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Abstract

Missing data in survey-based data sets can occur for various reasons: sometimes

they are created by design, sometimes they exist due to nonresponse. Multiple Im-

putation (Rubin 1978, 1987a) is a generally accepted method to allow for analysis

of these incomplete data sets. The task of Multiple Imputation (MI) for survey data

can be hampered by the sometimes very large number of variables. Another chal-

lenge for the imputer is that survey data sets typically consist of mixed variable

types. The unifying aspect of all survey variable types is that their measurement is

of a discrete nature, and we introduce several imputation algorithms that focus on

this property of survey variables. Distributional assumptions play also an impor-

tant role in most multiple imputation algorithms, so we examine the effect of relax-

ing these assumptions on imputation results for simulated data sets. When used

in combination with models for continuous variables, Predictive Mean Matching

(Rubin 1986, Little 1988a) shows desirable properties both regarding the task of im-

puting discrete data as well as giving robustness towards model misspecification.

Keywords: Multiple Imputation, Predictive Mean Matching, Mass Imputation,

Bayesian Bootstrap, Fully Conditional Specification
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Preface

A small fraction of the statistical community has focussed their academic research

on statistical analysis of incomplete data. It turned out that quite a few statisti-

cal problems can be regarded as missing-data problems. And thus, from a small

niche of statistical research matters, missing-data analysis has evolved to a ‘bridge-

builder’, contributing new insights to data fusion (file matching) or post stratifica-

tion and weighting. Other fields in Statistics, where the connection is not as ob-

vious as in the above cases, have been strongly influenced by perceiving the par-

ticular tasks as missing-data problems, too. Among the more prominent examples

are ’confidentiality’ and ’causal inference’ – the latter one incorporates missing-

ness through the concept of ’potential outcomes’ which bears close resemblance to

Quantum Physics’ ’parallel universes’1, or Philosophy’s ’possible worlds’.

We feel that distinguishing data in observed and not observed or missing (or some-

times ’not observable’) would help to prevent people from drawing hasty conclu-

sions. One example: Many of you will have read at some point (maybe even

in some zoological textbook) that the Blue Whale is the largest animal to have

ever lived – just because no one has found the remains of a larger species, not

even among the dinosaurs (at least that was the status 10 years ago). Meanwhile

palaeontologists have found fossils of dinosaurs which very likely exceeded the

Blue Whale in terms of length2, albeit maybe not in terms of weight. It is careless

to mistake ’present status of knowledge’ for ’certainty’. We probably only know

of a very small fraction of all dinosaurs that have ever existed, but the sample

of fossils already suggested that dinosaurs could have evolved species that were

probably larger than any living species.

1’Schröedinger’s cat’ is a thought experiment about ’potential outcomes’.
2Another missing-data problem: usually palaeontologists do not find complete skeletons, but

only skeletal parts of a dinosaur. In one particular case, some petrified vertebrae, ribs, a shinbone
and an incomplete femur of a dinosaur belonging to the Sauropod family was found in Patagonia,
and by comparing the size of these bones with the corresponding ones of a fairly complete skeleton
of a Titanosaur, another Sauropod, the overall size was extrapolated. The name of this dinosaur
is Argentinosaurus, and its length is estimated to range from 30-35 meters. There are some other
species, such as Bruhathkayosaurus or Amphicoelias, who were probably even larger, but their fossil
record is even scarcer.
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We could provide more illustrative examples from other fields, where missing data

lead to erroneous conclusions, but the purpose of this example was merely to un-

derline the importance of 1) awareness, if an analysis is based on partially unob-

served data, 2) requirement for assumptions, one has to make in such a case, and 3)

remedies for statistical analysis of incomplete data. Careful scientists implicitly or

explicitly make these assumptions, and the above largest-animal-example is more

symptomatic for the stage when research finds its way into ’popular science’, and

from there into ’popular knowledge’.3

There are several solutions to handle missing values in data sets, ranging from

partially or completely erasing incomplete cases to ’filling-in’ the gaps. The latter

approach is known as imputation, and can be used for general-purpose analysis, if

the imputation is carried out in a ’sensible’ way. We further distinguish between

single and multiple imputation (MI) approaches which incorporate additional un-

certainty created by the imputation themselves. The rough idea behind MI is that

we do not want to treat an imputed value, as if it had been observed, therefore

we make several ’guesses’ about it, and combine our beliefs. This principle has

become a generally accepted way of sensibly dealing with missing data – in par-

ticular, if imputer and data analyst are not the same person).

Multiple Imputation in its original form relies on distributional assumptions incor-

porated in a Bayesian model framework. But ’sensible’ applicability to empirical

data is occasionally in doubt, if the data do not resemble any theoretical statisti-

cal distributions. If the missing data are assumed to be missing at random – more

about this to follow in section 1.1.1 – MI should yield unbiased estimates for any

quantity of interest. But what if the imputation algorithm creates (additional) bias

because it uses a misspecified imputation model? In such a case the cure might

be worse than the disease. The imputation algorithms described in this thesis are

evaluated by their robustness to imputation model misspecification. The tests in

chapter 6 include missingness in empirical survey data sets, as these kinds of data

are notorious for both: nonresponse and ’ugly’ data distributions.

3You can just imagine to pop up the question about the largest animal to have ever lived at Who
Wants to be a Millionaire? – with the Blue Whale being the ’correct’ answer.
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An introduction to missing-data
problems

Multiple Imputation (Rubin 1978, 1987a) has become a generally accepted way

to handle statistical analysis of incomplete data, and is the central theme of this

thesis. A large part of the research on Multiple Imputation (MI) has focused on

fully parametric variants with underlying distributional assumptions. However,

surveys often yield mixed-scale data, and the variables do not resemble statistical

distributions. Some multivariate approaches try to model continuous data within

cell combinations of categorical variables. Schafer (1997) suggests to impose re-

strictions on those cell combinations via log-linear models, but usually the large

number of variables and the potential number of combinations impede us from

getting stable and computationally feasible solutions. Another approach is to im-

pute variables sequentially, by conditioning the imputation of each variable on all

other variables. These approaches are labeled as ’chained equation’, ’sequential

regression’, or ’fully conditional’ approaches, and can be applied to large data set,

since only (univariate) multiple regressions instead of multivariate computations

are needed. MI packages such as IVEware (Raghunathan et al. 2002) or MICE

(van Buuren & Oudshoorn 1999) are using this algorithm1, and MICE also features

an optional semi-parametric approach which is called Predictive Mean Matching

(PMM). In addition to MI this approach also plays a major role in the following

1’MICE’ is the abbreviation of ’Multiple Imputation by Chained Equations’.
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chapters. PMM is known to have robustifying properties to model misspecifica-

tion that are useful for imputing survey data. The big task is to integrate PMM

into an MI algorithm – without biasing MI inference. In chapter 5 we investigate,

if and under which conditions, various MI methods for discrete data yield unbi-

ased MI estimates and variances. The ’winner’ is then implemented into a sequen-

tial regression algorithm, and its performance is tested by comparing MI results

with those from IVEware (see chapter 6). As already mentioned, other MI algo-

rithms also feature Predictive Mean Matching– but only for metric-scale variables.

One innovation of this thesis is the development of a PMM variant for (unordered)

categorical variables, with a straightforward extension to MI via the Bayesian Boot-

strap (Rubin 1981).

Before we approach the theoretical framework of Multiple Imputation in chapter

2, it makes sense to become acquainted with some underlying basic assumptions

first, and to review other methods of incomplete-data analysis. By addressing

theoretical implications and how they relate to various incomplete-data analysis

techniques, we hope to generate an understanding for the benefits of ’advanced

approaches’ in general, and Multiple Imputation in particular.

We will start by introducing some fundamental theoretical assumptions that play

also an important role for MI, followed by a short description of various missing-

data patterns. These patterns, and its implications, will be re-visited at different

points of this thesis. Since we feel it helps to appreciate the merits of Multiple Im-

putation if we re-cap methods to analyze incomplete data that have been around

long before MI, but which are severely flawed2, we will give a brief overview over

these ’simple approaches’. Finally, the introductory chapter closes with a descrip-

tion of a group of incomplete-data analysis methods that can be described as ’ad-

vanced approaches’.

2Nevertheless, most of them are included in statistical software packages such as SAS, SPSS, or
STATA.
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1.1 Assumptions for missing-data analysis

This section introduces the – meanwhile standard – categorization of missing-data

mechanisms that can be traced back to the terms ’missing at random’ (MAR) and

’observed at random’ in Rubin (1976). In the same article Rubin introduced a sec-

ond necessary assumption: The parameters governing the missing-data mecha-

nism and the parameters governing the analysis parameter have to be ’distinct’.

If both, ’MAR’ and ’distinctness’ hold, the missing-data mechanism is said to be

’ignorable’ (see also Little & Rubin 2002).

1.1.1 Missing-data mechanisms

Let Y = [Yobs,Ymis] be an n × p data matrix consisting of an observed part Yobs

and an unobserved (missing) part Ymis. Furthermore, let R = [rij] (i = 1, . . . , n and

j = 1, . . . , p) define an indicator matrix, where rij = 1 if yij is missing, and rij = 0

if yij is observed. By treating rij as value of a random variable with an underlying

distribution, we can formalize mechanisms that generate missing data. The cat-

egorization starts from the conditional distribution f(R|Y, ψ), where ψ describes

unknown parameters. Then, if missingness does not depend on the values of Y at

all, the conditional distribution is reduced to

f(R|Y, ψ) = f(R|ψ) ∀ Y, ψ. (1.1)

We refer to this case as Missing Completely at Random or MCAR. To illustrate this

with an example from Survey Methodology, suppose some variables from an inter-

view were accidentally not transcribed during the coding process, i.e. some values

of a ’row vector’ in the data set are missing. Analogously, several observations of

a variable will be missing, if this happened with several interview codings. The

mechanism that led to missing observations for this variable can be considered to

be purely stochastic.
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In another situation R depends on Y, but only on the observed part Yobs, so that

f(R|Y, ψ) = f(R|Yobs, ψ) ∀ Ymis, ψ (1.2)

leads to a less restrictive assumption regarding R. This mechanism is called Miss-

ing at Random (MAR) and plays an important role in all statistical analysis with

missing data. It has also found its way into design-based concepts like post-

stratification.

Let us consider another example from Survey Methodology to illustrate the differ-

ence between MCAR and MAR: Suppose we have missing values for the variable

’personal net income’, and suppose further that ’age’ and ’personal net income’

are not independent. If, say, older people had a higher likelihood of refusing to

answer questions about their income, the observed subsample and the (virtual)

full sample would have different income distributions. MAR means that condi-

tioning on ’age’ would make the missing-data mechanism of ’net income’ random.

Note that MAR does not mean that Ymis must be perfectly explained by Yobs. In

the given example it is not required to perfectly explain ’personal net income’ by

other variables. Merely the conditional distribution of R needs to be independent

of Ymis. If this is not the case, and the conditional distribution of R is not indepen-

dent of Ymis, we describe the missingness mechanism as Not Missing at Random

or NMAR. To stretch our survey example a bit more, let us assume that missing

values depend now directly on the variable ’personal net income’, for instance, if

respondents with high earnings had a lower propensity to answer questions about

their income.

1.1.2 Distinctness and ignorability

Another important property of the aforementioned mechanisms is the concept of

distinctness between the unknown parameters θ that govern the distribution of Y

and ψ. From the perspective of a Bayesian statistician this means that the joint
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prior distribution can be split into the product of the marginal prior distributions3,

π(θ, ψ) = π(θ)π(ψ). (1.3)

Distinctness therefore assumes that the parameters of the ’analyst’s scope’, and the

parameters of the ’imputer’s scope’ are not related to each other. This implies

that for estimating θ, we do not have to model the missing-data mechanism. The

missing-data mechanism is said to be ignorable, if MAR and distinctness hold (see

Little & Rubin 2002).

1.1.3 Observed-data likelihood

Applying the MAR and distinctness assumptions allows us to re-write the

observed-data likelihood as

f(Yobs,R|θ, ψ) =

∫
f(R|Y, ψ)f(Y|θ) dYmis

= f(R|Yobs, ψ)

∫
f(Y|θ) dYmis

= f(R|Yobs, ψ)f(Yobs|θ) (1.4)

Schafer (1997) explicitly mentions that without the MAR assumption, we would

not be able to factorize the terms this way, since θ originally pertained to the

complete-data model parameters. The factorization illustrates, how the assumption

of distinction allows us to proceed from here: since we are interested in inferences

about θ, we can ’drop’ the first factor, and (1.4) becomes

f(Yobs|θ) ≡ L(θ;Yobs) (1.5)

3Distinctness from the ’Frequentist’ perspective means that the joint parameter space of θ and ψ
is the joint Cartesian cross-product of the single parameter spaces, as pointed out by Schafer (1997).
The different definitions are necessary, because ’Frequentists’ – unlike ’Bayesians’ – do not treat
parameters as random variables.
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Note that without the ignorability assumption, we would not be allowed to simply

us the right-hand-side of (1.5), as the observed-data likelihood consists of f(Yobs

and R (Schafer 1997).

Little & Rubin (2002) label the right-hand-side of (1.4) as ’full [observed-data] like-

lihood’, and (1.5) as ’simpler [observed-data] likelihood that ignores the missing-

data mechanism’. For reasons of simplification we will from now on refer to this

term as ’observed-data likelihood’.4

1.1.4 Empirical relevance of the ignorability assumption

Distinctness is an assumption that is usually rather intuitive: Why should the

model parameters carry any information about the parameters governing the

missing-data mechanism?

But MCAR, MAR and NMAR are assumptions the imputer/analyst has to make

about the underlying mechanism of missing data. MCAR can be tested (see Little

1988b, Chen & Little 1999), and MCAR and MAR can be compared to each other

(Heitjan & Basu 1996). Unfortunately there is no way to test for NMAR. Some

literature proposes solutions if the missing-data mechanism is not ignorable, but

information is available about the mechanism (e.g. Herring et al. 2004), or by mak-

ing additional assumptions regarding the data (Tang et al. 2003).

In a situation, where the ’imputer’ has no substantial information about the

missing-data mechanism (it might be NMAR), but the ’analyst’ still wants to draw

inference about θ, it is better to assume ignorability, and to carry out an incomplete-

data analysis, than to ignore the fact that not assuming anything, and to simply

analyze the observed cases, is by far the worst option. The rationale behind is that

any bias created by a non-ignorable mechanism can at least be attenuated by mak-

ing use of Yobs as well as possible – unless each variable with missing values is

completely independent of all other variables in the data.

4The more precise definition can be replaced, as we will not discuss non-ignorable missing-data
mechanisms.

6



1.2 Missingness patterns

The most frequent case of a missing-data problem a statistician will encounter,

is a data situation, where single values of an otherwise rectangular data set are

missing. In Survey Methodology, this would mainly be due to item nonresponse,

in Biology it could be due to contaminated samples, and in Meteorology it might

be due to malfunctioning mercuries.

Alternatively, a whole observation could be missing from the sample – an event

that is mainly a problem in survey data settings.

Since the research leading to this thesis was motivated by problems encountered in

studies with a social scientific context, we will focus in the following on examples

taken from the survey cosmos, and we will refer to the first case as item nonresponse

and to the second case as unit nonresponse.5

1.2.1 Item nonresponse

Monotone and non-monotone patterns

Wherever the incomplete data set described above has come from, we can distin-

guish the missingness pattern between monotone and non-monotone (see Little &

Rubin 2002). Monotone missingness patterns must fulfill the following condition:

We re-arrange the order of every variable Yj , with j = 1, ..., p, in a data set sorted

by the percentage of missing data, starting with the variable that has the smallest

percentage of missing values, such that nmis(Y(1)) ≤ nmis(Y(2)) ≤ . . . ≤ nmis(Y(p)).

A monotone missingness pattern is given, if the observed cases of Y(j) are a subset

of the observed cases of Y(j−1) (see fig. 1.1).

A monotone missingness pattern has some desirable properties, e.g. the imputa-

tion of variable Y(j) is fully conditional on all completely observed variables and

5Although, technically some examples for missing information are not really caused by nonre-
sponse.
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Figure 1.1: Monotone missing-data pattern

all variables Y(1) to Y(j−1). The most simple form of a monotone pattern is a data

set, where only one variable is not completely observed.

Much more frequently, however, the missingness pattern will be non-monotone,

i.e. we can not re-order the incomplete variables Y1, ..., Yp, such that the observed

cases of Yj are a subset of the observed cases of Yj−1 (see fig. 1.2).

Figure 1.2: Non-monotone missing-data pattern

Basically, all missing-data patterns can be classified into either of these two meta-

classes.

Data fusion design

A data fusion (Rässler 2002, Rodgers 1984) or statistical matching problem is a

missing-data problem with a non-monotone missingness pattern, which we can
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clearly see when we stack the data files, such that there is only complete informa-

tion on all joint variables (see fig. 1.3).

Figure 1.3: Missing-by-design I: Data fusion pattern

While various nearest neighbor matching techniques have become the predomi-

nant approach for statistical matching (see e.g. Rubin 1986), analysis is also pos-

sible via fully parametric imputation approaches (e.g. Kamakura & Wedel 1997).

Because we actually created this missingness pattern, it is often described as a

missing-by-design pattern. But a data fusion pattern is even more problematical

than a ’standard’ non-monotone pattern, because we typically want to analyze

variables which were never jointly observed. The inherent identification problem

in statistical matching requires a conditional independence assumption between

those variables that were not jointly observed given the joint variables (see Rässler

2002).

Data fusion faces another problem, if both studies suffer from unit nonresponse

caused by different missing-data mechanisms. In this case, stacking the data leads

to a missing-by-design pattern, but the missing-data mechanism is not MCAR, be-

cause there is another underlying missing-data problem. Figure 1.4 displays the

different causes for missingness.

Some of the (more naı̈ve) ’validation tests’ for data fusion compare (marginal) dis-

tributions of variables in the donor study with their counterparts from the fused
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Figure 1.4: Missing-by-design Ib: Data fusion pattern with unit nonresponse in
both studies

recipient study (Rässler 2002).6 These tests are clearly rendered useless, if differ-

ent unit nonresponse mechanisms occurred in the involved studies. If we treat

the stacked studies as one incomplete data set (with item nonresponse), and apply

the tests mentioned in section 1.1.4, we could probably reject that the missing-data

mechanism is MCAR. But if we assume conditional independence we believe that

it is still ignorable, as conditional independence should encase ignorability.

Split questionnaire design

Another missing-by-design pattern tries to avoid data fusion’s identification prob-

lem: Split questionnaire survey designs or Multiple Matrix Sampling aim to reduce

the response burden by grouping variables into components and administering

only a selection of the total number of components7 to every respondent (Raghu-

nathan & Grizzle 1995, Gelman et al. 1998, Neal et al. 2006, Rassler et al. 2002). The

key principle is to preserve a joint distribution of the observed-data for all vari-

ables that are to be analyzed jointly. In figure 1.5 we have assumed that later anal-

6Although the missing-data pattern suggests that both ’blocks’ could be imputed, typically only
one of the variable sets is imputed. Apart from the traditional distinction between ’donor’ and
’recipient’ study, this is also the case, if tailor-made software coerces the imputer to work with the
predetermined case identifiers of the recipient study.

7Plus a core component that is always part of the questionnaire.
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ysis includes bivariate associations, but no higher-order interactions. Therefore,

for every bivariate combination, a reduced subsample remains observed, yielding(
4
2

)
= 6 different missing-data patterns.

Figure 1.5: Missing-by-design II: Split questionnaire survey design pattern

The intentional creation of a specific missingness pattern also touches an issue that

has become the focus of attention among imputers: The distinction between the

‘analyst’s model’ and the ‘imputer’s model’. An interesting situation arises, if

the analyst wants to run some regression model, and parts of X (the regressor

variables) are missing. One might point out that Y (the analysis variable) should

in these circumstances not be used for imputation, because the outcome variable

would be used to impute the missing information in the model variables. But

leaving out the dependent variable from the imputer’s model would imply (con-

ditional) independence, and lead to biased inferences (see Allison 2001). Note that

at the imputation stage we are not interested in causality, but only in the preserva-

tion of (complete-data) multivariate associations.

Special cases of incomplete-data

A very special case of missing information are variables that are not as precisely

observed as they could be. When interviewers require rather confidential infor-

mation (like income) from the respondent, a bracket or class is offered as response

option, and the precise income has to be imputed. Heitjan & Rubin (1990, 1991),

Heeringa et al. (2002) describe this case as coarsened data. Little & Rubin (2002)

also treat the outcome of multivariate methods, which imply an underlying latent

11



variable, as a case of missing information.

1.2.2 Unit nonresponse

Unit nonresponse is a different problem, as it does not ‘show’directly in the ana-

lyst’s data set. In survey data we would have direct information about it only, if

failed interview attempts were recorded at the data preparation step. If this infor-

mation is not available, we could only compare sample structures with external

information from a census study or another source that directly refers to the pop-

ulation the sample is drawn from. And then, there would still be uncertainty if

differences are genuine sample bias or stochastic effects, whether nonresponse or

the sampling scheme is responsible.

In some situations it is however possible, to gather some information – even in the

case of nonresponse: In a study with personal contact between interviewer and

respondent, unit nonresponse can be transformed into item nonresponse, if we

take into account all the information8 that can be gathered without compliance of

the respondent.

Figure 1.6: Schematic display of unit nonresponse

8E.g. living area, interviewer-estimated wealth of the household, etc.
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1.3 Simple approaches for incomplete-data analysis

Note that, whatever we do to account for missing data, we apply some model

based on assumptions. This is even true, if we decide to make no adjustment at all

to account for missingness in the data.

In the following we will briefly discuss some methods that are ubiquitous, because

their application is quite simple. Unfortunately, they either lead to estimators that

are at best not efficient, and at worst lead to biased inferences.

There exists a variety of further methods that can also be classified as simple meth-

ods such as ‘dummy-variable adjustment’, ‘cold deck’ and (simple) ‘hot deck’, or

‘raking’ which we will not discuss here.

1.3.1 Complete-Case and Available-Case analysis

These two methods are also known as listwise deletion and pairwise deletion, and rep-

resent two variants of doing (almost) nothing about missing data. The terms also

hint, what data analysts had been doing for a long time, when being confronted

with incomplete data sets.

Complete-Case analysis

Complete-Case analysis (CC) is the simplest way of dealing with incomplete data:

all missing cases of variables which are needed to estimate some quantity of in-

terest, are deleted. The analysis is then carried out on the remaining cases. This

‘strategy’ of dealing with incomplete data has already been mentioned in section

1.1.4. Most users of listwise deletion are not aware that for (marginal) mean esti-

mates they implicitly assume the missing-data mechanism to be MCAR. The more

variables are involved in the analysis, the more likely it is that a substantial amount

of observed data is not used for the analysis as well, since every unit with missing

values for at least one variable is completely excluded, even if the remaining vari-
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ables are observed. In summary, estimators based on listwise deletion often rely

on the much stronger MCAR assumption while never being efficient. A notable

exception, where listwise deletion under MAR does yield unbiased estimates are

regression model estimates (see Little 1992). However, if the regression model is

not correctly specified, and if variables or parameterizations are missing that are

related to Y and the missing-data mechanism, the regression parameter estimates

are not only biased, but would also be different to the estimates which we would

have obtained from a completely observed data set.

Available-Case analysis

Available-Case analysis (AC) is a slightly more elaborate version of Complete-Case

Analysis: Available information is used in a more efficient way, by computing

summary statistics that can be used to estimate the actual quantity of interest. For

instance, the main diagonal of an AC-estimated covariance matrix of p variables

contains variance estimates based on the complete cases of each variable (in com-

parison: A CC-estimated covariance matrix would only use cases which are com-

plete for all p variables).

According to Allison (2001) regression model estimates under MAR based on

Available-Case analysis can be seriously biased (unlike model estimates based

on Complete-Case analysis). Another downside of AC is that there is no general

agreement on how to implement the method: a mean estimate µ̂x that is used to

estimate the covariance σ2
x,y could be based on all complete cases for variable X or

on the complete cases for X and Y .

1.3.2 (Conditional) mean imputation

Available-Case analysis tries to ‘wriggle’ its way around the missing parts of the

data. An alternative is to ’fill-in’ gaps in the data. Since we do not know what the

values in the gaps really look like, we make imputations about them. This expres-

sion has become the predominant term for any technique that aims to produce a
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complete(d) rectangular data set.

Marginal mean imputation

Marginal mean imputation is the most basic form of imputation. Any missing

value is simply replaced by the marginal mean estimate of the remaining cases

for this variable. Two example shall briefly show the short-comings of this ap-

proach: Suppose we want to estimate the mean of a variable, where parts of the

data are MCAR. Where listwise deletion would give us correct9, albeit inefficient

confidence intervals, mean imputation yields confidence intervals that are too nar-

row, due to an artificially inflated sample size. In a second example let X be a

completely observed variable and Y a variable, where cases 1, . . . , nmis are miss-

ing. Let us further assume that we want to estimate the correlation ρx,y between

the two variables. The marginal mean imputation step introduces a severe bias to

ρ̂x,y: The variance estimates of Y is zero for the first nmis cases. But this also means

that the covariance between X and Y is zero for these case, leading to an estimate

for ρx,y that is also biased towards zero.

Conditional mean imputation

In contrast to marginal mean imputation, conditional mean or regression imputa-

tion is not ‘careless’ about bi- or multivariate associations, but ’over-caring’. Miss-

ing values are imputed via (generalized linear) regression models, but since all

imputed values are on the regression line, the explained sum of squares is inflated.

In the case of a linear regression imputation this means that the correlations be-

tween the imputed variable Y and the (completely observed) imputation model

variables are biased away from zero.

Generalizations of regression imputation (iteratively) using weighted least squares

yield better estimates, but the fundamental problem of underestimated standard

errors remains.
9If we treat the complete cases as a ‘new’ sample.
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1.4 Advanced approaches for incomplete-data analy-
sis

In the following we will mainly discuss two methods that focus on the observed-

data likelihoods. Direct ML methods relate to pairwise deletion, because they try

to get MLE’s without imputation from an incomplete data set. These methods

are straightforward to implement, if the missing-data pattern is monotone, but

computationally tricky otherwise.

Another method is the so-called (E)xpectation-(M)aximization algorithm (Demp-

ster, Laird & Rubin 1977), which can be viewed as a two-step procedure, where

one step consists of maximizing a set of parameters θ of the likelihood given the

(completed) data, and the other step consists of replacing missing values by ex-

pectational values given the current estimates θ̂. The steps are iterated until some

convergence criterion is fulfilled.

A rather new approach is the concept of ‘doubly robust’ (DR) estimators (intro-

duced in the discussion from Scharfstein et al. 1994). Its authors claim that DR

can have certain advantages over Multiple Imputation, if the data model is not

correctly specified. We will critically discuss this concept, since MI under misspec-

ified imputation models was also a primary research motivation of this thesis.

1.4.1 Direct Maximum-Likelihood

Let Y = [Yobs,Yobs] be an incomplete n× p data matrix, consisting of an observed

part Yobs and a missing part Ymis. Furthermore, let θ be the parameters belonging

to the complete-data likelihood. The observed-data log-likelihood function can

then be expressed as

`(θ;Yobs) =
n∑

i=1

ln f(Yobs,i|θ).

Solving this function is feasible, but often computationally extremely expensive.
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However, as Allison (2001) points out, there is specialized software available –

mainly for Structural Equation Models – that can estimate these functions.

