies

using external data. Now, we will examine how a suitable imputation model

may look like if it is known that the analyst only wants to analyze a limited

set of variables. The usual advice for building up an imputation model is

to use as many variables as are available (see, e.g., Rässler et al. (2008)).

However, including variables with no influence on the missingness mechanism

will add unnecessary noise and variation to the MI estimates. Therefore, we

were interested in figuring out whether a smaller imputation model would work

in this case, too.

In order to select an appropriate small model, we estimated a probit model

with a dependent variable y, i.e., y = 1 if the observation is censored and

y = 0 if not. The education categories, the contract type dummy, age, and

age2 turned out to be significant. Therefore, we suppose here the following,

rather simple, model with wages in logs as dependent variable and

Xsmall=(age, age2, 6 education categories, contract type).

In a first step we perform a simulation study using the restricted model as

imputation and analysis model. Now, we apply again OLS regression in the

analysis step. Of course, we receive the true parameters β now from an OLS

regression based on the complete population using the small analysis model.

We use again a lognormal transformation for the wages, because this transfor-

mations seems to be more appropriate. Besides these points we use the same

simulation design as described before in this section.

Looking at the results, we find here coverage rates in a range comparable to

the simulation studies presented before. We obtain again a higher coverage

using the imputation approach considering heteroscedasticity compared to the

approach assuming homoscedasticity (see Table 8.8). Especially the results

concerning the dummies for highly-skilled employees, where the fraction of
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.1886 0.1888 0.970 0.1851 0.884 0.1858 0.920
education3 0.3275 0.3287 0.955 0.3098 0.890 0.3297 0.958
education4 0.4059 0.4058 0.962 0.3913 0.678 0.3989 0.898
education5 0.5780 0.5780 0.963 0.5934 0.557 0.5873 0.856
education6 0.6383 0.6385 0.967 0.6455 0.861 0.6466 0.913
age 0.0411 0.0411 0.965 0.0416 0.947 0.0408 0.976
sqage -0.0004 -0.0004 0.970 -0.0004 0.903 -0.0004 0.984
contract -0.2067 -0.2072 0.951 -0.2087 0.954 -0.2054 0.958
cons 3.5664 3.5661 0.968 3.5649 0.969 3.5718 0.976

Table 8.8: Results of a simulation study using a limited set of variables

censored wages is eminently high, are much better using the approach con-

sidering heteroscedasticity. In conclusion, a comprehensive imputation model

containing all available variables seems not always to be necessary to impute

the missing wage information, even when we want to analyze the effects of sen-

sitive (in the sense of censoring) variables like for example education groups.

To check whether the imputation results can still be improved, we modify the

simulation design. We draw again randomly a 10 percent sample from the

complete sample, define the threshold and delete the wages above this limit.

Then we decompose the sample into three education groups:

• Low-skilled (Low/intermediate school or vocational training)

• Medium-skilled (Upper school with or without vocational training)

• High-skilled (Technical college or university degree)

The deleted wage information is now imputed again multiply using the same

restricted imputation model, but separately in these subgroups. Afterwards

the groups are combined again and the imputation quality is analyzed like in

the simulation studies above. Table 8.9 shows the results of this simulation

study, which can be summarized as follows: First, the coverage using the impu-

tation approach considering heteroscedasticity is, as before, higher compared

to the approach assuming homoscedasticity. But second, imputing the wage in

groups does not improve the imputation results. Additional simulation studies
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have shown, that if a cube root transformation is applied, this approach of de-

composing the data set in subgroups is superior, even if the imputation quality

is overall considerably lower using a cube root transformation. A drawback of

the strategy to impute the wages in education groups is that it often cannot be

performed if a set of dummies for industries or occupations on a disaggregated

level is included in the imputation model. Here, often a situation appears

where the share of persons of high (or low) education groups is zero for some

industries or occupations.

Another possibility to impute the data for a research question, where a rather

small analyst’s model will be analyzed, is to use a set of variables as rich as

possible. In a third simulation study we use the larger imputation model,

which explains the wage by 66 percent2. This model contains as covariates

again

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

To analyze the imputed data we apply OLS regression using the smaller model

containing

Xsmall=(age, age2, 6 education categories, contract type).

That means the true parameters β are here obtained from an OLS regression

using this smaller model. The results of this simulation study (Table 8.10)

indicate that using a rich set of variables for the imputation model and then

performing the desired analysis using a potentially smaller model is at first

glance a less promising strategy in the simulated case. We again receive cov-

erage rates of up to 97 percent, but for some education levels we receive for

both approaches lower coverage rates (e.g., 0.501 in case of the heteroscedastic

approach and 0.717 in case of the homoscedastic approach for education level

4). In general, it is noticeable that the coverage rates are somewhat lower com-

pared to the larger analyst’s model containing additional control variables and

the superiority of the approach considering heteroscedasticity is less evident

in this case. Summing up, we find that using a rich set of variables in the im-

putation model leads to a somewhat lower imputation quality if the analyst’s

2R2 of an OLS-regression using the original complete data set and the variables of the
imputation model.
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.1886 0.1886 0.957 0.1848 0.868 0.1856 0.915
education3 0.3275 0.3276 0.967 0.3185 0.941 0.3426 0.954
education4 0.4059 0.4061 0.959 0.4031 0.952 0.4104 0.965
education5 0.5780 0.5783 0.954 0.5982 0.421 0.6166 0.448
education6 0.6383 0.6387 0.961 0.6516 0.744 0.6786 0.586
age 0.0411 0.0410 0.967 0.0419 0.921 0.0402 0.951
sqage -0.0004 -0.0004 0.962 -0.0004 0.885 -0.0004 0.930
contract -0.2067 -0.2069 0.947 -0.2089 0.962 -0.2068 0.956
cons 3.5664 3.5679 0.970 3.5588 0.961 3.5766 0.970

Table 8.9: Results of an imputation in education groups

interest is in examining a reduced model. On the other hand, an advantage of

applying a rich set of variables is that the once imputed data can be used for

several research questions. Based on the data completed using the imputation

model that is applied in the last simulation study, a wide range of different

models could be estimated.

Some further models were evaluated to check if the usually recommended pro-

cedure of using a rich set of variables in the imputation model for analyzing

a smaller model is a generally appropriate approach also for the case of cen-

soring. Table 8.11 shows the results of a simulation study where job levels

categories were included in the analyst’s model instead of the contract type

dummy. The results indicate as well that applying a larger imputation model

is a recommendable strategy, because the completed data can be used for

various purposes, whereas only a little reduction of the imputation quality is

potentially to be expected.

Accordingly, the best imputation strategy regarding censored data depends on

the purpose of the imputed data. If the data are to be imputed for a single

research question, a restricted imputation model might be sufficient. Note that

this finding is not generally valid for the imputation of missing data. In the

case of censoring the question whether a value is censored or not depends on the

values itself, which is different from other cases of missing data. Nevertheless,

to impute the censored values, we need to include covariates in the imputation

model that have explanatory power for the missing wages. If the research
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.1886 0.1887 0.958 0.1873 0.949 0.1858 0.914
education3 0.3275 0.3273 0.952 0.3131 0.912 0.3118 0.906
education4 0.4059 0.4061 0.965 0.3929 0.717 0.3877 0.501
education5 0.5780 0.5782 0.953 0.5858 0.815 0.5749 0.946
education6 0.6383 0.6385 0.966 0.6329 0.866 0.6252 0.693
age 0.0411 0.0410 0.959 0.0418 0.926 0.0410 0.973
sqage -0.0004 -0.0004 0.964 -0.0004 0.895 -0.0004 0.972
contract -0.2067 -0.2067 0.941 -0.2081 0.941 -0.2042 0.940
cons 3.5664 3.5674 0.968 3.5598 0.967 3.5705 0.980

Table 8.10: Results based on a large imputation model and a small analyst’s

model - Example 1

before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0700 0.0700 0.965 0.0699 0.966 0.0697 0.970
education3 0.1142 0.1141 0.961 0.1030 0.925 0.1050 0.935
education4 0.1578 0.1580 0.961 0.1484 0.853 0.1470 0.817
education5 0.3149 0.3151 0.952 0.3266 0.752 0.3198 0.940
education6 0.3674 0.3675 0.955 0.3659 0.948 0.3620 0.925
level2 0.0807 0.0808 0.961 0.0800 0.950 0.0799 0.954
level3 0.3548 0.3549 0.962 0.3649 0.805 0.3629 0.862
level4 0.3049 0.3050 0.960 0.3005 0.830 0.2957 0.514
age 0.0429 0.0429 0.958 0.0436 0.928 0.0428 0.965
sqage -0.0004 -0.0004 0.958 -0.0004 0.896 -0.0004 0.968
cons 3.2956 3.2967 0.956 3.2880 0.949 3.3038 0.953

Table 8.11: Results based on a large imputation model and a small analyst’s

model - Example 2
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question is not known to the imputer or the data are to be used for several

analyses, all available variables should be used for the imputation model.

8.2.5 Differing Imputer’s and Analyst’s Models

In general, a situation where the analyst’s and the imputer’s model differ is

called uncongeniality according to Meng (1994). In the preceding simulation

study we examined a situation where the analyst is only interested in a subset

of the variables of the imputation model like shown in Table 8.10. Another

situation appears if the analyst wants to include variables in the analysis that

were not used in the imputation model. Note that if the imputation model

does not contain all important correlates of variables with missing data, i.e.,

variables that might explain the missing data mechanism or are correlated

with variables with missing data, here the wage variable, the results will be

biased. It is intuitively obvious that, if the imputation model does not contain

variables of the analysis model, the correlation between these variables cannot

be reflected in the imputed values. If the aim of a study is for example to

examine the influence of the firm size on the individual wage level, in general

the firm information should be used to impute the individual wages. Otherwise

the impact of the firm size on the wage based on the imputed data might be

biased towards zero.

We examine a special case of the situation described above. We use the large

imputation model of the simulation study based on a log transformation con-

taining the wages in logs as dependent variable and the covariates

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

In the analysis step we drop the dummies for job levels, replace the industry

dummies by occupation dummies and replace age and squared age by tenure

and squared tenure. Tenure is defined as years employed in the current estab-

lishment. Accordingly, the true parameters β are here obtained from an OLS

regression using this analysis model. The idea is to check whether a real differ-

ing imputation model still allows valid conclusions when the differing variables

are highly correlated. As age is a good predictor for tenure and the occupation

of the employee is also correlated with other variables like, e.g., the industry

and education, the chosen imputation model might be also applicable for the
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

educ2 0.1035 0.1034 0.964 0.1033 0.964 0.1029 0.961

educ3 0.1534 0.1533 0.963 0.1436 0.937 0.1457 0.950

educ4 0.1938 0.1938 0.958 0.1858 0.876 0.1845 0.849

educ5 0.3075 0.3075 0.959 0.3148 0.907 0.3097 0.962

educ6 0.3745 0.3743 0.960 0.3724 0.941 0.3695 0.932

tenure 0.0188 0.0188 0.958 0.0186 0.953 0.0184 0.915

sqten -0.0004 -0.0004 0.964 -0.0003 0.958 -0.0003 0.945

occupation2 0.0312 0.0306 0.951 0.0259 0.955 0.0265 0.954

occupation3 0.0678 0.0686 0.949 0.0643 0.957 0.0642 0.959

occupation4 0.1451 0.1450 0.950 0.1410 0.959 0.1408 0.960

occupation5 0.0664 0.0656 0.956 0.0612 0.960 0.0611 0.959

occupation6 0.0739 0.0727 0.956 0.0684 0.959 0.0683 0.963

occupation7 0.2221 0.2217 0.957 0.2151 0.963 0.2143 0.960

occupation8 0.1450 0.1449 0.949 0.1409 0.959 0.1409 0.958

occupation9 0.1179 0.1177 0.947 0.1129 0.957 0.1129 0.953

occupation10 0.0620 0.0614 0.953 0.0562 0.959 0.0564 0.959

occupation11 0.0912 0.0906 0.951 0.0849 0.954 0.0849 0.955

occupation12 0.1127 0.1122 0.950 0.1058 0.957 0.1057 0.955

occupation13 0.1069 0.1068 0.944 0.1025 0.955 0.1022 0.956

occupation14 0.0975 0.0965 0.958 0.0909 0.957 0.0907 0.956

occupation15 0.0763 0.0758 0.949 0.0710 0.955 0.0709 0.955

occupation16 -0.0453 -0.0460 0.963 -0.0506 0.965 -0.0507 0.963

occupation17 -0.0062 -0.0067 0.945 -0.0113 0.951 -0.0114 0.951

occupation18 0.1200 0.1197 0.948 0.1153 0.955 0.1152 0.957

occupation19 0.1005 0.0999 0.958 0.0958 0.960 0.0957 0.962

occupation20 0.1414 0.1409 0.951 0.1367 0.952 0.1364 0.952

occupation21 0.0506 0.0495 0.965 0.0449 0.970 0.0446 0.969

occupation22 0.0607 0.0597 0.959 0.0546 0.963 0.0546 0.963

occupation23 0.0069 0.0067 0.953 0.0024 0.962 0.0025 0.959

occupation24 0.0416 0.0411 0.951 0.0350 0.955 0.0352 0.956

occupation25 0.0653 0.0649 0.952 0.0614 0.962 0.0609 0.961

occupation26 -0.0620 -0.0627 0.950 -0.0677 0.954 -0.0683 0.950

occupation27 0.1682 0.1680 0.953 0.1650 0.955 0.1649 0.957

occupation28 0.4044 0.4040 0.951 0.4039 0.957 0.3960 0.956

occupation29 0.4128 0.4120 0.955 0.4184 0.961 0.4115 0.965

occupation30 0.3489 0.3486 0.949 0.3492 0.953 0.3445 0.955

occupation31 0.2321 0.2323 0.948 0.2331 0.958 0.2299 0.957

occupation32 0.2930 0.2926 0.948 0.2791 0.950 0.2740 0.940

occupation33 0.1145 0.1139 0.944 0.0981 0.945 0.0957 0.938

occupation34 0.4288 0.4290 0.956 0.4097 0.939 0.4021 0.906

occupation35 0.3177 0.3174 0.959 0.3038 0.949 0.2987 0.932

occupation36 0.1898 0.1897 0.958 0.1857 0.963 0.1841 0.959

occupation37 0.4077 0.4075 0.964 0.3786 0.922 0.3712 0.877

occupation38 0.2865 0.2851 0.959 0.2607 0.937 0.2563 0.931

occupation39 0.0720 0.0720 0.950 0.0676 0.958 0.0677 0.956

occupation40 0.1742 0.1742 0.961 0.1489 0.928 0.1475 0.921

occupation41 -0.0591 -0.0598 0.950 -0.0639 0.956 -0.0641 0.954

occupation42 0.0078 0.0075 0.948 0.0031 0.960 0.0029 0.955

occupation43 0.5205 0.5205 0.945 0.4639 0.687 0.4564 0.591

occupation44 0.4884 0.4885 0.964 0.4462 0.887 0.4388 0.827

occupation45 0.3470 0.3466 0.956 0.3397 0.959 0.3329 0.952

occupation46 0.4292 0.4287 0.948 0.4238 0.959 0.4165 0.948

occupation47 0.2463 0.2460 0.948 0.2411 0.959 0.2377 0.955

occupation48 0.1759 0.1746 0.957 0.1663 0.957 0.1632 0.952

occupation49 -0.0121 -0.0122 0.950 -0.0169 0.956 -0.0172 0.956

occupation50 0.5138 0.5164 0.943 0.4269 0.788 0.4196 0.745

occupation51 0.4542 0.4553 0.955 0.4445 0.965 0.4346 0.939

occupation52 0.2563 0.2552 0.953 0.2474 0.956 0.2438 0.957

occupation53 0.2829 0.2857 0.946 0.2617 0.960 0.2592 0.951

occupation54 0.1676 0.1673 0.955 0.1617 0.962 0.1612 0.959

occupation55 0.3110 0.3093 0.961 0.3230 0.965 0.3196 0.964

occupation56 0.4334 0.4356 0.950 0.4189 0.971 0.4083 0.947

occupation57 0.2546 0.2561 0.949 0.2741 0.957 0.2750 0.962

occupation58 -0.0601 -0.0609 0.962 -0.0670 0.957 -0.0678 0.961

occupation59 0.1214 0.1195 0.957 0.1237 0.955 0.1212 0.956

occupation60 -0.0303 -0.0312 0.953 -0.0359 0.961 -0.0362 0.958

occupation61 0.0649 0.0645 0.961 0.0592 0.962 0.0588 0.962

occupation62 0.0725 0.0716 0.955 0.0672 0.957 0.0672 0.957

occupation63 0.0109 0.0108 0.962 0.0064 0.964 0.0061 0.963

occupation64 0.0033 0.0031 0.952 -0.0006 0.957 -0.0009 0.957

occupation65 0.0760 0.0750 0.954 0.0715 0.958 0.0713 0.957

occupation66 0.0019 0.0016 0.956 -0.0027 0.962 -0.0027 0.961

contract -0.1315 -0.1315 0.940 -0.1339 0.940 -0.1307 0.951

cons 4.2443 4.2448 0.947 4.2528 0.948 4.2506 0.957

Table 8.12: Results of a simulation study with differing imputation and anal-

ysis models
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chosen analysis model. Table 8.12 shows the results of this simulation study,

which affirm the expectation that there is no reduction in the data utility for

the research (analysis) question in this case. The coverage rates range from

0.591 to 0.964, whereas most of them lie again around 0.95. It is noticeable

that there is no particular difference in the coverage rate between variables

that are only included in the analysis model and variables that are included

in both models. In Appendix A.2, we use the measure of confidence interval

overlap (see, e.g., Karr et al. (2006)) to examine situations where the analysis

model contains variables that are not included in the imputation model. The

examples in Appendix A.2 illustrate that a differing analysis model not neces-

sarily has a negative influence on the quality of the estimation results, but in

some cases it may lead to seriously biased results compared to results based

on the original complete data set. The results based on multiply imputed data

are also compared to results from a tobit estimation.

