
BAMBERGER BEITRÄGE

ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK

ISSN 0937-3349

Nr. 80

QoS-Enabled B2B Integration

Thomas Benker, Stefan Fritzemeier, Matthias

Geiger, Simon Harrer, Tristan Kessner, Johannes

Schwalb, Andreas Schönberger and Guido Wirtz

May 2009

FAKULTÄT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITÄT BAMBERG

Distributed and Mobile Systems Group

Otto-Friedrich Universität Bamberg

Feldkirchenstr. 21, 96052 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/

Due to hardware developments, strong application needs and the overwhelming influence of
the net in almost all areas, distributed and mobile systems, especially software systems, have
become one of the most important topics for nowadays software industry. Unfortunately, distri-
bution adds its share to the problems of developing complex software systems. Heterogeneity in
both, hardware and software, concurrency, distribution of components and the need for inter-
operability between different systems complicate matters. Moreover, new technical aspects like
resource management, load balancing and deadlock handling put an additional burden onto the
developer. Although subject to permanent changes, distributed systems have high requirements
w.r.t. dependability, robustness and performance.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the development of robust and easy-to-use software for com-
plex systems in general while putting a focus on the problems and issues regarding the software
development for distributed as well as mobile systems on all levels. Our current research acti-
vities are focused on different aspects centered around that theme:

• Robust and adaptive Service-oriented Architectures: Development of design methods, lan-
guages and middleware to ease the development of SOAs with an emphasis on provable
correct systems that allow for early design-evaluation due to rigorous development me-
thods and tools. Additionally, we work on approaches to autonomic components and
container-support for such components in order to ensure robustness also at runtime.

• Agent and Multi-Agent (MAS) Technology: Development of new approaches to use Multi-
Agent-Systems and negotiation techniques, for designing, organizing and optimizing com-
plex distributed systems, esp. service-based architectures.

• Peer-to-Peer Systems: Development of algorithms, techniques and middleware suitable for
building applications based on unstructured as well as structured P2P systems. A specific
focus is put on privacy as well as anonymity issues.

• Context-Models and Context-Support for small mobile devices: Investigation of techni-
ques for providing, representing and exchanging context information in networks of small
mobile devices like, e.g. PDAs or smart phones. The focus is on the development of a tru-
ly distributed context model taking care of information reliability as well as privacy issues.

• Visual Programming- and Design-Languages: The goal of this long-term effort is the uti-
lization of visual metaphors and languages as well as visualization techniques to make
design- and programming languages more understandable and, hence, easy-to-use.

More information about our work, i.e., projects, papers and software, is available at our ho-
mepage. If you have any questions or suggestions regarding this report or our work in general,
don’t hesitate to contact me at guido.wirtz@wiai.uni-bamberg.de

Guido Wirtz

Bamberg, April 2006

QoS-Enabled B2B Integration

Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger and Guido Wirtz

Lehrstuhl für Praktische Informatik, Fakultät WIAI

Abstract Business-To-Business Integration (B2Bi) is a key mechanism for enterprises to gain
competitive advantage. However, developing B2Bi applications is far from trivial. Inter alia,
agreement among integration partners about the business documents and the control flow of
business document exchanges as well as applying suitable communication technologies for over-
coming heterogeneous IT landscapes are major challenges. At the same time, choreography
languages such as ebXML BPSS (ebBP), orchestration languages such as WS-BPEL and Web
Services are promising to provide the foundations for seamless interactions among business
partners.
Automatically translating choreography agreements of integration partners into partner-specific
orchestrations is an obvious idea for ensuring conformance of orchestration models to choreo-
graphy models. Moreover, the application of such model-driven development methods facilitates
productivity and cost-effectiveness whereas applying a service oriented architecture (SOA) ba-
sed on WS-BPEL and Web Services leverages standardization and decoupling. By now, the
realization of QoS attributes has not yet received the necessary attention that makes such ap-
proaches suitable for B2Bi. In this report, we describe a proof-of-concept implementation of the
translation of ebBP choreographies into WS-BPEL orchestrations that respects B2Bi-relevant
QoS attributes.

Keywords B2Bi, QoS, Choreography to Orchestration Generation, Web Services, ebXML,
ebBP, BPEL, SOA, WS-* standards

Contents

1 Introduction 1

1.1 Business-2-Business-Integration . 1

1.2 The Necessity of QoS Features . 2

1.3 Problem Identification and Definition . 2

2 Fundamentals 4

2.1 The Universal Business Language (UBL) and the Northern European Subset (NES) 4

2.2 The ebXML Business Process Specification Schema Technical Specification (ebBP) 5

2.3 Web Services . 8

2.4 Web Services Business Process Execution Language 10

2.5 WS-* Standards . 12

2.5.1 WS-Addressing . 13

2.5.2 WS-Security . 14

2.5.3 WS-ReliableMessaging . 14

2.5.4 WS-Policy . 16

2.5.5 XML Signature . 16

2.6 JAXB . 18

3 Analysis 20

3.1 Modeling of NES-Profiles Using ebBP . 20

3.1.1 Modeling Practices Used . 20

I

II

3.1.1.1 The General Approach . 20

3.1.1.2 ebBP Modeling Elements . 21

3.1.1.3 UML Constructs . 29

3.1.2 Critical Modeling Issues . 31

3.1.2.1 The Parallel Execution Problem 31

3.1.2.2 Loop Handling . 32

3.1.2.3 External Medium . 34

3.1.3 Modeling of the NES Profiles . 36

3.1.3.1 Basics of Modeling the NES Profiles 37

3.1.3.2 Structure of the NES Profile Description 38

3.1.3.3 Profile 1: Catalogue Only . 39

3.1.3.4 Profile 2: Catalogue with Updates 41

3.1.3.5 Profile 3: Basic Order Only . 41

3.1.3.6 Profile 4: Basic Invoice Only 44

3.1.3.7 Profile 5: Basic Billing . 44

3.1.3.8 Profile 6: Basic Procurement 46

3.1.3.9 Profile 7: Simple Procurement 48

3.1.3.10 Profile 8: Basic Billing with Dispute Response 48

3.1.3.11 Business Collaboration sendInvoice and sendCreditNote with
External Medium . 49

3.1.3.12 Business Collaboration sendInvoice and sendCreditNote with-
out External Medium . 53

3.2 Evaluation of QoS Features . 55

3.3 Platform Selection - GlassFish vs. Tomcat . 57

3.3.1 GlassFish . 57

3.3.2 Tomcat . 57

3.3.3 Derivation of a Feature Test Plan . 58

3.3.3.1 Relevant Criteria for the Platform Selection 58

III

3.3.3.2 Feature Test Plan . 58

3.3.4 (Feature) Tests and Results . 60

3.3.4.1 IDE-Integration . 60

3.3.4.2 Usability . 60

3.3.4.3 Standard Conformance . 61

3.3.4.4 Performance Tests and Results 62

3.3.4.5 Functional QoS Feature Tests and Results 63

3.3.5 Evaluation of the Feature Tests and Decision 63

4 Design and Implementation 65

4.1 Realization Strategies . 65

4.1.1 ebBP to BPEL Mapping Constructs . 65

4.1.1.1 Design of the Mapping Constructs 66

4.1.1.2 Validation of Mapping Constructs 87

4.1.2 Realization of QoS Features . 88

4.2 Design of WS-Interfaces . 92

4.2.1 Design of the Messages . 92

4.2.2 The Correlation Set . 94

4.2.3 Naming Conventions of the WSDLs . 96

4.2.4 Web Service Interfaces . 97

4.2.4.1 General Structure . 97

4.2.4.2 Various QoS Combinations . 99

4.3 Architectures and Implementations . 105

4.3.1 Overall Architecture . 105

4.3.2 Translator Architecture and Implementation 105

4.3.2.1 General Architecture . 105

4.3.2.2 Architecture and Implementation of the main components . . . 107

IV

4.3.2.3 Architecture and Implementation of Reader 107

4.3.2.4 Architecture and Implementation of Transformer 108

4.3.2.5 Architecture and Implementation of Generator 109

4.3.2.6 Architecture and Implementation of Writer 114

4.3.2.7 Architecture and Implementation of Utilities 114

4.3.3 Backend Architecture and Implementation 116

4.3.3.1 General Architecture and Implementation 116

4.3.3.2 Architecture and Implementation of the Profile Handlers 119

4.3.4 Web Service Architectures and Implementations 123

4.3.4.1 Web Service: Archive . 124

4.3.4.2 Web Service: AuthorizationCheck 125

4.3.4.3 Web Service: SchematronValidation 126

4.3.4.4 Web Service: SignatureCreation 127

4.3.4.5 Web Service: SignatureCheck 129

4.3.4.6 Web Service: UUID . 129

4.3.4.7 Web Service: XPathEvaluation 129

4.3.4.8 Web Service: XSDValidation 130

5 Related Work 131

6 Conclusion and Future Work 135

Bibliography 136

Appendix 139

A User Manual 139

A.1 Manual of the Translator . 139

A.2 Manual of the Backend System . 142

V

A.3 Manual of the Web services . 147

B Used Tools 148

B.1 IDEs . 148

B.2 Test . 148

B.3 Runtime . 148

B.4 Documentation . 148

C ebBP Modeling Naming Conventions 150

D List of previous University of Bamberg reports 154

List of Figures

2.1 The relation of NES and UBL, taken from [Gro07a, page 5] 5

2.2 Usage context of ebBP . 6

2.3 The Web Services Architecture . 10

2.4 A BPEL process example, modeled in BPMN 12

2.5 The WS-ReliableMessaging protocol, taken from [FPD+07] 15

2.6 The typical approach of using JAXB, taken from [OM03] 18

3.1 The constructs of ebBP used in this work . 22

3.2 The dependencies among NES profiles visualized as UML class diagram 36

3.3 The choreography of NES profile 1 as UML activity diagram 40

3.4 The NES UML activity diagram of profile 3 . 42

3.5 The choreography of NES profile 3 as UML activity diagram 43

3.6 The choreography of NES profile 5 as UML activity diagram 45

3.7 The choreography of NES profile 6 as UML activity diagram 47

3.8 The Business Collaboration sendInvoice/sendCreditCote with external medium
as a UML activity diagram . 49

3.9 The Business Collaboration sendInvoice/sendCreditNote without external medium
as a UML activity diagram . 53

4.1 Mapping construct for Business Collaboration 69

4.2 Mapping construct for UUID distribution . 72

4.3 Mapping construct for AcceptanceAcknowledgement 74

VI

VII

4.4 Mapping construct for a call of Archive service 75

4.5 Mapping construct for a call of the Authorization Check service 76

4.6 Mapping construct for Business Transaction Activity 78

4.7 Mapping construct for ReceiptAcknowledgement 81

4.8 Mapping construct for Requesting Business Activity of the Requesting Role . . . 84

4.9 Mapping construct for a call of the Signature Check service 86

4.10 Overall B2Bi architecture . 106

4.11 Architecture of translator as a Value Chain . 106

4.12 Part of the Transformer class hierarchy . 109

4.13 Components of the backend . 117

4.14 Interfaces between components of the backend 119

4.15 Message flow between backend and control process 120

4.16 Implementation of the
”
State“ pattern . 121

4.17 Customer’s state graph of NES profile 3 . 122

4.18 The four WSDL Interfaces to guarantee a SSL connection and WS-Security . . . 123

4.19 The Schematroll, mascot of Schematron . 127

4.20 The SignatureCreation Web service, visualized as UML class diagram 128

A.1 Start page of the backend system . 144

A.2 Selection of the performing role . 145

A.3 Screen showing the pending messages . 146

List of Tables

3.1 Setting of QoS features . 37

3.2 Setting of QoS features depending on the type of Business Transaction 37

3.3 ebBP QoS attributes and levels of specification 56

3.4 Overview of the two platforms to analyze . 57

3.5 Platform A: Evaluated configuration . 57

3.6 Platform B: Evaluated configuration . 58

3.7 Comparison of some usability aspects . 61

3.8 Comparison of supported WS-* standards. (X := respective standard supported) 62

3.9 Results of the functional WS-* tests . 64

4.1 ebBP QoS attributes and
and realization strategies . 91

VIII

List of Listings

2.1 Example WSDL for a HelloWorld Web service 9

2.2 Example definition of an EndpointReference 13

2.3 Example definition of the Message Information Header 13

2.4 The structure of an XML Signature . 17

3.1 Example definition of Business Signals . 23

3.2 Example definition of Business Documents . 23

3.3 Example definition of Business Transactions . 23

3.4 Example definition of Business Collaborations 26

3.5 Example definition of Business Transaction Activities 27

3.6 Example definition of Collaboration Activities 27

3.7 Example definition of Decisions . 28

3.8 Example XPATH2 definition within a decision 40

3.9 Realization of CombiCatalogue . 41

4.1 Basic structure of the mapping for BCs and inner BCs 67

4.2 The mapping construct of the outer Fault Handler as simplified BPEL XML code 67

4.3 Simplified extract of the BPEL mapping for ebBP Decisions 79

4.4 Simplified extract of the mapping for a recursion call 82

4.5 Mapping construct for calling the Signature Creation Web service as BPEL XML 85

4.6 The structure of the MetaBlock type . 92

4.7 The structure of the StandardMessageType . 93

4.8 The structure of the StandardMessagePlusBoolean type 93

IX

X

4.9 The structure of the StandardMessagePlusString type 94

4.10 Definition of properties for a Correlation Set within a WSDL file 95

4.11 Usage and association of correlation set properties 96

4.12 Definition of a Correlation Set within a BPEL file 96

4.13 WSDL message definition for a BPEL2Backend service 98

4.14 WSDL port type definition for a BPEL2Backend service 98

4.15 WSDL binding definition for a BPEL2Backend service 98

4.16 WSDL service definition for a BPEL2Backend service 99

4.17 WS-Policy fragment for activating SSL . 100

4.18 WS-Policy fragment for activating WS-Security 100

4.19 WS-Policy fragment to indicate which parts of a message should be signed or
encrypted . 101

4.20 WS-Policy fragment to activate WS-ReliableMessaging 102

4.21 Combination of WS-Security, SSL and WS-ReliableMessaging 102

4.22 Server Side: KeyStore . 103

4.23 Client Side: TrustStore and CallbackHandler . 103

4.24 JPA annotation at the abstract State class . 120

A.1 Extract of the WSDL file to be changed . 141

XI

List of Abbreviations

API Application Programming Interface
BC Business Collaboration
BT Business Transaction
BTA Business Transaction Activity
B2B Business-to-Business
B2Bi Business-to-Business integration
BPEL Web Service Business Process Execution Language
BPMN Business Process Modeling Notation
BPSS Business Process Specification Schema
BSI Business Service Interface
CA Collaboration Activity
CP centralized perspective
CPP Collaboration Protocol Profile
CPA Collaboration Protocol Agreement
DP distributed perspective
DTD Document Type Definition
ebBP ebXML Business Process Technical Specification
ebXML Electronic Business using eXtensible Markup Language
EDI Electronic Data Interchange
EJB Enterprise Java Beans
e-business electronic business
e-commerce electronic commerce
FI Fast Infoset
IT Information Technology
JAXB Java Architecture for XML Binding
JAXP Java Architecture for XML Processing
JPA Java Persistence API
MTOM Message Transmission Optimization Mechanism
NES Northern European Subset
OASIS Organization for the Advancement of Structured Information Standards
PIP Partner Interface Process
POJO Plain old Java objects
QoS Quality of Service
SMEs small and medium sized enterprises
SOA service-oriented architecture
SOAP SOAP (formerly Simple Object Access Protocol)
SSL Secure Sockets Layer
TS Technical Specification
UBL Universal Business Language
UML Unified Modeling Language
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business
URL Uniform Resource Locator
UUID Universal Unique Identifier
W3C World Wide Web Consortium

XII

WS Web service
WSDL Web Service Description Language
XML eXtended Markup Language
XPath XML Path Language
XSD XML Schema Document
XSL eXtensible Stylesheet Language
XSLT XSL Transformation
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

Chapter 1

Introduction

1.1 Business-2-Business-Integration

Enterprises today are enforced by market pressure to integrate business processes with their
partners along the supply chain. The term Business-to-Business integration (B2Bi) is frequently
used to denote business process integration crossing enterprise boundaries or, more generally,
boundaries of organizational units. The development of B2Bi software is far from trivial for
various reasons. Personnel from different organizational units with different vocabulary and
background are frequently involved in building B2Bis which requires extensive communication
for defining message formats, message contents and choreography. Central technical infras-
tructure is frequently not available or prohibited by business politics so that truly distributed
computing is needed. Thus issues like heterogeneity, communication over possibly insecure
media or partial failure of autonomous systems have to be addressed. Finally, B2Bi software
has to meet enterprise level issues like dynamic business relations, investment in existing IT
systems as well as QoS requirements for business transactions like reliability, security and time
constraints.

Service Oriented Computing (SOC) promises to cover most1 of these integration requirements
in a way that reuses existing IT assets, ensures loose coupling of interacting IT systems and
provides for reusability of generated artifacts. The paradigm of Service Oriented Architecture
(SOA) provides the conceptual foundations for SOC by decomposing complex business pro-
cesses in manageable business tasks and subsequently assigning services that accomplish these
tasks. For building B2Bi systems, enterprises not only consume their own services for accessing
information and functionality but their partners’ processes as well, e.g., the electronic exchange
of orders or notifications about the processing status of orders.

WS-BPEL (BPEL in the following) [JEA+07] and Web services are one realization option for
employing SOC in the B2Bi context where Web Services help in overcoming the technical
obstacles in communicating across heterogeneous IT systems and BPEL offers a standardized
way for defining the sequence of message exchanges of integration partners. Together, these

1QoS still is an issue

1

2 CHAPTER 1. INTRODUCTION

technologies promise to allow for fast and cost-effective implementation while still ensuring high
quality in terms of decoupling, standardization and interoperability. Yet, integration partners
also need functionality for agreeing upon the overall message flow of a B2Bi, in particular a
definition of the business document and control message types to be used and the sequence of
message exchanges considering each integration partner is needed. Choreography languages like
ebXML BPSS (ebBP) [YWM+06] provide such functionality and thus are a valuable component
in the tool set for realizing B2Bi projects.
An introduction to the technologies used in the work at hand is given in section 2.

1.2 The Necessity of QoS Features

As mentioned above, Business-2-Business-Integration stands for doing business across the bound-
aries of organizations. In case messages are exchanged via the Internet, reliability and security
issues have to be addressed as business documents typically have legal consequences and may
not be disclosed to third parties. Hence, business partners usually are heavily interested in
transmitting messages in a reliable and secure manner. Reliability concerns the problem of
handling communication errors and ensuring consistency between the integration partners’ IT
systems regarding the status of transmitted messages in such cases. Security typically is defined
in terms of several more detailed QoS requirements like confidentiality, which means that no
third party gains knowledge about the content of the message, integrity, which means integra-
tion partners are able to detect manipulation of messages by third parties, non-repudiation,
which means integration partners cannot deny having sent a particular message, authentica-
tion, which means a third party is not able to misuse the identity of a business partner, and
authorization which means that actions performed by an entity are indeed legitimate. A more
comprehensive definition of QoS is given in [DLS05]: “[...]the term QoS [...is] used to denote
all non-functional aspects of a service which may be used by clients to judge service quality.
This extends other more restrictive QoS definitions such as the common interpretation of QoS
to mean network performance attributes.”

This definition is valid and comprehensive, but a drawback of this definition is its universality
which makes it hard to manage and support. Therefore, the work at hand strives for a set of
QoS requirements that at least have to be supported for enabling B2Bi which may be found by
adopting the judgment of B2Bi experts. ebBP defines such a set of QoS requirements: “The
ebBP technical specification provides parameters that can be used to specify certain levels of
security and reliability. This specification provides these parameters in general business terms”
([YWM+06], sec. 3.5.7). Thus, in the context of the work at hand, QoS is defined in terms of
the QoS attributes defined in ebBP.

1.3 Problem Identification and Definition

B2Bi is not a new concept in today’s business world. Communication between business partners
across the boundaries of the involved firms is already working today. For example a lot of

1.3. PROBLEM IDENTIFICATION AND DEFINITION 3

enterprises use the UN/EDIFACT standard for communication. One problem with the existing
attempts to establish business-to-business integration is that until today only enterprises of
considerable size are able to install a proper system for inter-business communication. So there
still exists a lot of automation potential, especially for small and medium-sized enterprises.

Why is it that small and medium-sized businesses do not try to exploit these potentials? One
aspect might be that small firms often do not have an IT department, and, especially in non-IT-
businesses, there is often a lack of IT knowledge. Another aspect is, that considerable budgets
for the implementation of a working B2Bi system are needed. In addition, communication
standards in some industries are proprietary and the licenses for using them or the licenses for
the implementing software are expensive.

If standards were used, one big problem would already be solved. But in reality, integration often
is not based on widespread standards but on “home-grown” message formats and spontaneously
defined protocols. This procedure may work if only a few partners interact with each other
but the coordination costs increase exponentially when the network of partners is expanding.
The usage of open and widespread standards may help to handle this problem. Standards exist
for all (technical) layers of business-to-business communication: From simple data transmission
via, e.g., the Transmission Control Protocol (TCP) to the definition of business documents as
defined by, e.g., the Unified Business Language (UBL).

The goal of this work is to develop a proof-of-concept implementation that shows that realiz-
ing B2Bi based on open SOC standards is possible. While applying such standards facilitates
flexibility, interoperability and decoupling sufficient support for B2Bi-relevant QoS is not auto-
matically provided for. Hence, special attention is payed to the realization of these QoS features.
Open source technology and freely available tools are envisaged as implementation platform in
order to leverage community engagement and ensure accessibility not only for multi-national
enterprises. But are the available standards already as mature as needed for productive usage?
And how easy is it to implement a working system for business-to-business integration?

In conclusion and combined to one question the postulated research question is:

Is it possible to support B2Bi throughout all relevant abstraction layers with an
integrated standard stack that meets all important B2Bi QoS requirements?

Chapter 2

Fundamentals

2.1 The Universal Business Language (UBL) and the

Northern European Subset (NES)

The Universal Business Language (UBL) provides a unified library of standard business doc-
uments, such as purchase orders, invoices or catalogues. The standardized schemas of these
business documents enable simple electronic data exchange between partners. The design of
the UBL arranges for compatibility with existing business, legal, auditing and records man-
agement practices. As free and open OASIS (Organization for the Advancement of Structured
Information Standards) standard, it is suitable as entry-point for electronic business, in partic-
ular for small and medium-sized companies.

The UBL defines 31 business documents and a common library for basic information (e.g. units,
currencies, date formats) for a huge variety of possible unified business processes in the phases
presale, ordering, delivery, invoicing and payment. Besides these data format definitions, several
tools, validators and generators are already available1.

The Northern European Subset (NES) is a subset of the UBL, developed from representatives
of the Northern European countries Denmark, Sweden, Norway, Finland, the United Kingdom
and Iceland. The NES defines eight “profiles” which apply to defined business scenarios. The
goal of the NES is to enable companies and institutions to implement e-commerce (electronic
commerce) by agreeing to a specific profile and thus ease implementation on both sides.

Every profile is modeled as a UML Activity diagram with certain decisions (e.g. reject or
accept order in profile 1) and exchanged objects which are business documents (e.g. Order
and Application Response in profile 1). The NES uses adapted UBL XML schema files for its
business documents, so that a NES Invoice also conforms to the UBL common library. In turn,
a UBL Invoice may conform to the NES common library but not necessarily has to (see figure
2.1 for an illustration of the relation between UBL and NES).

1http://ubl.xml.org/products,lastvisitedMarch2008

4

http://ubl.xml.org/products, last visited March 2008

2.2. THE EBXML BUSINESS PROCESS SPECIFICATION SCHEMA TECHNICAL
SPECIFICATION (EBBP) 5

Figure 2.1: The relation of NES and UBL, taken from [Gro07a, page 5]

The profiles defined by the NES are:

• Profile 1: Catalogue only

• Profile 2: Catalogue with updates

• Profile 3: Basic Order only

• Profile 4: Basic Invoice only

• Profile 5: Basic Billing

• Profile 6: Basic Procurement

• Profile 7: Simple Procurement

• Profile 8: Basic Billing with dispute Response

A detailed introduction to the profiles is given in chapter 3.

2.2 The ebXML Business Process Specification Schema

Technical Specification (ebBP)

The ebXML Business Process Specification Schema Technical Specification (ebBP) is part of
the ebXML (Electronic Business using XML) standards suite, developed by OASIS and the
United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT). In this
context, XML is used because of its ability to define structured human and machine readable
documents following a defined schema such as XSD or DTD. Documents and signals as well as
processes are described in XML.

6 CHAPTER 2. FUNDAMENTALS

For the purpose of doing e-business, ebXML defines the following parts in its technical archi-
tecture as shown in figure 2.2. For more information of the specification, please use the given
references.

• Business Process Schema Specification: This specification can be used as a meta model to
describe business processes and rules for doing business based on the concept of Business
Transactions. ebBP is described in more detail below in this section.[YWM+06]

• Core Components: The Core Components are reusable components of business processes,
which are non-specific to the involved parties and common for all businesses.[WPA+01]

• Registry Services Specification: The registry services represent a standard for a cen-
tral point to share documents with business semantics like core components, messages,
Collaboration-Protocol Agreements etc. and providing key functions like search and dis-
covery. [BCC+02]

• Message Service Specification: The Message Service represents a standard for the ex-
change of e-business information among different organizations considering security and
reliable messaging without dictating a specific transport protocol. [BBB+02]

• Collaboration-Protocol Profile and Agreement Specification (CPP/CPA): This specifica-
tion is used in order to describe technical capabilities of the trading partners and to
describe the agreement between two partners for data interchange; [ACC+02]

Figure 2.2: Usage context of ebBP

Figure 2.2 provides an overview of the usage context of the Business Process Schema Specifi-
cation. The Business Process Schema Specification (ebBP) describes a choreography of doing
e-business between trading partners. Other ebXML technical specifications like Collabora-
tion Protocol Profile and Collaboration Protocol Agreement (CPP/CPA) [ACC+02] as well as
ebXML messaging [BBB+02] complement ebBP for specifying the actual message exchange.
Alternatively, if business partners do not support these ebXML standards, Web services (see
section 2.3) can replace this functionality. As shown in figure 2.2, further non-ebXML standards
can be used together with ebBP. For example, the business documents defined by the Unified

2.2. THE EBXML BUSINESS PROCESS SPECIFICATION SCHEMA TECHNICAL
SPECIFICATION (EBBP) 7

Business Language (UBL) can be used to describe e-business information. (see [YWM+06, page
15 and 16])

The core concept of the Business Process Specification Schema is the so-called Business Trans-
action (BT). Business Transactions represent reusable, atomic units of work. They specify
a document flow between two independent parties. These parties are specified as requesting
respectively responding roles within the context of a Business Transaction and so-called Re-
questing and Responding Business Activities are used for specifying the exchange of business
documents in more detail. Exactly one Requesting and one Responding Business Activity al-
ways have to be defined within a Business Transaction. Depending on whether a Requesting
or a Responding Business Activity is used the number of alternative, possible definitions of
Document Envelopes within an Business Activity can vary from one (requesting) to an infinite
(responding) number. One way document transmissions can be specified by leaving out a Docu-
mentEnvelope within the Responding Business Activity. Thus, one way as well as bidirectional
transactions can be specified.

In the following, the most important types of Business Transactions are described (see [YWM+06],
section 3.4.9.1, for a complete list):

• Notification: notifications with a business context, e.g., the occurrence of an error at one
party;

• Information Distribution: exchange of informations between two parties with no legal
intent;

• Commercial Transaction: transactions with a business context, e.g., transmission of an
invoice;

The documents to be transmitted within Responding/Requesting Activities are specified sepa-
rately and are referenced by their nameID. The structure of Business Documents can be defined
by the usage of XSD.

Business Signals are also used in the context of Activities within Business Transactions. They
are used for signaling state that the Transaction, respectively the handling of the document,
has reached a certain state at the other party. Business Signals as well as Business Documents
are used to achieve state alignment. State Alignment means that both parties have the same
knowledge about states and procedures on which they base their decisions for the next steps
within the business process.

Business Collaborations offer the functionality to define choreographies reusing, among others,
the defined Business Transactions in a particular context. The core elements of choreographies
are Activities which are, on the one hand, reused Business Transactions in the form of so-called
Business Transaction Activities (BTA) and, on the other hand, Business Collaborations in the
form of so-called Collaboration Activities (CA).

ebBP arranges for specifying QoS features at the level of Business Collaborations, Business
Transaction Activities, Business Transactions, Requesting/Responding Business Activitys and

8 CHAPTER 2. FUNDAMENTALS

transmitted Business Documents. These features, their meanings and their usage are explained
in more detail within the corresponding chapters of this report.

In the context of Business Collaborations (BC), multiple roles can be specified. Within Ac-
tivities, these roles are associated with the roles specified in the defined Business Transactions
respectively Business Collaborations that are referenced. Furthermore, for each Business Col-
laboration and each Business Transaction Activity the time to perform the work can be speci-
fied. Modeling a choreography means starting at a defined point, having alternative paths for
walking through the process, and ending in final states. Therefor, each Business Collaboration
contains exactly one Start element which references the starting activity. After each activity
an ebBP Decision element can be used to examine the result of the activity and to determine
the next steps. A Decision can have multiple outgoing branches to following BTAs or CAs.

Fork and Join are further elements to describe the control flow within a collaboration. They are
used, in order to define parallel executions with AND (Join), OR (Join, Fork) or XOR (Fork)
semantics.

At the end of each path of the Business Collaboration, there has to be a Completion State
to signal the end of the choreography. Different types of Completion States are distinguished
and describe the result of the Business Collaboration. Therefor, ebBP offers a Success and a
Failure element. [YWM+06]

Before using an ebBP choreography, the Business Service Interfaces (BSI) of each party have
to be configured for doing business according to the specification.

2.3 Web Services

The World Wide Web Consortium (W3C) defines a Web service as

a software system designed to support inter operable machine-to-machine interac-
tion over a network. It has an interface described in a machine-processable for-
mat (specifically WSDL). Other systems interact with the Web service in a man-
ner prescribed by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards
[BHM+04].

In order to ensure high interoperability of Web services all public interfaces are described in
the Web Service Description Language (WSDL2) [CCMW02]. The typical approach to define a
WSDL document is to declare the used types for the Web service under consideration. Besides
the standard types such as string, integer or double it is possible to declare application
specific types using XSD-declarations. In this way it is possible to declare complete XML
documents as types for Web services.

2due to the dependency on BPEL, WSDL 1.1 is used in this work

2.3. WEB SERVICES 9

Using the type declarations, messages can be determined for the WSDL interface. Each message
consists of one or more parts whereas one part is associated with exactly one type.

PortTypes are a set of Web service operations and messages used by this operations. WSDL
has four types for transmitting messages (see [CCMW02], sec. 2.4):

• One-way: The endpoint receives a message.

• Request-response: The endpoint receives a message, and sends a correlated message.

• Solicit-response: The endpoint sends a message, and receives a correlated message.

• Notification: The endpoint sends a message.

For every of these transmission types the corresponding messages have to be defined as input,
output or fault message.

A binding defines message format and protocol for operations and messages defined by a Port-
Type. The binding defines the grammar of the input, output and fault messages as well as
additional general information about the interface like PolicyReferences, e.g., to guarantee
QoS-Features.

By defining a port, the name, the binding and the URL (Uniform Resource Locator) of a Web
service is determined. To group the different ports of a Web service, the service tag is used.
For an example WSDL definition see listing 2.1.

