
BAMBERGER BEITRÄGE

ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK

ISSN 0937-3349

Nr. 77

Improving the Tor Hidden Service
Protocol

Aiming at Better Performances

Christian Wilms

November 2008

FAKULTÄT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITÄT BAMBERG

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS - Publikationsserver der Universität Bamberg

https://core.ac.uk/display/144484313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Distributed and Mobile Systems Group

Otto-Friedrich Universität Bamberg

Feldkirchenstr. 21, 96052 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

http://www.uni-bamberg.de/pi/

Due to hardware developments, strong application needs and the overwhelming influence of
the net in almost all areas, distributed and mobile systems, especially software systems, have
become one of the most important topics for nowadays software industry. Unfortunately, distri-
bution adds its share to the problems of developing complex software systems. Heterogeneity in
both, hardware and software, concurrency, distribution of components and the need for inter-
operability between different systems complicate matters. Moreover, new technical aspects like
resource management, load balancing and deadlock handling put an additional burden onto the
developer. Although subject to permanent changes, distributed systems have high requirements
w.r.t. dependability, robustness and performance.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the development of robust and easy-to-use software for com-
plex systems in general while putting a focus on the problems and issues regarding the software
development for distributed as well as mobile systems on all levels. Our current research acti-
vities are focussed on different aspects centered around that theme:

• Robust and adaptive Service-oriented Architectures: Development of design methods, lan-
guages and middleware to ease the development of SOAs with an emphasis on provable
correct systems that allow for early design-evaluation due to rigorous development me-
thods and tools. Additionally, we work on approaches to autonomic components and
container-support for such components in order to ensure robustness also at runtime.

• Agent and Multi-Agent (MAS) Technology: Development of new approaches to use Multi-
Agent-Systems and negotiation techniques, for designing, organizing and optimizing com-
plex distributed systems, esp. service-based architectures.

• Context-Models and Context-Support for small mobile devices: Investigation of techni-
ques for providing, representing and exchanging context information in networks of small
mobile devices like, e.g. PDAs or smart phones. The focus is on the development of a tru-
ly distributed context model taking care of information reliability as well as privacy issues.

• Peer-to-Peer Systems: Development of algorithms, techniques and middleware suitable for
building applications based on unstructured as well as structured P2P systems. A specific
focus is put on privacy as well as anonymity issues.

• Visual Programming- and Design-Languages: The goal of this long-term effort is the uti-
litization of visual metaphores and languages as well as visualization techniques to make
design- and programming languages more understandable and, hence, easy-to-use.

More information about our work, i.e., projects, papers and software, is available at our ho-
mepage. If you have any questions or suggestions regarding this report or our work in general,
don’t hesitate to contact me at guido.wirtz@uni-bamberg.de

Guido Wirtz

Bamberg, April 2008



Improving the Tor Hidden Service Protocol

Aiming at Better Performances

Christian Wilms

Lehrstuhl für Praktische Informatik, Fakultät WIAI

Abstract Offering services anonymously on the Internet using so-called location-hidden ser-
vices requires complex protocols with many different nodes involved. These properties result in
performance problems, e.g. a simple website request taking tens of seconds. This work descri-
bes a setup to measure the performance of hidden services using the worldwide Tor network. It
analyzes the results and proposes changes to the protocol to improve the performance without
losing anonymity.

Keywords Tor, anonymity networks, performance, measurements, location-hidden services

Contact: christian.wilms@uni-bamberg.de



I

Contents

1 Introduction 1

1.1 Overview of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4

2.1 Comparable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Onion Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Anonymous IP Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Tarzan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 I2P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 Peer-to-Peer Personal Privacy Protocol . . . . . . . . . . . . . . . . . . . 10

2.1.6 Anonymous Peer-To-Peer File Sharing Protocol . . . . . . . . . . . . . . 11

2.2 Anonymity Systems Performance Research . . . . . . . . . . . . . . . . . . . . . 12

3 Tor and Tor Hidden Services 13

3.1 Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Hidden Service Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Establishing a Hidden Service . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Accessing a Hidden Service . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Measurement Environment 19

4.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Hidden Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Rendezvous Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Introduction Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Physical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Creating Clients with PuppeTor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Analyzing the Log Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



II

5 Changes to be Evaluated 27

5.1 Open More Pre-Built Internal Circuits . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Start Building Two Introduction Circuits . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Simplifying Hidden Service Access . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Combining Introduction Circuit and Rendezvous Circuit . . . . . . . . . 32

5.3.2 Direct Hidden Service Usage . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Results 44

6.1 Timing Problems Between Measurement Servers . . . . . . . . . . . . . . . . . . 44

6.2 Deleted Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Use of Own Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Evaluation of More Internal Circuits . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Evaluation of Opening Two Introduction Circuits . . . . . . . . . . . . . . . . . 49

6.6 Evaluation of Combining Introduction and Rendezvous Circuits . . . . . . . . . 51

6.7 Evaluation of Direct Hidden Service Usage . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 52

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 56

A List of previous University of Bamberg reports 58



1

1 Introduction

In the past two decades the Internet has gathered a wide public acceptance. More and more
activities of daily life enter the virtual world and completely new ideas are implemented, that
would not be possible without the worldwide communication network.

The most common protocol on the Internet and its fundamental technical base is the Transport
Control Protocol (TCP) in combination with the Internet Protocol (IP), ensuring that data
packets are routed over many computers to the right destination, potentially on the other end
of the world. The TCP/IP protocol stack was developed with respect to numerous performance
issues, but ignoring certain other issues, like anonymity or personal privacy.

According to the Internet Protocol all packets sent through networks have a header in addition
to the user content. This header specifies the sender and receiver of the packet, more precisely
the IP address of both parties. In the current version of the Internet Protocol, IPv4, these
32-bit addresses are assigned to all clients and servers connected to the Internet, the latter
with a static long-term IP address, the former usually with a dynamic short-term IP address,
assigned by their Internet service provider.

Using unencrypted communication, every router on the path between sender and receiver of
a packet can read the data and relate the content to a specific sender IP as well as a specific
receiver IP. The problem of revealing data to unauthorized parties can be addressed by using
end-to-end encryption, offered by cryptographic protocols like Transport Layer Security (TLS),
which is widely used for applications like online banking. When browsing the web the security
protocol must be supported by the web server and the client. While the user can choose a
browser supporting the protocol, he has no influence on the server’s decision to support the
protocol or not.

But there are many websites and services that do not support encryption, although the trans-
fered data should be protected. If someone wanted to learn something about the symptoms of
a specific decease a few decades ago, he probably just took an encyclopedia from his bookshelf
and read in it. Today an alternative is to use an online encyclopedia instead. If the person
looks the decease up during lunch break in the office using his employers network, the system
administrator could easily notify this to the employer. The employer might become curious, if
the employee has the decease and if this could be a problem for the company in the future or
if he better fires the employee.

It is not only the data sent and received, which can reveal details of a person’s privacy, but also
the fact which servers one connects to. An example might be an employee who visits websites of
self-help discussion groups in the break, because he has some kind of problem, e.g. alcoholism.
The employer could learn about it, even though this is completely private and does not affect
the employees work.

While the first example could be solved with an end-to-end encrypted connection, encryption
does not help in the second case. Although the content of the data packets is encrypted and
not readable by anyone else but the specific recipient, the header information about sender and
receiver is still plain text.



2 1 INTRODUCTION

Both examples have an adversary in the local network in common, but an adversary can also
monitor any other node that routes a packet from the client to the server and vice versa or
even the server. If a company has a web form on its website to enable employees to suggest
improvements, this form can be used for whistle-blowing, i.e. uncovering for example malicious
behavior of a supervisor, which could cost the company a lot of money. Even if the employee
uses his Internet access at home to avoid the adversary in the local network, his computer’s IP
appears in the logs of the server. With the help of the employee’s Internet provider it would
be easy to find out the customer, who used the specific IP address at the time when the web
form was used. So the supervisor could try to cover his malicious behavior and pressure the
employee or even fire him.

In the recent example a simple proxy could help to hide the employee’s IP address from the
server. The packets are sent from the client to the proxy server, that changes the sender address
to its own address and relays them to the server. For the server it looks like the proxy has sent
the request and responds to it. After receiving the response the proxy forwards it to the client.
So the client cannot be identified by the server, but the proxy is a single point of trust. The
client must trust the proxy not to reveal his identity to the server.

That this can be a problem shows the case of Julf Helsingius in 1995. He was the operator of
an anonymous remailer, a special proxy for email communication. A user made an anonymous
posting about the Church of Scientology and the organization convinced the Finish police to
force Helsingius to reveal the true name of the poster. After two more incidents involving
Scientology, Helsingius decided to shut the service down.[1]

More recent attempts to provide anonymity try to distribute trust, instead of relying on a
single entity. Random paths of network participants are created, who act as multiple proxies in
a row. If each node in a path between sender and receiver has only a fraction of the information
necessary to route the packet to the receiver, no involved entity except for the sender has the
“big picture”, i.e. knowing who is talking to whom. A node at the beginning of a route knows
the sender, but it does not know where the message goes to except for the very next hop. A
node at the end of the route needs to know where to send the message, but it does not know who
was the original sender. Therefore the networks provide a feature called unlinkability, because
sender and receiver cannot be linked by any other node but the sender.

These anonymity networks hide a single user in an anonymity set, consisting of all users of the
network. This means the sender of a message could still be found by enumerating all users
of the network. Therefore the level of anonymity depends on the size of the network and a
network with 10 users provides less anonymity than a network with tens of thousands of users.

All concepts shown above try to provide anonymity for the sender of a message, who is con-
tacting a public server. So the initiator is the client who request information and the server
responds usually on the same path in the other direction. This is possible by keeping up a path
of nodes through the network for some time, instead of discarding it right after the request.
But one can also think of situations when the responder needs to stay anonymous. This means
a service, e.g. a website, should be provided without revealing the server’s IP address.

Such a so-called location-hidden service enables dissidents to write in a weblog about their
situation or the situation in their country without the fear of being persecuted by the country’s



1.1 Overview of this Work 3

government. In addition to the identity of the author the identity of the server is hidden, so
the government cannot simply shut the server down to suppress a disagreeable opinion. The
same is possible for journalists in countries, where the freedom of press is less respected than
in others. In those countries the government controls the media and might want to suppress
independent opinions.

A location-hidden service provides blocking resistance, i.e. information published using the
service cannot be blocked easily by others. For the same reason, i.e. not revealing the IP
address of a service, it can resist distributed denial of service attacks.

A disadvantage of location-hidden services is that their performance compared to regular non-
anonymous protocols can be fairly bad. This is caused by complex protocols, involving a large
number of nodes with a lot of encryption and decryption. While requesting a small website
from a regular web server usually takes a fraction of a second, requesting the same website over
a location-hidden service can take tens of seconds. Therefore anonymity is not simply added as
another quality of service, but it is traded off for performance, especially against a low latency
during connection setup.

While a user, whose life might depend on their anonymity, accepts a fairly high latency, other
users just protecting their privacy when using the Internet have a much lower threshold regard-
ing performance. It depends on how much anonymity is worth for users. For the benefit of all
users it is important to increase the usability, of which performance is a part of, of anonymity
networks in order to increase the anonymity set mentioned above.[2]

This thesis intends to find ways to improve the location-hidden service protocol of an anonymity
network, aiming at its performance.

1.1 Overview of this Work

This thesis is organized in the following way: Section 2 reviews available anonymity systems and
protocols that feature location-hidden services or comparable approaches. Further it mentions
research in the area of anonymity systems performance. Section 3 describes the Tor anonymity
network in detail as well as the protocol for establishing and accessing location-hidden services.
Section 4 introduces a measurement environment to measure the performance of all sub steps
during the process of accessing location-hidden services using the global Tor network. Section 5
presents a number of performance enhancing changes to the current Tor hidden service protocol
and their implementation. Section 6 shows the results of measurements of the changes using
the measurement environment and performs statistical tests to prove the significant impact of
the implemented changes. Section 7 ends with some concluding remarks and suggests future
work based upon this thesis.



4 2 RELATED WORK

2 Related Work

This section describes the protocols of other anonymity systems, comparable to the one that is
improved in this paper. Further other performance related work considering the performance
of anonymity systems is presented.

2.1 Comparable Systems

Other low-latency anonymity systems and protocols, that provide location-hidden services, are
analyzed below. The selection is further limited to systems that use a message-based approach,
while document-based approaches are not considered.

This is because document based system merely focus on publishing content anonymously and
censorship-resistantly, which is written once and then passively accessed by others. Message
based systems are more capable to protect other ways of communication and low-latency inter-
action between users, e.g. web surfing, instant messaging, or chatting on Internet Relay Chat
(IRC).

2.1.1 Onion Routing

Goldschlag et al. introduced in 1996 an approach called Onion Routing, hiding routing infor-
mation by routing a data stream over a number of nodes to the destination. Each node on the
path between client and server knows only the previous and next hop in the communication
chain.[3] This approach was later used in several ways to design anonymity protocols.

The network consists of a number of routing nodes, which have link encrypted connections to
other routing nodes. Some of the routing nodes additionally act as proxy to enter and leave
the network.

To start communication with a server an initiator, i.e. the client, connects to a routing node
that also provides proxy functionality. This proxy identifies a number of routing nodes to form
a route through the network. It builds the onion, a data packet surrounded by several layers of
encryption together with routing information in each layer. This design, with layers similar to
the layers of an onion, gives the approach its name. At the end of the route is again a routing
node with proxy functionality, that forwards the data to the responder, i.e. a server.

If the client wants to establish a connection to the server it contacts the proxy node. The proxy
node encrypts two pairs of a symmetric key and a function specifying a cryptographic operation,
one pair for every direction of communication, with an out-of-band retrieved public key for the
last proxy in the route. This packet is encrypted together with the contact information of the
last node and two pairs of key and function for the preceding node, and so on back to the first
node it will send the onion.

After sending the onion to the first node, the latter decrypts it with its private key and finds



2.1 Comparable Systems 5

the two symmetric keys and functions in there as well as the contact information for the next
node and an encrypted packet. So he sends the packet to the next node and keeps the keys for
further communication on this route. Since one layer is stripped off the onion for each hop, a
random bit string is added to keep the size of the onion equal.

Using the onion a circuit over a number of routing nodes is created. Each node has two
symmetric keys as well as two functions chosen by the client’s proxy. The proxy can now apply
the inverse of the cryptographic operation using the symmetric keys to prepare the actual
messages it receives from the client, again in several layers, starting with the last node in
the circuit. The message is sent through the circuit and each node applies the cryptographic
operation using the symmetric key for the forward direction. At the end the last node finds
the plaintext message and sends it to the server. After receiving a response from the server,
each node applies the cryptographic operation and symmetric key for the backward direction.
The client’s proxy again performs the inverse operations and sends the response to the client.
Figure 1 shows an overview of all roles involved.

Figure 1: Onion routing overview (taken from [3])

The authors mention a possible extension for a completely anonymous communication between
two parties. Both parties need to connect to some anonymity server, that mates circuits sharing
some token. This is not yet usable for location-hidden services, but the Onion routing approach
was a foundation for later systems.

2.1.2 Anonymous IP Infrastructure

In 2000 Goldberg presented the Anonymous IP Infrastructure (AIPI).[4] The AIPI enables
clients to access public services without revealing their IP address. He also presented an exten-
sion to offer a service anonymously.