8.2.6 Different Transformations in the Imputer’s and

Analyst’s Model

For this simulation studies, we applied mainly two different transformations

of the wage: Log transformation and cube root transformation. The goal is to

take that data set that is skewed to the right and transform it to a data set

that is bell-shaped. Whereas the log transformation has generally more im-

pact on skewness, the cube root transformation is less sensitive to outliers. The

simulation studies showed that the log transformation is somewhat more ap-

propriate in our case. To check if imputations based on these transformations

are robust irrespective of the specific transformation, additional simulation

studies are performed with differing transformations in the imputer’s and an-

alyst’s model. To begin with, the missing wages are imputed based on a log

transformation and the subsequent analysis step is performed with a cube root

transformation. That means the wages were re-transformed after the impu-

tation step. For this simulation study we use again the model containing the

wages in logs and the covariates

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type)
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0489 0.0490 0.964 0.0501 0.966 0.0493 0.968

education3 0.0952 0.0947 0.959 0.0776 0.899 0.0830 0.918

education4 0.1106 0.1108 0.966 0.0963 0.797 0.0951 0.752

education5 0.2188 0.2195 0.959 0.2425 0.566 0.2359 0.765

education6 0.2893 0.2895 0.955 0.2899 0.951 0.2888 0.940

level2 0.0187 0.0189 0.967 0.0175 0.963 0.0169 0.955

level3 0.0633 0.0645 0.969 0.0679 0.967 0.0670 0.971

level4 0.0407 0.0419 0.972 0.0198 0.940 0.0125 0.908

group2 -0.1416 -0.1418 0.951 -0.1377 0.911 -0.1376 0.905

group3 -0.2767 -0.2764 0.951 -0.2706 0.862 -0.2705 0.865

group4 -0.4271 -0.4271 0.967 -0.4208 0.909 -0.4219 0.918

group5 0.6298 0.6285 0.968 0.6443 0.949 0.6272 0.967

group6 0.2103 0.2091 0.967 0.2248 0.955 0.2268 0.945

group7 0.0634 0.0623 0.970 0.0846 0.941 0.0893 0.918

group8 -0.2590 -0.2603 0.963 -0.2369 0.940 -0.2304 0.900

group9 -0.4817 -0.4822 0.970 -0.4594 0.939 -0.4545 0.923

age 0.0352 0.0352 0.956 0.0364 0.872 0.0352 0.958

sqage -0.0004 -0.0004 0.954 -0.0004 0.782 -0.0004 0.944

region2 0.0485 0.0484 0.956 0.0668 0.083 0.0565 0.705

region3 0.0029 0.0029 0.945 0.0115 0.671 0.0078 0.828

region4 0.0765 0.0763 0.954 0.0789 0.929 0.0679 0.538

industry2 -0.0592 -0.0588 0.958 -0.0586 0.955 -0.0583 0.952

industry3 -0.1598 -0.1595 0.941 -0.1681 0.920 -0.1672 0.913

industry4 0.0055 0.0057 0.962 0.0036 0.965 0.0066 0.961

industry5 0.1316 0.1327 0.974 0.1243 0.948 0.1211 0.928

industry6 0.1214 0.1218 0.966 0.1285 0.952 0.1281 0.947

industry7 0.1009 0.1017 0.969 0.1130 0.832 0.1112 0.876

industry8 -0.0276 -0.0277 0.963 -0.0218 0.930 -0.0213 0.925

industry9 -0.0292 -0.0294 0.967 -0.0239 0.963 -0.0223 0.956

industry10 0.0330 0.0339 0.958 0.0424 0.895 0.0427 0.884

industry11 -0.0564 -0.0561 0.962 -0.0511 0.934 -0.0501 0.914

industry12 -0.0045 -0.0041 0.957 0.0042 0.868 0.0041 0.850

industry13 -0.0198 -0.0197 0.952 -0.0207 0.962 -0.0232 0.955

industry14 -0.0403 -0.0398 0.960 -0.0400 0.971 -0.0401 0.970

industry15 -0.0605 -0.0600 0.958 -0.0533 0.944 -0.0538 0.950

industry16 0.0479 0.0481 0.954 0.0534 0.950 0.0530 0.945

industry17 -0.1104 -0.1098 0.967 -0.1089 0.974 -0.1060 0.950

industry18 -0.0208 -0.0203 0.956 0.0068 0.287 0.0079 0.208

industry19 -0.0382 -0.0377 0.955 -0.0289 0.878 -0.0277 0.839

industry20 -0.1548 -0.1548 0.962 -0.1544 0.969 -0.1522 0.964

industry21 -0.1257 -0.1248 0.954 -0.1240 0.956 -0.1222 0.953

industry22 -0.1675 -0.1674 0.966 -0.1747 0.917 -0.1724 0.941

industry23 -0.0791 -0.0785 0.960 -0.0825 0.968 -0.0824 0.960

industry24 -0.2406 -0.2401 0.959 -0.2417 0.958 -0.2387 0.957

industry25 -0.3112 -0.3112 0.952 -0.3095 0.956 -0.3078 0.947

industry26 -0.0858 -0.0856 0.968 -0.0856 0.966 -0.0832 0.958

industry27 -0.0667 -0.0660 0.958 -0.0746 0.910 -0.0732 0.924

industry28 -0.1319 -0.1316 0.967 -0.1279 0.962 -0.1268 0.956

industry29 -0.1090 -0.1087 0.956 -0.1033 0.932 -0.1015 0.906

industry30 -0.1085 -0.1077 0.957 -0.1286 0.781 -0.1238 0.844

industry31 -0.1053 -0.1048 0.951 -0.1028 0.952 -0.1014 0.951

industry32 -0.0772 -0.0763 0.947 -0.0855 0.941 -0.0828 0.951

industry33 0.0307 0.0309 0.962 0.0316 0.959 0.0315 0.969

industry34 -0.1535 -0.1531 0.963 -0.1400 0.868 -0.1326 0.706

industry35 0.0101 0.0106 0.961 -0.0221 0.597 -0.0237 0.516

industry36 -0.3403 -0.3401 0.951 -0.3468 0.924 -0.3449 0.939

contract -0.1462 -0.1464 0.961 -0.1509 0.942 -0.1455 0.971

cons 3.8243 3.8247 0.955 3.8030 0.916 3.8245 0.962

Table 8.13: Results of a simulation study with log transformation in the im-

putation step and cube root transformation in the analysis step
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0345 0.0346 0.965 0.0348 0.961 0.0347 0.968

education3 0.0596 0.0592 0.963 0.0472 0.881 0.0514 0.922

education4 0.0713 0.0714 0.964 0.0606 0.693 0.0622 0.782

education5 0.1370 0.1374 0.962 0.1363 0.961 0.1411 0.927

education6 0.1770 0.1771 0.956 0.1601 0.348 0.1699 0.858

level2 0.0105 0.0106 0.962 0.0094 0.963 0.0094 0.963

level3 0.0371 0.0382 0.969 0.0378 0.968 0.0391 0.965

level4 0.0201 0.0212 0.977 0.0067 0.945 0.0050 0.937

group2 -0.0947 -0.0948 0.952 -0.0921 0.913 -0.0920 0.910

group3 -0.1899 -0.1897 0.947 -0.1858 0.881 -0.1857 0.875

group4 -0.3098 -0.3098 0.964 -0.3067 0.928 -0.3065 0.923

group5 0.3875 0.3863 0.969 0.3650 0.845 0.3713 0.901

group6 0.1412 0.1401 0.963 0.1475 0.965 0.1491 0.960

group7 0.0479 0.0469 0.971 0.0611 0.940 0.0624 0.940

group8 -0.1702 -0.1713 0.967 -0.1559 0.942 -0.1543 0.929

group9 -0.3394 -0.3400 0.969 -0.3254 0.946 -0.3240 0.942

age 0.0247 0.0247 0.961 0.0249 0.958 0.0247 0.963

sqage -0.0003 -0.0003 0.958 -0.0003 0.917 -0.0003 0.961

region2 0.0369 0.0368 0.956 0.0449 0.401 0.0422 0.696

region3 0.0038 0.0037 0.947 0.0082 0.776 0.0059 0.913

region4 0.0517 0.0516 0.959 0.0502 0.920 0.0481 0.794

industry2 -0.0407 -0.0404 0.958 -0.0393 0.943 -0.0395 0.940

industry3 -0.1097 -0.1094 0.945 -0.1111 0.947 -0.1115 0.944

industry4 0.0053 0.0054 0.959 0.0052 0.964 0.0058 0.960

industry5 0.0765 0.0773 0.976 0.0660 0.867 0.0674 0.898

industry6 0.0788 0.0791 0.968 0.0806 0.959 0.0805 0.962

industry7 0.0636 0.0641 0.968 0.0654 0.949 0.0657 0.955

industry8 -0.0145 -0.0146 0.956 -0.0104 0.901 -0.0105 0.911

industry9 -0.0157 -0.0158 0.969 -0.0110 0.942 -0.0109 0.941

industry10 0.0252 0.0257 0.957 0.0304 0.883 0.0304 0.893

industry11 -0.0356 -0.0355 0.960 -0.0314 0.918 -0.0316 0.916

industry12 -0.0029 -0.0027 0.949 0.0014 0.882 0.0013 0.886

industry13 -0.0166 -0.0166 0.953 -0.0190 0.939 -0.0194 0.943

industry14 -0.0278 -0.0275 0.960 -0.0278 0.966 -0.0277 0.965

industry15 -0.0408 -0.0404 0.956 -0.0362 0.924 -0.0366 0.935

industry16 0.0341 0.0343 0.951 0.0363 0.950 0.0364 0.947

industry17 -0.0727 -0.0722 0.967 -0.0691 0.942 -0.0690 0.941

industry18 -0.0100 -0.0096 0.958 0.0063 0.258 0.0062 0.278

industry19 -0.0219 -0.0216 0.955 -0.0156 0.849 -0.0157 0.857

industry20 -0.1047 -0.1047 0.967 -0.1019 0.944 -0.1019 0.947

industry21 -0.0874 -0.0866 0.933 -0.0838 0.874 -0.0840 0.878

industry22 -0.1124 -0.1124 0.965 -0.1126 0.956 -0.1130 0.958

industry23 -0.0549 -0.0546 0.959 -0.0555 0.964 -0.0558 0.963

industry24 -0.1604 -0.1599 0.954 -0.1556 0.912 -0.1561 0.920

industry25 -0.2215 -0.2215 0.960 -0.2174 0.944 -0.2178 0.946

industry26 -0.0560 -0.0558 0.968 -0.0531 0.927 -0.0532 0.936

industry27 -0.0454 -0.0449 0.958 -0.0475 0.940 -0.0477 0.942

industry28 -0.0865 -0.0863 0.971 -0.0819 0.933 -0.0823 0.942

industry29 -0.0697 -0.0696 0.958 -0.0636 0.869 -0.0641 0.889

industry30 -0.0705 -0.0700 0.954 -0.0737 0.940 -0.0748 0.935

industry31 -0.0673 -0.0670 0.952 -0.0607 0.881 -0.0620 0.905

industry32 -0.0662 -0.0653 0.874 -0.0663 0.856 -0.0667 0.862

industry33 0.0112 0.0113 0.966 0.0083 0.934 0.0086 0.939

industry34 -0.0948 -0.0945 0.967 -0.0800 0.524 -0.0806 0.594

industry35 -0.0019 -0.0015 0.964 -0.0193 0.550 -0.0192 0.583

industry36 -0.2604 -0.2603 0.944 -0.2602 0.948 -0.2608 0.949

contract -0.1114 -0.1117 0.941 -0.1122 0.943 -0.1120 0.945

cons 4.0440 4.0447 0.958 4.0405 0.952 4.0459 0.962

Table 8.14: Results of a simulation study with cube root transformation in the

imputation step and log transformation in the analysis step
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as imputation and analysis model. The results of the simulation study can be

found in Table 8.13. Compared to the simulation study using a log transfor-

mation in the imputation and analysis step, we find coverage rates that are

somewhat smaller, but only to a minor extent, when we apply the multiple im-

putation approach considering heteroscedasticity. Compared to using a cube

root transformation in both steps, we find even a higher coverage rates for

some variables, like, e.g., the key variable education level 6, where we observe

the highest rate of censoring. Applying the multiple imputation approach

assuming homoscedasticity the same conclusion applies.

Furthermore, the missing wages were imputed based on a cube root transfor-

mation and analyzed using a log transformation accordingly. These results

can be found in Table 8.14. We find coverage rates that are generally lower

to a certain extent compared to using a log transformation in both steps and

higher to some extent compared to using a cube root transformation in both

steps. As before, we receive rather low coverages for industry 18 and 35. We

can conclude that the imputations approaches seem to be robust to different

transformations used for the imputation model. If the analyst is interested in

a model based on a log transformation, he can expect the more or less same

imputation quality regardless if the imputer uses a log or a cube root trans-

formation. If the analyst is interested in a model based on a cube root, an

imputation based on a log transformation is even somewhat more appropriate

compared to a cube root transformation.

Accordingly, in this chapter we have seen that multiply imputing censored

wages is a flexible solution that yields valid estimation results for various re-

search questions, when a suitable transformation of wages and an appropriate

imputation model is chosen. A rather low imputation quality we find only

concerning a few industry dummies. The same applies, but to a much smaller

extent, to region dummies. Concerning the transformation, the simulation re-

sults recommend a log transformation. The imputation model should contain

as many variables as possible if the imputed are to be used by different re-

searchers or for different purposes. If wages are to be imputed for a specific

research questions, the results show that the use of an imputation model close

to the analysis model might also lead to valid results.



Chapter 9

Alternative Approaches

In the preceding chapters, several imputation approaches were proposed. We

distinguished between single and multiple imputation approaches as well as be-

tween approaches assuming homoscedasticity of the residuals and considering

heteroscedasticity. All these methods have in common to be based on multi-

variate regression with starting values from a tobit regression in the first step.

In simulation studies the superiority of the multiple imputation procedures was

confirmed. In this chapter, some alternative ideas will be presented, which can

be distinguished by the quantity of external information required. First of all,

an univariate (or unconditional) imputation idea will be addressed. Afterwards

methods in the sense of file concatenation using uncensored wage information

from external data (German structure of earnings survey, GSES) are discussed.

In a last step, we assess the minimum amount of external information that is

required in order to receive satisfying imputation results. These approaches

are developed to present further alternatives to the approaches suggested in

the preceding chapters, but also to assess their validity from another point of

view. As in the previous chapter, we perform a series of simulation studies to

compare the different imputation approaches again under different situations.

The alternative approaches can be seen as a kind of benchmark that allows us

assess the comparability or even superiority of the approaches suggested in the

preceding chapters working without external information to approaches requir-

ing additional information. For the different multiple imputation approaches

the following abbreviations are used:

• MI-Hom: Multiple imputation assuming homoscedasticity based on a

tobit model

117
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• MI-Het: Multiple imputation considering heteroscedasticity based on

GLS estimation for truncated variables

• MI-Ext: Multiple imputation based on combining the censored data with

external data

• MI-Uni: Univariate or unconditional multiple imputation

• MI-Het(extern): Multiple imputation considering heteroscedasticity

based on starting values from external data

9.1 Univariate Imputation

So far, multivariate regression-based imputation procedures were discussed and

evaluated. As a first alternative approach, we suggest an univariate imputation

approach. This approach is based on an example described in Greene (2008)

and still works without additional information. In this example the number

of tickets demanded for events at an arena is in the center of the interest.

Whenever an event is sold out, only the actual number of sold tickets is known

and we have only the information that the total number of demanded tickets

was higher. The number of tickets demanded is censored when the number

of tickets sold is used a proxy. In that example, Greene supposes that a

particular arena has 20,000 seats and, in recent season, was sold out 25 percent

of the time. The average attendance, including sellouts, was 18,000. The

mean and the standard deviation of the demand for seats can be received as

follows. According to the moments of the censored normal variable the average

attendance of 18,000 is an estimate of

E[sales] = 20, 000(1 − Φ) + [µ+ σλ]Φ

and Greene provides the following solution to the question of the actual de-

mand for tickets: “Since this is censoring from above, rather than below,

λ = −ϕ(α)/Φ(α). The argument of Φ, ϕ and α is α = (20, 000 − µ)/σ.

If 25 percent of the events are sellouts, then Φ = 0.75. Inverting the

standard normal 0.75 gives α = 0.675. In addition, if α = 0.675, then

−ϕ(0.675)/0.75 = λ = 0.424. This result provides two equations in µ and

σ, (a) 18.000 = 0.25(20.000) + 0.75(µ− 0, 424σ) and (b) 0.675σ = 20.000− µ.