Monotone missing-data pattern are a special case, because here the observed-data

likelihood can be factored into parts, such that the most-complete part is condi-

tioned on the completely observed variables of Yobs, the second-most-complete

part is conditioned on the completely observed variables and the most-complete

part, and so on, until the least-complete part is conditioned on all other parts of

Yobs. Little & Rubin (2002) write that Anderson (1957) was the first to factor like-

lihoods (for normally distributed data) that way. The advantage of expressing

the likelihoods as conditional on the more-observed parts is that each part can be

maximized separately which makes the derivation of the observed-data likelihood

much more tractable.

In theory, Direct ML yields efficient and (asymptotically) unbiased estimates, but

it requires a joint distribution for all variables with missing data (Allison 2001).

This also means that the more variables with missing data and the more different

missing-data patterns exist, the harder the computation will be.

1.4.2 Expectation-Maximization

The key idea behind the Expectation-Maximization (EM) algorithm is so intuitive

that first applications can be traced back to 1926 (Little & Rubin 2002): Estimate

a set of parameters, subsequently derive a statistical distribution out of it, re-

estimate the set of parameters again, and so on. Hartley (1958) applied such an

algorithm to incomplete categorical data, and Baum & Petrie (1966) implemented

it into a Markov model. But whenever the EM algorithm is cited, the first reference

is usually the landmark article by Dempster, Laird & Rubin (1977), who not only

gave the algorithm its name, but also proved several key theorems, explored the

full generality of EM, and gave a large variety of examples. For this reason, the

‘DLR’ paper deserves the credits it has been awarded.10

10Stephen Jay Gould, a former Harvard professor of Geology and Biology, who became well-
known for his popular science books, wrote in an essay (Gould 1985) on the origins of the evolution
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The EM algorithm can be used, if the maximum of a likelihood is hard or impos-

sible to find analytically (for instance, it is often used for hidden Markov models),

but it is predominantly applied to missing-data problems. As mentioned in the

previous section, if the missing-data pattern is monotone or stems from a data

fusion, the observed-data likelihood can be factorized.11 But if the missing-data

pattern is non-monotone the observed-data likelihood L(θ;Yobs) typically consists

of many different and complicated functions. In such a case the EM algorithm is

defined by using an expectational value for the missing data and to subsequently

maximize the likelihood for the parameters of interest θ, and to iterate the two

steps, until convergence has been achieved.

Let us factor the complete-data distribution of Y into the observed-data likelihood

and the conditional predictive distribution of Ymis,

f(Y|θ) = L(θ;Yobs)f(Ymis|Yobs, θ). (1.6)

We transform (1.6) with the natural logarithm, and by switching from the Bayesian

perspective to the ‘classical’ Frequentist perspective, each term can be expressed

as a function of the model parameters,

`(θ;Y) = `(θ;Yobs) + ln f(Ymis|Yobs, θ) + c, (1.7)

where `(θ;Y) and `(θ;Yobs) denote the complete- and the observed-data loglike-

lihoods, and c is an arbitrary constant. We often cannot calculate the conditional

predictive distribution of the missing-data, so we use a current estimate θ = θ(t) to

get

theory that the principle of natural selection had been published twice before Darwin. And Charles
Darwin himself acknowledged this in a later edition of On the Origin of Species, but stated that he
had not been aware of the existence of these publications (one predecessor of Darwin was Patrick
Matthew, who added his views on natural selection in the appendix of his work Naval Timber and
Arboriculture). Gould points out that there is a difference between the simple formulation of a thesis,
and the full understanding of its importance and consequences.

11This is true for data fusion patterns, if the conditional independence assumption holds (Rässler
2002).
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Q(θ|θ(t)) = `(θ;Yobs) +H(θ|θ(t)) + c, (1.8)

where

H(θ|θ(t)) =

∫
ln f(Ymis|Yobs, θ)f(Ymis|Yobs, θ

(t)) dYmis,

and the E-step consists of identifying the current expected complete-data loglikeli-

hood12,

Q(θ|θ(t)) =

∫
`(θ;Y)f(Ymis|Yobs, θ

(t)) dYmis.

The M-step – as the name already suggests – maximizes the ‘current’ expected

complete-data loglikelihood to get updated parameters θ(t+1):

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)), ∀θ. (1.9)

A proof that demonstrates why the observed-data likelihood of θ(t+1) is at least as

high as the one of θ(t), is given in the DLR paper where the terms were re-written

such that eventually Jensen’s inequality could be applied to a remaining term.

Repeating (1.8) and (1.9) until convergence is achieved, should ideally yield a

global maximum for θ, but sometimes the EM algorithm is caught in a local maxi-

mum instead. One way of reducing this risk is making parallel runs from different

‘initial guesses’ for θ(0) (see e.g. Schafer 1997).

Due to the generality of EM, and due to different ways of computational imple-

mentation, there exists a large variety of similar algorithms which Little & Rubin

(2002) label ”EM-type” algorithms.

12In particular for exponential family distributions it is enough to calculate the expected
complete-data sufficient statistics.
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The benefit of EM over Direct ML is that it is computationally inexpensive, and that

therefore it will return a solution, where the direct or raw ML approach does not

work anymore. The major drawback of EM is that it ‘pretends’ to have a complete-

data loglikelihood at its disposal, and as a consequence, standard errors are too

low when EM is applied to missing-data problems.

1.4.3 Doubly-Robust estimation

Likelihood-based approaches prepare the ground for MI in the next chapter, but

before we would like to introduce another method that has gained a consider-

able amount of attention during the last decade. Doubly-robust (DR) estimation

is assuming a model (1) for the probability that a specific value is observed (also

called inverse-probability weighting, where Robins et al. (1995), Robins & Rotnitzky

(1995) contributed to its more recent improvement), and (2) for the joint distribu-

tion of the partially and fully observed data. The term ’doubly robust’ or ’doubly-

protected’ stems from the fact that DR estimators are consistent, if either model is

correctly specified. In theory, where MI might yield biased estimates (if the impu-

tation model is misspecified), DR has a ‘second chance’, if model (1) is correctly

specified. Carpenter et al. (2006) describe such a case in a simulation study.

We feel, however, that in practice the probability of this case is extremely small and

not very intuitive. Besides, just like the two likelihood-based approaches, DR can

be used to estimate just a limited number of quantities of interest. Therefore, either

‘analyst’ and ‘imputer’ are in close touch with each other, or they are one and the

same person. Under these circumstances, it is unlikely that the imputation model

is ‘wrong’, but the analysis model is not. As mentioned in the beginning of this

section, we will re-visit the issue of MI under misspecified models for Ymis|Yobs, θ

at a later stage.

The benefit of Multiple Imputation is that it provides a general purpose solution

for incomplete-data analysis, rather than a solution for one specific analysis.
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2

Multiple Imputation

2.1 The Bayesian Framework of MI

In Bayesian statistics inferences are typically drawn from the posterior distribu-

tion. Under ignorability, applying Bayes’ theorem to the model parameters of an

incomplete data set yields

π(θ|Yobs) =
π(θ)f(Yobs|θ)

f(Yobs)
, (2.1)

where the left-hand-side is the observed-data posterior distribution, and π(θ) is the

prior distribution of the model parameters. Since the marginal distribution of Yobs

can be regarded as a normalizing constant that does not influence the location and

scale parameters of π(θ|Yobs), this can be re-written as

π(θ|Yobs) ∝ π(θ)f(Yobs|θ). (2.2)

Moreover, we can ’update’ our knowledge of the data (the observed-data likeli-

hood), because the posterior predictive distribution of the missing part of Y is given

by
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f(Ymis|Yobs) =

∫
(Ymis|Yobs, θ)π(θ|Yobs) dθ. (2.3)

Suppose we have a data situation, where only one variable of an n×pmatrix Y has

missing values. Then ’Proper’ MI as defined by Rubin (1987a) consists of making

random draws from the second term of the right hand side of 2.3 – the posterior

distribution of θ given the observed data – followed by random draws from the

first term of the right hand side – the conditonal predictive distribution of Ymis given

the observed data and θ. This two-step procedure is necessary, since we cannot

draw directly from the posterior predictive distribution of the missing data given the

observed data. Carrying out these two steps M > 1 times yields M data sets

that are identical for Yobs, and different for Ymis. Note that ’Proper’ MI is only

straightforward, if the missing-data pattern is monotone. If this is not the case,

we have to apply strategies that will give us asymptotical draws from the correct

distributions. Some of these strategies – which can be classified as Markov Chain

Monte Carlo (MCMC) techniques – are introduced later in this chapter.

Note that random draws from Ymis|Yobs, θ only, would mean that we would as-

sume that the model parameters stem from a complete-data likelihood. Earlier

versions of statistical software SPSS featured such an ’improper’ MI algorithm in

its MVA module (see also Allison 2001).1

2.2 MI confidence intervals

Rubin (1987a) gave definitions for multiple imputation confidence intervals which

are in general more conservative than the usual single data set confidence intervals.

The theoretically bigger width is created by combining the within variance W for

some quantity of interest θ with the between varianceB of theM different estimates

for θ. W is defined by averaging over the variances obtained from the M data sets:

1Later SPSS/PASW releases feature a ‘proper MI’ algorithm.
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W =
1

M

M∑
m=1

v̂ar(θ̂m). (2.4)

The MI estimate itself for θ is given by

θ̂MI =
1

M

M∑
m=1

θ̂m, (2.5)

which allows us to calculate the between variance,

B =
1

M − 1

M∑
m=1

(θ̂m − θ̂MI)
2. (2.6)

The total variance T is the sum of the within and between variance – accounting for

finite values of M – and is defined by

T = W +
M + 1

M
B. (2.7)

If the z transformation for any quantity of interest θ, (θ̂ − θ)/
√
V ar(θ), asymptot-

ically follows a standard normal distribution, the MI confidence intervals can be

established using a t distribution,

(θ̂MI − θ)√
T

∼ tυ, (2.8)

with

υ = (M − 1)γ̂−2
M (2.9)

degrees of freedom (Rubin & Schenker 1986, Rubin 1987a), where

γ̂M = (1 +M−1)tr(B T−1)/K, (2.10)
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is the fraction of missing information about the K-dimensional θ.

Barnard & Rubin (1999) developed an improved expression, for example for small

sample sizes,

υ∗ = (υ−1 + υ̂−1
obs)

−1, (2.11)

where

υ̂obs = (1− γ̂M)

(
υcom + 1

υcom + 3

)
υcom,

and υcom represents the (hypothetical) complete-data t inferences.

The higher total variance accounts for additional uncertainty due to the imputed

part Ymis, and yields information with respect to the shape of the empirical dis-

tribution of θ̂MI .This distinguishes MI from single imputation approaches which

generally ’treat’ imputed values as if they were observed.

2.3 Markov Chain Monte Carlo techniques for Multi-
ple Imputation

As mentioned in the previous section, some workaround is required, if the

missing-data pattern is non-monotone. The proposed strategies resemble the basic

idea of the EM algorithm insofar, as the concept of ’filling-in’ missing data, sub-

sequently using these data to get a better estimate for the model parameters, and

iterating the two steps, is also key to these approaches. The difference is that all of

them contain at least one stochastic component.

Markov Chain Monte Carlo (MCMC) describes a collection of techniques that aim

to generate (pseudo-)random draws from a stationary target distribution, where

the Markov Chain is the mean to achieve stationarity. Markov chains are defined

as stochastic processes, where future states only depend on the current state. The
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Monte Carlo component means that the (pseudo-)random draws from the proba-

bility distributions behave like independent draws.

2.3.1 Data Augmentation

Data Augmentation (DA) (Tanner & Wong 1987, Li 1988) is closely related to a

more general class of MCMC methods, called Gibbs Sampling (Geman & Geman

1984, Gelfand & Smith 1990). This technique provides a way to sample from a

multivariate probability density, by employing only the densities of partitions j =

1, . . . , r of some parameter θ = [θ1, . . . , θr]
T conditional on all the other partitions.

Let us assume that the conditional distributions

θj|θ1, . . . , θj−1, θj+1, . . . , θr ∼ π(θj|θ1, . . . , θj−1, θj+1, . . . , θr)

are known, and the joint distribution π(θ) exists. Then we can start the Gibbs

Sampler by choosing a point θ(0) in the parameter space Θ to initiate the process:

θ
(1)
j |θ(1)

1 , . . . , θ
(1)
j−1, θ

(0)
j+1, . . . , θ

(0)
r ∼ π(θ

(1)
j |θ(1)

1 , . . . , θ
(1)
j−1, θ

(0)
j+1, . . . , θ

(0)
r )

...

θ
(t)
j |θ

(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . , θ(t−1)

r ∼ π(θ
(t)
j |θ

(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . , θ(t−1)

r ),

for j = 1, . . . , r. (2.12)

If t is chosen large enough, θ(t) should converge in distribution to the stationary

density π(θ) (see e.g. Geweke 1992).

Schafer (1997) gives a detailed explanation, how DA relates to Gibbs Sampling, but

for our purposes it is enough to know that for missing-data problems, draws from

the posterior predictive distribution of the missing data are incorporated into the

sequence. If we distinguish between the draws from the posterior distribution for

θ and the draws from the posterior predictive distribution for Ymis, these steps can
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be viewed as the stochastic counterparts to the corresponding steps in Expectation-

Maximization.2 Tanner & Wong (1987) therefore referred to drawing

Y
(t+1)
mis ∼ f(Ymis|Yobs, θ

(t)), (2.13)

as the Imputation (I-)step, and the Maximization step is replaced by the Posterior

(P-)step, where we draw

θ(t+1) ∼ π(θ|Yobs,Y
(t+1)
mis ). (2.14)

In order to get independent random draws from a stationary distribution, typically

a so-called ’burn-in period’ is used before the first imputation draw, and between

any two of the M − 1 remaining imputation draws k iteration cycles are discarded.

Alternatively, different starting values can be used to kick off M different cycles,

where the first k iterations are likewise discarded. The latter approach makes the

Gibbs Sampler less sensitive to the choice of the starting value.

2.3.2 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) algorithm (Rubin 1987b) is an alterna-

tive to DA, and more related to the basic Metropolis-Hastings algorithm (Metropo-

lis et al. 1953, Hastings 1970). Suppose we are again confronted with a non-

monotone missing-data pattern that makes it extremely difficult to sample directly

from the observed-data posterior or the posterior predictive distribution of Ymis.

Suppose further we are able to define a ”good approximation” (Rubin 1987a) to

the joint posterior distribution of (Ymis, θ),

g̃(Ymis, θ|Yobs) = π̃(θ|Yobs)f̃(Ymis|Yobs, θ). (2.15)

2Note that Rubin (1994) explicitly states that MI did not evolve from EM or DA, ”both logically
and historically”.
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We can use g̃ as a proposal or importance sampling function. The algorithm can be

divided into three steps:

1. Draw J values of (Ymis, θ) from the proposal density g̃(Ymis, θ|Yobs)

2. calculate the importance sampling weights

wi ∝
f(Yobs,Y

(i)
mis|θ(i))π(θ(i))

g̃(Y
(i)
mis, θ

(i)|Yobs)
, for i = 1, . . . , J (2.16)

3. Draw M < J values of Ymis from (Y
(1)
mis, . . . ,Y

(J)
mis) with replacement and

weights proportional to w1, . . . , wJ

to generate multiple imputations of Ymis. Unlike DA the SIR algorithm is non-

iterative. Therefore, it is technically not a Markov Chain procedure. The choice

of the ratio J/M depends on the fraction of missing information given in (2.10).

Gelfand & Smith (1990) modified the SIR algorithm by splitting step 3 into two

conditional draws.

2.3.3 The Bayesian Bootstrap

The Bayesian Bootstrap (BB) (Rubin 1981) is a Bayesian equivalent to classical Boot-

strapping (Efron 1979), although its original purpose was to approximate the pos-

terior distribution of θ. Therefore, we consider the BB not as an alternative ap-

proach to DA, but rather to its parametric posterior step.

Let Y denote a partially observed variable, where cases 1, . . . , nobs are observed,

and the remaining n − nobs cases are missing. Then the algorithm is implemented

the following way:

1. Generate nobs − 1 random draws U = [u1, . . . , unobs−1] from a [0,1] uni-

form distribution, and sort the values in ascending order to get U∗ =

[u(1), . . . , u(nobs−1)], where u(1) < u(2), . . . , u(nobs−2) < u(nobs−1). Create two
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nobs × 1 vectors W = [U∗, 1]T and V = [0, U∗]T , and calculate the differences

D = [(d1 = w1 − v1), . . . , (dnobs
= wnobs

− vnobs
)]T , where

∑nobs

i=1 di = 1.

2. Perform one random draw of size nobs from a multinomial distribution with

the nobs × 1 vector D as probability weights to obtain sample n∗obs.

Based on this data set random draws for θ are performed. This procedure re-

places random draws from a theoretical distribution for θ|Y. The BB steps given

above vary slightly from the original notation given in Rubin (1981, 1987a), but are

computationally equivalent. Note that Efron and Rubin have different views on

whether (classical) Bootstrapping can be used as well for sampling from a poste-

rior distribution in order to generate multiple imputations (see Efron 1994, Rubin

1994).

Where fully-parametric posterior distribution can lead to biased imputations, be-

cause the functionality of the model was misspecified, Bayesian Bootstrapping can

at least alleviate the introduction of bias due to model misspecification due to its

robust properties. We will revisit the BB in chapters 5 and 6, where it is imple-

mented into a semi-parametric MI algorithm.

A variant of the BB, called the Approximate Bayesian Bootstrap (ABB), was pro-

posed by Rubin & Schenker (1986) as an alternative MI technique. Suppose we

have a partially observed variable Y , and other (completely observed) variables

from the same data set can be used to stratify the sample into G cells, with

g = 1, . . . , G, where the elements in each cell are independent and identically dis-

tributed. nobs,g (nmis,g) denotes the number of observed (missing) units of cell g.

For each cell the following three steps are carried out:

1. Draw a random sample n∗obs,g of size nobs,g (with replacement) from nobs,g.

2. Draw another random sample n∗mis,g of size nmis,g (with replacement) from

n∗obs,g.

3. Impute the missing values of Y in cell g with the values obtained from n∗mis,g.
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Multiple imputations are created by repeating these steps M times. Note that the

BB can be extended to MI in a similar way (e.g. suggested by Cohen 1997). Kim

(2002) introduced a modified ABB approach that reduces MI variance bias due to

small cell sample sizes, but the problem remains that for application to large survey

data, no combination of strata might be identifiable that fulfils the requirement of

identical distributions within each of the G cells.

2.4 Joint-Modeling and Fully-Conditional Specifica-
tions

2.4.1 Joint-Modeling

The ’classical’ literature on MI typically assumes a multivariate distribution

f(Y|θ), for the n × p dimensional data matrix Y = [Yobs,Ymis]. The Bayesian

framework of MI described in section 2.1 then allows us to draw from the posterior

predictive distribution of f(Ymis|Yobs). Recently, this strategy has been labeled as

’Joint Modeling’ (JM) approach (see e.g. van Buuren et al. 2006, Drechsler & Rässler

2008).

Schafer (1997) postulated such models for continuous, categorical, and mixed-scale

data. Especially the latter two suffered from the ’curse of dimensionality’ which

could only be alleviated by imposing restrictions on the underlying loglinear mod-

els. In general, JM approaches require n >> p, or more precisely, n should be con-

siderably larger than the combined number of dimensions of all subparameters of

θ.

2.4.2 Fully-Conditional Specifications

Fully Conditional Specifications (FCS) describe a class of strategies that do not

aim to estimate the parameters of the joint distribution f(Y|θ). The objective is

rather to model only a subset via conditional distributions. For instance, (unre-
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stricted) Chained Equation Regression models are carried out variable by vari-

able, such that the univariate conditional distributions are given by f(Yj|Y−j, θj),

where Y−j = [Y1, . . . ,Yj−1,Yj+1, . . . ,Yp]. Instead of having to deal with one p-

dimensional problem, FCS splits the task into p one-dimensional problems (van

Buuren et al. 2006). Imputation of data sets with mixed-scale variables which of-

ten occur in Survey Methodology, becomes much more tractable, because models

for different scale-levels can be flexibly applied. Moreover, logical inconsistencies

or filter-caused missing values can be easily handled under FCS as well. Another

advantage is the applicability to data sets with an extremely large number of vari-

ables or an p/n-ratio that is close to or sometimes even exceeding 1. Of course, in

such cases restrictions have to be imposed on the imputation model to reduce the

number of predictors. For instance IVEware (Raghunathan et al. 2001), a statis-

tical MI software based on chained equations, uses stepwise regressions. Finally,

attention should be paid to the issue of convergence: we may often not be able to

prove that the joint distribution exists3, since the specifications of the distributions

are all conditional. FCS also requires a much larger number of parameters than JM

which makes it difficult to monitor the rates of convergence, even if methods like

the worst linear function of the parameters (see e.g. Schafer 1997) are applied. Results

from Drechsler & Rässler (2008) who conducted a simulation study with incom-

patible Data Augmentation, suggest that a lack of convergence can lead to biased

inferences, while others figured out only minor problems. The academic debate

about best practices for incompatibility seems not to be settled yet.

Despite of the aforementioned caveat, we will focus in chapters 6 and 7 on applica-

tions with FCS. The decision in favor of FCS for our own developed routines cor-

responds with the popularity of chained-equation based MI software like IVEware

or MICE (Multivariate Imputation by Chained Equations) (van Buuren & Oudshoorn

1999).

3Which is of course a pre-requisite for assuming that FCS draws converge to joint distributional
draws.
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3

Standard Predictive Mean Matching
and extensions

3.1 Predictive Mean Matching

This section gives a short introduction to a nearest-neighbor matching technique

that was first published by Rubin (1986) in the context of statistical file matching

(data fusion), and emerged under the term Predictive Mean Matching (PMM) coined

by Little (1988a). In the following we describe this technique in detail, because

all semi-parametric MI algorithms introduced in the next chapter are based on it.

PMM is widely regarded as a hot-deck imputation technique with a connotation

to single imputation, although Rubin (1986), Little (1988a) already described MI

extensions for PMM.

The basic concept of PMM is to impute a missing value by matching its predictive

mean to a nearest neighbor among the predictive means of the observed values,

and to adopt the actual observed value. Let yi be a value of a variable Y , with

i = 1, . . . , n, where only units 1, . . . , nobs are observed. Moreover, let ŷi be a corre-

sponding predictor from a regression of Y on some explanatory variables. Then

the distance metric between ŷi and ŷj is given by

Di,j = |ŷi − ŷj|, (3.1)
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and we impute yobs,j for ymis,i, if Di,j ≤ Di,k ∀ k = 1, . . . , nobs.

By imputing observed values, PMM fulfills the requirement of getting plausible val-

ues which is important, if our objective is to impute for discrete data with an under-

lying continuous distribution assumption. But PMM has another useful property:

It gives more robust estimates in the presence of model misspecification, as figure

3.1 illustrates.

Figure 3.1: Identification and imputation of a nearest neighbor with PMM

The incomplete variable Y is a quadratic function of X (with some random noise

added) but the imputation model uses a linear function for missing values in Y .

As we can see, the imputed value yimp still remains close to the real function,

whereas a purely model-based imputation would have given (more) biased infer-

ences. Beissel-Durrant & Skinner (2004) applied PMM to hourly pay distributions,

where PMM could preserve the ”spiky behaviour” better than fully-parametric

imputation methods.

The difficult part about Predictive Mean Matching is to utilize its robust proper-

ties within the Multiple Imputation framework in a way that Rubin’s combination

rules still yield unbiased variance estimates.
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3.2 PMM for block-wise missing data

The PMM distance metric for predictors of a single variable is straightforward. But

if we need to define the term ‘nearest’ over more than one variable, it already mat-

ters, whether we are using squared or absolute distances, and whether all variables

are treated identically or not.

Little (1988a) proposes to use the Mahalanobis distance metric to solve this prob-

lem. The underlying principle of this approach is to penalize distances between

predictors of a variable more severely, if the goodness of fit for the imputation

model is high.

Let X be some design matrix based on the completely observed part of the data set,

and let Y = [Y1, . . . , Yp] be a matrix consisting of p variables with an identical miss-

ingness pattern, where the first nobs cases are observed, and cases nobs +1, . . . , n are

missing. Furthermore, let yi denote a vector of length p for unit i, containing either

p completely observed or completely missing values of Y. ŷi is the corresponding

vector of predictors based on Yobs = g(Xobs), where Yobs and Xobs are the first

nobs rows of Y and X. In the current implementation the identity link is used for

the link function g(·). The distance of the predictive means is given by

D2
j,k = (ŷj − ŷk)

TSYobs·Xobs

−1(ŷj − ŷk), (3.2)

where k ∈ 1, . . . , nobs, j ∈ nobs + 1, . . . , n, and SYobs·Xobs
is the p × p covariance

matrix of the residuals from the regression of Yobs on Xobs. The resulting matrix

D2 has dimension (n − nobs) × nobs. The nearest neighbor for each yj is given by

the corresponding row minimum of D2.

In order to get a better overview of the influence of each matched predictor, we

can transform SYobs·Xobs
into a diagonal matrix (i.e. no covariances among the

residuals from the p regressions). Let êobs,1 be the estimated residuals from the re-

gression of Yobs,1 on Xobs. Regressing Yobs,2 on Xobs and êobs,1, then regressing Yobs,3

on Xobs and êobs,1,2, until finally regressing Yobs,p on Xobs and êobs,1...p−1, eventually
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yields the desired diagonal matrix for SYobs·Xobs
, because the covariances between

the residuals were partialled out. Proceeding this way eases the introduction of

manual weights, if the imputer wants to modify the solution created by the dis-

tance metric, in case he feels that some Y ′s are more important than others for the

analysis (and thus should be matched with relatively higher precision). In order to

generate multiple imputations, Little (1988a) suggested to draw ỹj from the pos-

terior predictive distribution instead of using ŷj . This coincides with one of the

algorithm we tested before finally deciding which methods should be used for the

experimental design.

3.3 PMM extension for binary and categorical vari-
ables

Survey data sets often feature binary and unordered categorical variables. In order

to make use of PMM’s desirable properties, it is necessary to extend Predictive

Mean Matching to these variable types as well (since ‘classical’ PMM was designed

for metric scale variables only).

The PMM extension to the binary case is straightforward: Instead of matching on a

linear predictor, we are using a binomial logit model1 for dichotomous data. Hence

π̂i = (1+exp{−xT
i β̂})−1 for i = 1, . . . , n , where xi is the ith row of some (completely

observed) design matrix X, and the distance is calculated analogously to (3.1) with

Di,j = |π̂i − π̂j|.

One innovation of this thesis is the introduction of a PMM extension for unordered

categorical variables based on a multinomial logit model. The aregImpute function

of the Hmisc library (Harrell 2006) in R contains a PMM variant for categorical data

1In the case of binary variables, PMM was suggested even before 1986 for a different objective:
Rosenbaum & Rubin (1983) introduced the technique in for causal inference problems and called it
Propensity Score Matching, but instead of imputing dichotomous variables, they used it to balance
treatment and control groups (which, under closer inspection, is also an imputation of missing
data). If we treat the group identifying variable like all other variables, Propensity Score Matching
could be regarded as a special case of PMM, which is why we will use the term Predictive Mean
Matching throughout this paper – for any variable type.
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as well, but its procedure relies on splitting the categories into dummies.

The main tasks of developing a PMM variant for unordered categorical variables

are similar to the ones discussed in the previous section: We have to match over

several variables (categories), and we need a method that relates the distances for

the matches over the categories to each other.