Clients who want to use the AIPI need an application-level proxy, which routes data from any



6 2 RELATED WORK

client application that can use proxies, into the network. The basic component of the AIPI is
the so-called IP Wormhole, an Internet service, the client can send messages to. One or more
dedicated hosts are set up around the Internet, called Anonymous Internet Proxy (AIP). Each
AIP has at least two IP addresses, a regular Internet address and a Wormhole address.

Messages send by clients to the regular Internet address of the AIP are IP-in-IP messages, i.e.
an IP packet contained in another IP packet. The inner packet has a blank source address and
the destination is the desired server. The source address of the outer packet is the client IP
address and the destination address the Wormhole IP address. The AIP assigns a certain port
and the Wormhole IP address to the client IP address and keeps this combination in a table,
if more packets from the same client arrive. Then it sets the assigned Wormhole IP address as
the source address of the inner IP packet and sends the packet to the desired server.

When the server replies, the destination address is the Wormhole address. The AIP receives
the packet, encapsulates it in another IP packet and sends this packet to the client. The client
address can be looked up in the table mentioned before.

This scenario hides the client from the desired server, but an attacker reading the IP-in-IP
packages can still easily link client end server, because he knows the sender of the outer packet
and the destination of the inner package. To prevent this, the inner IP packet is encrypted with
the AIP’s public key, when the packet is sent to the AIP and with the client’s public key, when
the AIP forwards a reply of a server to the client.

To prevent an attacker from correlating messages coming in and out of the AIP, packet padding
is used to make all packets between client and AIP the same size by adding random data to
the inner IP packet before encrypting it. While packets carrying a simple GET command of
the Hypertext Transfer Protocol (HTTP) are rather small, the response can be much bigger.
To make padding more efficient, multiple packet sizes are used and each packet is packet to
the smallest size, in which it fits. In addition link padding is used for packets between client
and AIP, which means that also the times when packets are sent are changed. If less packets
are sent, dummy traffic can be added and if more packets are sent than fit in the slots, smaller
packets can be combined to a packet of larger size. This is to protect the packets against packet
timing correlations.

The AIP must still be trustworthy and a malicious AIP or an AIP under control of an adversary
would reveal all connections between clients and servers. Therefore not a single AIP is used,
but a chain of AIPs. Adjacent pairs of AIPs are connected by secure links, similar to the one
between client and first AIP in the chain. But the links between AIPs are permanent, so all
AIPs constitute a network, with each AIP having a few links to others. To learn which AIPs are
connected clients can retrieve the current AIP graph from the Network Information Database
(NIDB). The NIDB is distributed among all AIPs. Every AIP has a list of its neighbors, the
nodes it has secured links to, and exchanges its list with them.

A client can query a subset of AIPs for their lists and construct the AIP graph based on the
lists and pick a number of linked AIPs to form a chain. Then it builds a secure link to each of
the AIPs in the chain, tunneled over the secure links between the nodes.

To add the functionality of anonymous servers to the AIPI rendezvous servers are introduced,



2.1 Comparable Systems 7

which can be part of the AIPI but need not to. To locate a rendezvous server a decentralized
database is used, e.g. the Gnutella network. The server can connect to the rendezvous server
via the AIPI and hand over a service tag, which is the identifier for the service. The rendezvous
point publishes the tag and its own address in the decentralized database. Clients who want to
connect to the service query the database and learn the tag and the rendezvous server from it.
Then they can contact the rendezvous server and using the tag the server can forward requests
to the anonymous server. If clients want to stay anonymous they can contact the rendezvous
server via the AIPI also.

2.1.3 Tarzan

Freedman et al. introduced a peer-to-peer anonymous network layer that provides generic IP
forwarding called Tarzan in 2002.[5] Packets are routed through tunnels, consisting of a sequence
of Tarzan nodes, and they are encrypted in layers hop-by-hop. On one end of a tunnel is the
client requesting a service and on the other end is a Tarzan node running a network address
translator (NAT), which forwards the unencrypted request to the original destination, e.g. a
web server.

The client who seeks anonymity creates the tunnels. First it needs to know which other peers
are available. Tarzan uses a distributed hash table (DHT) and the Chord algorithm. So
the directory is distributed over all Tarzan nodes, forming a logical Chord ring based on a
cryptographic hash of their IP address. This hash is used as key in the DHT. The hash is
created using a one-way function, so it is not possible to rebuild the IP address from the hash.
Each node learns about a few neighbors after initially contacting a single node.

To randomly pick nodes for tunnel creation, the client can simply generate random lookup keys
and send a request to the matching node or the node, whose hashed IP is the closest successor
of the lookup key. The node that is found answers with its IP address and public key.

After collecting the contact information of a number of random peers the client can start
building the tunnels. It does so by sending a User Datagram Protocol (UDP) packet to the
first node, encrypted with the receiver’s public key. The packet includes a symmetric session
key for further communication. The receiver responds with an acknowledgment encrypted with
the symmetric key.

To add a second hop to the tunnel, the client sends another symmetric key through the tunnel,
now encrypted for the second node and encapsulated with the first symmetric key. The first hop
in the tunnel cannot distinguish if the packets, he is relaying, are already data packets carrying
user data or control packets for tunnel creation. It can further not identify if the sender is the
originator of the tunnel or just another relay. The first hop just strips one layer of encryption
off the packet and relays the still encrypted content to the IP it also finds in the packet.

The following hops are built accordingly. In the Tarzan client an IP forwarder intercepts the
packets coming from user applications e.g. a web browser, sanitizes the IP header and routes
them through the tunnel. The last hop in a tunnel uses the built in pseudonymous network
address translator (PNAT) and sends the packet to the destination. For the destination it



8 2 RELATED WORK

looks like the packet originates at the last hop of the tunnel. Figure 2 shows an overview of the
architecture.

Figure 2: Tarzan architecture overview (taken from [5])

To offer a service anonymously instead of accessing one, the PNAT at the end of a tunnel can
be configured to forward ports. So even regular clients not using Tarzan can access the service,
as it appears to be hosted on the node at the end of the tunnel. Tarzan clients can also access
an anonymous server anonymously by using two tunnels ending at two different PNATs, one
representing the server and the other one representing the client. But it is important to mention
that such a connection would not be end-to-end encrypted, because the messages between the
two PNATs at the end of both tunnels are not secured by Tarzan.

The authors have measured the performance of Tarzan and found a latency of 68.37 milliseconds
on average for building a tunnel consisting of three hops. Varying the length of tunnels showed,
that each hop adds another 20 milliseconds to the build time. In these measurements looking up
other nodes in the Chord table is not included, but the node information is fetched in advance.
When the node information is fetched on demand, the latency for a 3-hop tunnel is on average
106.70 milliseconds. Measurements concerning the latency a client experiences using Tarzan to
access a public server anonymously or accessing a location-hidden service are not presented.

2.1.4 I2P

The Invisible Internet Protocol (I2P) is an open source peer-to-peer network started in 2003.[6]
It provides anonymity for typical Internet activities by routing traffic through other network
nodes, using separated tunnels for inbound and outbound messages. I2P is capable of anonymiz-
ing activities like web browsing, chatting on IRC, file transfers, file sharing and email, as well
as web hosting. The network does not hide the usage of I2P, but what the user is doing and
who he is communicating with.

After starting a client it retrieves the information about other routers from a distributed hash
table, the network database, including public keys for encrypting and signing messages, contact
information in form of IP address and port, a time stamp of publication, and signature against
all data to ensure its authenticity. To reach the hash table, which is distributed over all routers,
the client needs to know only a single peer, that can be asked for other routers. To find this
single peer a seeding Uniform Resource Locator (URL) is available.

With the information, which routers are available, the client can start to build tunnels. Usually
a client has five to ten outbound tunnels and two inbound tunnels. Those are the tunnels for



2.1 Comparable Systems 9

client communication. In addition exploratory tunnels are opened for tunnel maintenance and
network database maintenance. While exploratory tunnels are selected randomly from the set
of known peers, client tunnels need to fulfill certain requirements like being fast and having a
high capacity. The tunnels have a life time of 10 minutes, when they are discarded and new
tunnels are built. The default length of tunnels is two hops.

Both inbound and outbound tunnels have a tunnel gateway, where messages enter the tunnel,
and a tunnel endpoint, where messages leave the tunnel. That means the client serves as a
gateway for outbound tunnels and as an endpoint for inbound tunnels. Figure 3 illustrates the
usage of tunnels in I2P.

Figure 3: I2P overview (taken from [6])

When the tunnel gateway receives messages, it encrypts them in several layers of encryption,
one layer for each hop in the tunnel. It is also possible, that the gateway accumulates several
messages and sends them together through the tunnel. This is one feature of so-called garlic
routing. Another feature is to include gateway information of an inbound tunnel to a message
that is sent to another client. If the other client wants to answer that message it does not need
to query the network database, where the gateway information of all peers is available. Instead
it can use the gateway information included in the message it has received.

Due to the peer-to-peer character of I2P every client automatically takes part in the network
when connecting. That means it also receives and sends traffic of others. The peers communi-
cate with each other using the UDP protocol.

To deploy a location-hidden service within I2P the client creates a destination key pair. The
private key is used for authentication of the service, while the public key serves as identifier.
This identifier is also uploaded to the network database together with gateway information and
a human readable domain name, ending with the top level domain .i2p. In addition the physical
service must be deployed on the machine, e.g. a web server to host an anonymous website or
an IRC server.

When a client wants to access an .i2p domain while being connected to the I2P network, it
retrieves the contact information from the network database and can therefore connect to the
gateway of the service, that relays requests to the client providing the service.



10 2 RELATED WORK

2.1.5 Peer-to-Peer Personal Privacy Protocol

In 2002 Sherwood et al. presented a protocol for scalable anonymous communication, called P 5

for Peer-to-Peer Personal Privacy Protocol. The protocol provides anonymity for senders and
receivers of messages.[7]

The basic idea underlying the protocol is a global broadcast channel. That means that a
message sent to the broadcast group is received by every member of the group. The messages
are encrypted with the public key of the receiver, so that only the desired receiver can decrypt
and read the message. All participants send fixed-size packets at a fixed rate. Even if they
do not communicate with anyone they send noise packages. Otherwise the package contains
useful information and is called a signal package. As last feature the broadcast is organized as
a peer-to-peer ring with spoofing the sender addresses and with hop-by-hop encryption, so that
outgoing messages cannot be mapped to a particular incoming message of a node.

An adversary cannot distinguish between noise and signal packages and therefore cannot find
out who is actually communicating. Because everyone in the group receives a message, the
adversary cannot determine, who is the actual recipient of the message and because of the
sender spoofing and hop-by-hop encryption the sender of a message is not revealed. In addition
this idea provides unlinkability, that means nobody can find out, if and which two users are
communicating.

But the idea has one major problem. It does not scale. When the broadcast group increases,
the available bandwidth for useful messages decreases linearly. Dividing the group into smaller
separated groups would help, but if two users end up in different groups, they would not be
able to communicate.

The authors solve that problem by creating a hierarchy of broadcast channels. Users can
locally choose different levels in the hierarchy and thereby trade-off between anonymity and
communication efficiency. Foundation of the hierarchy is the bitstring of the user’s hashed public
key. Groups in the hierarchy are determined by the prefix of the bitstring, whose length is set by
a bitmask. Figure 4 shows the upper levels of the hierarchy in the format (bitstring/bitmask),
with the null-bitstring as root.

Figure 4: P 5 Logical broadcast tree (taken from [7])

A message sent to a certain group reaches all members of that group, all members of the
ancestor groups, i.e. the groups that have a lower bitmask and their bitstring is a prefix of the



2.1 Comparable Systems 11

targeted group, and all members of the descendant group, i.e. the groups with a higher bitmask
and the bitstring of the targeted group is a prefix of their bitstring. A message to the root is
sent to all users in all groups, while a message to the group (00/2) is received by members of
the bold groups in Figure 4 only.

If two users want to communicate, they need to obtain each others public key out-of-band.
They can create a bitstring from it, and choose a common group, i.e. not necessarily the group
both users are in, but a group both receive messages from. But with only one key per user
there is a 50 % chance that the lowest common ancestor is the root. Messages sent through
that group have a maximum of anonymity, but also have higher chance to get lost, because
peers are able to drop messages, if they receive more messages than they can handle.

Therefore clients create two additional locally generated routing keys, to join more groups in
different parts of the tree. When joining a group, they periodically send messages to the group,
listing other groups they are in.

The P 5 protocol has not yet been implemented in the real world, but the authors provide a
packet-level simulator to analyze the behavior of the protocol for certain parameters. They
show that the number of public key decryptions on every node can easily handled by current
processors. The bandwidth necessary to communicate in a network with 8192 nodes at hundreds
of kilobits per second is approximately 2 megabyte per second. This is because of up to 40 %
packet loss. This is low compared to a pure broadcast system with the same parameters. The
group size in this scenario is at least 100 members. Latency is not considered in the simulation.

2.1.6 Anonymous Peer-To-Peer File Sharing Protocol

When developing the Anonymous Peer-to-peer File Sharing (APFS) protocol [8] in 2001, Scar-
lata et al. adapted existing protocols for initiator anonymity to provide responder anonymity
focusing on file-sharing.

Using a proxy node it is possible to achieve responder and initiator anonymity and therefore
mutual anonymity with existing initiator anonymity protocols. The responder, i.e. provider of
a service, creates a connection to the proxy using the existing protocol and sets up a public
alias. So the proxy only knows the alias but not the identity of the responder. An initiator
also builds a connection to the proxy anonymously, handing over the alias. The proxy forwards
the request over the anonymous channel to the responder, who sends the reply the same way
back. Both roles connected anonymously to the proxy, so the latter does not know either one
of them. But of course the proxy is a bottleneck and it needs to be trusted not to drop all
request packets in a denial-of-service attack.

The authors divide the APFS protocol in two stages. In the first stage peers create an network
providing initiator anonymity. That means they build connections over other peers using lay-
ered encryption as described in Section 2.1.3. In this stage anyone is allowed to see that the
clients participate in the network. In the second stage peers anonymously query anonymous
servers, which answer by providing contact information of other peers, that have the queried
files available.



12 2 RELATED WORK

The initialization of the APFS protocol starts with a coordinator, whose IP and public key are
known to all clients and which is the bootstrapping node. Clients joining the network notify the
coordinator and receive a list of other nodes available for forming anonymous routes. After the
initialization willing peers contact the coordinator anonymously and offer to act as server. The
offer includes a unique ID, the address of a tail node, i.e. the node at the end of an anonymous
route. Acting as a server means that other clients can send lists of available files to them and
that clients can query for specific files. If the server knows a client providing the specific file, it
responds with the client’s tail node, so that the requesting client can connect to to the client
providing the file.

Clients can learn about the servers from the coordinator, and send lists of shared files through
anonymous tunnels to the servers, including unique IDs and tail node addresses. When querying
servers, the queries can be sent to different servers to avoid heavily loaded or poorly connected
servers. Before leaving the network clients notify the servers that they are not sharing files
anymore.

In a variation of the protocol the authors propose a multicast solution for bootstrapping. This
adds some complexity to the protocol, but does not need a central coordinator. An initiating
node publishes a multicast address on a website or mailing list together with a join time. Other
nodes interested in joining subscribe to the multicast group and start sending overt messages
to the multicast address periodically. By receiving the messages sent to the address each node
learns about the others. A peer willing to act as server just sends a message to the multicast
address instead of the coordinator in the other variation, now using an anonymous tunnel. The
search for files works like in the variation with a coordinator.