The solutions are σ = 2426 and µ = 18, 362” (Greene, 2008, p. 763f.).
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before censoring MI-Uni Mi-Het

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0345 0.0346 0.963 0.0351 0.967 0.0348 0.968

education3 0.0596 0.0590 0.955 0.0523 0.962 0.0525 0.933

education4 0.0713 0.0716 0.959 0.0644 0.921 0.0633 0.853

education5 0.1370 0.1373 0.960 0.1325 0.961 0.1459 0.818

education6 0.1770 0.1774 0.963 0.1532 0.147 0.1775 0.961

level2 0.0105 0.0105 0.966 0.0101 0.966 0.0095 0.966

level3 0.0371 0.0381 0.963 0.0457 0.961 0.0396 0.961

level4 0.0201 0.0207 0.960 0.0148 0.965 0.0050 0.926

group2 -0.0947 -0.0947 0.958 -0.0964 0.952 -0.0924 0.925

group3 -0.1899 -0.1899 0.964 -0.1923 0.949 -0.1867 0.913

group4 -0.3098 -0.3100 0.950 -0.3132 0.950 -0.3072 0.928

group5 0.3875 0.3866 0.959 0.3787 0.961 0.3868 0.959

group6 0.1412 0.1404 0.959 0.1557 0.941 0.1501 0.958

group7 0.0479 0.0473 0.955 0.0601 0.950 0.0616 0.930

group8 -0.1702 -0.1709 0.953 -0.1674 0.969 -0.1550 0.923

group9 -0.3394 -0.3398 0.961 -0.3341 0.962 -0.3251 0.938

age 0.0247 0.0247 0.960 0.0253 0.937 0.0247 0.976

sqage -0.0003 -0.0003 0.963 -0.0003 0.901 -0.0003 0.964

region2 0.0369 0.0369 0.958 0.0435 0.673 0.0410 0.827

region3 0.0038 0.0036 0.967 0.0060 0.939 0.0061 0.945

region4 0.0517 0.0516 0.963 0.0493 0.920 0.0471 0.687

industry2 -0.0407 -0.0407 0.963 -0.0399 0.971 -0.0405 0.963

industry3 -0.1097 -0.1095 0.961 -0.1120 0.972 -0.1137 0.948

industry4 0.0053 0.0050 0.960 0.0047 0.979 0.0055 0.961

industry5 0.0765 0.0767 0.959 0.0724 0.981 0.0704 0.945

industry6 0.0788 0.0791 0.966 0.0850 0.941 0.0825 0.935

industry7 0.0636 0.0638 0.959 0.0640 0.978 0.0691 0.889

industry8 -0.0145 -0.0144 0.971 -0.0115 0.962 -0.0110 0.939

industry9 -0.0157 -0.0157 0.951 -0.0132 0.969 -0.0119 0.938

industry10 0.0252 0.0253 0.961 0.0292 0.939 0.0301 0.906

industry11 -0.0356 -0.0357 0.966 -0.0324 0.961 -0.0326 0.940

industry12 -0.0029 -0.0026 0.964 0.0022 0.915 0.0016 0.895

industry13 -0.0166 -0.0166 0.971 -0.0188 0.979 -0.0184 0.948

industry14 -0.0278 -0.0275 0.973 -0.0271 0.991 -0.0276 0.976

industry15 -0.0408 -0.0411 0.962 -0.0370 0.966 -0.0378 0.943

industry16 0.0341 0.0344 0.964 0.0357 0.970 0.0369 0.941

industry17 -0.0727 -0.0727 0.963 -0.0713 0.970 -0.0706 0.949

industry18 -0.0100 -0.0100 0.947 0.0018 0.665 0.0047 0.408

industry19 -0.0219 -0.0220 0.965 -0.0176 0.943 -0.0168 0.886

industry20 -0.1047 -0.1051 0.968 -0.1032 0.969 -0.1036 0.961

industry21 -0.0874 -0.0872 0.927 -0.0864 0.932 -0.0858 0.907

industry22 -0.1124 -0.1122 0.964 -0.1152 0.965 -0.1148 0.965

industry23 -0.0549 -0.0549 0.966 -0.0544 0.981 -0.0568 0.964

industry24 -0.1604 -0.1598 0.966 -0.1590 0.972 -0.1591 0.955

industry25 -0.2215 -0.2215 0.969 -0.2199 0.970 -0.2199 0.967

industry26 -0.0560 -0.0560 0.961 -0.0564 0.975 -0.0545 0.953

industry27 -0.0454 -0.0453 0.970 -0.0484 0.966 -0.0490 0.948

industry28 -0.0865 -0.0862 0.958 -0.0847 0.966 -0.0835 0.942

industry29 -0.0697 -0.0699 0.955 -0.0685 0.958 -0.0661 0.921

industry30 -0.0705 -0.0699 0.962 -0.0724 0.983 -0.0778 0.897

industry31 -0.0673 -0.0671 0.969 -0.0602 0.958 -0.0650 0.953

industry32 -0.0662 -0.0660 0.853 -0.0670 0.879 -0.0693 0.861

industry33 0.0112 0.0115 0.965 0.0117 0.984 0.0115 0.949

industry34 -0.0948 -0.0948 0.966 -0.0786 0.629 -0.0843 0.765

industry35 -0.0019 -0.0023 0.964 -0.0179 0.787 -0.0203 0.598

industry36 -0.2604 -0.2602 0.960 -0.2603 0.962 -0.2629 0.961

contract -0.1114 -0.1115 0.955 -0.1134 0.959 -0.1109 0.967

cons 4.0440 4.0444 0.957 4.0407 0.953 4.0442 0.970

Table 9.1: Univariate imputation versus MI-Het
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This solution can easily be applied to censored wages, as it simply represents

an univariate or unconditional application of the tobit model. We have to

assume that y∗ ∼ N(µ, σ2) and just have to replace the percentage of sellouts

by the percentage of censored wages (which is set here again to 15 percent),

leading to Φ = 0.85. Additionally we have to replace the size of the arena

by the contribution limit and the average attendance by the censored mean.

Then the uncensored mean µ and standard deviation σ can be calculated

following the example described above. Afterwards, values for the censored

observations can be drawn from N(µ, σ2). As the drawn values have to be

above the ceiling, lower imputed values are rejected and the imputation is

repeated until all drawn values are above the ceiling. Alternatively drawings

directly from a truncated distribution as performed before could be applied.

In the multivariate case based on a tobit regression µ is replaced by x′iβ, which

allows to keep the covariate structure in the data set.

In a simulation study, this approach is compared to the multivariate approach

considering heteroscedasticity (MI-Het), which involves drawings from a con-

ditional distribution. As imputation model for MI-Het and as analysis model

for both approaches we assume again the model containing the wages in logs

as dependent variable and as covariates

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

In the analysis step, we apply OLS regression. Again, the true parameters

β are obtained from an OLS regression using the original complete popula-

tion and the analysis model. The results of this simulation study show that

an unconditional imputation is not applicable to impute censored wages, es-

pecially for analyzing high wage groups with a high percentage of censored

observations, like persons with university degree (education level 6, see Table

9.1). While results for most other variables are surprisingly good, we receive

especially for education level 6 underestimated parameter estimates and a low

coverage rate. If we consider that this imputation approach can also be seen

as a case of uncongeniality, where the imputer’s model contains none of the

variables of the analyst’s model, we find that apart from the problem concern-

ing high-skilled employees, the imputation quality is much better than one

could expect. Generally, here the same situation appears as when for example

the effect of the establishment size is to be analyzed, but the establishment
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size was not included in the imputation model. While in that case only the

estimation of the effects of the establishment size might be biased, here the

whole multivariate structure is not reflected in the imputed data.

9.2 Combining with External Data

A further alternative method which is feasible in the case of censored wages in

the IAB Employment Sample is to concatenate external data with complete

wage information. Rubin (1986) coined the term file concatenation for the

situation of statistical matching which is similar to the idea presented here. If

it is possible to find a database with a similar structure and similar variables,

one could concatenate the complete data set with the data set with missings

in order to obtain a missingness pattern, where some of the higher wages are

missing, but the wage distribution is not completely censored from a certain

ceiling. In such a case, standard imputation techniques and standard impu-

tation software could be applied. Since the IABS and GSES have a similar

structure and a common set of variables, this approach can be applied here. If

the GSES is concatenated to the IABS, we obtain a situation where we have

a common set of covariates Z and wage variable Y containing some missings

in the upper part (see Figure 9.1).

In this case software packages, like, e.g., the standalone software IVEware,

MICE in R or ICE in STATA, can be used to impute the missing part of

wages. Figure 9.2 shows first results of a single imputation performed using

IVEware1 based on the IABS and GSES for 2001. The solid line refers to the

original wages in the GSES, the dashed line to wages in the IABS (original

wages up to the ceiling, imputed wages onwards). The vertical line indicates

the ceiling in the IAB Employment Sample.

Although this approach is implemented in standard packages, to perform a

simulation study, it appears more feasible to programme the procedure indi-

vidually in STATA. Unfortunately, there is no adequate complete information

to assess the imputation quality. The only way to get an idea about the im-

putation quality is again to perform a simulation study using the German

Structure of Earnings Survey. To do so, the simulation procedure is adapted

as follows: The complete data set is divided into two parts: one part is serving

1More information on IVEware can be found in Raghunathan et al. (2002)
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Figure 9.1: File concatenation of the IAB Employment Sample with external

data
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Figure 9.2: Kernel density estimates of imputed wages in the IABS and original

wages in the GSES (2001)
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as the complete data set (external data), the other part is artificially censored

and serves as the data set with censoring. In every iteration we draw 10 per-

cent samples from both data sets and concatenate these two samples. Then we

impute the missing wages in the censored part applying the two-step procedure

for patterns with only one variable subject to missingness as discussed in Sec-

tion 6.3. As we now observe the entire wage distribution (with some missing

values in the upper part), we can directly fit an OLS regression and perform

random draws of the parameter ψ according to the observed-data posterior

distribution f(ψ|Yobs). Then, we perform random draws of Ymis according to

their conditional predictive distribution f(Ymis|Yobs, ψ). This situation is simi-

lar to a classical missing data problem, where some information is missing, but

only for one variable. In this case we do not need starting values to receive a

first complete data posterior distribution and no iterations based on MCMC

are necessary.

In particluar, we run an OLS regression using all units without missing wages

from both parts to receive β̂obs and σ̂2
obs. Then we perform random draws

of β and σ2 according to the observed-data posterior distribution. To draw

the variance σ2 we need again the inverse of a gamma distribution, which is

produced as follows:

g ∼ χ2(n− k) (9.1)

σ−2 =
g

RSS
(9.2)

where RSS is the residual sum of squares RSS =
n∑

i=1

(yobs − x′iβ̂obs)
2 and k is

the number of columns of X.

Now new random draws for the parameter β can be performed

β|σ2 ∼ N(β̂obs, σ
2(X ′X)−1). (9.3)

Then we perform random draws of the missing wages according to their con-

ditional predictive distribution

zi|β, σ2 ∼ Ntrunca(x
′
iβ, σ

2) if yi = a for i = 1, ..., n (9.4)

where z is again a truncated variable in the range (a,∞). In every iteration of

the simulation study we repeat the draws for the parameter and the draws of
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the missing values m = 5 times to receive 5 complete data sets. Afterwards,

we divide the two parts again and continue with the analysis step as in the

simulation studies before. The whole procedure of drawing 10 percent samples,

concatenating the data sets, performing the imputation and analysis steps is

repeated again 1,000 times and the corresponding coverage rates are calculated.

We perform parallely the imputation approach considering heteroscedasticity

(MI-Het) to be able to compare the approaches. As imputation and analysis

model for this simulation study we use again the model with

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

In the analysis step, we apply again OLS regression. The corresponding results

can be found in Table 9.2. These results indicate that the imputation quality

otained by performing this alternative approach and MI-Het are very similar.

Note, that we have divided the GSES into two parts. That means, the sample

of the GSES serving as true complete population now contains only half of

the observations used for the simulation studies in Chapter 8 (N=184,168).

Therefore, the results for MI-Het in this chapter are not directly comparable

with the corresponding results in Chapter 8 and in Section 9.1. For example,

the coverage for industry 18 turns out considerably higher than in the preceding

simulation studies, which might be due to the smaller simulation sample.

Instead of using an OLS regression in the first step, a GLS estimation could be

applied in order to allow again for heteroscedasticity. Then, in the second step

draws for γ would have to be performed additionally and in the imputation

step, we could use individual variances again to draw values for the missing

wages. The results based on the approach considering heteroscedasticity can

be found in Table A.2 of the appendix. Using external information and con-

sidering heteroscedasticity leads to results that are very close to the results

from the tobit-based MI approach allowing for heteroscedasticity (MI-Het).

Accordingly, we conclude that the new approach MI-Het leads to results com-

parable to an approach that uses additional uncensored information from an

external data set. Because the approach using external data can be seen as

a kind of benchmark, the last results confirm again the validity of our new

approach considering heteroscedasticity (MI-Het).

When discussing an approach based on combining data from the IAB Employ-

ment Sample and from the German Structure of Earnings Survey, we have to
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before censoring MI-Ext MI-Het

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0363 0.0363 0.951 0.0368 0.947 0.0367 0.950

education3 0.0682 0.0679 0.963 0.0555 0.948 0.0609 0.962

education4 0.0732 0.0736 0.965 0.0661 0.931 0.0673 0.929

education5 0.1364 0.1367 0.958 0.1421 0.945 0.1475 0.857

education6 0.1799 0.1801 0.966 0.1706 0.902 0.1778 0.952

level2 0.0097 0.0097 0.954 0.0086 0.950 0.0083 0.954

level3 0.0417 0.0429 0.969 0.0426 0.969 0.0419 0.970

level4 0.0237 0.0249 0.963 0.0109 0.956 0.0082 0.949

group2 -0.0943 -0.0943 0.967 -0.0922 0.959 -0.0919 0.953

group3 -0.1864 -0.1864 0.961 -0.1835 0.940 -0.1833 0.935

group4 -0.3095 -0.3095 0.961 -0.3069 0.941 -0.3068 0.938

group5 0.3854 0.3839 0.962 0.3803 0.960 0.3853 0.955

group6 0.1372 0.1359 0.957 0.1469 0.962 0.1472 0.960

group7 0.0442 0.0428 0.960 0.0571 0.951 0.0580 0.950

group8 -0.1719 -0.1731 0.964 -0.1588 0.946 -0.1563 0.938

group9 -0.3426 -0.3447 0.962 -0.3302 0.952 -0.3286 0.944

age 0.0249 0.0250 0.950 0.0255 0.945 0.0248 0.967

sqage -0.0003 -0.0003 0.950 -0.0003 0.920 -0.0003 0.971

region2 0.0360 0.0363 0.965 0.0445 0.652 0.0400 0.921

region3 0.0039 0.0040 0.966 0.0084 0.881 0.0063 0.966

region4 0.0517 0.0519 0.963 0.0519 0.966 0.0474 0.869

industry2 -0.0459 -0.0458 0.948 -0.0439 0.955 -0.0445 0.955

industry3 -0.1091 -0.1091 0.955 -0.1115 0.953 -0.1124 0.942

industry4 0.0088 0.0087 0.963 0.0099 0.973 0.0110 0.963

industry5 0.0774 0.0771 0.957 0.0707 0.959 0.0734 0.944

industry6 0.0817 0.0815 0.962 0.0834 0.961 0.0842 0.952

industry7 0.0628 0.0624 0.961 0.0658 0.970 0.0673 0.949

industry8 -0.0144 -0.0144 0.958 -0.0103 0.950 -0.0105 0.943

industry9 -0.0170 -0.0173 0.965 -0.0129 0.960 -0.0130 0.955

industry10 0.0214 0.0212 0.973 0.0261 0.940 0.0260 0.935

industry11 -0.0354 -0.0359 0.957 -0.0322 0.951 -0.0323 0.945

industry12 -0.0030 -0.0032 0.960 0.0018 0.927 0.0021 0.922

industry13 -0.0138 -0.0143 0.963 -0.0173 0.973 -0.0174 0.959

industry14 -0.0302 -0.0305 0.952 -0.0295 0.955 -0.0296 0.943

industry15 -0.0416 -0.0421 0.965 -0.0376 0.961 -0.0384 0.956

industry16 0.0388 0.0385 0.959 0.0415 0.962 0.0419 0.956

industry17 -0.0808 -0.0808 0.963 -0.0781 0.965 -0.0779 0.960

industry18 -0.0088 -0.0088 0.966 0.0064 0.622 0.0069 0.603

industry19 -0.0201 -0.0203 0.957 -0.0140 0.904 -0.0138 0.901

industry20 -0.1055 -0.1053 0.959 -0.1036 0.957 -0.1035 0.951

industry21 -0.0906 -0.0916 0.910 -0.0897 0.876 -0.0898 0.880

industry22 -0.1134 -0.1137 0.959 -0.1163 0.949 -0.1168 0.937

industry23 -0.0527 -0.0532 0.961 -0.0536 0.979 -0.0542 0.966

industry24 -0.1616 -0.1617 0.963 -0.1603 0.971 -0.1609 0.970

industry25 -0.2182 -0.2180 0.952 -0.2139 0.944 -0.2142 0.947

industry26 -0.0579 -0.0580 0.956 -0.0562 0.958 -0.0561 0.952

industry27 -0.0477 -0.0476 0.957 -0.0505 0.957 -0.0507 0.952

industry28 -0.0904 -0.0909 0.956 -0.0881 0.954 -0.0885 0.950

industry29 -0.0702 -0.0704 0.964 -0.0659 0.945 -0.0663 0.946

industry30 -0.0690 -0.0690 0.952 -0.0775 0.915 -0.0787 0.887

industry31 -0.0657 -0.0661 0.959 -0.0633 0.970 -0.0650 0.960

industry32 -0.0596 -0.0605 0.921 -0.0636 0.929 -0.0631 0.927

industry33 0.0085 0.0082 0.967 0.0056 0.962 0.0072 0.951

industry34 -0.0960 -0.0958 0.962 -0.0848 0.869 -0.0846 0.855

industry35 -0.0061 -0.0064 0.959 -0.0201 0.876 -0.0227 0.809

industry36 -0.2607 -0.2607 0.948 -0.2610 0.948 -0.2616 0.952

contract -0.1116 -0.1112 0.936 -0.1129 0.944 -0.1107 0.945

cons 4.0396 4.0375 0.945 4.0287 0.929 4.0395 0.967

Table 9.2: Imputation using external data versus MI-Het
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note that there are some differences between these two samples. Whereas in

the IAB Employment Sample all employees liable to social insurance are cov-

ered, in the GSES only employees in the manufacturing industry and service

sector are covered. Accordingly the agriculture and fishing sector is excluded.