1 <?xml version ="1.0" encoding ="UTF -8" ?>

2

3 <definitions name="HelloWorld" targetNamespace="http:// localhost/HelloWorld" xmlns:tns="

http:// localhost/HelloWorld" xmlns:soap="http:// schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org /2001/ XMLSchema" "xmlns:soapenc="http:// schemas.xmlsoap.org

/soap/encoding/" "xmlns:wsdl="http:// schemas.xmlsoap.org/wsdl/" xmlns="http:// schemas.

xmlsoap.org/wsdl/">

4

5 <message name="helloWorldResponse">

6 <part name="Result" type="xsd:string"/>

7 </message >

8

9 <portType name="HelloWorldPortType">

10 <operation name="helloWorld">

11 <output message="tns:helloWorldResponse"/>

12 </operation >

13 </portType >

14

15 <binding name="HelloWorldBinding" type="tns:HelloWorldPortType">

16 <soap:binding style="rpc" transport="http: // schemas.xmlsoap.org/soap/http"/>

17 <operation name="helloWorld">

18 <soap:operation soapAction="urn:helloWorld#helloWorld"/>

19 <output >

20 <soap:body use="encoded" namespace="urn:helloWorld" encodingStyle="http://

schemas.xmlsoap.org/soap/encoding/"/>

21 </output >

22 </operation >

23 </binding >

24

25 <service name="HelloWorldService">

10 CHAPTER 2. FUNDAMENTALS

26 <port name="HelloWorldPort" binding="HelloWorldBinding">

27 <soap:address location="http:// localhost/HelloWorld.php"/>

28 </port>

29 </service >

30 </definitions >

Listing 2.1: Example WSDL for a HelloWorld Web service

To find Web services of unknown service provider, the Universal Description, Discovery and
Integration (UDDI) [BCvR03] provides a XML-based directory service which enables service
requesters to find Web services using variable research criteria. The interaction of a Web service
with other systems is handled over SOAP as depicted in figure 2.3.

Figure 2.3: The Web Services Architecture

2.4 Web Services Business Process Execution Language

WS-BPEL is an OASIS standard which is used for modeling the behavior of business processes
and based on XML specifications such as, among others, XPath 1.0 or WSDL 1.1. In this work,
the latest WS-BPEL version 2.0 is used.

The OASIS Standard describes WS-BPEL as

a model and a grammar for describing the behavior of a business process based
on interactions between the process and its partners. The interaction with each
partner occurs through Web service interfaces, and the structure of the relationship
at the interface level is encapsulated in what is called a partnerLink. The WS-
BPEL process defines how multiple service interactions with these partners are
coordinated to achieve a business goal, as well as the state and the logic necessary
for this coordination. WS-BPEL also introduces systematic mechanisms for dealing
with business exceptions and processing faults. Moreover, WS-BPEL introduces a
mechanism to define how individual or composite activities within a unit of work are
to be compensated in cases where exceptions occur or a partner requests reversal.
[JEA+07]

The core elements of BPEL are:

2.4. WEB SERVICES BUSINESS PROCESS EXECUTION LANGUAGE 11

• Receive: Receipt of a message sent by a call of a service; provided by the BPEL process;

• Invoke: Invocation of a Web service with input and optional output variables;

• Reply: Response of the BPEL process to a partner calling the Web service offered by the
BPEL process; always corresponds to a Receive;

• Scope: a context which offers particular conditions and functions for the enclosed activities
like handlers or variables;

• Fault Handler: Handling faults within the linked scope using constructs like catch and
catch all;

• Event Handler: Listener for particular messages; defined within a scope;

• OnAlarm: defines a timer within a scope; fired when a specified time out occurs;

• Assign: Operation to copy messages or parts of messages, e.g., for copying variables for a
subsequent Invoke;

• Partnerlink: Representation of a WSDL interface of the BPEL process or of referenced
Web services;

• CorrelationSet: A set of attributes to ensure the correlation of messages and process
instances;

In addition to this constructs, there are structured activities, such as loops (if, while, repeat until
etc.), scopes, sequences and so on. For a detailed introduction into WS-BPEL see [JEA+07].

An example of a BPEL process managing an order is given in figure 2.4 in the form of a Business
Process Modeling Notation (BPMN) diagram.

The semantics of this BPEL process is as follows: The PartnerLink on the left side (Cus-
tomerOrderIF) specifies the input, output and fault variable for this process. The input vari-
able (an XML file consisting of a credit card information and information about a order with
different order items) is the input for the Receive of the BPEL process, the following Assign1
copies the information of the input variable of the Receive into the input variable for the first
PartnerLink on the right side (CCCheckIF), which checks the credit card information, so that
the PartnerLink can be called by the BPEL element Invoke1. This PartnerLink returns either
true, if the credit card information is correct and the order can be paid with this credit card, or
false otherwise. But if wrong information is transmitted, e.g., a non-valid credit card number,
a fault will be thrown. The BPEL process defines a fault handler which catches all faults and
rethrows them so the fault will be handed over to the CustomerOrderIF without further fault
handling.

The output of the CCCheckIF PartnerLink is the boolean condition for the following if-fork. If
CCCheckIF returns false the path on the right-hand side will be chosen which simply copies the
reply of the credit card check and an additional text into the output variable (Assign3) of the
BPEL process. Otherwise, if CCCheckIF returns true the path on the left-hand side after the

12 CHAPTER 2. FUNDAMENTALS

Figure 2.4: A BPEL process example, modeled in BPMN

IF-construct will be taken so that Assign2 prepares the input variable for the real order process
by copying the input variable of the Receive. The following Invoke2 invokes the PartnerLink
(CustomerRealOrderIF), which confirms the order (true or false) and sends an additional text
which contains, e.g., the delivery time. Assign4 copies this information into the output variable
of the process.

The output variable of the BPEL process is a boolean with an additional string. The boolean is
either true, in case the credit card is valid and the order has been successful, or it is false, in case
the credit card is not valid or the order has not been successful. In the first case, the additional
information are information about the delivery time etc., in the second case information about
the refusal will be given.

2.5 WS-* Standards

WS-* standards is a non-official general term for numerous specifications that extend basic
Web service functionality. These Web service technologies provide a lot of new features to Web

2.5. WS-* STANDARDS 13

services. Many of these WS-* extensions are used to implement QoS-Features.

These specifications are developed by different organizations so they complement or depend on
each other as much as they overlap and exist in competition. The WS-* standards mostly are
only specifications and the developing organizations do not provide any reference implementa-
tions or anything like that. So, frequently, the problem with these standards is to find a fully
working and standards conforming implementation.

Most of this WS-* standards do their work in the background without intervention or awareness
of the user. SOAP message headers are used by the majority of these specifications for conveying
the information needed for implementing a particular functionality. These headers typically are
created and processed by the Web service frameworks of the communication partners. So the
application of most WS-* standards is completely transparent to users, however this is not
always an advantage.

A description of WS-* standards used in this work is given below.

2.5.1 WS-Addressing

WS-Addressing [GHR06] is a WS-* specification which allows Web services to transmit address-
ing and routing information. For this reason WS-Addressing normalizes addressing information
into a uniform format so that the document under transmission can be processed independently
of transport or application. The two concepts for providing normalized addressing information
are endpoint references and message information headers.

An endpoint reference is used to determine the address of any“endpoint”. The only required tag
for an endpoint reference is the Address-tag, which defines a simple URI of the type xs:anyURI.
An example of an EndpointReference is given in Listing 2.2.

1 <wsa:EndpointReference >

2 <wsa:Address >xs:anyURI </wsa:Address >

3 </wsa:EndpointReference >

Listing 2.2: Example definition of an EndpointReference

The second of the two concepts mentioned above is the message information header. These
headers allow uniform addressing of messages independent of underlying transport mechanisms.
The uniform addressing contains besides the two required elements To (destination of the mes-
sage) and Action only optional elements. These optional elements are: The MessageID which
identifies a message by an URI and which can be referenced in the RelatesTo-tag. The From-
tag and the ReplyTo-tag determine the endpoint reference of the sender and the reply address
for the communication. By defining a FaultTo a fault endpoint can be defined, but in case of
existence of a FaultTo-tag a message id has to be set. An example for a complete definition
for the message information header is given in Listing 2.3.

1 <wsa:MessageID > xs:anyURI </wsa:MessageID >

2 <wsa:RelatesTo RelationshipType="..."?>xs:anyURI </wsa:RelatesTo >

3 <wsa:To >xs:anyURI </wsa:To >

4 <wsa:Action >xs:anyURI </wsa:Action >

5 <wsa:From >endpoint -reference </wsa:From >

14 CHAPTER 2. FUNDAMENTALS

6 <wsa:ReplyTo >endpoint -reference </wsa:ReplyTo >

7 <wsa:FaultTo >endpoint -reference </wsa:FaultTo >

Listing 2.3: Example definition of the Message Information Header

2.5.2 WS-Security

Initially developed by IBM, Verisign and Microsoft, WS-Security [OAS06] is officially called Web
Services Security by the Oasis Open Group. It is a specification of how to use different security
mechanisms (signature, encryption, security time stamp) for a business document which is being
transmitted to make it tamper-proof. Among the most important mechanisms are signatures
and encryption headers as well as binary security tokens and Kerberos certificates. These
security mechanisms are transmitted using the message header. Related WS specifications are,
among others, WS-Policy [VOH+07], WS-Trust [LKN+07], XML Signature [ERS+08] and XML
Encryption [ERI+02].

2.5.3 WS-ReliableMessaging

This standard is designed to guarantee reliable messaging between two partners. WS-Reliable
Messaging [FPD+07] avoids duplicated messages, lost messages and cares for an ordered delivery
of messages, if requested. WS-ReliableMessaging requires WS-Addressing to determine the
endpoint references which are the identifiers for the sender and the receiver of every message.

The typical approach of a communication between to partners (A as initiator resp. source, B
as destination) is that A creates a session and B responds to this CreateSequence-message
by acknowledging this message and assigning an identifier to the session. After that, A sends
messages with this sequence-identifier and a message number in this sequence (this information
has to be included in the Sequence-Block of the SOAP-header of every message, which should
be delivered reliably) and A can request an acknowledgement for every single message or a
sequence of messages. Using these acknowledgements, lost messages can be identified and sent
again by A to B. This cycle of sending messages and acknowledging them will be repeated until
all messages are delivered form A to B. To close a session after transmission of all messages to
be sent, A has to send a TerminateSequence-message to B who acknowledges the receipt of
the sequence termination. To close a session without completing it, one of the two parties can
send a CloseSequence-message which also has to be acknowledged. For an illustration of this
interrelation, see figure 2.5

The WS-ReliableMessaging standard defines four delivery assurances which can be supported
by source and destination, these are (see [FPD+07], section 2.4):

• AtLeastOnce: Each message is to be delivered at least once, or else an error MUST be
raised by the RM [(ReliableMessaging)] Source and/or RM Destination. The requirement
on an RM Source is that it SHOULD retry transmission of every message sent by the
Application Source until it receives an acknowledgement from the RM Destination. The

2.5. WS-* STANDARDS 15

Figure 2.5: The WS-ReliableMessaging protocol, taken from [FPD+07]

requirement on the RM Destination is that it SHOULD retry the transfer to the Applica-
tion Destination of any message that it accepts from the RM Source, until that message
has been successfully delivered. There is no requirement for the RM Destination to apply
duplicate message filtering.

• AtMostOnce: Each message is to be delivered at most once. The RM Source MAY
retry transmission of unacknowledged messages, but is NOT REQUIRED to do so. The
requirement on the RM Destination is that it MUST filter out duplicate messages, i.e.
that it MUST NOT deliver a duplicate of a message that has already been delivered.

• ExactlyOnce: Each message is to be delivered exactly once; if a message cannot be
delivered then an error MUST be raised by the RM Source and/or RM Destination. The
requirement on an RM Source is that it SHOULD retry transmission of every message sent
by the Application Source until it receives an acknowledgement from the RM Destination.
The requirement on the RM Destination is that it SHOULD retry the transfer to the
Application Destination of any message that it accepts from the RM Source until that
message has been successfully delivered, and that it MUST NOT deliver a duplicate of a
message that has already been delivered.

• InOrder: Messages from each individual Sequence are to be delivered in the same order
they have been sent by the Application Source. The requirement on an RM Source is that
it MUST ensure that the ordinal position of each message in the Sequence (as indicated

16 CHAPTER 2. FUNDAMENTALS

by a message Sequence number) is consistent with the order in which the messages have
been sent from the Application Source. The requirement on the RM Destination is that it
MUST deliver received messages for each Sequence in the order indicated by the message
numbering. This DeliveryAssurance can be used in combination with any of the AtLeas-
tOnce, AtMostOnce or ExactlyOnce assertions, and the requirements of those assertions
MUST also be met. In particular if the AtLeastOnce or ExactlyOnce assertion applies
and the RM Destination detects a gap in the Sequence then the RM Destination MUST
NOT deliver any subsequent messages from that Sequence until the missing messages are
received or until the Sequence is closed.

Any of these actions will not be noticed by the user, because the WS-ReliableMessaging instruc-
tions are put in the SOAP-Message header. Another OASIS standard for a similar functionality
is WS-Reliability, but WS-ReliableMessaging is the more current standard and there currently
are more implementations for WS-ReliableMessaging available. Hence, WS-Reliability will not
be further considered within the work at hand.

2.5.4 WS-Policy

This WS-Specification [VOH+07] provides mechanisms that enable web services to “announce”
requirements or capabilities concerning important process parameters, e.g., security features,
version numbers, response timeouts etc. This is to aid in secure and reliable message exchange
between services.

Web services may specify a number of policies which have to be supported by the requesting
service. In general, a policy consists of at least one policy alternative, a so-called policy asser-
tion. A policy is supported when at least one of its alternatives is supported by the requesting
service.

2.5.5 XML Signature

Actually, XML-Signature [ERS+08] is not a WS-* standard, but is strongly connected with
XML files which are transmitted by Web services. This standard is one of the standards which
enable QoS-Features for business to business communication, so this standard will be presented
here.

XML Signature is a W3C standard that allows to add a signature to an XML document.
A document is signed with a signature by the sender with his secret, private key and can
be validated with the corresponding public key which is contained or referenced in the XML
signature. The signature can be validated successfully if and only if the XML document has
not been altered in any way. Even a change in namespaces or an incrementation of any value
alters the document in a way that invalidates the XML Signature. The signature element can
be enveloped in the XML document to be signed or detached in an external document.

Listing 2.4 shows the structure of a XML Signature; the elements will be explained thereafter.

2.5. WS-* STANDARDS 17

1 <Signature xmlns="http://www.w3.org /2000/09/ xmldsig#">

2 <SignedInfo >

3 <SignatureMethod />

4 <CanonicalizationMethod />

5 <Reference >

6 <Transforms >

7 <DigestMethod >

8 <DigestValue >

9 </Reference >

10 </SignedInfo >

11 <SignatureValue />

12 <KeyInfo >

13 <KeyValue >

14 <DSAKeyValue >

15 <P>...</P><Q>...</Q><G>...</G><Y>...</Y>

16 </DSAKeyValue >

17 </KeyValue >

18 </KeyInfo >

19 <Object />

20 </Signature >

Listing 2.4: The structure of an XML Signature

An XML Signature consists of four main elements which are SignedInfo, SignatureValue,
KeyInfo and Object. The functionality of the single elements of a XML Signature is described
below:

• SignedInfo: The SignedInfo is used to reference the signed data and specify the algo-
rithms, that are used to create this signature. Core elements are the SignatureMethod

(determines the algorithm to be used to sign the document) and the Canonicalization-

Method (determines the canonicalization method of this XML document). These two
elements are used to generate the SignatureValue. The Reference element has to oc-
cur at least once and specifies the DigestMethod, the DigestValue and the object to be
signed.

• SignatureValue: This element contains the Base64 encoded result of the signature.

• KeyInfo: This is an optional element, which contains information about the public key
for re-creating the public key. This key is needed to validate the signature.

• Object: In this optional element the signed data are contained in case of an enveloped
signature.

Since Java 1.6, XML Signatures can be created using the Java API. Since Java 1.6 Update 10,
a bug concerning the XML namespaces of signed documents is fixed. As the implementation
for the work at hand uses functionality affected by this bug the recommended Java API to use
XML Signatures is Java 1.6 Update 10.

18 CHAPTER 2. FUNDAMENTALS

2.6 JAXB

The Java Architecture for XML Binding (JAXB)3 is a Java programming interface which allows
to generate Java classes from XSD (XML Schema Document) files. JAXB defines rules for
deriving Java class structures from XSD files and vice versa in the form of bindings. These
Java class hierarchies defined for particular XSD definitions can then be integrated in any
Java application. XML files can be transformed into Java objects and Java objects into XML
documents according to these bindings. JAXB can convert several types of XML representations
into Java, in particular files or documents of the type org.w3c.dom.Document. These XML
representations are unmarshaled (de-serialized) into the corresponding JAXB representations
(of the type javax.xml.bind.JAXBElement<T>) so that the tags of the XML document can
be accessed as Java objects.led (de-serialized) into the corresponding JAXB representations
(of the type javax.xml.bind.JAXBElement<T>) so that the tags of the XML document can
be accessed as Java objects. After processing in Java is done, the JAXB Object Tree can be
serialized again by the mechanism of marshaling. A JAXBElement respectively the tree of
Java objects can be marshaled into a XML representation such as files or documents. This
proceeding is visualized in figure 2.6.

Figure 2.6: The typical approach of using JAXB, taken from [OM03]

A requirement for the usage of JAXB is the availability of all XSD files which are referenced by
the XML file to be parsed. This includes all XSD files which are referenced by the original XSD
file of the XML Document to be read. Using these XSD files, it is possible to create a JAXB-
Binding of the XSD file under consideration which defines a class structure for representing
XML documents.

The first step in creating JAXB objects in Java is to define the corresponding JAXBContext.
With the help of this context, an ObjectFactory can be instantiated. This factory is able to

3http://jcp.org/en/jsr/detail?id=222

http://jcp.org/en/jsr/detail?id=222

2.6. JAXB 19

create the objects defined by the JAXB Binding and the generic wrapper element of the whole
XML file (javax.xml.bind.JAXBElement<T>).

Chapter 3

Analysis

3.1 Modeling of NES-Profiles Using ebBP

Before organizations are able to integrate their processes, it is sensible to specify a global in-
teraction protocol with messages and roles of the business process to be integrated. Such a
specification is called choreography. The same is done in the work at hand. This chapter de-
scribes the modeling of choreographies using the ebXML Business Process Specification Schema
as language and the e-business profiles proposed by the NES as input.

3.1.1 Modeling Practices Used

Before describing the modeling of the profiles, the general modeling practices, modeling con-
structs and their usage in context of this work are explained.

3.1.1.1 The General Approach

The Northern European Subset (NES) proposes eight profiles for doing e-business as already
pointed out in chapter 2.1. These profiles describe business processes like sending catalogues,
orders, billing information and credit notes by using UBL conforming documents. Put simply,
a UBL conforming document is a document that provides all mandatory UBL elements. The
usage of optional fields of these documents can vary in context of the different profiles. So, the
state of the NES as subset of the UBL is retained.

The textual and visual description of these profiles and of the used documents are the basis of
the following modeling activities.

The NES profiles are chosen as use case of this work because these profiles are real world
B2Bi processes that are applied in practice in several northern European countries. Showing
to be able to handle these scenarios therefore enhances the validity of the work at hand. These

20

3.1. MODELING OF NES-PROFILES USING EBBP 21

profiles provide detailed schemas for business documents and the business logic that determines
the control flow of their exchange. Note that developing business document schemas and
determining business logic of business processes are not core subjects of investigation of the
work at hand.

In a first step, the profiles are modeled as a choreography between the partners of business in-
tegration. For this purpose, the ebXML Business Process Specification Schema is chosen. The
main arguments for using ebBP are the possibility to define B2Bi-relevant QoS attributes, the
suitability of ebBP choreographies as basis for agreement among integration partners, and the
dedication of this standard to B2Bi modeling which promises a sufficient toolset for specifying
concise B2Bi process descriptions. During modeling, not only textual ebBP specifications are
created but these are visualized using UML Activity Diagrams as well, especially for capturing
the control flow. Modeling begins with creating these Activity Diagrams for reasons of com-
prehensibility and human readability. Subsequently, these diagrams are transformed into ebBP
Business Collaborations. So the UML Activity Diagrams are, on the one hand, the basis for
modeling but also, on the other hand, the basis for validating the ebBP Collaborations and to
check their correctness. Modeling of ebBP is the essential part of this step, while UML Activity
Diagrams are only used as a tool.

Modeling in the context of this work means analyzing the different profiles, filtering the relevant
informations for the choreography and the integration of the business partners, and finally to
complete the flow of informations in order to ensure state alignment between the business
partners. State alignment is one of the most important requirements, i.e., to ensure consistent
information at each party and to ensure that both parties base their decisions for next steps on
the same knowledge. Additional application responses and error notifications are introduced
for this purpose. All business documents used and transmitted are instances of the documents
recommended by the NES.

In the following, the modeling practices used, the modeling of the profiles and the problems
during the process of modeling are explained more closely.

3.1.1.2 ebBP Modeling Elements

This section shows the elements of the ebBP specification used in this project and their appli-
cation within the modeling of the profiles.

Modeling business processes in this context means specifying XML files according to the XSDs
of ebBP.

As shown in figure 3.1, the Business Process Specification Schema is based on Business Trans-
actions which define flows of documents and signals in requesting and responding direction
between two parties. These Business Transactions are reused as Business Transaction Activ-
ities within the flow of a Business Collaboration which can itself be reused as Collaboration
Activity. Each Business Transaction Activity is performed by two roles. For this purpose, it
associates the roles of its referenced Business Transaction with the roles specified within the
Business Collaboration. The flow of a Business Collaboration is modeled as transitions between

22 CHAPTER 3. ANALYSIS

Figure 3.1: The constructs of ebBP used in this work

the mentioned activities using Decisions, Forks and Joins. In this work, only Decisions are used
for connecting activities. For this reason Forks and Joins are not discussed in this chapter.

Furthermore, every Business Collaboration contains exactly one Start element and at least one
final state which represents the end of the collaboration.

All elements are identified by a unique name id which is also used to reference the elements.

In the following paragraphs, all used ebBP elements and their usage within this use case are
discussed.

Modeling of Business Signals Business Signals are used by a party to signal the partner
that the handling of a received business document has reached a certain state. Business Signals
can either be positive or negative. Negative Business Signals indicate that an exception has
occurred. The following Business Signals are in use:

• ReceiptAcknowledgement signals a positive receipt of a business document and indicates
successful validation of the business document against a specified XSD; If an error occurs,
a ReceiptAcknowledgementException is sent back instead.

• AcceptanceAcknowledgement signals acceptance for business processing of the received
business document. This typically indicates that the document conforms to business rules
defined by the partner which might be implemented using Schematron validations. If an
error occurs, an AcceptanceAcknowledgementException is sent back instead.

• GeneralException signals the occurrence of an exception, that is not covered by the two
items above;

Business Signals are reused within the Requesting and Responding Business Activities of a
Business Transaction. The usage of these signals depends on the Quality of Service attributes

3.1. MODELING OF NES-PROFILES USING EBBP 23

specified for the Business Transaction and for its subelements. These attributes are discussed
in more detail in chapter 4.1.2.

1 <Signal name="ReceiptAcknowledgement" nameID="ra2">

2 <Specification

3 location="http://docs.oasis -open.org/ebxmlbp/ebbp -signals -2.0"

4 name="ReceiptAcknowledgement" nameID="rabpss2"/>

5 </Signal >

Listing 3.1: Example definition of Business Signals

Listing 3.1 shows an example of the definition of a Business Signal. Each Business Signal is
identified and can be referenced by a unique nameID. The attributes of the Specification

element specify the namespace of the corresponding XSD file and describe the Signal by its
name and its unique identifier.

Modeling of Business Documents Like Business Signals, Business Documents are also
identified with a unique nameID where the work at hand uses the nameID pattern
bd_name_of_document. The Specification element specifies the namespace of the type def-
inition file and its location. The type attribute specifies the type definition language, e.g.,
schema or dtd. Listing 3.2 gives an example of the definition of Business Documents.

1 <BusinessDocument name="catalogue" nameID="bd_catalogue">

2 <Specification location="../../ schemas/profile1/maindoc/UBL -Catalogue -2.0. xsd"

3 name="basicNES2_0Catalogue" nameID="basicNES2_0Catalogue" type="schema"

4 targetNamespace="urn:oasis:names:specification:ubl:schema:xsd:Catalogue -2"

/>

5 </BusinessDocument >

Listing 3.2: Example definition of Business Documents

Business Documents are used by Business Transactions which encapsulate them within their
Requesting or Responding Business Activities.

Modeling of Business Transactions As pointed out above, Business Transactions are
representing one of the core elements of the ebBP specification. Listing 3.3 gives an example
of the specification of a Business Transaction.

1 <InformationDistribution name="distributeCatalogue" nameID="bt_distributeCatalogue"

2 isGuaranteedDeliveryRequired="true">

3 <RequestingRole name="initiator" nameID="bt_distributeCatalogue_role_initiator">

4 </RequestingRole >

5 <RespondingRole name="responder" nameID="bt_distributeCatalogue_role_responder">

6 </RespondingRole >

7 <RequestingBusinessActivity name="sendCatalogue"

8 nameID="bt_distributeCatalogue_ba_req" isAuthorizationRequired="true"

9 isIntelligibleCheckRequired="true" retryCount="3"

10 timeToAcknowledgeReceipt="PT1H">

11 <DocumentEnvelope name="catalogue" businessDocumentRef="bd_catalogue"

12 nameID="bt_distributeCatalogue_doc_catalogue"

13 isAuthenticated="transient" isConfidential="transient"

14 isTamperDetectable="transient">

24 CHAPTER 3. ANALYSIS

15 </DocumentEnvelope >

16 <ReceiptAcknowledgement name="ra" nameID="bt_distributeCatalogue_ack_ra"

17 signalDefinitionRef="ra2">

18 </ReceiptAcknowledgement >

19 <ReceiptAcknowledgementException name="rae"

20 nameID="bt_distributeCatalogue_ack_rae" signalDefinitionRef="rae2">

21 </ReceiptAcknowledgementException >

22 </RequestingBusinessActivity >

23 <RespondingBusinessActivity name="provide acks"

24 nameID="bt_distributeCatalogue_ba_resp">

25 </RespondingBusinessActivity >

26 </InformationDistribution >

Listing 3.3: Example definition of Business Transactions

A Business Transaction is an abstract type for different kinds of transactions. The concrete
type to be used depends on the context of use. Each Business Transaction (BT) has exactly one
Requesting Business Activity and one Responding Business Activity. Depending on the concrete
type of a Business Transaction, one-way or two-way interactions can be realized by a BT. A
one-way interaction is realized with an empty Responding Business Activity. Furthermore,
within the Responding Business Activity of some types of Business Transactions, multiple
Document Envelopes can be specified which then are to be used alternatively. Requesting and
Responding Business Activities are representing Document and Signal flows in corresponding
directions. The Requesting Business Activity is started by the so-called Requesting Role of a
Business Transaction whereas the Responding Business Activity is started by the corresponding
Responding Role. The direction of Business Document and Business Signal flows can then be
determined accordingly.

The following types of BusinessTransactions are used in the work at hand:

• InformationDistribution: An InformationDistribution is used in order to send infor-
mation with business contents which are not legally binding to the receiving party. These
informations are answered (if necessary) with an AppResponse sent in the context of
another InformationDistribution. In this work, this type of Business Transaction con-
tains only a Requesting Business Activity and an empty Responding Business Activity
and thus represents a one-way message transmission. An example is shown in Listing 3.3

• CommercialTransaction: A CommercialTransaction is used in case the business docu-
ments and their consequences are legally binding to both parties. These documents must
be confirmed also by an answer with binding character. Each CommercialTransaction

of this work has two alternative Responding Business Activities, one for positive and one
for negative response using the Business Document AppResponse. To state a positive
response, the attribute isPositiveResponse is set to true in the DocumentEnvelope.
Sending an invoice is an example for how to use this kind of Business Transaction.

• Notification: Notifications are used to send AppResponses or error messages with
legally binding character which can not be transmitted using CommercialTransactions.
An example for sending a Notification is the occurrence of an exception at one party.

There are several possibilities to set Quality of Service attributes within a Business Transaction.
This can be done at the level of Business Transaction, Requesting/Responding Business Activity

3.1. MODELING OF NES-PROFILES USING EBBP 25

and at the level of the Document Envelope. The following listings show the different features
used in the work at hand.

QoS features at the level of Business Transactions:

• isGuaranteedDeliveryRequired is set to true in order to transmit the documents of
the Business Transaction reliably. In this work, it is always set to true because reliable
transmission of Business Documents is always important, even if they do not have legally
binding character.

QoS features at the level of RequestingBusinessActivity and
RespondingBusinessActivity can vary if necessary, e.g., if the transmitted documents differ
in QoS requirements.

• isAuthorizationRequired is set to true in order to guarantee that only documents from
well-known partners are accepted and that the sending entity is indeed eligible for sending
documents of the corresponding type.

• isIntelligibleCheckRequired is set to true in order to guarantee the confirmation of
a message only if it is legible, i.e., only if structural and type validations succeed.

• isNonRepudiationRequired is set to true in order to require non-repudiation. This
means the sending party cannot deny having sent a document.

• isNonRepudiationReceiptRequired is set to true in order to guarantee the sending of
a receipt when a message has been transmitted. The receipt of a document cannot be
denied.

• retryCount specifies the number of document transmission attempts. If an attempt
to transmit a document fails another attempt to send this document is made until the
maximum number of retries is reached. This work always makes three attempts.

QoS features at the level of DocumentEnvelope can be specified as transient, to use implemen-
tation at the network layer, or as persistent, to use implementation at the process layer, or as
both or as none.

• isAuthenticated is set to require authentication of the document’s sender.

• isConfidential is set to require encryption in order to prevent third parties reading the
document.

• isTamperDetectable is set to require checksums. This guarantees manipulations of a
document during transmission can be detected.

26 CHAPTER 3. ANALYSIS

Modeling of Business Collaborations The choreography between two ore more integration
partners is specified within the context of a Business Collaboration. This work only uses binary
collaborations, i.e., integration between two partners. Like all elements of an ebBP document,
a Business Collaboration is also identified by an unique nameID and is described by its name.
To state whether a collaboration can only be used as Collaboration Activity within another
Business Collaboration the attribute isInnerCollaboration could be set to true inside the
BusinessCollaboration element. By default this value is set false.

Listing 3.4 shows an example of a Business Collaboration. At first, roles are specified by name
and nameID. In general multiple definitions of roles with in a choreography can be specified.
This work handles only binary collaborations and thus always defines only the two roles of
customer and supplier as intended by the NES profiles to be modeled.

Furthermore, the expected duration of the collaboration is specified by the element TimeToPer-
form. This work distinguishes between two kinds of definition. On the one hand, the duration
can be specified at design time with a fixed duration as shown in listing 3.4. On the other hand,
a duration could be negotiated at runtime. Then, no duration will be specified and the type will
be set to runtime. The usage of runtime configuration is preferable for inner collaborations.
The third possibility provided by ebBP of setting the type to configuration is not used in
this work.

Finally, it is necessary to specify the start of the choreography within the element Start. The
ToLink element references the first activity which could be a Business Transaction Activity or
a Collaboration Activity. References are set using nameIDs.

The flow of the collaboration is, as mentioned, specified by transitions between decisions and
activities with final states at its end. For more details see the corresponding paragraphs.

1 <BusinessCollaboration name="NES profile 1 collaboration" nameID="cb_profile1global">

2 <Role name="Customer" nameID="cb_profile1global_role_customer"></Role>

3 <Role name="Supplier" nameID="cb_profile1global_role_supplier"></Role>

4 <TimeToPerform type="design" duration="P10D"></TimeToPerform >

5 <Start name="start of NES profile 1 collaboration"

6 nameID="start_cb_profile1global">

7 <ToLink toBusinessStateRef="bta_sendCatalogue"></ToLink >

8 </Start>

9 ...

10 </BusinessCollaboration >

Listing 3.4: Example definition of Business Collaborations

Modeling of Business Transaction Activities Business Transaction Activities reuse the
defined Business Transactions within the flow of a Business Collaboration. An example of a
Business Transaction Activity is given in listing 3.5. Like for all other elements, nameId and
name are used to identify the activity. The Business Transaction Activity references the Business
Transaction to be reused by its nameId within the attribute businessTransactionRef.

The TimeToPerform element specifies the expected time to perform this Business Transaction
Activity. Like the TimeToPerform of Business Collaborations, in this context, it can also be of
type design or runtime. A fixed time is specified in case of type design and is used in outer

3.1. MODELING OF NES-PROFILES USING EBBP 27

Business Collaborations. Within the content of an inner Business Collaboration the TimeToP-
erform of a Business Transaction Activity depends of the enclosing Business Collaboration.
Thus, it has also to be specified at runtime. This work doesn’t use the type configuration

for defining the TimeToPerform.