Let C denote the total number of categories for some categorical variable Y , where

the probability of observation i of being in category c is given by

π̂c,i =
exp{−xT

i β̂c}
1 +

∑C−1
s=1 exp{−xT

i β̂s}

for c = 1, ..., C − 1, and π̂C,i = 1−
∑C−1

c=1 π̂c,i for category C.

For the multinomial logits we have to find a metric that identifies nearest neighbors

for a vector, rather than a scalar as in the metric-scale and binary case – at least, if

we try to find a nearest neighbor not only for one (the highest) predicted p-value,

but rather over the complete range of all π1, . . . , πC of some categorical variable Y .

We presume that matching over all C categories yields more reliable matches. But

that also means that choosing different distance functions yields different results.

One suggestion for such a distance metric between predicted values of missing

and observed values of Y would be the sum of the squared differences over all C

categories,

Dcs
i,j =

C∑
c=1

(π̂c,i − π̂c,j)
2.

However, sometimes the probabilities for some categories are rather small, and the

above suggestion does not take into account relative deviations. Therefore, we are

using the logits rather than the probabilities themselves,

Dcl
i,j =

C∑
c=1

(zc,i − zc,j)
2, with zc = ln

(
π̂c

1− π̂c

)
. (3.3)
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Of course, we could have used absolute deviations instead of squared differences.

One effect of choosing squared differences, however, is that ’outliers’ (with respect

to matched categories) are punished more severely, which is why we are minimiz-

ing the sum of squared deviations rather than the sum of absolute deviations.

Sometimes the fit of the multinomial logit model is (virtually) perfect, such that

πk for some category k of the ’factor’ variable to be estimated equals or gets ex-

tremely close to 1. In this case the odds ratios lim
πk→1

πk/(1−πk) = ∞, and no nearest

neighbor can be identified. For this reason, p values should be truncated within the

bound [0.001; 0.999]. This still ensures that matching on the log-odds ratios ’favors’

very small and very large p values, but it limits the log-odds ratios to the bound

[−6.90675; 6.90675].

3.4 A Goodness-of-Fit Measure for the matching qual-
ity of nearest neighbor techniques

Suppose the PMM imputation model is correctly specified, but the nearest neigh-

bor is not ‘near’ at all. Large distances can considerably reduce the benefits of

nearest-neighbor imputation techniques. These circumstances may arise for pre-

dictors of extreme values in the variable space, or if the donor pool is small in

general. Therefore, we propose a GoF-measure that monitors the matching quality

for metric-scale variables. The basic idea is to compare average distances of actu-

ally matched pairs with average distances from a randomized matching between

recipients and donors. Since occasionally nmis > nobs, assignment of a donor is

always assumed to be with replacement. Assuming further the predictors are nor-

mally distributed we get

Ŷobs ∼ N(µ∗obs, σ
2∗
obs) and Ŷmis ∼ N(µ∗mis, σ

2∗
mis.

Assuming independence between the predictors of observed and unobserved val-

ues, the difference of two normally distributed variables is also normally dis-
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tributed with

(Ŷmis − Ŷobs)︸ ︷︷ ︸
D

∼ N((µ∗mis − µ∗obs)︸ ︷︷ ︸
µD

, (σ2∗
mis + σ2∗

obs)︸ ︷︷ ︸
σ2

D

).

The squared z-transformations of differences D = [di], with i = 1, . . . , nmis, are

χ2-distributed,

(
di − µD

σD

)2

∼ χ2
1,

and we obtain

E(D2) = σ2
D + µ2

D.

Assuming that squared distances from the actual matching process should on av-

erage be at least as small as squared distances based on random assignment, our

efficiency measure is given by

0 ≤ Gmatch =
σ̂2

D + µ̂2
D −D∗

σ̂2
D + µ̂2

D

≤ 1, (3.4)

where D∗ = 1/n
∑nmis

i=1 d∗i , and d∗i = min(ŷmis,i − ŷobs,j)
2,∀j ∈ Nobs.

Own applications have shown that Gmatch is often close to 1, and it might be sen-

sible to modify it with an exponentiation term k to get a higher variance for this

efficiency measure. However, this would make the interpretation of Gmatch more

difficult.

3.5 Benefits and Drawbacks of PMM

The PMM variant for block-wise missing data is particularly suited for missing-

by-design patterns, where a large number of variables is simultaneously observed
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or missing. Using this PMM variant automatically guarantees logical consistency

among the imputed Y variables. Moreover, it can be applied to problems, where

the number of variables is very large or stems from relational databases (where

turning the data into a rectangular data sets induces a large number of variables

as well). The original data can be used to derive some proxy variables – e.g. by

using factor analysis – to reduce the number of variables for the imputation task.

Thereafter the original variable set can be matched to a pairlist obtained from the

imputation of the proxy variables.

A drawback of all nearest-neighbor approaches is that they can not capitalize on

the complete domain of a variable, but only on the observed part of it. Missing

parts of truncated data can not be sensibly imputed with nearest-neighbor ap-

proaches, even under a correctly specified imputation model (see fig. 3.2).

Figure 3.2: Observed and PMM-imputed values (grey) for truncated data (and re-
estimated regression line)

In a broader sense truncation can be seen as a special case of poor coverage of

parts of the variable space of Y . As already pointed out, these situations may

arise in particular if the sample size (more precisely: the donor pool) is small. The

simulations study in chapter 5 features a data small set with n = 200, in order to

investigate such effects.

Our a priori belief in the positive aspects of PMM (plausible values and robustness
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towards model misspecification) is expressed by the omittance of PMM variants

for ordinal-scale variables – despite the fact that this variable type is often preva-

lent in survey data. We assume that applying models for (continuous) metric-scale

variables in combination with PMM will still yield consistent estimates for par-

tially incomplete variables. The test design in chapter 6 evaluates this hypothesis,

since some of the variables used in the study are ordinal-scale. Our hypothesis

is backed up by the results from Münnich & Rässler (2005), where a binary vari-

able was multiply imputed using a linear regression model in conjunction with

PMM, and other studies, where PMM was used for MI in survey data settings (e.g.

Landerman et al. 1997).
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4

Multiple Imputation for metric-scale
discrete data

4.1 Parametric MI variants

The following multiple imputation algorithms are all ’classical’ MI algorithms in

the sense that (1) we perform random draws for θ from an observed-data poste-

rior distribution π(θ|Yobs), followed by (2) random draws Ỹmis for Ymis from their

conditional predictive distribution f(Ymis|θ,Yobs). Since both steps rely on dis-

tributional assumptions for Y and θ, we label these algorithms as Parametric MI

variants. However, since we are discussing random draws from continuous poste-

rior predictive distributions for metric-scale discrete data, another step (3) is needed

to modify Ỹmis into genuine draws for Ymis, in order to avoid zero-probability mea-

sures. Steps (1) to (3) are carried out M times to generate multiple imputations

for Ymis. Two variants of step (3) propose techniques which are related to a

nearest-neighbor technique called Predictive Mean Matching (PMM) (Rubin 1986,

Little 1988a). Note that, although PMM is a non-parametric imputation method

(which appears to contradict the Parametric MI categorization), we merely use it to

modify draws from the posterior predictive distribution.

Suppose we have a data situation, where only one integer random variable Y = [yi]

with i = 1, . . . , n has some missing values. Let X denote the n × p design matrix
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of the completely observed variables that are used as predictors in the standard

Bayesian linear regression model

Y |X ∼ N(Xβ, σ2), (4.1)

with a noninformative Jeffrey’s prior distribution,

π(β, σ2) ∝ σ−2. (4.2)

Furthermore let Xobs ( Xmis) denote the rows for which Y is observed (missing).

The first two steps of the following algorithms are all identical:

(1) Draw σ2 and β from their respective observed data posterior distribution as

given in e.g. Box & Tiao (1992).

σ2|Xobs, Yobs ∼ (Yobs −Xobsβ̂)T (Yobs −Xobsβ̂)χ−2
n−p (4.3)

and

β|Xobs, Yobs, σ
2 ∼ mvNp(β̂, (Xobs

TXobs)
−1σ2), (4.4)

where β̂ = (Xobs
TXobs)

−1Xobs
TYobs is the (unweighted) OLS estimate for the

vector of the model parameters β.

(2) Draw from the conditional predictive distribution of the missing data given

the observed data

Ỹmis|β, σ2 ∼ N(Xmisβ, σ
2|Xmis). (4.5)

If not stated otherwise the subindices j, k denote those cases of Y that are observed,

and the subindex i denotes missing units of Y . Step (3) varies among the different

algorithms, but all methods are in one way or the other linked to the observed

values. This guarantees a final value for ymis,i which belongs to the value space of

Y . The three steps are carried out M times to create multiple imputations.
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4.1.1 Rounding to the Nearest Observed Value

Rounding to the Nearest Observed Value (ROV) is a straightforward way to turn the

draws from a continuous – in this case the normal – distribution Ỹmis into discretely

distributed random draws.1

(3) identify yobs,j ≤ |ỹmis,i − yobs,k| ∀k and impute yobs,j for ymis,i

Note that ROV is implemented in some MI software packages such as Schafer’s

NORM (Schafer 1999).

4.1.2 Inverse Probability Rounding

A stochastic variant of ROV is Inverse Probability Rounding (IPR), sometimes also

called stochastic rounding or round-random. The draws from the continuous distri-

bution are not deterministically rounded to the nearest observed value, but instead

the final value depends on a random draw with inverse probability to the relative

distance of Ỹmis,i to the respective nearest lower and higher observed values.

(3) Round Ylb,i ≤ ỹmis,i ≤ Yub,i to the lower-bound plausible value Ylb,i with prob-

ability p =
ỹi,mis−Ylb,i

Yub,i−ylb,i
and round to the upper-bound plausible value Ylb,i with

probability q = 1 − p. If ỹi,mis is less or greater than any yk,obs, IPR is identical

to ROV.

4.1.3 PRIMA - Predictive Imputation Matching

Predictive Imputation Matching (PRIMA), as proposed by Münnich & Rässler

(2005), was first applied to binary data as part of the DACSEIS project2 and can

be considered as ’Proper MI plus original PMM’, because the PMM-step is simply

1Rounding to the nearest integer was not considered, because this approach might yield im-
plausible values.

2More information about this project can be retrieved at http://www.dacseis.de/
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carried out for the draws from the conditional predictive distribution, i.e. we have

to generate draws from the conditional predictive distribution for the observed

units as well:

(2) Draw ỹobs,k|β, σ2 ∼ N(Xobsβ, σ
2).

(3) Identify ỹobs,j ≤ |ỹmis,i − ỹobs,k| ∀k and impute yobs,j for ymis,i.

4.1.4 Semi-PRIMA

We labeled this approach ’Semi-PRIMA’, because the draws from the conditional

predictive distribution for ỹmis,i in step (2) are replaced by using ŷmis,i, but – anal-

ogously to PRIMA – ỹobs,k is drawn from the conditional predictive distribution:

(2) Compute ŷmis,i = xmis,i
T β̂ and draw ỹobs,k|β, σ2 ∼ N(Xobsβ, σ

2).

(3) Identify ỹobs,j ≤ |ŷmis,i − ỹobs,k| ∀k and impute yobs,j for ymis,i.

This approach is already a hybrid between the parametric MI variants and the

semi-parametric variants introduced in the next section. It is also the already men-

tioned suggestion by Little (1988a) to transform PMM into an MI algorithm.

4.2 Semi-parametric variants based on Predictive
Mean Matching

This section contains those MI variants, where at least the draw from the posterior

predictive distribution is replaced by a non-parametric alternative (PMM).

4.2.1 M nearest neighbors

The simplest strategy of creating multiple imputation not only from PMM, but

from any nearest-neighbor approach in general is to leave the algorithm un-
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changed from the single imputation variant, and to take over not only the nearest,

but the M > 1 nearest neighbors. This approach and the next one differ from all

the other presented algorithms fundamentally, because multiple imputations are

not obtained by carrying out the corresponding steps M times.

4.2.2 Rounded Predictive Mean Matching

Rounded Predictive Mean Matching (RPMM) is an MI PMM variant that only

works for discrete data. The algorithm starts just like classical PMM by obtain-

ing the complete vector ŷ = [ŷ1, . . . , ŷn]

(1) Compute ŷ = Xβ̂.

(2) Round the predictive means of all observed units ŷobs to the nearest observed

value to get a new vector y∗
obs.

(3) For every ŷmis,i identify y∗,(i)obs (denoting the value of y∗
obs that is nearest to ŷmis,i).

(4) Sample M times with replacement from the units nobs(y
∗,(i)
obs ) whose predictive

means were rounded to y∗,(i)obs , and take over their actually observed values.

4.2.3 Posterior Predictive Mean Matching

Whereas RPMM can still be seen as an extension to a stand-alone hot deck sin-

gle imputation technique, Posterior Predictive Mean Matching (PPMM) is more

of a hybrid between classical multiple imputation and Predictive Mean Matching.

More precisely, we follow the steps from (4.3) and (4.4), getting parameter draws

which are identical to ’classical’ linear model-based MI. But instead of drawing

values from the conditional predictive distribution in (4.5), we replace this step by

Predictive Mean Matching:

(1) Draw σ2|Xobs, Yobs ∼ (Yobs −Xobsβ̂)T (Yobs −Xobsβ̂)χ−2
n−p and

β|Xobs, Yobs, σ
2 ∼ mvNp(β̂, (Xobs

TXobs)
−1σ2)
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(2) Compute ŷ = Xβ̂.

(3) Identify ŷobs,j ≤ |ŷmis,i − ŷobs,k| ∀k and impute yobs,j for ymis,i.

Multiple imputations are obtained by replicating the above three steps M > 1

times.

4.2.4 Bayesian Bootstrap Predictive Mean Matching

Further relaxing distributional assumptions about the distributions of σ2 and β

leads to replacing equations (4.3) and (4.4) by Bayesian Bootstrap (Rubin 1981)

draws for β. The main difference between ‘classical’ Bootstrapping and its

Bayesian counterpart is that we administer sampling weights to each observation.

These weights are also randomized draws and sum up to 1. Due to this additional

random step Bayesian Bootstrapping is using fewer observations on average than

Bootstrapping.

The imputation step is again replaced by Predictive Mean Matching.

(1) Generate a BB sample n∗obs as defined in section 2.3.3.

(2) Estimate β∗ based on n∗obs.

(3) Compute ŷ = Xβ̂∗.

(4) Identify ŷobs,j ≤ |ŷmis,i − ŷobs,k| ∀k and impute yobs,j for ymis,i.

The idea behind this modification to PPMM is to make the procedure less sensi-

tive to distributional assumptions regarding the model parameters. We label this

approach ‘Bayesian Bootstrap Predictive Mean Matching’ (BBPMM). Multiple im-

putations are, again, obtained by carrying out the described steps M > 1 times.
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4.3 Performance assessment

Before we decided which algorithms should eventually be used in the experimen-

tal design described in the next chapter, we conducted some pre-tests to evaluate

the general applicability of the algorithms using a completely observed variable X

and an incomplete variable Y (50% MCAR) that was a linear function of X with a

normal error component, such that ρx,y = 0.5. All values were rounded to the next

integer. The pre-tests did not investigate MI variance estimators, but were primar-

ily directed at biases of three point estimators: mean and median of Y , as well as

the correlation between X and Y .

A surprising result is the relatively bad performance of PRIMA for the correla-

tion estimator. Apparently, drawing from the posterior predictive distribution and

combining it with PMM creates too much randomness.

‘col 1’ is a completely observed integer variable, and ‘col 3’ is an integer variable

with 50% of the values being MCAR. A single imputation step with PRIMA yields

the result given in the sunflower plot in figure 4.1.

The correlations are biased towards zero, when PRIMA is used for MI, and the

same effects can be observed to some lesser extent for Semi-PRIMA which is why

both variants were not considered for the experimental design.

Taking the M nearest neighbors from a ‘classical’ PMM induces biasing effects

on the correlation estimates as well. This effect is caused by not considering the

relative distances between the M values of ŷobs and the matched ŷmis,i. The effect

is like super-imposing a uniform distribution over the distribution of Y . RPMM is

also mildly affected by this, but was still considered for the experimental design in

chapter 5.

ROV and IPR were also pre-tested, and it turns out that IPR introduces too much

noise into the assignment process of the final value – similar to PRIMA and Semi-

PRIMA.
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Figure 4.1: Observed and PRIMA-imputed MCAR values (grey) for two discrete
variables (only y partially incomplete)

As a result of the pre-tests, ROV, RPMM, PPMM and BBPMM were chosen for the

experimental design in the next chapter, whereas ROV was additionally needed to

investigate a side effect of rounding on variance estimators.
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5

Multiple Imputation for metric-scale
discrete data: an experimental design

5.1 Description of the experimental design

Surveys collecting information using questionnaires may result in many types of

variables. Rounded variables or genuine integer value variables are common.

’Age’, for instance, becomes ’Age in Years’ or ’Year of Birth’ in a questionnaire

and therefore rounded. Further, there is a group of variables which are ordered-

categorical, like grading-type variables (”On a scale from X to Y, how many...”) that

can be considered close enough to genuine metric-scale variables to use analysis

and imputation techniques for metric integer variables.

This experimental design evaluates several strategies for imputing missing values

in such variables. The goal of this design is to compare different Multiple Imputa-

tion algorithms, and to investigate their applicability to rounded variables under

a variety of data situations. All algorithms used in the experimental design draw

from a continuous distribution and imputations are then “coarsened” to rounded

values. This approach can be seen as reverse to the work of Heitjan & Rubin (1990,

1991), who had coarsened data such as ‘Heaped Age’ at their disposal and wanted

to get precise values.

As stated in the previous chapter we expect the proposed methods to have specific
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strengths and weaknesses, we test them under different data situations. These data

situations are set up within a multi-factorial Monte Carlo study which is explained

in full detail in section three. The focus of the experimental design in this Monte

Carlo study is twofold: The main focus of the Monte Carlo study is on robustness

towards model misspecification, as the variants of Predictive Mean Matching are

assumed to add robustness to the imputation models. Additionally, we want to

investigate the effects of rounding on variance and covariance estimates – primar-

ily under the correctly specified model (in order to avoid contaminating effects of

the deliberate model misspecification). As derived by Sheppard (1898), rounding

overestimates the variance by (u − l)2/12 (the variance of the Uniform distribu-

tion) with u and l being the upper and lower bound values (see e.g. Dempster &

Rubin 1983).1 The rounding problem in (multiple) imputation was first mentioned

by Horton et al. (2003), who used a different technique to derive the bias for a

dichotomous variable if it was treated as continuous in the imputation process.

5.2 MI variants used for the experimental design

Throughout the complete experimental design a linear model is used for imputa-

tion – irrespective of the real data generating function. For the sake of coherence

we repeat shortened versions of the MI variant descriptions from the previous

chapters.

1. Rounding to the nearest observed value (ROV) in this context is the ’classical’

MI as previously described with ŷmis rounded to the nearest observed yobs.

Rounding to the nearest observed value ensures that only plausible values

are imputed.

2. Rounded Predictive Mean Matching (RPMM) rounds any missing (observed)

ŷmis (ŷobs) to the nearest observed value yobs and performs PMM. Since round-

ing to the nearest observed value almost certainly ensures zero-distances to

1unless the domain of the continuous variable is [k − 0.5; k + 0.5[.
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several potential donors, multiple imputations are simply created by draw-

ing M times (with replacement) from the pool of equally nearest neighbors.

3. Posterior Predictive Mean Matching (PPMM) takes over the posterior steps

from (4.3) and (4.4), but we replace the random draw from the posterior pre-

dictive distribution in (4.5) by Predictive Mean Matching.

4. Bayesian Bootstrap Predictive Mean Matching (BBPMM): The Posterior-draws

are replaced by a Bayesian Bootstrap (BB) draws. The Posterior Predictive-

draws are replaced by PMM.

The three PMM variants are the remainders of an originally larger pool of MI-PMM

algorithms that we developed for this design. But some of these algorithms were

too seriously flawed to be considered for the experimental design.

5.3 Simulation study

5.3.1 Objective

The goal of this Monte Carlo study is to examine the performance of the four im-

putation methods for rounded variables under different conditions. A potential

drawback of nearest neighbor approaches (and also of ROV) is that they only im-

pute observed rather than plausible values. This clearly is a problem in settings with

censored or truncated data, and around predicted means when data are scarce.

Generally, this could pose a greater problem for small data sets (with a smaller

number of potential donors).

5.3.2 Data generation

All simulated data sets considered in our Monte Carlo study consist of three vari-

ables – two completely observed variables X1 and X2 and one variable Y with

missing values. In total we create twelve different data sets: Three different data
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generating functions for Y , two sample sizes, n = 200 and n = 2000 (in the anal-

yses abbreviated as ‘small’ and ‘big’ data set), and two missing-data mechanisms:

missing completely at random (MCAR) and missing at random (MAR).2 This study can

be considered as a 3×2×2 factorial design.

Throughout all data sets X1 and X2 are generated using

X1 ∼ U(0, 3) ; and x2 = −x1 + ε , with ε ∼ N(0, 4).

The following three distributions were used for generating Y :

1. y1 = [1.75 + x1 − 0.5x2 + u1] , with u1 ∼ N(0, 11
48

)

2. y2 = [1.75 + x1 − 0.5x2 + (u2 − 107
96

)] , with u2 ∼ χ2
107
96

3. y3 = [4 + 1.5(x1 − 1.5)3 + 0.25 · log(abs(x2 + 9)) + u3] ,

with u3 ∼ N(0, 0.2).

We defined the error terms in (1) and (2), such that the expectational value and

the variance of Y are in both cases an integer; E(Y ) = 4 for both data sets,

V ar(Y ) = 3 for data set (1) and V ar(Y ) = 4 for data set (2). The parametric

and semi-parametric imputations for missing values in the first data set are under

a correctly specified model. The remaining two are misspecified models: The sec-

ond data set violates the normality assumption, and the third data set violates the

linearity assumption of the imputation model.

We expect the fully-parametric imputation algorithm (ROV) to yield best results

for data set (1), since it incorporates all information available from the data,

whereas for data sets (2) and (3) the semi-parametric algorithms might give less

biased inference. Furthermore we expect the PMM variants to yield worse results

for the small data sets, since a decreased pool of potential donors means an increased

average distance between nearest neighbors.

2NMAR was not included, since MI is assuming ignorability.
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5.3.3 Missing-data mechanisms

We set the rate of missing values to 60% for both the ’big’ and the ’small’ data set

in order to create enough missingness to identify differences in performance for

the tested algorithms which leaves only 80 potential donors for the small data sets.

The missing at random (Rubin 1976, 1987a) mechanism is related to X1, and defined

by

yi =

{
missing, if FZ(zi) > 0.4

yi if FZ(zi) ≤ 0.4
,∀i = 1, . . . , n

where FZ(z) is the empirical distribution function of Z, and

z = g(x1) =
1

1 + exp(0.2x1φ+ ε)
, with φ ∼ N(0, 16) and ε ∼ N(0, 36).

Bias, MSE and coverage are all based on the values given in table5.1.

Table 5.1: True values for all three data sets and quantities of interest
DS1 DS2 DS3

E(Y ) 4 4 4.491
V ar(Y ) 3.001 5.001 3.841
p(Y < 3) 0.2033 0.2565 0.1334
p(Y < 4) 0.3944 0.4358 0.2185
p(Y < 6) 0.7967 0.7821 0.7836
ρ(X1, Y ) 0.75 0.5812 0.8783
ρ(X2, Y ) -0.8279 -0.6415 -0.3138

α 1.75 1.749 3.997
β1 1 1 1.5
β2 -0.5 -0.5002 0.2513

5.3.4 Multiple Imputation analysis

We consider the following ten estimands of interest:

• mean: E(Y )

• variance: V ar(Y )
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• quantiles: P (Y < 3) , P (Y < 4) and P (Y < 6)

• correlations: ρ(X1, Y ) and ρ(X2, Y )

• ’true model’ parameter estimates (three parameters).

The considered imputation techniques were evaluated based on bias, MSE, and

95% confidence intervals. We use the normal approximation for the proportions

and the log-variance. For the correlations, however, we need to apply the z trans-

formation, also suggested by Schafer (1997), which gives us z = 0.5 · ln[(1 +

ρ)(1 − ρ)−1] and calculate CIs for z with variance (n − 3)−1. Taking the inverse

z−1 = tanh(z) for the lower and upper bounds of z gives us the lower and upper

bound estimates for ρ.

Although the analytical derivation of the true values for some of the quantities

is straightforward, we generated all true values – for the sake of continuance – by

generating 20,000 data sets upfront, and took the mean over these data generations.

These values were then used to derive the estimated bias, MSE and coverage.

5.3.5 Computational consequences of the factorial design

We set the number of multiple imputations toM = 15 for all twelve data sets (three

different data generators, two different sample sizes, two different missingness

mechanisms). We want to compare the four different imputation algorithm results

with the complete data sets and the complete cases. For each of the 12 conditions,

we generated 5,000 replicates for the small data set and 500 replicates for the large

data set. In total the design amounts to 2,029,500 data set generations.

5.4 Analysis of the imputed data

The objective of this section is to examine the results by starting with a very ag-

gregated level, and becoming more small-grained with every subsection. The vast
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amount of analyses does not allow us to show all tables and results, but we try to

distil the most relevant findings by applying this funneled approach.

5.4.1 Abbreviations

Throughout this section we are using the following short forms: BD (before dele-

tion – with Y completely observed), CC (complete cases – the incomplete data

set after removing 60% of all values of Y ), ROV (fully-parametric MI with round-

ing to the nearest observed value), PPMM (Predictive Mean Matching with ran-

dom draws from the observed-data posterior for the parameters) BBPMM (Pre-

dictive Mean Matching with a Bayesian Bootstrap step for the parameter draws),

RPMM (Rounded Predictive Mean Matching), MCAR (60% missing completely at

random), MAR (60% missing at random), ’big’ data set (for the simulated data sets

with n = 2, 000), ’small’ data set (for the simulated data sets with n = 200), and

data set (1), (2), and (3), referring to the three different functions we used for gen-

erating Y in our simulated data sets.

5.4.2 Averaged effects

Given the factorial nature of the experimental design, we analyzed the data with

tables that average the results for bias and coverage over the different factors ‘sam-

ple size’, ‘missing-data mechanism’ and ‘data generating model’. We use the rela-

tive bias (Ê(θ̂)− θ)/θ to compare the bias of the complete cases and the four impu-

tation procedures. Table 5.2 gives the overall mean and the cell specific means for

every factor.
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Table 5.2: Average relative bias (in %) by various factors
bias CC ROV PPMM BBPMM RPMM

overall 4.02 6.17 0.58 0.58 1.39
big 3.98 6.12 0.70 0.67 1.32

small 4.07 6.21 0.46 0.48 1.45
MCAR 0.15 6.19 0.59 0.53 1.24

MAR 7.90 6.14 0.57 0.62 1.54
DS(1) 3.65 0.23 0.20 0.21 0.36
DS(2) 3.17 0.81 0.24 0.26 0.29
DS(3) 5.26 17.46 1.30 1.26 3.51

The complete cases (CC) of the MCAR data represent a general reference point for

the imputation methods. For the (relative) bias no imputation method achieves the

value of the complete cases under MCAR (0.15% in italic font), although BBPMM

and PPMM get close for data sets (1) and (2). Overall, Posterior Predictive Mean

Matching and Bayesian Bootstrap Predictive Mean Matching have the smallest av-

erage bias.