Hence, we would have to exclude this sector from the IAB Employment Sam-

ple as well or we need to apply an imputation model that does not contain

industry dummies. As the second solution may lead to an unappropriate im-

putation model, it is more feasible to exclude this sector, which does not play

an important role in most studies anyway.

Besides, we have to find an imputation model that is a good predictor for

wages and consists of variables that are available in both data sets. In the

simulation study, we divided the GSES into two parts: One part simulating

the complete data set, the other part simulating the censored data set. Because

we aim to receive the best possible imputation results for this data set, we fit

an imputation model, that seems to be appropriate in this case. But we have to

note that if we actually want to apply this approach to the IABS, we would have

to apply a different model. Table A.3 in the appendix shows the results when

an imputation model restricted to variables that can be found in both data

sets and the multiple imputation approach that allows for heteroscedasticity

are applied.

Furthermore, this approach using external information involves some other

drawbacks. The main disadvantage is that the IABS and the GSES have

actually to be concatenated. Currently, a scientific use file of the GSES is

only available for the year 2001, all other years can only be used on-site at

the research data center of the German Statistical Office. The IABS on the

other hand can be used only at the IAB. Accordingly, an imputation using

this approach is possible for 2001 only at the moment. After the release of the

scientific use file of the GSES 2006 it will applicable for two years.

That is why we present another approach based on using external data for the

imputation in the IAB Employment Sample that is applicable for all years,

the German Structure of Earnings Survey was conducted in.

9.3 Starting Values from External Data

The idea behind this second version of imputation approaches based on using

external information is to improve the starting values. It is mainly based on



9.3. STARTING VALUES FROM EXTERNAL DATA 127

before censoring MI-Het (extern.) MI-het (tobit)

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0363 0.0363 0.957 0.0368 0.967 0.0368 0.962

education3 0.0682 0.0686 0.961 0.0617 0.955 0.0616 0.955

education4 0.0732 0.0734 0.967 0.0672 0.926 0.0672 0.920

education5 0.1364 0.1367 0.965 0.1477 0.863 0.1477 0.862

education6 0.1799 0.1797 0.959 0.1776 0.957 0.1776 0.953

level2 0.0097 0.0099 0.958 0.0086 0.954 0.0086 0.955

level3 0.0417 0.0422 0.954 0.0414 0.954 0.0413 0.957

level4 0.0237 0.0236 0.951 0.0072 0.926 0.0072 0.921

group2 -0.0943 -0.0942 0.961 -0.0918 0.944 -0.0918 0.950

group3 -0.1864 -0.1863 0.958 -0.1832 0.930 -0.1832 0.930

group4 -0.3095 -0.3097 0.961 -0.3070 0.941 -0.3070 0.940

group5 0.3854 0.3856 0.943 0.3867 0.947 0.3867 0.939

group6 0.1372 0.1375 0.946 0.1486 0.934 0.1486 0.936

group7 0.0442 0.0444 0.946 0.0594 0.927 0.0594 0.928

group8 -0.1719 -0.1716 0.943 -0.1551 0.918 -0.1551 0.923

group9 -0.3426 -0.3411 0.950 -0.3255 0.933 -0.3255 0.936

age 0.0249 0.0249 0.958 0.0248 0.970 0.0248 0.974

sqage -0.0003 -0.0003 0.957 -0.0003 0.971 -0.0003 0.973

region2 0.0360 0.0362 0.961 0.0396 0.919 0.0397 0.915

region3 0.0039 0.0039 0.967 0.0060 0.965 0.0060 0.966

region4 0.0517 0.0517 0.953 0.0471 0.837 0.0471 0.844

industry2 -0.0459 -0.0454 0.962 -0.0441 0.960 -0.0441 0.963

industry3 -0.1091 -0.1086 0.955 -0.1119 0.951 -0.1119 0.948

industry4 0.0088 0.0089 0.959 0.0113 0.951 0.0113 0.953

industry5 0.0774 0.0770 0.969 0.0731 0.950 0.0732 0.950

industry6 0.0817 0.0814 0.946 0.0841 0.935 0.0842 0.933

industry7 0.0628 0.0629 0.952 0.0678 0.929 0.0678 0.929

industry8 -0.0144 -0.0141 0.964 -0.0103 0.941 -0.0103 0.940

industry9 -0.0170 -0.0171 0.956 -0.0127 0.955 -0.0126 0.952

industry10 0.0214 0.0215 0.957 0.0264 0.914 0.0265 0.916

industry11 -0.0354 -0.0352 0.962 -0.0316 0.949 -0.0316 0.952

industry12 -0.0030 -0.0031 0.952 0.0019 0.915 0.0019 0.921

industry13 -0.0138 -0.0137 0.967 -0.0169 0.963 -0.0169 0.966

industry14 -0.0302 -0.0301 0.960 -0.0294 0.960 -0.0293 0.961

industry15 -0.0416 -0.0414 0.962 -0.0380 0.956 -0.0379 0.948

industry16 0.0388 0.0389 0.954 0.0422 0.950 0.0423 0.947

industry17 -0.0808 -0.0804 0.956 -0.0776 0.948 -0.0776 0.946

industry18 -0.0088 -0.0088 0.974 0.0069 0.585 0.0069 0.589

industry19 -0.0201 -0.0199 0.965 -0.0136 0.917 -0.0135 0.914

industry20 -0.1055 -0.1053 0.961 -0.1036 0.960 -0.1036 0.960

industry21 -0.0906 -0.0904 0.899 -0.0888 0.871 -0.0888 0.880

industry22 -0.1134 -0.1135 0.960 -0.1163 0.954 -0.1163 0.951

industry23 -0.0527 -0.0525 0.960 -0.0534 0.965 -0.0535 0.967

industry24 -0.1616 -0.1615 0.960 -0.1607 0.965 -0.1607 0.963

industry25 -0.2182 -0.2178 0.958 -0.2141 0.947 -0.2140 0.947

industry26 -0.0579 -0.0581 0.962 -0.0563 0.954 -0.0563 0.956

industry27 -0.0477 -0.0477 0.947 -0.0509 0.937 -0.0508 0.944

industry28 -0.0904 -0.0899 0.962 -0.0877 0.961 -0.0876 0.956

industry29 -0.0702 -0.0703 0.956 -0.0663 0.940 -0.0663 0.934

industry30 -0.0690 -0.0688 0.959 -0.0786 0.903 -0.0784 0.899

industry31 -0.0657 -0.0659 0.968 -0.0647 0.957 -0.0649 0.963

industry32 -0.0596 -0.0606 0.909 -0.0637 0.915 -0.0636 0.917

industry33 0.0085 0.0093 0.947 0.0079 0.945 0.0080 0.949

industry34 -0.0960 -0.0959 0.965 -0.0846 0.859 -0.0845 0.855

industry35 -0.0061 -0.0057 0.958 -0.0225 0.823 -0.0225 0.825

industry36 -0.2607 -0.2607 0.958 -0.2619 0.957 -0.2618 0.960

contract -0.1116 -0.1119 0.946 -0.1113 0.953 -0.1113 0.951

cons 4.0396 4.0397 0.964 4.0415 0.979 4.0415 0.979

Table 9.3: Imputation using external starting values versus MI-Het
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the multiple imputation approaches performing a tobit regression in the first

step (MI-Hom and MI-Het). Instead of adapting starting values for β(0) and

the variance σ2(0) from a tobit regression, an OLS regression is performed

using the complete external data set only. Then, values for the missing wages

are randomly drawn from a truncated distribution in analogy to the MI-Hom

approach using these starting values

z
(0)
i ∼ Ntrunca(x

′
iβ

(0)
ext, σ

2(0)
ext ) if yi = a for i = 1, ..., n. (9.5)

Now the same Markov chain Monte Carlo algorithm as in the MI-Hom ap-

proach can be performed to receive m = 5 complete data sets. This procedure

can be performed considering heteroscedasticity in the same way. Again, we

start the imputation by adapting starting values for β
(0)
ext and γ

(0)
ext from a GLS

estimation for truncated variables. Then, we draw values for the missing wages

from a truncated distribution using individual variances σ
2(0)
i = ew′

iγ
(0)
ext again

like in the heteroscedastic single imputation model:

z
(0)
i ∼ Ntrunca(x

′
iβ

(0)
ext, σ

2(0)
i ) where σ

2(0)
i = ew′

iγ
(0)
ext if yi = a for i = 1, ..., n.

(9.6)

Afterwards, we continue like in the MI-Het approach. This approach based on

starting values from external data is also compared in a simulation study to the

MI-Het approach. One additional objective of this simulation study is to assess

if using a tobit model to receive starting values for the imputation procedure

is an applicable approach. Using a tobit model we have to assume properties

of the wage distribution like normality. Comparing starting values from a

tobit estimation to starting values from an uncensored external distribution,

we can assess the applicability of tobit regression in our case. The simulation

procedure is adapted here as follows: The complete data set is divided again

into two parts: one part serving as the complete data set (external data),

the other part will be artificially censored and serves as the data set with

censoring. In every iteration we draw 10 percent samples from both data sets.

We run a GLS regression using the complete random sample to receive the

starting values for β
(0)
ext and γ

(0)
ext. Then we discard the complete sample and

go on with the imputation of the censored sample using these starting values.

Afterwards we perform the analysis step and repeat the whole procedure 1,000

times and calculate the coverage rates. As imputation and analysis model we



9.4. MINIMUM REQUIREMENTS 129

use again the model containing as covariates Xlarge and run OLS regression in

the analysis step.

Table 9.3 shows the results of this simulation study. The results of the two

approaches compared in this simulation study are surprisingly similar. The re-

sults therefore indicate that applying a tobit regression is an applicable strat-

egy, as it leads to the same results as starting values from observed complete

data.

This procedure can be performed for all years, in which the GSES was con-

ducted. While the starting values for 2001 can be estimated using the scientific

use file, for all other years they have to be calculated onsite or by remote ac-

cess. Then the starting values can be transferred to the IAB without any data

privacy protection restrictions.

9.4 Minimum Requirements for Imputation

based on External Data

The preceding simulation studies have shown that imputation approaches for

right-censored wages based on starting values from a tobit estimation lead to

valid imputed data. Imputation based on external information leads to a good

imputation quality as well, if the data set with censored wages is combined

with complete external information or the imputation is based on starting val-

ues for the parameters from external data. In this section, it will be assessed

whether a minimum of information from external data is sufficient to obtain a

satisfying imputation quality. To do so, we assume that the only information

that is available from external data is in the form of wage quantiles. While

for the approaches discussed before, the entire external data set is necessary,

quantile information can be obtained easily. It can be calculated without any

knowledge about multiple imputation by the data provider and it does not de-

pend on the specific imputation problem and model. Sometimes information

on the distribution of wage quantiles (i.e the median, quartiles, and deciles)

can even be found in publications of statistical offices. Therefore, it can be

seen as a kind a minimum amount of external information that can easily

be obtained, but it may be already sufficient to perform multiple imputation

based on external information. Based on the quantile information we develop

imputation approaches that need no additional information to impute the cen-
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sored wages and assess the quality of these approaches performing simulation

studies again.

We assume once more that all wages from the 85th percentile onwards are

censored. From the external data set we obtain in a first scenario the values

of all wage percentiles from the 85th to the 99th percentile (in one percent

steps). In order to perform the imputation, the external information does not

necessarily need to be in percentiles; any kind of quantile information about the

upper part of the wage distribution would be sufficient. In the second step we

fit a logit model with a dummy for censored/uncensored wage as independent

variable to the censored wage data in order to estimate the propensity score.

The propensity score is the probability of a person having a censored wage

observation given a set of known covariates. In parallel, we apply a tobit

model to receive predicted values for the censored wage observations. In the

next step we distribute the persons with censored wage information to the 15

cells between the 15 percentiles. The censored observations with the lowest

predicted wage (or lowest probability to have a censored wage observation)

go to the cell between the 85th and the 86th percentile, the next to the cell

between the 86th and the 87th and so on. Once we have filled the cells, we

obtain a coarsened distribution. Afterwards, we apply an interval regression for

coarsened data, which represents a generalization of the tobit model. Interval

regression models can fit models for data where each observation represents

interval data, left-censored data, right-censored data, or point data. In the

case of the IAB Employment Sample, we find data where all observations up

to ceiling a are observed and all higher observation are right-censored, i.e., lie in

the range (a,∞). On the other hand, in the estimated coarsened distribution,

all observations lower than a are observed as well, but the higher observations

lie in 14 smaller intervals between the percentiles and in one right-censored

interval (P89,∞), where P89 represents the 89th percentile. As we now have

estimated a coarsened complete data distribution we can apply again a two-

step imputation procedure. A main advantage of this procedure is that we do

not need starting values from a tobit model, but instead can directly apply

an interval regression and perform random draws of the parameter ψ in the

first step and random draws of Ymis according to their conditional predictive

distribution in the second step. We fit an interval regression for that kind

of coarsened data, which can be found for example in the intreg command in

STATA, to estimate the parameters of the wage distribution. Now, we are
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able to perform draws for the parameters and afterwards random draws for

the missing wages from a truncated distribution:

zi|β, σ2 ∼ Ntrunca(x
′
iβ, σ

2) if yi = a for i = 1, ..., n (9.7)

The draws for the parameters and the imputation step are then repeated 5

times to receive m = 5 complete data sets.

In a simulation study this approach is then compared to the MI approach

considering heteroscedasticity. The GSES is divided again into two parts:

one part serving as the complete data set (external data), the other part will

be artificially censored and serves as the data set with censoring. In every

iteration we draw 10 percent samples from both data sets and calculate the

percentiles in the uncensored part, which is deleted afterwards. Then, the

missing wage information is imputed based on the approach described above

and based on MI-Het. Finally, we repeat these steps again 1,000 times to be

able to calculate coverage rates. The imputation and analysis model consists of

the same variables as in the preceding simulation studies (Xlarge). The results

of this simulation study can be found in Table 9.4 and can be summarized as

follows:

Compared to MI-Het approach the results of the quantile-information based

approach are more or less the same for most variables, except for the dummies

for technical college degree (education5) and university degree (education6).

For this two variables representing groups with an especially high percentage

of censored observations, the coverage rates are somewhat lower. The results

indicate that in the simulated case a logit model is more suitable than a tobit

model to distribute the censored observations into a coarsened distribution.

Whereas the results for education level 6 are in both cases around 56 percent,

the coverage rate for education level 6 based on a logit model in the first step

(0.691) is higher compared to the result based on a tobit model in the first

step (0.455).