The Performs elements determine the association of Business Collaboration roles with Business
Transaction roles. This means, it determines which role of the Business Collaboration has to
perform a particular role of the Business Transaction. The attributes currentRoleRef and
performsRoleRef are specifying this association.

1 <BusinessTransactionActivity

2 businessTransactionRef="bt_distributeCatalogue" name="send catalogue"

3 nameID="bta_sendCatalogue" hasLegalIntent="false"

4 isConcurrent="true">

5 <TimeToPerform duration="PT1H" type="design"></TimeToPerform >

6 <Performs currentRoleRef="cb_profile1global_role_supplier"

7 performsRoleRef="bt_distributeCatalogue_role_initiator">

8 </Performs >

9 <Performs currentRoleRef="cb_profile1global_role_customer"

10 performsRoleRef="bt_distributeCatalogue_role_responder">

11 </Performs >

12 </BusinessTransactionActivity >

Listing 3.5: Example definition of Business Transaction Activities

Business Transaction Activities also offer the possibility to specify Quality of Service attributes.
These attributes are shown in the listing below:

• hasLegalIntent is set to signal whether the transmitted document has legal intent and
thus is legally binding for the receiver.

• isConcurrent is set to enable parallel execution of the Business Transaction Activity
under consideration.

Modeling of Business Collaboration Activities Collaboration Activities describe the
execution of inner Business Collaborations. This means, every Collaboration Activity has to
reference a Business Collaboration using the nameID (See listing 3.6 at attribute collabo-

rationRef). Furthermore, a Collaboration Activity uses the attributes name and nameID to
describe its own identity. It is also necessary to associate the roles of the calling Business Col-
laboration with the roles they have to perform in the called Business Collaboration. For this
purpose, the Performs element offers the attributes currentRoleRef and performsRoleRef.
These attributes hold references to the specified roles using their nameID.

1 <CollaborationActivity name="collaboration activity external send invoice"

2 nameID="ca_ext_sendInvoice" collaborationRef="cb_inner_ext_sendInvoice">

3 <Performs currentRoleRef="cb_profile5global_role_supplier"

4 performsRoleRef="cb_inner_ext_sendInvoice_role_supplier">

5 </Performs >

6 <Performs currentRoleRef="cb_profile5global_role_customer"

7 performsRoleRef="cb_inner_ext_sendInvoice_role_customer">

8 </Performs >

9 </CollaborationActivity >

Listing 3.6: Example definition of Collaboration Activities

28 CHAPTER 3. ANALYSIS

Modeling of Decisions Another central element of modeling the flow within a Business
Collaboration is the Decision. This use case uses Decisions only to link the different activities
with each other. For this purpose, Decisions use the element FromLink, to specify the activity
that should be linked, and the element ToLink to specify the different target elements. A
Decision can contain multiple ToLink definitions. Which target branch is chosen, depends on
the condition, that is specified within the ToLink element. This shows the second purpose of
Decisions, i.e., to ensure the correct routing after each Business Transaction Activity depending
on its outcome. This routing is important for state alignment between the business partners.
This means, both parties have to take the same routing decisions.

The reference to the activity that should be linked is set within the FromLink element using
the attribute fromBusinessStateRef. This attribute uses the name id of the activity.

The targets within the ToLink elements are also referenced by the name id of the destina-
tions. Destinations can be final states as well as activities and are determined by attribute
toBusinessStateRef.

For routing the flow of a Business Collaboration the ebBP Specification offers a number of
possibilities of expression languages. This work only uses the languages explained more closely
below. Conditions are specified within the element ConditionExpression. The expression to
evaluate depends on the given expressionLanguage.

• expressionLanguage = ConditionGuardValue: A guard value is used for evaluation
that captures BTA results predefined by ebBP. It is checked against a concrete specified
value. If it evaluates to true, than the next step is determined by the toBusinessStateRef
attribute of the enclosing ToLink element.

• expressionLanguage = XPath2: This specifies that a boolean XPATH21 expression

has to be applied to the handled business document. If this expression evaluates to true,
this path is chosen.

If multiple expressions evaluate to true, the first expression listed determines the flow.

Listing 3.7 gives an example that shows the application of all possible expression languages.

1 <Decision name="after send appResponse" nameID="dec_sendAppResponse">

2 <FromLink fromBusinessStateRef="bta_sendAppResponse"></FromLink >

3 <ToLink toBusinessStateRef="techFail">

4 <ConditionExpression expressionLanguage="ConditionGuardValue"

5 expression="AnyProtocolFailure"></

ConditionExpression >

6 </ToLink >

7 <ToLink toBusinessStateRef="success">

8 <ConditionExpression expressionLanguage="XPath2"

9 expression="normalize -space(string (//

DocumentResponse/Response/ResponseCode))=’

ACCEPT ’">

10 </ConditionExpression >

11 </ToLink >

12 <ToLink toBusinessStateRef="businessFail">

1http://www.w3.org/TR/xpath20/

http://www.w3.org/TR/xpath20/

3.1. MODELING OF NES-PROFILES USING EBBP 29

13 <ConditionExpression expressionLanguage="XPath2"

14 expression="normalize -space(string (//

DocumentResponse/Response/ResponseCode))=’

REJECT ’">

15 </ConditionExpression >

16 </ToLink >

17 </Decision >

Listing 3.7: Example definition of Decisions

Modeling of Final States Final States are representing possible endings of a choreography.
ebBP distinguishes between two kinds of Final States. In this work, every business process can
have exactly one Failure state, which is represented by the corresponding element. In contrast
to that, there can be multiple Success states in a Business Collaboration, also represented by
the corresponding element. Each Final State is identified and referenced by a unique nameID.
The semantics of a Final State is expressed using the name attribute.

This work differentiates between the following three types of Final States:

• success: signals a successful protocol termination as well as a successful business result;

• businessFail: signals a successful protocol termination with a non successful business
result;

• techFail: signals a failure state of the protocol execution;

3.1.1.3 UML Constructs

UML Activity Diagrams are chosen in order to visualize the business protocol and to visualize
all alternative paths through the process. Modeling UML is not necessary for creating ebBP
models. But in this work, the modeling is used to visualize the Collaboration. This can be
the basis for modeling in XML as well as the basis for informally validating the modeled ebBP
Business Collaboration.
Only a few elements of UML Activity Diagrams are used to describe a simple idea of the flow
of the particular profiles.

• Actions are used to show all activities with the purpose of sending or receiving business
documents or with the purpose of starting other new processes of Business Collaborations.

• Decisions are used after each activity. Depending on the outcome of the previous activity
and its context of use, a decision can have multiple outgoings. The conditions for using
an outgoing path are annotated at the outgoing arrows.

• A Starting Node signals the start of a Business Collaboration. Each process has exactly
one starting node.

30 CHAPTER 3. ANALYSIS

• Ending Node (for activities) is used to signal the end of the process. Multiple ending
nodes can occur in a process and could have different meanings like protocol failure,
business success or business failure. The meaning of an ending node depends on the path
through the decisions before and is annotated as comment or name of the ending node.

3.1. MODELING OF NES-PROFILES USING EBBP 31

3.1.2 Critical Modeling Issues

In this section, critical modeling issues will be presented in three steps. The first step contains
the problem description of a critical modeling issue, the second step describes possible solution
alternatives and the third step presents the selected solution along with a justification for
choosing this solution.

The aim of this section is to address each critical modeling issue separately, to analyze them in
isolation and to do an impact analysis of the solution of choice on the other issues afterwards.
But especially for the first two problems a coordinated solution is necessary due to the strong
interdependency in the possible solution combination. The external medium problem, however,
is addressed in isolation.

As can be seen in the next paragraphs, a perfect solution frequently cannot be found. This
results in several trade-offs that guarantee the feasibility as well as involve several drawbacks.
This is the reason why all the solution alternatives are presented and the argument for a specific
alternative is shown in detail to describe the line of thought that has led to a particular solution.

3.1.2.1 The Parallel Execution Problem

The parallel execution problem occurs in the NES Profiles 5 to 8. After receiving an application
response with the code incorrect information in the process flow, a credit note to nullify
the previous invoice as well as a new, and hopefully correct, invoice are sent in parallel.

The first possible solution alternative is created using the constructs fork and join. All
branches between a fork and a join construct are executed in parallel. According to the ebBP

specification the fork constructs do not have AND semantics. These constructs can either have
OR semantics where either zero, one or n branches will be executed, or XOR semantics where
exactly one branch will be executed. However, it is possible to emulate an AND fork construct
by using a join construct with ALL semantics together with an OR fork. In that case, every
branch must be executed. Hence, the technical possibility for modeling the parallel execution
with forks and joins is given. But this solution has a major drawback. If one branch fails during
the execution there is no construct, attribute or anything else to describe what to do next in
that case and how to handle the failure. It is not possible to have a rollback mechanism if one
branch fails because no ebBP construct is available to describe the recovery solution. In the
ebBP standard only the execution of a BTA construct can be seen as an atomic unit of work with
transactional semantics but if the branches contain more than exactly one BTA construct, which
is the case in all of the problem occurrences, the mentioned drawback still exists. The only
solution then would be to introduce new ebBP constructs. But since changing the standard is
not the aim of this work and is better discussed with the ebBP standard team of OASIS, this
alternative is marked as the least favorable one.

The second idea is to use only an OR fork construct and no join construct. The main problem
of this alternative is the necessity of the process to be in one final state in the end. This is not
possible without a join construct and is also not allowed by the standard. As mentioned before,
changing the standard is not considered as an option here.

32 CHAPTER 3. ANALYSIS

The third solution is to have the tasks executed consecutively instead of in parallel. Thus
a simple conversion is used to transform the parallel flow into a serialized one. Thereby the
performance loss in executing the process is outperformed by the advantages of a clear and
simple process model of the profiles. The sequence is defined as follows: First, the old invoice
will be reseted by a credit note. Afterwards, the original invoice is sent and the process starts
again with the new invoice that is now checked whether it is correct or contains any errors.
The main thought behind this sequence is that the error has to be corrected before something
new is issued.

To sum up, in order not to change the standard the best alternative is the third one. Reducing
the complexity of a parallel process to a simple sequence as well as not changing the standard
is rated higher than the performance decline that comes with that solution.

3.1.2.2 Loop Handling

The loop handling problem occurs in the NES Profiles 5 to 8. After receiving an invoice and
the corresponding application response expressing that the invoice is containing errors in the
process flow, the process will loop until the transaction completes successfully, in other words,
until it ends in a specific state. As an example, assume an undercharged invoice is sent. This
is reported back to the sender of the incorrect invoice with an application response and as a
result an additional invoice is sent to request the difference between the real price and the
undercharged price. However, this invoice can also be undercharged. This creates a loop that
only terminates if the side issuing the invoices sends a correct invoice. There are three cases
according to the NES profiles that need to be addressed, namely the undercharge branch,
described in the example above, which sends a compensating invoice that requests the price
difference between the real price and the undercharged price, the overcharge branch which
sends a credit note that returns the amount that has been overcharged back to the customer
and the incorrect information branch that nullifies the previous invoice with a credit note
and sends a new invoice which is expected to then contain the correct information.

There are two common solutions to such a problem as described above. Either an iterative
solution or a recursive solution are possible. The iterative solution uses a loop like a while..do-
or do..until-construct. The recursive solution solves such problems by invoking itself over an
over again until it is terminated.

First, the iterative solution using a while..do-loop is analyzed. To create a loop in ebBP a
decision construct is needed which contains a condition that leads to a BTA construct that
is executed and returns the flow to the decision. The decision construct is the condition of
the while..do loop, the BTA the body. This strategy can be applied to the branches of the
decision construct that handles the undercharge and overcharge cases which only need one
compensation message to correct the error. In case of an undercharge the decision directs the
flow to the BTA that sends an invoice that corrects the error and is checked after execution by the
decision again. This applies analogously to the overcharge case. Despite the fact that this
solution handles two important cases, there is a huge problem in the incorrect information

case when both the credit note nullifying the previous invoice and the new invoice are sent. In
order to analyze this in detail, the possible solutions of the parallel execution problem, namely

3.1. MODELING OF NES-PROFILES USING EBBP 33

the execution in parallel as well as in sequence, are discussed separately to respond to the
differences of each alternative.

To begin with, the problem is examined with the assumption of having the ability to execute
branches in parallel. If it is determined that the invoice contains incorrect information, two
branches will be started. Each branch compensates a part of the error found and has its own
decision that then analyzes if the sent message has been correct. However, if both compensating
messages have not been correct and thus have contained incorrect information, each decision
flow then starts two flows and so forth. As it can be seen, each loop step could create an
additional process. It is possible to model this flow for a specific number of concurrent processes,
however, it is not possible to model this flow for an arbitrary number of concurrent processes.
As it is not known ex ante how many concurrent processes will be necessary for an execution
of a profile, this does not solve the problem described.

Next, the alternative that executes BTAs in sequence is discussed. It is assumed that after
sending a credit note and its corresponding application response a decision will check whether
everything has been correct and if this is not the case this would lead to a compensating BTA.
Because this compensating BTA can also have an error it is also checked and compensated and
so forth. This may lead to a queue2 of BTAs to be compensated subsequently. Hence, once
the first compensation is successful the next BTA in the queue has to be compensated. Such
behavior could be specified using a stack-like data structure. As ebBP does not offer such data
structures out of the box, this solution would require ebBP extensions which are not considered
to be a desirable goal for the work at hand. As can be seen above, it is irrelevant how the parallel
execution problem that arises from the iterative alternative is tackled. Both possibilities fail in
solving the loop handling problem. Consequently, the iterative alternative is not a solution to
the loop handling problem.

Second, the recursive solution is analyzed. Instead of having all the constructs in one process
they are separated in several BCs. Each BC only handles the sending of one document, and the
compensation handling will be delegated to other processes. Note, that compensation control
is not given completely away by the calling process (BC) as the called process returns the result
of the compensation. In so far, the BC construct is used as a recursive function and it can call
itself or other BCs for the compensation handling.
In the best case, no recursive invocation is needed because it is only used when an error occurs.
However, if an error occurs, child processes will be started to handle the error. After the child
process(es) has(have) finished, the process is in a specific state (success or failure) depending
on the returned state of the child processes and a decision then determines whether to proceed
or to abort and inform a parent process if one exists. An advantage of this method is that the
depth that the recursion can go into is hidden from the caller. A child process itself can issue,
e.g., an incorrect invoice which needs to be compensated. Therefore this will be done and only
the aggregated state will be returned to the caller independently of how many child process
instances were needed for the actual compensation. In conclusion, this solution is a good option
because it solves the problem.

Third, a combination of the recursive and the iterative solution is possible. In that hybrid
solution the iterative solution is used for the undercharge and overcharge branches and the

2or rather a stack

34 CHAPTER 3. ANALYSIS

recursive solution for the incorrect information. Although this is possible, a holistic ap-
proach is preferred for its reduced complexity.

To sum up, the iterative solution is not usable, the hybrid solution is not holistic, and thus
the recursive solution is used to solve the loop handling problem. With this solution also the
flexibility increases because every iterative process description can be modeled as a recursion
but not vice versa.

3.1.2.3 External Medium

The external medium problem occurs within NES profiles 5 and 6. In both profiles an external
medium is used by the profile’s customer party to inform the supplier party that an invoice
or credit note that has been sent before contains an error. An external medium is, e.g., a
fax machine, telephone, email, etc.. Via this external medium both parties inform each other
about a particular error type and agree upon it, namely incorrect information, undercharge
or overcharge. The external medium is not part of the ebBP process but it influences the
flow/routing of the ebBP process. The ebBP process does not control the external medium
and therefore is not able to retrieve information about what failure is agreed upon. Hence,
state alignment has to be achieved in a different way. The following solutions all start out with
having the customer and supplier agree on the error type via the external medium.

The first solution is to let the supplier send a business document that reflects the error type,
i.e., additional invoice, credit note, or compensation credit note and new invoice. This solution
is probably closest to the original NES specification. As agreement via external medium is not
represented in ebBP, the ebBP process specification for this solution has to arrange for the
exchange of any of the business document types described above. This can be addressed by
using a XOR fork with a join or an additional message type that allows for transmitting any
of the above types. In case of the XOR fork alternative, several additional constructs would
be needed such as a corresponding join. Defining the additional message type would mainly
require the definition of an xsd :choice like structure. In both cases, some metadata for
determining in which way the transmitted business document is to be interpreted would have
to be defined. For example, a credit note could either replace or complement an erroneous
invoice, i.e., the transmitted business document type does not unambiguously identify the error
type the integration partners have agreed upon via the external medium.

The second solution arranges for an additional control message (in the form of an ebBP Noti-
fication) sent by the supplier that communicates the error type agreed upon via the external
medium. Subsequently, an according invoice or credit note or both are sent by the supplier.
In this case, the meaning of these business documents is clear because the error type has been
transmitted before.

The third solution is identical with the second one except for the fact that the customer sends
the additional control message instead of the supplier.

In summary, the main difference between the first solution and the other solutions is that
the metadata necessary for explicitly capturing the control flow in ebBP is not placed into

3.1. MODELING OF NES-PROFILES USING EBBP 35

a separate ebBP Business Transaction. Technically speaking, any solution is possible, but
separating control flow information from business content is considered to be preferable to
reducing the number of messages to exchange. Finally, the second solution is selected because
it lends itself better to the situation that the additional control message’s error type differs
from the agreement via external medium than solution three. If so, solution two offers the
possibility for the customer to simply reject the subsequent invoice or credit note (again via
external medium). On the contrary, solution three would force the supplier to send a business
document that corresponds to the error type communicated via the control message exchanged
before. In order to disagree with the control message’s error type the supplier possibly would
have to send the wrong type of business document or a business document with meaningless
content which apparently is not desirable.

36 CHAPTER 3. ANALYSIS

3.1.3 Modeling of the NES Profiles

Figure 3.2: The dependencies among NES profiles visualized as UML class diagram

Figure 3.2 presents an overview over dependencies between the eight profiles of the NES. To
visualize this a class diagram is used.

Profile 1 (Catalogue Only) describes a process of sending catalogues or extensions to catalogues.
Profile 2(Catalogue with Updates) extends Profile 1 with pricing or item update information.

Profile 3 (Basic Order Only) represents a simple order process. Corresponding to that, Profile
4 (Basic Invoice Only) describes a basic process of sending invoices. Profile 5(Basic Billing)
extends Profile 4 and offers the possibility to justify the rejection of an invoice. Reasons for
rejection are transmitted via an external medium. This external medium is replaced by an
application response message in Profile 8 (Basic Billing with Dispute Response). Profile 6
(Basic Procurement) combines Profiles 3 and 5 to a process of procurement. Corresponding to
Profile 8, Profile 7 (Simple Procurement) automates the transmission of the reasons for rejection
of invoices of Profile 6 (for more details see [Gro07b]).

3.1. MODELING OF NES-PROFILES USING EBBP 37

3.1.3.1 Basics of Modeling the NES Profiles

In this section, some basics of modeling the NES profiles which are common to all profiles are
explained and justified. Afterwards, the setting of the Quality of Service features which are
common to all profiles are defined. Note that the translator to be introduced in section 4.3 can
also process differing QoS settings.

Table 3.1 shows the setting of QoS features. At the level of document envelope, all attributes
are set to transient. In general, these features depend on the agreement between the integration
partners. For this work, security at the network layer is considered to be sufficient because all
NES profiles only allow for two integration partners.

isGuaranteedDeliveryRequired is always set to true because in the context of doing business
the guaranteed transmission of business documents is always necessary, even if they do not have
legally binding content.

isConcurrent is always set to true because there are no reasons to prevent parallel execution
of Business Transaction Activities in this work.

The other features of table 3.1 are always set to true because regarding their meaning (see
chapter 3.2), doing serious e-business without them is not imaginable and can have serious
consequences to integration partners.

Level QoS feature Setting

Business Transaction Activity isConcurrent true
Business Transaction isGuaranteedDeliveryRequired true
Requesting/Responding isAuthorizationRequired true
Business Activity isIntelligibleCheckRequired true

retryCount 3
Document Envelope isAuthenticated transient

isTamperDetectable transient
isConfidential transient

Table 3.1: Setting of QoS features

Some QoS attributes can not be set in all types of Business Transactions. Table 3.2 shows the
attributes set in addition to the others within CommercialTransaction and Notification at
the level of the Requesting or Responding Business Activity. For transmissions with legally
binding content it is necessary that the business partners can not deny the sending or receiving
of messages. For this purpose, the attributes of table 3.2 are all set to true.

QoS feature Setting

isNonRepudiationRequired true
isNonRepudiationReceiptRequired true

Table 3.2: Setting of QoS features depending on the type of Business Transaction

The definition of Business Signals is also common to all profiles. Each profile defines ex-

38 CHAPTER 3. ANALYSIS

actly one ReceiptAcknowledgement, one ReceiptAcknowledgementException, one Accep-

tanceAcknowledgement, one AcceptanceAcknowledgementException and one GeneralEx-

ception. Each Business Transaction reuses these definitions.

Each Business Transaction has two roles. This project distinguishes between the role of Initiator
and the role of Responder of the Business Transaction.

Each Business Collaboration also differentiates two roles. These roles are Supplier and Cus-
tomer according to the NES profiles.

Each Business Collaboration has three Final States. The Final State techFail states that a
protocol failure occurred. The Final State success expresses both, a protocol and a business
success. The Final State businessFail states a successful termination of protocol, but a non-
successful termination of business.

Each Decision within this use case checks for the condition guard value AnyProtocolFailure.
If this is true, an error has occurred at one party during the flow of the protocol. For this reason,
the process can not finish successfully and the process ends with the final state techFail. Each
decision within the models of the profiles has such a branch, and thus it is not described each
time again.

3.1.3.2 Structure of the NES Profile Description

The following listing shows the structure of profile description, given by the NES. These infor-
mations are used as input to the modeling process.

• profile id

• context: the usage context of the profile;

• summary: summary of subjects, exclusions, requirements and aims of the profile;

• description: textual description of the profile;

• profile scenarios: listing of the scenarios;

• business requirements: requirements for business and documents;

• business benefits: benefits which can be gained if this profile is used;

• use case diagram: use case diagram of the profile;

• actors involved in the process;

• process parameters: business rules, exceptions and pre-conditions;

• activity diagram: profile flow as an activity diagram;

• activity description: textual description of the activities;

3.1. MODELING OF NES-PROFILES USING EBBP 39

• scenario descriptions: description of the different scenarios;

Each of the following sections that describe the modeling of the respective NES profiles will
give a short summary of the informations listed above.

Business Documents which are used within the profiles can have the same name, but they can
differ in the elements provided by the XSD. The XSDs can be found the homepage of the NES3.

3.1.3.3 Profile 1: Catalogue Only

This profile describes a process of sending a catalogue or catalogue extensions from a supplier
to a customer. At the side of the customer, a decision for accepting or rejecting the catalogue is
made. Depending on the outcome of this decision, the supplier sends an Application Response
with positive or negative content. Therefor, the scenarios reject catalogue and accept catalogue
are distinguished. Catalogue and Application Response are the business documents used in the
profile. (For more details see [Nor07].)

Image 3.3 shows the ebBP model of NES profile 1, visualized as a UML activity diagram. The
first step in creating an ebBP model for NES profile 1 is the definition of Business Documents.
The definition references UBL-Catalogue-2.0.xsd and UBL-ApplicationResponse-2.0.xsd.

The next step is to model two Business Transactions, one for sending the catalogue and one
for sending the Application Response. Both are of type InformationDistribution. This is
because of the non-legally binding business character of a catalogue and of the confirmation of
the catalogue. Each Business Transaction sends the document in the Document Envelope of
its Requesting Business Activity and contains an empty Responding Business Activity.

The flow of the Business Collaboration starts with a Business Transaction Activity which is
responsible for sending the Catalogue from Supplier to Customer. For this, the Supplier of the
Business Collaboration is associated with the Initiator of the referenced Business Transaction.
The Customer is associated analogously. The Time To Perform is defined as one hour. Because
a catalogue is for information only, the attribute hasLegalIntent is set to false.

After sending the catalogue a decision checks for a protocol failure. If the ConditionGuardValue
is AnyProtocolFailure, the flow ends with a technical failure. Protocol failure means that an
error occurs during the performance of the Business Transaction Activity.

If there is no protocol failure, the Business Transaction handling the Application Response is
used to send the acceptance or rejection of the catalogue back to the Supplier. For this purpose,
a Business Transaction Activity that associates the Customer with the Initiator role is used.
The TimeToPerform value is set to one hour.

A final decision checks for protocol failures. If a failure occurs, the choreography ends again
with technical failure. If no error occurs, the decision uses an XPATH2 expression to check the
Application Response for acceptance or rejection of the catalogue. Depending on this decision,

3http://www.nesubl.eu/documents/nesvalidationtools.4.6f60681109102909b80002641.html

40 CHAPTER 3. ANALYSIS

Figure 3.3: The choreography of NES profile 1 as UML activity diagram

the flow ends with successful termination (business success) if the catalogue is accepted. If not,
the flow ends with businessFail. The last decision of this profile represents the implementa-
tion of the two scenarios of Profile 1. Listing 3.8 gives an example of an XPATH2 condition
expression used in Profile 1.

1 <ConditionExpression

2 expressionLanguage="XPath2"

3 expression="normalize -space(string (// DocumentResponse/Response/ResponseCode))=’

ACCEPT ’">

4 </ConditionExpression >

Listing 3.8: Example XPATH2 definition within a decision

The fork of the activity diagram, as described in the NES profile, is not considered because
the application of the catalogue is related to the backend of the Customer and doesn’t matter
for business integration. Also the handling of a catalogue rejection or acceptance at the side of
the Supplier is not relevant for business integration and concerns only the Supplier’s backend
system.

3.1. MODELING OF NES-PROFILES USING EBBP 41

3.1.3.4 Profile 2: Catalogue with Updates

Profile 2 represents an extension to Profile 1. It can not only send catalogues and catalogue
extensions, but it distinguishes between sending catalogues, catalogue item updates and pricing
updates. For this purpose, the profile uses the documents Catalogue, Catalogue Item Specifica-
tion Update, Catalogue Pricing Update and Application Response. For each of the first three
document types the profile defines two scenarios, one for accepting and one for rejecting a
particular document. It is not determined which document is sent. After transmission of the
document, the course of the profile is equal to profile 1. The document is accepted or rejected
at Customer’s side and after sending the decision as an Application Response the document is
applied (for more details see [Nor07]).

The description of the modeling concentrates on differences to Profile 1. The problem of this
profile is how to handle the undetermined document type that is to be sent from Supplier to
Customer. Using the XOR Fork element of ebBP would mean modeling a whole flow for each
possible document. Furthermore, for state alignment between both partners and for routing
within the process description, it is necessary to know which document is sent or received next.
Therefore, an XSD is designed which can contain each of the three possible catalogue elements.
This is realized using an xsd:choice element (see document UBL-Custom-CombiCatalogue.xsd
of the project sources). Listing 3.9 shows the realization of the choice. It says that a Combi-

Catalogue can contain either a Catalogue or a CatalogueItemSpecificationUpdate or a
CataloguePricingUpdate. Its content can then be handled by the backend systems.

1 <xsd:complexType name="CombiCatalogueType">

2 <xsd:choice >

3 <xsd:element ref="cat:Catalogue"></xsd:element >

4 <xsd:element ref="cisu:CatalogueItemSpecificationUpdate">

5 </xsd:element >

6 <xsd:element ref="cpu:CataloguePricingUpdate">

7 </xsd:element >

8 </xsd:choice >

9 </xsd:complexType >

Listing 3.9: Realization of CombiCatalogue

The usage of the CombiCatalogue document type replaces the undetermined sending of one of
the three possible catalogue extensions. Thus, the number of six scenarios reduces to a number
of two which are realized by the final decision of the ebBP model which decides whether the
CombiCatalogue is accepted or not.

Because of reducing the number of scenarios profile 2 can be modeled equally to profile 1. This
means that the CombiCatalogue replaces the Catalogue in the Business Document definition
of Profile 1. Except for names, the rest of the ebBP file equals the model of profile 1.

3.1.3.5 Profile 3: Basic Order Only

Profile 3 describes a simple order process. This means a Customer sends an order to a Supplier
who decides to accept or reject the order. Depending on this decision, he delivers the goods
and requests payment or tries to resolve the rejection of the order externally. Figure 3.4 shows

42 CHAPTER 3. ANALYSIS

the NES profile’s activity digram, illustrating this process. This profile uses the document type
Order(Basic) and distinguishes between the two scenarios of accepting and rejecting the order.
(For more details see [Nor07].)

Figure 3.4: The NES UML activity diagram of profile 3

For state alignment between the two partners as well as routing in the choreography and later in
orchestrations it is necessary to send the state of the order back to Customer. For this purpose,
an additional Application Response is introduced. It is sent from Supplier to Customer after
the Supplier has decided to accept or reject the order.

The ebBP model of Profile 3 uses the document type definitions UBL-ApplicationResponse-

2.0.xsd and UBL-Order-2.0.xsd. Because of the legal intent of an order, a Commercial-

Transaction is chosen as Business Transaction type and the Order is sent within its Requesting
Business Activity. In its Responding Business Activity two Document envelopes are defined,
one for positive and one for negative response to the order. In both cases the Application Re-
sponse is referenced and the ebBP isPositiveResponse attribute is used distinguish between
positive and negative responses. Note that, in this work, the isPositiveResponse attribute is
transmitted as part of the message container at runtime as well, although this does not exactly
match the ebBP semantics.

Figure 3.5 shows the flow of the Business Collaboration of Profile 3. It has only one Busi-
ness Transaction Activity which is responsible for the execution of the Business Transaction
described above.

The attribute hasLegalIntent is set to true because of the legally binding character of an

3.1. MODELING OF NES-PROFILES USING EBBP 43

Figure 3.5: The choreography of NES profile 3 as UML activity diagram

order.

The Supplier of the Business Collaboration is associated with the Responder of the Business
Transaction and the Customer is associated with the Initiator. The estimated TimeToPerform
value is set to one hour.

As already pointed out, the referenced Business Transaction sends an Application Response
back to the requester. Therefore, after the BTA, a Decision references the AppResponse in
order to distinguish between the possible results of the BTA. If there is no protocol failure and
thus the process does not end in state techfail the Decision checks the predefined condition
guard values BusinessFailure and BusinessSuccess. In this work, these guard values are
determined by checking whether the Application Response is sent within a Document Enve-
lope that has isPositiveResponse=true or isPositiveResponse=false. Depending on this
Decision, the control flow steps into Final State success or businessFail. This Decision
implements the alternative scenarios of this profile.

Delivery of goods, payment requests and external handling of rejected orders as described in
the NES profile are not relevant for integrating the processes of the business partners and thus
are not considered in this model.

44 CHAPTER 3. ANALYSIS

3.1.3.6 Profile 4: Basic Invoice Only

This profile is similar to Profile 3. In this process, the Supplier sends an Invoice to Customer
who can accept the invoice and pay or reject the invoice and use an external medium to signal
the wrong invoice. This process has two scenarios as well, the rejection and the acceptance of
the invoice (for more details see [Nor07]).

For state alignment between the processes of the business partners, an additional Application
Response to message the state of the acceptance of the invoice is introduced.

The Business Documents of the ebBP model are referencing UBL-Invoice-2.0.xsd and UBL-

ApplicationResponse-2.0.xsd. A Commercial Transaction is used to transmit the invoice
in its Requesting Business Activity and to transmit the answer as an Application Response
in its Responding Business Activity. The Responding Business Activity uses two alternative
Document envelopes which differ in use of the attribute isPositiveResponse to state whether
an Invoice is accepted. The other reason for using a Commercial Transaction is the legally
binding character of an invoice.

Because of this, the Business Transaction Activity which reuses the Commercial Transaction
has set the attribute hasLegalIntent to true. This activity associates the Supplier of the Busi-
ness Collaboration with the Initiator of the Business Transaction and the Customer with the
Responder. After sending the Invoice and answering the state at the Customer by use of the
Application Response, a Decision implements the different flows of control of the scenarios of
the profile. If no protocol failure occurs, the decision examines the state of the attribute isPos-
itiveResponse by using the condition guard values BusinessSuccess and BusinessFailure.
The outcome of this Decision determines the corresponding Final State.

A visualization of the choreography of this profile is similar to the activity diagram shown
in figure 3.5. Of course, the names are different in so far as “order” has to be replaced with
“invoice”.