The results for the coverage in table 5.3 show the percentages of a 95 % confidence

interval containing the true value.

Table 5.3: Average coverage (in %) by various factors
coverage CC ROV PPMM BBPMM RPMM

overall 82.02 84.09 90.80 92.37 83.75
big 75.80 77.71 91.82 93.19 80.77

small 88.23 90.47 89.79 91.55 86.73
MCAR 94.81 83.92 91.23 92.75 84.09

MAR 69.23 84.26 90.37 91.99 83.41
DS(1) 82.82 95.58 91.37 92.75 86.24
DS(2) 82.53 90.71 88.96 90.48 86.46
DS(3) 80.70 65.99 92.08 93.88 78.54

Again, the average MCAR effect of the complete cases ((94.81% in italic font) serves

as a reference figure. Overall BBPMM is getting closest to the nominal 95% (with

92.37%), and it is also the only method that achieves a coverage of 90% or more for

every effect.
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ROV makes use of the full information under a correctly specified model in data

set (1), and it outperforms PPMM and BBPMM with respect to coverage (95.58%),

but not for the bias (0.23% vs 0.20 and 0.21% respectively). The good performance

for data sets (1) and (2) is outweighed by the extremely bad results for data set

(3) (in bold font), making ROV the method with the most biased estimates overall.

In return, this indicates the relative strength of PMM methods over purely model-

based techniques with respect to model misspecification.

The bias estimates of RPMM are better than the ROV results, but the coverage is

on a similar overall level. In particular for data set (3) RPMM yields higher bias

estimates and lower coverage for the imputation under a misspecified model, com-

pared with the other two PMM variants. An interesting result is that the analysis

figures are on average less biased for both PPMM and BBPMM for the small data

sets compared with the big data set counterparts (whereas the coverage is higher

for the big data sets).

Note that the detailed tables – which are the basis for these aggregated tables – are

listed in section B of the appendix.

5.4.3 Best and worst performing method

Displaying results for the best- and worst-performing method gives us slightly

more detailed information, since we now also consider the ten analysis quantities

which helps us to identify potential causes for the shortcomings displayed in the

previous tables.

Overview

We (further) abbreviate the considered imputation methods ROV, PPMM, BBPMM

and RPMM by using numbers 1 to 4. Table 5.4 gives results for the best/worst per-

forming method in terms of bias, where the figure before (after) the ’slash’ symbol

displays the best (worst) method for a particular condition and analysis figure. For
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instance, the two figures at the bottom right corner show that method ’2’ (PPMM)

is the best method with the smallest bias for the true model parameter β2, whereas

method ’1’ (ROV) is the worst.

Table 5.4: best/worst performing method for relative bias (in %) for all 12 condi-
tions

data set miss. b/s E(Y ) V ar(Y ) p(y < 3) p(y < 4) p(y < 6) ρ(x1, y) ρ(x2, y) α β1 β2

DS(1) MCAR big 1/2 4/1 4/1 4/1 4/1 3/4 2/4 1/4 1/4 2/4
DS(1) MCAR small 1/3 1/3 4/1 4/1 2/1 3/4 2/4 2/4 2/4 2/4
DS(1) MAR big 1/4 2/1 2/1 2/4 3/1 3/4 2/4 2/4 3/4 2/4
DS(1) MAR small 1/4 1/3 4/1 2/4 2/1 2/4 2/4 1/4 1/4 2/4
DS(2) MCAR big 4/1 4/1 3/1 4/1 4/1 2/4 2/4 2/4 2/4 2/4
DS(2) MCAR small 4/1 4/3 1/3 2/1 3/1 3/4 2/4 2/1 2/3 2/4
DS(2) MAR big 1/4 2/4 2/1 2/1 2/1 1/4 1/4 1/4 1/4 3/4
DS(2) MAR small 1/4 1/4 2/1 2/1 2/1 3/4 2/4 2/4 1/4 1/4
DS(3) MCAR big 2/4 2/1 4/1 3/1 3/1 2/4 1/4 3/1 2/1 3/1
DS(3) MCAR small 3/4 3/1 2/1 4/1 2/1 2/4 1/4 3/1 2/1 3/1
DS(3) MAR big 2/4 2/1 3/1 3/1 3/1 2/4 1/4 3/1 2/1 3/1
DS(3) MAR small 1/4 1/4 2/1 2/1 3/1 2/4 1/4 3/1 2/1 2/1

By focusing on the second number (worst method) we can identify two clear pat-

terns:

1) ROV performs worst for data set (3), if the analysis figure does incorporate a

distributional assumption, thus verifying the results from the previous table

and our assumption that the PMM variants are less sensitive to model mis-

specification. The mean aside, this comprises all quantiles and the ’true model’

parameter estimates.

2) RPMM performs worst for correlations and to a lesser extent for the model pa-

rameter estimates. One possible explanation is that the predicted values are

rounded and a donor is randomly chosen from the pool of potential donors,

all of which have zero-distances to the rounded predictive mean of the miss-

ing value. Pooling donors through rounding, however, is blind to the original

distances between predictive means, and information on bi- or multivariate as-

sociations is lost.

The best method figures do not show any comparably distinct patterns, espe-

cially because PPMM and BBPMM are very similar, and tend to ‘cannibalize’
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each other. ROV seems to yield very good mean estimates (seven out of twelve

times best method). BBPMM and PPMM share the ’best method’ counts for the

quantiles and ’true model’ parameters of data set (3), except for two quantile

figures, where RPMM was ’best method’.

The best/worst figures for the coverage in table 5.5 show a slightly different

picture to their counterparts for bias: ROV gets a lot more ’best method’ counts.

In some situations the picture has reversed completely, where ROV switched

from ’worst method’ for bias to ’best method’ for coverage.

Table 5.5: best/worst performing method for coverage (in %) for all 12 conditions
data set miss. b/s E(Y ) V ar(Y ) p(y < 3) p(y < 4) p(y < 6) ρ(x1, y) ρ(x2, y) α β1 β2

DS(1) MCAR big 1/4 1/2 1/2 1/4 1/3 3/4 3/4 1/4 1/4 1/4
DS(1) MCAR small 1/4 1/4 1/2 1/2 1/2 3/4 3/4 1/2 1/4 1/4
DS(1) MAR big 3/1 1/2 1/3 1/4 1/2 3/4 3/4 1/4 1/4 1/4
DS(1) MAR small 1/2 1/2 1/2 1/2 1/2 1/4 3/4 1/2 1/4 1/4
DS(2) MCAR big 1/4 2/1 1/3 2/1 3/1 3/4 3/4 1/4 3/4 1/4
DS(2) MCAR small 1/2 1/2 1/4 1/2 1/2 1/4 1/4 1/4 3/4 1/4
DS(2) MAR big 1/4 1/2 1/4 1/4 2/1 3/4 3/4 1/4 3/4 1/4
DS(2) MAR small 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/4 1/4
DS(3) MCAR big 3/1 1/4 3/1 2/1 2/1 2/4 1/4 3/1 3/1 3/1
DS(3) MCAR small 1/4 1/2 3/1 3/1 3/1 1/4 1/4 3/4 3/1 3/4
DS(3) MAR big 1/4 1/4 3/1 3/1 3/1 3/4 1/4 3/1 3/1 3/1
DS(3) MAR small 1/4 1/4 3/1 4/1 3/1 1/4 1/4 3/4 3/1 3/4

By looking at the aggregated overview for ’best method’/’worst method’ counts

in table 5.6, we can confirm our impression that ROV and RPMM are overall the

methods with the most ’worst method’ counts.

Table 5.6: Totals for best/worst occurrences for relative bias and coverage (in %)
n(best) n(worst)

ROV 26 54
PPMM 54 1
BBPMM 25 6
RPMM 15 59

n(best) n(worst)
ROV 74 26
PPMM 6 21
BBPMM 39 3
RPMM 1 70

All six ’worst method’ counts for BBPMM in the overview for bias occur for

small data sets. But why does BBPMM perform more poorly for small data sets?

The PMM variants rely on a donor pool that allows for small distances between

matches. Especially in the case of the MAR data sets the average between-match
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distances increase for imputations in areas with disproportionate missing values

of Y given X1 and X2. Additionally for BBPMM, the bootstrap step discards some

observations for the parameter estimation, due to sampling with replacement. The

remaining observations are much more influential, and therefore the parameter

estimates can strongly deviate from the ’correct’ model in some extreme bootstrap

samples. The long-run properties of the bootstrap should adjust for the outliers,

but it is possible, that even with 5,000 repetitions, traces of this effect can be found

in the results. As a consequence one should choose M large, if the sample size is

small. In the simulation study, all BBPMM ’worst method’ counts were still close

to the other methods, which explains why according to table 5.2 BBPMM is the

method with the joint smallest overall bias together with PPMM, although the lat-

ter has more ’best method’ counts and only one ’worst method’ count.

Especially the table for coverage also shows the flaw of just looking at the meth-

ods in terms of ’best’ and ’worst’, because they lack information with respect to

’how good’ and ’how bad’. The ’ANOVA-type’ tables do not carry any information

about the ten analysis figures, but the best/worst tables do not show the relative

quality of each method’s estimates. By just looking at the coverage totals in table

5.6, ROV looks like the most favorable method (74 out of 120 possible ’best method’

counts), but table 5.3 showed that – averaged over all twelve data situations and

all ten analysis figures – BBPMM outperforms ROV by more than eight percent-

age points, indicating that ROV has an extremely low coverage for some situations

that outweighs the many ’best method’ counts. Only the combined information of

tables 5.2 through 5.6 leads us to a comprehensive picture of the imputation qual-

ity of the considered methods. To gain additional micro-level insight, we focus on

two diametral data situations in the next subsection, where the corresponding ta-

bles not only give the name of the best/worst method, but also the corresponding

estimates.
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Most and least favorable data situation

Data set (1) (correctly specified model) with an MCAR mechanism and big sample

size can be considered the most favorable data situation for imputation, as the impu-

tation model is correctly specified, and all algorithms benefit from bigger data sets.

Table 5.7 displays the values for this particular data situations showing results for

the best and worst performing method with respect to bias and coverage over all ten

analysis figures.

Table 5.7: best and worst method for the big data set (1), MCAR
big DS1, MCAR Bias Coverage

E(Y ) best ROV (0.00076) ROV (0.95)
worst PPMM (0.00121) RPMM (0.93)

V ar(Y ) best RPMM (-0.0061) ROV (0.96)
worst ROV ( 0.0423) PPMM (0.95)

p(y < 3) best RPMM (-5.9e-05) ROV (0.98)
worst ROV ( 1.5e-03) PPMM (0.92)

p(y < 4) best RPMM (7.5e-05) ROV (0.97)
worst ROV (4.0e-04) RPMM (0.91)

p(y < 6) best RPMM (-0.00039) ROV (0.96)
worst ROV (-0.00179) BBPMM (0.91)

ρ(x1, y) best BBPMM ( 0.00034) BBPMM (0.97)
worst RPMM (-0.01252) RPMM (0.80)

ρ(x2, y) best PPMM (-0.00018) BBPMM (0.98)
worst RPMM ( 0.01509) RPMM (0.54)

α best ROV (0.0032) ROV (0.97)
worst RPMM (0.0418) RPMM (0.76)

β1 best ROV (-0.00091) ROV (0.97)
worst RPMM (-0.01738) RPMM (0.84)

β2 best PPMM (0.00075) ROV (0.96)
worst RPMM (0.01024) RPMM (0.77)

An interesting finding is that ROV is generally doing well in this data situation,

but rounding to the nearest observed value seems to distort the quantiles p(y < 3),

p(y < 4) and p(y < 6), and the variance is overestimated by slightly more than

1/12.3 The coverage for the variance is not affected by this, because the impact

3Since V ar(Y ) = 3, the relative bias would have been (3 1
12 − 3)/3 = 0.027̄.
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of an average bias of 0.0423 is rather small. This table also confirms the previous

result that RPMM seems to affect multivariate estimators like correlations or model

parameters.

As mentioned earlier the quality of the results of nearest neighbor approaches de-

pends on the distances for identified matches. Therefore, the small data sets tend

to penalize the PMM variants, as the ’choice’ of potential donors is much smaller

(nobs = 80). Therefore, the least favorable data situation – in particular for the PMM

variants – is the MAR version of the small data set (3). MAR in combination with

small samples is ’thinning out’ parts of the domain considerably, thus tending to

yield larger distances for nearest neighbor approaches.

The results from table 5.8 confirm our ex-ante hypothesis regarding the relative

superiority of the PMM variants over fully-parametric approaches, when the im-

putation model is misspecified.

Table 5.8: best and worst method for the small data set (3), MAR
small DS3, MAR Bias Coverage

E(Y ) best ROV (-0.0052) ROV (0.96)
worst RPMM (-0.0271) RPMM (0.91)

V ar(Y ) best ROV ( 0.060) ROV (0.90)
worst RPMM (-0.101) PPMM (0.85)

p(y < 3) best PPMM (0.0016) BBPMM (0.94)
worst ROV (0.0252) ROV (0.91)

p(y < 4) best PPMM (0.0018) RPMM (0.93)
worst ROV (0.0644) ROV (0.61)

p(y < 6) best BBPMM ( 0.00022) BBPMM (0.92)
worst ROV (-0.07444) ROV (0.58)

ρ(x1, y) best PPMM (-0.0029) ROV (0.97)
worst RPMM (-0.0199) RPMM (0.83)

ρ(x2, y) best ROV (0.0017) BBPMM (0.95)
worst RPMM (0.0111) RPMM (0.88)

α best BBPMM ( 0.0047) BBPMM (0.96)
worst ROV (0.4594) RPMM (0.83)

β1 best PPMM (-0.040) BBPMM (0.87)
worst ROV (-0.172) ROV (0.57)

β2 best PPMM ( 0.0025) BBPMM (0.96)
worst ROV (-0.2329) RPMM (0.82)
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In particular the ‘true model’ parameters are extremely biased: the ROV estimate

for α deviates on average by almost 46% from the true value. Since RPMM (not

ROV!) has the worst coverage with 83%, this also indicates that ROV-based MI

yields very inefficient estimates in this data situation (the findings for β2 can be

interpreted in a similar way). The relative weakness of RPMM with respect to

correlation estimates is also clearly visible.

5.4.4 Detail analysis

In a way the above results already exhibit the inherent weaknesses of ROV and

RPMM, but in order to confirm the key findings, we will investigate some of the

24 basic analysis tables that can also be found in the appendix B of this thesis.

We decided to display results for the relative bias of the small data set (1) with

an MAR mechanism (see table 5.9), because they are characteristic for all small

data set results regarding the underestimation of variances for the PMM variants.4

Another pattern of minor biases occurs for the estimate of α for all imputation

strategies. Only the complete cases – in spite of the MAR mechanism – are virtually

unbiased. One reason for the occurrence of biases for the intersect estimate might

be that it is more sensitive to the effects induced by rounding/matching to the

nearest neighbor.

Table 5.9: Relative bias: DS1 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) -0.33 0.011 0.012 0.012 0.0037
V ar(Y ) -0.1 -0.018 -0.058 -0.057 -0.064
p(Y < 3) 0.054 -0.0013 -0.0038 -0.0036 -0.002
p(Y < 4) 0.084 -0.0012 -0.0019 -0.0017 0.00014
p(Y < 6) 0.053 -0.0054 -0.0041 -0.0044 -0.0027
ρ(X1, Y ) -0.012 -0.0063 -0.0016 -0.0016 -0.013
ρ(X2, Y ) 0.0013 0.012 0.0035 0.0041 0.019

α 0.0057 0.027 0.029 0.03 0.057
β1 0.002 -0.0055 -0.0086 -0.0085 -0.022
β2 3.8e-05 0.011 0.009 0.0095 0.019

4Biases exceeding 4% are in bold – apart from CC figures.
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The second detailed bias table 5.10 shows the results for the big data set (3), again

with MAR mechanism. It reflects the overall poor performance of ROV for mis-

specified imputation models. The way we generated the MAR values apparently

benefitted the CC estimates figures of the ‘true model’ parameter estimates, but

also PPMM and BBPMM yield reasonably good estimates.

Table 5.10: Relative bias: DS3 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) -0.47 0.0029 -0.0022 -0.0023 -0.022
V ar(Y ) -0.17 0.077 -0.0087 -0.0091 -0.04
p(Y < 3) 0.055 0.025 -0.00011 -7.8e-05 0.0014
p(Y < 4) 0.079 0.063 -5e-04 -0.00049 0.0015
p(Y < 6) 0.076 -0.076 0.00038 0.00033 0.0028
ρ(X1, Y ) -0.0069 -0.0056 -0.00088 -0.0011 -0.023
ρ(X2, Y ) 0.012 -0.00082 0.0091 0.0088 0.012

α -0.0064 0.46 -0.09 -0.084 0.1
β1 5e-04 -0.16 -0.0022 -0.0036 -0.1
β2 0.0033 -0.23 0.045 0.042 -0.064

By looking at the coverage for the same data situation (table 5.11) the consequences

of the biased estimates are even more evident, as for ROV 3 out of 10 figures are

zero, and for RPMM 2 out of 10 are below 10%. For comparison: the minimum

coverage of BBPMM over 116 analysis figures is 81.4%.5

5the BBPMM coverages for the variance estimates of data set (2) are smaller, but we exclude
them from our analysis, because they seem to be biased for all estimates (even the CC estimates
under MCAR are around 82%, instead of the expected 95%).
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Table 5.11: Coverage: DS3 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 0 96.0 93.0 93.4 88.8
V ar(Y ) 80.8 88.4 87.4 87.4 84.8
p(Y < 3) 1.4 30.0 93.4 94.0 93.2
p(Y < 4) 0 0 94.2 94.8 93.6
p(Y < 6) 0 0 92.4 93.2 89.6
ρ(X1, Y ) 91.4 94.0 95.0 96.0 7.6
ρ(X2, Y ) 95.8 98.0 94.4 96.6 92.2

α 95.6 44.4 90.6 98.0 82.8
β1 95.2 0 89.2 90.4 3.2
β2 95.8 42.6 90.4 97.6 81.2

5.4.5 Analysis overview

The results from the preceding sections are summarized tables, based on an orig-

inal total of 72 tables: twelve data situations à four imputation methods as well

as the ’Before Deletion’ data sets and the ’Complete Cases’. Although we focused

on bias and coverage in the analysis discussion, we also calculated the MSE and

fraction of missing information (see section 2.2). Since the 72 tables contained four

diagnostics and 10 analysis figures each, we can only provide an extract of all anal-

yses that were carried out within this experimental design. In the remainder of the

section we will therefore give an overview of our findings, grouped by the four

evaluated diagnostics.

Bias:

In terms of bias all methods perform well for data sets (1) and (2) for most diag-

nostics. ROV slightly overestimates variances due to the rounding bias, and for

data set (2) the bias for the three percentiles is ten times higher than for the PMM

variants. The PMM variants tend to underestimate variances, especially for the

’small’ data sets, and RPMM also underestimates correlations throughout all data

situations. For data set (3) the results are more clear-cut: All ten analysis figures
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for ROV are heavily biased, whereas the bias of the PMM variants, especially for

BBPMM and PPMM , is on a similar level compared with the figures from data sets

(1) and (2).

MSE:

The MSEs are in general similar, but less distinctive than the results for bias, and

for data sets (1) and (2) all four imputation methods yield very similar figures.

Fraction of missing information:

For the fraction of missing information the results are less encouraging for the

PMM variants. Multiple imputations under the correctly specified model without

correction are used to calculate benchmarks for λ. ROV matches these benchmark

values, but all three PMM variants have lower values. BBPMM comes close for

the ’big’ data sets, but PPMM and RPMM have a much lower fraction of missing

information. The main reason for this result is a smaller between variance for the

PMM variants. B is further reduced, if the number of potential donors is reduced

(hence, λ is lower for the ’small’ data set). Choosing M large for small data sets

might yield better estimates for the fraction of missing information.

Coverage:

Throughout all analysis quantities for data set (1), ROV has a coverage between

92% and 98% and an average coverage for data set (1) of 95.58%. BBPMM has

a slightly lower coverage rate (92.75%), followed by PPMM (91.37%) and RPMM

with 86.24% (see also table 5.3). The only outlier among the analysis quantities

from data set (1) is RPMM’s coverage of ρ(X2, Y ) for ’big’ data sets with 53.6%

(MCAR) and 51% (MAR). The small coverage in this case is mainly caused by a

small between variance. In general, the coverage is influenced by previously identi-

fied effects for fraction of missing information and bias, which is why the coverage
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for ROV drops heavily for data set (3). For instance, the coverage of ROV for the

’big’ data sets (MCAR and MAR) is zero in six out of twenty analysis quantities,

and only the coverage for mean, variance and correlations is close to or higher than

90%. In comparison, 18 of the same 20 analysis figures for BBPMM and PPMM

have coverages of more than 90%.

5.5 Summary of results

ROV is the best method for data set (1), but the problems for imputations under a

misspecified model (data set (3)) are severe. RPMM yields relatively good results

in terms of bias, but variances and correlations are underestimated. The under-

estimation of correlations makes also clear, why the naı̈ve MI extension for PMM

– taking the M nearest neighbors as donors – should not be considered, because

biasing effects on bi- and multivariate associations are even more extreme for the

M-nearest-neighbors strategy than for RPMM (see section 4.3). Both methods are

super-imposing a uniform distribution over the predicted values for the imputa-

tion step by ignoring the different distances of potential donors. However, the

main shortcoming of RPMM is the small between variance and the resulting low

coverage for many analysis quantities.

Since it is not easy to avoid at least slight misspecifications of imputation mod-

els for survey data, we favor the two other PMM variants: PPMM and BBPMM.

The analysis of RPMM demonstrates how difficult it is to utilize the robust prop-

erties of PMM within MI. Some diagnostics for the PMM variants show a relative

decrease in performance (e.g. the fraction of missing information) for the ’small’

data sets compared with the ’big’ 2,000 sample data sets, but overall the results

are satisfying, and the MAR results mirror the MCAR results. But overall analy-

sis results suggest that PPMM and BBPMM yield very good results – not only in

terms of consistency, but also with respect to coverage rates. Both are very similar

methods, the only difference being that BBPMM is even ‘less-parametric’, because

the posterior step for the model parameters is replaced by a Bayesian Bootstrap
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step. This seems to have a positive effect on the variation of results, since the frac-

tion of missing information is closer to the benchmark results for data set (1). The

higher between variance also yields higher coverage throughout all data situations

and analysis figures. The more precise fraction of missing information and higher

coverage for BBPMM aside, both methods yield very similar results.

A side aspect of this simulation study was the investigation of the effects of round-

ing continuously distributed random draws to discrete values. We tested rounding

to the nearest integer within the Monte Carlo study for the ’big’ data set (1) with

60 % of the values MCAR and almost exactly reproduced the predicted variance

increase due to rounding (the expected variance bias is 1
12

0.6 = 0.05, and the sim-

ulation results yielded 0.0496 for the estimated bias). But as this method does not

guarantee plausible values, it was not considered in the actual design. However,

the overestimation of variances and covariances inflicted on the imputed data by

rounding, is slightly decreased when values are (deterministically) rounded to the

nearest observed value. This result seems intuitive, since extreme values which

are out of bounds of the observed value range can not be imputed with ROV. The

overestimation is constant and not depending on the (true) variance, which is why

the rounding bias component will be more problematical, if the (true) variance is

small, and the bias increase relatively higher. Therefore, we consider ROV to be

a suitable Multiple Imputation technique for metric-scale discrete variables, if the

imputation model is correctly specified, and the variance of the rounded variable

is large.

Our conclusion is that, overall, BBPMM can be considered the ’best’ method.

ROV’s coverage is better for data set (1), but building a correctly specified model

in empirical survey data settings is difficult, and the decrease in coverage due to

using BBPMM is small. On the other hand, if errors are non-normal or the imputa-

tion model is misspecified, ROV yields biased results and bad coverage, whereas

the BBPMM imputations seem to be very robust to model misspecification. Be-

cause of higher coverages and better preservation of λ, BBPMM has the edge over

PPMM in terms of correct MI inference. It has been rightfully stated by Duda et al.
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(2001) that there is no free lunch in the context of general algorithm superiority,

meaning that no algorithm can outperform any other algorithm for all analysis ob-

jectives. This is also true for our tested imputation algorithms (as displayed by

the results), but since BBPMM was never ‘much worse’ than the best algorithm in

this simulation study, and over all analysis figures better than any other technique

over all tested diagnostics, we think that the findings imply that BBPMM has no

inherent weakness and can be safely recommended for application to empirical

data. Therefore, the next chapter describes the implementation of BBPMM into an

FCS algorithm as basis for a fully-functional MI algorithm that can be applied to

large data sets.
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6

A comparison of MI algorithms using
simulated multi-variable data sets
and real survey data

Imputation techniques are used to retrieve efficient and consistent estimates based

on incomplete data, but this should not happen at the expense of introducing bias

due to imputation model misspecification. In the previous chapter we compared

MI algorithms for (metric-scale) discrete survey data, and investigated their prop-

erties under various data conditions. The Bayesian Bootstrap Predictive Mean

Matching (BBPMM) variant turned out to yield the most consistent estimates in

this Monte Carlo experimental design. In a next step, we implement this strategy

into a fully-functional algorithm for Multiple Imputation. Instead of applying the

algorithm to a simulated data set, where only one variable is partially incomplete,

we analyze an incomplete empirical survey data set, and compare the results of

the BBPMM algorithm with counterparts based on the imputation software IVE-

ware (Raghunathan et al. 2002), as well as to the complete-data estimates. Since

the missing data are real, there is no way of comparing the results in terms of con-

sistency. Therefore, we additionally impose an artificial missingness structure on

‘jackknife’ samples from the complete cases of the original data set. This procedure

allows us to further analyze the imputation methods with respect to bias, MSE and

coverage.
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6.1 Imputation algorithm

As already mentioned, more recently the useful properties of PMM have been re-

discovered (see e.g. Little & An 2004), and it was implemented in some Multi-

ple Imputation algorithms such as MICE (van Buuren & Oudshoorn 1999) or the

Hmisc library in R by Harrell (2006).

6.1.1 Chained Equations regression

The BBPMM method is combined with a so-called sequential regression or chained

equation approach, and belongs to the FCS class described in section 2.4.2.

Starting solution

First, variables are sorted in ascending order according to their percentage of miss-

ing values. A starting solution is obtained by regressing each variable with missing

values on the complete variables only (see fig. 6.1).

Figure 6.1: Starting solution for Y1 based on completely observed variables

Let X
(k)
obs denote the rows of the design matrix for the observed units of regressand

Yk, with k = 1 . . . K. Then

β̂k = (X
(k) T
obs X

(k)
obs)

−1X
(k) T
obs Yk,obs, (6.1)
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and estimates for the missing parts of variable Yk are obtained by calculating

ŷk,mis = X
(k)
misβ̂k. (6.2)

Imputations are generated by additionally applying PMM as described in chapter

3.

In case all variables have missing values, the starting solution is generated us-

ing hot deck random draws to impute for missing values in variable Y1, before

variables Y2 to YK are regressed on Y1 (with the imputation model consisting of

observed values for Y1, where both Y1 and Yk are observed, and random draws

for Y1, where Yk is observed, but Y1 is not). Since one of the problems of chained

equation approaches is that we do not know whether a joint distribution over all

variables exists, we sort the variables in the data set by their respective number

of missing values. Ideally, this would create a monotone missingness pattern (see

section 1.2), for which the joint distribution exists, if the imputation model condi-

tions on the variables to the ‘left’. It is of course more likely that the pattern after

sorting will be non-monotone, but the sorting routine at least approximates the

monotone pattern.