The imputation approach based on external quantile information could be

varied and adapted in several ways. First, in the first step a probit model

could be applied instead of the logit model. An additional simulation showed

that this modification has little effect on the imputation results. Second, the

size of the cells could be modified. If less external quantile information is

available (for example only in 3 or 5 percentage point steps), the censored

observations have to be assigned to larger cells. If information is available only
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before censoring EXT-logit EXT-tobit MI-Het

true β β̂ Coverage β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0363 0.0364 0.961 0.0371 0.959 0.0371 0.956 0.0368 0.963

education3 0.0682 0.0678 0.962 0.0590 0.939 0.0574 0.937 0.0619 0.966

education4 0.0732 0.0736 0.955 0.0685 0.949 0.0673 0.932 0.0674 0.933

education5 0.1364 0.1366 0.961 0.1570 0.558 0.1568 0.555 0.1474 0.852

education6 0.1799 0.1800 0.956 0.1964 0.691 0.2038 0.455 0.1777 0.947

level2 0.0097 0.0098 0.962 0.0090 0.961 0.0090 0.961 0.0085 0.970

level3 0.0417 0.0429 0.954 0.0427 0.953 0.0427 0.954 0.0419 0.952

level4 0.0237 0.0250 0.961 0.0125 0.946 0.0120 0.939 0.0084 0.934

group2 -0.0943 -0.0944 0.959 -0.0918 0.948 -0.0918 0.940 -0.0920 0.941

group3 -0.1864 -0.1864 0.965 -0.1830 0.938 -0.1829 0.939 -0.1832 0.940

group4 -0.3095 -0.3092 0.966 -0.3055 0.932 -0.3054 0.929 -0.3065 0.940

group5 0.3854 0.3837 0.964 0.3975 0.954 0.3978 0.953 0.3852 0.959

group6 0.1372 0.1356 0.961 0.1423 0.957 0.1423 0.954 0.1471 0.952

group7 0.0442 0.0428 0.960 0.0532 0.950 0.0536 0.949 0.0581 0.943

group8 -0.1719 -0.1732 0.958 -0.1606 0.949 -0.1599 0.941 -0.1564 0.933

group9 -0.3426 -0.3442 0.971 -0.3315 0.962 -0.3307 0.959 -0.3281 0.957

age 0.0249 0.0249 0.970 0.0256 0.939 0.0256 0.941 0.0248 0.981

sqage -0.0003 -0.0003 0.971 -0.0003 0.919 -0.0003 0.910 -0.0003 0.975

region2 0.0360 0.0360 0.956 0.0451 0.620 0.0455 0.592 0.0397 0.913

region3 0.0039 0.0039 0.968 0.0083 0.877 0.0086 0.870 0.0061 0.967

region4 0.0517 0.0517 0.959 0.0540 0.934 0.0541 0.936 0.0471 0.848

industry2 -0.0459 -0.0458 0.966 -0.0446 0.961 -0.0448 0.964 -0.0445 0.958

industry3 -0.1091 -0.1090 0.959 -0.1128 0.959 -0.1130 0.959 -0.1121 0.960

industry4 0.0088 0.0085 0.966 0.0095 0.962 0.0092 0.963 0.0106 0.960

industry5 0.0774 0.0780 0.948 0.0791 0.934 0.0760 0.935 0.0742 0.946

industry6 0.0817 0.0816 0.957 0.0843 0.940 0.0840 0.935 0.0847 0.938

industry7 0.0628 0.0628 0.967 0.0712 0.861 0.0710 0.858 0.0678 0.920

industry8 -0.0144 -0.0140 0.955 -0.0103 0.945 -0.0103 0.938 -0.0101 0.936

industry9 -0.0170 -0.0163 0.961 -0.0127 0.956 -0.0129 0.952 -0.0119 0.945

industry10 0.0214 0.0219 0.958 0.0261 0.937 0.0262 0.927 0.0267 0.918

industry11 -0.0354 -0.0349 0.950 -0.0323 0.940 -0.0323 0.935 -0.0315 0.934

industry12 -0.0030 -0.0030 0.962 0.0023 0.918 0.0021 0.917 0.0022 0.915

industry13 -0.0138 -0.0138 0.963 -0.0132 0.942 -0.0142 0.955 -0.0169 0.943

industry14 -0.0302 -0.0302 0.948 -0.0290 0.958 -0.0293 0.961 -0.0294 0.963

industry15 -0.0416 -0.0413 0.956 -0.0377 0.941 -0.0379 0.942 -0.0380 0.947

industry16 0.0388 0.0387 0.962 0.0424 0.952 0.0427 0.946 0.0419 0.956

industry17 -0.0808 -0.0803 0.966 -0.0795 0.968 -0.0795 0.966 -0.0774 0.957

industry18 -0.0088 -0.0085 0.964 0.0060 0.656 0.0069 0.616 0.0073 0.590

industry19 -0.0201 -0.0198 0.963 -0.0143 0.920 -0.0142 0.916 -0.0134 0.900

industry20 -0.1055 -0.1058 0.979 -0.1056 0.976 -0.1057 0.977 -0.1040 0.972

industry21 -0.0906 -0.0903 0.912 -0.0898 0.896 -0.0899 0.899 -0.0886 0.883

industry22 -0.1134 -0.1132 0.965 -0.1174 0.950 -0.1174 0.945 -0.1163 0.958

industry23 -0.0527 -0.0523 0.972 -0.0531 0.962 -0.0536 0.967 -0.0533 0.966

industry24 -0.1616 -0.1615 0.956 -0.1626 0.957 -0.1626 0.961 -0.1610 0.966

industry25 -0.2182 -0.2177 0.965 -0.2148 0.957 -0.2149 0.961 -0.2140 0.955

industry26 -0.0579 -0.0575 0.969 -0.0570 0.960 -0.0570 0.960 -0.0559 0.948

industry27 -0.0477 -0.0476 0.973 -0.0517 0.963 -0.0518 0.966 -0.0508 0.969

industry28 -0.0904 -0.0898 0.961 -0.0881 0.965 -0.0881 0.961 -0.0874 0.960

industry29 -0.0702 -0.0701 0.966 -0.0671 0.952 -0.0671 0.955 -0.0662 0.951

industry30 -0.0690 -0.0682 0.966 -0.0839 0.808 -0.0835 0.822 -0.0783 0.914

industry31 -0.0657 -0.0655 0.963 -0.0691 0.952 -0.0691 0.962 -0.0649 0.963

industry32 -0.0596 -0.0586 0.903 -0.0639 0.922 -0.0638 0.920 -0.0616 0.903

industry33 0.0085 0.0095 0.963 0.0126 0.919 0.0099 0.912 0.0080 0.951

industry34 -0.0960 -0.0958 0.967 -0.0943 0.955 -0.0956 0.957 -0.0846 0.865

industry35 -0.0061 -0.0058 0.961 -0.0192 0.854 -0.0203 0.833 -0.0219 0.835

industry36 -0.2607 -0.2607 0.949 -0.2632 0.955 -0.2633 0.956 -0.2618 0.952

contract -0.1116 -0.1119 0.919 -0.1149 0.933 -0.1151 0.932 -0.1114 0.943

cons 4.0396 4.0384 0.966 4.0259 0.928 4.0248 0.919 4.0405 0.979

Table 9.4: Multiple imputation based on external quantiles
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in steps of 3 percentage points, a simulation study showed that this kind of

modification has little effect on the quality of the imputation results. Besides,

the imputation could be done considering heteroscedasticity. So far, in the

last step the missing wages were drawn from a truncated normal distribution

assuming homoscedasticity of the residuals. It is certainly possible to perform

this step considering heteroscedasticity. Yet, as first analyses have shown, when

the approach based on quantile information is applied that generalization does

not contribute to a better imputation quality. Further possible modifications

concern the Bayesian draws of the parameters. It is for instance possible to

perform additional draws to add noise to the estimates of the initial logit or

tobit model before calculating the propensity score or the predicted wages

respectively. The random draws for the missing wages could be modified as

well. Instead of drawing the values from a normal distribution truncated in

the range (a,∞), more restrictions could be included in the imputation step.

For example, the draws could be performed in a way that ensures that every

imputed values lies in the range of the cell the observation was assigned to in

the beginning.

Another possibility to perform multiple imputation based on external quan-

tile information is to apply an univariate or unconditional approach. Here, no

model has to be defined in order to distribute individuals to certain cells. The

persons can be just randomly assigned to the cells. Alternatively the assign-

ment can be done by propensity scores or predicted wages, but the way chosen

has no impact on the imputation results. We just need a coarsened distribu-

tion, but this distribution may be completely independent from any covariates.

Once we have assigned the observations to the coarsened distribution, we are

able to estimate the uncensored mean µ and the corresponding standard de-

viation σ of this distribution. This can easily be performed by running an

interval regression with wages as independent variable just on a constant. The

estimated parameter for the intercept will then be equivalent to the mean.

Afterwards the missing wages can be drawn from a distribution truncated at

a with mean µ and standard deviation σ. Alternatively a rejection algorithm

could be applied here as well. The results of such an imputation can be found

in Table 9.5. For most variables we receive here again a coverage rate compara-

ble to the results of the MI approach considering heteroscedasticity (MI-Het).

Compared to the first approach based on external quantile information, the

result concerning education level 5 is significantly improved (0.919). On the
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other hand, for the group with the highest percentage of censored observations,

education level 6, we find a rather disappointing result (0.154).

We can conclude that the proposed imputation approaches based on exter-

nal quantile information need only external information, which can be easily

obtained from various sources. Based on that minimum amount of external

information we receive coverage rates, which are satisfying for most variables.

However, we have to admit that the imputation quality of these approaches is

somewhat lower compared to the approaches based on combining the censored

data with complete external data or based on starting values from external

data. Consequently there is a trade-off between imputation quality and the

minimum requirement of external information that is needed to perform the

imputation approach. Basically, wage quantiles as a minimum amount of ex-

ternal information are sufficient to impute censored wages. Yet, whenever more

information is available it is preferable to apply one of the approaches that use

additional information.

Having evaluated various alternatives to the imputation approaches based on

starting values from a tobit model, we can conclude that the proposed MI

approach considering heteroscedasticity (MI-Het) is easy to implement as it

requires no external information. However, the same assumptions that are ap-

plicable for estimating a tobit model have to be presumed using MI-Het. Simu-

lation studies have shown that in the case of the German Structure of Earnings

Survey the assumptions about the error distribution of the tobit model do not

influence the imputation quality. More importantly, this approach yields good

imputation results, which are comparable to results of approaches that require

external information, in some cases even better. Hence, for most cases it is

advisable to apply the multiple imputation approach considering heteroscedas-

ticity combined with a lognormal transformation of the wages to impute the

censored wage information in the IAB Employment Sample. Accordingly, we

can finally summarize that there is no external information necessary to ob-

tain valid imputations, because the MI approach considering heteroscedastic-

ity working without external information yields imputation results that are at

least comparable to the approaches requiring external information.
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before censoring MI-Uni MI-Het

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0363 0.0365 0.958 0.0368 0.962 0.0369 0.966

education3 0.0682 0.0688 0.964 0.0585 0.971 0.0619 0.965

education4 0.0732 0.0738 0.953 0.0659 0.937 0.0676 0.925

education5 0.1364 0.1366 0.955 0.1277 0.919 0.1473 0.864

education6 0.1799 0.1802 0.959 0.1481 0.154 0.1777 0.943

level2 0.0097 0.0098 0.956 0.0090 0.958 0.0085 0.959

level3 0.0417 0.0426 0.953 0.0467 0.961 0.0419 0.959

level4 0.0237 0.0243 0.949 0.0143 0.950 0.0079 0.929

group2 -0.0943 -0.0945 0.962 -0.0956 0.960 -0.0921 0.951

group3 -0.1864 -0.1867 0.961 -0.1882 0.963 -0.1836 0.940

group4 -0.3095 -0.3098 0.968 -0.3125 0.965 -0.3071 0.949

group5 0.3854 0.3847 0.948 0.3642 0.922 0.3859 0.948

group6 0.1372 0.1364 0.949 0.1526 0.933 0.1475 0.937

group7 0.0442 0.0433 0.944 0.0590 0.941 0.0583 0.931

group8 -0.1719 -0.1728 0.942 -0.1647 0.950 -0.1563 0.929

group9 -0.3426 -0.3438 0.958 -0.3337 0.957 -0.3279 0.932

age 0.0249 0.0248 0.956 0.0253 0.965 0.0247 0.965

sqage -0.0003 -0.0003 0.954 -0.0003 0.954 -0.0003 0.970

region2 0.0360 0.0360 0.956 0.0418 0.850 0.0397 0.919

region3 0.0039 0.0037 0.953 0.0063 0.932 0.0060 0.962

region4 0.0517 0.0513 0.968 0.0481 0.909 0.0469 0.831

industry2 -0.0459 -0.0464 0.946 -0.0439 0.962 -0.0452 0.951

industry3 -0.1091 -0.1096 0.957 -0.1094 0.965 -0.1125 0.946

industry4 0.0088 0.0091 0.947 0.0111 0.952 0.0114 0.942

industry5 0.0774 0.0773 0.972 0.0711 0.974 0.0736 0.951

industry6 0.0817 0.0812 0.963 0.0860 0.961 0.0841 0.957

industry7 0.0628 0.0624 0.964 0.0606 0.975 0.0672 0.945

industry8 -0.0144 -0.0142 0.956 -0.0103 0.953 -0.0104 0.942

industry9 -0.0170 -0.0168 0.960 -0.0131 0.963 -0.0126 0.954

industry10 0.0214 0.0219 0.952 0.0264 0.941 0.0268 0.919

industry11 -0.0354 -0.0347 0.953 -0.0305 0.935 -0.0313 0.929

industry12 -0.0030 -0.0029 0.963 0.0027 0.923 0.0023 0.908

industry13 -0.0138 -0.0136 0.964 -0.0173 0.977 -0.0169 0.957

industry14 -0.0302 -0.0306 0.958 -0.0293 0.973 -0.0300 0.958

industry15 -0.0416 -0.0416 0.955 -0.0372 0.971 -0.0384 0.961

industry16 0.0388 0.0384 0.949 0.0399 0.961 0.0418 0.945

industry17 -0.0808 -0.0806 0.953 -0.0769 0.950 -0.0777 0.950

industry18 -0.0088 -0.0085 0.955 0.0051 0.720 0.0070 0.594

industry19 -0.0201 -0.0200 0.966 -0.0133 0.917 -0.0136 0.908

industry20 -0.1055 -0.1053 0.955 -0.1020 0.960 -0.1037 0.957

industry21 -0.0906 -0.0908 0.920 -0.0885 0.898 -0.0892 0.899

industry22 -0.1134 -0.1135 0.958 -0.1152 0.957 -0.1167 0.942

industry23 -0.0527 -0.0526 0.955 -0.0508 0.973 -0.0535 0.951

industry24 -0.1616 -0.1614 0.963 -0.1585 0.977 -0.1612 0.965

industry25 -0.2182 -0.2184 0.956 -0.2131 0.949 -0.2148 0.948

industry26 -0.0579 -0.0580 0.956 -0.0565 0.951 -0.0563 0.948

industry27 -0.0477 -0.0474 0.962 -0.0491 0.976 -0.0506 0.961

industry28 -0.0904 -0.0903 0.960 -0.0876 0.961 -0.0879 0.956

industry29 -0.0702 -0.0702 0.969 -0.0666 0.955 -0.0662 0.944

industry30 -0.0690 -0.0686 0.954 -0.0706 0.983 -0.0786 0.904

industry31 -0.0657 -0.0654 0.959 -0.0581 0.956 -0.0642 0.955

industry32 -0.0596 -0.0601 0.905 -0.0604 0.916 -0.0633 0.911

industry33 0.0085 0.0087 0.959 0.0065 0.986 0.0072 0.951

industry34 -0.0960 -0.0962 0.963 -0.0764 0.687 -0.0850 0.867

industry35 -0.0061 -0.0064 0.963 -0.0205 0.903 -0.0228 0.803

industry36 -0.2607 -0.2598 0.933 -0.2570 0.910 -0.2610 0.937

contract -0.1116 -0.1114 0.949 -0.1126 0.954 -0.1109 0.965

cons 4.0396 4.0409 0.958 4.0393 0.966 4.0422 0.967

Table 9.5: Univariate imputation based on external quantile information versus

MI-Het
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Chapter 10

Applications

The main focus of this thesis is to propose a new multiple imputation approach

for right-censored wages considering heteroscedasticity. In several simulation

studies this method was compared to alternative approaches and the necessity

and the validity of this approach was confirmed. In the following chapter, some

typical real world examples will be presented to illustrate the importance of

applying imputation methods before wages in the IAB Employment Sample

can be analyzed. In the first part of the chapter some basic research questions

will be discussed, which can only be examined using the IABS when appropri-

ate solutions for the problem of censoring are applied. Some studies addressing

these research questions were already discussed in Chapter 5. Results based

on multiply imputed wages will be compared to results based on complete

and censored wages to show the utility of our new approach. In the second

part, some recent studies based on the IAB Employment Sample that already

applied our imputation methods for right-censored wages will be presented.

Finally, guidelines for researchers interested in applying multiple imputation

approaches to the IAB data are suggested.

10.1 Typical Examples from Economic Re-

search

The problem of censoring plays an important role whenever the wage variable

is in the center of interest of a research question. Even for simple descriptive

questions concerning the wage distribution, a bias due to the censoring will

occur if censoring is not correctly handled. This holds also for more sophis-
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ticated research questions like wage inequality, for example between men and

women (the so-called gender wage gap). Evaluating the change of the wage

differential between high and low income groups over several years is another

question where this problem arises. The aim of the following examples is to

illustrate the bias that may occur when censored wages are evaluated and to

demonstrate that using multiply imputed data can avoid this serious bias in

the estimation results.

10.1.1 Average Wages

Calculating average wages of different groups, e.g., education groups, is a sim-

ple but important question that might be of interest to a researcher using

the IAB Employment Sample. As we already have seen, the proportion of

censored wages varies from education group to education group. Therefore,

average wages of different groups are biased to differing extent due to the cen-

soring. We assume that a researcher is interested in the mean daily wage of

the total population and of six education groups. To assess the bias of the

censoring we use again the uncensored wage information of the 2001 German

Structure of Earnings Survey. The same sample restrictions as defined for the

simulation studies apply here as well (male West-German residents holding a

full-time job covered by social security). First, we calculate daily wages based

on the original complete data set to receive reference values. Then, we arti-

ficially censor the data set at the 2001 contribution limit for West Germany

(286.03 DM, 146.24 euros) and calculate the censored average daily wages. Af-

terwards the censored wages are multiply imputed m = 5 times using the MI

approach considering heteroscedasticity and the multiple imputation estimate

of the average wages is calculated.

Figure 10.1 displays the corresponding results. In the lower education groups

the effect of the censoring is rather negligible, which is not surprising as only 0.9

percent of wages are censored for example in the lowest education group. The

average wage of persons holding a technical college (44.9 percent censoring) or

university degree (54.5 percent censoring) on the other hand is seriously biased

if censored wages are used. While the original average wage of persons holding

a technical college degree is 134.58 euros, the censored mean of this group

amounts only to 124.56 euros. After censoring and re-imputing the wages the

average mean is 133.84 euros. The same situation appears for persons holding
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Figure 10.1: Average daily wages by education groups

an university degree. Here, the original mean wage is 141.30 euros, whereas

the censored mean is only 127.23 euros and the mean after imputation 139.61

euros. Therefore, it can be concluded that using censored wage information

to calculate average wage may lead to seriously biased results, while multiply

imputed data allow to calculate more or less unbiased average wages. As

already seen in the simulation study, this is especially apparent when highly

educated groups are in the center of interest.