3.1.3.7 Profile 5: Basic Billing

Profile 5 is an extension of Profile 4. It extends Profile 4 by splitting up the scenario of a
rejected invoice. For this purpose, the process specifies the scenarios of overcharged invoice,
undercharged invoice and invoice with incorrect informations. The scenario of an accepted
invoice rests untouched.

If an invoice is rejected, an external medium is used by the Customer to inform the supplier. If
the invoice is undercharged, the Supplier sends a new invoice about the remaining amount. If an
invoice is overcharged, the amount will be balanced by sending an credit note to the customer.
In case of an invoice with incorrect informations, the Supplier sends a credit note zero balancing
the incorrect invoice. Furthermore, the Supplier sends a correct invoice in parallel. This is an
iterative process until all amounts are balanced because credit notes or invoices for balancing
can be wrong too. This means that the number of steps is not specified before starting the
process. (For more details see [Nor07].)

3.1. MODELING OF NES-PROFILES USING EBBP 45

This profile uses the documents Invoice (basic), Credit Note (basic) and, because of the state
alignment problem already described for Profile 4, an Application Response.

To handle this iterative process a recursive implementation approach is chosen. Recursive
means (binary) ebBP Inner Business Collaborations for sending credit notes and for sending
invoices are defined.

The parallel execution of sending credit note and sending invoice in case of the incorrect infor-
mation scenario is serialized. For a detailed justification see sections 3.1.2.1 and 3.1.2.2.

The modeling of the inner Business Collaboration for sending invoice and credit note and their
justification are explained in section 3.1.3.11. These sections also explain the chosen Business
Transactions.

Figure 3.6: The choreography of NES profile 5 as UML activity diagram

Figure 3.6 shows the general flow of the choreography of Profile 5. For sending the initial
invoice, the corresponding inner Business Collaboration is used via the Collaboration Activ-
ity CA_ext_sendInvoice. This activity is responsible for associating the roles of the calling
Business Collaboration with the roles of the called one. Supplier and Customer of the outer
Business Collaboration are associated with the corresponding roles of the inner one and the
recursive process starts. The Decision after the Collaboration Activity depends on the outcome
of the recursive CA_ext_sendInvoice process, which determines the Final State of the whole
process. The Final States are success,businessFail and techFail.

46 CHAPTER 3. ANALYSIS

3.1.3.8 Profile 6: Basic Procurement

This profile combines profiles three and five to a process of procurement. At first, the Customer
sends an order to the Supplier who checks the order and accepts or rejects it. She informs
the Customer of her decision using an Application Response. Depending on this decision, the
Customer waits for the delivery of the ordered goods or cancels the order. In case of an accepted
order, the Supplier goes to the next step of sending an invoice and starts the iterative process
as described in section 3.1.3.7. This means the invoice can be accepted by the Customer, who
then arranges the payment, or the Customer rejects the invoice and uses an external medium to
justify his rejection. Three cases can occur in case of a rejected order: undercharge, overcharge
and incorrect information. The handling of these cases is explained in section 3.1.3.7.

This profile distinguishes between the following scenarios:

• accepted Order, accepted Invoice

• rejected Order

• accepted Order, Invoice overcharge

• accepted Order, Invoice undercharge

• accepted Order, Invoice contains wrong information

(For more details see [Nor07].)

Modeling this profile, at first, requires to model the order process. For this purpose, a Busi-
ness Transaction of the type CommercialTransaction is chosen to send a Business Document
that conforms to the XSD UBL-Order-2.0.xsd within the Requesting Business Activity. The
Responding Business Activity distinguishes between two Document envelopes with different
settings of the attribute isPositiveResponse. Both envelopes encapsulate an Application
Response that conforms to UBL-ApplicationResponse-2.0.xsd. Reasons for the choice of a
Commercial Transaction are the legal intent of the order and the possibility to alternate the
isPositiveResponse attribute within the document envelopes within the Responding Business
Activity.

Based on this attribute, the following Decision determines the routing using the condition guard
values BusinessSuccess and BusinessFailure. In case of a business failure the process ends
in final state businessFail. This is the implementation of scenario rejected Order.

The exit BusinessSuccess represents the remaining scenarios with an accepted order. In
case of an accepted order, which means business success to the Decision, the handling of the
invoice starts with the Collaboration Activity CA_ext_sendInvoice. This activity calls an
inner Business Collaboration for sending invoices and handling incorrect invoices with regard
to the external medium used for justifying the rejection. The iterative process of balancing the
invoice is solved using recursion. A closer description of this process is made in section 3.1.3.11.

3.1. MODELING OF NES-PROFILES USING EBBP 47

The final Decision depends on the outcome of the called inner Business Collaboration. The
decision is made between condition guard values AnyProtocolFailure, BusinessSuccess and
BusinessFailure. The exits of this Decision connect to the corresponding Final States.

The fork of the NES diagram, which starts a parallel execution of sending an Application
Response and starting the invoice process in case of an accepted order by the Supplier is
serialized in the ebBP model. An Application Response is sent before the subprocess of sending
the invoice is started. This ensures state alignment among the partners. Each side knows of
the Decision and can route accordingly to the invoice process if the order is accepted.

The flow is visualized in figure 3.7. It is not required to model backend activities of the parties

Figure 3.7: The choreography of NES profile 6 as UML activity diagram

for the purpose of creating an ebBP model. Therefore, waiting for delivery of goods or canceling
the order at the customer’s side are not considered.

48 CHAPTER 3. ANALYSIS

3.1.3.9 Profile 7: Simple Procurement

Profile 7 is an extension of Profile 6 as much as Profile 8 is an extension of profile 5. Thus, the
external medium to justify the rejection of the invoice is replaced by an additional Application
Response. The handling of the incorrect invoice as well as the handling of the order is the same
as in Profile 5 and described in section 3.1.3.7. The rest of the profile, including the different
scenarios, is the same as in Profile 6 (for more details see [Nor07]).

Because of the replacement of the external medium, the Collaboration Activity Ca_sendInvoice

now calls an inner Business Collaboration that uses an Application Response for notifying
the Customer of the incorrect invoice. This Business Collaboration and its requirements are
described in section 3.1.3.12.

The flow of the model is similar to the flow of profile 6, visualized in figure 3.7.

3.1.3.10 Profile 8: Basic Billing with Dispute Response

This profile is an extension to Profile 5. It differs from Profile 5 in informing the Supplier of an
error in the invoice by means of a dedicated message. Instead of using an external medium, in
this process, the customer sends an Application Response with the description of the incorrect
invoice. The handling of the incorrect invoice is similar to the recursive process used by Profile
5 (or more details see [Nor07]).

The changed type of information transmission leads to a changed modeling within the inner
Business Collaborations. These processes are explained in section 3.1.3.12. The outer Business
Collaboration equals the flow of the collaboration of Profile 5. There is only the difference
of calling the inner Business Collaboration for sending invoices without usage of an external
medium.

This is done by the Collaboration Activity Ca_sendInvoice instead of CA_ext_sendInvoice.

For visualization please use the graph of Profile 5 (figure 3.6).

3.1. MODELING OF NES-PROFILES USING EBBP 49

3.1.3.11 Business Collaboration sendInvoice and sendCreditNote with External
Medium

Figure 3.8: The Business Collaboration sendInvoice/sendCreditCote with external medium as
a UML activity diagram

50 CHAPTER 3. ANALYSIS

In UML diagram 3.8 there are two BCs modeled, namely the BC cb_ext_inner_sendInvoice

and the BC cb_ext_inner_sendCreditNote. They only difference becomes manifest in the
starting BTA and the following decision, the rest is the same. Thus, they were integrated into
one diagram.

Both BCs are used in the NES Profiles 5 and 6 and make use of an external medium to agree
or disagree on a specific error in case an error occurs.

To begin with, the BC which sends the invoice is focused. As can be seen in NES profiles 5 and
6, the supplier sends an invoice to the customer informing him about the costs of a previous
order. The customer then checks and validates the invoice. Either the invoice is correct, and
then its payment is arranged for, or it contains an error which results in informing the supplier
about the error, in that case, over the external medium.

To model this, a Commercial Transaction is used to signal the legal intent of the invoice which
is of type UBL-Invoice-2.0.xsd and sent from the supplier to the customer at the beginning.
In addition, it requires a response message that confirms the success or failure of the trans-
action. Therefor, an application response of type UBL-ApplicationResponse-2.0.xsd is
introduced to ensure that the customer can signal the supplier a success as well as an error.
This is a necessary step to ensure state alignment. As analyzed and explained in section 3.1.2.3
the external medium should be used to inform the other partner about this error. However, the
information that an error has occurred is sent via the above application response containing
only a field that states that the previous invoice is not correct somehow. On both sides the
application response is checked in the decision named dec_sendInvoice. If the isPos-

itiveResponse attribute of application response is true, which signals a business success,
the BC ends in the final state named success. In the other case, it then needs to be decided
which error has occurred and how to handle it.

Next, the handling of incorrect invoices is described. When receiving the notification of an
error the supplier determines which kind of error has happened. There are three different
types, namely undercharge, overcharge and incorrect information. Every kind needs a
different handling as stated in the activity diagram of the NES Profiles.

It is assumed that both the supplier and the customer have now agreed upon an error type
or disagreed completely over the external medium. As the external medium is not part of the
process an additional error notification message is introduced to synchronize the states of both
sides as pointed out in section 3.1.2.3. This error notification is sent by the BTA with the name
BTA_sendErrorNotification. Due to its nature as a notification the business transaction
type notification is selected as well as the common data type UBL-ApplicationResponse-

2.0.xsd to carry the error notification information. This information can either be one of the
three error types described above in case the supplier and the customer agreed upon one of
them or the type OVERRULED which states that, e.g., the customer thinks the invoice is not
correct but the supplier is a firm believer of the correctness of the invoice. As disagreement is
an option and cannot completely be avoided the OVERRULED scenario has been introduced to
the ebBP process, although this is not modeled in the respective NES profiles.

The code contained by the error notification message is checked on both sides by the decision

dec_sendErrorNotification. In case of the OVERRULED type the BC ends in the final state

3.1. MODELING OF NES-PROFILES USING EBBP 51

named businessFail. The other cases will be described in the following by first analyzing the
NES Profiles and then showing the modeling results in the ebBP process.

First, the undercharge case is explained. Since the customer has been charged less the supplier
sends an additional invoice requesting the residue from the customer. When it is received from
the customer, the check and validation process is executed upon this invoice as well as the
original invoice. If then all received invoices for this choreography instance are correct the
payment will be arranged for. However, if the second invoice contains an error the customer
then notifies the supplier via the external medium as described above for the first invoice. This
can be subsumed as a loop as analyzed in section 3.1.2.2. In reference to the loop handling
problem in section 3.1.2.2 the error compensation is delegated to another BC instance. In
this case the CA named CA_ext_sendInvoice is called by the BC and is assigned the task of
handling the sending of the additional invoice etc.. Only the outcome of the CA is checked
via the decision dec_ca_ext_sendInvoice. If the called BC has ended in a business failure
state the caller process also ends in the final state businessFail. Analogous to the business
failure the final state success is only reached if the called BC has ended in a business success
state.

Second, the overcharge case is explained. Since the customer has been charged too much the
supplier sends a credit note to balance the previous invoice. The invoice and the credit note are
checked and validated at the customer side to ensure its correctness. If and only if the credit
note is correct the payment will be arranged. If this is not the case the customer informs the
supplier about the incorrect credit note via the external medium which results in the agreement
on the error and so on and so forth. This is analogous to the error handling of the invoice with
the only difference that the erroneous object is a credit note.

In the ebBP process the handling of this case is quite similar to the undercharge case. Instead
of sending the calls to the BC named cb_inner_ext_sendInvoice the
cb_inner_ext_sendCreditNote is invoked to send the credit note to balance the previous
invoice. The other constructs behave the same way, just the naming of the following decision

is changed to dec_ca_ext_sendCreditNote.

Third, the incorrect information case is explained. It can be seen as a combination of the
undercharge and overcharge case because in order to correct the erroneous invoice a credit note
as well as an invoice are sent. The credit note nullifies the previous invoice and is sent from
the supplier to the customer who checks and validates the message. If and only if the credit
note zero balances the erroneous invoice this part ends, in the other case the supplier will be
informed of the error in the credit note and the handling of this error will be initiated. In parallel
the new and hopefully correct invoice is sent to the customer starting the process with checks
and validation again. As described by the parallel execution problem (see 3.1.2.1) there is the
need to serialize the parallel execution. The approach is to correct the error before beginning
to process the new invoice. So first the CA CA_ext_sendCreditNote_incorrect starts the BC

cb_inner_ext_sendCreditNote to correct the previous invoice. After checking the outcome of
the call with the decision dec_ca_ext_sendCreditNote_incorrect the process either ends
in the final state businessFail if the result of the call is the business failure state or
proceeds to call the BC cb_inner_ext_sendInvoice. A similar decision is placed right after the
CA CA_ext_sendInvoice_incorrect, however, in the business success case the final state

52 CHAPTER 3. ANALYSIS

success is reached.

As can be observed, the CAs in the incorrect information case have a postfix _incorrect to
signal that this is not the same call as the ones in the other cases and the messages sent have
other semantics.

Finally, the equivalent process that starts with sending a credit note is briefly described. In-
stead of sending an invoice a credit note of the type UBL-CreditNote-2.0.xsd is transmitted.
However, the rest stays the same due to the fact that routing decisions are based upon the error
code of the whole active process. The undercharge etc. refer to the process as a whole. At
the beginning only an invoice is existent which is referred to but several other messages can be
added to the instance document history, e.g., when an undercharged invoice has to be corrected
by two additional invoices until the sum of the invoices is the correct balance.

3.1. MODELING OF NES-PROFILES USING EBBP 53

3.1.3.12 Business Collaboration sendInvoice and sendCreditNote without Exter-
nal Medium

Figure 3.9: The Business Collaboration sendInvoice/sendCreditNote without external medium
as a UML activity diagram

54 CHAPTER 3. ANALYSIS

As can be observed easily, figures 3.8 and 3.9 only differ in few parts. Thus, only these parts
will be described in detail, the other parts are analogously described in section 3.1.3.11.

In the UML diagram of figure 3.9 there are two BCs modeled, namely the BC cb_inner_sendInvoice
and the BC cb_inner_sendCreditNote. They only differ in the starting BTA and the following
decision, the rest is the same. Thus, they were integrated into one diagram.

Both BCs are used in NES Profiles 7 and 8 and instead of using an external medium as it is
done in NES Profiles 5 and 6 an electronic message is exchanged.

So the commercial transaction sending the invoice or credit note contains an application
response that contains a detailed failure description to inform the supplier about the error. The
supplier then checks that description internally, and, if the supplier agrees on the failure and its
type, the failure is echoed back to the customer to ensure state alignment between both parties.
However, in case the supplier disagrees, e.g., the customer states the invoice is overcharged, but
the supplier knows for sure it is not, the OVERRULED code is used to inform the customer that this
transaction ended in a business failure. So instead of sending an error notification as described
in section 3.1.3.11 an application response confirmation is sent which simply is an application
response as described above. Note that a Business Transaction of type Notification is used to
send the application response, although it is denoted BTA_sendAppResponse_Confirmation.

3.2. EVALUATION OF QOS FEATURES 55

3.2 Evaluation of QoS Features

The analysis of QoS requires a definition of QoS. In many QoS related publications a definition
is missing. This leads to an ambiguous understanding of QoS as can be seen by the defini-
tion used in [OMG08]: “QoS can be defined as a set of perceivable characteristics expressed in
user-friendly language with quantifiable parameters [...].” Although quantifiable parameters are
postulated, the same specification includes security in its QoS Catalog, but security qualities
like confidentiality or encryption are hard to quantify. In [DLS05], a more general definition
of QoS is used which is also adopted for the paper at hand: “[...]the term QoS [...is] used to
denote all non-functional aspects of a service which may be used by clients to judge service
quality. This extends other more restrictive QoS definitions such as the common interpretation
of QoS to mean network performance attributes.” In order to operationalize this notion of QoS
for the work at hand, the set of QoS attributes being at least necessary for B2Bi has to be
identified. Obviously, security and reliability are necessary attributes as business documents
may be highly confidential and mission-critical, but a more thorough set of required QoS at-
tributes identified by B2Bi experts can be found in the ebBP specification: “The ebBP technical
specification provides parameters that can be used to specify certain levels of security and re-
liability. This specification provides these parameters in general business terms” ([YWM+06],
sec. 3.5.7). Therefore, support for the QoS attributes identified in ebBP should be sufficient for
B2Bi. These can be classified in attributes that relate to business documents and attachments
(DocAtt), to so-called business activities used for specifying the transmission of a business
document (BA), to so-called business transactions that associate one or two BAs for achiev-
ing state changes in the integration partners’ systems (BT), to so-called business transaction
activities which specify the actual execution of a BT (BTA), and to business collaborations
(Coll) that specify the control flow between BTAs and Colls. Table 3.3 lists the QoS attributes
identified in ebBP and the according level of specification. Most of these QoS attributes are
self-explanatory and don’t accept any parameters. Exceptions are the DocAtt attributes which
are all related to security and the timeToPerform attribute. For the DocAtt attributes, ebBP
provides the realization options transient, persistent and transient-and-persistent which means
that the respective attribute has to be realized using security mechanisms at the transport level
(transient), at the application level (persistent) or both. Finally, timeToPerform offers the pa-
rameters design, configuration and runtime for specifying whether timers shall be set statically
(design), be agreed upon by partners before executing collaborations (configuration) or during
collaborations (runtime). A discussion on how these QoS attributes have been realized here
follows in section 4.1.2.

4also applicable for the ebBP control flow construct Fork which has not been used in this approach

56 CHAPTER 3. ANALYSIS

QoS Attribute Level of Specification

isAuthenticated DocAtt

isConfidential DocAtt

isTamperDetectable DocAtt

isIntelligibleCheckRequired BA

isNonRepudiationRequired BA

isNonRepudiationReceiptRequired BA

timeToAcknowledgeReceipt BA

timeToAcknowledgeAcceptance BA

isAuthorizationRequired BA

retryCount BA

isGuaranteedDeliveryRequired BT

hasLegalIntent BTA

isConcurrent BTA

timeToPerform4 Coll/BTA

Table 3.3: ebBP QoS attributes and levels of specification

3.3. PLATFORM SELECTION - GLASSFISH VS. TOMCAT 57

3.3 Platform Selection - GlassFish vs. Tomcat

From the various possible BPEL-Engines and WS-Stack implementations available today two
open source implementations are chosen which will be analyzed below. The two candidates are:
First, the GlassFish application server in combination with the Metro WS-Stack and the BPEL
engine of openESB.
Second, the Apache ODE BPEL engine running on top of the Axis2 WS-Stack in the Apache
Tomcat container. Table 3.4 shows a short overview over the two alternatives.

Platform Platform A Platform B
Application Server/Container GlassFish Tomcat
WS-Stack Metro Axis2
BPEL-Engine openESB Apache ODE

Table 3.4: Overview of the two platforms to analyze

3.3.1 GlassFish

Solution Name Bundled as URL
component
Application Server GlassFish GlassFish V2

UR2 Build 04
Release

https://glassfish.dev.java.net

WS-Stack Metro bundled with
GlassFish

https://metro.dev.java.net

BPEL-Engine openESB engine part of
openESB

https://open-esb.dev.java.net

Table 3.5: Platform A: Evaluated configuration

Test configuration:

3.3.2 Tomcat

Test configuration: This configuration was extended with various modules to enable QoS-
Features - the used modules are listed in Table 3.8. Installation manuals can be found on the
modules’ homepages.

https://glassfish.dev.java.net
https://metro.dev.java.net
https://open-esb.dev.java.net

58 CHAPTER 3. ANALYSIS

Solution Name Bundled as URL
component
Container Tomcat Apache Tomcat 6.0.18 http://tomcat.apache.org

WS-Stack Axis2 bundled with Apache ODE http://ws.apache.org/axis2

BPEL-Engine Apache ODE Apache ODE 1.2 http://ode.apache.org

Table 3.6: Platform B: Evaluated configuration

3.3.3 Derivation of a Feature Test Plan

3.3.3.1 Relevant Criteria for the Platform Selection

• QoS-Support (main requirement for this work (cf. section 1.2))

• Standard conformance

• Extensibility points

• IDE-Integration

• Usability criteria: installation difficulty, debugging possibilities, maintainability

• Performance

3.3.3.2 Feature Test Plan

IDE-Integration Today the usage of an integrated development environment (IDE) is essen-
tial to handle complex projects developed in teams. Therefore, the integration of the platform
with full-fledged IDEs such as Eclipse, NetBeans or JDeveloper can hardly be dispensed with.
Relevant aspects are: Integration of the Server (Starting, Stopping, Deployment), compatibility
and executability of generated code, and support for server extensions.

Usability Another point that is partly linked with IDE-Integration is usability. Which tools
exist to manage the configuration? How good and extensive are these tools? How easy is the
installation and initial configuration of the platforms? How does the deployment work? This
list could arbitrarily be extended.

Standard Conformance Standard Conformance is another aspect to decide which platform
is better suited for this project. This is particularly important because support for B2Bi in this
work shall be based on open standards as far as possible for interoperability and accessibility
reasons. The focus of the conformance checks is put on the BPEL standard: Are all relevant
constructs supported? What are the limitations of the different BPEL engines? Due to the
necessity of QoS aspects to secure the Web service communication it is also important that as
much WS-* standards as possible are supported.

http://tomcat.apache.org
http://ws.apache.org/axis2
http://ode.apache.org

3.3. PLATFORM SELECTION - GLASSFISH VS. TOMCAT 59

Extensibility points If the platform does not provide enough support for needed features,
e.g., if a working implementation of a certain standard is required, but not provided by the
platform, it must be possible to extend the platform with new functionality. This can be done
by writing extensions, modules or plug-ins.

Performance Performance tests actually require test cases that cover various sizes and var-
ious configurations. As such cases have not been available at the time of testing, very simple
processes like receiving a message, assigning the values to a variable, using this variable when
invoking another Web service and returning the result to the caller of the BPEL process have
been used.

These BPEL processes have been load tested using the Web service testing tool SoapUI5. For
example, the tool shows the average response time in a run of 100 Web service calls.

Functional QoS Tests WS-* standards, e.g., WS-ReliableMessaging or WS-Security, promise
to enable QoS features in an interoperable way. According to the QoS requirements identified
in section 3.2 the following WS-* standards have been identified to be of key importance for
this project:

• WS-Security

• WS-ReliableMessaging

• WS-AtomicTransaction and WS-Coordination

Furthermore MTOM and FastInfoSet are tested as a way of increasing the performance by
reducing the message size. To encrypt the communication on the network layer, SSL is tested.

Each of these standards is tested on both platforms. In every test case, first, the communication
between a BPEL process and a Web service with one enabled QoS feature is tested, e.g., a BPEL
process calling a Web service using reliable messaging. If this test is passed successfully the
communication between two BPEL processes is tested, e.g., a BPEL process invokes another
BPEL process using reliable messaging.

The tests of WS-Security are divided in sub-tests because there exists a number of alterna-
tives for how to precisely realize encryption. For this project, “user name authentication with
symmetric key” and “Transport security (SSL/TLS)” are tested.

Reliable messaging is tested with and without the option “exact order” which guarantees the
delivery of messages in the order they have been sent.

5Free version available at http://www.soapui.org/; See web page for more information.

http://www.soapui.org/

60 CHAPTER 3. ANALYSIS

3.3.4 (Feature) Tests and Results

3.3.4.1 IDE-Integration

GlassFish + openESB (Platform A): When downloading the openESB suite with Glass-
Fish it is also bundled with NetBeans. This is a first indicator that openESB as well as the
included BPEL engine might be well integrated with NetBeans. Indeed it is very easy to use
the combination of Platform A and NetBeans: The server can be administrated6 automati-
cally using NetBeans, e.g., the deployment of EJB modules can be managed directly via the
NetBeans UI, while the usage of the GlassFish Admin Console is not needed very often. More-
over, BPEL projects can be built and deployed directly within NetBeans. The BPEL editor
of NetBeans supports logging by using a BPEL extension which is supported by openESB. A
particularly useful feature of NetBeans and Platform A is that running BPEL processes easily
can be debugged. To do so, the process can be visualized using BPMN, breakpoints can be set
and variables can be checked at runtime etc.

A handicap of Platform A is that a BPEL process has to be encapsulated within a JBI Com-
positeApplication. But this CompositeApplication can be generated very easily with NetBeans.
Integration with other IDEs such as Eclipse was not investigated.

Tomcat + Apache ODE (Platform B): The components of Platform B are not bundled
with a special IDE. Nevertheless Apache Tomcat can be integrated in NetBeans and Eclipse
(plug-in necessary). But only simple administration tasks such as starting and stopping the
server can be executed directly from within the IDEs. For most tasks the admin console has
to be used. Sample processes were created with the BPEL editors of NetBeans and Eclipse
and both could be deployed. Regrettably, the logging extension and debugging functions of
NetBeans are not supported for Platform B.

Conclusion: Due the lack of logging and debugging possibilities defined in the BPEL stan-
dard the possibility to debug a running BPEL process directly within NetBeans is a strong
reason to use Platform A. Another point is that GlassFish itself is perfectly integrated within
NetBeans. In conclusion we can point out: The IDE-Integration is clearly better with Platform
A.

3.3.4.2 Usability

Most of the usability aspects which should be tested already have been described in the previous
section. Due to the tight NetBeans integration of Platform A, it has strong advantages in
usability aspects. An advantage of Platform B is that no composite application is needed to
deploy a BPEL process. A BPEL process simply can be copied into a special folder and then will
be deployed automatically. The installation of the platform is rather easy with both platforms.

6At the time of writing, but this is unlikely to change

3.3. PLATFORM SELECTION - GLASSFISH VS. TOMCAT 61

GlassFish can be installed with a (Windows) install routine. Libraries required for core QoS
features are built-in and thus no extensions have to be installed. Apache ODE contains a
preconfigured version of Apache Axis2, but it is not bundled with Tomcat. So Tomcat has
to be installed first, and then ODE can be deployed. Unfortunately, the preconfigured Axis2
version does not include the necessary modules that support WS-* standards. The installation
of these modules causes some problems because some dependencies are not clearly defined, e.g.,
a jar is missing and has to be copied from an “unbundled” Axis2 version.

Table 3.7 concludes the usability aspects.

Platform A Platform B
Deployment Easiest way is to use NetBeans;

Deployment by admin console is
also possible; automated deploy-
ment with ant is complex; Com-
positeApplication is needed

Short deployment descriptor an
copy-paste in the “processes”
folder; BPEL process can be de-
ployed without Composite Appli-
cation

Admin-
Interface

modern look-and-feel; very “pow-
erful”, functions partly hard to
find

Only a few functions accessible by
the interface, most configuration
has to be done in config files

Difficulty
of installa-
tion

Very easy (windows installer) Installation of Tomcat, Axis and
ODE easy - but problems with
installing Axis2 modules (unclear
dependencies)

Logging
and De-
bugging

Log4j can be used; Logging defi-
nitions can directly be inserted in
NetBeans-BPEL-Editor

Log4j is ODE’s default logger;
Logging statements directly in
BPEL are not supported

Table 3.7: Comparison of some usability aspects

3.3.4.3 Standard Conformance

Instead of testing all defined BPEL elements in the standard it is decided to test the constructs
needed for this project (see section 4.1.1). The producers of the two BPEL engines also provide
some information about BPEL compliance7.

Detailed functional tests of several more complex BPEL constructs are provided for Platform
A in chapter 4.1.1.2.

Both platforms promise support for the most commonly used WS-* standards. The following
table 3.8, which shows the supported standards, is a summary of various web pages of the
manufacturers and independent sites8.

7Apache ODE: http://ode.apache.org/ws-bpel-20-specification-compliance.html; openESB: http:
//developers.sun.com/docs/javacaps/designing/bpelsecug.cnfg_bpel-se-language-const_r.html

8Information about the different Apache Tomcat modules can be found on the project homepages:
Apache Muse: http://ws.apache.org/muse/; Apache Rampart: http://ws.apache.org/axis2/index.html;

http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://developers.sun.com/docs/javacaps/designing/bpelsecug.cnfg_bpel-se-language-const_r.html
http://developers.sun.com/docs/javacaps/designing/bpelsecug.cnfg_bpel-se-language-const_r.html
http://ws.apache.org/muse/
http://ws.apache.org/axis2/index.html

62 CHAPTER 3. ANALYSIS

Standard Platform A Platform B
WS-Addressing X X (Core Module)
WS-Eventing
WS-Notification X (Apache Muse)
WS-
ReliableMessaging

X X (project Sandesha2 - support for Axis
2.1.3)

WS-Policy X X (Apache Rampart)
WS-Security
Policy

X X (Apache Rampart)

WS-Security X X (Apache Rampart)
WS-Trust X X (Apache Rampart)
WS-
SecureConversation

X X (Apache Rampart)

WS-Atomic
Transaction

X - Should be realized by Module “Kandula2” -
but project is stuck

WS-
Coordination

X - Part of “Kandula2”

WS-Metadata
Exchange

X X (Apache Muse)

WSDL 1.1 Sup-
port

X X

WSDL 2.0 Sup-
port

Table 3.8: Comparison of supported WS-* standards. (X := respective standard supported)

3.3.4.4 Performance Tests and Results

Our performance tests indicate that the BPEL engine of Platform A is faster than the engine
of Platform B. In the majority of our test cases Platform A is faster in responding to a message
by a factor of 10. In one test case with a number of invokes in a while loop (10 loops) the
BPEL engine of Platform B crashes.

Clearly, the results of such tests are not very useful to predict the performance in a “real”
production scenario. Performance testing is not that easy when realistic test cases are missing.
The real “performance” in our final tests of the whole system at the end of the project show
clearly that the performance tests we did during the platform selection were far from realistic.
For example, building and deploying a simple BPEL process can be done in 10 seconds, but
building and deploying a BPEL process that implements a NES profile takes about 2 minutes
(on the machines used during the project). The time differences in deploying and executing
the simple test services as opposed to the NES profile services might indicate that Platform
B outperforms Platform A for the NES profile services as well. Though, the opposite case is

Apache Sandesha2: http://ws.apache.org/sandesha/sandesha2/; Apache Kandula2: http://ws.apache.
org/kandula/2/

http://ws.apache.org/sandesha/sandesha2/
http://ws.apache.org/kandula/2/
http://ws.apache.org/kandula/2/

3.3. PLATFORM SELECTION - GLASSFISH VS. TOMCAT 63

at least as likely. Unfortunately, the performance of both platforms could not be evaluated a
second time at the end of the project due to time constraints.

3.3.4.5 Functional QoS Feature Tests and Results

The goal of the following functional QoS-Tests is to test the ability of the platforms to have
BPEL processes communicate with given QoS features. For example the QoS feature “is-
GuaranteedDeliveryRequired” should be realized by WS-ReliableMessaging. Apache Axis2 and
GlassFish both claim that they support this standard. In our context it is necessary that the
protocols support interaction between a Web service and a BPEL process as well as between
two BPEL-processes.

As described above, the QoS attributes predefined in ebBP are to be realized using differ-
ent standards. Therefore, the following standards are tested: WS-ReliableMessaging, WS-
AtomicTransaction/WS-Coordination and WS-Security (User name authentication with sym-
metric key, Transport Layer Security). Furthermore MTOM and FastInfoSet have been tested
as a way of performance enhancement. Also, simple SSL encryption has been tested.

The results are shown in table 3.9.

3.3.5 Evaluation of the Feature Tests and Decision

The easier deployment process and the extensibility of Axis2 are the only arguments for Plat-
form B. Since most of the required QoS features are supported GlassFish without writing
add-ons and regarding the time constraints of the project, the extensibility cannot be decisive.
The better IDE-Integration and in particular the possibility of logging and debugging together
with NetBeans is a good reason to choose GlassFish. The QoS-Support is a K.O.-criteria for
our project because implementing multiple WS-* standards is far from realistic for the project.
Due to the poor QoS-Support results of Platform B, the decision is rather easy: Only GlassFish
together with the openESB-BPEL-Engine provides reasonable support for our project.