Alternatively, a starting solution for the sequential regression can be generated us-

ing an ECM (Expectation - Conditional Maximization) algorithm (Meng & Rubin

1993). The difference to a classical EM-algorithm is that the expectation and max-

imization steps are carried out variable by variable through conditioning on all

other variables. Note that the ECM step does not contain a PMM component. The

reason for this is that a regression with PMM might never achieve convergence, al-

though no stochastic element is involved. This effect is caused by outliers or model

misspecification, which might catch the algorithm in an endless cycle. The ECM is

iterated, until convergence for all model parameters is established. Let β̂[r] denote a

vector that includes the combined regression parameters of allK partially imputed

variables within cycle r. Then convergence is assumed, if |β̂[r]−β̂[r−1]| < 10−9 . One

might want to chose different random starting values for initial imputations, and

compare the converged parameter results in order to check for convergence to lo-
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cal instead of global maxima. In the latter case the different starting values should

converge to identical parameter estimates.

Chained equations

After a starting solution is created, Y1 is regressed again on the completely ob-

served variables and the partially imputed variables Y2 to YK (see fig. 6.2). The

imputation of Y1 in cycle r is therefore based on the completely observed parts of

variables Y2 to YK as well as on the parts of these variables which were imputed in

cycle r − 1.

Figure 6.2: Sequential regression: Imputation of Y1 based on completely observed
and partially imputed variables

By letting X(k) denote the n× p design matrix for regressand Yk, we get

β̂k = (X(k) TX(k))−1X(k) TYk, (6.3)

and the predictors for variable Yk are obtained by

ŷk = X(k)β̂k. (6.4)

The Predictive Mean Matching step is applied right after obtaining predictors for a

particular variable with missing values rather than at the end of a cycle collectively.
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6.1.2 Multiple imputations via Bayesian Bootstrap parameter
draws

Our key objective is to integrate Predictive Mean Matching into an approximately

proper multiple imputation algorithm. One of the difficulties in doing so lies with

the nearest neighbor step of PMM. The approach we propose is to replace the P-

step of Data Augmentation by a Bayesian Bootstrap step (Rubin 1981). Instead

of drawing from a posterior distribution for all model parameters θ, we draw a

sample x∗1, . . . , x∗n from the original data X = (x1, . . . , xn) as described in chapter

2.3.3. This new sample is used to obtain θ̂∗ = θ̂(x∗1, . . . , x
∗
n) which is replacing the

distributional draws. Thus, equations (6.3) and (6.4) are further modified to

β̂∗k = (X(k),∗ TX(k),∗)−1X(k),∗ TY ∗
k , (6.5)

and

ŷk = X(k)β̂∗k . (6.6)

The advantage of this approach is that it does not rely on a normal distribution

assumption for the estimated error terms. The I-step is also replaced by Predictive

Mean Matching as described above. Bayesian Bootstrapping and PMM are finally

embedded in the sequential regression approach, and we have the means to con-

duct BBPMM on large data sets with non-monotone missing-data patterns. We

have already mentioned that the existence of a joint (posterior) distribution cannot

be verified, which is why convergence in distribution can usually not be shown

either. However, the PMM properties seem to create solutions within one or two

cycles which show no signs of autocorrelation to the imputation model parameters

of the starting solution.

6.2 Description of the empirical data set

A data set based on a survey of drinking habits among Michigan-licensed adults

(see Bingham et al. 2007) is used to examine the effects of the different imputation
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methods. The corresponding telephone interviews were conducted in 1999 and in

2000 as part of a longitudinal study. The data set has a total of 4,199 interviews,

out of which ncc=2,278 are complete and 1,921 have missing information for at least

one of eight analysis variables considered for the imputation analysis.

The eight analysis variables:

• AQF/AQF 2 measure the alcohol quantity frequency in 1999 and 2000 respec-

tively. The variable is the product of periodicity (0 = never drinking to 4 =

four or more times a week drinking) and quantity (0 = not drinking to 5 = 10

or more drinks). The integer values of the two variables therefore range from

0 to 20.

• AUDIT/AUDIT2 are the variables based on the 10-item Alcohol Use

Disorders Identification Test (Saunders et al. 1993) obtained in 1999 and 2000.

The underlying items measure alcohol dependence, consumption patterns

and personal/social problems. Each item can take a value between 0 and 3,

and the AUDIT score is the sum over all 10 items. Although 30 is the theo-

retical maximum value, the highest empirical score is 29 (0 being the mode

with 358 observations)

• DRK DRI1/DRK DRIV describes perceived risks of drink/driving, like

getting stopped for drink/driving or being involved in a car crash. In total

there are six such items, all of them ranging from ’very likely’ (=1) to ’very

unlikely’ (=4). The final variable is a scale score with values between 0 and

12.8 (the minimum step of 0.2 between two scores indicates that probably

only five variables were used to construct the score). The variable names do

not follow the same logic as their predecessors, but again, they describe the

results from the 1999 survey and the follow-up in 2000.

• COMPETE comprises competitive attitudes towards driving. The original

number of five statements with four different categories is condensed into

one single index by averaging over all five statements. The range for this

variable is 1 to 4.
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• CONSEQNC, finally, is a z-transformed quasi-continuous variable consist-

ing of several indicators. It measures awareness of the consequences of

drink/driving.

The number of missing observations varies over the eight analysis variables:

• AQF: nmis = 10

• AUDIT: nmis = 15

• COMPETE: nmis = 30

• DRK DRI1: nmis = 60

• CONSEQNC: nmis = 1857

• AQF 2: nmis = 1861

• DRK DRIV: nmis = 1867

• AUDIT2: nmis = 1876

6.3 IVEware

IVEware is a SAS-based imputation algorithm1 that performs multiple imputa-

tions of missing values using a sequential regression approach and conditional

draws from the posterior predictive distribution (Raghunathan et al. 2002). Un-

like the sequential BBPMM imputation algorithms described in the section 6.1.2

it is fully parametric. Different variable types are imputed with different GLM

variants and error assumptions: for continuous variables a linear model with nor-

mally distributed errors is used, whereas count data are imputed via a Poisson

link model. If the data set features categorical variables, a multinomial logit model

1Srcware is a stand-alone version of IVEware that runs on MS-Windows or Linux/Unix plat-
forms.
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is used to impute missing values in those categorical variables (if a variable is bi-

nary the multinomial logit is automatically reduced to a binomial logit model). A

special case is the occurrence of mixed-type variables. Some variables have both,

a categorical and a continuous component. For instance the questions “do you

smoke?”, “if yes: how many per day” can be expressed within one mixed-type

variable.2 Typically these variables have at least one discrete value that captures

a considerable margin of all observations. IVEware imputes mixed-type variables

by adopting a two-step procedure: In a first step the binary aspect is imputed

(categorical vs continuous), followed by the second step: imputation of the pre-

identified continuous cases using the normal model.

While the Bayesian Bootstrap Predictive Mean Matching algorithm will automati-

cally impute observed (and therefore plausible) values, IVEware provides the op-

tion to specify ranges for valid values. Additionally, all variables in the data set

are subject to classification into ‘categorical’, ‘count’, ‘mixed’ or ‘continuous’. Al-

though AQF/AQF 2 and AUDIT/AUDIT2 are count variables which can be im-

puted via the Poisson link (at least, if we add 1 to all values in order to get rid of

the zeros), these variables were treated as ’continuous’ (with the observed minima

and maxima to define the corresponding bounds). The reason for this deliber-

ate mis-classification was the relatively high number of categories and the shape

of the empirical distributions. CONSEQNC and COMPETE were likewise con-

sidered to be ’continuous’, whereas DRK DRIV and DRK DRI1 were considered

’mixed’. One consequence of the decision to impute count variables with an iden-

tity link and normal errors is the occurrence of implausible non-integer values, but

this would have been the case for COMPETE and DRK DRIV/DRK DRI1 anyway,

since IVEware has no means to preserve the domain created by the constructed in-

dices. For the considered analysis quantities this is only a minor drawback, since

we are primarily interested in moments and similar aggregated figures.

2Although the ’continuous’ component is never genuinely continuous, if the data stem from a
questionnaire-based survey.
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6.4 Analysis based on the original data set

6.4.1 Data preparation

IVEware assumes normally distributed error terms for all continuous variables.

We examined histograms and Q-Q plots to identify suitable transformation func-

tions. y = x1/3 for AQF/AQF 2 and y = 4− x for COMPETE established approxi-

mate normality for these variables, and all IVEware imputations were performed

on this partially transformed data set. Figure 6.3 illustrates the effects of the trans-

formation for COMPETE.3

Figure 6.3: The variable COMPETE before and after transformation

Since BBPMM is supposed to be robust to model misspecification, it does not rely

on normally distributed error terms, and so there is no need to apply the above

transformations. Then again, analysis results are more difficult to compare if a

different data base is used, which is why we decided to run BBPMM on both, the

transformed and the original (untransformed) data set.

All MI results are based on M = 20 partially imputed data sets. For IVEware we

stored every tenth iteration as imputed data set for the MI analysis. A finding from

prior work with sequential Predictive Mean Matching algorithms is that results do

typically not converge – even if no stochastic component is involved – and that no

3The diagnostic plots can also be found in appendix A.
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autocorrelation can be identified for two subsequent iterations. As a compromise

between computational speed and synchronism to IVEware we decided to store

every fifth iteration for the BBPMM imputations.

6.4.2 Methods and quantities of interest

We compare results for the complete cases of the original data set, the BBPMM

results based on the original and the transformed data set and the IVEware results

based on imputations of the transformed data set. Throughout the analysis the

following abbreviations are used to distinguish between the four methods:

• Methods: CC (Complete Cases), BBPMMO (MI results of the sequential

Bayesian Bootstrap Predictive Mean Matching using the untransformed orig-

inal data set), BBPMMT (MI results of the sequential Bayesian Bootstrap Pre-

dictive Mean Matching using the transformed data set), IVE (MI IVEware

results using the transformed data set)

• Variables: AQF (AQF), AUDIT (AUD), COMPETE (COM), DRK DRI1 (DR1),

CONSEQNC (CON), AQF 2 (AQ2), DRK DRIV (DRK), AUDIT2 (AU2)

We investigated means for all eight variables, but due to the mixed-type charac-

ter of the drink/drive variables, we compared the estimates for p(X = 0) and

E(X|X > 0). Additionally we compared the parameter estimates for two regres-

sions. The first one is an ordered logit model, where the variable DRK DRIV was

recoded into an ordinal scale variably Y with five categories ranging from 1 to 5:

ln
π(Yi ≤ j)

π(Yi > j)
= (α− αj) + β1COMi + β2CONi + ε1,i,∀i = 1, . . . , n (6.7)

and j = 1, ..., 5.

The second regression model estimated the ratio of DRK DRIV and DRK DRI1
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DR1i + 1

DRKi + 1
= γ + δ1

AQ2i + 1

AQFi + 1
+ δ2

AU2i + 1

AUDi + 1
+ ε2,i∀i = 1, . . . , n.4 (6.8)

6.4.3 Results

Table 6.1 shows the results for the proportion and mean estimates as well as the

lower and upper bound of the central 95% confidence interval.

Table 6.1: Proportion and mean estimates based on the different methods
estimate lower bound upper bound

p(DR1 = 0) CC 0.4807 0.4602 0.5012
BBPMMO 0.4755 0.4603 0.4908
BBPMMT 0.4759 0.4608 0.4911

IVE 0.4757 0.4605 0.4909
p(DRK = 0) CC 0.5136 0.4931 0.5341

BBPMMO 0.4926 0.4739 0.5113
BBPMMT 0.4958 0.4759 0.5157

IVE 0.501 0.4826 0.5195
E(AQF ) CC 3.236 3.107 3.364

BBPMMO 3.388 3.349 3.427
BBPMMT 3.387 3.348 3.426

IVE 3.386 3.346 3.425
E(AUD) CC 4.09 3.928 4.252

BBPMMO 4.218 4.17 4.265
BBPMMT 4.215 4.168 4.263

IVE 4.216 4.169 4.263
E(COM) CC 3.443 3.42 3.466

BBPMMO 3.442 3.435 3.448
BBPMMT 3.441 3.434 3.448

IVE 3.44 3.433 3.447
E(DR1|DR1 > 0) CC 2.466 2.323 2.608

BBPMMO 2.504 2.47 2.537
BBPMMT 2.504 2.473 2.536

IVE 2.512 2.48 2.543
E(CON) CC 0.001749 -0.03083 0.03433

BBPMMO 0.1245 0.1136 0.1354
BBPMMT 0.1356 0.1226 0.1487

IVE 0.05464 0.02818 0.08109
E(AU2) CC 3.723 3.575 3.872

BBPMMO 3.954 3.852 4.056
BBPMMT 4.034 3.953 4.114

IVE 4.173 4.095 4.251
E(DRK|DRK > 0) CC 2.008 1.884 2.133

BBPMMO 1.971 1.868 2.073
BBPMMT 2.011 1.937 2.085

IVE 2.375 2.3 2.449
E(AQ2) CC 2.917 2.803 3.031

BBPMMO 3.142 3.063 3.22
BBPMMT 3.178 3.114 3.241

IVE 3.195 3.087 3.303

The small percentage of missing data equates to very similar results for the

mean estimates of AQF, AUDIT, COMPETE and DRK DRI1 for IVEware and the

BBPMM variants. The CC results for COMPETE are close to the imputation vari-

ants, but the deviations for the other three ’wave one’ variables are bigger. Since

4i = 1, . . . , ncc for the CC variant in (6.7) and (6.8).
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the CC estimates are based on hardly more than 50%, and since there are strong

indications that the missing information is not MCAR, the imputation variants

are likely to be closer to the (unavailable) complete-data estimates. Among the

’wave two’ variables with higher percentages of missing data, the deviations of

the mean estimates are generally bigger. The mean estimates for CONSEQNC vary

so strongly that the confidence intervals are non-overlapping, except for the two

BBPMM variants.5 But deviations can also be found for AUDIT2, AQF 2 and the

mean estimate for non-zero values of DRK DRIV.

At first glance, the deviations between the four methods seem to be bigger for the

model parameter estimates in table 6.2 than for the proportion and mean estimates.

But under closer investigation this can be explained by the (relatively) larger stan-

dard errors. The generally higher overlap among the method-specific confidence

intervals confirms this assumption.

Apart from mean and parameter estimates we also examined bivariate correlations

among the eight variables in the data set. The 28 correlations and the correspond-

ing 95% confidence intervals are plotted in figure 6.4.

The bounds for ρ were calculated using Fisher’s transformation z = 0.5 · ln[(1 +

ρ)(1− ρ)−1]. Using variance (n− 3)−1 and taking the inverse z−1 = tanh(z) allows

us to estimate approximate MI confidence intervals. Generally the CIs are wider

if the correlations are close to zero. For instance, ρ̂(AUD,AQF ) is quite close to

one, and therefore all methods yield small CIs. The correlation estimates between

CONSEQNC and DRK DRIV show a heavy ’outlier’ for IVEware. Another inter-

esting finding are the relatively large differences between the two BBPMM vari-

ants for ρ̂(AU2, AQ2) and ρ̂(DRK,AQ2). The results from chapter 5 suggested

that BBPMM is fairly robust to model misspecification, yet two different imputa-

tion models (original/transformed) yield considerably different estimates for these

two correlations. The detailed tables for correlations are given in the appendix sec-

tion of this thesis.
5Which are almost always very close to each other.
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Table 6.2: Parameter estimates based on the different methods
estimate lower bound upper bound

α1|2 CC -1.107 -1.632 -0.5822
BBPMMO -1.191 -1.683 -0.6989
BBPMMT -1.365 -1.865 -0.8648

IVE -1.079 -1.586 -0.5716
α2|3 CC -0.4021 -0.9253 0.1211

BBPMMO -0.5083 -0.9977 -0.019
BBPMMT -0.7079 -1.203 -0.2134

IVE -0.6128 -1.12 -0.1056
α3|4 CC 0.1861 -0.3373 0.7095

BBPMMO 0.05902 -0.4248 0.5429
BBPMMT -0.1592 -0.661 0.3426

IVE -0.2878 -0.7986 0.223
α4|5 CC 1.238 0.7093 1.767

BBPMMO 1.066 0.5817 1.549
BBPMMT 0.8211 0.3258 1.316

IVE 0.5578 0.02944 1.086
β1 CC -0.4626 -0.6101 -0.3151

BBPMMO -0.4744 -0.617 -0.3318
BBPMMT -0.516 -0.6554 -0.3767

IVE -0.4114 -0.5567 -0.2661
β2 CC 2.973 2.655 3.292

BBPMMO 2.515 2.182 2.848
BBPMMT 2.233 1.938 2.528

IVE 2.509 2.111 2.908
γ CC 1.704 1.625 1.783

BBPMMO 1.753 1.68 1.827
BBPMMT 1.72 1.64 1.801

IVE 1.772 1.673 1.871
δ1 CC -0.2 -0.2995 -0.1005

BBPMMO -0.1968 -0.2963 -0.09734
BBPMMT -0.1399 -0.2148 -0.065

IVE -0.2645 -0.3331 -0.1959
δ2 CC -0.1008 -0.1825 -0.01924

BBPMMO -0.1 -0.1782 -0.02189
BBPMMT -0.1395 -0.2056 -0.07339

IVE -0.105 -0.1458 -0.0643
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Figure 6.4: Bivariate correlations and confidence intervals for all eight variables

6.4.4 Summary

The analysis results for the four different methods vary partially so strongly that

the confidence intervals have very small or no intersections. The differences be-

tween the CC results and the MI variants can be explained, if we assume that

MCAR does not hold (propensity scores based on AQF, AUDIT, COMPETE and

DRK DRI1 calculated for the overall complete cases as well as the complete cases

of these four variables support this assumption). However, the differences be-

tween the results based on IVEware and on the BBPMM variants lead to the con-

clusion that the selection of an imputation method has an influence on the analysis

results as well. This analysis faces the general dilemma that we do not know the

‘true values’ of the analyzed quantities of interest. Therefore we can not make any

statement with respect to gain in efficiency or reduction of biases. The following

section tries to overcome this by using the complete cases as reference data set in
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a Monte Carlo study. Missingness is artificially induced and afterwards imputed

again.

6.5 Analysis based on Monte Carlo simulations

6.5.1 Design of the simulation study

We use the 2,278 complete cases and create a subsample consisting of 280 random

draws without replacement. Then we superimpose an MAR pattern on this data

set by applying
(
8
2

)
= 28 different logit models (similar to those from the previous

chapter), and eliminate 30% of the 280 observations for each variable. We repeat

this procedure 500 times and obtain 500 data sets à 280 observations with different

MAR patterns. Analogously to the previous section we compare the results based

on the complete cases (i.e. ’complete cases’ after artificially removing parts of the

data) with the MI results using IVEware and the two BBPMM variants (M = 20

for all MI methods), and focus again on the ten proportion/mean and the nine

parameter estimates from the regression models in (6.7) and (6.8). The original CC

data set from which the ‘jackknife’6 samples are taken, provides the ‘true values’

that allows us to estimate bias, MSE and coverage for the 19 analysis quantities,

and are given in table 6.3.

Table 6.3: True values for all proportions/means and model parameters
Proportions/Means Parameters

p(DR1 = 0) 0.4807 α1 -1.107
p(DRK = 0) 0.5136 α2 -0.4021

E(AQF ) 3.236 α3 0.1861
E(AUD) 4.09 α4 1.238
E(COM) 3.443 β1 -0.4626

E(DR1|DR1 > 0) 2.466 β2 2.973
E(CON) 0.001749 γ 1.704
E(AU2) 3.723 δ1 -0.2

E(DRK|DRK > 0) 2.008 δ2 -0.1008
E(AQ2) 2.917

6Note that genuine jackknifing means that we leave out only one unit per iteration run.

83



6.5.2 Results

We calculate two different measures for all methods to compare the different mean

and regression estimates: Measure1 = bias2/MSE×100% can be loosely described

as a ’standardized bias share’, and Measure2 = var(BD)/MSE × 100% reflects

some kind of ’efficiency’ measure, where var(BD) is the ’Before Deletion’ variance

averaged over all jackknife runs. Since the MSE can be decomposed into vari-

ance plus squared bias, and since, generally, var(BD) should be smaller than the

variance of any estimator that is partially multiply imputed,7 Measure2 can take

values between zero and one. The ’Coverage’ contains the information, whether

the ’true value’ lies within the central 95% confidence interval of the given method.

Table 6.4 shows the averaged values over all 500 Monte Carlo runs – separated for

proportions/means (M) and the regression parameters (R). Again, more detailed

results can be found in appendix B 2.5 and 2.6.

Table 6.4: Analysis figures for the Jackknife simulations
Measure1 Measure2 Coverage

CC M 23.52 29.28 86.92
CC R 24.06 16.65 76.71

BBPMMO M 1.25 42.48 93.48
BBPMMO R 9.557 28.8 92.13
BBPMMT M 0.978 42.98 93.18
BBPMMT R 15.33 30.98 91.27

IVE M 9.995 37.49 92.7
IVE R 20.7 31.82 87.4

Ideally, values should be close to zero for Measure1, close to 100% for Measure2

and close to 95% for the coverage. We can see that all MI methods outperform

the complete cases. Using the available information in the observed part of the

data allows the MI methods to yield better estimates than a simple analysis of the

remaining complete cases. Especially the BBPMM variants reduce the ’M’ values

of Measure1 almost back to zero, but also the values for the parameter estimates

are more than halved for BBPMMO, and considerably reduced for BBPMMT com-
7A notable exception are cases of ’superefficiency’ (Rubin 1996).
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pared with the CC figures. IVEware yields slightly worse results for Measure1.

This is also true in a less distinct way for the proportion/mean estimates of Mea-

sure2. The parameter estimates of Measure2, however, are almost on the same

level for all methods, with IVEware even edging the BBPMM variants. The cover-

ages for the ’M’ estimates are quite close to the ideal 95% for all MI methods. But

IVEware has a slightly lower value for ’R’ than the two BBPMM variants. Figure

6.5 displays the respective coverage figures in a more detailed way.

Figure 6.5: Coverages for all three methods over 19 analysis quantities

The vertical line in the middle of the plot marks the intersection between ’M’ and

’R’ estimates, and the dotted horizontal line the benchmark 95%. If we consider

only ’outliers’ with values below 90%, IVEware performs worse for the mean esti-

mate of COMPETE (79.8% vs. 95.2% for both BBPMM variants) and better for the

mean estimate of CONSEQNC (87.6% coverage vs. 79.2/76.2% for BBPMMO/T).

The estimate for IVEware’s α4 of (6.7) is below 90% (87.8%), but the overall most
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striking outlier is the coverage for β2 of the first regression model: 55.8/52.4% for

BBPMMO/T and only 29.0% for IVEware. This parameter estimate for COMPETE

is the only heavy outlier, and although the BBPMM variants yield higher cover-

ages than IVEware, the tendency is the same. In contrast, all methods give very

high coverages for β1.

Unlike the MAR mechanism used in the Monte Carlo experimental design with

simulated data, the mechanism used in this study yields partially very low cover-

ages for the complete cases, as table 6.5 demonstrates.

Table 6.5: CC: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.2 -0.073 2 -3.2 0.84 0.96 NA
α2 -0.73 -0.32 2.1 -2.7 1.3 0.95 NA
α3 -0.43 -0.62 2.4 -2.4 1.6 0.91 NA
α4 -0.077 -1.3 3.8 -2.1 1.9 0.78 NA
β1 -0.25 0.21 0.21 -0.82 0.33 0.91 NA
β2 0.97 -2 4.2 0.45 1.5 0.012 NA
γ 1.5 -0.25 0.22 1 1.9 0.55 NA
δ1 -0.12 0.082 0.27 -0.75 0.52 0.9 NA
δ2 -0.14 -0.037 0.21 -0.69 0.41 0.93 NA

In comparison the BBPMM results for the untransformed data yield much higher

average coverages, and smaller bias and MSE estimates (see table 6.6.

Table 6.6: BBPMMO: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.3 -0.15 1.8 -3.3 0.79 0.98 0.45
α2 -0.59 -0.19 1.8 -2.6 1.5 0.98 0.45
α3 -0.041 -0.23 1.8 -2.1 2 0.97 0.45
α4 0.93 -0.31 1.9 -1.1 3 0.97 0.45
β1 -0.45 0.012 0.15 -1 0.13 0.97 0.44
β2 2 -0.94 1.3 0.98 3.1 0.56 0.54
γ 1.7 0.019 0.064 1.4 2.1 0.93 0.5
δ1 -0.16 0.042 0.086 -0.57 0.26 0.96 0.58
δ2 -0.16 -0.056 0.063 -0.5 0.19 0.97 0.55

An interesting finding is that the corresponding IVEware table 6.7 sometimes have

a slightly lower estimated fraction of missing information λ̂. Usually, the IVEware
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confidence intervals are slightly bigger than the BBPMM counterparts, but not in

all cases: After analyzing the results from the experimental design in section 5.4

of the previous chapter, we assumed that BBPMM tends to underestimate the be-

tween variance, when applied to small data sets. But for some cases in table 6.6

(e.g. δ1), BBPMM’s CI length and λ̂ are bigger than IVEware’s counterpart. This

suggests that at least sometimes BBPMM yields higher between variances than

fully-parametric MI algorithms.

Table 6.7: IVEware: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.5 -0.35 2.2 -3.6 0.68 0.96 0.45
α2 -0.93 -0.53 2.4 -3.1 1.2 0.95 0.45
α3 -0.57 -0.75 2.6 -2.7 1.6 0.92 0.45
α4 0.27 -0.97 3 -1.9 2.4 0.88 0.46
β1 -0.5 -0.037 0.18 -1.1 0.12 0.97 0.46
β2 1.9 -1 1.4 1.1 2.8 0.29 0.52
γ 1.8 0.059 0.064 1.4 2.1 0.95 0.49
δ1 -0.15 0.053 0.034 -0.43 0.14 0.98 0.49
δ2 -0.18 -0.082 0.033 -0.43 0.059 0.97 0.41

The discrepancy between the IVEware and BBPMM results is more obvious for the

estimated MSE and bias, but even without the extremely low value for β2, BBPMM

has higher average coverages than IVEware, although the sample size is similar to

the small data sets from the MC experimental design.

6.5.3 Summary

The two BBPMM variants (’transformed’/’original’ data set) generally yielded

very similar results. This can be interpreted as a confirmation of the hypothesis

that the robustifying properties of PMM alleviate the biasing effects of misspeci-

fied imputation models, since the results of BBPMMO/T are almost indistinguish-

able. The biased results for β2 show that this hypothesis does not always hold, but

we believe it to be true for all cases, where the misspecified model is a monotonous

function of the ‘true’ model.
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An obvious handicap of any nearest neighbor-approach is a small number of

potential nearest neighbors, because this increases the average distances of the

matched pairs. Considering that the data sets in the simulation study comprised

only nobs = 196 (70% of 280) potential donors per variable, the overall results for

the BBPMM variants are quite encouraging.