10.1.2 Wage Inequality

As already mentioned in the overview of studies based on the IAB Employment

Sample (Section 5), a wide range of studies aims to analyze wage difference

between and within certain groups over several years. Möller (2005a,b) for

example, investigates the wage dispersion between employees working full-time

in the lower and upper part of the wage distribution within three education

groups using the regional file of the IAB Employment Sample. As a measure of

wage dispersion he compares the ratio of the 90th percentile to the median and

the ratio of the median to the 10th percentile in different years. The analysis

is done separately for men and women and three educational groups:
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GSES GSES GSES Reference
censored imputed original IAB data

University or college 1.03 1.40 1.43 n.a
Vocational Training 1.54 1.54 1.54 1.59
No degree 1.40 1.40 1.40 1.42

Table 10.1: Wage inequality for men in West Germany (2001)

• Low-skilled: with no vocational degree

• Medium-skilled: with vocational degree

• High-skilled: with university or technical college degree

While the ratio of the median to the 10th percentile can be easily calculated,

an important disadvantage of the IABS for this kind of analysis is that due to

the censoring results for the ratio of the 90th percentile to the median can only

be shown for the groups of low and medium skilled persons. In these groups

the 90th wage percentile is uncensored and results can easily be calculated

and reported. The 90th wage percentile of high skilled employees on the other

hand is censored because almost 50 percent of wages of men in this group are

censored. In this case it is impossible to obtain results without any correction

for the censoring. To illustrate this problem, the study is replicated for men

in West Germany in the year 2001. To do so, we again impute the daily wages

m = 5 times. Table 10.1 shows the results concerning the ratio of the 90th

percentile to the median. We can see that for the two lower education group

the results based on the GSES are the same whether the original, the censored

or the multiply imputed data set is used. As the censoring is less than 10

percent in these groups and hence the 90th wage percentile is uncensored, this

finding is not surprising. The ratios are in general somewhat lower than the

reference results of Möller (2005a,b) based on the IAB data, which may be due

to minor differences in the structure of the two samples (GSES and IABS).

More interesting are the results concerning the highly educated group. While

we find a ratio of only 1.03 based on the censored data, which is highly biased,

the result based on the multiply imputed data (1.40) is again comparable to

the result based on the original data. As previously discussed a reference result

from the literature is not available for this group.
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GSES censored GSES imputed GSES original
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Differential
Prediction men 4.5027 0.0005 4.5220 0.0006 4.5258 0.0006
Prediction women 4.3194 0.0010 4.3244 0.0010 4.3261 0.0010
Difference 0.1833 0.0011 0.1976 0.0011 0.1997 0.0012
Decomposition
Endowments 0.0407 0.0014 0.0432 0.0014 0.0434 0.0015
Coefficients 0.1340 0.0008 0.1412 0.0009 0.1448 0.0009
Interaction 0.0086 0.0012 0.0132 0.0012 0.0115 0.0013

Table 10.2: Blinder-Oaxaca decomposition of differences in mean wages by
gender (All)

10.1.3 Blinder-Oaxaca Decomposition

Analyzing the gender wage gap is another typical research question in eco-

nomics and social science research which is addressed in a wide range of studies.

The counterfactual decomposition technique proposed by Blinder (1973) and

Oaxaca (1973) is widely used to study outcome differences between groups,

like for example differences by gender. It can be applied to study labor market

outcomes by decomposing mean differences in log wages based on regression

models in a counterfactual manner. The technique is called counterfactual,

because it simulates a counterfactual distribution by combining data on indi-

vidual characteristics from one distribution with estimated parameters from

another. It represents a method that is very suitable to analyze wage differ-

ences between men and women. The procedure is known in the literature as

the Blinder-Oaxaca decomposition and consists of dividing the wage differen-

tial between two groups into a part ‘explained’ by group differences in produc-

tivity characteristics, such as education or work experience, and a residual part

that cannot be accounted for by such differences in wage determinants. This

‘unexplained’ part subsumes the effects of differences in unobserved variables

and can often be interpreted as a measure of discrimination. For details see,

e.g., Jann (2008) who provides an introduction to this method together with

a STATA-ado-file, that can easily be implemented to analyze the gender wage

gap.

As a further example to demonstrate the practicability of multiply imputed
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GSES censored GSES imputed GSES original
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Differential
Prediction men 4.8256 0.0010 4.9181 0.0014 4.9268 0.0015
Prediction women 4.6650 0.0028 4.6963 0.0033 4.7019 0.0034
Difference 0.1606 0.0030 0.2219 0.0036 0.2248 0.0037
Decomposition
Endowments 0.0734 0.0028 0.0888 0.0033 0.0892 0.0034
Coefficients 0.0912 0.0022 0.1190 0.0027 0.1232 0.0028
Interaction -0.0041 0.0019 0.0141 0.0023 0.0125 0.0024

Table 10.3: Blinder-Oaxaca decomposition of differences in mean wages by
gender (University or college degree)

data, we apply a Blinder-Oaxaca decomposition to analyze differences in mean

wages between men and women in West Germany. We again use the GSES

2001 and apply the same sample restrictions as before except for the restriction

to male employees. As the aim is to analyze the wage gap between men and

women, we need wage information on both genders. We again compare results

based on the original complete data, artificially censored data and multiply

imputed data. The wage imputation is performed m = 5 times using the MI

approach considering heteroscedasticity (MI-Het) and is done separately for

men and women. As determinants of wage we define here

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type).

In consequence we decompose the gender wage gap into a part that is explained

by differences in these determinants of wages and a part that cannot be ex-

plained by these group differences. Certainly several further models of wage

determinants could be used to analyze the gender wage gap. Here a rather

simple model is chosen because the focus is just on illustrating the useful-

ness of the multiply imputed data. Table 10.2 shows the results for the whole

sample and Table 10.3 the results for a sample restricted to highly skilled em-

ployees holding an university or college degree. These tables report the mean

predictions for men and women and the difference between the predictions in

the upper panel. In the lower panel of the tables this difference is decom-

posed into three parts. The endowments effect reflects the mean increase in
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women’s wages if they would have had the same characteristics as men. The

coefficients term indicates the change in women’s wage when men’s coefficients

are applied to the women’s characteristics and the interaction effect quantifies

the simultaneous effect of differences in endowments and coefficients. Looking

at the results based on the original GSES data, we find a mean difference of

0.1997 log points between the wage of men and women. Endowments account

for only 0.0434 log points of this difference, while the larger part of the gap

cannot be explained by individual characteristics. More interesting are the

differences between the censored, multiply imputed, and original wage data.

Using censored data, we find a wage gap of only 0.1833, while based on the

imputed data we find a wage gap of 0.1976, which is almost identical to the re-

sult based on the original complete data. This difference is even more obvious

when the sample is restricted to highly skilled employees. Here, we measure

a gender wage gap of 0.2248 based on the original complete data. While this

result is significantly lower, when censored data are applied (0.1605), multiple

imputation yields a similar result (0.2219) compared to the original data. The

decomposed effects are smaller when censored data are applied. Figure 10.2

and Figure 10.3 display the results of this example in a graphical form in order

to illustrate the differences between the results based on these three different

wage variables. The results confirm once more the applicability of the new MI

approach to solve the problem of censored wages in an easy way.

The multiply imputed data set for this analysis was produced separately for

men and women. This is an adequate approach to account for systematic

differences between men and women and to produce data that allow to ana-
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lyze differences between these two groups. Alternatively, the wage could be

imputed in one step, whereas a dummy indicating the gender is essential in

the imputation model. By doing so, the results only change to a minor extent.

Then, the decomposition was repeated using a data set, which was imputed ig-

noring gender differences. Based on this data set, we receive a gender wage gap

of 0.1966 for all employees and of 0.2164 for employees holding an university

or technical college degree. This finding can be explained by the low percent-

age of women earning wages that are censored and the explanatory power of

other variables, such as occupations and industries, which often employ a high

proportion of persons of one gender.

Of course, Blinder-Oaxaca decomposition methods for tobit models can also be

applied to analyze censored wage data like the IAB Employment Sample (see,

e.g., Kluve and Schaffner (2007) or Bauer and Sinner (2005)). Multiple impu-

tation on the other hand has some advantages compared to these approaches.

To begin with, once the data are multiply imputed, they can be used for the

analysis of various research questions. Moreover, researchers are able to apply

standard techniques and do not have to familiarize themselves with multiple

imputation techniques or other models for censored data as described in Chap-

ter 4. Finally, the imputer might use more information in his imputation model

which might not be available to the public due to confidentiality reasons.

10.2 First Studies Based on Imputation Ap-

proaches

This part of the chapter summarizes first studies that use one of the imputation

approaches that were discussed in this thesis in order to show the growing

interest in these MI approaches that solve the problem of censored wages.

Again the potential of appropriate imputation approaches is illustrated.

Gartner and Rässler (2005) successfully implement the multiple imputation

approach based on a tobit model assuming homoscedasticity (MI-Hom) to

impute the censored wages in the IAB Employment Sample and to analyze

the gender wage gap using a Juhn-Murphy-Pierce decomposition. Their main

finding is that there is a general trend of the wage structure that widens the

gender wage gap from 1991 to 2001 by 0.0384 log points. On the other side

improvements in observed and unobserved endowments, a reduction in gender-
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specific sorting and discrimination reduce the gap by 0.1122 log points.

Blien et al. (2009) analyze whether wage differences between cities and rural

areas in Western Germany are due to unobserved differences in regional price

levels based on the regional file of the IAB Employment Sample. Due to

the censoring problem regional prices are available for only 10 percent of the

regions. The same multiple imputation approach as in Gartner and Rässler

(2005) is applied to be able to generate prices for all regions. The results of the

study indicate that the nominal agglomeration wage differential is 2 percent,

whereas the real differential is 19 percent. Controlling for the composition of

the labor force and jobs, the real wage differential is 4 percent. Controlling

additionally for differences in regional building land prices the agglomeration

wage differential disappears.

Jensen et al. (2010) use wages imputed multiply based on the approach consid-

ering homoscedasticity to estimate earnings frontiers. In particular, individual

potential incomes are estimated with stochastic earnings frontiers and overed-

ucation is measured as the ratio between actual income and potential income.

The study provides detailed evidence on the influence of experience, tenure,

and education on overeducation.

Wages imputed by the single imputation approach considering heteroscedastic-

ity are used by Brücker and Jahn (2008) to measure the wage and employment

effects of migration. Here, elasticities of the wage curve for education and ex-

perience groups are identified and elasticities of substitution between different

types of labor in West Germany during the period from 1980 to 2001 are es-

timated. As average wages in different subgroups are examined, imputation

plays an important role because censoring may be higher than 50 percent in

several subgroups. The authors find that the elasticity of the wage curve is par-

ticularly high for young workers and workers with an university degree, while

it is low for older workers and workers with a vocational degree. The wage

and employment effects of migration are found to be moderate: a 1 percent

increase in the German labor force through immigration leads to an increase

of the aggregate unemployment rate by less than 0.1 percentage points and

reduces average wages by less than 0.1 percent.

Büttner et al. (2010) use the same single imputation approach to impute the

missing wage information in the register data of the IAB (BeH). In this study

they estimate the responsiveness of the occupational skill structure and occu-

pational composition wages to the business cycle and compare the estimates
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with corresponding results from a study using U.S. data (Devereux, 2002).

This comparison is particularly interesting due to striking differences between

U.S. and German labor market institutions. The estimates show that within

occupations the skill level of new hires rises significantly in recessions and de-

creases in upturns. The effects for West Germany amount to about 70 percent

of the corresponding U.S. results. They are, however, larger than expected

given the striking institutional differences. Separate estimation of the model

by establishment size groups suggests that effects are lower for small establish-

ments, implying that a large part of the difference between both countries may

be explained by a greater share of small establishments in Germany. Further

differentiation of the sample into low and high wage occupations reveals that

the share of unskilled is affected more strongly in low wage occupations than

in high wage occupations whereas no clear pattern can be found for the high-

skilled. The results regarding occupational composition wages also indicate

a lower responsiveness to the business cycle than in the U.S. The estimates

amount to about 30 and 40 percent of their U.S. counterparts for men and

women, respectively.

As the simulation results in this thesis have confirmed the theory that in gen-

eral multiple imputation is superior to single imputation and that approaches

considering heteroscedasticity yield better results, we can conclude that future

studies should use wage data multiply imputed using the new MI approach

considering heteroscedasticity. For researchers which are interested in apply-

ing this approach to the IAB data, the next section summarizes some guidelines

for the imputation of missing wages in these data.

10.3 Some Final Suggestions for Imputers

When performing imputation of wages in the IAB data, some suggestions

should be considered. If one follows these suggestions, multiple imputation

and especially the new approach considering heteroscedasticity are promising

techniques, since they are easy to implement and offer potential for a broad

range of research questions.

• First, variables to be included in the imputation model have to be chosen

carefully. Variables that are good predictors of wages are needed in order

to form a model that is appropriate to explain the wages. Our experience
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shows that variables like education and age (or tenure) are indispensable

for the imputation model.

• Besides, one has to be aware of the implications of the analysis which

has to be performed using the imputed data. It is important to reflect

relationships that are to be analyzed later in the analysis step. If for

example an analysis on a regional level is planned, the regional structure

has to be included in the imputation model. Occasionally, it happens

that researchers intend to analyze, e.g., the wage returns to certain fac-

tors although these factors, possibly the establishment size, are not used

in the imputation step. The same applies if differences in wages between

employees with German and foreign citizenship are to be analyzed, but

not considered in the imputation model. Consequently, it is advisable to

include as many variables as possible in the imputation model.

• Most of the recent studies based on the IAB data focus on West Germany

for several reasons. First, information for East Germany is not available

for years before 1993. Second, the educational and vocational system

in the former communist Eastern part differed considerably from the

West German part. Moreover the productivity of East German workers

may have been lower in the past as they were trained and worked with

different and outdated equipment, which complicates many analyzes (see

Büttner et al. (2010)). This is not only a challenge in the analysis step,

but also for the imputation. A further obstacle are the contribution

limits in East Germany, which are lower than in West Germany. Hence,

if one is interested in wages in East and West Germany, the best strategy

is to impute the wages for both parts separately.

• The imputers also have to pay attention to wage differences between

groups, especially between men and women. As discussed before, there

is a broad range of studies examining the gender wage gap. This gap

between wages of men and women has to be reflected in the imputation

model if the analyst is interested in wages of both genders. Then at least

an indicator variable for the gender has to be included, even better the

imputation should be performed separately

• Part-time workers have a lower monthly and daily wage than full-time

workers doing the same job. As no information on hours worked is avail-

able in the IAB data, an hourly wage of part-time workers cannot be

calculated. Therefore wages of part-time and full-time workers are not
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to be compared. This means that part-time workers should be excluded

from the sample before starting the imputation. As the proportion of

part-time workers with censored wages is almost zero, imputation of

wages for this group is normally not necessary anyway.

• Apprentices and marginal employed persons are not comparable to other

employees. Wages of apprentices are significantly lower than the contri-

bution limit and marginal employment by law ends with a monthly wage

of 400 euros (in 2010). Hence, these groups should not be included in

the imputation sample, but can be used for analyses without imputation

of wages as well.



Chapter 11

Conclusion and Outlook

Top-coding or right-censoring of wages is a common problem with administra-

tive data sets of economic interest, like the German IAB Employment Sample,

which is based on the register data of the German social security system. Cen-

soring of the wage variable is a problem which affects negatively the value of

this data set. While in general, the IABS is an unique database in Germany

as it covers 80 percent of the workforce and is particulary suitable to analyze a

variety of research questions, the censoring hinders these possibilities seriously.

Therefore, adapting and developing appropriate techniques for censored data

offer new analytic potential. In the literature, there is a wide range of ways

to deal with censored wage data. We suggest to use imputation approaches to

estimate the missing wage information in order to offer this potential for new

analyses and develop a new MI routine. The applicability of the suggested ap-

proaches is not restricted to the IAB Employment Sample, but the approaches

are generally applicable to all problems of data censoring. The approaches can

easily be implemented for cases of right-censoring and left-censoring.

Multiple imputation is especially useful for data sets that are to be shared by

many users as it is the case with the IAB Employment Sample. The main

advantages of multiple imputation are its general applicability and flexibility

and the fact that it allows the data producer to create one ‘adjustment’ for

missing data that can be used by all secondary data analysts (see, e.g., Rässler

et al. (2008)). As the model used for the imputation need not to be the same

as the model used in the analyses of the completed data, once the data are

imputed, e.g., by an organization distributing the data, they can be used by

secondary analysts to explore a wide range of models and research questions.

149
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The job of the distributing organization then is to release already completed

data sets to the researchers (or the public) or to provide imputation algorithms

that are easy to implement by users without detailed knowledge about multiple

imputation techniques. Ideally, these algorithms are provided as programme

files for software packages that are usually used by the analysts (e.g., STATA,

R, or SPSS). A great feature of the multiply imputed data is that secondary

users do not have to familiarize themselves with specific techniques to analyze

censored data (or incomplete data in general), but are able to perform the

desired analyses using standard techniques.

There are different possibilities to impute censored wages (or other censored

variables), for example using single and multiple imputation approaches which

are presented here. Another important question addressed in this thesis is

whether wages should be imputed considering heteroscedasticity. We know

that the variance of income is smaller in lower wage categories than in higher

categories. Thus we have suggested and developed a new multiple imputation

approach considering heteroscedasticity to impute the missing wage informa-

tion. The basic element of this approach is to impute the missing wages by

draws of a random variable from a truncated distribution, based on Markov

chain Monte Carlo techniques. The main innovation of the suggested approach

compared to conventional approaches is to perform additional draws for the

parameter γ describing the heteroscedasticity in order to allow individual vari-

ances for every individual.