The performance of the APFS protocol was measured using a simulation. The transfer latency
for a 2 megabyte file from one peer to another increased by 65 % comparing a path length of
0, without any anonymity, and a path length of 2. Increasing the path length to 4 results in
another 13 % increase of transfer latency. The absolute average latency for the measurements
with a path length of 2 is 11 seconds at 1 % loss in all links.

2.2 Anonymity Systems Performance Research

Research analyzing the performance of anonymity network as part of usability has become
more important in the last years amending mandatory security and anonymity research. Most
papers still focus on initiator anonymity only and do not consider location-hidden services.
Nevertheless they are important to mention here, because the location-hidden services analyzed
in this thesis base on the same foundations examined in the papers.

Dingledine and Matthewson established a basis for usability research of anonymity systems
in 2006. In a number of case studies they showed the importance of usability. Because the
best network design does not provide anonymity if it cannot attract enough users to create a
sufficient anonymity set.[2]

Also in 2006 Köpsell examined the relation between the delay of message transfer resulting
from using an anonymity system and the number of users. He found that the number of users



13

decreases linearly as the delay increases. This decrease affects the anonymity set and therefore
the anonymity the system provides. As a result designers of anonymity systems should not
disregard the performance issue.[9]

Wendolsky et al. compared the latency of the Tor network, which is also subject of this thesis, to
another low-latency anonymity network, called AN.ON, in 2007. AN.ON does not offer location-
hidden services and was therefore not mentioned in this thesis. The authors found that Tor is
subject to unpredictable performance with a high variability of latency. The average time to
anonymously retrieve a website was measured at 4.231 seconds in the afternoon and little lower
3.790 seconds in the morning.[10]

In 2008 Panchenko et al. proposed new methods of path selection in Tor. The methods are
based on measurable performance metrics like latency or throughput, instead of self-advertised
values. Using the proposed path selection method the performance experienced by a user could
be increased. The time to access a public website anonymously via Tor decreased from 4.04
seconds on average using the default Tor path selection to 1.35 seconds with the improved
methods.[11]

3 Tor and Tor Hidden Services

In this diploma thesis enhancements of a location-hidden service protocol are developed. The
anonymity network selected for those enhancements is the Tor network. This network is chosen
for a number of reasons. Unlike other location-hidden service protocols the Tor protocol has
been implemented and is widely in use. So measurements in the global network can be performed
intending to measure the performance a regular user experiences, instead of simulating the
usage of the protocol. Tor supports a wide range of applications, anonymizing data on the
TCP protocol level. Further Tor is free software and its implementation is well documented.
There is also a supporting community and it is analyzed in a number of scientific papers.

To comprehend the changes proposed in this thesis it is necessary to understand the way how
Tor provides anonymity in general and how the Tor hidden service protocol works.

3.1 Tor

Tor is an overlay network built upon the Internet. That means, that it consists of a number
of nodes, so called relays that are deployed on regular servers. These relays run as client-level
processes and are used as proxies to provide different forms of anonymity.[12]

One form of anonymity is the anonymity of a client accessing a public service e.g. a web site. In
this scenario neither the web server, nor any other router on the way between user and server
should be able to link this particular client with the server access.

The Tor software was deployed in October 2003. The network had no down-time since then
and currently consists of approximately 2,000 nodes worldwide. It is the largest distributed



14 3 TOR AND TOR HIDDEN SERVICES

anonymity network currently in use with a weekly estimated 200,000+ users.

The Tor client builds so-called circuits consisting of three relays to contact an external server.
The relays are all chosen before building the circuit. To find out which relays are available, the
client retrieves a list of relays from a directory server, including their IP address, port number,
and public key. The connection with the directory server is a regular TCP-connection. This
only leaks the information that the user is using Tor, but not what services he is going to use.

Communication between Tor relays takes place in form of fixed-size cells, send over TLS secured
connections. Using TLS prevents an adversary from impersonating a relay or modifying data.
When the user requests a website, the client first establishes a TLS connection to the first
relay, which is called entry node. To negotiate a symmetric session key with the entry node,
the client sends the first part of the Diffie-Hellman handshake down the TLS connection. The
entry node performs the second half of the handshake and replies it. Now both nodes share a
common secret to generate a 128-bit session key for further communication, using the Advanced
Encryption Standard (AES) algorithm. Although both parts of the handshake were send over
the network, they would not help an adversary to learn the secret.[13]

To extend the circuit, the Tor client encrypts and sends a cell to the entry node to open a
secured connection to the second relay, called middle node. The entry node decrypts that
cell and sends a create cell to the desired node, followed by another Diffie-Hellman handshake
between the client and the middle node, with the entry node relaying the messages between
both.

The next step is, to create a message for the middle node to open a secured connection to the
third relay, called exit node. This message is encrypted for the second relay and enhanced by
contact information of the same relay. Both is encrypted for the first relay and sent to the first
relay. The entry node decrypts the message and finds another encrypted message within along
with the contact information of the middle node. Therefore it forwards the encrypted message
to the middle node. The same form of layered encryption is applied when extending the circuit
to the exit node.

After building the circuit it can be used to retrieve a website or send a message. The client
prepares the message and wraps it in three encryption layers. The outermost layer is always
stripped off by the three relays, first by the entry node, then by the middle node and at last by
the exit node. After the exit node has encrypted the message it received, it finds the original
message along with the contact information of the server to send it to.

Figure 5 shows a circuit over three relays between the client in the upper left and the public
server in the lower right corner. The directory server is in the lower left. Solid lines represent
encrypted connections, while dashed lines are unencrypted connections. The onion identifies
nodes with Tor installed, either as client, relay or directory.

When the exit node sends the message to the server over an unencrypted TCP connection, for
the server it looks like the message originates from the exit node. After receiving a reply from
the server, it is sent down the circuit again, encrypted with the corresponding session keys by
each node until the packet arrives at the client and he can decrypt it to read the reply.



3.2 Hidden Service Protocol 15

Figure 5: Tor overview

3.2 Hidden Service Protocol

This section describes the protocol underlying Tor hidden services. It explains all steps neces-
sary to first establish a hidden service and later access that service. Further the different roles
involved in the process and the messages, that are sent between nodes, are examined. This is
essential to understand the measurement environment, presented in the next section as well as
the changes proposed later.

The whole process to transfer content from a hidden server to a client can be divided in two
parts: the establishment of a hidden service and the actual access by a client. The following
description assumes that a fictional user Bob wants to offer a service without revealing his real
location and therefore uses the hidden service feature of Tor. Another user called Alice wants
to access this service.

3.2.1 Establishing a Hidden Service

The establishing part occurs once per hidden service at the very beginning. It makes the service
available for clients. If it is successful, clients can access the service until it is shut down. The
idea is to select other relays in the Tor network, that can be contacted by clients. These nodes
are called introduction points. When a hidden server is started, it selects three nodes and builds
a circuit to them. That means that two other relays are between hidden server and introduction
point. Figure 6 shows the process of establishing a hidden service, which is explained in detail
below.

All Bob needs to do to establish a hidden service is to set up the actual service, e.g. a web
server or an IRC server and to start the Tor client, which is configured to provide a hidden
service.



16 3 TOR AND TOR HIDDEN SERVICES

Figure 6: Establishing a hidden service

As soon as the circuit is built the hidden server sends an Establish_Intro cell over the
circuit, containing the public key of the hidden server besides some signature information. The
introduction point checks that signature and associates the circuit with the public key received
in the cell.

During the hidden service access, clients will contact the introduction point and the hidden
server’s public key is used to find the right circuit, especially if the relay acts as rendezvous
point for more than one hidden service.

After accepting its role, the introduction points acknowledges with an Intro_Established cell
over the circuit.

After receiving the acknowledgments the hidden server builds the rendezvous service descriptor.
This descriptor includes contact information about the three introduction points and the hidden
server’s public key. The hidden server uploads the descriptor and a unique identifier for the
service, the onion address built from a random hash, to two of six hidden service directories.
The directory consists of two sets with three directory servers each.

When the rendezvous service descriptor is available at the directories, clients can start to access
the hidden service. To do so they need to know the onion address, which is distributed out-of-
band, from a website listing hidden services or from a posting on a mailing list.

3.2.2 Accessing a Hidden Service

Accessing a hidden service is the part of the hidden service protocol, that matters to the user
regarding performance. If the establishment of a service would take a lot of time, the user
would not even notice, but the access protocol starts when the user clicks on a link on a web
site and ends when the desired web site appears on his screen.



3.2 Hidden Service Protocol 17

If a user wants to access a hidden service, he must have learned the onion address before. He
might have found it on a web site or read it in an email. It’s just like a regular domain name
that one first needs to know before one can access it.

When the user types the onion address in the address bar of his browser or clicks on an HTTP
or IRC link, the Tor client recognizes the request by the .onion notation and knows that it has
to act different from the default Tor protocol, i.e. start the hidden service protocol.

Figure 7: Accessing a hidden service

First the Tor client needs to know how to contact the hidden server at all. More precisely it
needs the contact information of the introduction points of the hidden service. Those are listed
in the rendezvous service descriptor mentioned in the last section. To retrieve the descriptor
the client sends a request to one of the hidden service directories, using a 3-hop circuit. So the
request is processed like a regular Tor connection described in Section 3.1.

After receiving the rendezvous service descriptor the Tor client randomly picks one of the
introduction points it finds in the descriptor and builds a circuit to the introduction point.
To accelerate the circuit building, so-called cannibalization can be used. That means, that
an existing 3-hop circuit is extended to a desired relay, in this case the introduction point.
Obviously this only works, if there is a usable circuit available to be cannibalized. Otherwise
this circuit first needs to be built hop by hop.

While contacting the introduction point, another very important process takes place. Alice’s
Tor client selects another relay to act as rendezvous point. This rendezvous point plays a
central role for the later data transfer between Bob and Alice. To establish a circuit to the
rendezvous point, again cannibalization is used. But this time no 3-hop circuit is extended to
the desired relay, but the third hop of an existing 3-hop circuit is chosen as rendezvous point.
The advantage is that the rendezvous circuit is immediately built and Alice’s Tor client can
send an Establish_Rendezvous cell over the circuit. This cell contains a random rendezvous
cookie for identification purpose.



18 3 TOR AND TOR HIDDEN SERVICES

The rendezvous point saves the rendezvous cookie and acknowledges its new functionality by
replying with a Rendezvous_Established cell on the same circuit.

To proceed Alice’s client needs to check two conditions. One is that the introduction circuit
is successfully opened. The second condition is that the rendezvous point has replied with the
acknowledgment cell. If both conditions are true, Alice’s client sends an Introduce1 cell over
the introduction circuit. This cell contains contact information of the rendezvous point and the
rendezvous cookie.

The introduction point receives the cell and forwards the content in an Introduce2 cell to the
hidden service. Afterwards it sends an acknowledge back to the client, the Introduce_Ack cell.
When the hidden service receives the Introduce2 cell it can decide if it wants to let the client
access the service. If the decision is positive, the hidden service uses the contact information
found in the Introduce2 cell to contact the rendezvous point. First it builds a circuit to the
relay acting as rendezvous point using cannibalization again. In this case an existing 3-hop
circuit is extended to the rendezvous point. When the circuit is open, a Rendezvous1 cell is
sent down the circuit, including the rendezvous cookie.

When receiving the Rendezvous1 cell the rendezvous point uses the rendezvous cookie to find
the matching client circuit and connects it with the one it just received the cell over. At last
the rendezvous point sends a Rendezvous2 cell back to the client to notify it that a connection
to the hidden service has been successfully established and is now ready to transfer TCP user
data, e.g. an HTTP GET to retrieve a website.

In Section 2.2 the average latency of Tor, when anonymously retrieving a public website, is ap-
proximately four seconds. While for this use case only a single circuit is used, hidden services in
Tor require more circuits and more nodes involved. Therefore the time from requesting a hidden
service until receiving the reply is 24 seconds on average as shown in earlier measurements.[14]
The variability is fairly high, with values over 2 minutes occurring.

This thesis intends to lower the latency of Tor hidden services and does not consider the other
main performance attribute of computer networks: throughput. While latency is defined as
the transfer time of a packet from one end of a network to another, throughput describes the
amount of data transfered through the network in a certain time period.[15] Throughput is not
examined, because most applications on the Internet rather require more connections handling
small amounts of data, e.g. web surfing or instant messaging, than fewer connections handling
big amounts of data, like file transfers.

Latency in this thesis is considered from a user’s perspective. That means it is the time
between sending a request to a hidden service and receiving the response, even though not
a single message constitutes this value but a lot of messages between many different network
nodes.



19

4 Measurement Environment

To measure the performance of most of the sub steps necessary to access a hidden service in
detail a measurement environment is set up. This environment is based on the default Tor
implementation, version 0.2.0.7-alpha, retrieved from the official Tor subversion repository 1.
This version is chosen because in the following version 0.2.0.8-alpha a new directory protocol
is introduced. While having no direct impact on hidden service access, the consensus between
directory nodes takes longer, up to 30 minutes. This makes measurements in private Tor
networks with own directory nodes more difficult.

The basic idea of the environment is to enable repeatable measurements of hidden service access.
Because all messages are encrypted, messages are not observed on TCP packet level, but the
logging events generated by Tor during run time are analyzed.

After choosing the logging statements for observation purpose, it is necessary to own as many
roles in the process as possible, because access to the log files is necessary to analyze them.
The idea to set up a private Tor network is rejected, because it is expected that having all
nodes in a private network or even on the same machine would affect message transfer times
between nodes. The times measured in such an environment would be much lower than those
experienced by a regular user of hidden services on the Internet.

So measurements have to take place “in the wild”, actually using the same servers for hidden
service access that everyone else in the Tor network uses. The number of nodes controlled by the
author is minimized to those relays hosting the most important roles in the hidden service access
process. First of all there is the Tor client, representing the user, accessing the hidden service
and controlling most of the process like path selection or selection of routers to communicate
with. On the other end of the process a Tor client configured as hidden service serves the
request. In between two further Tor clients are configured as relays to act as rendezvous point
and introduction point for the service.

Two main types of changes are made to the roles: regular configuration via the torrc config-
uration file of each node and changes in the implementation to change the behavior in a way
that the configuration file is not capable of.

4.1 Client

Besides the default out-of-the box configuration of a Tor client in the torrc file the following
changes are made. Logging is enabled and the output on info level is pointed to a certain
file. A data directory is also specified to keep keys and router descriptors. Those two changes
are necessary because three of the four roles are hosted on the same machine. To keep them
completely separated within the machine all temporary and long-term data goes into separate
directories. The configuration offers an option to select preferred nodes as rendezvous point.
This is enabled and the identity of the rendezvous point is specified. To identify all logging
statements, SafeLogging is disabled. It is enabled by default and removes potentially sensitive

1available at https://tor-svn.freehaven.net/svn/



20 4 MEASUREMENT ENVIRONMENT

strings like addresses from the logs. All options can be found in Listing 1.

1 SocksPort 9050
2 SocksListenAddress 127.0.0.1
3 Log info file .../log/infothree.log
4 RendNodes $094C0337F5A03A9D62B35358DDD9F3A8E48FF23B
5 SafeLogging 0

Listing 1: Client configuration

In addition to the configuration changes some changes to the source code of Tor are necessary
to make the measurements work.

The RendNodes option to use a specific relay as rendezvous node is available, but does not
work in case of cannibalization. The implementation expects an existing 3-hop circuit with the
chosen relay at the end. But in the beginning the option is not considered and three internal
circuits to other relays are opened.