6.6 Discussion

Previous results from chapter 5 with simulated data have shown that the combi-

nation of Bayesian Bootstrap and Predictive Mean Matching works well as a re-

placement for the corresponding P- and I-steps of Data Augmentation, and that

the fraction of missing information (Rubin 1987a) is nearly identical to the expected

fraction (based on a parametric MI under a correctly specified model). The find-

ings from this study with respect to coverages and their interpretation draw upon

these analyses, and therefore we can conclude that the higher coverage rates of the

BBPMM variants compared with IVEware are not caused by overly conservative

confidence intervals.

We tested means and regression parameter estimates, and the results suggest that

the BBPMM variants outperform the purely parametric IVEware algorithm, but on

the other hand, the test design was based on a particular data set, and the tested

quantities of interest are a small fraction of all potential analysis figures. More

extensive analysis has to be carried out to validate the findings from this study –

both with simulated data (e.g. using deliberately misspecified imputation models)

as well as with empirical data.
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7

BBPMMimpute: An R package for
handling missing data in large survey
data sets

7.1 Introduction

R is an open source statistical software based on the programming language S

that has become wide-spread in the statistical community, with a number of con-

tributed packages – by the date this thesis was submitted – approaching the 2000

threshold.

The packages Hmisc (Harrell 2006) and mi (Gelman et al. 2008) as well as ports of

Joseph Schafer’s NORM and MIX software already feature Multiple Imputation

algorithms. The aregImpute function from Frank Harrell’s package is even very

similar to our algorithms, since it combines Bootstrapping and Predictive Mean

Matching (and additive regression splines), where PMM can be applied to metric-

scale variables. aregImpute was the second software after MICE to implement PMM

into an MI algorithm.

The innovation of the MI algorithms in the BBPMMimpute package is that PMM

is used for any variable type, including unordered categorical variables (called

’factors’ in R). The source code of version 0.1-1 can be found in appendix C.
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7.2 BBPMM.col – ’column-wise’ Multiple Imputation

7.2.1 Description

The BBPMM.col function is based on the algorithm described in section 6.1: Be-

cause missing-data imputation is carried out variable-by-variable, we will refer to

this function as ’column-wise’ multiple imputation.

The algorithm re-groups partially incomplete variables by their number of miss-

ing values in ascending order. Initial imputations are generated by . In order to

emulate a monotone missing-data pattern as well as possible, variables are sorted

by rate of missingness (in ascending order). If no complete variables exist, the least

incomplete variable is imputed via hot-deck. The starting solution then builds the

imputation model using the observed values of a particular variable yt, and the

corresponding observed or already imputed values of the variables [y1 . . . yt−1] (i.e.

all variables with fewer missing values than yt).

The iterations of the chained equations algorithm re-start from the starting solu-

tion, after an imputed data set was stored. Due to the PMM element in the algo-

rithm, the auto-correlation of the iterations is virtually zero. Therefore, a burn-in

period is not required, and there is no need to administer ’high’ values (>20) to the

parameter that governs the number of iterations either.

Unordered categorical variables are imputed via a multinomial logit model (the

multinom function of the nnet library). Predictive Mean Matching for these vari-

ables is carried out using the method described in section 3.3.
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7.2.2 Arguments

data A partially incomplete data frame or matrix.
M Number of multiple imputations. If M = 1, no Bayesian Bootstrap

step is carried out.
n.iter The Number of iterations of the chained equations algorithm before

the imputed data set is stored.
out.file A character string that specifies the path and file name for the im-

puted data sets. If M>1, the extension ’ <m>’ is added before
the file extension to mark the number of the imputed data set. If
out.file=NULL (default), no data set is stored.

ignore A character or numerical vector that specifies either column posi-
tions or variable names that are to be excluded from the imputation
model and process, e.g. an ID variable. If ignore=NULL (default),
all variables in data are used in the imputation model.

var.type A character vector that flags the class of each variable in data (with-
out the variables defined by the ignore argument), with either ’M’ for
metric-scale or ’C’ for categorical. The default (NULL) takes over
the classes of data. Overruling these classes can sometimes make
sense: e.g. an ordinal-scale variable is originally classified as ’fac-
tor’, but treating it as metric-scale variable within the imputation
process might be a better choice (considering the robust properties
of PMM to model misspecification)

eff.measure Calculates the Goodness-of-Fit measure described in section 3.4 to
monitor the quality of the nearest neighbor matches.

maxit Imported argument from the nnet package that specifies the maxi-
mum number of iterations for the multinomial logit model estima-
tion.

verbose The algorithm prints information on imputation and iteration num-
bers.

... Further arguments passed to or from other functions.

7.2.3 Values

impdata The imputed data set, if M=1, or a list containing M imputed data
sets.

mis.overview The percentage of missing values per incomplete variable.
eff.measure A matrix containing efficiency measures for all M data sets (rows)

and incomplete metric-scale variables. Completely observed vari-
ables and factors are set to ’NA’.

ind.matrix A matrix with the same dimensions as data minus ignore containing
flags for missing values.
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7.2.4 Troubleshooting

A tricky consequence of the Bayesian Bootstrap step is the possibility of incompat-

ible imputation models. This event occurs, if:

• one or several factor levels (i.e. categories of an unordered categorical

variable) of one or several left-hand-side variables are missing in the boot-

strapped data set – irrespective of the variable type of the right-hand-side

variable

• the right-hand-side variable is a factor, and one or several of its levels are

missing in the bootstrapped data set

In either case the solution to this problem is setting the corresponding parameters

to zero. Since factors are imputed with a multinomial logit model, the complete

parameter vector of a missing level has to be treated accordingly.

A final issue that needs to be addressed is the ’conundrum’ of chained equations

approaches: When we run a regression of yt on [y1 . . . yt−1, yt+1 . . . yT ], yt ideally is

a linear combination of the regressors. But when we run the subsequent regression

of yt+1, the regressors ideally are completely independent of each other. Currently

there is no ’safety catch’ for perfect multi-collinearity, but updates of the algorithm

will contain the option to use ’least angle regression’ for the imputation models

to keep them estimable. For the time being we can but refer to Goldberger (1991),

who coined the mock-expression micronumerosity, meaning that multi-collinearity

– just like small data sets – tends to increase the standard errors of the model pa-

rameters, but the estimators themselves are still consistent.

7.2.5 Logical inconsistencies

Unlike IVEware the BBPMM.col function does not (yet) handle filter variables. Ig-

norance of filters can lead to logical inconsistencies in the data, e.g. non-smokers
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with a daily cigarette consumption or underage driver’s licence holders. There are

two ways to deal with such occurrences:

1) we impute the data irrespective of filters, and ’repair’ logical inconsistencies

manually after the imputation step (e.g. by re-entering filter-generated missing

values)

2) in a first step we omit all filter-dependent variables, and impute subsequently

the subsets of the data set according to the imputed values of the filter variables.

7.3 BBPMM.row – ’row-wise’ Multiple Imputation

7.3.1 Description

Unlike the sequential regression-based algorithm described in the previous sec-

tion, the BBPMM.row function (multiply) imputes not only one variable at a time,

but all variables with identical missingness patterns simultaneously. This property

predestines the algorithm for Multiple Imputation of missing-by-design patterns

as described in section 1.2, where usually a large number of variables have iden-

tical missingness patterns. Data preparation steps comprise the identification of

unique patterns (’blocks’), and the exclusion of constant columns.

The challenging part of a PMM over more than one variable is how to relate the

distances of predicted means of different variables to each other. The BBPMM.row

function follows closely the algorithm described in (Little 1988a). A Mahalanobis

distance metric is used to identify a ’global’ nearest neighbor over all Y variables

within a block. If several elements are minimal, a random draw among the nearest

neighbors selects the final donor. Note that this function is suited for monotone

and data fusion patterns as described in section 1.2, but not for SQS designs (be-

cause the algorithm is not based on chained equations).

The covariance matrix of the residuals from the regression of Y on the completely

observed variables X is transformed into a diagonal matrix by using conditional
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regressions. This simplifies the usage of manual weights.

Unlike BBPMM.col this function is only suited for metric-scale variables. Theoreti-

cally, an unordered factor in y with L levels could be recoded into L− 1 dummies,

and we could use a linear model – the incompatible value space would not matter,

as an overall nearest neighbor will ’donate’ its complete (plausible) vector yi. But

replacing a single unordered factor by L− 1 variables would exaggerate the influ-

ence on the selection of a nearest neighbor of this variable. Clearly, choosing only

one category dummy is not a sensible option either.

The benefits of imputing a complete vector of missing values over variable-by-

variable imputation are:

• The distribution of the ’Y’ variables is potentially better preserved.

• Particularly, we avoid logical inconsistencies (among Y variables) as de-

scribed in the above section.

• Data that are nearly impossible to be directly imputed can be imputed via (ar-

tificial) replacement variables (e.g. factors or indices). An example for such a

data situation are measured purchases from a scanner-based consumer track-

ing panel. Purchases differ in number and description among households,

and every single purchase can be described by a large number of variables

(point of sale, date, category, brand, prize,...). Instead of imputing single

purchases, we create variables consisting of aggregated purchase behavior

per household, and define the ’household’ as observational unit for imputa-

tion (thus also avoiding dependencies among the observational units). After

identifying nearest neighbors for the households, the disaggregated purchase

behavior can be matched via the data keys, and we are free to choose our

analysis objective.

The drawback of the ’row-wise approach’ is that finding a nearest neighbor over

several Y’s always means to compromise: The more numerous or heterogenous the

Y variables, or the smaller the donor pool (i.e. the bigger the average distance of
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the matched pairs), the more ’watered-down’ the quality of the nearest neighbor-

match will be.

Both algorithms, BBPMM.col and BBPMM.row, will yield asymptotically identical

results, if the missing-data pattern is monotonous and if each variable has a unique

missing-data pattern.

7.3.2 Arguments

mis.data.pat An object created by fusion.prep that contains information on all
identified missing-data patterns. 1

block.imp A scalar or vector containing the number(s) of the block(s) consid-
ered for imputation. Per default only the last block is imputed.

M The number of multiple imputations. If M=1, no Bayesian Bootstrap
step is carried out.

out.file A character string that specifies the path and file name for the im-
puted data sets. If M>1, the extension ’ <m>’ is added before
the file extension to mark the number of the imputed data set. If
out.file=NULL (default), no data set is stored.

mod.sav A character string that specifies the path and file name for the model
parameters of all variables per blocks and imputed data set. If
mod.sav=NULL (default), the parameters are not written to an ex-
ternal file.

verbose The algorithm prints information on weighting matrices and impu-
tation numbers. Default=TRUE.

man.weights Optional argument containing manual weights for the PMM step.
man.weights can either be a list containing a vector for each missing-
ness pattern, or just a vector, if only one missingness pattern/block
exists. In either case, the number of elements in the vector(s) must
match the number of variables in the corresponding block. Note
that the higher the weight the lower the importance of a good match
for the corresponding variable’s predictive means.

tol An imported argument from function qr that specifies the tolerance
level for linear dependencies among the complete variables, and
defaults to 0.25 within BBPMM.row.

... Further arguments passed to or from other functions.
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7.3.3 Values

impdata The imputed data set, if M=1, or a list containing M imputed data
sets.

BB.impdata A list containing the M bootstrapped data sets (for diagnostic pur-
poses – only available if M>1).

weight.matrixA list containing weight matrices for all blocks and imputations.
model A list containing the imputation models for all blocks and imputa-

tions.
pairlist A list containing the donor/recipient pairlist data frames for all

blocks and imputations.
dist A list containing the PMM distance vectors for all blocks and impu-

tations.

7.3.4 Troubleshooting

Let Xk
obs be those values of the completely observed variables which are also ob-

served for a set of incomplete variables Yk = [yk,1 . . . yk,K ] with identical missing-

ness patterns. Furthermore let nk
obs denote the number of observed values for any

yk. If nk
obs < K, the algorithm returns a warning and proceeds with the imputa-

tion of the next block (missing-data pattern). Additionally, a QR decomposition

for Xk
obs is carried out to check for serious multi-collinearity among the imputa-

tion model variables, and again, the algorithm skips the imputation of Yk, if the

matrix does not have full rank at the specified tolerance level. Since BBPMM.row

also uses a Bayesian Bootstrap step, missing factor levels of variables that are part

of Xobs need to be dealt with analogously to BBPMM.col.
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8

Concluding remarks

Multiple Imputation in conjunction with Predictive Mean Matching solves many

of the problems that arise in imputation tasks with discrete survey data. Where

parametric approaches have to specify zero-inflated Poisson models (because of

the ‘hyperbolic’ character of some variables in the data set), lower and upper

bounds (to avoid implausible values), or where the empirical distribution does

not asymptotically resemble any statistical distribution, PMM will still give rela-

tively consistent unbiased estimates as the results from the experimental designs

in chapters 5 and 6 have demonstrated – even when the imputation model is (mod-

erately) misspecified. Robustness to model misspecification is an important issue

for statistical analysis of incomplete survey data, because the empirical probability

density functions of many variables do not resemble theoretical statistical distri-

butions, and thus inferences are prone to being biased, if the variable distributions

are not examined carefully.

The gist of this summary is not to encourage ‘imputers’ to be sloppy with the spec-

ification of their imputation models – because PMM will ‘right the wrongs’ any-

way. But for very large incomplete survey data sets (with several hundred or even

thousand variables), the specification of tailor-made imputation models for every

incomplete variable is not economic. The introduced MI algorithms can be ap-

plied to those mass imputation problems, while still yielding relatively consistent

and efficient estimators based on multiply imputed data.
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Overall, we think that the benefits – robustness to model misspecification and im-

putation of plausible values – of PMM easily outweigh the aforementioned draw-

backs for imputing incomplete survey data. Especially the observed value / plau-

sible value issue is hardly a handicap, since most survey data variables have ob-

servations on the complete domain of the variable1, unless the survey data suffer

from censoring problems as a particular form of missing-data problem.

So far, we have only introduced a PMM variant for (unordered) categorical vari-

ables. In a next step we will investigate the relative performance of it in compar-

ison with other proposed methods for MI of categorical variables. Additionally,

extension to ordered probit models can also be explored and be implemented into

another experimental design. This will also investigate, how legitimate it is to

treat ordered categorical variables as discrete metric-scale variables in combina-

tion with PMM. Remember: we assumed that the situation for ordered-categorical

variables can be compared to the imputation of genuine metric-scale variables un-

der a (slightly) misspecified imputation model.

One problem we will tackle in the future is the trade-off that arises in FCS ap-

proaches: When we impute variable Yk, we would like the other variables to ex-

plain this variable as well as possible. When we impute variable Yk+1, the former

regressand Yk and all but Yk+1 now form the set of regressors. But ideally, this

new set of regressors should not be multicollinear! An interesting alternative to

(forward) stepwise regression, could be least-angle regression (Efron et al. 2004).

Another aspect of potential improvement is the flexibility of the imputation model.

We have stated that tailor-made imputation models for every partially incomplete

variable are hardly feasible in large survey data sets, but there are non-parametric

regression approaches available that can automatically adjust our models. Gener-

alized additive models (GAMs) as described by Hastie & Tibshirani (1990) could

be used for mass imputation models, where only the hyperparameter λ that gov-

erns the ‘wriggliness of the tails’ of the model has to be specified upfront. First

tests have shown that careless specification of λ leads to very large between vari-

1Admittedly, for a few typical survey data variables like ‘age’ this is theoretically not true.
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ances for MI data sets, but sensible application could coalesce imputation model

robustness with PMM’s robustifying properties.
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Appendix A

Diagnostic plots for the alcoholism
study

This appendix section displays all histograms and Q-Q plots of the variables used

in the alcoholism study.

A.1 Transformed variables

A.1.1 Histograms

Figure A.1: Histogram: ALC QF before and after transformation
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Figure A.2: Histogram: AQF2 before and after transformation

Figure A.3: Histogram: COMPETE before and after transformation
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A.1.2 Q-Q plots

Figure A.4: Q-Q plot: ALC QF before and after transformation

Figure A.5: Q-Q plot: AQF2 before and after transformation

Figure A.6: Q-Q plot: COMPETE before and after transformation
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A.2 Untransformed variables

A.2.1 Histograms

Figure A.7: Histogram: AUDIT Figure A.8: Histogram: AUDIT2

Figure A.9: Histogram: CONSEQNC Figure A.10: Histogram: DRK DRIV
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A.2.2 Q-Q plots

Figure A.11: Q-Q plot: AUDIT Figure A.12: Q-Q plot: AUDIT2

Figure A.13: Q-Q plot: CONSEQNC Figure A.14: Q-Q plot: DRK DRIV
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Appendix B

Tables

B.1 Basic tables from the discrete-data MCMC experi-
mental design

In the following we list all basic tables for bias and coverage over all twelve data

situations:

B.1.1 Bias tables: five methods and ten quantities of interest

Table B.1: Bias: DS1 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) -0.35 2.8e-05 -0.00016 -0.00034 -0.011
V ar(Y ) -0.12 0.038 -0.0085 -0.0087 -0.013
p(Y < 3) 0.059 0.0015 -0.00027 -0.00035 0.0012
p(Y < 4) 0.088 0.0011 6e-04 0.00065 0.0029
p(Y < 6) 0.058 -0.0016 -0.00029 -0.00025 0.0016
ρ(X1, Y ) -0.011 -0.005 0.00097 0.00091 -0.012
ρ(X2, Y ) 0.00086 0.0076 0.00055 0.00062 0.016

α -0.00012 0.0019 0.0014 0.0015 0.032
β1 0.0011 0.00082 0.00057 0.00042 -0.017
β2 0.00091 0.0024 0.0018 0.0019 0.012
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Table B.2: Bias: DS1 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) -0.33 0.011 0.012 0.012 0.0037
V ar(Y ) -0.1 -0.018 -0.058 -0.057 -0.064
p(Y < 3) 0.054 -0.0013 -0.0038 -0.0036 -0.002
p(Y < 4) 0.084 -0.0012 -0.0019 -0.0017 0.00014
p(Y < 6) 0.053 -0.0054 -0.0041 -0.0044 -0.0027
ρ(X1, Y ) -0.012 -0.0063 -0.0016 -0.0016 -0.013
ρ(X2, Y ) 0.0013 0.012 0.0035 0.0041 0.019

α 0.0057 0.027 0.029 0.03 0.057
β1 0.002 -0.0055 -0.0086 -0.0085 -0.022
β2 3.8e-05 0.011 0.009 0.0095 0.019

Table B.3: Bias: DS1 MCAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 0.0012 0.00076 0.0012 0.00096 0.00082
V ar(Y ) -0.001 0.042 -0.0068 -0.0074 -0.0061
p(Y < 3) -0.00048 0.0015 -0.00011 -0.00016 -5.9e-05
p(Y < 4) -0.00037 4e-04 1e-04 0.00015 7.5e-05
p(Y < 6) -0.00014 -0.0018 -0.00055 -0.00051 -0.00039
ρ(X1, Y ) -0.00066 -0.0056 4e-04 0.00034 -0.013
ρ(X2, Y ) 4.2e-05 0.0068 -0.00018 -0.00018 0.015

α 0.0019 0.0032 0.0038 0.004 0.042
β1 -0.0011 -0.00091 -0.0013 -0.0016 -0.017
β2 -0.00018 0.00099 0.00075 0.00079 0.01

Table B.4: Bias: DS1 MCAR small
CC ROV PPMM BBPMM RPMM

E(Y ) -0.00059 0.0061 0.0074 0.0065 0.0059
V ar(Y ) -0.012 -0.017 -0.061 -0.06 -0.06
p(Y < 3) 0.00046 0.00092 -6e-04 -0.00033 -0.00022
p(Y < 4) 0.0016 0.00036 -0.0017 -0.0011 -0.00058
p(Y < 6) 0.00068 -0.0022 0.00021 0.00037 0.00033
ρ(X1, Y ) -0.00032 -0.0061 0.00024 0.00032 -0.011
ρ(X2, Y ) 0.0022 0.011 0.0037 0.0046 0.019

α -0.0022 0.021 0.02 0.019 0.052
β1 0.00099 -0.0053 -0.0047 -0.0042 -0.017
β2 0.0015 0.011 0.0099 0.011 0.02
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Table B.5: Bias: DS2 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) -0.36 -0.0018 -0.0039 -0.0051 -0.014
V ar(Y ) -0.14 0.01 -0.008 -0.011 -0.025
p(Y < 3) 0.066 0.0049 0.00074 0.00098 0.002
p(Y < 4) 0.079 -0.0074 0.0011 0.0012 0.0028
p(Y < 6) 0.044 -0.025 0.00023 0.00048 0.0018
ρ(X1, Y ) -0.011 -0.00047 0.0024 0.0021 -0.0058
ρ(X2, Y ) 0.0029 0.0012 -0.0031 -0.0031 0.0068

α -0.0076 0.00037 -0.0074 -0.0065 0.017
β1 0.00095 -0.00048 0.00072 -0.00059 -0.014
β2 -0.00072 0.0015 -0.0011 -0.0011 0.0076

Table B.6: Bias: DS2 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) -0.34 0.015 0.0028 0.00034 -0.0033
V ar(Y ) -0.15 -0.073 -0.13 -0.14 -0.12
p(Y < 3) 0.063 0.004 -0.00013 2e-05 0.00037
p(Y < 4) 0.074 -0.0094 -0.0027 -0.0022 -0.0014
p(Y < 6) 0.042 -0.027 0.00024 8.7e-05 0.00067
ρ(X1, Y ) -0.0071 -0.00087 0.0012 -0.0011 -0.0045
ρ(X2, Y ) -0.0024 0.0011 -0.0046 0.00021 0.0068

α 0.0049 0.043 0.045 0.055 0.056
β1 -0.003 -0.015 -0.026 -0.029 -0.027
β2 -0.00028 0.01 0.0092 0.015 0.019

Table B.7: Bias: DS2 MCAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 0.003 0.0072 0.0044 0.0045 0.0031
V ar(Y ) 0.012 0.025 0.012 0.012 0.00012
p(Y < 3) -0.00063 -0.00091 -0.00058 -5e-04 -0.00056
p(Y < 4) -0.00017 -0.013 -2e-04 -0.00026 -6.8e-05
p(Y < 6) -7e-04 -0.023 -0.0011 -0.0011 -0.00063
ρ(X1, Y ) -0.00061 -0.0028 -0.00035 -5e-04 -0.0082
ρ(X2, Y ) 0.00012 0.0033 0.00038 0.00054 0.01

α 0.0033 0.016 0.0073 0.0084 0.038
β1 -0.00098 -0.004 -0.0017 -0.0022 -0.015
β2 -0.00038 0.0021 0.00068 0.00086 0.0092
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Table B.8: Bias: DS2 MCAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 0.013 0.036 0.021 0.023 0.021
V ar(Y ) 0.098 0.031 -0.0034 0.0085 0.013
p(Y < 3) -0.0014 -0.001 -0.003 -0.0029 -0.0026
p(Y < 4) 6e-04 -0.014 -0.00069 -0.00035 -0.0015
p(Y < 6) -0.00081 -0.027 -0.0016 -0.0016 -0.0019
ρ(X1, Y ) 0.0026 -0.0021 0.004 0.00056 -0.003
ρ(X2, Y ) -0.00076 0.0068 0.00057 0.0048 0.011

α -0.005 0.049 0.025 0.038 0.044
β1 0.01 -0.004 0.00044 -0.0034 -0.0051
β2 -0.0012 0.011 0.0095 0.013 0.016

Table B.9: Bias: DS3 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) -0.47 0.0029 -0.0022 -0.0023 -0.022
V ar(Y ) -0.17 0.077 -0.0087 -0.0091 -0.04
p(Y < 3) 0.055 0.025 -0.00011 -7.8e-05 0.0014
p(Y < 4) 0.079 0.063 -5e-04 -0.00049 0.0015
p(Y < 6) 0.076 -0.076 0.00038 0.00033 0.0028
ρ(X1, Y ) -0.0069 -0.0056 -0.00088 -0.0011 -0.023
ρ(X2, Y ) 0.012 -0.00082 0.0091 0.0088 0.012

α -0.0064 0.46 -0.09 -0.084 0.1
β1 5e-04 -0.16 -0.0022 -0.0036 -0.1
β2 0.0033 -0.23 0.045 0.042 -0.064

Table B.10: Bias: DS3 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) -0.46 0.01 -0.00052 -0.0045 -0.0082
V ar(Y ) -0.21 0.016 -0.12 -0.12 -0.12
p(Y < 3) 0.052 0.021 -0.002 -0.0017 -0.001
p(Y < 4) 0.078 0.06 -0.0019 -0.0015 -0.00051
p(Y < 6) 0.074 -0.076 -0.0031 -0.0023 -0.00053
ρ(X1, Y ) -0.0079 -0.0096 -0.0039 -0.0062 -0.021
ρ(X2, Y ) 0.012 0.0039 0.0085 0.0078 0.012

α -0.0083 0.44 -0.021 -2e-04 0.1
β1 -0.0024 -0.17 -0.041 -0.05 -0.11
β2 0.007 -0.22 0.0083 -0.0039 -0.058
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Table B.11: Bias: DS3 MCAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) -0.0032 -4e-04 0.00016 -0.00026 0.00077
V ar(Y ) 0.0082 0.053 -0.008 -0.0081 -0.0089
p(Y < 3) 0.001 0.027 0.00031 0.00028 0.00019
p(Y < 4) 0.00043 0.069 -0.00055 -0.00053 -0.00055
p(Y < 6) 2.8e-05 -0.069 -0.00026 -0.00019 -3e-04
ρ(X1, Y ) 0.00029 -0.0058 -0.00082 -0.0011 -0.022
ρ(X2, Y ) 0.00077 0.00087 0.011 0.011 0.013

α -0.0041 0.44 -0.099 -0.096 0.12
β1 -0.00017 -0.16 -0.0023 -0.0035 -0.095
β2 0.0026 -0.23 0.051 0.049 -0.058

Table B.12: Bias: DS3 MCAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 0.0044 0.0053 -0.00052 0.0018 -0.001
V ar(Y ) -0.048 0.0027 -0.12 -0.084 -0.083
p(Y < 3) -0.0014 0.024 -0.002 -0.00041 0.00075
p(Y < 4) -0.00097 0.067 -0.0019 0.00077 0.00027
p(Y < 6) -0.00011 -0.068 -0.0031 -0.00093 0.00041
ρ(X1, Y ) -0.0013 -0.0092 -0.0039 -0.0053 -0.02
ρ(X2, Y ) 0.0049 0.0071 0.0085 0.012 0.016

α -0.012 0.42 -0.021 -0.035 0.078
β1 -0.00014 -0.17 -0.041 -0.04 -0.096
β2 0.0033 -0.21 0.0083 0.016 -0.042
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B.1.2 Coverage tables: five methods and ten quantities of interest

Table B.13: Coverage: DS1 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 0 93.6 93.6 93.8 93.6
V ar(Y ) 90.8 95.0 93.2 94.2 94.2
p(Y < 3) 4.4 96.6 92.0 91.6 93.4
p(Y < 4) 0 97.2 92.0 92.2 91.2
p(Y < 6) 0.8 97.6 88.4 88.4 88.8
ρ(X1, Y ) 92.2 95.4 95.6 96.0 81.6
ρ(X2, Y ) 95.8 91.4 96.2 97.0 51.0

α 95.2 96.8 91.2 93.0 80.8
β1 95.4 96.0 90.8 93.8 83.2
β2 95.2 97.0 89.0 92.0 72.4