Chosen platform: GlassFish with openESB

64 CHAPTER 3. ANALYSIS

Test Platform A Platform B
Test 1 - WS-Security Module ”Rampart” is only

useful for communication
between Web services - a
“secure” invoke was not
possible in every case:
BPEL invoke to “Secure”
WS/BPEL was not possible

Test 1.1: User name
authentication with
symmetric key

passed failed

Test 1.2: Transport
security (SSL)

passed failed

Test 2 - WS-
ReliableMessaging

An “reliable invoke” was not
possible - same problem as
with test 1

Test 2.1: Reliable
Messaging

passed failed

Test 2.2: Reliable
Messaging with exact
order

passed failed

Test 3 - WS-
AtomicTransaction/
WS-Coordination

WS-to-BPEL: passed;
BPEL-to-BPEL: not
working

Implementation of module
“Kandula2” seemingly has
been stopped - so there is no
existing implementation for
WS-AT/WS-Coor for Plat-
form B

Test 4 - MTOM and
FastInfoset

untested

Test 4.1: MTOM passed -
Test 4.2: FastInfoset passed, but no mea-

surable impacts
-

Test 5 - SSL passed passed

Table 3.9: Results of the functional WS-* tests

Chapter 4

Design and Implementation

This chapter starts out with a discussion on how to map ebBP constructs to BPEL elements and
on how to implement the QoS features defined in ebBP. Subsequently, Web service interfaces
as a core tool for decoupling the components of this work are described. This comprises the
design and correlation of messages, the description of categories of different Web services and
the effect of applying WS-* technologies on the design of Web service interfaces. Finally, a
description of the architecture of this work shows how the various components fit together and
how these components are implemented.

4.1 Realization Strategies

In this section, a rough discussion on how ebBP elements as well as ebBP QoS properties can be
realized is given. Therefore, the usage of BPEL elements, WS-* standards and project specific
Web services realizing QoS properties are described.

4.1.1 ebBP to BPEL Mapping Constructs

This section shows the concepts of BPEL used to implement the ebBP constructs. For the fol-
lowing sections, basic knowledge of BPEL and ebBP is required, although this section focuses
conceptual questions. Implementation details (Variable definitions, Correlation Set, fully de-
fined Invokes, Receives, Replies and so on) are neglected, instead only the structure of mapping
concepts is shown in the following sections. The mapping constructs are built and visualized in
the BPEL design perspective of the NetBeans IDE. These constructs are to be used as samples
during the phase of implementation as sample. They are not used as templates for some kind
“templates engine”. Furthermore, it is necessary to test the functionality of the constructs on
the selected platform.

65

66 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.1.1.1 Design of the Mapping Constructs

For a better understanding, some mapping constructs are explained by the help of screen shots
of the NetBeans IDE BPEL designer. Because of the conceptual character of the constructs
and the missing implementation details, the screen shot sometimes show errors which are to be
ignored.

Because of the complexity of this project’s BPEL processes, they are split up into several
constructs. Each mapping construct is comparable to a module which is used when a placeholder
indicates its usage. The Empty element of the BPEL Standard is used as placeholder. All
non recursive mapping constructs have been validated. This means, they have been realized
and positively been tested in this work in context of generated BPEL processes, i.e., according
BPEL processes have been generated, validated against its XSD, deployed on openESB’s BPEL
engine and its execution has been triggered using dummy backend implementations. In this
sense, the constructs of Recursive Call and Collaboration Activity cannot be considered to
have been validated, but note, that generation, validation and deployment works for all profile
processes that employ these constructs. Alone, the execution via dummy backends has not
been performed.

Business Collaboration The mapping construct for Business Collaborations builds a new
BPEL process, one for each party. This construct is used only for non-internal Business Collab-
orations of the ebBP model. Inner Business Collaborations are discussed within the paragraph
for Collaboration Activities.

The mapping starts with an outer BPEL Scope which contains all other constructs of the
process. This Scope has an BPEL OnEvent and a BPEL FaultHandler, both responsible for
the fault handling of the processes.

Depending on the party’s role as initiator or responder, the corresponding UUID construct
is used first. After that, the backend of the initiator has to be asked for the first business
document using an Invoke with a corresponding Assign of the input variable of the Invoke. The
following Receive waits for the business document to be sent by the initiator’s backend and
assigns it to a global variable that always stores the latest business document.

After receiving and assigning this message, the process steps into a Scope, enclosing the whole
collaboration. For this Scope, an OnAlarm symbols the Time To Perform of the Business
Collaboration of the ebBP model. Because this timer has to start with sending the first business
document of the backend, it is necessary to place the mentioned Receive before the actual
Business Collaboration’s Scope. Otherwise, if the Receive is placed within the Scope, the timer
starts before receiving the document. This Receive is the Receive element taken from the first
Requesting Business Activity construct. The timer is realized as an OnAlarm Event Handler,
and throws an exception, if a timeout occurs. The duration is set by the Translator if the Time
To Perform type is set to design or configuration. If runtime is specified, the construct for
timeout negotiation is necessary in front of that Scope.

The content of the Scope is a Sequence consisting of a Business Transaction Activity (BTA)

4.1. REALIZATION STRATEGIES 67

construct with a following Decision mapping construct. The Decision construct can link to other
BTA-Decision sequences. This flow is visualized in figure 4.1. Not visualized are the outer Event
Handler and Fault Handler of the Business Collaboration Scope. The basic structure, which is
nearly common to an outer and inner Business Collaboration is shown in listing 4.1. Timeout
Negotiation and other elements are not regarded within that listing, because its purpose is to
give a description of the idea of the structure.

1 <process >

2 <scope name="Scope_cb_profile3global">

3 <faultHandlers >...</faultHandlers >

4 <eventHandlers >...</eventHandlers >

5 <sequence name="Sequence_cb_profile3global">

6 <empty name="Empty_UUID_Handling"/>

7 <assign name="Prepare_Invoke_ReadyToReceive_BD"/>

8 <invoke name="Invoke_ReadyToReceive_BusinessDocument"/>

9 <receive name="Receive_Business_Document"/>

10 <assign name="Assign_After_Receive_BD"/>

11 <scope name="Scope_cb_profile3global_timeout">

12 <eventHandlers >

13 <onAlarm >

14 <for><!-- DURATION --></for>

15 <scope>

16 <sequence >

17 <throw name="Throw_BusinessCollaboration_Timeout"/>

18 </sequence >

19 </scope>

20 </onAlarm >

21 </eventHandlers >

22 <sequence name="Sequence_cb_profile3global">

23 <sequence name="Sequence_bta_plus_decision">

24 <empty name="Empty_BTA"/>

25 <empty name="Empty_Decision"/>

26 </sequence >

27 </sequence >

28 </scope>

29 </sequence >

30 </scope>

31 </process >

Listing 4.1: Basic structure of the mapping for BCs and inner BCs

The Fault Handler of the Business Collaboration Scope (shown in listing 4.2) contains a Catch
All construct for catching all exceptions within the process. This includes protocol failures
and timeouts and maps the ebBP Final State techFail. All errors which occur in the process
are thrown to this outer Fault Handler which is responsible for controlled termination of the
process. If an error is caught, it is necessary to inform the backend, the partner process, if
reachable, and any child process, if available. This is done within the context of a Flow which
ends with SystemFailure. If the partner process is not reachable, an empty Fault Handler
catches the exception and ends this path of the Flow.

1 <faultHandlers >

2 <catchAll >

3 <sequence >

4 <flow>

5 <!-- Information of the Backend -->

6 <sequence >

7 <assign name="Assign_SystemFailureMessage"/>

8 <invoke name="Invoke_SignalSystemFailureMessage_Backend"/>

9 </sequence >

68 CHAPTER 4. DESIGN AND IMPLEMENTATION

10 <!-- Information of the Partner Process -->

11 <scope>

12 <faultHandlers >

13 <catchAll >

14 <empty name="Empty_DoNothing"/>

15 </catchAll >

16 </faultHandlers >

17 <assign name="Assign_SystemFailureMessage"/>

18 <invoke name="Invoke_SignalSystemFailureMessage_PartnerProcess"/>

19 </scope>

20 <!-- Information of the Child Process -->

21 <if name="If_Active_Child_Process">

22 <assign name="Assign_SystemFailureMessage"/>

23 <invoke name="Invoke_Terminated_Parent_Process"/>

24 </if>

25 </flow>

26 <exit name="Exit_SystemFailure"/>

27 </sequence >

28 </catchAll >

29 </faultHandlers >

Listing 4.2: The mapping construct of the outer Fault Handler as simplified BPEL XML code

Corresponding to that Fault Handler, each process has an OnEvent Handler waiting for the
message of the partner process that signals the SystemFailure. When this event occurs, a
Flow starts to propagate the error to the backend and to available child processes before it ends
with SystemFailure by itself.

For later use, each BPEL process has to define some variables, which provide global infor-
mations, like the content of the latest business document, the latest business signal or other
necessary informations. Therefor, all Invokes have an Assign for preparing the input variables
according to these informations. Each Receive element and some Invoke elements are followed
by an Assign element used for setting these variables by extracting the informations from the
output variables.

4.1. REALIZATION STRATEGIES 69

Figure 4.1: Mapping construct for Business Collaboration

70 CHAPTER 4. DESIGN AND IMPLEMENTATION

Collaboration Activity This mapping construct is similar to the construct for Business
Collaborations and is used for mapping inner Business Collaborations of the ebBP model. This
means, each inner Business Collaboration is mapped to a new process started by a parent
process (the mapping of the calling Business Collaboration) to which it has to signal its final
states. The basic structure of the mapping for an inner Business Collaboration is similar to the
structure of an outer one, as shown in listing 4.1.

This construct also starts with a Receive. But, because it is the mapping of a recursive in-
vocation, the sender of the message is another process, namely the parent process, instead of
the backend system. The Receive is followed by Assigns to set global variables as described in
the paragraph of the mapping of Business Collaborations. Among others, these are recursion
informations like the recursionCount passed in by the parent process. The recursionCount

is concatenation of the pattern (Type)Nr. . Each parent process concatenates the recursion
count with the type of the child process in parentheses, followed by a number and a dot.

Furthermore, like in the outer Business Collaboration mapping, the outermost Sequence of
the inner Business Collaboration contains the construct for timeout negotiation and the con-
structs for receiving the first business document (also described in the paragraph for Business
Collaborations). The rest of the main Scope is not changed.

Changes are only made to the outer Event and Fault Handlers. The OnMessage Event Handler
is waiting for an error message of an terminating parent process or an terminating child process.
The Event Handler contains a Flow, informing the child process and the parent processes of
termination messages. A message to the child process is transmitted, if a boolean variable
states that child processes are active. In case the child process is not reachable, the Invoke used
for informing the child process is enclosed by a Scope with an empty Fault Handler in order to
provide for a controlled termination of the Flow.

The branch of the event Flow that is responsible for informing the parent process has an Assign
for filling the message followed by an Invoke for message transmission. To ensure controlled
termination of the Flow in case of a non-reachable parent process, the Invoke must be enclosed
by a Scope with an empty Fault Handler.

After termination of the Flow, the Event Handler terminates the process.

Similarly, the Fault Handler has a Catch All element with a Flow element containing branches
to inform the parent process, active child processes and the partner process. Information in each
case means assigning a specified message and sending it to the corresponding interfaces using
the Invoke element. Informing the child process is enclosed within an If-clause for checking if a
child process is active.

The idea behind Fault Handler and Event Handler is that the partner process is informed
about the error at the recursion level on which the error occurs. Further, each partner’s side
propagates the error in both directions, to higher and lower recursion levels. Thus, there is only
one error message between the processes of the integration parties at the level of the occurrence
of the error.

4.1. REALIZATION STRATEGIES 71

UUID Distribution The distribution of a UUID in the BPEL process does not correspond to
an element of the ebBP model, but for identification and later reproducibility each process needs
a UUID. It is important that both partner’s orchestrations use the same UUID. For this pur-
pose, the initiator process of the collaboration receives a message of the backend which initiates
the UUID distribution. In a next step, the global variables of the process like messageID, pro-

fileID, currentRole, partnerRole, recursionCount, activeChildProcesses are set.
This is based on information sent by the backend.

The following Assign prepares the call of the Web service that is responsible for creating an
UUID. After this service has been called, an Assign sets the returned UUID as a global variable.
The following steps are to prepare messages for the partner process and the backend system
and using corresponding Invokes for UUID distribution. After the Invoke towards the backend,
the Correlation Set is initialized. Figure 4.2 visualizes the construct for initiator and responder.

At the responding side, the process waits to receive a UUID distribution message from the
partner process. After receiving the UUID the responder uses several Assigns for setting global
variables and preparing a message for UUID transmission to the backend. Together with
the Invoke of the UUID towards the Backend the Correlation Set of the responder process
is initialized.

72 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.2: Mapping construct for UUID distribution

4.1. REALIZATION STRATEGIES 73

Acceptance Acknowledgement This mapping construct is used in order to map the Ac-
ceptance Acknowledgement elements of ebBP models. In this work, the effect of this element
is a Schematron validation executed by a corresponding Web service. This check has to be
performed only by the party that receives the business document while the sending partner has
to wait for this business signal. Due to this fact, the description of this construct has to be
done for the requesting role as well as for the responding role. The requesting role describes the
party that sends the business document while the responding role describes the receiving one.
Figure 4.3 shows the mapping construct for both sides (the left one for the requesting role, the
right one for the responding role).

To begin with, the requesting role is considered. After having sent a business document the
sender has to wait for the business signal AcceptanceAcknowledgement. This is mapped by a
BPEL Receive element which waits for the call of the corresponding process. After receiving
the signal, it is assigned to a global variable that stores the latest incoming business signal.
This Sequence is enclosed by a Scope with an OnEvent Handler and an OnAlarm Handler.
The OnEvent Handler is listening for a message containing the Business Signal AcceptanceAc-
knowledgementException. If this message arrives, the message details are assigned to global
variables for reuse by other elements. At the end, an exception is thrown that will be caught
by the CatchAll element of the outer Fault Handler of the Business Collaboration.

The waiting time for business signals is limited by an OnAlarm Handler which maps the Time
To Acknowledge Acceptance element of the ebBP model specified within the Requesting or
Responding Business Activity. If a timeout occurs an exception is thrown and caught by the
CatchAll element of the outer Fault Handler of the Business Collaboration mapping. This
Fault Handler is responsible for informing the partner process of the occurrence of an error.
For this reason, an OnAlarm Handler for the mapping of the Acceptance Acknowledgement at
the responding side is not necessary.

The right half of figure 4.3 illustrates the handling of the Schematron validation at the respond-
ing process. If an Acceptance Acknowledgement is specified in the ebBP model the responding
party has to execute Schematron validation upon the incoming Business Document using the
corresponding Web service. For this purpose, an Invoke element enclosed by two Assigns that
are responsible for assigning input and output variables are used. A following If-clause checks
the success of the validation based on the output variable of the Schematron Web service call.
If the validation has been successful a message is filled with the business signal AcceptanceAc-
knowledgement and is used as input variable for the Invoke towards the partner process. The
else case works similarly. The AcceptanceAcknowledgementException is sent to the partner
process before an exception is thrown that is to be caught by the outer Fault Handler of the
Business Collaboration mapping.

OnAlarm Handlers used for mapping the Time To Acknowledge Acceptance are only specified
for the requesting party. The requesting role will throw an exception to the outer Fault Handler
of the Business Collaboration if a timeout expires. So, the partner process will be informed of
that failure. Another reason for this choice is that the timer of the responding party will start
later than the timer of the requesting party. Thus, the two timers would not run synchronously.
Usually, the responding role is informed of a timeout occurrence via outer Fault/Event Han-
dler before its own timeout would expire. As WS-ReliableMessaging is envisaged for message

74 CHAPTER 4. DESIGN AND IMPLEMENTATION

transmission it is also safe to assume that the responding side would either receive the error
message or would not be able to deliver the Acceptance Acknowledgement message. Due to
this, the timeout at the responding role is omitted.

Figure 4.3: Mapping construct for AcceptanceAcknowledgement

4.1. REALIZATION STRATEGIES 75

Archive This mapping construct represents the realization of a call to the so-called Archive
Web service that is responsible for archiving messages. The realization of multiple QoS at-
tributes requires this archival service. For details see section 4.1.2. It can be used at the side
of the requester as well as at the side of the responder of a Requesting or Responding Business
Activity.

A BPEL Assign prepares the message to be archived. This Assign is needed for setting the
fields of the message Meta Block (a data structure introduced in this work for conveying meta
data) and copying the message to the body. An Invoke element sends the prepared message to
the responsible Web service. The Archive service signals via the output variable of the Invoke
whether the archiving has been successful. A following If-construct checks the success and, if a
negative answer is sent back, an exception is thrown and handled by the outer Fault Handler
of the Business Collaboration mapping construct. Figure 4.4 shows the visualization of this
mapping construct.

Figure 4.4: Mapping construct for a call of Archive service

76 CHAPTER 4. DESIGN AND IMPLEMENTATION

Authorization Check This mapping construct concerns the responding party. It is used if
the corresponding QoS attributes are set inside the ebBP model. For more details about which
features lead to the use of this construct, see section 4.1.2.

Within a BPEL Sequence, the message for the Invoke of the corresponding Web service is
prepared by the BPEL Assign element. The Invoke’s output message which states whether
authorization can be granted is prepared for being checked by an If construct by an Assign. If
there is a negative answer an exception is thrown which is handled by the outer Fault Handler
of the Business Collaboration construct. If the answer is positive the flow of the process can
proceed. Figure 4.5 shows a screenshot of the NetBeans IDE visualizing this construct.

Figure 4.5: Mapping construct for a call of the Authorization Check service

4.1. REALIZATION STRATEGIES 77

Business Transaction Activity Figure 4.6 shows the mapping of Business Transaction
Activities. If the Time To Perform is defined as runtime, a runtime negotiation construct in
front of the scope of the BTA mapping is necessary. The negotiated timeout or the specified
timeout of the ebBP model is set to an OnAlarm Event Handler that throws an exception if a
timeout occurs. The timer has to start after receiving the business document. Therefore, it is
necessary that the Invoke of the Ready to Receive message, the receipt of the business document
and the Assigns of the corresponding messages have to be extracted from the construct for the
Requesting Business Activity and be placed outside of the scope. But this is only the case if the
mapped Business Transaction Activity is not the starting activity of the Business Collaboration.
If it is the first one the mentioned constructs are moved outside of the inner Scope of the Business
Collaboration construct.

The mentioned Ready to Receive message is necessary to signal the backend system that the
process has reached the state for handling the next message. The rest of the Business Trans-
action Activity mapping is a sequence of constructs for the Requesting and the Responding
Business Activity.

78 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.6: Mapping construct for Business Transaction Activity

4.1. REALIZATION STRATEGIES 79

Decision This mapping construct is the BPEL mapping for the Decisions of the ebBP models.
The branches for protocol failures are, as mentioned yet, mapped by the outer Fault Handler
of the enclosing Business Collaboration construct.

The other branches are handled sequentially in the order they are specified in the ebBP model.
For each branch, at first a boolean variable is set to true if the condition for this branch matches.

This can be done by evaluating the isPositiveResponse field of the Meta Block in case the
condition is specified as a Conditional Guard Value, or by using the Web service for evaluating
expressions in case the condition is an XPATH2 expression. Accordingly, the boolean variable is
set by an Assign within an If/Else construct.

Then, in a following If/Else-construct, the boolean variable for the respective decision branch
is checked. The body of the If clause contains the mapping of the branch that corresponds to a
positive decision specified in the ebBP model. The next ToLink element of the ebBP decision
is mapped in the same manner and nested to the Else clause of the previous If/Else construct.
This is done for all decision branches of the ebBP model.

Listing 4.3 shows the mapping as a simplified extract of the BPEL XML code.

The last Else clause throws an exception which signals that no previous condition evaluates to
true. This means something went wrong and the process has to end.

1 <sequence >

2 <scope>

3 <sequence >

4 <if>

5 <condition >lastBusinessDocument/MetaBlock/IsPositiveResponse = true()

6 </condition >

7 <assign >

8 <!-- Assign Var_local_expression_evaluation_result to true () -->

9 </assign >

10 <else>

11 <assign >

12 <!-- Assign Var_local_expression_evaluation_result to true () -->

13 </assign >

14 </else>

15 </if>

16 </sequence >

17 </scope>

18 <if>

19 <condition >Var_local_expression_evaluation_result = true()

20 </condition >

21 <scope>

22 <sequence >

23 <!-- Mapping of the branch , which is used if the condition is true -->

24 </sequence >

25 </scope>

26 <else>

27 <scope>

28 <sequence >

29 <scope>

30 <sequence >

31 <if>

32 <!-- Check of the condition for the next ToLink -element of the ebBP model -->

33 </if>

34 </sequence >

35 </scope>

80 CHAPTER 4. DESIGN AND IMPLEMENTATION

36 <if>

37 <condition >Var_local_expression_evaluation_result = true()

38 </condition >

39 <!-- Mapping of the branch , which is used if the condition is true -->

40 <else>...</else>

41 ...

42 </sequence >

Listing 4.3: Simplified extract of the BPEL mapping for ebBP Decisions

Receipt Acknowledgement The mapping construct of the Receipt Acknowledgement com-
prises the mapping of the elements Receipt Acknowledgement, Receipt Acknowledgement Ex-
ception and their usage within the ebBP models. The handling of this mapping construct differs
between requesting and responding role of a Requesting/Responding Business Activity.

The requesting role is attached to the sender of the business document. After having sent the
business document, the requester is waiting for a confirmation. This is realized within a BPEL
Scope and a BPEL Receive element. The Receive is waiting for a call that carries the Receipt
Acknowledgement. When this business signal arrives it is assigned to global variables for later
use, and if specified by QoS attributes in the ebBP models, the business signal is archived and
its signature is checked using the corresponding Web services. This is visualized in figure 4.7.
As mentioned before, the BPEL Empty element is used as a placeholder for other mapping
constructs. The enclosing Scope has an EventHandlers element with one OnEvent Handler and
one OnAlarm Handler.

The OnEvent Handler is responsible for a possible incoming call transmitting a Receipt Ac-
knowledgement Exception. In case this event occurs, the business signal is assigned to global
variables and, if specified by QoS attributes, archived. It is not necessary to throw an exception
because this is done by the Receipt Acknowledgement handling procedure at the responding
party. There, an exception is thrown, caught by the outer Business Collaboration Fault Handler
and forwarded to the outer Business Collaboration Event Handler of the requesting party. The
consequence is a controlled termination of both processes.

The OnAlarm Handler of the Scope maps the Time To Acknowledge Receipt element of the
ebBP model. The timer starts after the requesting side has transmitted the corresponding
Business Document. If a timeout occurs, a timeout exception is thrown to be caught by the
Fault Handler of the Requesting/Responding Business Activity construct and not, like all other
exceptions, by the outer Fault Handler of the Business Collaboration. The consequence is the
incrementation of the retry count variable.

The responding role is responsible for sending business signals depending on ebBP QoS at-
tributes and the content of the business document. The BPEL mapping is visualized in figure
4.7 on the right-hand side. The ebBP QoS attribute isIntelligibleCheckRequired states
whether the received business document has to be checked against its XML schema. If this
attribute is set to true, the document is assigned, together with other fields, to a message and is
sent to the Web service responsible for XSD validation using an Invoke element. The Invoke’s
output variable is checked by an If/Else-construct for validation success. In case of success,
the Receipt Acknowledgement is created and assigned to local variables. The business signal is

4.1. REALIZATION STRATEGIES 81

signed and archived, if specified by QoS attributes, and sent to the requesting process.

In case of validation failure, the same is done for creating and assigning the Receipt Acknowl-
edgement Exception business signal. In this case, at the end of the flow, an exception is
thrown to the outer Fault Handler of the enclosing Business Collaboration construct which is
responsible for informing the partner process of a fault and for ending the own process. If
isIntelligibleCheckRequired is set to false, the Receipt Acknowledgement is sent and han-
dled as mentioned above without XSD validation and If/Else construct checking the success of
validation.

The mapping of the Time To Acknowledge Receipt is used only within the construct for the
requesting role using the above mentioned OnAlarm Handler. The reasons for this are the same
as pointed out in the paragraph for mapping the Acceptance Acknowledgement and the Time
To Acknowledge Acceptance.

Figure 4.7: Mapping construct for ReceiptAcknowledgement

82 CHAPTER 4. DESIGN AND IMPLEMENTATION

Recursion Call The mapping construct for the recursion call is used instead of a sequence of
Business Transaction Activity constructs with corresponding Decision constructs as described
in the paragraph of the Business Collaboration construct. A Collaboration Activity and the
referenced Business Collaboration is represented by a separate BPEL process. If the ebBP
model includes a Collaboration Activity, a new process has to be called by the BPEL process.
For this purpose, the attributes for the new process (child process) are assigned and an Invoke
of the method of the child process is performed. It is important for error message handling of
the outer Event and Faulthandlers of the Business Collaboration construct to set the boolean
variable for active child processes to true. Then, a Receive follows that waits for the Invoke of
the result from the child process.

The Decision that follows a Collaboration Activity in an ebBP choreography is mapped by a
BPEL If construct that checks the child process’s Recursion Stop Message for errors and their
error codes. If an error occurs an exception is thrown to the outer Fault Handler. If not, the
flow can go on.

After receiving the output message of the recursion, the boolean variable for active child pro-
cesses is assigned to false.

The mapping of the call of a child process is shown as simplified XML BPEL code in listing
4.4.

1 <sequence >

2 <assign name="Assign_Increment_Recursion_Counter"/>

3 <invoke name="Invoke_Start_Collaboration_Activity"/>

4 <assign name="Assign_Child_Process_Active"/>

5 <receive name="Receive_Recusion_Message"/>

6 <assign name="Assign_No_Active_Child_Process"/>

7 <if name="If_Error_In_Recursion">

8 <sequence >

9 <throw name="Throw_AnyProtocolFailure"/>

10 </sequence >

11 </if>

12 </sequence >

Listing 4.4: Simplified extract of the mapping for a recursion call

Requesting / Responding Business Activity This mapping construct is identical for the
mapping of Requesting and Responding Business Activities. But it is a role specific mapping.
This means the construct for the requesting role and the construct for the responding role are
different. If a party has the requesting role within the Requesting Business Activity, it has to
perform the responding role within the Responding Business Activity and vice versa.

The mapping for the responding role is a Sequence starting with the Receive of the business
document. After that, the message is assigned to different global variables for later use, and,
if specified by ebBP QoS attributes, the document is archived and its signature as well as the
authorization of the sender are checked using the corresponding BPEL mapping constructs
for these purposes. After that, the Sequence uses the constructs for handling the Receipt
Acknowledgement and the Acceptance Acknowledgement before assigning and invoking the
business document towards the backend system.

4.1. REALIZATION STRATEGIES 83

The requesting role, as visualized in figure 4.8, is enclosed within a While loop which represents
the mapping of the Retry Count. The termination condition is reaching the retries specified in
the ebBP model. Before entering the While-loop, a variable for counting the retries is set to
zero and a variable for the maximum possible retries is set to the value specified in the ebBP
model.

The body of the loop has a construct that is responsible for sending the business document to
the partner process and that is composed of an Assign and an Invoke element. This is followed
by a Scope containing a Flow with one branch for handling the Receipt Acknowledgement
and with another branch for handling the Acceptance Acknowledgement. In both cases, the
corresponding construct for the requesting role has to be included. For more details, see the
paragraphs of these constructs.

If the Flow ends, the constructs for Receipt Acknowledgement and Acceptance Acknowledge-
ment ended correctly and the loop is left by setting the counter of retries to the maximum
number using the Assign element. The Scope within the loop has a Fault Handler with a Catch
element. This is for catching the timeout exception of the Receipt Acknowledgement construct.
As specified in chapter 4.1.2, a timeout during the handling of Receipt Acknowledgement in-
creases the retry counter. This is mapped by an Assign of the variable for actual retries within
the Catch element that increases the latter if the maximum number of retries is not reached yet.
If the maximum number of retries is reached within the Fault Handler, which means delivery of
the Receipt Acknowledgement failed, an exception is thrown by the Fault Handler to the outer
Fault Handler of the enclosing Business Collaboration. This is done in order to terminate the
process with failure messages to backend system, child processes and partner process.

Figure 4.8 shows a simplified visualization of the mapping of the while construct.

84 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.8: Mapping construct for Requesting Business Activity of the Requesting Role

4.1. REALIZATION STRATEGIES 85

Runtime Timeout Negotiation The construct of the timeout negotiation is used if a Busi-
ness Transaction Activity or a Business Collaboration has runtime specified as Time To Perform
type within the ebBP model. This means, no concrete duration value is specified. Therefore,
the initiator process invokes a method for getting a duration for the corresponding Time To
Perform from its backend. Checks for consistency, e.g., whether the sum of the duration of
all Business Transaction Activities is less than the duration of their enclosing Business Col-
laboration are assumed to be performed by the linked backend system and are not performed
within the BPEL process. After the receipt of the duration it is assigned to the corresponding
OnAlarm Event. A next step in this Sequence assigns the duration to the input message for
the Invoke to distribute it to the partner process. The initiator waits for a Reply of the partner
process that confirms the timeout negotiation.

The responding process waits with a Receive for this duration, assigns it to the OnAlarm Event
and confirms the timeout negotiation with a Reply to the initiator process.

Signature Creation This construct (shown in XML BPEL listing 4.5) is used if it is neces-
sary that an outgoing message contains a signature. For this purpose, the message has to be
assigned to the input variable of the service Invoke together with other addressing attributes.
The output variable containing the signed message is assigned to the corresponding global
variable for further handling of this message.

1 <sequence >

2 <assign name="Assign_Prepare_Invoke_SignatureCreation">

3 </assign >

4 <invoke name="Invoke_SignatureCreation"/>

5 <assign name="Assign_After_Receive_from_Var_Output_SignatureCreation">

6 </assign >

7 </sequence >

Listing 4.5: Mapping construct for calling the Signature Creation Web service as BPEL XML

86 CHAPTER 4. DESIGN AND IMPLEMENTATION

Signature Check This construct is used to implement the call of the Web service signature
check. The usage of this construct depends on the setting of QoS attributes of the ebBP model
as pointed out in chapter 4.1.2. For a call, a message containing the latest business document to
be checked has to be assigned. After this, the Web service for checking the signature is called.
The received output of the service is assigned to a variable which is checked in the following
if-clause. If the signature check fails an exception is thrown, otherwise, the process can proceed.
Figure 4.9 visualizes this construct.

Figure 4.9: Mapping construct for a call of the Signature Check service

4.1. REALIZATION STRATEGIES 87

4.1.1.2 Validation of Mapping Constructs

Most simple BPEL constructs have been tested during the platform selection process. So the
validation of all mapping constructs introduced in section 4.1.1.1 is not necessary. Thus, only
more complex constructs such as fault and event handlers as used in this project are checked.

The tests in the following list have more than one goal: Investigating the functionality of BPEL
elements which are not used regularly and validating openESB support/implementation of these
elements.

1. Test scenario: After a “Throw” activity the process has an “Assign” and a “Reply”. The
fault handler catches all faults.

Question: Will the scope be left at once after the “Throw” as prescribed by the BPEL
standard or will the next steps be executed?

Result: The scope is left after the “Throw” - the assign and reply is ignored.

2. Test scenario: Fault handling with BPEL - Two BPEL-Processes A and B; A calls
process B; an exception occurs in process B.

Question: How can the exception be reported to Process A?

Result: In the WSDL file of process B a fault must have been declared, process B has to
Reply a “fault response”, then process A can catch the fault with a BPEL fault handler.

3. Test scenario: In a sequence a fault is thrown. This sequence is encapsulated in a
scope A. This scope has a catch-all fault handler which catches the fault and then throws
another fault. Scope A is enclosed within another scope B which also has a catch-all fault
handler.

Question: Which fault handlers catch the faults?

Result: The first fault from the sequence is caught by the fault handler of the inner
scope A. The fault thrown by this fault handler is caught by the outer scope B. So faults
can be delegated step by step to superordinate fault handlers.

4. Test scenario: This scenario consists of two scopes. The inner scope has onAlarm-
Event-Handler which is set to 3 seconds and a catch-all fault handler which replies a fault
message with an identifier for the inner scope to the caller. The outer scope also has a
catch-all fault handler which also returns a fault message. This fault message carries an
identifier for the outer scope. The inner scope simply waits 1 minute in order to trigger
the onAlarm handler. The onAlarm handler thus throws a fault (BPEL activity“Throw”).

Question: Which fault-handler catches the fault?

Result: The fault handler of the inner scope catches the fault.