To make it work, the following change is applied to a function in circuituse.c. In the
circuit_predict_and_launch_new() function the algorithm to open new circuits before they
are needed, checks if the number of existing internal circuits is zero and the RendNodes option
is set. If this is the case an internal circuit to the rendezvous point of the measurement
environment is opened, using its identity hash in line 3. That means that the first internal
circuit ends at the rendezvous point, and is available for later cannibalization. If the first
internal circuit is already open, the default path selection algorithm is applied. The change is
shown in Listing 2.

1 if (options−>RendNodes && num internal < 1) {
2 circuit launch by nickname(CIRCUIT PURPOSE C GENERAL, 0,
3 ”$094C0337F5A03A9D62B35358DDD9F3A8E48FF23B”,
4 hidserv needs uptime, hidserv needs capacity, 1);
5 } else {
6 circuit launch by router(CIRCUIT PURPOSE C GENERAL, 0, NULL,
7 hidserv needs uptime, hidserv needs capacity, 1);
8 }

Listing 2: Client code to pick rendezvous node

But if the circuit is launched by nickname the regular length for general purpose circuit is four
hops. To have the later rendezvous point at the end of a 3-hop circuit, the additional line 8 in
Listing 3, affecting the new_route_len() function in circuitbuild.c, is necessary.

When the client receives the rendezvous service descriptor from the directory server it finds all
three introduction points selected by the hidden service in there. Usually it randomly picks one
of those three in function rend_client_get_random_intro() in rendclient.c, i.e. a random
value between zero and two is assigned to the variable i in Listing 4.

To always use a specific introduction point this behavior is changed. The client now iterates
through the list of introduction points in the rendezvous service descriptor and searches for the
identifier of the introduction point used in the measurements. The identifier is shown in line 4.



4.1 Client 21

1 routelen = 3;
2 if (exit &&
3 purpose != CIRCUIT PURPOSE TESTING &&
4 purpose != CIRCUIT PURPOSE S ESTABLISH INTRO &&
5 /∗ CW If a particular router is chosen and the purpose is C GENERAL, the
6 ∗ default path length is 4. I want it to be 3 for the rendezvous
7 ∗ circuit. ∗/
8 purpose != CIRCUIT PURPOSE C GENERAL)
9 routelen++;

10 }
Listing 3: Client code to decrease circuit length

1 int own intro pos;
2 own intro pos = −1;
3 char own intro[] =
4 ”$68333D0761BCF397A587A0C0B963E4A9E99EC4D3”;
5 int x;
6

7 for (x = 0; x < entry−>parsed−>n intro points; ++x) {
8 if (!strcmp(own intro, entry−>parsed−>intro points[x])) {
9 own intro pos = x;

10 }
11 }
12

13 if (own intro pos > −1) {
14 i = own intro pos;
15 } else {
16 i = 0;
17 }

Listing 4: Client code to choose introduction point



22 4 MEASUREMENT ENVIRONMENT

If it finds that specific identifier the associated position is chosen. Otherwise something went
wrong in terms of measurements and the first introduction point is chosen.

4.2 Hidden Service

The Tor client configured to host a hidden service reads the following configuration options
from its torrc file. Like for the client own directories for logging and key storage are specified
and SafeLogging is disabled.

The port listening on local application connections is disabled, because the hidden service node
shall only respond to hidden service request coming from the client node.

To enable the hidden service functionality a directory for long-term hidden service information is
specified as well as a port to forward hidden service requests to. With the HiddenServiceNodes
option the given node is preferred as introduction point.

The bandwidth for relayed traffic is limited to 20 kilobyte per second, with bursts up to 80 kilo-
byte per second and the relay is not allowed to act as exit relay. So the relay can be used by
everybody as first or second hop in circuits, as introduction and rendezvous point, but not as
exit relay to access public websites or services. This is to protect the relay, because if Tor is
used to cover any illegal activity, the IP address of the exit node appears in the log statements
of a server and the computer might be subject to prosecution by law enforcement. This can
interrupt or more likely even abort the measurements and should therefore be avoided.

The ORPort is set to 9001 to listen on that port for Tor connections and a contact information is
provided as well as a nickname for the relay. The combined configuration options are presented
in Listing 5

1 SocksPort 0
2 Log info file .../log/infoone.log
3 SafeLogging 0
4 DataDirectory .../data/one
5 HiddenServiceDir ...data/one/hidden service
6 HiddenServicePort 80 127.0.0.1:80
7 HiddenServiceNodes $68333D0761BCF397A587A0C0B963E4A9E99EC4D3
8 Nickname testorone
9 RelayBandwidthRate 20 KB

10 RelayBandwidthBurst 80 KB
11 ContactInfo Delvey <delvey AT gmx dot de>
12 ORPort 9001
13 ExitPolicy reject ∗:∗

Listing 5: Hidden service node configuration



4.3 Rendezvous Point 23

4.3 Rendezvous Point

The Tor client acting as rendezvous point is configured as a regular Tor relay without any
client or hidden service specific configuration. The relay gets a different nickname, logs into
an own file, gets its own directory for temporary data and listens on a different port for Tor
connections. See Listing 6 for complete options.

1 SocksPort 0
2 Log info file .../log/infotwo.log
3 SafeLogging 0
4 DataDirectory .../data/two
5 Nickname testortwo
6 RelayBandwidthRate 20 KB
7 RelayBandwidthBurst 80 KB
8 ContactInfo Delvey <delvey AT gmx dot de>
9 ORPort 9002

10 ExitPolicy reject ∗:∗
Listing 6: Rendezvous point configuration

4.4 Introduction Point

The Tor client configured as introduction point is set up on a different machine than the other
three roles. It could use a similar configuration like the rendezvous point. But the server is not
set up primarily for the measurements, so some options like those for bandwidth differ from
the rendezvous server, as it is shown in Listing 7. This relay is in addition configured as a
Tor directory server. But this functionality is not used in the measurements and the according
configurations are not shown in the listing.

1 SocksPort 0
2 log notice file /home/tor/gabelmoo/notices.log
3 log info file /home/tor/gabelmoo/info.log
4 DataDirectory /home/tor/gabelmoo/
5 Nickname gabelmoo
6 BandwidthRate 2 MB
7 BandwidthBurst 2 MB
8 ContactInfo 1024D/F7C11265 Karsten Loesing <karsten dot loesing AT gmx
9 ORPort 443

10 ORListenAddress 0.0.0.0:9001
11 ExitPolicy reject ∗:∗

Listing 7: Introduction point configuration



24 4 MEASUREMENT ENVIRONMENT

4.5 Physical Setup

Three of the four roles are set up on the same machine. This is possible, because they never
get in direct contact with each other, but always with two or three other Tor relays in between.
Figure 8 visualizes the circuits used for hidden service access, following the regular protocol.

Figure 8: Measurement environment

The main measurement server is a virtual root server in Frankfurt on the Main in Germany,
hosted by the German hosting company 1blu.2 The machine has an AMD OpteronTMprocessor
246, 400 megabyte Random Access Memory (RAM) guaranteed, and can use a maximum of
2 gigabyte when available. There are no traffic limitations for this machine.

This server hosts the rendezvous point and the hidden service non-stop during the measurement
period. That means both are started prior to the actual measurements and kept running until
all measurements are finished. The hidden service is started a few minutes after the rendezvous
point, because the latter must be already available when starting the former to be able to be
picked as rendezvous point.

The introduction point is hosted on a different server, which is not necessary for the regular
hidden service protocol, but for one of the implemented changes when rendezvous point and
introduction point come in direct contact with each other. So the fourth role is hosted on a
dedicated root server provided by the German hosting company Hetzner.3 This server is located
in Nuremberg, Germany and has an AMD AthlonTM64 X2 Dual Core processor 3800+ and 1
gigabyte RAM.

If messages are sent from one server to the other, the corresponding log events for sending and
receiving the message occur on different servers. Therefore it is necessary to make sure that
the system clocks of the two servers are synchronized.

2https://www.1blu.de/
3http://www.hetzner.de



4.6 Creating Clients with PuppeTor 25

4.6 Creating Clients with PuppeTor

To enable repeatable measurements of the performance of accessing a hidden service the Java
framework PuppeTor is used on client side. The framework “facilitates the configuration of a
set of local Tor processes and the execution of automatic tests based on these processes”.4

In this measurement the environment PuppeTor is used only to create Tor clients and make
them access the hidden service. This is, because the measurement shall take place in the public
Tor network, but not in a local environment. The PuppeTor class for the measurements also
takes care about cycling through the five scenarios, four changes and the default protocol,
presented in the next section.

Cycling through the scenarios is necessary to eliminate the impact of possible performance
variability of the Tor network, caused by the day of the week or the time of the day. If a new
change is measured after the other one with several hundred attempts is done, comparability
cannot be assured, if the performance of the global Tor network changes for example during
weekends due to changed amounts of traffic. By cycling through all protocols they are affected
in the same way and therefore still comparable.

Cycling means that only one attempt for the original protocol and every change is performed
one after another before the cycle starts over again with the original protocol. The time between
the start of two attempts is set to five minutes. Therefore the time between two attempts of
the same protocol is 25 minutes, due to five different protocols.

A PuppeTor class is executed by cron every five minutes. The class first determines which
protocol to use and sets the according configuration options for the client. Then the client
is started and the class waits for 75 seconds to let the client build circuits. Afterwards it
asks the client to build a connection to the hidden service. After accessing the hidden service
successfully, i.e. receiving a response to an empty HTTP GET request, or after receiving an
error message from the Tor client, PuppeTor shuts down the client and exits.

PuppeTor also measures the round-trip time for accessing the hidden server, i.e. from requesting
the service until receiving the answer. This value is also measured within Tor like all sub steps,
but the additional measurement is performed to make sure that the value within Tor is exactly
the time any client application using Tor experiences.

4.7 Analyzing the Log Events

As mentioned before log events are used to measure the performance of hidden service sub
steps. This section explains, which particular events are used for which steps. The begin
of the complete round-trip time is measured by the Got a hidden service request for ID

statement, indicating that the Puppetor class has just requested the hidden service. The
associated statement, that occurs when the Puppetor class has received the answer of the
hidden service and immediately closes the Tor client is either Catching signal TERM, exiting

4Manual available at https://tor-svn.freehaven.net/svn/puppetor/trunk/doc/howto.pdf



26 4 MEASUREMENT ENVIRONMENT

cleanly. or Interrupt: exiting cleanly.

The time period to fetch the rendezvous service descriptor is the difference between the oc-
currence of Fetching rendezvous descriptor for service and Received rendezvous de-

scriptor.

After receiving the rendezvous descriptor, introduction and rendezvous circuits are immediately
requested and built. Therefore measurements start at the reception of the rendezvous descriptor
and end for the rendezvous circuit with the rendcirc is open event. It is important to mention
that the time measured is not necessarily the building time of the circuit, but the time until
the first circuit is open. That means if a circuit attempt is discarded and another attempt is
started, both are included in the time measured.

The same applies for the introduction circuit, whose beginning is the same as the one of the
rendezvous circuit and its end is indicated by the introcirc is open event.

While all log events mentioned above occurred on the same machine and in the same role,
the client, the transfer time of the Establish_Rendezvous cell starts at the Sending an

ESTABLISH_RENDEZVOUS cell event in the client logs and ends at the Received an ESTAB-

LISH_RENDEZVOUS request on circuit event in the logs of the rendezvous point. The latter
event is also the begin of the transfer time of acknowledgment cell RENDEZVOUS_ESTABLISHED,
which ends at the Got rendezvous ack. This circuit is now ready for rendezvous. event.

The INTRODUCE1 cell transfer time begins at the occurrence of the event Sending an IN-

TRODUCE1 cell and ends at the Received an INTRODUCE1 request on circuit event in the
introduction point log. For the acknowledgment the latter statement is again the beginning,
ending at the Received ack. Telling rend circ... event in the client log.

The transfer time of the following INTRODUCE2 cell also starts at the reception of the INTRO-

DUCE1 cell at the introduction point and ends at the occurrence of the Received INTRODUCE2

cell for service statement in the hidden service log. The third time to start at the same re-
ception event is the rendezvous circuit building time at the hidden service. It ends at the Done

building circuit * to rendezvous with cookie * for service * statement, when the
circuit is open.

After building the circuit the RENDEZVOUS1 cell is immediately sent and a little later received by
the rendezvous point, indicated by the log event Got request for rendezvous from circuit

* to cookie *.. This is also the initial event for the RENDEZVOUS2 cell transfer time, that ends
with the Got RENDEZVOUS2 cell from hidden service. statement in the client log.

The last time measured is the round-trip time of the user data, starting at the reception of the
RENDEZVOUS2 cell and ending, when the Puppetor class shuts down the Tor client, because it
has received the response of the hidden service. The event is the same that also indicates the
end of the complete round-trip time.



27

5 Changes to be Evaluated

This section lists the changes implemented in the Tor code and describes the implementation in
detail. There are four different changes of the hidden service protocol that are later compared
to the original protocol regarding performance.

All changes are implemented in the same project and are easy to enable and disable via the
torrc configuration file. The changes are not intended to reflect the final state that could be
implemented in the actual Tor code. Their purpose is to enable measurements of the suggested
protocol behavior.

5.1 Open More Pre-Built Internal Circuits

To use cannibalization it is necessary to open circuits before they are actually needed and used.
This is implemented by a pool of pre-built circuits. The default size of the internal circuit pool
on client nodes is two. This is the exact number needed for a single hidden service access,
because one of the circuits is cannibalized as rendezvous circuit, i.e. the last of the three hops
is used as rendezvous point, and the other one is extended to the introduction point, so it is
used as introduction circuit.

The circuit_predict_and_launch_new() function in circuituse.c is called every second
and checks if there are enough circuits available, that are not already used by a hidden service
request and therefore free to use. But it does not check the building state of the circuits. That
means if two circuits are still being built, but not open yet, the function sees no reason to open
more circuits.

A problem resulting in a delay occurs if one or both internal circuit cannot be completely
built successfully. Each hop in the circuit can be responsible for that. The timeout for circuit
creation is 60 seconds. So after one minute the failed circuit is abandoned with a waiting for
keys info in the log and the next time the function is called, it discovers a difference between
the number of circuits needed and the number of available circuits and starts building a new
one.

Usually the user does not notice the circuit building problems in the background. But it
becomes a remarkable issue, if no open circuits are available at the time of cannibalization. At
this time the user has already requested a hidden service and is now waiting for the connection
to be established. If a circuit is already being built and waiting for completion the user also
waits every second until the timeout. After the timeout he waits for a complete new circuit to
be opened, because all three hops are now created.

The intention of this change is to simply increase the number of circuits in the pool and therefore
reduce the probability that no open circuit is found at the time of cannibalization. Having more
circuits available also increases the average circuit quality, when looking for the best circuits
for a particular purpose.

In order to do so, the number of circuits needed is set to the value 5, if the configuration option



28 5 CHANGES TO BE EVALUATED

OpenMoreCircuits is set in the configuration file. The second configuration option mentioned
in Listing 8 can be ignored for this change, but is important for another change described in
Section 5.2.

1 int num of circuits needed;
2 or options t ∗options = get options();
3

4 if (options−>UseTwoIntroCircuits) {
5 num of circuits needed = 3;
6 } else if (options−>OpenMoreCircuits) {
7 num of circuits needed = 5;
8 } else {
9 num of circuits needed = 2;

10 }
Listing 8: Client code to open more internal circuits

A disadvantage of this change is that more Tor relays are involved than necessary. If every
client in the network opens more circuits, each relay is part of more circuits and the traffic
caused by circuit building increases as well as the relays have to handle more encryption and
decryption operations. The additional three circuits are not wasted, because they can be used
for further hidden service request. But as soon as they are bound to a certain request, new
circuits are built to add them to the pool of circuits.