The simulation studies presented in this thesis show that compared to single

imputation approaches and other regression-based MI approaches it is prefer-

able to use the new multiple imputation approach considering heteroscedas-

ticity. To begin with, we can state that MI approaches are generally superior

to single imputation approaches, mainly because single imputation yields vari-

ance estimates that are biased, i.e., too small. Simulation studies have demon-

strated as well that the suggested approach considering heteroscedasticity leads

to better imputation results than approaches assuming homoscedasticity of the

residuals. More precisely, we have seen that in case of homoscedastic residu-

als the same quality of imputation results can be expected compared to the

conventional approach suggested by Gartner and Rässler (2005), yet if het-

eroscedasticity exists a simulation study shows the necessity to apply our new

approach. Hence the results reveal to use the new imputation method, as this

approach is more general than those based on homoscedasticity.
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While these first results are based on generated data sets, the superiority of

the new approach is reflected as well in a series of simulation studies using

uncensored wage information from a survey (German Structure of Earnings

Survey). Two MI approaches (considering heteroscedasticity vs. assuming

homoscedasticity) were compared using different models and transformations.

In the first step the approaches were evaluated using different transformations

of the wage variable. Here, this simulation studies confirm once more the ap-

plicability of the multiple imputation approach considering heteroscedasticity.

Both approaches deliver good imputation results, with some advantages for

the approach considering heteroscedasticity. This result is found, also if a log

or a cube root transformation is chosen. Moreover we learned that a log trans-

formation is somewhat more suitable to impute the German wage data than a

cube root transformation. Another main finding is that multiply imputed data

are robust to differences between the imputer’s and analyst’s model. For ex-

ample, once the data are imputed it does not matter if the analyst is interested

in an OLS or GLS estimation.

In the same manner simulation studies have shown that imputed data are

still appropriate if the analyst examines a model containing a different set

of variables. There is only one small constraint to this general finding: If the

analyst is interested in a model much smaller than the imputation model, there

is no advantage of an imputation considering heteroscedasticity anymore. In

exchange, we have seen that the heteroscedastic approach is valid, even if the

imputer and analyst apply different wage transformations (i.e log and cube

root transformation).

The discussed imputation approaches involve adapting starting values from

a tobit estimation. To assess the validity of the suggested approach consid-

ering heteroscedasticity compared to other situations, we develop alternative

approaches using uncensored wage information from a survey (GSES) instead.

These alternative approaches can be distinguished by the quantity of external

information required. For a first version the entire external data set is neces-

sary. For a second version only estimation results from an OLS regression are

required, while for a last version only information on quantiles is needed. Per-

forming simulation studies, we find similar results of these approaches based on

external data and the approach considering heteroscedasticity working without

external information. The imputation quality of the approach based on quan-

tile information is even somewhat lower compared to this approach. Hence,
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having evaluated various alternatives to the imputation approaches based on

starting values from a tobit model, we can conclude that the proposed MI

approach considering heteroscedasticity (MI-Het) is easier to implement as it

does not require external information and leads to an imputation quality that

is at least as good and in some cases even better than approaches that require

additional external information. Therefore, we can state once again that it is

generally advisable to apply this approach combined with a lognormal trans-

formation of the wages to impute the censored wage information in the IAB

Employment Sample.

In the last part of the thesis, three examples show the applicability of the sug-

gested approach considering heteroscedasticity not only in a simulation study,

but for real world research questions as well. For these analyses uncensored

wage data are used again. Descriptive wage statistics, a wage inequality analy-

sis, and a Blinder-Oaxaca wage decomposition are taken as examples to outline

that the analysis of multiply imputed data leads to results which do not sig-

nificantly differ from the results based on the original complete data. These

results underline once more the inherent applicability of multiple imputation

to solve the problem of censored wage and to offer potential for new analyses

in the IAB Employment Sample and other data sets that may have censored

variables.

Having suggested several imputation approaches for censored variables and

having shown the validity of these approaches in simulation studies and real

world examples, still some future steps are to be performed to make multiple

imputed wages accessible to researchers and still remains room for future re-

search in this area. One important issue for future research is the adaption of

appropriate models not only for cross-sectional but also for longitudinal data.

Apart from this issue of future research, what are future steps to go? As al-

ready mentioned, there are basically two ways for organizations distributing

data to provide access to multiply imputed data: releasing data sets with al-

ready completed wage information or releasing applicable imputation routines.

To produce and distribute a multiply imputed version, e.g., of the IABS, has

the inherent advantage that researchers do not have to worry about censoring

and how to handle it. Therefore, it is desirable to provide a multiply imputed

version of the IABS. On the other hand, many studies are not based on the

2 percent sample of the IABS, but on the entire register data (BeH) or other

samples of it, sometimes in combination with data stemming from the Bene-
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fit Recipient History (LeH). For these cases an already completed version of

the IABS would not contribute to solve the problem of censoring. Therefore,

a preferable strategy is also to improve, e.g., the STATA imputation routine

which has been developed in this thesis. Enhancing this routine with a user

friendly graphical user interface to allow researchers without specific knowl-

edge about multiple imputation the use of this routine, would be very useful,

but is beyond the scope of this thesis.

Having an executable STATA routine of the multiple imputation algorithm

considering heteroscedasticity, like the one that is provided for the single im-

putation approach suggested by Gartner (2005), which is already used by re-

searchers, wages can easily be imputed by any researcher. As analyses in this

thesis have shown, researchers can expect a much better imputation quality

by applying the new procedure. Thus researchers should not be deterred by

the additional step of combining results from m estimations, which can be

performed in the end with little additional effort. Recently published studies

based on multiply imputed wages reinforce the idea that multiple imputation

is a promising strategy for the future handling of the censoring. Recently re-

ceived requests for advice on how to apply multiple imputation techniques in

the case of censoring, indicate that there is a lot of demand for the approaches

suggested.
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Appendix

A.1 Additional Simulation Studies

This first part of the appendix contains the results of additional simulation

studies that are described in the main part of the thesis (Chapter 8 and 9).

Note that the results belong to different chapters of the thesis. Therefore, the

simulations studies are based on different complete populations and different

true parameters. Moreover, different imputation and analysis models are used

in these simulation studies. Hence, the results in this part of the appendix are

not directly comparable. The particular simulation designs are described in

the corresponding sections in the main part.
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before censoring MI homosc. MI heterosc.

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 2.6383 2.6536 0.966 2.6160 0.964 2.6304 0.964

education3 6.8283 6.8692 0.963 4.3236 0.675 4.8369 0.675

education4 7.6188 7.6678 0.955 5.1610 0.154 5.5181 0.154

education5 15.5477 15.6366 0.961 13.2054 0.804 14.7261 0.804

education6 21.8426 21.8579 0.971 15.5703 0.004 17.9200 0.004

level2 1.3935 1.3644 0.950 1.0784 0.850 1.0927 0.850

level3 4.7039 4.6442 0.961 4.4128 0.961 4.6956 0.961

level4 4.0545 3.9673 0.953 1.0908 0.714 0.9354 0.714

group2 -8.6799 -8.6623 0.973 -8.1578 0.652 -8.1302 0.652

group3 -16.3154 -16.3087 0.961 -15.5825 0.496 -15.5373 0.496

group4 -22.9888 -22.9676 0.953 -22.5364 0.770 -22.4284 0.770

group5 46.1605 46.1996 0.951 37.3143 0.112 39.2701 0.112

group6 12.6699 12.7728 0.956 13.8099 0.912 14.1010 0.912

group7 2.5589 2.6626 0.948 5.4599 0.723 5.5946 0.723

group8 -16.6954 -16.6075 0.959 -13.5664 0.685 -13.3963 0.685

group9 -27.0961 -27.0465 0.957 -24.1514 0.744 -23.9741 0.744

age 1.9757 1.9760 0.954 1.9702 0.952 1.9691 0.952

sqage -0.0193 -0.0193 0.954 -0.0204 0.835 -0.0202 0.835

region2 2.1436 2.1447 0.963 3.5226 0.034 3.3305 0.034

region3 -0.4471 -0.4490 0.952 0.4482 0.445 0.1876 0.445

region4 4.8344 4.8217 0.960 4.1751 0.241 4.1139 0.241

industry2 -3.5415 -3.5135 0.953 -3.1234 0.931 -3.1765 0.931

industry3 -9.3398 -9.3660 0.959 -9.2196 0.970 -9.3459 0.970

industry4 0.0721 0.0444 0.960 0.1242 0.966 0.1166 0.966

industry5 10.4967 10.5577 0.954 7.4321 0.479 7.7971 0.479

industry6 7.7718 7.7859 0.960 7.7584 0.961 7.7313 0.961

industry7 7.0124 7.0273 0.959 6.4575 0.908 6.5608 0.908

industry8 -2.3769 -2.3894 0.969 -1.4234 0.641 -1.4789 0.641

industry9 -2.5212 -2.5238 0.976 -1.3565 0.757 -1.4118 0.757

industry10 1.3130 1.3044 0.963 2.2806 0.705 2.2589 0.705

industry11 -3.9129 -3.9014 0.965 -2.8337 0.571 -2.9022 0.571

industry12 -0.5030 -0.4906 0.953 0.4092 0.630 0.3733 0.630

industry13 -0.6620 -0.6315 0.969 -1.1086 0.934 -1.1187 0.934

industry14 -2.3090 -2.2907 0.957 -2.2851 0.955 -2.2802 0.955

industry15 -3.8808 -3.9100 0.950 -2.8442 0.800 -2.9109 0.800

industry16 2.6383 2.6187 0.959 2.9684 0.942 2.9854 0.942

industry17 -7.1163 -7.1286 0.964 -6.0476 0.745 -6.1463 0.745

industry18 -2.4995 -2.5075 0.963 0.6411 0.000 0.5822 0.000

industry19 -3.1522 -3.1554 0.966 -1.7784 0.387 -1.8480 0.387

industry20 -9.5487 -9.5386 0.962 -8.5285 0.752 -8.6257 0.752

industry21 -7.9048 -7.9296 0.955 -7.0212 0.819 -7.1169 0.819

industry22 -10.4244 -10.4147 0.966 -9.8412 0.925 -10.0037 0.925

industry23 -4.4889 -4.4599 0.966 -4.4471 0.964 -4.5019 0.964

industry24 -15.0993 -15.1053 0.958 -13.4880 0.477 -13.6940 0.477

industry25 -17.1763 -17.2009 0.960 -15.9131 0.805 -16.0613 0.805

industry26 -5.7194 -5.7338 0.962 -4.9173 0.759 -5.0172 0.759

industry27 -3.9572 -3.9841 0.955 -4.1627 0.936 -4.2548 0.936

industry28 -8.5093 -8.5640 0.963 -7.2851 0.692 -7.4131 0.692

industry29 -7.5612 -7.5616 0.956 -5.9144 0.330 -6.0734 0.330

industry30 -7.1680 -7.2070 0.965 -7.0042 0.966 -7.3760 0.966

industry31 -7.4676 -7.5257 0.952 -5.5271 0.599 -5.8264 0.599

industry32 -4.1765 -4.1938 0.955 -4.0840 0.956 -4.2214 0.956

industry33 3.3915 3.3794 0.969 2.6063 0.884 2.5942 0.884

industry34 -11.6666 -11.6861 0.959 -7.4631 0.002 -7.8757 0.002

industry35 2.5266 2.5088 0.950 -1.0483 0.069 -1.0207 0.069

industry36 -17.1727 -17.1619 0.970 -16.5399 0.903 -16.7298 0.903

contract -7.6749 -7.6837 0.966 -7.6258 0.961 -7.7394 0.961

cons 53.3483 53.3351 0.960 53.8942 0.953 53.8543 0.953

Table A.1: Simulation results based on untransformed wages (Section 8.2.2)
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before censoring MI-Ext (het.) MI-Het

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0363 0.0366 0.957 0.0368 0.961 0.0370 0.958

education3 0.0682 0.0690 0.960 0.0608 0.959 0.0626 0.953

education4 0.0732 0.0736 0.969 0.0684 0.955 0.0673 0.925

education5 0.1364 0.1361 0.959 0.1425 0.936 0.1473 0.854

education6 0.1799 0.1797 0.962 0.1787 0.968 0.1776 0.953

level2 0.0097 0.0096 0.960 0.0082 0.956 0.0083 0.954

level3 0.0417 0.0403 0.953 0.0386 0.956 0.0397 0.955

level4 0.0237 0.0223 0.960 0.0081 0.931 0.0059 0.917

group2 -0.0943 -0.0942 0.961 -0.0918 0.947 -0.0918 0.946

group3 -0.1864 -0.1863 0.957 -0.1831 0.934 -0.1831 0.933

group4 -0.3095 -0.3097 0.953 -0.3072 0.931 -0.3070 0.928

group5 0.3854 0.3872 0.957 0.3777 0.956 0.3883 0.952

group6 0.1372 0.1386 0.957 0.1476 0.945 0.1497 0.933

group7 0.0442 0.0458 0.958 0.0588 0.936 0.0607 0.920

group8 -0.1719 -0.1706 0.964 -0.1564 0.928 -0.1542 0.918

group9 -0.3426 -0.3408 0.957 -0.3275 0.941 -0.3251 0.933

age 0.0249 0.0248 0.963 0.0247 0.974 0.0247 0.978

sqage -0.0003 -0.0003 0.964 -0.0003 0.975 -0.0003 0.976

region2 0.0360 0.0360 0.964 0.0386 0.957 0.0397 0.915

region3 0.0039 0.0040 0.958 0.0063 0.944 0.0063 0.958

region4 0.0517 0.0517 0.956 0.0468 0.825 0.0473 0.850

industry2 -0.0459 -0.0462 0.967 -0.0443 0.957 -0.0448 0.953

industry3 -0.1091 -0.1093 0.965 -0.1115 0.958 -0.1125 0.952

industry4 0.0088 0.0097 0.955 0.0123 0.952 0.0119 0.950

industry5 0.0774 0.0777 0.960 0.0710 0.950 0.0741 0.942

industry6 0.0817 0.0823 0.970 0.0839 0.964 0.0851 0.947

industry7 0.0628 0.0629 0.961 0.0662 0.958 0.0678 0.928

industry8 -0.0144 -0.0141 0.965 -0.0100 0.929 -0.0103 0.931

industry9 -0.0170 -0.0171 0.961 -0.0119 0.948 -0.0127 0.952

industry10 0.0214 0.0213 0.961 0.0264 0.922 0.0263 0.921

industry11 -0.0354 -0.0352 0.963 -0.0313 0.951 -0.0317 0.949

industry12 -0.0030 -0.0035 0.957 0.0013 0.933 0.0017 0.923

industry13 -0.0138 -0.0142 0.954 -0.0179 0.964 -0.0172 0.960

industry14 -0.0302 -0.0301 0.959 -0.0291 0.956 -0.0294 0.951

industry15 -0.0416 -0.0414 0.957 -0.0375 0.962 -0.0378 0.949

industry16 0.0388 0.0388 0.962 0.0416 0.965 0.0424 0.958

industry17 -0.0808 -0.0801 0.954 -0.0765 0.946 -0.0775 0.946

industry18 -0.0088 -0.0086 0.960 0.0071 0.595 0.0074 0.593

industry19 -0.0201 -0.0196 0.966 -0.0130 0.900 -0.0132 0.897

industry20 -0.1055 -0.1050 0.964 -0.1026 0.955 -0.1033 0.958

industry21 -0.0906 -0.0911 0.925 -0.0889 0.886 -0.0894 0.894

industry22 -0.1134 -0.1132 0.956 -0.1149 0.959 -0.1161 0.952

industry23 -0.0527 -0.0528 0.948 -0.0537 0.962 -0.0538 0.953

industry24 -0.1616 -0.1616 0.966 -0.1596 0.971 -0.1610 0.966

industry25 -0.2182 -0.2175 0.964 -0.2129 0.951 -0.2136 0.952

industry26 -0.0579 -0.0577 0.951 -0.0552 0.945 -0.0560 0.949

industry27 -0.0477 -0.0476 0.957 -0.0500 0.959 -0.0508 0.946

industry28 -0.0904 -0.0903 0.952 -0.0873 0.955 -0.0880 0.948

industry29 -0.0702 -0.0702 0.952 -0.0653 0.924 -0.0661 0.931

industry30 -0.0690 -0.0687 0.956 -0.0758 0.939 -0.0786 0.901

industry31 -0.0657 -0.0663 0.966 -0.0633 0.981 -0.0647 0.977

industry32 -0.0596 -0.0603 0.915 -0.0626 0.927 -0.0630 0.927

industry33 0.0085 0.0083 0.957 0.0060 0.968 0.0069 0.954

industry34 -0.0960 -0.0964 0.956 -0.0828 0.833 -0.0850 0.864

industry35 -0.0061 -0.0056 0.963 -0.0200 0.869 -0.0219 0.830

industry36 -0.2607 -0.2608 0.949 -0.2610 0.951 -0.2618 0.953

contract -0.1116 -0.1116 0.927 -0.1108 0.930 -0.1110 0.938

cons 4.0396 4.0398 0.954 4.0417 0.968 4.0413 0.967

Table A.2: Results of a heteroscedastic imputation using external data versus

MI-Het (Section 9.2)
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before censoring MI-Ext (het.) MI-Het