Table B.14: Coverage: DS1 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 57.2 95.6 92.2 93.2 93.2
V ar(Y ) 96.8 97.0 92.4 92.8 94.2
p(Y < 3) 82.6 96.2 89.4 90.4 92.0
p(Y < 4) 67.0 97.4 91.2 92.0 92.8
p(Y < 6) 69.4 97.2 91.0 90.2 91.8
ρ(X1, Y ) 93.8 95.2 93.8 95.4 91.8
ρ(X2, Y ) 95.2 94.0 92.0 93.4 87.4

α 95.8 96.8 88.0 90.0 87.2
β1 95.4 95.0 88.8 92.8 87.2
β2 93.6 92.8 84.8 88.8 82.0
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Table B.15: Coverage: DS1 MCAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 94.6 94.8 93.6 93.8 93.2
V ar(Y ) 97.8 95.6 94.6 94.8 94.8
p(Y < 3) 96.2 97.8 91.8 92.8 92.0
p(Y < 4) 95.0 96.8 92.8 93.6 91.4
p(Y < 6) 95.2 96.2 92.6 91.4 91.4
ρ(X1, Y ) 96.6 94.2 95.6 97.0 79.8
ρ(X2, Y ) 95.4 91.6 96.4 97.6 53.6

α 96.0 96.6 89.8 92.0 76.2
β1 96.2 96.8 91.8 94.0 84.0
β2 95.6 95.6 89.8 94.4 76.8

Table B.16: Coverage: DS1 MCAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 93.8 95.6 93.8 93.8 94.4
V ar(Y ) 95.8 93.4 91.8 91.8 90.6
p(Y < 3) 95.6 96.6 91.6 92.2 91.8
p(Y < 4) 94.4 96.4 90.8 91.8 91.0
p(Y < 6) 93.4 98.0 90.0 90.0 90.6
ρ(X1, Y ) 96.6 94.6 94.0 95.4 91.0
ρ(X2, Y ) 95.2 93.0 92.2 93.4 87.2

α 93.4 93.0 82.2 86.0 83.0
β1 94.6 95.2 89.0 92.2 86.2
β2 92.2 93.4 84.2 86.0 82.4

Table B.17: Coverage: DS2 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 0.6 91.2 87.0 88.4 86.0
V ar(Y ) 78.6 82.0 75.2 75.8 74.8
p(Y < 3) 3.2 96.6 91.2 90.8 90.4
p(Y < 4) 0.8 95.8 94.0 94.6 91.0
p(Y < 6) 12.0 55.0 89.4 88.2 84.6
ρ(X1, Y ) 90.8 90.6 89.6 91.6 87.8
ρ(X2, Y ) 89.8 89.6 87.6 91.4 85.2

α 96.2 96.2 94.2 94.6 92.0
β1 95.2 93.8 93.0 94.6 85.4
β2 95.0 95.2 90.8 93.2 87.0
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Table B.18: Coverage: DS2 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 69.2 92.6 88.0 88.6 85.8
V ar(Y ) 82.2 81.6 72.4 71.0 69.2
p(Y < 3) 75.8 99.0 92.6 93.2 92.0
p(Y < 4) 74.8 98.8 90.0 90.8 90.0
p(Y < 6) 80.6 92.2 88.0 88.8 84.4
ρ(X1, Y ) 91.0 89.4 86.4 89.8 85.8
ρ(X2, Y ) 87.0 85.0 80.6 81.4 79.0

α 95.2 93.4 89.4 91.0 89.2
β1 94.6 95.0 90.4 95.0 86.8
β2 95.0 94.8 87.6 91.6 80.6

Table B.19: Coverage: DS2 MCAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 93.8 93.6 91.6 90.4 88.8
V ar(Y ) 82.4 81.4 82.0 81.4 78.8
p(Y < 3) 95.2 98.2 90.8 90.4 91.2
p(Y < 4) 95.4 89.4 94.4 94.0 90.2
p(Y < 6) 96.0 56.4 90.4 90.6 88.0
ρ(X1, Y ) 92.4 89.0 89.0 92.2 86.6
ρ(X2, Y ) 86.6 87.2 87.4 91.8 80.6

α 95.0 94.4 91.2 92.0 88.4
β1 96.2 94.4 93.0 97.2 88.6
β2 95.6 95.6 92.8 94.8 86.6

Table B.20: Coverage: DS2 MCAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 93.6 94.2 90.0 89.8 89.6
V ar(Y ) 83.4 82.0 77.2 77.8 77.6
p(Y < 3) 94.6 99.0 90.4 90.4 90.2
p(Y < 4) 95.4 97.4 90.6 91.2 90.4
p(Y < 6) 93.2 93.6 90.6 91.8 90.6
ρ(X1, Y ) 91.4 89.4 86.8 89.8 82.8
ρ(X2, Y ) 89.0 89.4 85.4 88.4 83.2

α 95.2 95.4 86.4 90.2 86.0
β1 96.8 96.6 94.6 97.2 87.6
β2 97.8 97.0 92.4 95.2 87.8
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Table B.21: Coverage: DS3 MAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 0 96.0 93.0 93.4 88.8
V ar(Y ) 80.8 88.4 87.4 87.4 84.8
p(Y < 3) 1.4 30.0 93.4 94.0 93.2
p(Y < 4) 0 0 94.2 94.8 93.6
p(Y < 6) 0 0 92.4 93.2 89.6
ρ(X1, Y ) 91.4 94.0 95.0 96.0 7.6
ρ(X2, Y ) 95.8 98.0 94.4 96.6 92.2

α 95.6 44.4 90.6 98.0 82.8
β1 95.2 0 89.2 90.4 3.2
β2 95.8 42.6 90.4 97.6 81.2

Table B.22: Coverage: DS3 MAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 43.2 96.2 93.8 93.6 91.8
V ar(Y ) 86.8 89.2 83.2 84.8 86.4
p(Y < 3) 75.6 93.6 91.8 92.8 92.4
p(Y < 4) 66.8 64.6 92.0 93.8 91.6
p(Y < 6) 46.4 55.6 91.8 92.2 90.0
ρ(X1, Y ) 98.2 97.6 95.4 96.6 80.4
ρ(X2, Y ) 96.0 95.2 90.0 93.8 87.6

α 95.0 96.0 93.0 97.4 82.0
β1 95.2 56.8 84.4 87.4 60.2
β2 95.2 96.2 93.2 96.8 81.4

Table B.23: Coverage: DS3 MCAR BIG
CC ROV PPMM BBPMM RPMM

E(Y ) 92.2 92.2 93.4 93.4 92.8
V ar(Y ) 92.8 91.2 90.4 89.8 89.4
p(Y < 3) 95.0 25.6 95.2 95.8 94.2
p(Y < 4) 94.4 0 95.0 94.6 91.4
p(Y < 6) 95.0 0 96.0 95.0 93.4
ρ(X1, Y ) 97.6 93.4 97.4 97.0 4.6
ρ(X2, Y ) 97.8 96.8 93.2 95.0 89.4

α 96.2 44.4 91.2 97.0 80.4
β1 95.2 0 90.6 93.2 3.8
β2 95.2 42.2 90.8 96.6 79.0
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Table B.24: Coverage: DS3 MCAR small
CC ROV PPMM BBPMM RPMM

E(Y ) 94.2 95.0 93.8 95.0 93.2
V ar(Y ) 89.2 89.6 83.2 89.4 87.4
p(Y < 3) 91.6 93.0 91.8 93.4 90.8
p(Y < 4) 92.4 59.6 92.0 93.2 92.4
p(Y < 6) 93.2 57.2 91.8 93.0 91.6
ρ(X1, Y ) 97.8 96.8 95.4 94.0 84.6
ρ(X2, Y ) 94.2 94.4 90.0 92.8 87.0

α 91.8 94.4 93.0 97.0 82.8
β1 92.0 53.8 84.4 88.8 66.2
β2 91.2 93.8 93.2 97.4 83.2
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B.2 Tables from the analysis of the alcoholism study

B.2.1 Original data set: proportion and mean estimates

Table B.25: Proportions and means based on the different imputation methods
estimate lower bound upper bound

p(DR1 = 0) CC 0.4807 0.4602 0.5012
BBPMMO 0.4755 0.4603 0.4908
BBPMMT 0.4759 0.4608 0.4911

IVE 0.4757 0.4605 0.4909
p(DRK = 0) CC 0.5136 0.4931 0.5341

BBPMMO 0.4926 0.4739 0.5113
BBPMMT 0.4958 0.4759 0.5157

IVE 0.501 0.4826 0.5195
E(AQF ) CC 3.236 3.107 3.364

BBPMMO 3.388 3.349 3.427
BBPMMT 3.387 3.348 3.426

IVE 3.386 3.346 3.425
E(AUD) CC 4.09 3.928 4.252

BBPMMO 4.218 4.17 4.265
BBPMMT 4.215 4.168 4.263

IVE 4.216 4.169 4.263
E(COM) CC 3.443 3.42 3.466

BBPMMO 3.442 3.435 3.448
BBPMMT 3.441 3.434 3.448

IVE 3.44 3.433 3.447
E(DR1|DR1 > 0) CC 2.466 2.323 2.608

BBPMMO 2.504 2.47 2.537
BBPMMT 2.504 2.473 2.536

IVE 2.512 2.48 2.543
E(CON) CC 0.001749 -0.03083 0.03433

BBPMMO 0.1245 0.1136 0.1354
BBPMMT 0.1356 0.1226 0.1487

IVE 0.05464 0.02818 0.08109
E(AU2) CC 3.723 3.575 3.872

BBPMMO 3.954 3.852 4.056
BBPMMT 4.034 3.953 4.114

IVE 4.173 4.095 4.251
E(DRK|DRK > 0) CC 2.008 1.884 2.133

BBPMMO 1.971 1.868 2.073
BBPMMT 2.011 1.937 2.085

IVE 2.375 2.3 2.449
E(AQ2) CC 2.917 2.803 3.031

BBPMMO 3.142 3.063 3.22
BBPMMT 3.178 3.114 3.241

IVE 3.195 3.087 3.303
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B.2.2 Original data set: variance estimates

Table B.26: Variances based on the different imputation methods
estimate variance lower bound upper bound

V ar(AQF ) CC 9.76 0.002319 8.881 10.73
BBPMMO 10.63 0.001193 9.939 11.38
BBPMMT 10.62 0.001187 9.929 11.36

IVE 10.63 0.001188 9.939 11.38
V ar(AUD) CC 15.52 0.002331 14.12 17.06

BBPMMO 16.35 0.00131 15.23 17.55
BBPMMT 16.32 0.001311 15.2 17.52

IVE 16.31 0.001309 15.19 17.51
V ar(COM) CC 0.3176 0.00141 0.2951 0.3419

BBPMMO 0.3201 0.0007787 0.3031 0.3381
BBPMMT 0.3204 0.0007788 0.3033 0.3384

IVE 0.3196 0.0007737 0.3026 0.3375
V ar(DR1) CC 4.749 0.003388 4.237 5.322

BBPMMO 4.783 0.00186 4.395 5.205
BBPMMT 4.783 0.001831 4.398 5.201

IVE 4.764 0.00179 4.385 5.176
V ar(CON) CC 0.6293 0.001486 0.5835 0.6787

BBPMMO 0.4261 0.001721 0.3928 0.4623
BBPMMT 0.4269 0.001817 0.3926 0.4642

IVE 0.6046 0.000945 0.5691 0.6423
V ar(AU2) CC 13.11 0.002986 11.78 14.59

BBPMMO 12.04 0.003375 10.73 13.52
BBPMMT 12.55 0.002528 11.37 13.86

IVE 12.25 0.001388 11.38 13.18
V ar(DR1) CC 3.186 0.004633 2.788 3.641

BBPMMO 3.17 0.004444 2.777 3.618
BBPMMT 3.286 0.00355 2.922 3.696

IVE 3.498 0.002211 3.188 3.838
V ar(AQ2) CC 7.767 0.002854 6.995 8.624

BBPMMO 7.222 0.003134 6.461 8.073
BBPMMT 7.271 0.0023 6.614 7.994

IVE 10.76 0.002878 9.668 11.98
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B.2.3 Original data set: model parameter estimates

Table B.27: Regression parameters based on the different imputation methods
estimate lower bound upper bound

α1 CC -1.107 -1.632 -0.5822
BBPMMO -1.191 -1.683 -0.6989
BBPMMT -1.365 -1.865 -0.8648

IVE -1.079 -1.586 -0.5716
α2 CC -0.4021 -0.9253 0.1211

BBPMMO -0.5083 -0.9977 -0.019
BBPMMT -0.7079 -1.203 -0.2134

IVE -0.6128 -1.12 -0.1056
α3 CC 0.1861 -0.3373 0.7095

BBPMMO 0.05902 -0.4248 0.5429
BBPMMT -0.1592 -0.661 0.3426

IVE -0.2878 -0.7986 0.223
α4 CC 1.238 0.7093 1.767

BBPMMO 1.066 0.5817 1.549
BBPMMT 0.8211 0.3258 1.316

IVE 0.5578 0.02944 1.086
β1 CC -0.4626 -0.6101 -0.3151

BBPMMO -0.4744 -0.617 -0.3318
BBPMMT -0.516 -0.6554 -0.3767

IVE -0.4114 -0.5567 -0.2661
β2 CC 2.973 2.655 3.292

BBPMMO 2.515 2.182 2.848
BBPMMT 2.233 1.938 2.528

IVE 2.509 2.111 2.908
γ CC 1.704 1.625 1.783

BBPMMO 1.753 1.68 1.827
BBPMMT 1.72 1.64 1.801

IVE 1.772 1.673 1.871
δ1 CC -0.2 -0.2995 -0.1005

BBPMMO -0.1968 -0.2963 -0.09734
BBPMMT -0.1399 -0.2148 -0.065

IVE -0.2645 -0.3331 -0.1959
δ2 CC -0.1008 -0.1825 -0.01924

BBPMMO -0.1 -0.1782 -0.02189
BBPMMT -0.1395 -0.2056 -0.07339

IVE -0.105 -0.1458 -0.0643
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B.2.4 Original data set: correlation estimates

Table B.28: Correlation estimates based on the complete cases
estimate variance lower bound upper bound

ρ(AQF,AUD) 0.86 0.00044 0.85 0.87
ρ(AQF,COM) -0.2 0.00044 -0.24 -0.16
ρ(AUD,COM) -0.23 0.00044 -0.27 -0.19
ρ(AQF,DR1) 0.63 0.00044 0.6 0.65
ρ(AUD,DR1) 0.65 0.00044 0.63 0.67
ρ(COM,DR1) -0.2 0.00044 -0.24 -0.16
ρ(AQF,CON) 0.42 0.00044 0.38 0.45
ρ(AUD,CON) 0.41 0.00044 0.38 0.45
ρ(COM,CON) -0.11 0.00044 -0.15 -0.072
ρ(DR1, CON) 0.29 0.00044 0.26 0.33
ρ(AQF,AU2) 0.56 0.00044 0.54 0.59
ρ(AUD,AU2) 0.61 0.00044 0.58 0.63
ρ(COM,AU2) -0.13 0.00044 -0.17 -0.094
ρ(DR1, AU2) 0.46 0.00044 0.43 0.49
ρ(CON,AU2) 0.64 0.00044 0.62 0.67
ρ(AQF,DR1) 0.44 0.00044 0.41 0.47
ρ(AUD,DR1) 0.43 0.00044 0.39 0.46
ρ(COM,DR1) -0.15 0.00044 -0.19 -0.11
ρ(DR1, DR1) 0.49 0.00044 0.46 0.52
ρ(CON,DR1) 0.4 0.00044 0.36 0.43
ρ(AU2, DR1) 0.62 0.00044 0.59 0.64
ρ(AQF,AQ2) 0.6 0.00044 0.57 0.62
ρ(AUD,AQ2) 0.57 0.00044 0.54 0.6
ρ(COM,AQ2) -0.13 0.00044 -0.17 -0.094
ρ(DR1, AQ2) 0.44 0.00044 0.4 0.47
ρ(CON,AQ2) 0.6 0.00044 0.57 0.62
ρ(AU2, AQ2) 0.84 0.00044 0.83 0.85
ρ(DR1, AQ2) 0.61 0.00044 0.58 0.63
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Table B.29: Correlation estimates based on BBPMMO
estimate variance lower bound upper bound

ρ(AQF,AUD) 0.86 0.00024 0.85 0.87
ρ(AQF,COM) -0.19 0.00024 -0.22 -0.16
ρ(AUD,COM) -0.22 0.00024 -0.25 -0.19
ρ(AQF,DR1) 0.61 0.00025 0.59 0.63
ρ(AUD,DR1) 0.64 0.00025 0.62 0.66
ρ(COM,DR1) -0.21 0.00024 -0.24 -0.18
ρ(AQF,CON) 0.36 0.00032 0.32 0.39
ρ(AUD,CON) 0.35 3e-04 0.32 0.38
ρ(COM,CON) -0.094 0.00034 -0.13 -0.058
ρ(DR1, CON) 0.25 0.00032 0.21 0.28
ρ(AQF,AU2) 0.53 0.00062 0.5 0.57
ρ(AUD,AU2) 0.58 0.00069 0.54 0.61
ρ(COM,AU2) -0.12 0.00036 -0.16 -0.084
ρ(DR1, AU2) 0.44 0.00054 0.4 0.47
ρ(CON,AU2) 0.58 0.00032 0.56 0.6
ρ(AQF,DR1) 0.41 0.00057 0.37 0.45
ρ(AUD,DR1) 0.4 0.00057 0.36 0.44
ρ(COM,DR1) -0.15 0.00039 -0.19 -0.11
ρ(DR1, DR1) 0.47 6e-04 0.44 0.51
ρ(CON,DR1) 0.35 0.00037 0.32 0.39
ρ(AU2, DR1) 0.6 0.00066 0.57 0.64
ρ(AQF,AQ2) 0.54 0.00067 0.5 0.58
ρ(AUD,AQ2) 0.51 0.00063 0.47 0.54
ρ(COM,AQ2) -0.11 0.00034 -0.15 -0.077
ρ(DR1, AQ2) 0.39 0.00047 0.35 0.43
ρ(CON,AQ2) 0.55 0.00033 0.53 0.58
ρ(AU2, AQ2) 0.83 0.00051 0.81 0.84
ρ(DR1, AQ2) 0.59 0.00077 0.55 0.63

119



Table B.30: Correlation estimates based on BBPMMT
estimate variance lower bound upper bound

ρ(AQF,AUD) 0.86 0.00024 0.85 0.87
ρ(AQF,COM) -0.19 0.00024 -0.22 -0.16
ρ(AUD,COM) -0.22 0.00024 -0.25 -0.19
ρ(AQF,DR1) 0.61 0.00025 0.59 0.62
ρ(AUD,DR1) 0.64 0.00026 0.62 0.66
ρ(COM,DR1) -0.21 0.00024 -0.24 -0.18
ρ(AQF,CON) 0.35 0.00032 0.32 0.38
ρ(AUD,CON) 0.35 0.00036 0.32 0.38
ρ(COM,CON) -0.098 3e-04 -0.13 -0.064
ρ(DR1, CON) 0.26 0.00035 0.22 0.29
ρ(AQF,AU2) 0.54 0.00071 0.5 0.58
ρ(AUD,AU2) 0.61 0.00075 0.57 0.64
ρ(COM,AU2) -0.13 0.00038 -0.17 -0.096
ρ(DR1, AU2) 0.47 0.00094 0.42 0.51
ρ(CON,AU2) 0.55 4e-04 0.52 0.58
ρ(AQF,DR1) 0.4 0.00059 0.36 0.44
ρ(AUD,DR1) 0.41 0.00058 0.37 0.45
ρ(COM,DR1) -0.16 0.00033 -0.2 -0.13
ρ(DR1, DR1) 0.49 9e-04 0.45 0.54
ρ(CON,DR1) 0.33 3e-04 0.3 0.36
ρ(AU2, DR1) 0.61 0.00062 0.57 0.64
ρ(AQF,AQ2) 0.52 0.00044 0.49 0.55
ρ(AUD,AQ2) 0.51 0.00041 0.48 0.54
ρ(COM,AQ2) -0.13 0.00045 -0.17 -0.084
ρ(DR1, AQ2) 0.4 0.00069 0.36 0.45
ρ(CON,AQ2) 0.57 0.00032 0.54 0.59
ρ(AU2, AQ2) 0.75 0.00087 0.73 0.78
ρ(DR1, AQ2) 0.52 0.00054 0.48 0.55
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Table B.31: Correlation estimates based on IVEware
estimate variance lower bound upper bound

ρ(AQF,AUD) 0.86 0.00024 0.85 0.87
ρ(AQF,COM) -0.19 0.00024 -0.22 -0.16
ρ(AUD,COM) -0.22 0.00024 -0.24 -0.19
ρ(AQF,DR1) 0.61 0.00024 0.59 0.63
ρ(AUD,DR1) 0.64 0.00025 0.62 0.66
ρ(COM,DR1) -0.21 0.00024 -0.24 -0.18
ρ(AQF,CON) 0.42 0.00037 0.39 0.45
ρ(AUD,CON) 0.39 0.00044 0.35 0.42
ρ(COM,CON) -0.1 0.00037 -0.14 -0.065
ρ(DR1, CON) 0.27 0.00041 0.23 0.31
ρ(AQF,AU2) 0.54 0.00049 0.51 0.57
ρ(AUD,AU2) 0.58 6e-04 0.54 0.61
ρ(COM,AU2) -0.12 0.00034 -0.16 -0.089
ρ(DR1, AU2) 0.43 0.00053 0.39 0.47
ρ(CON,AU2) 0.65 0.00047 0.62 0.67
ρ(AQF,DR1) 0.43 4e-04 0.4 0.46
ρ(AUD,DR1) 0.4 0.00046 0.36 0.43
ρ(COM,DR1) -0.14 0.00046 -0.19 -0.1
ρ(DR1, DR1) 0.45 0.00087 0.4 0.49
ρ(CON,DR1) 0.51 0.00049 0.48 0.55
ρ(AU2, DR1) 0.66 0.00044 0.63 0.68
ρ(AQF,AQ2) 0.53 0.00054 0.49 0.56
ρ(AUD,AQ2) 0.48 0.00063 0.44 0.52
ρ(COM,AQ2) -0.12 0.00044 -0.17 -0.083
ρ(DR1, AQ2) 0.37 0.00071 0.32 0.41
ρ(CON,AQ2) 0.69 3e-04 0.67 0.7
ρ(AU2, AQ2) 0.78 0.00064 0.76 0.8
ρ(DR1, AQ2) 0.67 0.0012 0.63 0.71
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B.2.5 Jackknife simulations: proportion and mean estimates

Table B.32: CC: Average mean and proportion estimates from 500 jackknife sam-
ples

E(Y ) Bias MSE lower bound upper bound coverage λ
AQF 3 -0.24 0.14 2.6 3.4 0.79 NA

AUDIT 3.8 -0.27 0.21 3.3 4.3 0.81 NA
COMPETE 3.5 0.015 0.0032 3.4 3.5 0.93 NA

DR1|DRI1 > 0 2.4 -0.075 0.12 1.9 2.9 0.91 NA
DR1|DRI1 = 0 0.5 0.021 0.0029 0.43 0.57 0.92 NA
CONSEQNC -0.045 -0.046 0.0083 -0.16 0.068 0.91 NA

AUDIT2 3.5 -0.27 0.18 3 3.9 0.82 NA
DRIV|DRIV > 0 1.9 -0.11 0.098 1.5 2.3 0.91 NA
DRIV|DRIV = 0 0.54 0.025 0.0031 0.47 0.61 0.92 NA

AQF 2 2.7 -0.2 0.11 2.3 3.1 0.77 NA

Table B.33: BBPMMO: Average mean and proportion estimates from 500 jackknife
samples

E(Y ) Bias MSE lower bound upper bound coverage λ
AQF 3.2 -0.041 0.083 2.8 3.6 0.95 0.12

AUDIT 4 -0.051 0.13 3.5 4.5 0.95 0.12
COMPETE 3.4 0.0034 0.0032 3.4 3.5 0.95 0.25

DR1|DRI1 > 0 2.5 0.0049 0.12 2 3 0.95 0.22
DR1|DRI1 = 0 0.49 0.0078 0.0023 0.42 0.55 0.96 0.2
CONSEQNC -0.0035 -0.0053 0.0033 -0.065 0.058 0.79 0.27

AUDIT2 3.7 -0.039 0.11 3.2 4.2 0.95 0.13
DRIV|DRIV > 0 2 -0.013 0.092 1.6 2.4 0.94 0.24
DRIV|DRIV = 0 0.52 0.0051 0.0023 0.45 0.58 0.95 0.21

AQF 2 2.9 -0.034 0.066 2.5 3.3 0.96 0.13

Table B.34: BBPMMT: Average mean and proportion estimates from 500 jackknife
samples

E(Y ) Bias MSE lower bound upper bound coverage λ
AQF 3.2 -0.053 0.086 2.8 3.6 0.95 0.16

AUDIT 4.1 -0.02 0.13 3.6 4.6 0.94 0.14
COMPETE 3.4 0.0031 0.0032 3.4 3.5 0.95 0.25

DR1|DRI1 > 0 2.5 0.005 0.12 2 3 0.96 0.22
DR1|DRI1 = 0 0.49 0.0075 0.0023 0.42 0.55 0.95 0.2
CONSEQNC 0.0049 0.0032 0.0029 -0.051 0.061 0.76 0.14

AUDIT2 3.7 -0.023 0.11 3.2 4.2 0.96 0.15
DRIV|DRIV > 0 2 -0.008 0.093 1.6 2.4 0.93 0.25
DRIV|DRIV = 0 0.52 0.0047 0.0023 0.45 0.58 0.96 0.21

AQF 2 2.9 -0.032 0.067 2.5 3.3 0.96 0.15
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Table B.35: IVEware: Average mean and proportion estimates from 500 jackknife
samples

E(Y ) Bias MSE lower bound upper bound coverage λ
AQF 3.3 0.036 0.089 2.8 3.7 0.99 0.27

AUDIT 4.2 0.12 0.14 3.7 4.7 0.95 0.11
COMPETE 3.4 -0.046 0.0051 3.3 3.5 0.8 0.24

DR1|DRI1 > 0 2.6 0.16 0.14 2.2 3.1 0.9 0.2
DR1|DRI1 = 0 0.48 0.0022 0.0022 0.42 0.55 0.97 0.21
CONSEQNC 0.00058 -0.0012 0.0039 -0.077 0.078 0.88 0.23

AUDIT2 3.8 0.11 0.12 3.4 4.3 0.95 0.12
DRIV|DRIV > 0 2.1 0.14 0.11 1.7 2.5 0.91 0.23
DRIV|DRIV = 0 0.51 -0.001 0.0022 0.45 0.58 0.96 0.23

AQF 2 2.9 0.03 0.072 2.6 3.3 0.98 0.22

B.2.6 Jackknife simulations: model parameter estimates

Table B.36: CC: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.2 -0.073 2 -3.2 0.84 0.96 NA
α2 -0.73 -0.32 2.1 -2.7 1.3 0.95 NA
α3 -0.43 -0.62 2.4 -2.4 1.6 0.91 NA
α4 -0.077 -1.3 3.8 -2.1 1.9 0.78 NA
β1 -0.25 0.21 0.21 -0.82 0.33 0.91 NA
β2 0.97 -2 4.2 0.45 1.5 0.012 NA
γ 1.5 -0.25 0.22 1 1.9 0.55 NA
δ1 -0.12 0.082 0.27 -0.75 0.52 0.9 NA
δ2 -0.14 -0.037 0.21 -0.69 0.41 0.93 NA

Table B.37: BBPMMO: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.3 -0.15 1.8 -3.3 0.79 0.98 0.45
α2 -0.59 -0.19 1.8 -2.6 1.5 0.98 0.45
α3 -0.041 -0.23 1.8 -2.1 2 0.97 0.45
α4 0.93 -0.31 1.9 -1.1 3 0.97 0.45
β1 -0.45 0.012 0.15 -1 0.13 0.97 0.44
β2 2 -0.94 1.3 0.98 3.1 0.56 0.54
γ 1.7 0.019 0.064 1.4 2.1 0.93 0.5
δ1 -0.16 0.042 0.086 -0.57 0.26 0.96 0.58
δ2 -0.16 -0.056 0.063 -0.5 0.19 0.97 0.55
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Table B.38: BBPMMT: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.3 -0.18 1.8 -3.3 0.75 0.98 0.44
α2 -0.62 -0.22 1.8 -2.6 1.4 0.98 0.44
α3 -0.079 -0.26 1.8 -2.1 1.9 0.97 0.44
α4 0.88 -0.35 1.9 -1.1 2.9 0.97 0.44
β1 -0.46 -0.0011 0.14 -1 0.11 0.98 0.44
β2 2 -0.92 1.3 1.1 3 0.52 0.47
γ 1.7 -0.012 0.057 1.4 2 0.93 0.48
δ1 -0.068 0.13 0.063 -0.41 0.27 0.93 0.51
δ2 -0.22 -0.12 0.054 -0.51 0.066 0.95 0.5

Table B.39: IVEware: Average parameter estimates from 500 jackknife samples
E(Y ) Bias MSE lower bound upper bound coverage λ

α1 -1.5 -0.35 2.2 -3.6 0.68 0.96 0.45
α2 -0.93 -0.53 2.4 -3.1 1.2 0.95 0.45
α3 -0.57 -0.75 2.6 -2.7 1.6 0.92 0.45
α4 0.27 -0.97 3 -1.9 2.4 0.88 0.46
β1 -0.5 -0.037 0.18 -1.1 0.12 0.97 0.46
β2 1.9 -1 1.4 1.1 2.8 0.29 0.52
γ 1.8 0.059 0.064 1.4 2.1 0.95 0.49
δ1 -0.15 0.053 0.034 -0.43 0.14 0.98 0.49
δ2 -0.18 -0.082 0.033 -0.43 0.059 0.97 0.41

124



Appendix C

R code

C.1 BBPMM.row – Bayesian Bootstrap Predictive
Mean Matching for missing-by-design patterns

BBPMM.row <- function(mis.data.pat,
block.imp = length(mis.data.pat$blocks),
M=10,
out.file = NULL,
mod.sav = NULL,
man.weights = NULL,
verbose = T,
tol=0.25,
...)