Also a guarantee for short circuit building times cannot be given. It is just the probability
of short times that is increased, which can be proven empirically. But higher values may still
occur occasionally.

The change does not decrease anonymity provided by Tor, although more relays are involved.
The additional relays are distributed among different circuits. Therefore the probability that
an adversary controls both entry and exit node does not increase if the absolute number of
malicious nodes in the network does not change.

5.2 Start Building Two Introduction Circuits

The second change also focuses on circuit building, or more precisely on establishing the fourth
hop of the introduction circuit. After receiving the rendezvous service descriptor from a di-
rectory server the Tor client wants to contact an introduction point found in the descriptor.
Because of the circuit pool mentioned in the last section there should be two 3-hop circuits
available, one to be chosen as rendezvous circuit and one to be extended to the introduction
point. But being available, i.e. not being used for any other purpose, does not necessarily mean
that the circuit is open and ready to use.

The circuit is marked as used now, but if the first three hops are still in the making, the waiting
time until the circuit is abandoned is 60 seconds again. And also in case that the first three
hops are already finished when the circuit building request arrives, it may take several seconds
for the fourth hop to be built.



5.2 Start Building Two Introduction Circuits 29

Again the intention of this change is similar to the intention presented in section 5.1. This
time the idea is to cannibalize two circuits simultaneously. This takes care not only of finding
an open 3-hop circuit like the first change, but also of the time to build the fourth hop to the
introduction point. The fourth hop can be done in less than a second, but often took several
seconds in earlier measurements.[14] Cannibalizing two circuits increases the probability that
at least on of them is built within a short time. Figure 9 shows the original constellation on
the left and the new way to contact the introduction point on the right. The two circuits are
completely separated, but the extension target for both is the same introduction point.

Figure 9: Building one and two introduction circuits

It would also be possible to build two circuits to two different introduction points. But for the
measurements it is easier to keep the number of nodes in control, i.e. nodes the log events are
observed on, low.

With now needing three internal circuits for a single hidden service access, two for the two
attempts to contact the introduction point and one for the rendezvous circuit, it would not be
consequent to start with two pre-built 3-hop internal circuit as in the default implementation.
Because in that case an additional circuit has to be built completely. Therefore the number
of pre-built internal circuits in the circuit_predict_and_launch_new() function in circui-

tuse.c is set to three. This was shown in Listing 8 earlier. The configuration option to enable
this change is UseTwoIntroCircuits.

The circuit_get_open_circ_or_launch() function in circuituse.c handles the circuit se-
lection in all cases, one of those being a new introduction circuit. It either picks an appropriate
circuit from the pool of pre-built circuits or launches a completely new circuit, if the pool does
not contain a matching circuit. Listing 9 shows in the first three lines the default command.
In case of the configuration option in line 6 being enabled and the purpose of the circuit to
be created is to be an introduction circuit, a second circuit is launched with the exact same
parameters as the first circuit. In line 12 the new circuit is also bound to the specific hidden
service query it is built for. This is also done for the regular circuit, of course. The command
is found just a few lines later.

The circuit_has_opened() function in circuituse.c is called when a new circuit is opened.
Listing 10 describes what happens if the purpose of the new circuit is to be an introduction
circuit. In the regular protocol just another function is called to notify the rendezvous compo-
nent.

Additionally the change requires that as soon as one of the two introduction circuit attempts is
successful, the other one is discarded. Therefore in line 5 the algorithm loops through the list of
all circuits until it finds one with the following two properties. One is that the circuit’s purpose
is to act as introduction circuit, which is true for two circuits, the one recently opened and



30 5 CHANGES TO BE EVALUATED

1 circ = circuit launch by extend info(
2 new circ purpose, want onehop, extend info,
3 need uptime, 1, need internal);
4

5 or options t ∗options = get options();
6 if (options−>UseTwoIntroCircuits
7 && new circ purpose == CIRCUIT PURPOSE C INTRODUCING) {
8 origin circuit t ∗secondCirc;
9 secondCirc = circuit launch by extend info(

10 new circ purpose, want onehop, extend info,
11 need uptime, 1, need internal);
12 strlcpy(secondCirc−>rend query, conn−>rend query, sizeof(circ−>rend query));
13 }

Listing 9: Client code to open a second introduction circuit

another one. So the second property is that the circuit is still in building state, i.e. not open
yet. The circuit having both properties is the loser circuit, the one that needs to be closed.

In the measurement implementation the actual command to close the circuit in line 13 is
commented out to gather more data about the time difference between opening the two circuits.

1 case CIRCUIT PURPOSE C INTRODUCING:
2 if (options−>UseTwoIntroCircuits) {
3 origin circuit t ∗loserCirc = NULL;
4 circuit t ∗myCirc;
5 for (myCirc = global circuitlist; myCirc; myCirc = myCirc−>next) {
6 if (myCirc−>purpose == CIRCUIT PURPOSE C INTRODUCING
7 && myCirc−>state == CIRCUIT STATE BUILDING) {
8 loserCirc = TO ORIGIN CIRCUIT(myCirc);
9 break;

10 }
11 }
12 if (loserCirc) {
13 //circuit mark for close(loserCirc, END CIRC REASON NONE);
14 } else {
15 log info(LD REND, ”CW: Couldn’t find loser circuit.”);
16 }
17 }
18 rend client introcirc has opened(circ);
19 break;

Listing 10: Client code to close the loser introduction circuit

This change again increases traffic on relays by opening and extending more circuits as well
as cryptographic operations on relays. The anonymity for clients is not affected for the same
reasons as in Section 5.1.



5.3 Simplifying Hidden Service Access 31

5.3 Simplifying Hidden Service Access

Øverlier and Syverson propose measures to simplify circuit establishment and the hidden service
protocol. They write that the problem of the existing protocol is “that it has become too
complex” and want to “drastically reduce both complexity and latency when connecting to a
hidden service”.[16]

The changes of the hidden service protocol are only one part of the suggested improvements.
The authors also propose improvements of the circuit establishment protocol for faster circuit
building, further reduced load on relays, and improved client and network efficiency. These
changes also affect the general Tor protocol for anonymous access of public servers.

To increase the performance of circuit establishment Øverlier and Syverson propose to reduce
the number of Diffie-Hellman key exchanges per circuit. These key exchanges are more expensive
in terms of computations compared to the ElGamal key agreement. Furthermore in the new
circuit protocol less cells are necessary to establish a circuit. While in the current protocol
each circuit extension by one hop is started at the client and after the successful establishment
propagated back, only a single cell is sent by the client, including all the information for the
circuit, still encrypted in layers. After the client has established a connection to the entry node,
the latter connects to the middle node and so on. After creating all hops the last node sends a
single cell down the circuit to acknowledge.

The authors’ hidden service protocol improvements require another concept added to hidden
services: so-called valet nodes.[17] These valet nodes help to hide the introduction points from
the clients. The hidden service writes the contact information of a random relay, the valet node,
in the rendezvous service descriptor, instead of the introduction point contact information, as
in the original protocol. It also adds a so-called valet token to the rendezvous service descriptor.
This token is the contact information of an introduction point, encrypted with the valet node’s
public key. If a client wants to access the hidden service it retrieves the rendezvous service
descriptor from the hidden service directory, contacts the valet node and sends it the valet
token. The valet node extends the circuit to the introduction point it finds in the token and
the client can communicate with the hidden service to proceed with the original protocol.

With the introduction of valet nodes the authors propose to discard the rendezvous point and
instead route the data traffic, that is sent over the rendezvous point in the original protocol,
through the introduction point or over a new connection to the last node before the valet node
in the circuit between client and introduction point. This requires less circuits to be built and
less relays involved, without compromising on anonymity due to the new valet nodes protecting
the introduction points.

This work only shows the impact of the hidden service protocol changes, still using the current
circuit establishment protocol. This is because changing the internal circuit establishment
protocol additionally goes beyond the scope of this thesis.



32 5 CHANGES TO BE EVALUATED

5.3.1 Combining Introduction Circuit and Rendezvous Circuit

Instead of using two different circuits as introduction circuit and rendezvous circuit, in the new
protocol only a single circuit is opened, ending at the rendezvous point. This circuit is first
used to send the Establish_Rendezvous cell and receive the Rendezvous_Established cell.
Then the same circuit is cannibalized to contact the introduction point. After receiving the
acknowledgment, the circuit is labeled back as rendezvous circuit. By doing so, the number of
relays involved in the hidden service access is reduced by three, the three relays used in the
earlier introduction circuit. Figure 10 illustrates the changed protocol.

Figure 10: Combining introduction circuit and rendezvous circuit

For this change it is necessary, that the introduction circuit is built after the rendezvous circuit
and even after the rendezvous point has acknowledged its role. This is different from the reg-
ular protocol, when rendezvous and introduction circuits are built simultaneously and handled
independently.

The connection_ap_handshake_attach_circuit() function in circuituse.c is called every
second after receiving a hidden service request. It checks if new circuits have to be built. The
configuration option to activate this change is UseOverlierChange. In lines 2 to 7 of Listing
11 it is checked, if the rendezvous acknowledgment was already received. The rendcirc struct
must not be null and its purpose must be one of the three purposes named in the listing.

If the rendezvous acknowledgment is available, a circuit to act as introduction circuit can be
searched in line 10.

The next behavior to change is the selection of the introduction circuit. This takes place in the
circuit_launch_by_extend_info() function in circuituse.c and is shown in Listing 12. If
the configuration option to use this change is activated and the client is looking for a circuit



5.3 Simplifying Hidden Service Access 33

1 if (get options()−>UseOverlierChange) {
2 int rend ack available = rendcirc && (rendcirc−> base.purpose ==
3 CIRCUIT PURPOSE C REND READY ||
4 rendcirc−> base.purpose ==
5 CIRCUIT PURPOSE C INTRODUCING ||
6 rendcirc−> base.purpose ==
7 CIRCUIT PURPOSE C INTRODUCE ACK WAIT);
8 if (rend ack available) {
9 /∗ it’s on its way. find an intro circ. ∗/

10 retval = circuit get open circ or launch(
11 conn, CIRCUIT PURPOSE C INTRODUCE ACK WAIT, &introcirc);
12 if (retval < 0) return −1; /∗ failed ∗/
13

14 if (retval > 0) {
15 /∗ one has already sent the intro. keep waiting. ∗/
16 tor assert(introcirc);
17 log info(LD REND, ”Intro circ %d present and awaiting ack ”
18 ”(rend %d). Stalling. (stream %d sec old)”,
19 introcirc−> base.n circ id,
20 rendcirc ? rendcirc−> base.n circ id : 0,
21 conn age);
22 return 0;
23 }
24 }
25 }

Listing 11: Client code to determine if introduction circuit can be built



34 5 CHANGES TO BE EVALUATED

to cannibalize and extend to the introduction point, not an unused circuit for general purpose
is returned as in line 20. Instead the new code returns the circuit that was earlier used as
rendezvous circuit in line 4. This circuit still has the rendezvous purpose and is bound to the
hidden service identifier used in the measurements.

1 or options t ∗options = get options();
2 if (options−>UseOverlierChange &&
3 purpose == CIRCUIT PURPOSE C INTRODUCING) {
4 circ = circuit get by rend query and purpose(”xpw5lcjsag7u6l6w”,
5 CIRCUIT PURPOSE C REND READY);
6 log info(LD CIRC,”CW Select rendcirc to cannibalize.”);
7 if (extend info) {
8 /∗ need to make sure we don’t duplicate hops ∗/
9 crypt path t ∗hop = circ−>cpath;

10 do {
11 if (!memcmp(hop−>extend info−>identity digest,
12 extend info−>identity digest, DIGEST LEN))
13 goto next;
14 hop=hop−>next;
15 } while (hop!=circ−>cpath);
16 next: ;
17 }
18 } else {
19 /∗ see if there are appropriate circs available to cannibalize. ∗/
20 circ = circuit find to cannibalize(purpose, extend info,
21 need uptime, need capacity, internal);
22 }

Listing 12: Client code to select rendezvous circuit as introduction circuit

The client checks the purpose of the rendezvous and introduction circuits before sending the
Introduce1 cell to the introduction point in the rend_client_send_introduction() function
in rendclient.c. Since the two circuits are now identical and the current purpose of the circuit
is to be an introduction circuit, the assertion that the rendezvous circuit has another purpose
has to be disabled, as shown in Listing 13.

1 or options t ∗options = get options();
2 if (!options−>UseOverlierChange) {
3 tor assert(rendcirc−> base.purpose == CIRCUIT PURPOSE C REND READY);
4 }

Listing 13: Client code to ignore purpose of rendezvous circuit during introduction

The hidden server needs to know the contact information of the rendezvous point to build a
circuit to it. In the regular protocol this is the exit node of the rendezvous circuit, shown in
line 7 of Listing 14. But in the changed protocol the fourth and last node in the combined
rendezvous and introduction circuit is the introduction point. The rendezvous point is the
third hop in this circuit. The cpath variable in line 3 is a pointer to a linked list of structs,
representing the relays that belong to this circuit, starting at the entry node. The prev variable
in each struct points to the next relay. This mistakable description arises from the fact that



5.3 Simplifying Hidden Service Access 35

counting the nodes starts at the chosen exit node and the next pointer points towards the
client. Nevertheless it is easy to find the third struct representing the rendezvous point and
return its contact information in form of the extend_info struct.

1 extend info t ∗extend info;
2 if (options−>UseOverlierChange) {
3 extend info = rendcirc−>cpath−>prev−>prev−>extend info;
4 log info(LD REND, ”CW Routers: ’%s’.”,
5 rendcirc−>cpath−>prev−>prev−>extend info−>nickname);
6 } else {
7 extend info = rendcirc−>build state−>chosen exit;
8 }

Listing 14: Client code to select rendezvous point

When receiving the acknowledgment that the introduction point has received the Introduce1

cell and forwarded the content to the hidden server, the rendezvous circuit of the client is
notified in the rend_client_introduction_acked() function in rendclient.c. Usually it is
found in the global circuit list by the rendezvous query and the circuit’s purpose. But after
reusing the rendezvous circuit as introduction circuit, the purpose of the combined circuit is
now to wait for the introduction acknowledgment. The changed code can be found in Listing
15.

1 or options t ∗options = get options();
2 if (options−>UseOverlierChange) {
3 rendcirc = circuit get by rend query and purpose(
4 circ−>rend query, CIRCUIT PURPOSE C INTRODUCE ACK WAIT);
5 } else {
6 rendcirc = circuit get by rend query and purpose(
7 circ−>rend query, CIRCUIT PURPOSE C REND READY);
8 }

Listing 15: Client code to find combined rendezvous and introduction circuit

After receiving the acknowledgment usually the introduction circuit is not needed anymore.
Since the introduction circuit in the change was created by just extending the rendezvous
circuit, this 4-hop circuit needs to be truncated by the last hop, resulting in the originally
created 3-hop circuit with the rendezvous point as third node. In the same function the code
shown in Listing 16 was implemented.

The internal representation of a circuit is the linked list mentioned above. This list is used to
create cells, encrypted for all relays on the circuit. In lines 7 and 8 the pointers are corrected
to exclude the last relay, and in the following line the length of the circuit is reduced.