5. Test scenario: The BPEL standard postulates the implementation of Isolated Scopes.
Therefore, an XML attribute “isolated” is introduced for the XML element “scope”.
When two isolated scopes try to access the same variable, the access should be serialized.
(See [JEA+07] Section 12.8)

88 CHAPTER 4. DESIGN AND IMPLEMENTATION

Question: Can isolated scopes be used in this case study? Does GlassFish support isolated
scopes?

Result: No - Warning in NetBeans “Isolated Scopes are not supported”, Tag will be
ignored; Test failed

6. Test scenario: This scenario comprises two independent BPEL processes. Process A
implements a timer. A one-way-message starts the timer. When the timer ends, a one-
way-message is sent to process B, whose main scope has an event handler to handle the
receipt of this message. In its main scope process B starts the timer of process A and
waits for a little while.

Question: How can the BPEL-engine distinguish between process instances when multiple
messages are sent to an endpoint which is listened to by an event handler?

Result: With correlation sets. Correlations can be used on receive, reply, invoke, onMes-
sage and onEvent. They map an identifier of one message to the one of another message.
The NetBeans-BPEL-Editor offers the possibility to generate user-defined correlations.
A logging of the ID at the event handler showed that multiple messages with different
timers were received by the expected process instances.

4.1.2 Realization of QoS Features

For realizing the QoS-Features that can be specified in ebBP models (cf. section 3.2), there are
several options. The options used in this work are:

• Usage of (WS-*) Standards

• Development of Web services

• Usage of BPEL constructs

If the attribute isIntelligibleCheckRequired is active (set to true), the document has to
be checked for syntactical and semantic conformance to the XML and NES guidelines. For
this reason, the transmitted XML documents have to be checked for their XML conformance.
Thus, XSD validation has to be performed. Therefore, an XMLValidation Web service is
necessary which receives an XML file, checks this file and returns either true if it is valid
or false otherwise. This Web service checks the syntax of the XML file, but there is no check
of the semantics. However, the NES group provides in addition to XSD files for syntactical
validation also Schematron files which allow a semantic check of the XML files with the help
of an XSLT (eXtensible Stylesheet Language Transformation) processor. For this purpose an
additional Web service has to be provided which is quite similar to the XMLValidation Web
service but checks the semantic validity of the document (Web service SchematronValidation).

The attributes isNonRepudiationRequired and isNonRepudiationReceiptRequired have to
guarantee that neither the sender nor the receiver can deny the receipt of a business document.

4.1. REALIZATION STRATEGIES 89

For this reason, the sender of the business document for the attribute isNonRepudiationRe-

quired respectively the sender of the receipt acknowledgement for the attribute isNonRepudi-

ationReceiptRequired have to sign the according message. This message has to be persisted
on both sides. For persisting the messages the simplest way is to use a Web service which
writes the transmitted messages to the file system and saves the meta-data in a database. For
using signatures with Web services, the WS-* standards WS-Security [OAS06] and WS-Trust
[LKN+07] provide methods and mechanisms to create and validate signatures, but the Security
Token concept of WS-Trust which needs a central instance to issue the tokens, is inapplica-
ble for this work, and the signature mechanisms of the WS-* standards are using the SOAP
message header to put the signature information into the message. This makes the signature
completely transparent for BPEL processes because the used BPEL engine does not allow to
access the SOAP message header. But the XML signature has to be contained in the archived
file because of non-repudiation requirements so that the realization of signatures using WS-*
standards has to be canceled. This is the reason why a pair of Web services for creating and
checking an XML signature has to be established. For both attributes discussed in this para-
graph the Web services SignatureCreation and SignatureCheck are introduced for creating and
validating signatures.

The QoS attribute hasLegalIntent is not precisely defined in ebBP (cf. [YWM+06], section
3.4.9.7). Thus, in this work, hasLegalIntent is realized as an aggregated attribute which sets
every of the following attributes to true:

• isGuaranteedDeliveryRequired

• isIntelligibleCheckRequired

• isNonRepudiationRequired

• isNonRepudiationReceiptRequired

If the attribute isConcurrent is active the needed resources for this transaction have to be
locked. In the context of Web services the locking of resources is envisaged to be realized
using WS-Coordination [NRFJ07] with the sub-standards WS-AtomicTransaction [NRLW07]
and WS-BusinessActivity [NRLF07]. However, for none of these standards, a fully functional
implementation could be found. Writing an own implementation within the project was, due to
limited resources and time, not possible. Another approach for realizing this locking mechanism
is to write a semaphore Web service which controls the access to shared resources. The review
of the NES profiles showed that there are no shared resources with limited access in the use
case of this project. So the attribute isConcurrent has no direct impact on this work’s use
cases and therefore the development of the semaphore Web service has been canceled in favor
of other project priorities.

All the attributes concerning time (TimeToPerform, TimeToAcknowledgeReceipt, TimeToAc-
knowledgeAcceptance) are realized using timers in the BPEL processes.

For the attribute isGuaranteedDeliveryRequired one realization option is the usage of the
WS-ReliableMessaging [FPD+07] standard. Another possibility is to design the BPEL pro-

90 CHAPTER 4. DESIGN AND IMPLEMENTATION

cess in such a way that systematic checks in the process avoid consistency issues, i.e., dis-
tributed commit techniques could be applied. The standard WS-ReliableMessaging has sev-
eral implementations which are relatively stable and simple to use. This is the reason why
WS-ReliableMessaging has been used to implement the isGuaranteedDeliveryRequired at-
tribute for communication between the BPEL processes. For other message transmissions in
this project, e.g., BPEL to Backend, a secure and reliable connection is assumed to be available.
Note that this is not far from realistic because the BPEL process and the Backend implemen-
tation of one partner are likely to be run on the IT resources of one IT department. If this is
not the case, WS-ReliableMessaging and distributed commit mechanisms ar still an option.

The attribute isAuthorizationRequired checks whether an user is authorized to perform the
action she wants to perform. In the case of this project the authorization check performs a
check of the privilege of a user to send a particular business document in a particular profile,
e.g., send an order in NES profile three. This functionality is realized by using a Web service
(Web service AuthorizationCheck) which gets the parameters user, profile and message type
and returns whether the user has this privilege (true) or not (false).

The retryCount for the ebBP delivery retries of messages can be realized as a BPEL loop.

For the different QoS security features (isAuthenticated, isConfidential and isTamperDe-

tectable) a differentiation between transient (on network level) and persistent (on applica-
tion/document level) realization as arranged for by ebBP is necessary. Each of these attributes
is realized with Secure Sockets Layer (SSL) on network-level which ensures encryption of the
transport channel (this realizes isConfidential), authentication by certificates of one or both
sides (realizing isAuthenticated) and provides a mechanism which detects non-authorized
modification of the transmitted content by using a hash-function. Note, that Point-to-Point
security is sufficient for this work’s uses cases because intermediaries are not assumed.
If the attribute isConfidential is set to persistent, WS-Security is used to encrypt the XML
message. To realize the attributes isAuthenticated and isTamperDetectable on document-
level an XML signature is added to the XML document. First, this signature can be used to
authenticate the person who signed the message, and second, an XML signature generates a
hash-code value for the document to be signed. The validation of this hash code fails if the
document is not completely equivalent to the signed XML document.

For a listing of the QoS attributes with their realization strategies see table 4.1.

4.1. REALIZATION STRATEGIES 91

QoS Attribute Realization strategy

isAuthenticated transient: TLS

persistent: Web Service SignatureValidation

isConfidential transient: TLS

persistent: WS-Security

isTamperDetectable transient: TLS

persistent: Web Service SignatureValidation

isIntelligibleCheckRequired Web Service XMLValidation

Web Service SchematronValidation

isNonRepudiationRequired Web Service Archive

Web Service SignatureCreation

isNonRepudiationReceiptRequired Web Service Archive

Web Service SignatureCreation

timeToAcknowledgeReceipt BPEL onAlarm

timeToAcknowledgeAcceptance BPEL onAlarm

isAuthorizationRequired Web Service AuthorizationCheck

retryCount BPEL while

isGuaranteedDeliveryRequired WS-ReliableMessaging

hasLegalIntent defined in terms of other

QoS attributes

isConcurrent not relevant

timeToPerform BPEL onAlarm

Table 4.1: ebBP QoS attributes andand realization strategies

92 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.2 Design of WS-Interfaces

In order to establish a fully machine readable communication with XML documents between
two or more partners naming conventions and common message formats have to be defined.
This section covers all aspects concerning standards and interfaces of all kinds of communication
in this work.

4.2.1 Design of the Messages

In this project, it is necessary to communicate meta-information such as the MessageType or
the MessageID in addition to the contents of the business document. Hence, a suitable place
to put these information within the transmitted document has to be found. Considering the
effort for sending extra messages and issues concerning correlation as well as failure handling
it is decided to transmit meta data together with the business document in a single message.
So, the so-called MetaBlock carrying relevant meta data is introduced as a non omissible part
of a message.

The idea to use the SOAP message headers in a way similar to most WS-* standards had to be
abandoned due to the tested BPEL engines. None of them permits access to the SOAP message
headers. Thus, in every transmitted message the meta-information is placed as MetaBlock in
the SOAP message body, just before the actual body of the message containing the business
information. This MetaBlock contains several information about the transmitted message.
These are:

• UUID: The unique universal identifier of a concrete execution of a profile. The UUID is
common to all BPEL processes used within the context of a concrete profile execution.

• RecursionCount: This element determines the depth of recursive invocation and is re-
sponsible for a unique identification of recursive processes. The recursion count follows
the pattern (Type)Nr.* .

• ProfileID: Identifies the NES profile in which this message is used.

• MessageType: Specifies the type of the message, e.g., Order or Invoice.

• MessageID: The identifier of the message, starting with 1, incremented with each message.

• IsPositiveResponse: States whether the business document encapsulated in the body is a
positive response or not in terms of the corresponding ebBP model.

• Signature: The tag including the signature, if present.

1 <xsd:element name="MetaBlock" type="MetaBlockType" />

2 <xsd:complexType name="MetaBlockType">

3 <xsd:sequence >

4 <xsd:element name="UUID" type="UUIDtype" minOccurs="1" maxOccurs="1"/>

5 <xsd:element name="RecursionCount" type="xsd:string" minOccurs="1" maxOccurs="1"/>

4.2. DESIGN OF WS-INTERFACES 93

6 <xsd:element name="BCRolenameID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

7 <xsd:element name="ProfileID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

8 <xsd:element name="MessageType" type="xsd:string" minOccurs="1" maxOccurs="1" />

9 <xsd:element name="MessageID" type="xsd:int" minOccurs="1" maxOccurs="1" />

10 <xsd:element name="IsPositiveResponse" type="xsd:boolean" minOccurs="0" maxOccurs="1"

/>

11 <xsd:element ref="ds:Signature" minOccurs="0" maxOccurs="1"/>

12 </xsd:sequence >

13 </xsd:complexType >

14 <xsd:simpleType name="UUIDtype">

15 <xsd:restriction base="xsd:string">

16 <xsd:pattern value="[a-f0 -9]{8} -[a-f0 -9]{4} -[a-f0 -9]{4} -[a-f0 -9]{4} -[a-f0 -9]{12}"/>

17 </xsd:restriction >

18 </xsd:simpleType >

Listing 4.6: The structure of the MetaBlock type

The MetaBlock is a part of every message sent within a NES profile in this project. All in all,
there are three types of standard messages used in this project for different purposes. These
are:

• StandardMessage (see listing 4.7) for transmitting arbitrary XML content in the body
of the standardMessage, which is specified as xsd:any. This type is used to send, e.g.,
business documents like invoices or orders.

1 <xsd:element name="standardMessage" type="tns:standardMessageType" />

2 <xsd:complexType name="standardMessageType">

3 <xsd:sequence >

4 <xsd:element ref="mb:MetaBlock" />

5 <xsd:element name="body" type="tns:bodyType" />

6 </xsd:sequence >

7 </xsd:complexType >

8 <xsd:complexType name="bodyType">

9 <xsd:sequence >

10 <xsd:any processContents="strict" namespace="##any" />

11 </xsd:sequence >

12 </xsd:complexType >

Listing 4.7: The structure of the StandardMessageType

• StandardMessagePlusBoolean (see listing 4.8), which includes a xsd:boolean in the
body tag instead of the xsd:any of the common standardMessage. The main purpose
of this message type is to send validation responses (Web services SignatureValidation,
SchematronValidation, XSDValidation, AuthorizationCheck).

1 <xsd:element name="standardMessagePlusBoolean" type="

tns:standardMessagePlusBooleanType" />

2 <xsd:complexType name="standardMessagePlusBooleanType">

3 <xsd:sequence >

4 <xsd:element ref="mb:MetaBlock" />

5 <xsd:element name="body" type="tns:bodyType" />

6 </xsd:sequence >

7 </xsd:complexType >

8 <xsd:complexType name="bodyType">

9 <xsd:sequence >

10 <xsd:element name="validated" type="xsd:boolean" minOccurs="1" maxOccurs="1" />

11 </xsd:sequence >

94 CHAPTER 4. DESIGN AND IMPLEMENTATION

12 </xsd:complexType >

Listing 4.8: The structure of the StandardMessagePlusBoolean type

• StandardMessagePlusString (see listing 4.9) is almost the same message type as the
StandardMessagePlusBoolean, but it has an xsd:string in place of the xsd:boolean to
send user names or other short texts in messages. Among others, it is needed for the
AuthorizationCheck Web service.

1 <xsd:element name="standardMessagePlusString" type="tns:standardMessagePlusStringType

" />

2 <xsd:complexType name="standardMessagePlusStringType">

3 <xsd:sequence >

4 <xsd:element ref="mb:MetaBlock" />

5 <xsd:element name="body" type="tns:bodyType" />

6 </xsd:sequence >

7 </xsd:complexType >

8 <xsd:complexType name="bodyType">

9 <xsd:sequence >

10 <xsd:element name="additional_information" type="xsd:string" />

11 </xsd:sequence >

12 </xsd:complexType >

Listing 4.9: The structure of the StandardMessagePlusString type

In addition to these message definitions, for some Web services there are particular solutions
for very special messages, e.g., the ExpressionEvaluationRequestMessage for the Expres-
sionEvaluation service. These will be discussed in the corresponding sections.

4.2.2 The Correlation Set

Using a BPEL Business Process means using instances of the respective process specification.
Clearly, it is possible that more than one instance of a process specification is running at the
same time within the same engine instance. Due to this fact, there is a need for a mechanism
to direct messages to the matching instances. Within BPEL, this mechanism is realized by
the construct of Correlation Sets. A Correlation Set is a set of properties that are related
with message attributes. A Correlation Set is built only from attributes that appear in all
possible messages. The most important characteristic of such a set is uniqueness. This means
a concrete composition of instances of all properties of the set identifies exactly one process
instance. If all values of the correlating attributes are available, the Correlation Set can be
initiated. This means these attributes have to retain their values during the whole process. If
a message’s Correlation Set is not initiated, the message has to be transmitted to all processes
the Correlation Set matches. For more information see [JEA+07].

In this work, as in most BPEL projects, it is possible that a company has multiple active
processes at the same time of the same type with multiple partners. Thus, Correlation Sets are
needed. Below, the usage and application of this construct within this project is described in
more detail.

4.2. DESIGN OF WS-INTERFACES 95

For the Correlation Set some attributes of the Meta Block, which is common to all messages,
are chosen to build an unique identification of process instances. The following listing shows
the elements of the Meta Block used for the Correlation Set:

• uuid: As mentioned above, the UUID identifies a collaboration instance including all
recursive processes at each party. With this attribute, a unique identification of the
process execution is given.

• roleNameID: This attribute specifies the executing party of the process instance.

• profileID: This attribute specifies the profile performed by the process instance.

• recCount: Because each process instance can have multiple recursive calls, it is necessary
to distinguish between the instances at each recursive depth. For this purpose, this
attribute is used therefor.

Listing 4.10 shows the definition of the properties of the Correlation Set. This definition has to
be done for each WSDL interface. Because of the large number of interfaces and the fact that
these properties have to be used in each file, they are defined once within a separate WSDL
file and reused by each WSDL interface by using an XML import statement. Each property
definition is defined within a property element of the corresponding namespace by a name and
type which has to be an XML Schema Simple Type.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <definitions

3 name="Correlation"

4 targetNamespace="http://lspi.wiai.uni -bamberg.de/ss08/pi3/b2bi/wsdl/bpel/

Correlation"

5 xmlns="http:// schemas.xmlsoap.org/wsdl/"

6 xmlns:xsd="http://www.w3.org /2001/ XMLSchema"

7 xmlns:tns="http://lspi.wiai.uni -bamberg.de/ss08/pi3/b2bi/wsdl/bpel/Correlation"

8 xmlns:vprop="http://docs.oasis -open.org/wsbpel /2.0/ varprop">

9

10 <vprop:property

11 name="prop_roleNameID"

12 type="xsd:string" />

13 <vprop:property

14 name="prop_profileID"

15 type="xsd:string" />

16 <vprop:property

17 name="prop_recCount"

18 type="xsd:string" />

19 <vprop:property

20 name="prop_uuid"

21 type="xsd:string" />

22

23 </definitions >

Listing 4.10: Definition of properties for a Correlation Set within a WSDL file

After definition of the properties as shown in listing 4.10 the properties have to be associated
with the attributes of the various messages defined within a WSDL interface. Listing 4.11 gives
an example of the mentioned association for one message. For this, each property is associated
with a query on the corresponding attribute of the specified message. Definitions for other
messages only differ in attributes messageType and part.

96 CHAPTER 4. DESIGN AND IMPLEMENTATION

1 ...

2 <vprop:propertyAlias propertyName="cor:prop_uuid"

3 messageType="tns:Backend2BPELNoQosServiceUUIDRequestMessage" part="

standardMessage">

4 <vprop:query >mb:MetaBlock/mb:UUID </vprop:query >

5 </vprop:propertyAlias >

6

7 <vprop:propertyAlias propertyName="cor:prop_profileID"

8 messageType="tns:Backend2BPELNoQosServiceUUIDRequestMessage" part="

standardMessage">

9 <vprop:query >mb:MetaBlock/mb:ProfileID </vprop:query >

10 </vprop:propertyAlias >

11

12 <vprop:propertyAlias propertyName="cor:prop_roleNameID"

13 messageType="tns:Backend2BPELNoQosServiceUUIDRequestMessage" part="

standardMessage">

14 <vprop:query >mb:MetaBlock/mb:BCRolenameID </vprop:query >

15 </vprop:propertyAlias >

16

17 <vprop:propertyAlias propertyName="cor:prop_recCount"

18 messageType="tns:Backend2BPELNoQosServiceUUIDRequestMessage" part="

standardMessage">

19 <vprop:query >mb:MetaBlock/mb:RecursionCount </vprop:query >

20 </vprop:propertyAlias >

21 ...

Listing 4.11: Usage and association of correlation set properties

Finally, the Correlation Set has to be specified within the BPEL process definition. Each BPEL
file of this work defines it as shown in listing 4.12. The set is identified by a name and uses the
properties attribute for correlation with the properties defined within the WSDL interfaces.
These attributes, in essence, determine which property is used for this concrete Correlation Set.

1 ...

2 <correlationSets >

3 <correlationSet xmlns:ns2="http://lspi.wiai.uni -bamberg.de/ss08/pi3/b2bi/wsdl/

bpel/Correlation"

4 name="process_message_correlation_set"

5 properties="ns2:prop_uuid ns2:prop_roleNameID ns2:prop_profileID

ns2:prop_recCount"/>

6 </correlationSets >

7 ...

Listing 4.12: Definition of a Correlation Set within a BPEL file

Besides all specifications as mentioned above a Correlation Set has to be initiated. In this work,
this is done in context of the generation and distribution of the UUID.

4.2.3 Naming Conventions of the WSDLs

Due to the fact that the Web service interfaces which consist of the WSDL file and the used
XSD files are needed for at least two, sometimes three of this project’s software components
it is necessary to install policies for how to name the WSDL files, XSD files and related files.
Thus, the following naming conventions are introduced.

4.2. DESIGN OF WS-INTERFACES 97

First, the naming conventions of the WSDL files are described. The name of WSDL files and
the name of corresponding Web services is computed by the following rules:

• Type: { BPEL2BPEL | BPEL2Service | BPEL2Backend | Backend2BPEL }

• Only for type BPEL2Service: { Archive | SignatureCreation | SignatureCheck | Valida-
tionXSD | ValidationSchematron | UUID | ExpressionEvaluation }

• Security: { NoQos | Ssl | WsSecurity | SslWsSecurity }

• Reliability: { RM } or none

• Only for type BPEL2BPEL: { <roleId of the ebBP process> }

• Postfix: Service

As as result, e.g., the WSDL provided by the backend that has no security and no reliability
configured is going to be named BPEL2BackendNoQosService.

Second, the XSD files have the requirement to employ the target namespace
http://lspi.wiai.uni-bamberg.de/ss08/pi3/b2bi/schema/{XSD_FILE_NAME}.

4.2.4 Web Service Interfaces

This section describes the structure of the WSDL file contents and in particular how the appli-
cation of QoS technologies can be requested from the openESB BPEL platform using WS-Policy
assertions.

4.2.4.1 General Structure

All WSDL files can be divided in an interface definition and an implementation part. The
interface definition part describes data types, messages and port types. The implementation
part provides information where to find and how to call a service. Therefore it includes the
bindings, ports and services.

In this work, all WSDL files employ this given structure:

Interface definition part: In the interface definition part no data types (XML tag <types>)
are directly defined but the StandardMessage, the MetaBlock and the XML digital signature
XSD files are imported. If the service uses more “message types” than the StandardMessage,
these types, e.g., StandardMessagePlusBoolean, also must be imported in this section of the
WSDL.
Most services only provide one or two messages: a receive of a StandardMessage and some-
times a reply. So, the definition of messages (XML tag <message>) is rather short. An ex-
ample of a message definition is provided in listing 4.13. The only important issue here is

98 CHAPTER 4. DESIGN AND IMPLEMENTATION

to respect the naming conventions: the message name must be of the prementioned format -
“BPEL2BackendSslWsSecurityServiceReceiveMessage” in the provided example listing.
The last section of the abstract part are port types (XML tag <portTypes>) which combine
messages to operations and operations to a port type. Here most of the WSDLs only have one
single port type with a single operation: Receiving a message of the message type specified
before - containing a StandardMessage. In most cases this a single one-way operation but some
of the supporting Web services do also use a request-response operation. In listing 4.14 the
port type of the previous example “BPEL2BackendSslWsSecurityService” is shown. Naming
conventions must be respected here too.

1 ...

2 <message name="BPEL2BackendSslWsSecurityServiceReceiveMessage">

3 <part name="standardMessage" element="stm:standardMessage"/>

4 </message >

5 ...

Listing 4.13: WSDL message definition for a BPEL2Backend service

1 ...

2 <portType name="BPEL2BackendSslWsSecurityServicePortType">

3 <operation name="BPEL2BackendSslWsSecurityServiceReceive">

4 <input message="tns:BPEL2BackendSslWsSecurityServiceReceiveMessage"/>

5 </operation >

6 </portType >

7 ...

Listing 4.14: WSDL port type definition for a BPEL2Backend service

Implementation Part: The implementation part begins with the definition of bindings
(XML tag <binding>). A binding enriches a port type by adding concrete information about
the used protocol. In this work SOAP with transport over HTTP is always chosen. So, some
SOAP specific definitions have to be added (See listing 4.15; for more information about the
PolicyReference see the next section 4.2.4.2).
Last, the service is defined with the tag <service>: Herein, a port is defined which includes the
concrete address where the service can be found. In our case the address always is a HTTP(S)
URI (Example provided in listing 4.16).

1 ...

2 <binding name="BPEL2BackendSslWsSecurityServicePortBinding" type="

tns:BPEL2BackendSslWsSecurityServicePortType">

3 <wsp:PolicyReference URI="#BPEL2BackendSslWsSecurityServicePortBindingPolicy" />

4 <soap:binding transport="http:// schemas.xmlsoap.org/soap/http" style="document"/>

5 <operation name="BPEL2BackendSslWsSecurityServiceReceive">

6 <soap:operation soapAction=""/>

7 <input>

8 <wsp:PolicyReference URI="#

BPEL2BackendSslWsSecurityServicePortBinding_receiveMessage_Input_Policy" />

9 <soap:body use="literal"/>

10 </input>

11 </operation >

12 </binding >

13 ...

Listing 4.15: WSDL binding definition for a BPEL2Backend service

4.2. DESIGN OF WS-INTERFACES 99

1 ...

2 <service name="BPEL2BackendSslWsSecurityService">

3 <port name="BPEL2BackendSslWsSecurityServicePort" binding="

tns:BPEL2BackendSslWsSecurityServicePortBinding">

4 <soap:address location="https: // localhost:8181/BPEL2BackendSslWsSecurityService/

BPEL2BackendSslWsSecurityService?wsdl"/>

5

6 </port>

7 </service >

8 ...

Listing 4.16: WSDL service definition for a BPEL2Backend service

Correlation Set: All the WSDL files which are used to communicate with the backend
system include the information for the correlation set as described in section 4.2.2.

4.2.4.2 Various QoS Combinations

As described in section 4.1.2 some of the needed QoS features are realized by using WS-*
standards. The WS-* standards used in this project are implemented in the Metro WS-Stack
of GlassFish. In order to activate the required features, the WSDL files must include WS-Policy
declarations to command the application server which standard to use.
In this project, the following three different standards have to be activated by WS-Policy
descriptions1:

• SSL to guarantee secure delivery on the network layer (realizes isAuthenticated, is

Confidential and isTamperDetectable in case the attribute is set to transient)

• WS-Security to realize isConfidential in case the attribute is set to persistent

• WS-ReliableMessaging to realize reliable communication (isGuaranteedDeliveryRequired)

These three features can be combined arbitrarily - so there exist the following eight combina-
tions:

• noQos: all features deactivated - no WS-Policy declaration needed

• Ssl: To activate SSL, first, a WS-Policy assertion has to be included and referenced in
the WSDL files (See: Listing 4.17) and, second, also the protocol in the concrete part of
the WSDL has to be changed to “https://”.

• WS-Security: To activate WS-Security a WS-Policy statement is also needed which can
be found in Listing 4.18 and 4.19.

• RM: The WS-Policy assertion to use reliable messaging is shown in Listing 4.20

1All of the following three standards (WS-Security, SSL and WS-ReliableMessaging) need WS-Addressing
as support to fulfill their function - so in the WS-Policy listings WS-Addressing is always enabled, too.

100 CHAPTER 4. DESIGN AND IMPLEMENTATION

• SslWsSecurity (See paragraph “WS-Policy Combinations of WS-* standards”)

• SslRM (See paragraph “WS-Policy Combinations of WS-* standards”)

• WsSecurityRM (See paragraph “WS-Policy Combinations of WS-* standards”)

• SslWsSecurityRM: all three features have to be combined (See paragraph “WS-Policy
Combinations of WS-* standards”)

1 ...

2 <wsp:Policy wsu:Id="BPEL2BackendSslServicePortBindingPolicy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 <wsaws:UsingAddressing xmlns:wsaws="http://www.w3.org /2006/05/ addressing/

wsdl"/>

6 <sp:TransportBinding >

7 <wsp:Policy >

8 <sp:TransportToken >

9 <wsp:Policy >

10 <sp:HttpsToken RequireClientCertificate="false"/>

11 </wsp:Policy >

12 </sp:TransportToken >

13 <sp:Layout >

14 <wsp:Policy >

15 <sp:Lax/>

16 </wsp:Policy >

17 </sp:Layout >

18 <sp:IncludeTimestamp/>

19 <sp:AlgorithmSuite >

20 <wsp:Policy >

21 <sp:Basic128/>

22 </wsp:Policy >

23 </sp:AlgorithmSuite >

24 </wsp:Policy >

25 </sp:TransportBinding >

26 <sp:Wss10/>

27 </wsp:All >

28 </wsp:ExactlyOne >

29 </wsp:Policy >

30 ...

Listing 4.17: WS-Policy fragment for activating SSL

1 ...

2 <wsp:Policy wsu:Id="BPEL2BackendWsSecurityServicePortBindingPolicy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 <wsaws:UsingAddressing xmlns:wsaws="http://www.w3.org /2006/05/ addressing/

wsdl"/>

6 <sp:SymmetricBinding >

7 <wsp:Policy >

8 <sp:ProtectionToken >

9 <wsp:Policy >

10 <sp:X509Token sp:IncludeToken="http:// schemas.xmlsoap.org/

ws /2005/07/ securitypolicy/IncludeToken/Never">

11 <wsp:Policy >

12 <sp:WssX509V3Token10/>

13 </wsp:Policy >

14 </sp:X509Token >

15 </wsp:Policy >

16 </sp:ProtectionToken >

17 <sp:Layout >

4.2. DESIGN OF WS-INTERFACES 101

18 <wsp:Policy >

19 <sp:Strict/>

20 </wsp:Policy >

21 </sp:Layout >

22 <sp:IncludeTimestamp/>

23 <sp:OnlySignEntireHeadersAndBody/>

24 <sp:AlgorithmSuite >

25 <wsp:Policy >

26 <sp:Basic128/>

27 </wsp:Policy >

28 </sp:AlgorithmSuite >

29 </wsp:Policy >

30 </sp:SymmetricBinding >

31 <sp:Wss11 >

32 <wsp:Policy >

33 <sp:MustSupportRefKeyIdentifier/>

34 <sp:MustSupportRefIssuerSerial/>

35 <sp:MustSupportRefThumbprint/>

36 <sp:MustSupportRefEncryptedKey/>

37 </wsp:Policy >

38 </sp:Wss11 >

39 <sp:SignedSupportingTokens >

40 <wsp:Policy >

41 <sp:UsernameToken sp:IncludeToken="http:// schemas.xmlsoap.org/ws

/2005/07/ securitypolicy/IncludeToken/AlwaysToRecipient">

42 <wsp:Policy >

43 <sp:WssUsernameToken10/>

44 </wsp:Policy >

45 </sp:UsernameToken >

46 </wsp:Policy >

47 </sp:SignedSupportingTokens >

48 <sc:KeyStore wspp:visibility="private" location="D:\Programme\AppServer\

domains\domain1\config\keystore.jks" type="JKS" storepass="XXX -PWD"

alias="xws -security -server"/>

49 </wsp:All >

50 </wsp:ExactlyOne >

51 </wsp:Policy >

52 ...

Listing 4.18: WS-Policy fragment for activating WS-Security

1 ...

2 <wsp:Policy wsu:Id="

BPEL2BackendWsSecurityServicePortBinding_receiveMessage_Input_Policy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 <sp:EncryptedParts >

6 <sp:Body/>

7 </sp:EncryptedParts >

8 <sp:SignedParts >

9 <sp:Body/>

10 <sp:Header Name="To" Namespace="http://www.w3.org /2005/08/ addressing"/>

11 <sp:Header Name="From" Namespace="http://www.w3.org /2005/08/ addressing"

/>

12 <sp:Header Name="FaultTo" Namespace="http://www.w3.org /2005/08/

addressing"/>

13 <sp:Header Name="ReplyTo" Namespace="http://www.w3.org /2005/08/

addressing"/>

14 <sp:Header Name="MessageID" Namespace="http://www.w3.org /2005/08/

addressing"/>

15 <sp:Header Name="RelatesTo" Namespace="http://www.w3.org /2005/08/

addressing"/>

16 <sp:Header Name="Action" Namespace="http://www.w3.org /2005/08/

addressing"/>

102 CHAPTER 4. DESIGN AND IMPLEMENTATION

17 <sp:Header Name="AckRequested" Namespace="http:// schemas.xmlsoap.org/ws

/2005/02/ rm"/>

18 <sp:Header Name="SequenceAcknowledgement" Namespace="http:// schemas.

xmlsoap.org/ws /2005/02/ rm"/>

19 <sp:Header Name="Sequence" Namespace="http:// schemas.xmlsoap.org/ws

/2005/02/ rm"/>

20 </sp:SignedParts >

21 </wsp:All >

22 </wsp:ExactlyOne >

23 </wsp:Policy >

24 ...

Listing 4.19: WS-Policy fragment to indicate which parts of a message should be signed or

encrypted

1 ...