true β β̂ Coverage β̂ Coverage β̂ Coverage

education2 0.0728 0.0730 0.967 0.0724 0.965 0.0728 0.966

education3 0.1254 0.1248 0.956 0.1193 0.970 0.1272 0.966

education4 0.1503 0.1506 0.968 0.1439 0.955 0.1467 0.957

education5 0.2973 0.2975 0.964 0.2958 0.981 0.3091 0.896

education6 0.3552 0.3557 0.963 0.3486 0.955 0.3659 0.917

level2 0.0733 0.0730 0.970 0.0713 0.946 0.0712 0.950

level3 0.3393 0.3388 0.967 0.3337 0.950 0.3372 0.957

level4 0.3030 0.3026 0.963 0.2927 0.666 0.2968 0.844

age 0.0401 0.0401 0.961 0.0395 0.950 0.0396 0.951

sqage -0.0004 -0.0004 0.962 -0.0004 0.971 -0.0004 0.961

region2 0.0394 0.0393 0.966 0.0409 0.964 0.0418 0.945

region3 0.0168 0.0165 0.969 0.0200 0.943 0.0204 0.955

region4 0.0596 0.0594 0.956 0.0533 0.789 0.0537 0.821

industry2 -0.0588 -0.0592 0.960 -0.0570 0.958 -0.0578 0.954

industry3 -0.1231 -0.1231 0.969 -0.1243 0.975 -0.1260 0.967

industry4 0.0025 0.0032 0.955 0.0063 0.964 0.0058 0.959

industry5 0.0594 0.0596 0.966 0.0577 0.975 0.0636 0.964

industry6 0.0795 0.0794 0.967 0.0825 0.963 0.0834 0.951

industry7 0.0534 0.0534 0.957 0.0571 0.958 0.0591 0.937

industry8 -0.0343 -0.0346 0.962 -0.0308 0.954 -0.0314 0.957

industry9 -0.0283 -0.0283 0.965 -0.0232 0.954 -0.0246 0.956

industry10 0.0387 0.0389 0.970 0.0436 0.944 0.0437 0.945

industry11 -0.0374 -0.0376 0.962 -0.0340 0.957 -0.0346 0.956

industry12 0.0129 0.0126 0.948 0.0180 0.919 0.0185 0.916

industry13 0.0038 0.0042 0.956 -0.0008 0.965 0.0006 0.961

industry14 -0.0121 -0.0115 0.967 -0.0114 0.976 -0.0110 0.968

industry15 -0.0288 -0.0287 0.968 -0.0255 0.970 -0.0258 0.966

industry16 0.0594 0.0601 0.951 0.0611 0.966 0.0620 0.958

industry17 -0.0950 -0.0950 0.963 -0.0913 0.960 -0.0926 0.963

industry18 0.0189 0.0187 0.967 0.0349 0.663 0.0349 0.687

industry19 -0.0097 -0.0100 0.969 -0.0037 0.943 -0.0040 0.941

industry20 -0.0984 -0.0983 0.965 -0.0949 0.964 -0.0959 0.962

industry21 -0.0824 -0.0826 0.923 -0.0806 0.907 -0.0813 0.914

industry22 -0.1220 -0.1218 0.962 -0.1228 0.958 -0.1244 0.950

industry23 -0.0763 -0.0763 0.967 -0.0761 0.969 -0.0767 0.968

industry24 -0.2109 -0.2109 0.966 -0.2087 0.965 -0.2115 0.965

industry25 -0.2577 -0.2576 0.956 -0.2530 0.949 -0.2545 0.954

industry26 -0.0825 -0.0828 0.955 -0.0792 0.949 -0.0809 0.960

industry27 -0.0581 -0.0575 0.960 -0.0599 0.966 -0.0610 0.957

industry28 -0.1263 -0.1267 0.957 -0.1233 0.953 -0.1249 0.958

industry29 -0.0721 -0.0717 0.962 -0.0669 0.937 -0.0683 0.952

industry30 -0.0103 -0.0094 0.948 -0.0151 0.963 -0.0159 0.954

industry31 -0.0257 -0.0252 0.954 -0.0216 0.967 -0.0227 0.955

industry32 -0.0746 -0.0770 0.928 -0.0787 0.934 -0.0799 0.939

industry33 0.0058 0.0057 0.959 0.0030 0.977 0.0048 0.965

industry34 -0.1082 -0.1082 0.964 -0.0950 0.881 -0.1000 0.940

industry35 -0.0179 -0.0181 0.966 -0.0341 0.901 -0.0359 0.874

industry36 -0.3250 -0.3243 0.945 -0.3242 0.946 -0.3258 0.948

cons 3.3732 3.3730 0.961 3.3905 0.937 3.3850 0.948

Table A.3: Results of an imputation using external data versus MI-Het (only

variables observed in IABS and GSES, Section 9.2)
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A.2 Confidence Interval Overlap

In the literature an alternative measure to coverage rates is often applied to as-

sess the quality of an imputation model: the confidence interval overlap. This

measure plays an important role in the literature on data confidentiality, where

multiple imputation is not used to solve problems of missing information, but

rather to provide synthetic data that can be released to researchers or even

the public without restrictions due to data protection requirements (see, e.g.,

Drechsler et al. (2008)). In that context the confidence interval overlap is used

to determine the data utility of the synthetic data by looking at the overlap

between the confidence intervals for the estimates from the original data and

the confidence intervals for the estimates from the synthetic data. This mea-

sure is suggested by Karr et al. (2006). The average overlap is calculated for

every estimate by:

Jk =
1

2

(
Uover,k − Lover,k

Uorig,k − Lorig,k

+
Uover,k − Lover,k

Usyn,k − Lsyn,k

)
(A.1)

where Uover,k and Lover,k denote the upper and the lower bound of the overlap

of the confidence intervals from the original and from the synthetic data for

the estimate k, Uorig,k and Lorig,k denote the upper and the lower bound of

the confidence interval for the estimate k from the original data, and Usyn,k

and Lsyn,k denote the upper and the lower bound of the confidence interval

for the estimate k from the synthetic data. This measure can also be applied

to examine the validity of imputed data. To do so, we use here the 95 per-

cent interval to calculate the overlap. One serious drawback of this measure

is that it depends to a large extent on the sample size. For large samples

like the IABS or the GSES the confidence interval overlap between the con-

fidence intervals for the estimates from the original data and the confidence

intervals for the estimates from the imputed data may be rather low, even

if the estimates are very similar, because the confidence intervals of the esti-

mates are very small. Nevertheless, this approach is applied here to compare

results from multiply imputed data to results from tobit model estimation

and from censored data. For the analysis the GSES 2001 is used, with the

sample restrictions known from the simulation studies. That means the used

sample contains N = 368, 337 persons. The multiple imputation is performed

m = 5 times using the MI approach considering heteroscedasticity and a log

transformation of the wages. To calculate the confidence interval overlap no
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repetitions are necessary. This is different to the simulations studies, where

we need 1,000 repetitions in order to calculate the coverage. As imputation

and analysis model we basically assume again the model containing the wages

in logs as dependent variable and the covariates

Xlarge=(age, age2, 6 education categories, 4 job level categories, 9 performance

groups, 4 region dummies, 36 industry dummies, contract type),

but vary the models to illustrate the impact of an imputation model that dif-

fers from the analyst’s model. Before the imputation and the application of

the tobit estimation the GSES is artificially censored at the real contribution

limit of 2001. To obtain the true parameters and the corresponding confidence

intervals k, we run an OLS regression using the complete data set and the

particular analysis model. In a first step, the imputation is performed once in-

cluding dummies for education levels and once omitting these dummies. Table

A.4 shows the estimates of this first example and the corresponding overlaps

for the estimates. Additionally to the displayed variables 36 industry and 3 re-

gion dummies were included in the model but omitted from the table for space

reasons. The average confidence interval overlap for the imputed data is 77.3

percent when education dummies are included in the imputation model and

72.1 percent when they are omitted. A considerable decrease can be observed

for the estimates concerning the education dummies. For the tobit estimation

we obtain an average overlap of 73.3 percent, which is somewhat, but not es-

sentially, lower compared to imputed data. The average overlap of an OLS

estimation using censored data on the other hand is considerably lower (45.6

percent) and the estimates themselves are extremely biased. Tables A.5 and

A.6 show the impact of omitting variables in the imputation model that are

to be analyzed in the analysis step. In the second example dummies for the

establishment size are additionally included in the analysis model. This en-

largement of the model has no impact on the estimation results and the overlap

of the estimates concerning the firm size are higher than 90 percent. In the

third example indicators of the governmental influence on the particular estab-

lishment are added. Here, the corresponding overlap is essentially lower (50.2

percent and 24.5 percent respectively). These examples illustrate that a dif-

fering analysis model not necessarily has a negative influence on the quality of

the estimation results, but in some cases it may lead to seriously biased results

compared to results based on the original complete data set. Summarized, the



A.2. CONFIDENCE INTERVAL OVERLAP 161

main findings of the analyses using the measure of confidence interval overlap

are: Using censored wages without any correction is not an applicable method.

Multiple imputation yields the best results of the three procedures compared.

But if one is only interested in estimates of linear regression, tobit estimation

yields an average confidence interval overlap which is only some percentage

points lower. On the other hand applying MI has several additional advan-

tages that were already discussed (e.g., the applicability of imputed data for

various purposes).
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education2
0.0336

0.0339
0.940

0.0338
0.960

0.0342
0.885

0.0333
0.947

education3
0.0590

0.0550
0.778

0.0521
0.629

0.0532
0.676

0.0438
0.106

education4
0.0697

0.0647
0.482

0.0626
0.265

0.0648
0.493

0.0549
0.000

education5
0.1325

0.1386
0.328

0.1264
0.324

0.1420
0.000

0.1050
0.000

education6
0.1740

0.1741
0.909

0.1504
0.000

0.1749
0.907

0.1215
0.000

level2
0.0101

0.0092
0.837

0.0092
0.834

0.0094
0.870

0.0082
0.603

level3
0.0468

0.0477
0.945

0.0477
0.948

0.0484
0.940

0.0440
0.885

level4
0.0324

0.0234
0.689

0.0256
0.767

0.0259
0.762

0.0160
0.374

group2
-0.0925

-0.0911
0.740

-0.0911
0.736

-0.0911
0.747

-0.0907
0.663

group3
-0.1851

-0.1830
0.690

-0.1830
0.691

-0.1830
0.674

-0.1824
0.565

group4
-0.3024

-0.3006
0.799

-0.3008
0.817

-0.3001
0.697

-0.3024
0.949

group5
0.3789

0.3743
0.840

0.3766
0.921

0.3814
0.906

0.3027
0.000

group6
0.1345

0.1382
0.871

0.1395
0.826

0.1374
0.890

0.1409
0.750

group7
0.0407

0.0483
0.731

0.0484
0.727

0.0464
0.784

0.0574
0.345

group8
-0.1753

-0.1660
0.680

-0.1673
0.726

-0.1682
0.740

-0.1589
0.377

group9
-0.3402

-0.3317
0.746

-0.3331
0.788

-0.3332
0.769

-0.3251
0.484

age
0.0237

0.0238
0.951

0.0238
0.950

0.0241
0.653

0.0235
0.736

sqage
-0.0002

-0.0002
0.818

-0.0002
0.815

-0.0002
0.485

-0.0002
0.716

contract
-0.1353

-0.1338
0.821

-0.1332
0.826

-0.1366
0.838

-0.1293
0.207

cons
4.0687

4.0729
0.873

4.0729
0.876

4.0669
0.936

4.0848
0.421

average
overlap

0.773
0.721

0.733
0.456
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GSES GSES GSES GSES
complete imputed tobit censored

β̂ β̂ overlap β̂ overlap β̂ overlap
firm size >20 0.0298 0.0295 0.968 0.0296 0.988 0.0298 0.948
firm size >50 0.0504 0.0497 0.966 0.0498 0.972 0.0499 0.948
firm size >100 0.0758 0.0747 0.949 0.0754 0.980 0.0740 0.917
firm size >200 0.0855 0.0848 0.964 0.0857 0.989 0.0839 0.923
firm size >500 0.1058 0.1043 0.932 0.1057 0.989 0.1024 0.837
firm size >1000 0.1283 0.1270 0.943 0.1299 0.925 0.1233 0.760
firm size >2000 0.1456 0.1453 0.966 0.1495 0.820 0.1414 0.801
firm size >=2000 0.1442 0.1423 0.911 0.1471 0.862 0.1372 0.660
education2 0.0333 0.0336 0.942 0.0338 0.893 0.0330 0.947
education3 0.0542 0.0501 0.777 0.0482 0.661 0.0393 0.113
education4 0.0677 0.0626 0.475 0.0627 0.483 0.0529 0.000
education5 0.1254 0.1315 0.318 0.1349 0.000 0.0983 0.000
education6 0.1665 0.1665 0.909 0.1674 0.896 0.1144 0.000
level2 0.0200 0.0191 0.828 0.0197 0.932 0.0176 0.498
level3 0.0765 0.0772 0.942 0.0789 0.906 0.0722 0.825
level4 0.0580 0.0488 0.683 0.0521 0.784 0.0404 0.321
group2 -0.0860 -0.0846 0.740 -0.0843 0.702 -0.0844 0.714
group3 -0.1740 -0.1720 0.700 -0.1715 0.602 -0.1719 0.662
group4 -0.2880 -0.2864 0.807 -0.2851 0.620 -0.2888 0.887
group5 0.3601 0.3557 0.844 0.3619 0.934 0.2849 0.000
group6 0.1236 0.1274 0.867 0.1263 0.896 0.1304 0.731
group7 0.0234 0.0312 0.725 0.0287 0.797 0.0409 0.307
group8 -0.1874 -0.1780 0.674 -0.1804 0.743 -0.1705 0.351
group9 -0.3476 -0.3390 0.742 -0.3405 0.766 -0.3322 0.470
age 0.0231 0.0232 0.953 0.0235 0.664 0.0229 0.766
sqage -0.0002 -0.0002 0.812 -0.0002 0.498 -0.0002 0.682
contract -0.1403 -0.1388 0.819 -0.1417 0.819 -0.1341 0.178
cons 3.9643 3.9698 0.857 3.9608 0.901 3.9845 0.405
average overlap 0.822 0.786 0.559

Table A.5: Comparison of confidence interval overlaps - Example 2
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GSES GSES GSES GSES
complete imputed tobit censored

β̂ β̂ overlap β̂ overlap β̂ overlap
gov2 0.0038 0.0086 0.502 0.0089 0.455 0.0097 0.346
gov3 -0.0446 -0.0394 0.245 -0.0415 0.558 -0.0332 0.000
education2 0.0336 0.0339 0.942 0.0342 0.886 0.0333 0.945
education3 0.0590 0.0550 0.781 0.0532 0.679 0.0439 0.110
education4 0.0694 0.0644 0.486 0.0645 0.494 0.0547 0.000
education5 0.1323 0.1384 0.325 0.1417 0.000 0.1048 0.000
education6 0.1746 0.1746 0.910 0.1755 0.909 0.1220 0.000
level2 0.0098 0.0090 0.841 0.0092 0.870 0.0080 0.613
level3 0.0469 0.0478 0.945 0.0485 0.937 0.0441 0.887
level4 0.0324 0.0235 0.692 0.0260 0.764 0.0161 0.378
group2 -0.0898 -0.0887 0.779 -0.0885 0.760 -0.0886 0.767
group3 -0.1842 -0.1822 0.693 -0.1821 0.667 -0.1816 0.583
group4 -0.3024 -0.3006 0.790 -0.3000 0.683 -0.3024 0.949
group5 0.3792 0.3746 0.838 0.3818 0.903 0.3030 0.000
group6 0.1348 0.1385 0.873 0.1378 0.891 0.1412 0.754
group7 0.0410 0.0486 0.733 0.0468 0.785 0.0577 0.349
group8 -0.1741 -0.1649 0.684 -0.1670 0.742 -0.1580 0.388
group9 -0.3398 -0.3314 0.746 -0.3328 0.768 -0.3248 0.485
age 0.0237 0.0237 0.951 0.0241 0.657 0.0234 0.735
sqage -0.0002 -0.0002 0.819 -0.0002 0.491 -0.0002 0.713
contract -0.1335 -0.1323 0.821 -0.1350 0.814 -0.1280 0.274
cons 4.0660 4.0704 0.867 4.0642 0.938 4.0827 0.401
average overlap 0.739 0.711 0.440

Table A.6: Comparison of confidence interval overlaps - Example 3
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Blien, U., Gartner, H., Stüber, H., and Wolf, K. (2009). Regional price levels

and the agglomeration wage differential in Western Germany. Annals of

Regional Science, 43:71–88.

Blinder, A. S. (1973). Wage discrimination: Reduced form and structural

estimates. The Journal of Human Resources, 8:436–455.

Bonin, H. (2005). Wage and employment effects of immigration to Germany:

Evidence from a skill group approach. IZA Discussion Paper no. 1875, Bonn.

Braun, S. and Scheffel, J. (2007). Does international outsourcing depress union

wages? First evidence from Germany. SFB 649 Discussion Paper 2007-033,

Berlin.



BIBLIOGRAPHY 167
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Drechsler, J., Bender, S., and Rässler, S. (2008). Comparing fully and par-

tially synthetic datasets for statistical disclosure control in the German IAB

Establishment Panel. Transactions on Data Privacy, 1:105–130.

Drews, N. (2007). Variablen der schwach anonymisierten Version der IAB-
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