To truncate the real circuit, a cell with a TRUNCATE command is sent down the circuit. There
exists an acknowledgment cell to notify the sender, that the circuit was successfully truncated.
But in the regular protocol the TRUNCATE command is never used and the acknowledgment is
used to propagate an error in the circuit, which is handled by the client by marking the circuit
for close and therefore not using it anymore. In the change the acknowledgment is expected



36 5 CHANGES TO BE EVALUATED

after sending the TRUNCATE cell and does not indicate an error. That is why a boolean flag is
set in line 18 to remember this when the acknowledgment is received.

1 if (options−>UseOverlierChange) {
2 log info(LD REND, ”CW Checking cpath.”);
3 log info(LD REND, circuit list path(rendcirc, 1));
4 log info(LD REND, ”First node: %s, second %s.”,
5 rendcirc−>cpath−>extend info−>nickname,
6 rendcirc−>cpath−>next−>extend info−>nickname);
7 rendcirc−>cpath−>prev−>prev−>next = rendcirc−>cpath;
8 rendcirc−>cpath−>prev = rendcirc−>cpath−>prev−>prev;
9 rendcirc−>build state−>desired path len =

10 rendcirc−>build state−>desired path len − 1;
11 log info(LD REND, circuit list path(rendcirc, 1));
12 if (relay send command from edge(0, TO CIRCUIT(rendcirc),
13 RELAY COMMAND TRUNCATE, NULL, 0,
14 rendcirc−>cpath−>prev) < 0) {
15 log info(LD REND,”CW: Couldn’t send TRUNCATE cell”);
16 } else {
17 log info(LD REND,”CW: TRUNCATE cell successfully sent”);
18 options−>ExpectTruncatedCell = 1;
19 }
20 } else if (options−>UseOverlier2Change) {
21 log info(LD REND,”CW Do nothing.”);
22 //circ−> base.purpose = CIRCUIT PURPOSE C REND READY INTRO ACKED;
23 } else {
24 /∗ close the circuit: we won’t need it anymore. ∗/
25 circ−> base.purpose = CIRCUIT PURPOSE C INTRODUCE ACKED;
26 circuit mark for close(TO CIRCUIT(circ), END CIRC REASON FINISHED);
27 }

Listing 16: Client code to truncate introduction circuit

In the connection_edge_process_relay_cell() function in relay.c all cells are processed.
If an incoming cell is identified as acknowledgment of a TRUNCATE cell sent before, the circuit
does not need to be closed like in line 5 of Listing 17, but the cell can simply be ignored.

1 if (get options()−>UseOverlierChange &&
2 get options()−>ExpectTruncatedCell) {
3 // we expect this cell. so do nothing.
4 } else {
5 circuit truncated(TO ORIGIN CIRCUIT(circ), layer hint);
6 }

Listing 17: Client code to receive truncated cell

5.3.2 Direct Hidden Service Usage

Another protocol proposed by Øverlier and Syverson is to send user data over the introduction
point instead of opening a new circuit. Therefore only the circuit between client and intro-



5.3 Simplifying Hidden Service Access 37

duction point needs to be cannibalized, while the hidden service already has a circuit to the
introduction point resulting from the hidden service establishment. To measure the perfor-
mance of this protocol, rendezvous circuit and introduction circuits are unified again. Figure
11 illustrates the changed protocol.

Figure 11: Direct hidden service usage

The connection_ap_handshake_attach_circuit() function in circuituse.c is called every
second, checking for all client connections. If a connection is associated with the measurement
hidden service identity hash in line 5, the code in Listing 18 is executed. After determining that
the second Øverlier protocol is used, a circuit with purpose REND_JOINED associated with the
measurement hidden service is searched in lines 4 and 5. The configuration option to enable
this change is UseOverlier2Change.

If a circuit meeting both conditions is found, the variable rendcirc is pointed to the same
circuit struct in line 7 and the circuit is linked to the client connection in line 20. Otherwise
a circuit is launched in lines 27 and 28. If the return value retval of that function is 0, the
circuit is available and a message can be sent in line 47.

rend_client_send_introduction_without_rendcirc() in rend_client.c is the function
that packs and sends the Introduce1 cell. rend_client_send_introduction() is the original
function, which has two parameters, pointers to the introduction circuit struct and the ren-
dezvous circuit struct. This is because it takes the contact information and rendezvous cookie
of the rendezvous circuit and sends it down the introduction circuit.

The new function is a copy of that function, using only the introduction circuit. This is because
the circuit is used as rendezvous circuit before and therefore a rendezvous cookie is generated.
The contact information is actually useless, because the hidden service uses the already existing
circuit to the introduction point as rendezvous circuit, instead of launching a new circuit.

To notify the hidden service that the second Øverlier protocol is to be used, the port in the
contact information is set to 9999 in line 3 of Listing 19. The contact information is not



38 5 CHANGES TO BE EVALUATED

1 origin circuit t ∗rendcirc=NULL, ∗introcirc=NULL;
2 tor assert(!conn−>cpath layer);
3 if (get options()−>UseOverlier2Change) {
4 introcirc = circuit get by rend query and purpose(
5 ”xpw5lcjsag7u6l6w”, CIRCUIT PURPOSE C REND JOINED);
6 if (introcirc) {
7 rendcirc = introcirc;
8 tor assert(rendcirc);
9 /∗ one is already established, attach ∗/

10 log info(LD REND,
11 ”rend joined circ %d already here. attaching. ”
12 ”(stream %d sec old)”,
13 rendcirc−> base.n circ id, conn age);
14 /∗ Mark rendezvous circuits as ’newly dirty’ every time you use
15 ∗ them, since the process of rebuilding a rendezvous circ is so
16 ∗ expensive. There is a tradeoffs between linkability and
17 ∗ feasibility, at this point.
18 ∗/
19 rendcirc−> base.timestamp dirty = time(NULL);
20 link apconn to circ(conn, rendcirc, NULL);
21 if (connection ap handshake send begin(conn) < 0)
22 return 0; /∗ already marked, let them fade away ∗/
23 return 1;
24

25 } else {
26 /∗ find an intro circ. ∗/
27 retval = circuit get open circ or launch(
28 conn, CIRCUIT PURPOSE C INTRODUCE ACK WAIT, &introcirc);
29 if (retval < 0) return −1; /∗ failed ∗/
30

31 if (retval > 0) {
32 /∗ one has already sent the intro. keep waiting. ∗/
33 tor assert(introcirc);
34 log info(LD REND, ”Intro circ %d present and awaiting ack ”
35 ”(rend %d). Stalling. (stream %d sec old)”,
36 introcirc−> base.n circ id,
37 rendcirc ? rendcirc−> base.n circ id : 0,
38 conn age);
39 return 0;
40 }
41

42 tor assert(introcirc−> base.purpose == CIRCUIT PURPOSE C INTRODUCING);
43 if (introcirc−> base.state == CIRCUIT STATE OPEN) {
44 log info(LD REND,”found open intro circ %d; sending ”
45 ”introduction. (stream %d sec old)”,
46 introcirc−> base.n circ id, conn age);
47 if (rend client send introduction without rendcirc(introcirc)
48 < 0) {
49 return −1;
50 }
51 introcirc−> base.timestamp dirty = time(NULL);
52 assert circuit ok(TO CIRCUIT(introcirc));
53 return 0;
54 }
55 }
56 }

Listing 18: Client code to build combined circuit



5.3 Simplifying Hidden Service Access 39

necessary in this version of the protocol, as mentioned above, so the port can be used without
any problems. Afterwards the cell is sent down the circuit in line 5.

1 extend info = introcirc−>build state−>chosen exit;
2 [...]
3 extend info−>port = 9999;
4 [...]
5 if (relay send command from edge(0, TO CIRCUIT(introcirc),
6 RELAY COMMAND INTRODUCE1,
7 payload, payload len,
8 introcirc−>cpath−>prev)<0) {
9 /∗ introcirc is already marked for close. leave rendcirc alone. ∗/

10 log warn(LD BUG, ”Couldn’t send INTRODUCE1 cell”);
11 return −1;
12 }

Listing 19: Client code to send Introduce1 cell

When receiving the rendezvous acknowledgment from the rendezvous point the purpose of the
circuit is checked in the rend_client_rendezvous_acked() function in rendclient.c. If
the circuit does not have the purpose that is expected in the regular protocol, the circuit is
closed. This behavior is disabled via configuration option, when the usage of the second Øverlier
protocol is detected, as shown in Listing 20.

1 or options t ∗options = get options();
2 /∗ we just got an ack for our establish−rendezvous. switch purposes. ∗/
3 if (!options−>UseOverlier2Change &&
4 circ−> base.purpose != CIRCUIT PURPOSE C ESTABLISH REND) {
5 log warn(LD PROTOCOL,”Got a rendezvous ack when we weren’t expecting one. ”
6 ”Closing circ.”);
7 circuit mark for close(TO CIRCUIT(circ), END CIRC REASON TORPROTOCOL);
8 return −1;
9 }

10 ...
11 if (!options−>UseOverlier2Change) {
12 circ−> base.purpose = CIRCUIT PURPOSE C REND READY;
13 }

Listing 20: Client code to ignore rendezvous acknowledgment

The client receives the Rendezvous2 cell over the circuit, that is still the introduction circuit.
As shown in in Listing 21, checking the purpose of the circuit is therefore disabled in the
rend_client_receive_rendezvous() function in rendclient.c. Instead the purpose is set
to the one indicating a successfully joined rendezvous circuit.

When the introduction point receives an Introduce1 cell over the same circuit, it used for
rendezvous establishment, this indicates the usage of the second Øverlier protocol. Instead of
closing the circuit because of a protocol violation, which would happen in the regular protocol,
a global option is set in line 5 of Listing 22. Otherwise the global option is disabled in line 7 to
use the regular protocol.



40 5 CHANGES TO BE EVALUATED

1 or options t ∗options = get options();
2 if (options−>UseOverlier2Change) {
3 circ−> base.purpose = CIRCUIT PURPOSE C REND JOINED;
4 } else {
5 if ((circ−> base.purpose != CIRCUIT PURPOSE C REND READY &&
6 circ−> base.purpose != CIRCUIT PURPOSE C REND READY INTRO ACKED)
7 || !circ−>build state−>pending final cpath) {
8 log warn(LD PROTOCOL,”Got rendezvous2 cell from hidden service, but not ”
9 ”expecting it. Closing.”);

10 circuit mark for close(TO CIRCUIT(circ), END CIRC REASON TORPROTOCOL);
11 return −1;
12 }
13 }

Listing 21: Client code to receive Rendezvous2 cell

1 or options t ∗options = get options();
2 ...
3 if (circ−> base.purpose == CIRCUIT PURPOSE REND POINT WAITING) {
4 /∗ CW Recognize Overlier2 Change ∗/
5 options−>UseOverlier2Change = 1;
6 } else {
7 options−>UseOverlier2Change = 0;
8 if (circ−> base.purpose != CIRCUIT PURPOSE OR || circ−> base.n conn) {
9 log warn(LD PROTOCOL,

10 ”Rejecting INTRODUCE1 on non−OR or non−edge circuit %d.”,
11 circ−>p circ id);
12 goto err;
13 }
14 }

Listing 22: Introduction point code to determine usage of second Øverlier protocol



5.3 Simplifying Hidden Service Access 41

The global option is used to know when to ignore the circuit purpose of the circuit the Ren-

dezvous1 cell is received over in rend_mid_rendezvous() in rendmid.c. The wrong purpose
would again result in a protocol violation. This is shown in Listing 23.

1 or options t ∗options = get options();
2 // CW Ignore purpose, if using Overlier2Change
3 if ((!options−>UseOverlier2Change
4 && circ−> base.purpose != CIRCUIT PURPOSE OR)
5 || circ−> base.n conn) {
6 log info(LD REND,
7 ”Tried to complete rendezvous on non−OR or non−edge circuit %d.”,
8 circ−>p circ id);
9 reason = END CIRC REASON TORPROTOCOL;

10 goto err;
11 }

Listing 23: Introduction point code to complete rendezvous

The indicator for this protocol variation on hidden service side is the port number of the contact
information of the rendezvous point as mentioned above. The Introduce2 cell containing that
information is processed in the rend_service_introduce() function in rendservice.c. So
the hidden service can also change a global variable that is accessible in all functions in line 5
of Listing 24.

1 /∗ CW If the port of the would−be rendezvous node is 9999, the hidden
2 ∗ service must act according to the second Overlier protocol.
3 ∗/
4 or options t ∗options = get options();
5 if (extend info−>port == 9999) {
6 log info(LD REND, ”CW Detected Overlier2Change.”);
7 options−>UseOverlier2Change = 1;
8 } else {
9 options−>UseOverlier2Change = 0;

10 }
Listing 24: Hidden service code to determine usage of second Øverlier protocol

In the same function usually a circuit to the rendezvous point is started and saved in the
variable launched in line 8 of Listing 25. In the changed protocol this variable is set to the
same struct the variable circuit in line 3 points to. The latter has a reference to the circuit,
the Introduce1 cell was received on. It is the connection to the introduction point.

Since the circuit in launched does not need to be cannibalized anymore, because it is already
open, in the same function the function to signal an opened rendezvous circuit can be called in
line 6 of Listing 26.

The way the circuit between hidden service and introduction point is relabeled as rendezvous
circuit and therefore used for user data in this implementation for measurement purposes bears a
problem that is solved with the following changes. Since the purpose of the former introduction



42 5 CHANGES TO BE EVALUATED

1 if (options−>UseOverlier2Change) {
2 /∗ CW Use the existing introduction circuit to send the RENDEZVOUS1 ∗/
3 launched = circuit;
4 } else {
5 /∗ Launch a circuit to alice’s chosen rendezvous point.
6 ∗/
7 for (i=0;i<MAX REND FAILURES;i++) {
8 launched = circuit launch by extend info(
9 CIRCUIT PURPOSE S CONNECT REND, 0, extend info,

10 circ needs uptime, 1, 1);
11 if (launched)
12 break;
13 }
14 }

Listing 25: Client code to send Rendezvous1 cell

1 if (options−>UseOverlier2Change) {
2 /∗ CW The introduction circuit is already open. So change its purpose and
3 ∗ propagate the open circuit.
4 ∗/
5 launched−> base.purpose = CIRCUIT PURPOSE S CONNECT REND;
6 rend service rendezvous has opened(launched);
7 }

Listing 26: Hidden service code to report opened rendezvous circuit



5.3 Simplifying Hidden Service Access 43

circuit is now to be a rendezvous circuit, the hidden service thinks, that it has lost the node as
introduction point and therefore chooses a new one.

The rend_services_introduce() function in rendservice.c is called every second and checks,
if the introduction points are still available. After a client has accessed the hidden service using
the changed protocol, the second condition in line 15 in Listing 27 fails and the router is not
used as introduction point any longer. This is no problem for the current access attempt, but
for the following attempts in the measurement environment, which are forced to use the same
introduction point.

When the algorithm iterates through all three introduction points to check them, the lines
12 to 14 are added to see if one of the three introduction points is the one necessary for the
measurements. The identity hash of each introduction point is simply compared to the one
used in the measurements, whose identity hash is set in line 5. If the router is found a boolean
variable is set.