{
pairlist <- list()
weight.matrix <- list()
model <- list()
dist <- list()
y.hat <- list()
impdata <- list()
BB.impdata <- list()
data.set <- mis.data.pat$data
key <- mis.data.pat$key
block <- mis.data.pat$blocks
comp.names <- mis.data.pat$comp.names
if (!is.null(key) && ncol(key) == 1) {
Donid <- Recid <- names(key)[1]

} else if (!is.null(key) && ncol(key) == 2) {
Recid <- names(key)[1]
Donid <- names(key)[2]

} else if (is.null(key)) {
pairlist <- NULL}

org.names <- var.names <- names(data.set)
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w.model <- NULL
if(!is.null(man.weights)) {
if(is.vector(man.weights)) {
if(length(block.imp) > 1) {
stop(paste("Only one vector with manual weights, but more than one",

"block specified for imputation!\n"))}
if (any(unlist(man.weights) < 0)) {
stop(paste("man.weights contains negative value(s)!\n"))}

man.weights2 <- man.weights
man.weights <- list()
man.weights[[block.imp]] <- man.weights2 }

if(length(setdiff(block.imp, 1:length(block))) > 0) {
stop(paste(as.character(block.imp),"is not a subset of the number of",

"different missing-data patterns (blocks)!\n"))}
for (i in 1:length(man.weights)) {
man.weights[[i]][man.weights[[i]]==0] <- 1e-16

}
}
n <- nrow(data.set)
l <- ncol(data.set)
### first loop for MI----------------------------------------------------
for (m in 1:M) {
if(!is.null(key)) {
pairlist[[m]] <- list()

}
weight.matrix[[m]] <- list()
model[[m]] <- list()
dist[[m]] <- list()
y.hat[[m]] <- list()
impdata[[m]] <- data.set
for (j in 1:length(block)) { # second loop for different blocks
model[[m]][[j]] <- NULL
k.model <- NULL
miss <- function(x) {any(is.na(x)) }
mrow <- apply(as.matrix(data.set[ ,block[[j]]]), 1, miss)
mis.pos <- (1:n) [mrow == TRUE]
obs.pos <- (1:n) [mrow == FALSE]
S.xy <- NULL
## Test for available degress of freedom in the model
if((length(obs.pos)-1) <= length(comp.names)) {
warning(paste("Ratio between completely observed values for block",

j, "and imputation model variables is too small!\n"))
next

}
## Test for multicollinearity
## QR decomposition
mc.test <- qr(as.matrix(data.set[obs.pos, comp.names]))
if (mc.test$rank != length(comp.names)) {
warning(paste("Multicollinearity in imputation model for block",

j,"too strong!\n"))
next

}
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if (length(comp.names > 1)) {
xvars <- paste(comp.names,collapse= ’ + ’)

} else if (length(comp.names == 1)) {
xvars <- as.character(comp.names) }

y.hat[[m]][[j]] <- matrix(nrow=n,ncol=length(block[[j]]))
co2 <- 0
dist[[m]][[j]] <- vector()
if(M > 1){
BB.data <- data.set
BB.ind <- BayesBoot(ind.obs = obs.pos)
BB.data[obs.pos, ] <- data.set[BB.ind, ]

}
for (k in block[[j]]) {
co2 <- co2+1
if (co2 == 1) {
s.model <- as.formula(paste(var.names[k],’ ˜ ’,xvars))
if(M == 1) {
regmod <- lm(s.model, data=data.set, na.action=na.exclude)

} else if(M > 1) {
BB.stab <- BB.mod.stab.glm(data=data.set,BB.data=BB.data,

s.model=s.model)
regmod <- BB.stab$model
if (any(BB.stab$mislevpos == T) && co2 == 1) {
warning(paste("Imputation ",m,": Bayesian Bootstrap dropped ",

"at least one category of a factor variable!\n",
sep=""))

}
}
var.T <- var(data.set[ ,k], na.rm=T)
var.U <- var(regmod$residuals)

} else if (co2 > 1) {
if (length(var.names[block[[j]]][1:(co2-1)]) > 1) {
lside <- var.names[block[[j]]][1:(co2-1)]
xvars.e <- paste(lside, collapse=’ + ’)

} else if (length(var.names[block[[j]]][1:(co2-1)]) == 1) {
xvars.e <- as.character(var.names[block[[j]]][1:(co2-1)]) }

s.model.e <- as.formula(paste(var.names[k],’ ˜ ’,xvars.e))
if(M == 1) {
regmod.e <- lm(s.model.e, data=data.set, na.action=na.exclude)

} else if(M > 1) {
regmod.e <- lm(s.model.e, data=BB.data, na.action=na.exclude)

}
y.c <- rep(NA, n)
y.c[obs.pos] <- regmod.e$residuals
data.set.2 <- as.data.frame(cbind(y.c,data.set[ ,comp.names]))
s.model <- as.formula(paste(names(data.set.2[1]),’ ˜ ’,xvars))
if(M == 1) {
regmod <- lm(s.model, data=data.set.2, na.action=na.exclude)

} else if(M > 1) {
BB.data.2 <- as.data.frame(cbind(y.c,BB.data[ ,comp.names]))
BB.stab <- BB.mod.stab.glm(data=data.set.2,BB.data=BB.data.2,

s.model=s.model)
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regmod <- BB.stab$model
}
var.T <- var(y.c, na.rm=T)
var.U <- var(regmod$residuals)

}
if (M > 1 && any(BB.stab$mislevpos == T)) {
BB.regmod <- lm(s.model, data=BB.data, na.action=na.exclude)
c.namen <- names(BB.stab$c.model$coefficients)
paranames <- list()
paranames[[1]] <- rownames(coef(summary(BB.stab$c.model)))
paranames[[2]] <- colnames(coef(summary(BB.stab$c.model)))
para <- matrix(nrow=length(c.namen),ncol=4,dimnames=paranames)
para[BB.stab$mislevpos==F,] <- signif(coef(summary(BB.regmod)),3)
para[BB.stab$mislevpos==T,] <- c(0,NA,NA,NA)

} else { para <- signif(coef(summary(regmod)),3) }
k.model <- rbind(k.model,

c(var.names[k],colnames(para)),
cbind(rownames(para), para))

y.hat[[m]][[j]][ ,co2] <- predict(regmod,newdata=data.set,
na.action="na.fail")

## multicollinearity among ys
if (is.na(var.T) || var.T < 1e-16) {
S.xy[co2] <- 1e16

} else {
S.xy[co2] <- var.U }

} ## end of loop k (incomplete variables)
if (length(S.xy) > 1) {
weight.matrix[[m]][[j]] <- diag(S.xy)

} else {
weight.matrix[[m]][[j]] <- S.xy}

if (!is.null(man.weights) && length(man.weights[[j]]) > 0) {
if (any(man.weights[[j]] <= 0)) {
cat("At least one weight is non-positive!","\n")
break }

if (length(man.weights[[j]]) != length(S.xy)) {
cat(paste("manual weight vector ",as.character(j),

" does not match number of variables with missing data",
" in block ", as.character(j),"\n", sep=""))

break }
weight.matrix[[m]][[j]] <- man.weights[[j]]ˆ(-1)*
weight.matrix[[m]][[j]] }

y.hat.obs <- y.hat[[m]][[j]][obs.pos, ]
if (verbose) {
cat(paste("Imputation ",m,": weight matrix for block ",j,

":\n",sep = ""))
print(weight.matrix[[m]][[j]])

}
if (!is.null(key)) {
pairlist[[m]][[j]] <- matrix(nrow=length(mis.pos),ncol=2)}

model[[m]][[j]] <- k.model
if (!is.null(mod.sav)) {
model.header <- c(paste("Parameter estimates for imputation ",m,
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", block ",j,":",sep=""),rep("",4))
m.verbose <- rbind(model.header, k.model)
w.model <- rbind(w.model, m.verbose)}

co3 <- 0
for (i in mis.pos) # third loop b) for the unobserved ys
{
co3 <- co3+1
index <- obs.pos[apply(t(y.hat.obs),2,

FUN = function(x) {
t(y.hat[[m]][[j]][i, ] - x) %*%
weight.matrix[[m]][[j]] %*%
(y.hat[[m]][[j]][i, ] - x)})

== min(apply(t(y.hat.obs),2,
FUN = function(x) {
t(y.hat[[m]][[j]][i, ] - x) %*%
weight.matrix[[m]][[j]] %*%
(y.hat[[m]][[j]][i, ] - x)}))]

if (length(index) > 1) {
index <- sample(index, 1)

} # random selection in case of several nearest neighbours
dist[[m]][[j]][co3] <- t(matrix(y.hat[[m]][[j]][i, ] -

y.hat.obs[index])) %*%
weight.matrix[[m]][[j]] %*%
(y.hat[[m]][[j]][i, ] -
y.hat.obs[index])

if (!is.null(key)) {
pairlist[[m]][[j]][co3, ] <- c(key[i,Recid],key[index,Donid]) }

data.set[i, block[[j]]] <- data.set[index, block[[j]]]
} ## end of i loop (missing values)

} ## end of j loop (blocks)
if (!is.null(key)) data.set <- cbind(key, data.set)
impdata[[m]] <- data.set
if (M > 1) {
BB.impdata[[m]] <- BB.data

}
if (!is.null(out.file))
{
if (M > 1) {
dot.pos <- which(strsplit(out.file,"")[[1]]==".")
out.file2 <- paste(substr(out.file,1,dot.pos-1),"_",m,

substring(out.file,dot.pos),sep="")
} else if (M == 1) {out.file2 <- out.file}
write.table (data.set, file = out.file2, sep = "\t", row.names = F)

}
if (!is.null(mod.sav))
{write.table (w.model, file = mod.sav, sep = "\t", row.names = F,

col.names=F, quote=F)}
} ## end of m loop (MI)
if (M > 1) {
list(impdata = impdata, BB.impdata = BB.impdata,

weight.matrix = weight.matrix, model = model,
pairlist = pairlist, dist = dist)
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} else if (M == 1) {
list(impdata = impdata, weight.matrix = weight.matrix, model = model,

pairlist = pairlist, dist = dist)
}

}

130



C.2 BBPMM.col – Bayesian Bootstrap Predictive
Mean Matching based on Sequential Regression

BBPMM.col <- function(data,
M = 10,
n.iter = 10,
out.file = NULL,
ignore = NULL,
var.type = NULL,
eff.measure = TRUE,
maxit = 20,
verbose=TRUE,
...)

{
impdata <- list()
M.data <- list()
data <- as.data.frame(data)
orgnames <- varnames <- names(data)
org.l <- ncol(data)
if (!is.null(ignore)) {
if (is.character(ignore)) {
ig.pos <- is.element(varnames, ignore)

} else {
ig.pos <- is.element(1:ncol(data), ignore)

}
not.inc <- as.data.frame(data[ ,ignore])
varnames <- varnames[-ignore]
data <- data[ ,-ignore]}

n <- nrow(data)
l <- ncol(data)
if (eff.measure) {
e.meas <- matrix(nrow=M, ncol=l)
colnames(e.meas) <- varnames

} else { e.meas <- NULL}
## take over class from data.frame or administer classes
if (!is.null(var.type)) {
if (length(var.type) != l) {
stop(paste("Error: Number of flagged variables in ’var.type’",

"does not match number of (remaining) variables in",
"data set!\n"))

} else if (any(var.type != "C" & var.type != "M")) {
stop(paste("Error: ’var.type’ contains wrong character(s)!\n"))

}
f.pos <- which(var.type == "C")
if (length(f.pos) > 0) {
data[,f.pos] <- lapply(data[,f.pos], as.factor)}

m.pos <- which(var.type == "M")
if (length(m.pos) > 0) {
data[,m.pos] <- lapply(data[,m.pos], as.numeric)}

}
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## indicator matrix for missing values
R <- matrix(is.na(data), nrow=n)
mis.num <- apply(is.na(data), 2, sum)
mis.overview <- paste("number of missing values ", names(data),": ",

mis.num, sep="")
if (verbose) print(mis.overview)
## new variable order
n.order <- order(mis.num)
o.order <- order(n.order)
o.data <- data[ ,n.order]
varnames <- varnames[n.order]
mvar <- apply(o.data, 2, FUN = function(x) {any(is.na(x)) })
p.impvar <- (1:l)[mvar == T]
p.comp <- (1:l)[mvar == F]
i.mis <- list()
i.obs <- list()
co1 <- 0
for (j in p.impvar) {
co1 <- co1+1
i.mis[[co1]] <- (1:n)[is.na(o.data[ ,j]) == T]
i.obs[[co1]] <- (1:n)[is.na(o.data[ ,j]) == F]

}
## starting solution
co2 <- 0
MI.data <- o.data
for (j in p.impvar) {
## stepwise imputation of y_t based on y_1 to y_t-1.
co2 <- co2+1
if (length(p.comp) == 0) {
MI.data[i.mis[[co2]],j] <- sample(MI.data[i.obs[[co2]],j],

length(i.mis[[co2]]),replace = T)
p.comp <- j

}
xvars <- paste(c(varnames[p.comp],varnames[p.impvar[0:(co2-1)]]),

collapse=’ + ’)
s.model <- as.formula(paste(varnames[j], ’ ˜ ’, xvars,

sep=""))
y <- MI.data[ ,j]
if (is.numeric(y)) {
regmod <- lm(s.model, data=MI.data, na.action=na.exclude)
y.pred <- predict(regmod, newdata=MI.data, na.action="na.fail")
y.pred.mis <- y.pred[i.mis[[co2]]]
y.pred.obs <- y.pred[i.obs[[co2]]]
allDif <- outer(y.pred.mis, y.pred.obs, FUN="-")
allDif[allDif==0] <- 1e-09
nextlist <- y[i.obs[[co2]]][max.col(as.matrix(abs(allDif)ˆ(-1)),

ties.method="random")]
} else if (is.factor(y)) {
if (length(table(y)) > 2) {
options(warn=-1)
regmod <- multinom(s.model,data=MI.data,trace=F,

na.action=na.exclude)
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options(warn=0)
y.pred <- predict(regmod, newdata=MI.data, type = "probs")
y.pred[y.pred > 0.999] <- 0.999
y.pred[y.pred < 0.001] <- 0.001
l.y.pred <- log(y.pred/(1-y.pred))
y.pred.mis <- l.y.pred[i.mis[[co2]],]
y.pred.obs <- l.y.pred[i.obs[[co2]],]
## calculate outer product for all obs/mis columns
dist <- matrix(rep(0,nrow(y.pred.mis)*nrow(y.pred.obs)),

ncol=nrow(y.pred.obs))
for (i in 1:ncol(y.pred)){
dist <- dist + outer(y.pred.mis[,i],y.pred.obs[,i],FUN="-")ˆ2

}
m.dist <- matrix(dist,ncol=nrow(y.pred.obs),byrow=F)
m.dist[m.dist==0] <- 1e-09
nextlist <- y[i.obs[[co2]]][max.col(as.matrix(m.distˆ(-1)),

ties.method="random")]
} else if (length(table(y)) == 2) {
regmod <- glm(s.model, data=MI.data,

family = binomial(link="logit"),
na.action=na.exclude)

y.pred <- predict(regmod, newdata=MI.data, na.action="na.fail")
y.pred.mis <- y.pred[i.mis[[co2]]]
y.pred.obs <- y.pred[i.obs[[co2]]]
allDif <- outer(y.pred.mis, y.pred.obs, FUN="-")
allDif[allDif==0] <- 1e-09
nextlist <- y[i.obs[[co2]]][max.col(as.matrix(abs(allDif)ˆ(-1)),

ties.method="random")]
}

}
MI.data[i.mis[[co2]],j] <- nextlist

} ## end of j cycle
##+++++++++++++++++++++++++PMM++++++++++++++++++++++++++++++++++++
## Sequential Regression with Predictive Mean Matching
for (m in 1:M) {
co <- 0
iterate <- T
while (iterate) {
##--------------first loop for iterations-----------------------
co <- co + 1
co2 <- 0
if (verbose) {
cat(paste("Imputation ", m," of ",M ,": iteration ", co,

sep=""), "\n") }
##-------------- Bayesian Bootstrap --------------------------
if (M > 1) {
ind1 <- BayesBoot(ind.obs = 1:n)
## Bayesian Bootstrap: draw n times with replacement as basis for
## imputation model parameter estimates
BB.data <- MI.data[ind1, ]

}
##----second loop for every variable with missing values------
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for (j in p.impvar) {
co2 <- co2 + 1
xvars <- paste(varnames[-j], collapse = ’ + ’)
y <- MI.data[ ,j]
s.model <- as.formula(paste(varnames[j],’˜’,xvars))
if (is.numeric(y)) {
if (M == 1) {
regmod <- lm(s.model, data=MI.data, na.action=na.exclude)

} else if (M > 1) {
BB.stab <- BB.mod.stab.glm(data=MI.data, BB.data=BB.data,

s.model=s.model)
regmod <- BB.stab$model}

y.pred <- predict(regmod, newdata=MI.data,
na.action="na.fail")

y.pred.mis <- y.pred[i.mis[[co2]]]
y.pred.obs <- y.pred[i.obs[[co2]]]
## find nearest observed neighbour for y.hat.mis
allDif <- outer(y.pred.mis, y.pred.obs, FUN="-")
allDif[allDif==0] <- 1e-09
nextlist <- y[i.obs[[co2]]][max.col(as.matrix(abs(allDif)ˆ(-1)),

ties.method="random")]
## distance metric
if ((eff.measure == T) & (co == n.iter)) {
n.mis <- length(i.mis[[co2]])
## actual squared distances mean
D.mean <- mean(apply(allDif, 1, FUN = function(x) min(xˆ2)))
## artificial randomized squared distances mean and variance
d <- sample(y.pred.obs,n.mis)-sample(y.pred.mis,n.mis)
mu.h.d <- mean(d)
sig2.h.d <- var(d)
e.meas[m,j] <- (sig2.h.d/n.mis + mu.h.dˆ2 -

D.mean)/(sig2.h.d/n.mis + mu.h.dˆ2)
}

} else if (is.factor(y) & length(table(y)) > 2) {
if (M == 1) {
options(warn = -1)
regmod <- multinom(s.model,data=MI.data,trace=F,

na.action=na.exclude)
options(warn = 0)

} else if ( M > 1) {
BB.stab <- BB.mod.stab.mlog(data=MI.data,

BB.data=BB.data,
s.model=s.model)

regmod <- BB.stab$model
}
y.pred <- predict(regmod, newdata=MI.data,

type="probs",na.action="na.fail")
y.pred[y.pred > 0.999] <- 0.999
y.pred[y.pred < 0.001] <- 0.001
l.y.pred <- log(y.pred/(1-y.pred))
y.pred.mis <- l.y.pred[i.mis[[co2]],]
y.pred.obs <- l.y.pred[i.obs[[co2]],]
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## calculate outer product for all obs/mis columns
dist <- matrix(rep(0,nrow(y.pred.mis)*nrow(y.pred.obs)),

ncol=nrow(y.pred.obs))
for (i in 1:ncol(y.pred)){
dist <- dist + outer(y.pred.mis[,i],y.pred.obs[,i],FUN="-")ˆ2

}
m.dist <- matrix(dist,ncol=nrow(y.pred.obs),byrow=F)
m.dist[m.dist==0] <- 1e-09
nextlist <- y[i.obs[[co2]]][max.col(as.matrix(m.distˆ(-1)),

ties.method="random")]
} else if (is.factor(y) & length(table(y)) == 2) {
if (M == 1) {
regmod <- glm(s.model, data=MI.data,

family = binomial(link="logit"),
na.action=na.exclude)

} else if (M > 1) {
BB.stab <- BB.mod.stab.glm(data=MI.data, BB.data=BB.data,

s.model=s.model, model="binomial")
regmod <- BB.stab$model}

y.pred <- predict(regmod, newdata=MI.data,
na.action="na.fail")

y.pred.mis <- y.pred[i.mis[[co2]]]
y.pred.obs <- y.pred[i.obs[[co2]]]
## find nearest observed neighbour for y.hat.mis
allDif <- outer(y.pred.mis, y.pred.obs, FUN="-")
allDif[allDif==0] <- 1e-09
nextlist <- y[i.obs[[co2]]][max.col(as.matrix(abs(allDif)ˆ(-1)),

ties.method="random")]
}
MI.data[i.mis[[co2]],j] <- nextlist

}
if (co == n.iter) iterate <- F
MI.data2 <- MI.data[ ,o.order]
if (is.null(ignore)) {
M.data[[m]] <- MI.data2

} else {
M.data[[m]] <- as.data.frame(matrix(nrow=n,ncol=org.l))
M.data[[m]][ ,ig.pos==F] <- MI.data2
M.data[[m]][ ,ig.pos==T] <- not.inc
names(M.data[[m]]) <- orgnames

}
if (!is.null(out.file))
{
if (M > 1) {
dot.pos <- which(strsplit(out.file,"")[[1]]==".")
out.file2 <- paste(substr(out.file,1,dot.pos-1),"_",m,

substring(out.file,dot.pos),sep="")
} else if (M == 1) {out.file2 <- out.file}
write.table(M.data[[m]], file = out.file2, sep = "\t",

row.names = F)
}

}
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if (M == 1) M.data <- M.data[[m]]
}
list(impdata=M.data, mis.overview=mis.overview, eff.measure=e.meas,

ind.matrix=R)
}

C.3 Additional functions

C.3.1 Bayesian Bootstrap

BayesBoot <- function(ind.obs,...)
{
n.obs <- length(ind.obs)
draw <- runif(n.obs-1,0,1)
## n.obs-1 random draws from a [0,1]uniform distribution
diff.a <- diff.b <- c()
diff.a[1:(n.obs-1)] <- sort(draw)
diff.a[n.obs] <- 1
diff.b[1] <- 0
diff.b[2:n.obs] <- diff.a[1:(n.obs-1)]
## this creates two lists: list A has 1 as n.obs-th observation and
## list B has 0 as first observation. The differences give a list of
## n.obs probabilities which sum up to 1.
p.draw <- diff.a - diff.b
d.w.repl.obs <- rmultinom(1, size = n.obs, prob = p.draw)
BB.ind.obs <- rep(ind.obs, d.w.repl.obs)
return(BB.ind.obs)

}

C.3.2 Model stabilizer for bootstrapped data

## Bootstrap model stabilizer for linear models
BB.mod.stab.glm <- function(data, BB.data, s.model, model="linear")
{
if (model == "binomial") {
regmod <- glm(s.model, data=BB.data, family = binomial(link="logit"),

na.action=na.exclude)
c.regmod <- glm(s.model, data=data, family = binomial(link="logit"),

na.action=na.exclude)
} else if (model == "linear") {
regmod <- lm(s.model, data=BB.data, na.action=na.exclude)
c.regmod <- lm(s.model, data=data, na.action=na.exclude)

}
c.namen <- names(c.regmod$coefficients)
BB.namen <- names(regmod$coefficients)
mislevpos <- !is.element(c.namen, BB.namen)
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if (any(mislevpos == T)) {
help.coeff <- regmod$coefficients
regmod$coefficients <- c.regmod$coefficients
regmod$coefficients[mislevpos==T] <- 0
regmod$coefficients[mislevpos==F] <- help.coeff
regmod$xlevels <- c.regmod$xlevels
regmod$rank <- c.regmod$rank
regmod$assign <- c.regmod$assign
regmod$qr$pivot <- c.regmod$qr$pivot
regmod$qr$rank <- c.regmod$qr$rank

}
list(model=regmod, c.model=c.regmod, mislevpos=mislevpos)

}
#######################################################################
## Bootstrap model stabilizer for multinomial logit models
BB.mod.stab.glm <- function(data, BB.data, s.model, model="linear")
{
if (model == "binomial") {
regmod <- glm(s.model, data=BB.data, family = binomial(link="logit"),

na.action=na.exclude)
c.regmod <- glm(s.model, data=data, family = binomial(link="logit"),

na.action=na.exclude)
} else if (model == "linear") {
regmod <- lm(s.model, data=BB.data, na.action=na.exclude)
c.regmod <- lm(s.model, data=data, na.action=na.exclude)

}
c.namen <- names(c.regmod$coefficients)
BB.namen <- names(regmod$coefficients)
mislevpos <- !is.element(c.namen, BB.namen)
if (any(mislevpos == T)) {
help.coeff <- regmod$coefficients
regmod$coefficients <- c.regmod$coefficients
regmod$coefficients[mislevpos==T] <- 0
regmod$coefficients[mislevpos==F] <- help.coeff
regmod$xlevels <- c.regmod$xlevels
regmod$rank <- c.regmod$rank
regmod$assign <- c.regmod$assign
regmod$qr$pivot <- c.regmod$qr$pivot
regmod$qr$rank <- c.regmod$qr$rank

}
list(model=regmod, c.model=c.regmod, mislevpos=mislevpos)

}
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