2 <wsp:Policy wsu:Id="BPEL2BPELNoQosRMServicePortBindingPolicy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 <wsaws:UsingAddressing

6 xmlns:wsaws="http://www.w3.org /2006/05/ addressing/

wsdl" />

7 <wsrm:RMAssertion />

8 </wsp:All >

9 </wsp:ExactlyOne >

10 </wsp:Policy >

11 ...

Listing 4.20: WS-Policy fragment to activate WS-ReliableMessaging

WS-Policy Combinations of WS-* standards: Policy assertions have to be combined
if more then only one QoS feature should be activated. The combination of policy assertions
is rather simple: they can be combined in one big declaration and then GlassFish activates
all needed standards. The combination of WS-Security, SSL and reliable messaging is shown
(simplified) in listing 4.21.

1 ...

2 <wsp:Policy wsu:Id="

BPEL2BPELSslWsSecurityRMcb_profile3global_role_customerServiceBindingPolicy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 <wsaws:UsingAddressing xmlns:wsaws="http://www.w3.org

/2006/05/ addressing/wsdl"/>

6 <sp:TransportBinding >

7 <!--

8 ... see SSL ...

9 -->

10 </sp:TransportBinding >

11 <sp:Wss10/>

12 <wsrm:RMAssertion/>

13 <sp:SymmetricBinding >

14 <!--

15 ... see WS -Security ...

16 -->

17 </sp:SymmetricBinding >

18 <sp:Wss11 >

19 <wsp:Policy >

20 <sp:MustSupportRefKeyIdentifier/>

21 <sp:MustSupportRefIssuerSerial/>

4.2. DESIGN OF WS-INTERFACES 103

22 <sp:MustSupportRefThumbprint/>

23 <sp:MustSupportRefEncryptedKey/>

24 </wsp:Policy >

25 </sp:Wss11 >

26 <sp:Trust10 >

27 <wsp:Policy >

28 <sp:RequireClientEntropy/>

29 <sp:RequireServerEntropy/>

30 <sp:MustSupportIssuedTokens/>

31 </wsp:Policy >

32 </sp:Trust10 >

33 <sc:KeyStore type="JKS" storepass="XXX -PWD" wspp:visibility

="private" alias="xws -security -server" location="D:\

GlassFishESB\glassfish\domains\domain1\config\keystore.

jks"/>

34 </wsp:All >

35 </wsp:ExactlyOne >

36 </wsp:Policy >

37 ...

Listing 4.21: Combination of WS-Security, SSL and WS-ReliableMessaging

KeyStore and TrustStore: To use WS-Security the certificates of the partners have to be
saved in server TrustStore and own certificates have to be saved in the KeyStore. Depending
on whether the WSDL is used on the client or on the server side it must reference the KeyStore
or the TrustStore. On the server side a KeyStore declaration must be present (See listing 4.22).
On the client side the TrustStore must be referenced as shown in listing 4.23 and moreover a
CallbackHandler has to be defined.

1 ...

2 <wsp:Policy wsu:Id="

BPEL2BPELSslWsSecurityRMcb_profile3global_role_customerServiceBindingPolicy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 ...

6 <sc:KeyStore type="JKS" storepass="XXX -PWD" wspp:visibility

="private" alias="xws -security -server" location="D:\

GlassFishESB\glassfish\domains\domain1\config\keystore.

jks"/>

7 ...

8 </wsp:All >

9 </wsp:ExactlyOne >

10 </wsp:Policy >

11 ...

Listing 4.22: Server Side: KeyStore

1 ...

2 <wsp:Policy wsu:Id="

BPEL2BPELSslWsSecurityRMcb_profile3global_role_customerServiceBindingPolicy">

3 <wsp:ExactlyOne >

4 <wsp:All >

5 ...

6 <sc:CallbackHandlerConfiguration wspp:visibility="private">

7 <sc:CallbackHandler default="XXX -USER" name="

usernameHandler"/>

8 <sc:CallbackHandler default="XXX -PWD" name="

passwordHandler"/>

9 </sc:CallbackHandlerConfiguration >

104 CHAPTER 4. DESIGN AND IMPLEMENTATION

10 <sc:TrustStore wspp:visibility="private" location="D:\

GlassFishESB\glassfish\domains\domain1\config\cacerts.

jks" type="JKS" storepass="XXX -PWD" peeralias="xws -

security -server"/>

11 ...

12 </wsp:All >

13 </wsp:ExactlyOne >

14 </wsp:Policy >

15 ...

Listing 4.23: Client Side: TrustStore and CallbackHandler

Policy referencing: Of course, the definition of policies itself is not enough to enable the
needed functionality. The definition must be linked to the binding in the implementation part
of a WSDL file. How this can be achieved has already been shown in listing 4.15 in the previous
section. There, it is also shown that the message specific policies must be referenced by the
concrete operations in the binding definition as well (also listing 4.15; line 8).

Remark: The use of single WS-* Standards and also the combinations of SSL/WS-RM and
WS-Security/WS-RM is supported by NetBeans. So, the WS-Policy assertion shown can easily
be generated by NetBeans. Only the combinations of WS-Security/SSL and activating all three
QoS features is not directly supported by NetBeans and thus the WSDL must be customized
by hand. For more details of using NetBeans to create and use “secure” and reliable services
see, e.g., http://www.netbeans.org/kb/docs/websvc/wsit.html and the WSIT Tutorial2.

2Available at: http://java.sun.com/webservices/reference/tutorials/wsit/doc/index.html

http://www.netbeans.org/kb/docs/websvc/wsit.html
http://java.sun.com/webservices/reference/tutorials/wsit/doc/index.html

4.3. ARCHITECTURES AND IMPLEMENTATIONS 105

4.3 Architectures and Implementations

In this section, the architecture and technical details of the implementation, of the whole system
and of all its components will be explained. In each subsection, the level of detail will increase
step by step.

4.3.1 Overall Architecture

At first, the overall architecture is illustrated. As shown in figure 4.10, the architecture of this
use case consists of the three autonomous components Translator, Backend and Web services.
Each collaboration party’s integration system is a composition of a BPEL orchestration, a
Backend system and a number of Web services for realization of QoS features or as utilities.
The Translator is used to transform the NES profiles, modeled as global ebBP choreographies,
into local BPEL orchestrations and WSDL files for each participating party considering the
specified QoS features and their realization strategies.

The Backend system is used for testing the generated processes and Web services by simulating
a real Backend system at each party.

Both, Backend system and BPEL processes use Web services during the realization of QoS
features. Each party has to implement its own Web services conforming to the WSDL interfaces
generated by the Translator.

The entire interaction between the two parties’ BPEL processes, between Backend system and
corresponding BPEL process and with supporting Web services is based on the generated WSDL
interfaces. This interaction is protected by use of WS-* standards or SSL/TLS, visualized as
padlock in figure 4.10. The network connection between Backend system and Web services of
a integration partner is assumed to be secure in terms of reliability and security (cf. page 90).

The architecture and implementation details of each of the three components is explained in
the following sections.

4.3.2 Translator Architecture and Implementation

The translator is implemented by several interconnected components that subsequently trans-
form an ebBP input process into an BPEL output process together with related WSDL inter-
faces. Thus, this section starts out with a description of the interplay between the translator
components and proceeds with discussing the components individually.

4.3.2.1 General Architecture

The architecture of the Translator can be compared with Michael Porter’s value chain (see
figure 4.11). This metaphor has been used to create a common understanding of the underlying

106 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.10: Overall B2Bi architecture

work flow and architecture of the translator.

Figure 4.11: Architecture of translator as a Value Chain

The ebBP models of the NES are used as inputs. The function of the Reader is to read one of
these profiles and to save it in a Java object structure called Initial Model which is described
in detail below. This Initial Model is used by the next production step, the transformer, as
input parameter. The purpose of the transformer is to filter the relevant information out of the
Initial Model and to fill a model called Derived Model which is easier to handle for the next
production steps and which is also described in detail below. The generation step can now use
this Derived Model in the generation process, also described in detail below, which provides a
Java object structure at its end. These objects represent the structure of all BPEL processes
to be generated. This object structure is called Final Model and is used as input parameter for

4.3. ARCHITECTURES AND IMPLEMENTATIONS 107

the last production step which persists these BPEL processes to the file system.

The value chain also contains a secondary process called Utilities. These utilities are used
by the primary production steps amongst others to fill WSDL templates or to load different
properties for the generation process.

Initial Model The object structure of the Initial Model has been built using the JAXB
binding compiler XJC in order to use the unmarshaling functionality of the JAXB 2.0 Bind-
ing Framework. The input of XJC has been the ebBP specification XML schema file ebbp-

2.0.4.xsd.

Derived Model The Derived Model is a specialization of the Initial Model. It is reduced
to the parts that are needed by the generator component for the mapping and additionally
optimized for better processing. For example, the constructs join and fork which are not used
at all in the ebBP modeling and are available in the Initial Model are not available in the
Derived Model.

Final Model The object structure of the Initial Model has been built using the JAXB binding
compiler XJC in order to use the marshaling functionality of the JAXB 2.0 Binding Framework
which is described in section 2.6. The input of XJC has been the WS-BPEL specification XML
schema file ws-bpel_executable.xsd.

4.3.2.2 Architecture and Implementation of the main components

For the main components, namely reader, writer, transformer and generator, special constructs
and design principles are used.

Every component is abstracted by an interface that contains only one operation which is doing
the job the component is responsible for. An instance of this interface can be obtained by a
factory to hide the corresponding implementation for the component. The implementations of
the mentioned components are described in the next sections.

Additionally, all components have a specific controller that implements the interface that can
be obtained by the factories. This controller is in charge of the control flow in the component
and delegates the flow to other parts to ensure the fulfillment of the contract of the interface.

4.3.2.3 Architecture and Implementation of Reader

The reader component handles the loading of the Initial Models. This is done by the following
steps:

108 CHAPTER 4. DESIGN AND IMPLEMENTATION

1. validate ebBP XML file
The XML file is validated against the ebBP.xsd schema by the utilities component.

2. create the Initial Model
Using a JAXB mapping, the initial model is created from the valid ebBP XML file by the
utilities component. The functionality of JAXB is explained in detail in section 2.6.

As described in section 4.3.2.2 the main controller only delegates the work to other parts. In this
case, these are the XML validation part and the XML reading part of the utilities component.

4.3.2.4 Architecture and Implementation of Transformer

The transformer component handles the transformation of the Initial Model into the more
specialized Derived Model. The process can be divided into three steps. At first, all the
elements that are used by the business collaboration and the basic business collaboration are
created in the specific order:

1. Create all business signals.

2. Create all business documents.

3. Create all business transactions.

4. Create all basic business collaborations.

After these parts are created, the next two steps are only performed in the context of a single
business collaboration. The second step is to create the main elements of a business collabora-
tion. Advantageously, these elements can be created separately.

1. Create all business transaction activities.

2. Create all collaboration activities.

3. Create all final states.

In the third step all the created elements of a business collaboration are linked together.

1. Create the start element and link it to the first element.

2. Create the decision elements and set the to and from attributes.

To decouple the separate parts of the transformer the Transformer interface is introduced
and used for delegation. This interface only expects the Initial Model which is the input
and the Derived Model which is the output and is enriched by each call. Each component that
implements one of the tasks mentioned above implements this interface, e.g., there are dedicated

4.3. ARCHITECTURES AND IMPLEMENTATIONS 109

classes for generating the representation of Business Collaborations or Business Transactions.
A part of the Java class hierarchy that results from this concept is visualized in figure 4.12
using a UML class diagram. The control flow of the generation and hence the order of calling
the respective Transformer classes roughly corresponds to the listings above.

Figure 4.12: Part of the Transformer class hierarchy

4.3.2.5 Architecture and Implementation of Generator

The generator consists of two important parts, the flow and the WSDL component. The
WSDL component is used by the flow component and because of this dependency the WSDL
component is explained first.

wsdl The WSDL component creates WSDL files that are needed for the partner links in the
BPEL process. Therefore, an API has been created to simplify the generation of WSDL files for
the flow component. The interface the flow component uses for creating the WSDL interfaces
only consists of three factories plus the WSDL generator interface.

• service WSDL generator factory
Used for services like uuid service and others described in section 4.3.4.

• BPEL WSDL generator factory
Used for BPEL to BPEL WSDLs for interprocess communication.

• backend WSDL generator factory
Used for BPEL to backend or backend to BPEL WSDLs.

Each factory returns the same interface for each requested WSDL generator. As a result the
API for the flow component is minimalistic and simple. So the creation of every WSDL file is

110 CHAPTER 4. DESIGN AND IMPLEMENTATION

done with the same interface, however the implementation is abstracted due to the described
factories above.

In order to generate a WSDL interface, the flow component calls one of the factories that then
returns the WSDL generation interface with the requested implementation. Next, the interface
is called to generate the WSDL interface. For this task, the following information is needed:

• security type
Whether this interface should have none, ssl, ws security, or ssl and ws security enabled.

• reliability
Whether this interface should be reliable or unreliable.

• side
Whether this interface is used for a call or is provided for another part.

After the task is complete the caller retrieves an object that contains all relevant information
about the result of the generation process, e.g., the path of the WSDL interface file and the
paths of the XSD files that are referenced by the WSDL interface etc..

In the following, the implementation of the WSDL API is explained. The generation process
is very similar for all generations and is centralized in one class which is configured by the
property files programm.properties, role.properties and the information passed in with
the generation call. Only the referenced XSD files can differ, and, therefore, for every WSDL
type there is a class that contains this information and is asked during the process.

The steps of the generation of the WSDL interface occur in the following order:

1. Create the WSDL string generator.

2. Retrieve relevant information like the deployed url, the current role id, the template path
and the output path.

3. OPTIONAL: Set trust store information by security type.

4. OPTIONAL: Set key store information by security type.

5. OPTIONAL: Copy the WSDL correlation interface.

6. Write the WSDL interface into a file.

7. Tidy the WSDL file .

8. Get the paths to the referenced XSD files and copy them to the output directory.

9. Validate the generated WSDL interface.

4.3. ARCHITECTURES AND IMPLEMENTATIONS 111

For the generation of the WSDL interfaces the Velocity3 templating engine is used. Every type
of WSDL interface is available at design time in form of a template that is injected with specific
parameters in order to create a fully functional WSDL interface. The templates are stored in
the file system and the location can be configured with the programm.properties file. Each
WSDL file is injected with the following information:

• WSDL file name
The name of the WSDL interface and therefore also the WSDL service name.

• key store
See section 4.2.4.2.

• trust store
See section 4.2.4.2.

• url
The url the WSDL file is deployed to.

• side
The side the WSDL file is used at; can be either the server side providing the interface
for calls or simply the client side to call it.

The usage of the template engine is described below:

1. Retrieve the template path.

2. Create the template instance.

3. Collect the configuration information.

4. Inject the information into the template.

5. Get the output file path.

6. Write the template to the file system.

Note that, instead of writing directly to the file system as for the WSDL file, the trust store
and key store are only created as strings in the translator and then further processed.

At the end of the WSDL generation process the files are created in a folder structure specified
by the programm.properties. By default, the following structure is used:

WSDL Files and XSD files per WSDL:
target/customer|supplier/wsdl/servicefolder

servicefolder:
backend2bpel/

3http://velocity.apache.org/

http://velocity.apache.org/

112 CHAPTER 4. DESIGN AND IMPLEMENTATION

bpel2backend/

bpel2bpel/tprocess_name/bc_role_name_id/

bpel2service/archive/

bpel2service/uuid/

bpel2service/signature/creation/

bpel2service/signature/check/

bpel2service/validation/xsd/

bpel2service/validation/schema/

bpel2service/authorization/

bpel2service/expressionevaluation/

flow The flow component is the heart of the translator. It controls the generation of the
Final Model from the Derived Model by using the concepts of the mapping constructs. The
component consists of two parts, namely the controller and the creator, which are explained in
detail below.

controller The controller part controls the creation of the BPEL process in the Final Model.
The mapping constructs that describe/specify the mapping from ebBP to BPEL have influenced
this part in so far as every controller implements at least one mapping construct. For special
cases two mapping constructs are consolidated in one controller for redundancy reduction.

There are two kinds of controller, the main flow controller and the helping flow controller. The
main flow controllers are in charge of the mapping of the ebBP tags like business collab-

oration and business transaction activity which are the main components in the ebBP
process. The helping flow controllers, however, are responsible for the additional constructs like
UUID distribution which only has been introduced due to the lack of id synchronization. For
each of the controller types there is a factory that creates them and returns always the same
interface. This interface has only one method that expects as parameters the Derived Model,
which is the input of the generation, the Final Model, which is the output, and, additionally,
some temporary variables which are used for having a global shared state during the generation
process to ease the generation of the Final Model. This interface simplifies the delegation of the
flow to another controller. So if a controller is confronted with a tag that it cannot handle or is
not responsible for the work is delegated to the next flow controller which is retrieved via the
factories. As a result, the complexity for each controller is reduced because the work can simply
be delegated and the other controller itself can delegate and so on and so forth. In contrast to
that, the helping flow controllers only help the main flow controllers. Therefore, the delegation
process is controlled by the main flow controllers because the helping flow controllers cannot
create other controllers via factories.

The controllers themselves either execute the requesting or responding part of a BTA depending
on the role in the current business transaction activity which is always determined ex
ante. During their execution some other components are called like the creator component or
the bc name mapping component. This is needed because every business collaboration is
mapped to a specific text string that identifies the type of business collaboration in the
BPEL process at run time. The mapping information is set in the role.properties, and, after

4.3. ARCHITECTURES AND IMPLEMENTATIONS 113

loading it, it can be easily accessed by the flow component via the bc name mapping.

creator In order to simplify the BPEL generation for the flow controller the creator compo-
nent has been created. Its main responsibility is to provide methods that generate frequently
used BPEL elements in order to reduce the failure rate and code redundancy. Not every BPEL
element can be created with that component, but the most complex ones can comfortably be
mapped.

To create a BPEL element, configuration parameters are passed to the relevant method. Enu-
merations are the most used data type for enhancing readability. The methods either return
the created component or a result object that references all created BPEL elements during the
call.

The BPEL elements that can be created with the creator component are listed below:

• Receive

• Invoke

• OnEvent

• Throw

• Copy

• Assign

• Sequence

• Scope

• Variables

• Variable

• If

Especially the creation of the Receive, Invoke and OnEvent is comfortable because the relevant
WSDL files are created automatically in the background by the WSDL component which is
called by the creator component.

The creation of the Copy element is also very powerful due to method overloading, e.g., a
string can be copied to a variable just as well as a specific part that is selected via XPath from
a complex variable can be copied to another specific part of another complex variable.

114 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3.2.6 Architecture and Implementation of Writer

The writer component handles the writing of the actual BPEL XML files. For each process in
the Final Model, the following steps are performed:

1. Determine the output folder and filename:
Using the utilities component, the output folder and the filename together with several
other properties are loaded.

2. Write the process to the file system:
Using JAXB a BPEL file is created in the determined output folder with the computed
filename using the utilities component. The functioning of JAXB is explained in section
2.6.

3. Format the BPEL file:
Using the utilities component the BPEL file is formatted to guarantee better readability
using indentations etc..

4. Clean the BPEL file:
Some namespace issues are resolved using regular expressions.

5. Validate the BPEL file:
Using the utilities component the BPEL file is validated against the BPEL XML schema
definition.

As described in section 4.3.2.2, the main controller of the writer component only delegates the
work to other parts, in this case the property loader part, the helping part, the XML validation
and the XML writing part of the utilities component.

Output At the end of the complete process the BPEL files are created as well as the WSDL
and XSD files that are referenced by the BPEL files are copied to the location specified in the
program.properties.

The default output path can be expressed like this:
target/customer|supplier/bpel/tprocess_name/

4.3.2.7 Architecture and Implementation of Utilities

The utilities component consists of several independent parts that are used by the main com-
ponents to accomplish their tasks.

Property Loader The property loader encapsulates property files and provides a simple API
to access the property files.

4.3. ARCHITECTURES AND IMPLEMENTATIONS 115

XML Writer The XML writer enables writing BPEL models to XML files using JAXB.

XML Reader The XML reader enables reading ebBP files to Java classes using JAXB.

XML Validator The XML validator validates XML files against specific XSD schema files.
The factory provides validators for ebBP, BPEL and WSDL files, however for WSDL files a
mock object is used due to the usage of WSDL extensions which are not part of the XSD and
result in an error if validated.

XML Namespace Extractor The XML namespace extractor’s function is to retrieve the
target namespace of XSD files using XPATH functionality.

Helper The helper contains several useful methods, e.g., tidying up an XML file, checking
whether a file exists, loading an XML file into a string and a few more.

116 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3.3 Backend Architecture and Implementation

This section describes the architecture and implementation of the dummy backend for testing
the generated BPEL processes. This comprises a description of the application layers, technol-
ogy specific modules and the functionality for handling NES profiles.

4.3.3.1 General Architecture and Implementation

The purpose of the Backend is to test and validate the functionality of the generated BPEL
processes as well as the QoS-features. The Java Enterprise Edition (JEE)4 has been selected
as platform for implementing the Backend. This platform offers advanced technologies for im-
plementing business components and Web based user interfaces and is supported by different
vendors like Oracle, IBM or JBoss. Technically speaking, a major reason for choosing JEE is
the availability of middleware services like as transaction management, naming, persistency,
security and a standard format for packaging and deploying application modules. Note, that
such services considerably simplify the development of enterprise level software. The GlassFish
application server has been chosen as implementation of the JEE framework because it closely
conforms to the technology specifications included in JEE. Further, as GlassFish together with
open-ESB has been selected as execution platform for this project’s BPEL processes also choos-
ing GlassFish as application server for implementing the Backend promises advantages in terms
of interoperability as well as development time.

One major problem determines the general architecture of the backend system to a large ex-
tent. The NES business documents are subsets of UBL business documents, but unfortunately
specializations of the same UBL document differ from profile to profile, i.e., there are several pro-
files with XML schema definitions in the same namespace, but with different attributes. Thus,
conflicts occur when putting all profile-specific, JAXB-generated business document classes
in one classpath. For example an order.xsd of one NES profile has items with the attribute
ItemDescription of type String, and another order.xsd from another profile has the same at-
tribute, but of type List. To avoid this problem, profile-specific document handling is done
in a separate EJB module with a separate business documents classes library for each profile
as described in section 4.3.3.2. These profile modules cannot be integrated in one JEE Enter-
prise Application project (.ear), because this also means one classpath for all modules therein.
The profile-independent components, however, are combined in a single Enterprise Application
(b2biTestToolEnterpriseApplication). These are the CommonModule, the ReceiverModule, the
web user interface b2biTestToolEnterpriseApplication-war, the ArchiveService and the Signa-
tureCreationService as depicted in figure 4.13.

The architecture of the Enterprise Application can be divided into the three layers persistency,
application and communication.

Persistency As the backend is mainly working as a message exchange system, it must be
decided whether messages should be persisted permanently or just should be kept in volatile

4http://jcp.org/en/jsr/detail?id=244

http://jcp.org/en/jsr/detail?id=244

4.3. ARCHITECTURES AND IMPLEMENTATIONS 117

Figure 4.13: Components of the backend

memory. Since the backend is just a test tool, the latter would still be appropriate. Two
reasonable arguments, however, speak in favor of the former:

1. Persisting all messages offers better test and debug support.

2. The QoS-feature non-repudiation-required needs backend functionality to persist the whole
exchange of all business documents on both sides anyway, which is implemented as the
so-called ArchiveService Web service. Thus, the implementation overhead is manageable.

The EJB module ArchiveService is the implementation of the web service Archive described in
section 4.3.4.1. The only difference is that it does not provide any WSDL interfaces, but an EJB
remote interface. It fulfills the function of a message inbox. Upon arrival of a new permissible
message, it is persisted as an unhandled message to be picked up by the user interface.

Application This layer, in particular the CommonModule, provides functions for retrieving
unhandled messages from the ArchiveService and creating and handling messages of types
Application Response, Error and Protocol Success as these are commonly used by every profile.
The MessageHandlingBean also fulfills communication duties. The SignatureCreationService
is another part of this layer. Its implementation is explained in section 4.3.4.4. For sending a
digitally signed business document the backend uses this service to create a signature.

Communication For communicating with the BPEL process there is the CommonModule
for sending business documents and other messages via the appropriate QoS-enabled WSDL

118 CHAPTER 4. DESIGN AND IMPLEMENTATION

port and the ReceiverModule which provides WSDL ports for the BPEL process to send its
messages to. For a detailed description of the message flow see 4.3.3.2.

Communication with the user is realized as a web application based on Java Server Pages (JSP)
and the Java Server Faces (JSF) framework. Developing a stand-alone desktop application was
discarded in favor of a web-based user interface because of application distribution benefits
and good development support by the NetBeans IDE. Navigating through the application is
intuitive: On the start page the user selects the NES profile and on the next page she selects
her role (Customer or Supplier). Then, she can see a list with all unhandled messages and
a button for starting a new process in case the role allows it. Handling a message takes the
user to the DetailView page with content that depends on the selected message type. Each
JSP or JSPF is connected to a backing bean which contains the server-side code. This bean
implements life cycle methods defined by the JSF API, e.g., prerender() to update data-bound
web controls before rendering takes place. Session handling is done via the SessionBeanWeb. It
extends the AbstractSessionBean, also part of the JSF API, to support easy session scope data
handling. It contains properties to represent cached data that should be made available across
multiple HTTP requests for an individual user. It administers the data provider for the table of
unhandled messages in ActiveProcesses. Also, it saves the selected role, profile, message handle
and active view. To send a business document, the user needs to go to the detail view of the
message type READY TO RECEIVE X (with X being the business document to send; note
that READY TO RECEIVE means the BPEL process is ready to receive the message from
the backend and subsequently send it to the partner process). Here she can choose from a list
of dummy documents and the QoS attributes she wants to enable: transient, persistent and/or
signing the message.

Libraries As mentioned earlier, the NES derivations of the UBL business documents have
different content in the same namespace. Considering this, there is a library with JAXB gener-
ated code for each profile as depicted on the bottom-right of figure 4.13. The CommonUBL and
StandardMessage libraries also belong to the category of generated code. While CommonUBL
holds the APPLICATION RESPONSE message type and other commonly used definitions,
the content of the StandardMessage library was generated from the StandardMessageType.xsd
with the MetaBlock.xsd designed for this project. For communicating with the user interface, a
library with Data Transfer Objects (DTO) was created to represent the minimum information
about the messages and business documents needed using simple Java data types as members.
The BeanInterfaces are the EJB remote interfaces needed by other beans (see next paragraph).

Interfaces Figure 4.14 shows how the EJBs are interconnected. When a message arrives,
the ReceiverModule sends it to the MessageDelegateBean of the appropriate profile module
(the profile of the message is indicated in the MetaBlock). There, the message is checked and
handed over to the CommonModule for persisting it. When a message is sent by the user, it is
checked and marshaled in the ClientHandlerBean of its profile module and handed over to the
CommonModule which sends the message via its references to the process’s WSDL port.

4.3. ARCHITECTURES AND IMPLEMENTATIONS 119

Figure 4.14: Interfaces between components of the backend

4.3.3.2 Architecture and Implementation of the Profile Handlers

Together with the Enterprise Application b2biTestToolEnterpriseApplication, the eight EJB
modules for handling the profiles form the backend system.

The message flow of a message is shown in figure 4.15, as an example for the role
”
Customer“

in profile 3. In this profile (
”
Basic Order only“) the customer starts the process. By sending

the first message, a UUID REQUEST, the BPEL engine starts a new process instance. This
process requests a new UUID from the appropriate web service (see 4.3.4.6) and distributes it to
the customer and supplier, the UUID RESPONSE. Next a READY TO RECEIVE ORDER
arrives, which signals that the process is ready to receive the business document of type

”
Order“.

By handling this message the user selects a dummy order from a list and sends it with the
selected QoS options. The QoS selection must exactly match the QoS attributes the BPEL
process was generated with.

Each profile handler module has a dummy content generator for creating test content for the
profile-specific business documents. For example, an order is filled with order lines and random
prices, an issue date, the sender host name etc.

Before sending and after receiving a message, a state machine checks the message type against
the current process state. This is done to prevent wrong system states due to transfer errors
that are common in distributed systems such as overtaking messages. If a received message is
not allowed, it will be put into a Java Message Service (JMS) queue as a JMS ObjectMessage
(this is done in the ReceiverModule). After receiving the next message, the queue is checked for
waiting messages. If there is a permissible message for this process instance, it will be saved, if
not, it will be put into the queue again until its maximum retry count is reached.

120 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.15: Message flow between backend and control process

State machine In order to implement a state machine in Java, the
”
State“ pattern, cf.

[EGV04] pp. 305-313, offers an elegant solution. Figure 4.16 illustrates the pattern in a UML
class diagram: The abstract State class provides all state transition methods implemented sim-
ply by throwing a MessageNotAllowedException. Concrete state classes extend this abstract
class and override only the methods that represent allowed transitions in this state. These
overridden methods change the state to the next. If a method is called that is not overridden
by the current state, the code from the abstract class is executed which throws the mentioned
exception. A StateMachine class holds a reference to the current state and realizes the mapping
of message types to state transitions. The JEE Application Server environment allows for an
easy way to persist the state for a process instance: Each state is a Java Persistence API (JPA)
entity. The abstract state class defines the table and differentiates between the current extend-
ing state via the @DiscriminatorColumn annotation (see listing 4.24) which automatically uses
the name of the class and puts it in the STATE column. As the primary key of this table the
process’s UUID is specified.

Listing 4.24: JPA annotation at the abstract State class

1 @Entity
2 @Table (name = ” S t a t e s P r o f i l e 3 ”)
3 @DiscriminatorColumn (name = ”STATE” , d i scr iminatorType =

Discr iminatorType .STRING, l ength = 100)
4 public abstract class StateEnt i ty implements S e r i a l i z a b l e {
5 . . .
6 }

4.3. ARCHITECTURES AND IMPLEMENTATIONS 121

Figure 4.16: Implementation of the
”
State“ pattern

After the Supplier responded to the ORDER with an APPLICATION RESPONSE, the BPEL
process sends a PROTOCOL SUCCESS which indicates that no protocol failure occurred.
The content of the APPLICATION RESPONSE message tells whether the outcome of this
collaboration was a business success or failure. With this last message the process instance is
terminated. For another illustration of the state machine see the state graph (figure 4.17) for
the customer of profile 3.

122 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.17: Customer’s state graph of NES profile 3

4.3. ARCHITECTURES AND IMPLEMENTATIONS 123

4.3.4 Web Service Architectures and Implementations

Every Web service that processes business documents has four WSDL interfaces to offer dif-
ferent security related QoS-Features which are realized by WS-Security or SSL. For a detailed
introduction to the used WSDL interfaces, see section 4.2.4. These four WSDL Interfaces for
the security-QoS-Features are:

• NoQos

• SSL

• WS-Security

• WS-Security and SSL

Figure 4.18: The four WSDL Interfaces to guarantee a SSL connection and WS-Security

All WSDL interfaces of one service refer to the same EJB stateless session bean which im-
plements the business logic directly or prepares and delegates the Web service call for further
processing. Full SSL and WS-Security support can be configured for the following Web services:

• Archive

• ExpressionEvaluation

• SchematronValidation

• SignatureCreation

• SignatureCheck

• XSDValidation

124 CHAPTER 4. DESIGN AND IMPLEMENTATION

For Web services that do not handle any business documents, namely the Web services “Autho-
rizationCheck” and “UUID”, comparable SSL or WS-Security support is not available, although
this might be required depending in some projects. Technically speaking, implementing such
support is not more complex than realizing security related QoS features for Web services that
do exchange business documents.

All Web services are implemented as Enterprise Java Bean 3.0 modules which is a server-
side component framework for modular construction of enterprise applications. The major
advantage of the EJB concept is the strict separation of the EJB component and its runtime-
environment, i.e., the container (the server). The container is responsible for providing a secure,
transactional and distributed environment in which the Enterprise Java Beans can be executed.

Resources needed by a bean are communicated to the container by deployment annotations
in the according bean. Such annotations are used, among other things, to instantiate other
Enterprise Beans, create Web services on a stateless session bean basis or to use a persistence
unit. In contrast to EJB 2.1, the EJB 3.0 specification uses the Java Persistence API (JPA)5

which offers a very comfortable way of persisting plain old java objects (POJOs) which are
annotated as Entities. The JPA provides an object-relational mapping and employs concepts
also used in popular object-relational mapping frameworks like Hibernate6.

The container also cares for EJB lifecycle-management: Creating and destroying bean instances
or passivating and activating session beans.