1 int have own router;
2 char ∗own intro;
3 ...
4 have own router = 0;
5 own intro = ”$68333D0761BCF397A587A0C0B963E4A9E99EC4D3”;
6 ...
7 /∗ Find out which introduction points we have in progress for this
8 service. ∗/
9 for (j=0; j < smartlist len(service−>intro nodes); ++j) {

10 intro = smartlist get(service−>intro nodes, j);
11 router = router get by nickname(intro, 0);
12 if (!strcmp(intro, own intro)) {
13 have own router = 1;
14 }
15 if (!router || !find intro circuit(router,service−>pk digest)) {
16 log info(LD REND,”Giving up on %s as intro point for %s.”,
17 intro, service−>service id);
18 tor free(intro);
19 smartlist del(service−>intro nodes,j−−);
20 changed = 1;
21 service−>desc is dirty = now;
22 }
23 smartlist add(intro routers, router);
24 }

Listing 27: Hidden service code to check if measurement introduction point is used

The information collected with the change above is now used in the same function when a new
introduction point is chosen. According to the regular protocol this is a random router, but for
the measurements the specific introduction point is chosen in lines 2 and 3 in Listing 28 using
its identity hash.



44 6 RESULTS

1 if (!have own router) {
2 router = router get by nickname(
3 ”$68333D0761BCF397A587A0C0B963E4A9E99EC4D3”, 1);
4 have own router = 1;
5 } else {
6 router = router choose random node(service−>intro prefer nodes,
7 service−>intro exclude nodes, exclude routers, 1, 0, 0,
8 get options()−> AllowInvalid & ALLOW INVALID INTRODUCTION,
9 0, 0);

10 }
Listing 28: Hidden service code to rebuild circuit to measurement introduction point

6 Results

The implementations presented in the previous section were measured with the measurement
environment described in Section 4. The measurements started on Tuesday, 22 April at 3:45
p.m. and ended on Tuesday, 13 May at 12:00 noon, hence lasting for almost three weeks.

In this time a total of 5999 access attempts were performed to access the hidden service,
distributed equally among the four protocols, resulting in 1200 access attempts per protocol.

This section describes the measures necessary to clean the data set and the results for all four
changes.

6.1 Timing Problems Between Measurement Servers

As stated in Section 4.5 logs were collected on two different servers. The main server hosts the
client, rendezvous point, and hidden server roles, while another server hosts the introduction
point. When looking at the results for the messages sent from the introduction point to the
client or hidden service, a large number of negative values between 0 and approximately -1
occurred for the Introduce_Ack and Introduce2 messages. That would mean that messages
were received before they were sent, which is obviously impossible. Figure 12 shows all message
transfer times for messages of the original protocol sent from the main server to the introduction
point server over the 21 day measurement period. A daily pattern is clearly recognizable.

Looking at messages in the opposite direction, shown in Figure 13, a similar pattern can be
identified. This indicates that there is a changing time deviation between the two servers. The
difference seems to be reset on a daily basis and then increases until the next reset.

To compensate the time deviation between the two servers the deviation on the introduction
point server is measured on an hourly basis for 24 hours between 15 May 11 a.m. and 16 May
11 a.m., resulting in the plot shown in Figure 14. The average deviation from regular time is
-0.051802 seconds per hour, derived from the measurements. The system clock on the second
server is synchronized with a set of official time servers every 24 hours at 6:25:17 a.m. With this
information it is possible to correct the deviation for all events observed at the introduction



6.2 Deleted Records 45

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●
●●

●

●●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●
●
●

●●
●
●

●●●
●

●

●●

●●

●●●

●

●

●●

●

●
●

●

●●●

●

●
●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●●●
●

●●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●●●●

●

●
●
●

●

●
●●

●

●

●
●

●●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●
●

●

●
●
●
●●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●
●

●

●

●

●●●●●

●●

●

●

●

●

●
●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●
●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●

●

●
●

●

●

●●
●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●●●●
●
●●

●

●

0 200 400 600 800 1000 1200

−1
0

1
2

3
4

Index

C
el

l t
ra

ns
fe

r t
im

e 
[s

ec
]

●
●

●
●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●
●

●
●
●●
●
●

●
●

●

●

●

●

●●●

●●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●●

●●
●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●●
●
●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●
●
●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●
●
●
●

●
●
●

●●
●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●●●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●
●

●

●

●●

●
●●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●
●

●

●
●

●●●●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●●●

●

●

●●●
●
●●
●
●

●

●

●
●●

●
●
●

●
●
●

●

●●●

●

●●
●
●

●●●

●

●

●

●●
●
●
●
●●

●●●●●

●

●

●

●
●

●

●
●

●

●●

●

●
●
●●
●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●●

●

●●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●●

●
●

●

●

●
●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●
●

●●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

Intro2
IntroAck

Figure 12: Cell transfer times from main server to introduction point server

point server.

To ensure that the main measurement server does not have a similar problem, corresponding
measurements are performed on the main server. Figure 15 shows the results of these measure-
ments between 21 May 11 a.m. and 22 May 11.am.

A pattern is not visible in the result and the amplitude of deviation is within the precision
boundaries of the Network Time Protocol (NTP) used for the deviation measurements.

6.2 Deleted Records

In the results four records appeared that had overlapped with the following access attempt,
clearly indicated by a PuppeTor warning when trying to start the following event.

In all four records all events until receiving the Rendezvous2 occurred properly, but after
performing the empty HTTP GET there was no reply from the hidden service and therefore
PuppeTor kept waiting until a new access attempt was started. This resulted in values higher
than 225 seconds for the round-trip time. In addition to the 75 seconds waiting time before
requesting the hidden service, to let Tor build circuits in the beginning, this is the 300 second
or five minute barrier before the next attempt is started.

Two of the four attempts occurred using the regular protocol on 24 April and 9 May, one during
using the protocol with more pre-built circuits on 1 May and one when performing an access
attempt according to the protocol with combined introduction and rendezvous circuits on 23
April.

So the distribution of this error among protocols and time seems random and the four records



46 6 RESULTS

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●●●

●

●●
●

●

●
●

●

●

●
●
●

●

●

●

●

●
●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●●

●
●

●●

●

●●

●

●

●●

●●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●
●
●
●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●
●

●●
●●

●
●●

●●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●
●●
●●
●●

●

●
●

●

●●
●

●

●

●
●

●

●

●●●●

●

●●●

●●●
●

●

●

●

●

●

●●●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●
●●●
●
●

●
●●

●

●●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●
●●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●

●●
●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●●

●
●●
●●●●

●

●

●

●●

●●
●

●

●●

●

●
●●●

●

●
●

●

●

●
●●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●●●●

●

●●●

●

●
●

●
●●

●

●

●
●

●●
●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●
●●

●

●●
●
●

●

●

●●
●

●

●

●
●
●●

●

●
●
●

●

●●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●
●●

●●
●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

0 200 400 600 800 1000 1200

0
1

2
3

4
5

Index

C
el

l t
ra

ns
fe

r t
im

e 
[s

ec
]

● Intro1

Figure 13: Cell transfer times from introduction point server to main server

were deleted, because they were aborted artificially by the measurement environment and did
not finish naturally in terms of the appropriate protocol.

6.3 Use of Own Nodes

To collect data of all sub steps it was necessary to use the specific introduction point and the
specific rendezvous point, which were set up in the measurement environment. Using other
relays as one or both of the two roles resulted in log events that occurred on relays, which could
not be accessed and therefore not used to calculate all sub step values.

But this is a problem only for some values, not for others, that are collected on the hidden
service and client. Therefore it was possible for example to measure a round-trip time between
requesting the hidden service and receiving the reply, although other nodes were chosen as
introduction and/or rendezvous point than those specified in the measurement environment.
This is possible because the round-trip time is based on two events that occurred on the client.

After deleting two records as mentioned in the previous section 1198 records remain for the
regular protocol. 969 attempts used the specified rendezvous point for the measurements as
well as the specified introduction point. In 229 attempts another node was chosen either for
the introduction point or the rendezvous point of both of them. The mean of the round-trip
time of the first group is 39.190 seconds and the median 27.610 seconds. The second group has
a mean of 39.460 seconds and median of 30.490 seconds. Figure 16 shows a boxplot diagram of
both samples.

To find out if this is just random or if the use of the specific measurement nodes had significant
impact on the round-trip time, a statistical test needs to be applied.



6.3 Use of Own Nodes 47

11:17:03 14:17:02 17:17:02 20:17:02 23:17:03 02:17:03 05:17:02 08:17:02

Time

D
ev

ia
tio

n 
fro

m
 ti

m
e 

se
rv

er
s 

[s
ec

]

−1
.2

−0
.8

−0
.4

0.
0

Figure 14: Time deviation of introduction point server

Student’s t-test has three assumptions. The data has to be normally distributed, variances of
the two samples have to be equal and the samples must be independent.[18] Figure 17 shows
a histogram of both samples combined. The distribution is not symmetric and there are no
values below zero, because round-trip times were measured, which cannot be negative.

The null hypothesis of the Shapiro-Wilk test for normality is that a distribution is normal.[19]
Applying the test with a significance level of 99 % results in a p-value less than 2.2e-16. For
a p-value less than 0.01 the null hypothesis must be rejected. Therefore in this case the null
hypothesis can be rejected. The data is not normally distributed and so Student’s t-test cannot
be applied.

Because the data is not normally distributed, a test is chosen, that does not require a normal
distribution: the Mann-Whitney U test.[20] The test is based on ranks, not on values. It only
requires two independent samples and the null hypothesis is that both samples are from the
same distribution.

The test is applied to the sample of 969 attempts using both measurement nodes on the one
hand and the sample including the other 229 attempts on the other. The significance level is
99%. Applying the test results in a p-value of 0.8738, which is greater than .005 and therefore
the null hypothesis cannot be rejected. This means, that there is no significant difference
between the round-trip time resulting in using the measurement nodes and the times resulting
in using other relays. Therefore both can be used for further analysis.



48 6 RESULTS

11:00:02 14:00:02 17:00:23 20:00:02 23:00:02 02:00:02 05:00:04 08:00:02

Time

D
ev

ia
tio

n 
fro

m
 ti

m
e 

se
rv

er
s 

[s
ec

]

−0
.0

05
0.

00
0

0.
00

5
0.

01
0

0.
01

5

Figure 15: Time deviation of main server

Table 1: Changes due to using more internal circuits
RTT IC open RC open

Median Mean Median Mean Median Mean
Regular protocol 28.460 39.240 1.793 7.784 0.001 3.063
Changed protocol 25.300 36.190 1.862 7.397 0.001 2.938
Difference -3.160 -3.05 +0.069 -0.387 ±0 -0.125
P value 0.001478 0.6952 0.6245

6.4 Evaluation of More Internal Circuits

The question is if opening more pre-built circuits really improves the performance of hidden
services in terms of latency and therefore decreases the round-trip time. Table 1 lists the mean
and median values for the round-trip time, the time until the introduction circuit is successfully
opened after receiving the rendezvous service descriptor, and the same value for the rendezvous
circuit. The values of the regular protocol base on 1154 successful access attempts, the values
of the changed protocol base on 1156 successful attempts.

Due to the heavy-tailed distribution the median of the round-trip time is about 10 seconds
higher than the mean. Both mean and average decrease by a little more than 3 seconds, when
using the changed protocol. Figure 18 shows a boxplot diagram of the two round-trip times to
compare the lower and upper quartiles indicated by the box.

As shown in the previous section Student’s t-test cannot be used to evaluate the significance of
this change in the round-trip time. Therefore again a Mann-Whitney U test is applied with a
significance level of 99 %. The resulting p-value is also shown in the table. The null hypothesis,
stating that both samples are from the same distribution, can be rejected.



6.5 Evaluation of Opening Two Introduction Circuits 49

● ● ●● ● ●● ●● ●●● ●● ●●● ●● ● ● ● ●●● ●● ●● ●●● ● ● ● ●●● ●●●● ●●●● ●●● ● ●●●●● ●●●●●● ●●●● ● ●●

●● ● ●●●● ● ●

M
ea

su
re

m
en

t n
od

es
O

th
er

 n
od

es

0 50 100 150

Round−trip time [sec]

Figure 16: Distribution of attempts using measurement nodes and other nodes

But the mean and median for the time until the first introduction circuit is opened are inter-
esting. They are also listed in the table. While the median went up by 0.069 seconds the mean
went down by 0.387 seconds. Applying the same test to the distribution of these values results
in a p-value of 0.6952. This means that the null hypothesis cannot be rejected. Both samples
are from the same distribution.

The same is true for the rendezvous circuit. The median of the rendezvous circuit is nearly
zero, because the rendezvous circuit usually is instantaneously open after picking the circuit.
This is because an existing 3-hop circuit is selected, which is usually pre-built and therefore
open.

The missing significance for both sub steps is important, because these sub steps are the only
ones that can profit from the implemented change. Even if the round-trip time reduced signif-
icantly, this is not because of the change of the protocol.

6.5 Evaluation of Opening Two Introduction Circuits

In the second implemented change two circuits were extended to the same introduction point.
Table 2 presents changes of the round-trip time and the time until the first introduction circuit
was open.

For the round-trip time both mean and median decrease by 6.190 and 7.220 seconds. The



50 6 RESULTS

Round−trip time [sec]

Fr
eq

ue
nc

y

0 50 100 150 200

0
50

10
0

15
0

Figure 17: Histogram of all attempts using the original protocol

Table 2: Changes due to opening two introduction circuits
RTT IC open

Median Mean Median Mean
Regular protocol 28.460 39.240 1.793 7.784
Changed protocol 22.270 32.020 2.472 6.305
Difference -6.190 -7.220 +0.679 -1.479
P value 5.995e-15 1.557e-09

p-value of the test allows to reject the null hypothesis, stating that both samples are from the
same distribution. Therefore the decrease is significant. Figure 19 shows the boxplot diagram
comparing the changed protocol with the regular one.

Also interesting are the values for the introduction circuit. While the median increases by 0.697
seconds, the mean decreases by 1.479 seconds. Unlike the first protocol change, this change of
the value is significant with a very low p-value.

The intention of this protocol change was not to make the fast circuits even faster, but to
lower the probability of high values, i.e. circuits open after a long time, because of problems
preventing a circuit from opening and a second attempt finally opening successfully. This is,
why the mean is more interesting, because it considers the heavy tail of the distribution better
than the median does.



6.6 Evaluation of Combining Introduction and Rendezvous Circuits 51

●●● ● ● ●●● ●● ● ●●●● ●●● ●● ● ●● ● ● ●●● ●●● ●● ● ●●● ●● ●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ● ● ●● ●● ●●● ●● ●●● ●●●● ●● ●●

● ●● ● ●● ●● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ● ●● ●●● ●● ● ● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●●●● ●● ●● ●●●●●● ● ●●●● ● ●●

C
ha

ng
ed

R
eg

ul
ar

0 50 100 150 200

Round−trip time [sec]

Figure 18: Round-trip time distribution for using more internal circuits

Table 3: Changes due to combining introduction and rendezvous circuits
RTT

Median Mean
Regular protocol 28.460 39.240
Changed protocol 23.000 33.100
Difference -5.460 -6.140
P value 5.375e-11

6.6 Evaluation of Combining Introduction and Rendezvous Circuits

Contacting the introduction point by extending the rendezvous circuit is the third protocol
change that was implemented. The resulting round-trip times are listed in Table 3.

Both median and mean decrease by 5.460 and 6.140 seconds. The p-value indicates that the
change of the values is significant. A boxplot diagram comparing the round-trip time is shown
in Figure 20. It is important to mention, that the valet node concept is necessary not to reduce
the anonymity by applying this protocol change. But the concept was not implemented for
the measurements. The additional valet nodes will increase the latency a little, because a new
circuit needs to be build between valet node and introduction point.

6.7 Evaluation of Direct Hidden Service Usage

The protocol change completely omitting the rendezvous point results in the biggest savings
of all protocol changes considered in this thesis. The round-trip times are listed in Table 4.
The median decreases by 8.510 seconds, the mean even by 10.25 seconds. The change is also



52 7 CONCLUSION

●● ●● ● ●●●● ●● ●● ●●● ●● ●● ●● ●●●● ●●● ● ●● ●●● ●● ● ●● ●● ●●●●● ●● ●● ●●●●●● ● ●●● ●●● ●● ●●● ●●● ● ● ●● ● ● ●● ●● ● ●● ●● ●● ● ●●●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ●

● ●● ● ●● ●● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ● ●● ●●● ●● ● ● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●●●● ●● ●● ●●●●●● ● ●●●● ● ●●

C
ha

ng
ed

R
eg

ul
ar

0 50 100 150

Round−trip time [sec]

Figure 19: Round-trip time distribution for opening two introduction circuits

Table 4: Changes due to direct hidden service usage
RTT

Median Mean
Regular protocol 28.460 39.240
Changed protocol 19.950 28.990
Difference -8.510 -10.25
P value < 2.2e-16

significant, because the null hypothesis of the Mann-Whitney U test can be rejected due to a
very low p-values. Like for the previous change the valet node concept is also necessary in this
protocol change for the same reasons, which will increase latency.

Figure 21 shows the boxplot diagram for this change. The upper quartile decreased from 49.230
to 33.250 seconds. That means that in 75 % of all successful attempts of the changed protocol
a reply from the hidden service was received after at most 33 seconds, compared to 49 seconds
for the attempts using the original protocol.

7 Conclusion

In this section a summary of this thesis and its achievements is presented. Furthermore next
steps founding on this work are proposed.



7.1 Summary 53

● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●● ●● ●● ● ● ●● ● ●● ●●● ●●● ● ● ●● ● ●● ●●●● ●●● ●● ●● ●● ●● ● ●●●● ●●●● ● ●●● ● ●●●● ●● ●●● ●●● ● ● ●●●● ●● ●●● ●●●●

● ●● ● ●● ●● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ● ●● ●●● ●● ● ● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●●●● ●● ●● ●●●●●● ● ●●●● ● ●●

C
ha

ng
ed

R
eg

ul
ar

0 50 100 150 200

Round−trip time [sec]

Figure 20: Round-trip time distribution for combined circuits

7.1 Summary

After motivating the usage and research of anonymity systems and their performance different
systems to provide location-hidden services were reviewed. It was shown that either broadcast
or multicast on the one hand or a variation of onion routing on the other hand can be found in
most approaches. The onion routing concept was implemented on different protocol levels like
the IP level or the TCP level.

Tor, the anonymity system used for the implementation in this thesis, was described in detail to
understand how Tor provides anonymity to clients accessing a public service. Also the regular
protocol to offer location-hidden services was analyzed, to build a foundation to improve the
protocol in order to increase its performance.

A measurement environment was developed and implemented to measure the performance of
hidden services in Tor using the global Tor network. In the environment the central roles
involved in accessing a hidden service were controlled to learn from log events, how long certain
sub steps of the process take.

Four protocol changes were developed and implemented. The changes covered a broad range of
complexity, from simply changing the number of pre-built internal circuits over simultaneous
circuit extension attempts to multiple use of the same circuit and omitting a central role of the
hidden service concept of Tor.

The protocol changes were measured over a time period of three weeks, using the measurement
environment, resulting in 1,200 access attempts per protocol. This data was used to evaluate
the impact of the protocol changes on performance empirically. The result is that increasing the
number of pre-built internal circuits from two to five does not have a significant impact. The
other three changes do have an impact. The mean access time of the regular protocol is 39.240



54 7 CONCLUSION

● ●● ●●●● ●● ●● ● ●●● ●● ●●●●● ●●● ●● ●●● ● ●●● ● ●● ● ●● ● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●●● ●●● ●● ● ●● ●●● ●● ●● ●●● ●●● ● ●●● ●●●● ●● ●●●● ●● ● ● ●●●● ●● ● ●●● ●●● ● ●

● ●● ● ●● ●● ●●● ●● ●●● ●● ●● ● ● ●●● ●● ● ●● ●●● ●● ● ● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●●●● ●● ●● ●●●●●● ● ●●●● ● ●●

C
ha

ng
ed

R
eg

ul
ar

0 50 100 150 200

Round−trip time [sec]

Figure 21: Round-trip time distribution of direct hidden service usage

seconds. Extending two client circuits to the introduction point simultaneously decreases the
mean by 7.220 seconds. Extending the rendezvous circuit to the introduction point instead
of building an independent introduction circuit results in a decrease of the mean by 6.140
seconds. Completely omitting the rendezvous point and responding over the introduction circuit
decreases the mean round-trip time by 10.25 seconds. For the last two changes it is important
to mention, that the valet node concept, which is necessary not to reduce anonymity provided
by the network, was not implemented for the measurements and will reduce performance a
little.

The intention of this thesis to add performance enhancing changes to an existing location-
hidden service protocol can be considered as success. Three of the four changes reduced the
round-trip time of accessing a hidden service significantly, at most by 25 %. Nevertheless the
evaluation is rather short due to time restrictions. This is all the more disappointing because of
the huge amount of data collected during the measurements. Although not used in this thesis
this data will help to further improve location-hidden services and the regular Tor protocol in
the future.

7.2 Future Work

The upcoming work founding on this thesis can be separated in three main categories. The
first category considers the changes proposed in Section 5. In the second category the data
collected during the measurements needs to be subject of further research. The third category
includes the measurement environment presented in Section 4.

The changes presented in this thesis need to be discussed with the developers and commu-
nity of the Tor network. The implementation shown focused on measuring the impact of the



7.2 Future Work 55

changes. To write a proposal, before implementing the changes into the Tor source code, a
clean implementation has to be done.

The work done for this thesis provides a good foundation for further research. This is because
the data collected during the three weeks of measurements is much more detailed then what is
presented in the results in Section 6.

The building time for individual hops of circuits should be analyzed. The result can be combined
with the work of Panchenko et al., who performed dedicated measurements with additional cells
to select faster circuits in the path selection. If there is a significant correlation between the
building time of a circuit and the time for cannibalization as well as the message transfer time
using the circuit, circuits can be rated in terms of expected performance. This would work
without additional cells, because the cells for circuit building are sent anyways but their times
are not evaluated in the current implementation.

The circuit building timeout of 60 seconds seems very high, but the data collected in this thesis
bases on clients installed on a virtual root server with a broadband connection to the Internet.
Such a connection cannot be assumed to be representative for all clients. There are clients with
much lower bandwidth using modem connection especially in the developing countries. The
measurement environment presented in this work should be extended to clients using different
bandwidths, e.g. using cell phone connection like the Universal Mobile Telecommunications
System (UMTS) or the much slower Global System for Mobile communications (GSM), to
evaluate the impact of bandwidth on circuit building times. After those measurements lowering
the timeouts might be considered.



56 REFERENCES

References

[1] Sabine Helmers. A brief history of anon.penet.fi - the legendary anonymous remailer. CMC
Magazine, 1997.

[2] Roger Dingledine and Nick Mathewson. Anonymity loves company: Usability and the net-
work effect. In Ross Anderson, editor, Proceedings of the Fifth Workshop on the Economics
of Information Security (WEIS 2006), Cambridge, UK, June 2006.

[3] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing information.
In Information Hiding, 1996.

[4] Ian Goldberg. A Pseudonymous Communications Infrastructure for the Internet. PhD
thesis, UC Berkeley, December 2000.

[5] Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris. Introducing tarzan, a
peer-to-peer anonymizing network layer. In Proceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS02), Cambridge, MA, March 2002.

[6] Anon. I2p technical introduction. Website. Available online at http://www.i2p2.de/

techintro.html; visited on 23 May 2008.

[7] Rob Sherwood and Bobby Bhattacharjee. A protocol for scalable anonymous communica-
tion, 2002.

[8] Vincent Scarlata, Brian Levine, and Clay Shields. Responder anonymity and anonymous
peer-to-peer file sharing, 2001.

[9] Stefan Köpsell. Low latency anonymous communication - how long are users willing to
wait? In ETRICS, volume 3995 of Lecture Notes in Computer Science, Springer, 2006.

[10] Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath. Performance comparison
of low-latency anonymisation services from a user perspective. In Privacy Enhancing
Technologies, 2007.

[11] Andriy Panchenko, Lexi Pimenidis, and Johannes Renner. Performance Analysis of Anony-
mous Communication Channels Provided by Tor. In Proceedings of the Third International
Conference on Availability, Reliability and Security (ARES 2008), Barcelona, Spain, March
2008.

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router, 2004.

[13] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, IT-22(6), 1976.

[14] Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido Wirtz. Performance
measurements and statistics of tor hidden services. In Proceedings of the 2008 International
Symposium on Applications and the Internet (SAINT 2008), July 2008.

http://www.i2p2.de/techintro.html
http://www.i2p2.de/techintro.html


REFERENCES 57

[15] Larry L. Peterson and Bruce S. Davie. Computer Networks: A System Approach, 2nd
Edition. Morgan Kaufman, 1999.

[16] Lasse Øverlier and Paul Syverson. Improving efficiency and simplicity of tor circuit estab-
lishment and hidden services. In Nikita Borisov and Philippe Golle, editors, Proceedings of
the Seventh Workshop on Privacy Enhancing Technologies (PET 2007), Ottawa, Canada,
June 2007. Springer.

[17] Lasse Øverlier and Paul Syverson. Valet services: Improving hidden servers with a personal
touch. In Proceedings of the Sixth Workshop on Privacy Enhancing Technologies (PET
2006). Springer, June 2006.

[18] Michael C. Fleming and Joseph G. Nellis. Principles of Applied Statistics. Routledge &
Kegan Paul, London, 1994.

[19] Samuel S. Shapiro and Martin B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 3(52), 1965.

[20] Henry B. Mann and Donald R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 1947.



Bamberger Beiträge zur Wirtschaftsinformatik 
 

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez. 
1990) 

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG 

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen 

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im 
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990) 

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher 
Informationssysteme im Semantischen Objektmodell (SOM) 

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von 
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten 

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare 
Bewertung von Kennzahlenwerten für den Endanwender 

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung 

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell 
in das Strukturierte Entity-Relationship-Modell 

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell 
(SERM) 

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells 

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas 
aus dem Modell der betrieblichen Diskurswelt 

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell 

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen 

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch 

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem 
Client/Server-Prinzip 

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation 

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells 

58 A LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

A List of previous University of Bamberg reports



Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based 
Business Process Modeling Using the SOM Approach 

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of 
Distributed Business Application Systems - An Object-Oriented Approach -. 1st 
edition, June 1994 

 Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models 
and Distributed Business Application Systems - An Object-Oriented Approach -. 
2nd edition, November 1994 

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen 

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for 
Modeling Information Systems 

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle 

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichteten 
Lenkung von Universitätsprozessen 

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für ver-
teilte Führungsinformationssysteme 

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage 
des SOM-Ansatzes 

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995 

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach 

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge 
bei der computergestützten kooperativen Arbeit 

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse 

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H., 
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von 
Walter Augsburger 

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen? 

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme - 
Entwicklung, aktueller Stand und Trends - 

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung 
durch workflow-orientierte Anwendungssysteme 

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996 

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996 

59



Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996 

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze 

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997 

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer  Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor. 
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997 

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects – 
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik. 
Schwerpunkheft ComponentWare, 1997 

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object 
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K. 
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems. 
International Handbook on Information Systems, edited by Bernus P., Blazewicz 
J., Schmidt G., and Shaw M., Volume I, Springer 1997 

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using  (SOM), 2nd Edition. 
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer 
1998 

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7. 
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung 

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik, 
Oldenbourg-Verlag, München 1998 

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997 

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998 

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering 

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering 
Environments. In: Proc. International Conference on Database and Expert Systems 
Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460 

60 A LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS



Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path 
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel, 
July, 1999 (Springer, Lecture Notes) 

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European 
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science) 

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999 

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.): 
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München 
1999 

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation. 

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing. 
Modellierung und Architektur 

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der 
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen 
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik, 
Berlin 19. - 22. September 2000 

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from 
Business Process Models. 

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten. 

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines 
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für: 
WI-IF 2001, Augsburg, 19.-21. September 2001 

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen. 
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der 
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001 

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik  in Bamberger 
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61 

Note: The title of our technical report series has been changed from Bamberger Beiträge zur 
Wirtschaftsinformatik to Bamberger Beiträge zur W irtschaftsinformatik und Angewandten Informatik  
starting with TR No. 61 

 

61



Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten 
Informatik 

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International 
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002), 
Copenhagen, July 2002. 

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in 
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint 
in: Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für 
Hochschulforschung und Hochschulplanung, München 2002 

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions 

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale 
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard 
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und 
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch 
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New 
York/München/Berlin: Waxmann 2005 

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case 
Study on RosettaNet 

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias 
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence 
Information in Instant Messaging Systems, April 2006 

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya, 
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation 
Management for Cooperating Software Agents in Open Multi-Agent Systems, 
April 2006 

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the 
Exactness of Ternary Simulation 

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol 
Framework . February 2007   

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und 
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-
Szenarien. Februar 2007  

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents 
for Virtual Enterprises. März 2007  

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions 
Axiomatisable in Equational Horn Logic? 

Nr. 73 (2007) Martin Schissler: to be announced 

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual. 
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 
74, Bamberg University, October 2007. ISSN 0937-3349. 

62 A LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS



Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing 
Technologies Convention  (PET-CON 2008.1). Bamberger Beiträge zur 
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University, 
April 2008. ISSN 0937-3349. 

Nr. 76 (2008) G. Scheithauer and G. Wirtz: Applying Business Process Management Systems? A 
Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten 
Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-3349. 

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for 
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und 
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN 
0937-3349. 

Nr. 78 (2008) Gregor Scheithauer and Matthias Winkler: A Service Description Framework for 
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und 
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349. 

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better 
Performancs. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten 
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349. 

 

 

 

 

 

63


	1 Introduction
	1.1 Overview of this Work

	2 Related Work
	2.1 Comparable Systems
	2.1.1 Onion Routing
	2.1.2 Anonymous IP Infrastructure
	2.1.3 Tarzan
	2.1.4 I2P
	2.1.5 Peer-to-Peer Personal Privacy Protocol
	2.1.6 Anonymous Peer-To-Peer File Sharing Protocol

	2.2 Anonymity Systems Performance Research

	3 Tor and Tor Hidden Services
	3.1 Tor
	3.2 Hidden Service Protocol
	3.2.1 Establishing a Hidden Service
	3.2.2 Accessing a Hidden Service


	4 Measurement Environment
	4.1 Client
	4.2 Hidden Service
	4.3 Rendezvous Point
	4.4 Introduction Point
	4.5 Physical Setup
	4.6 Creating Clients with PuppeTor
	4.7 Analyzing the Log Events

	5 Changes to be Evaluated
	5.1 Open More Pre-Built Internal Circuits
	5.2 Start Building Two Introduction Circuits
	5.3 Simplifying Hidden Service Access
	5.3.1 Combining Introduction Circuit and Rendezvous Circuit
	5.3.2 Direct Hidden Service Usage


	6 Results
	6.1 Timing Problems Between Measurement Servers
	6.2 Deleted Records
	6.3 Use of Own Nodes
	6.4 Evaluation of More Internal Circuits
	6.5 Evaluation of Opening Two Introduction Circuits
	6.6 Evaluation of Combining Introduction and Rendezvous Circuits
	6.7 Evaluation of Direct Hidden Service Usage

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	Bibliography
	A List of previous University of Bamberg reports