4.3.4.1 Web Service: Archive

This Web service has the task of archiving and retrieving the business documents which are
transmitted during the course of a business profile. Storage and retrieval of these messages can
be seen as a means to ensure non-repudiation requirements.

Technically speaking, the Web service receives a message of type “StandardMessageType”.
Encapsulated in this message is the business document as well as meta data. The message
is taken completely as is and being written (marshaled) to disk. Meta data such as the profile
number, a unique message identifier and other information is written to a database table along
with the filename of the archived message. In order to retrieve the archived messages the
Archive Web service provides different methods to either retrieve a single specific message or a
set of messages which belong to a collaboration instance.

There is also a method which permits to set the status of a message. The status indicates
whether the message has been further processed or not.

This Web service comprises the following Enterprise Java Beans: The ArchivatorBean which
provides all methods for marshaling or unmarshaling as well as functionality that inserts or
updates database records when appropriate. The MessageDataBean which provides entities
that contain a number of variables needed to properly marshal and unmarshal a given mes-

5http://jcp.org/en/jsr/detail?id=220
6http://www.hibernate.org/

http://jcp.org/en/jsr/detail?id=220
http://www.hibernate.org/

4.3. ARCHITECTURES AND IMPLEMENTATIONS 125

sage. During the course of the archive operation these entities are written to or read from the
database table. Finally, the WSArchiveBean which is a stateless Web service wrapper bean
which does nothing more than call the ArchivatorBean’s methods with the appropriate number
of parameters and then returns the responses.

The operation of the archive service is as follows: Usually, the WSArchiveBean is being called
along with a function name and parameters. The WSArchiveBean dispatches the method call to
the corresponding method in the ArchivatorBean. Depending on the type of method called the
arguments have to be an object of type StandardMessageType (for the purpose of marshaling
to disk) or a combination of the variables declared in the MessageDataBean (this is the case
when messages are to be retrieved from disk).

When archival of a message is specified the method archiveMessage is called. First, a unique
filename is established, an output stream is set up and the message is written to the file. Second,
the meta information from the message header and the filename that was established earlier
are written to an object of type MessageData. This object is then stored in the database table.

When a single message is to be retrieved, the parameters uuid, rolenameID, recursionCount
and messageID need to be supplied. Basically, these values are matched within the database
table and the corresponding filename of the stored message is looked up. A new object of type
StandardMessageType is created and the contents of the file are unmarshaled to this object.
Finally the object is returned.

When multiple messages are to be retrieved, only uuid, rolenameID and recursionCount need
to be specified since this is enough to identify the amount of messages specified. The process is
the same as described above except that a list of type StandardMessageType with the number
of messages found is returned.

When messages for a certain profile are requested, the number of parameters have to be role-
nameID, profileID and status. This method returns a list of type StandardMessageType with
all messages of a given profile that have a particular status.

When messages that have a particular status are requested, the number of parameters have to
be a uuid and the desired status. This returns a list of type StandardMessageType containing
the number of messages found. When a status change is desired the method setStatus has to
be called with the parameters uuid, rolenameID, recursionCount and messageID. The status
of the corresponding message is altered and set to true. Backend methods use the status to
determine whether the particular message has been processed or not.

4.3.4.2 Web Service: AuthorizationCheck

This Web service provides a method to check the authorization of a person, organization or
system (hereafter just called “user”) identified by a name. For an authorization checkfor an
action, e.g., sending an invoice in a certain profile, it is also necessary to get information about
the document type and the NES profile in which the document type is sent (only both guarantee
a unique identification of the action the user wants to perform). All in all, in order to check the

126 CHAPTER 4. DESIGN AND IMPLEMENTATION

authorization of a user to perform a certain action a 3-Tuple of information with user name,
sent document type and NES profile id is needed.

The MetaBlock already provides information about the document type sent and the NES profile,
so this part of the originally received business document can be used for the authorization check
request message. Additionally, a string with the name of the user is needed. For this reason, the
StandardMessagePlusString (defined in file standardMessagePlusString.xsd) message type
is used as input message to the AuthorizationCheck Web service.

The Web service interface receives this message and hands it over to the managing stateless
session bean which checks the authorization information with the aid of a database. If a value
that fits the requesting data is contained in the database the return value will be true, else it
will be false.

In order to clarify the association between request and response the MetaBlock must be added
to the return value. For this reason the return type is StandardMessagePlusBoolean which
contains a boolean besides the MetaBlock.

The central bean of this Web service is the AuthorizationManagerBean which not only imple-
ments the logic for checking authorization but also contains functionality for adding and deleting
authorization entries of users. All methods of this bean expect string arguments only, but the
BPEL2ServiceAuthorizationCheckNoQosService, which is called by the BPEL process, needs
to offer XML messages as input. Thus, another stateless session bean (AuthorizationCheckBean)
is needed to extract the required information and redirect it to the AuthorizationManager-

Bean.

The AuthorizationManagerBean also persists the authorization information for every user
and profile as AuthorizationEntity. This AuthorizationEntity is annotated as Entity and
persisted using JPA functionality.

4.3.4.3 Web Service: SchematronValidation

The SchematronValidation service implements semantics validation of the different NES profile
business documents. Schematron7 is an XML dialect for defining assertions about relations
between XML elements of an XML document. Each NES profile has its own Schematron files
which are used to check the business documents received by this web service. Therefore, a
different check depending on the profile and the message type has to be executed.

The Schematron .sch files are transformed step by step until the final result is a style sheet
against which the body part of the Standard Message (which contains the business document)
is validated. The resulting XML file contains a report of the validation process along with error
and success messages. This file has to be processed to see if there were errors or not. The end
result is sent back to the calling service to inform about the success or failure of the validation.

The Schematron Validation Service has not yet been implemented. Generally it would take an

7http://www.schematron.com/

http://www.schematron.com/

4.3. ARCHITECTURES AND IMPLEMENTATIONS 127

object of type StandardMessageType as an argument. First of all the message’s meta block has
to be searched for the profile name and number in order to produce the right style sheet for
validation. Once this has been done the profile’s schematron file is processed and the output
is a style sheet against which the business document contained within the message body can
be validated. The validation result again is an .xml file containing the result of the validation
process. This file has to be scanned for any errors that might have been encountered.

Figure 4.19: The Schematroll, mascot of Schematron

4.3.4.4 Web Service: SignatureCreation

In order to create a signature for an XML document the following standard procedure is nec-
essary:

1. Create a key pair consisting of private and public key

2. Create an XML Signature using the private key [ERS+08]

3. Sign the XML Document with the signature and the private key.

This procedure is reflected in the architecture of the SignatureCreation Web service. A Sig-
natureManager accepts the Web service call with a SignatureCreationRequestMessage. This
special message contains, besides the MetaBlock and the common body of a message, the signers
name (see signatureCreationRequestMessage.xsd). This additional information is needed
to load the signer’s key pair from the database or to create a new key pair for this signer if
there is no key pair existent. The return type of this method is a StandardMessage which has
exactly the body and the MetaBlock the SignatureCreationRequestMessage supplies except for
the added Signature in the MetaBlock.

The Web service call is delegated from the SignatureManager to the DocumentSigner, which
adds the XML Signature created by the SignatureCreater based on the XML document and

128 CHAPTER 4. DESIGN AND IMPLEMENTATION

puts this signature at the correct place in the MetaBlock. Besides the signature, the private
key of the signer is needed in order to sign the document correctly.

The SignatureCreater controls the creation of the signature which needs information about the
private key, the signature algorithm and others.

The needed keys for the signing procedure are delivered by the KeyGenerator which either
generates and stores the generated keys in case there are no keys for the signer or loads the
keys of the signer from the database. Figure 4.20 visualizes the architecture of this Web service.

Figure 4.20: The SignatureCreation Web service, visualized as UML class diagram

In addition to the presented proceeding of creating a signature, there is one problem concerning
the SOAP protocol and the BPEL engine. Both alter the XML namespace declarations of the
submitted XML document which makes the document unusable for correct signature validation.
Thus, it is necessary to introduce a mechanism ensuring the identical appearance before and
after the transmission of the document. However, the XML documents used in this project use
numerous XML namespaces which might be reordered or rewritten when transmitting them via
SOAP. This is the reason why the mechanism of a namespace normalizer has to be introduced.
This normalizer deletes every namespace prefix from the document and puts the namespace
declarations into the tag in which they are needed. In addition to the normalization, the
documents need to be serialized to the file system and de-serialized again because of a bug in
JAXB which reconstructs the original document only after storing it to the file system. Thus,
this Web service needs writing permission to a local device, and the standard configuration uses
drive d: for this purpose. This mechanism works at the SignatureCreation as well as at the
SignatureCheck side and makes XML documents amenable to validation.

4.3. ARCHITECTURES AND IMPLEMENTATIONS 129

4.3.4.5 Web Service: SignatureCheck

The SignatureCheck Web service realizes a validation mechanism for XML signatures. There-
fore, the SignatureCheck Web service extracts the signature node form the MetaBlock of the
incoming StandardMessage, retrieves the public key of the signer from this XML signature and
performs an XML signature check. The result of this check is returned as StandardMessage-
PlusBoolean which returns, in addition to the MetaBlock of the original StandardMessage, a
boolean that indicates whether the check of the signature was successful (true) or not(false).

4.3.4.6 Web Service: UUID

The UUID Web service provides a Standard Message with an immutable universally unique
identifier (UUID) which represents a 128-bit value. This value is inserted at the appropriate
position in the MetaBlock. The Standard Message, which then has a UUID, is sent back as
return value.

The UUID Web service is implemented as a single stateless session bean using the UUID class
of the Java API. This implementation provides a static method randomUUID() which creates a
pseudo randomly generated UUID by using a cryptographically strong pseudo random number
generator. This UUID is inserted as a string into the <UUID> tag of the MetaBlock.

4.3.4.7 Web Service: XPathEvaluation

The XPathEvaluation (or ExpressionEvaluation) Web service does not realize any QoS-Features,
but is necessary for every BPEL process that contains a decision. Every business document may
contain entries which affect the further execution of the BPEL process. For example, an entry
”false“ at the field ”AcceptedIndicator“ in an OrderResponseSimple message can terminate the
process or, if it is set to ”true“, the process can proceed.

As required by ebBP, this Web service is designed to evaluate expressions of eight different
expression languages. An ExpressionEvaluationRequestMessage is expected as argument and
the message’s expression is passed on to the managing class for the respective language. Due to
time constraints, the only supported expression languages are XPath1 and XPath2. The return
value is a StandardMessagePlusBoolean which contains the MetaBlock and the boolean value
of the evaluated expression.

The incoming message contains, as every message does, the MetaBlock as well as a body. In
addition, this message type contains two tags to capture the expression to evaluate and the
expression language of the expression. The expression language will be identified by the Expres-
sionEvaluator which hands over the expression to the corresponding evaluator of the determined
expression language. This expression evaluator will evaluate the expression and return a boolean
value or an exception. This boolean value is wrapped in a StandardMessagePlusBoolean. In
case of an exception, the exception will be re-thrown.

130 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3.4.8 Web Service: XSDValidation

The XSD validation service has a task quite similar to the Schematron validation service.
The business document is validated against its .xsd file for checking conformance to its schema
definition, i.e., whether all necessary elements and attributes exist and whether only permissible
elements and attributes are contained. The result of the validation is sent back to the calling
service.

The XSD validation service has not yet been implemented. Its functionality is similar to
the Schematron Validation Service. It takes an object of type StandardMessageType as an
argument. The business document contained within the message body needs to be cast to a
separate object of the same type as the business message before the validation can be done.
XSD validation may be accomplished using JAXP (Java API for XML Processing). A JAXP
implementation is available standalone, e.g., Xerces8 , but is also already included within Java
SE. A SAXParserFactory object needs to be instantiated in order to validate a message. This
instance will receive the schema to validate against. Then a new parser object is generated from
the parser factory and finally, the business message can be parsed and simultaneously validated
with the parse() method invoked on the parser object.

8http://xerces.apache.org/

http://xerces.apache.org/

Chapter 5

Related Work

There have been other studies in the field of mapping higher level languages to BPEL concerning
the choreography to orchestration translation and vice versa. The following approaches are
discussed and compared with this technical report.

• RosettaNet PIP Compositions to BPEL

• ebXML BPSS to BPEL

• WS-CDL to BPEL

• BPMN to BPEL

• BPEL to ebXML BPSS

RosettaNet PIP to BPEL: Andreas Schönberger, Guido Wirtz: “Realising Roset-
taNet PIP Compositions as Web Service Orchestrations - A Case Study” and An-
dreas Schönberger: “Modeling and Validating Business Collaborations: A Case
Study on RosettaNet” In [SW06] and in the technical report [Sch06] the authors describe
an B2Bi approach using RosettaNet Partner Interface Processes (PIPs).

RosettaNet is a non-profit organization with more than 500 members by now. The main target
of RosettaNet is the support for electronic business-2-business exchange. The core of Roset-
taNet are Partner Interface Processes (PIPs). Each PIP describes how processes of two different
partners can be integrated1. The different PIPs are organized in clusters which are divided into
segments. For example, the cluster “Inventory Management” consists of five segments. A seg-
ment in this cluster is “Inventory Allocation” which includes the PIP “Notify of Consumption”.

These PIPs can be combined to larger processes. The authors suggest to model these compo-
sitions in two steps: The first step is to model the business logic in a “centralized perspective”

1See: http://www.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/
ClustersSegmentsPIPsOverview_10Oct2008.pdf

131

http://www.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_10Oct2008.pdf
http://www.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_10Oct2008.pdf

132 CHAPTER 5. RELATED WORK

(CP) and then take a look at the more technical side by modeling a “distributed perspective”
(DP) which concentrates on the distributed implementation. The CP is modeled using a UML
activity diagram while the DP is modeled using BPEL processes. This separation in two layers
- an overall choreography and a more technical orchestration, which is executable, can be found
in this case study as well.

The clearest contrast between the papers [SW06] and [Sch06] to this work is that for modeling
the choreography two different standards are used (UML vs. ebBP). Moreover, the focus in
the discussed papers is generally put on modeling the two different perspectives and checking
these models automatically. In contrast to this, in our case study the focus is on the automated
translation of a given choreography to executable BPEL processes (and respecting QoS aspects).

ebXML BPSS to BPEL: Ja-Hee Kim, Christian Huemer: “From an ebXML BPSS
choreography to a BPEL-based implementation” In a first step, the paper [KH04]
shows that the technologies BPEL/Web service and ebBP can coexist. Therefore, the following
approach is proposed: Each party is searching for a Business Process Specification in a registry.
With this as input, the company is implementing a BPEL process for the role, it plans to
perform within this business process. Next, it describes its technical capabilities using ebXML’s
CPP and registers its profile together with the role it can perform within the referenced ebBP.
Another party then can search and find matching business partners. After they agree upon
technical details, they do business using the BPEL processes and their interfaces.

In a second step, the paper shows an approach for transformation from BPSS (version 1.1) to
BPEL. The approach proposes to create a BPEL process for each Business Transaction of the
BPSS. This is done for ensuring modular architecture and better reusability of the Business
Transactions. For complex collaborations, the paper proposes to base the transformation on
well known work flow patterns proposed in Distributed and Parallel Databases2.

Transformation of theses patterns can be done quite simply, if both, BPSS and BPEL, support
them. If BPEL does not support these patterns, the transformation can use work-arounds also
proposed by Van der Aalst. For mapping QoS attributes of the BPSS, the paper proposes three
possible strategies: direct mapping to BPEL attributes, reflection by the process structure and
usage of other standards like WS-Security.

The general approach of the paper is similar to this use case. ebBP is chosen for modeling the
choreography and BPEL is chosen for modeling the orchestrations but in this work the ebBP
version 2.0 is used. The transformation concept differs because this work builds BPEL processes
based on Business Collaborations and not based on Business Transactions. The transformation
of this use case is not based on well known work flow patterns, instead, own transformation
constructs are designed. [KH04] do not offer formal transformation rules and do not describe
their translation approach in detail, but some transformations of BPSS constructs are similar
to the mapping constructs described in the work at hand.

For the mapping of QoS attributes, the paper proposes three general realization strategies that

2Van der Aalst, A., ter Hofstede, A. T., Kiepuszewski, B., and Barros, A. 2003. Workflow patterns. Dis-
tributed and Parallel Databases 14, 5 - 51

133

are also identified in this work. But [KH04] only enumerate possible realizations, e.g., the usage
of WS-Security and do not state whether the strategies work on a concrete platform. This work
offers a realization strategy for each QoS attribute of ebBP and shows that these strategies
work based on the GlassFish Platform.

WS-CDL to BPEL: Jan Mendling, Michael Hahr: “From WS-CDL choreography
to BPEL process orchestration” Since ebBP defines a choreography between business
parties, the Web Services Choreography Description Language (WS-CDL) is an alternative to
it. In [MH06], WS-CDL is used to describe the choreography of collaborating participants and
BPEL, to describe the behavior of a participant in this choreography. [MH06] propose the
automated BPEL process generation from WS-CDL using XSLT3 transformations. Instead of
using NES profiles, [MH06] combine a use case and certain interaction patterns as an example
of a choreography. Compared with ebBP, WS-CDL is technologically more closely related to
Web services, while ebBP focuses the business part, especially business related QoS features.
Considering that, Mendling’s derivation is technically oriented towards the mapping of WS-
CDL constructs to BPEL. This work takes the transformation a step further to get closer to
real-life business needs, in particular security features.

WS-CDL to BPEL: Ingo Weber, Jochen Haller, Jutta A. Mülle: “Automated
derivation of executable business processes from choreographies in virtual organi-
zations” Similarly to [MH06], [WHM06] use WS-CDL as a basis to create executable BPEL
processes. They take a different approach by utilizing a knowledge base to fill the gap between
the local and global collaboration perspective. This is used for identifying parts of the chore-
ography in WS-CDL which cannot be translated to BPEL directly. In this report the ebBP
transformation was realized using mapping constructs as described in section 4.1.1.1. The re-
striction to binary relations in ebBP pointed out by [WHM06] are not applicable anymore in
version 2.0 of the ebBP specification. Although this work only considers binary collaborations,
as defined in the NES profiles, it is theoretically possible to have multi-party collaborations.
Also, [WHM06] do not show the realization of QoS features which is one of the main goals of
this contribution.

ebXML BPSS to BPEL: Bahareh Rahmanzadeh Heravi, Mohammadreza Razzazi:
“Utilizing WS-BPEL business processes through ebXML BPSS” This paper [HR07]
proposes an approach which is oppositional to the general approach of our use case. The aim is
to model ebBP Business Collaborations that mimic the behavior and the characteristics of WS-
BPEL processes. WS-BPEL as the de facto standard for processes at the level of Web services
orchestration should be utilized by the B2B framework of ebXML. Therefor, registration and
search of business processes is proposed to be based on ebBP. The execution should then be
based on the WS-BPEL processes represented by the ebBP.

Although the direction of transformation is oppositional, there are some similarities between
[HR07] and the work at hand. Both base the mapping of BPEL processes on Business Col-

3http://www.w3.org/TR/xslt20/

http://www.w3.org/TR/xslt20/

134 CHAPTER 5. RELATED WORK

laborations. This means, each BPEL process is mapped to a ebBP Business Collaboration or
vice versa. Mappings at lower levels are not comparable. This could be because of the different
directions of the mapping.

The aim of [HR07] is to use the registry functionality of the ebXML framework. Such registry
functionality is not considered in the work at hand, but constitutes a sensible extension point.
Furthermore, [HR07] do not regard the realization and implementation of QoS features and
attributes. Finally, a major difference is the intended use of ebBP models. In the work at
hand, ebBP is used for describing choreographies, while in [HR07] it is rather used as an
orchestration representation for using registry functionality.

Chapter 6

Conclusion and Future Work

This technical report contributes by showing the feasibility of mapping the high-level ebXML
language ebBP to the executable BPEL markup. Particular attention has been paid to the QoS
attributes defined in ebBP. These are realized with several WS-* standards, BPEL constructs
and self-implemented Web services. A working prototype developed for this report proves the
concept.

As mentioned initially, Quality of Service, i.e., the reliable, secure, non-manipulable, undeniable
transmission of business documents, is essential for electronic Business-2-Business-Integration.
The implemented NES business case profiles show that real-life scenarios are realizable with
existing standards. Considering the experiences of this project, a full-featured product could
be created from this prototype with manageable effort. However, since many of the used
technologies are cutting-edge (some needed patches of the GlassFish Application Server were
published at the end of the implementation phase), further development work is needed in this
area to make the development of tools such as this project’s prototype more convenient.

In near-future terms, the NES profiles with recursion should be fully tested and completely
operational Web services for XSD and Schematron validation should be implemented which
can be done in a timely fashion because most of the work is already done. The next step then
would be to support not only binary collaborations and a broader range of ebBP constructs, in
particular Fork or Join.

In the far future, the automated lookup and integration of business partners, from automatically
generated business conditions to the execution of business transactions, is a desirable goal. Some
of this functionality is already envisaged in the ebXML framework which should be reused
accordingly.

135

Bibliography

[ACC+02] Selim Aissi, Arvola Chan, James Bryce Clark, David Fischer, Tony Fletcher, Brian
Hayes, Neelakantan Kartha, Kevin Liu, Pallavi Malu, Dale Moberg, Himagiri Mukka-
mala, Peter Ogden, Marty Sachs, Yukinori Saito, David Smiley, Tony Weida, Pete
Wenzel, and Jean Zheng. Collaboration-protocol profile and agreement specification
version 2.0. Technical report, OASIS ebXML Collaboration Protocol Profile and
Agreement Technical Committee, 2002.

[BBB+02] Ralph Berwanger, Dick Brooks, Doug Bunting, David Burdett, Zrvola Chan, Sanjay
Cherian, Cliff Collins, Philippe DeSmedt, Colleen Evans, Chris Ferris, David Fischer,
Jim Galvin, Brian Gibb, Scott Hinkelman, Jim Hughes, Kazunori Iwasa, Ian Jones,
Brad Lund, Bob Miller, Dale Moberg, Himagiri Mukkamala, Bruce Pedretti, Yukinori
Saito, Martin Sachs, Jeff Turpin, Aynur Unal, Cedrec Vessell, Daniel Weinreb, Pete
Wenzel, Prasad Yendluri, and Sinisa Zimek. Message service specification version 2.0.
Technical report, OASIS ebXML Messaging Services Technical Committee, 2002.

[BCC+02] Kathryn Breininger, Lisa Carnahan, Joseph M. Chiusano, Suresh Damodaran, Mike
DeNicola, Anne Fischer, Sally Fuger Jong Kim, Kyu-Chul Lee, Joel Munter, Farrukh
Najmi, Joel Neu, Sanjay Patil, Neal Smith, Nikola Stojanovic, Prasad Yendluri, and
Yutaka Yoshida. Oasis/ebxml registry services specification v2.0. Technical report,
OASIS/ebXML Registry Technical Committee, 2002.

[BCvR03] Tom Bellwood, Luc Clément, and Claus von Riegen. UDDI Spec Technical Commit-
tee Specification. OASIS, 3.0.1 edition, 10 2003.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web services architecture. Standard, W3C World
Wide Web Consortium, http://www.w3.org/TR/ws-arch/, November 2004. Visited
on October 30th 2008.

[CCMW02] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. World Wide Web Consortium, March 2002.

[DLS05] Glen Dobson, Russell Lock, and Ian Sommerville. Qosont: a qos ontology for service-
centric systems. In EUROMICRO ’05: Proceedings of the 31st EUROMICRO Con-
ference on Software Engineering and Advanced Applications, pages 80–87, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

136

BIBLIOGRAPHY 137

[EGV04] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison-Wesley, 2004.

[ERI+02] Donald Eastlake, Joseph Reagle, Takeshi Imamura, Blair Dillaway, and Ed Simon.
XML Encryption Syntax and Processing. W3C, December 2002.

[ERS+08] Donald Eastlake, Joseph Reagle, David Solo, Frederick Hirsch, Thomas Roessler,
Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon. XML Signa-
ture Syntax and Processing (Second Edition). W3C, June 2008.

[FPD+07] Paul Fremantle, Sanjay Patil, Doug Davis, Anish Karmarkar, Gilbert Pilz,
Steve Winkler, and Ümit Yalçinalp. Web services reliable messaging (ws-
reliablemessaging) version 1.1. Standard, Oasis Open, http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.html, June 2007. Available as
PDF, HTML and DOC, visited on December 22nd 2008.

[GHR06] Martin Gudgin, Marc Hadley, and Tony Rogers. Web Services Addressing 1.0 - Core.
W3C, May 2006.

[Gro07a] Northern European Subset Group. Nes information model architecture. Technical
report, Northern European Subset Group, 2007.

[Gro07b] Northern European Subset Group. Profile overview version 2.0. Technical report,
Northern European Subset Group, 2007.

[HR07] Bahareh Rahmanzadeh Heravi and Mohammadreza Razzazi. Utilizing ws-bpel busi-
ness processes through ebxml bpss. Technical report, Coputer Engineering and In-
formation Technology Department, Amirkabir University of Technology, Teheran,
2007.

[JEA+07] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton
Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, Alejandro Gúızar,
Neelakantan Kartha, Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin,
Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu.
Web services business process execution language version 2.0. Standard, Oasis Open,
April 2007. Visited on November 3rd 2008.

[KH04] Ja-Hee Kim and Christian Huemer. From an ebxml bpss choreography to a bpel-
based implementation. Technical report, University of Vienna and Research Studios
Austria, 2004.

[LKN+07] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Marc Goodner, Martin Gudgin,
and Abbie Barbirand Hans Granqvist. WS-Trust 1.3. OASIS, March 2007.

[MH06] Jan Mendling and Michael Hafner. From WS-CDL choreography to BPEL process
orchestration. Journal of Enterprise Information Management (JEIM). Special Issue
on MIOS Best Papers, 2006.

[Nor07] Northern European working group for development of a subset for UBL 2.0. Northern
European Subset Profiles, 2 edition, July 2007.

138 BIBLIOGRAPHY

[NRFJ07] Eric Newcomer, Ian Robinson, Max Feingold, and Ram Jeyaraman. Web services
coordination (ws-coordination) 1.1. Standard, Oasis Open, December 2007. Available
as PDF, visited on December 27th 2008.

[NRLF07] Eric Newcomer, Ian Robinson, Mark Little, and Tom Freund. Web services business
activity (ws-businessactivity) version 1.1. Standard, Oasis Open, July 2007. Available
as PDF, visited on December 27th 2008.

[NRLW07] Eric Newcomer, Ian Robinson, Mark Little, and Andrew Wilkinson. Web services
atomic transaction (ws-atomictransaction) version 1.1. Standard, Oasis Open, July
2007. Available as PDF, visited on December 27th 2008.

[OAS06] OASIS. Web Services Security v1.1, February 2006.

[OM03] Ed Ort and Bhakti Mehta. Java architecture for xml binding (jaxb), March 2003.

[OMG08] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteris-
tics and Mechanisms Specification. OMG, Object Management Group Headquarters
140 Kendrick Street Building A, Suite 300 Needham, MA 02494 USA, 1.1 edition,
April 2008.

[Sch06] Andreas Schönberger. Modelling and validating business collaborations: A case study
on rosettanet. Technical report, Universität Bamberg; Fakultät Wirtschaftsinfor-
matik und Angewandte Informatik., 2006.

[SW06] Andreas Schönberger and Guido Wirtz. Realising rosettanet pip compositions as web
service orchestrations - a case study. In Hamid R. Arabnia, editor, CSREA EEE,
pages 141–147. CSREA Press, 2006.

[VOH+07] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yend-
luri, Toufic Boubez, and Ümit Yalçinalp. Web Services Policy 1.5 - Framework. W3C,
September 2007.

[WHM06] Ingo Weber, Jochen Haller, and Jutta A. Mülle. Automated derivation of executable
business processes from choreograpies in virtual organizations. In In: F. Lehner,
H. Nösekabel, P. Kleinschmidt (eds.): Multikonferenz Wirtschaftsinformatik 2006
(MKWI 2006), Band 2, XML4BPM Track, GITO-Verlag Berlin, pages 313–327,
March 2006.

[WPA+01] James Whittle, Sue Probert, Mike Adcock, Gait Boxman, and Thomas Becker. Core
component overview version 1.05. Technical report, UN/CEFACT and OASIS, 2001.

[YWM+06] John Yunker, David Webber, Dale Moberg, Kenji Nagahashi, Stephen Green, Sacha
Schlegel, and Monica J. Martin. ebxml business process specification schema technical
specification v2.0.4. Standard, Oasis Open, December 2006. Available as PDF, visited
on November 14th 2008.

Appendix A

User Manual

A.1 Manual of the Translator

The following is a short manual for usage of the Translator and its file and folder structure.

Structure of Folders The following shows the folder structure of the sub folders of the
Translator.

• src: folder containing all sources;

• res: folder containing additional resources, necessary for the Translator;

• lib: folder for external libraries, used by the Translator;

• testfiles: folder for the ebBP files to be interpreted; for each profile, there is a sub
folder with role specific property files and the ebBP file, following the naming pattern
dsg_bamberg_profileX.xml. X is placeholder for the profile number.

• target: folder containing the created BPEL, XSD and WSDL documents; there is a sub
folder for each created profile with the name profileX if more than one profile has been
created. If only one profile has been created, there is only one sub folder. Each profile
specific sub folder contains further sub folders for customer and supplier. Each of these
role specific sub folders contains all necessary files for deployment, separated in WSDL
and BPEL files.

• dist: folder containing all necessary archives, libraries and resources for running the
Translator and the Java Doc; this folder is created and filled after running Ant.

• bin: folder for the binary classes after compiling;

139

140 APPENDIX A. USER MANUAL

Settings before Starting the Translator It is recommended not to change the program
specific properties within the res folder. The program.properties configures output and input
paths of the Translator.

The role.properties files within the testfile folders of the profiles are preconfigured. The
following logical groups of properties can be altered and set. The property files are preconfigured
and need only to be changed if services, backend or processes are running on hosts different
from the one configured in the file.

• output: specifies the output path for the generated files of the role;

• IDs: specification of the profile id, the integration party’s role id, the id of the partner
role and of the recursion;

• keystore: configuration of the keystore used by WS-Security;

• truststore: configuration of the truststore used by WS-Security;

• bpel2backend: specification of the URLs of the backend system for the different possible
QoS feature combinations; used by the BPEL process to communicate with its backend;
the naming of the properties follows the pattern bpel2backend.general.qosfeatures.url.

• backend2bpel: specification of the URLs of the BPEL process, necessary for communi-
cation from backend system to BPEL process with regard to the particular QoS feature
combination; the naming of the properties follows the pattern
backend2bpel.general.qosfeatures.url.

• bpel2bpel: specification of the URLs of the BPEL processes for communication between
the BPEL processes; the values for the own integration party’s role have to be set; for
URLs of the partner processes, please see paragraph

”
Settings after Running the Transla-

tor“; the naming of the properties follows the pattern bpel2bpel.general.qosfeatures.url.

• bpel2service: specification of the URLs of the different used Web services for all
possible QoS feature combinations; the naming of the properties follows the pattern
bpel2service.servicename.qosfeatures.url.

• other: these properties determine some miscellaneous parameters.

Starting the Translator For running the Translator, the Ant-Build-Script1 has to be exe-
cuted. The main folder of the Translator contains the build.xml file. To start the Ant-Build-
Script, go to the main folder of the Translator and run Ant. There are two options for running
it:

• ant: compiles the Translator;

• ant profileX: compiles the Translator and runs it for the specified profile. X has to be
replaced by the profile number.

1http://ant.apache.org/

A.1. MANUAL OF THE TRANSLATOR 141

The output of the Translator is put to the sub folder target.

Settings after Running the Translator After a successful ending of the generation process,
some changes have to be made to the WSDL files responsible for the communication between
the BPEL processes. These WSDL files can be identified by the name prefix BPEL2BPEL. Note
that, because of different QoS combinations, there can be multiple BPEL2BPEL WSDL files.
Listing A.1 shows the code to be changed. The role of customer has to change the host name
localhost within the soap:address location to the host name of the partner process and
vice versa. The changes have to be the same to all WSDL files of the same role. If the partner
process runs on localhost, no changes have to be made. This change is necessary, because the
Translator fills the WSDLs of each role with host name localhost.

1 ...

2 <service name="BPEL2BPELNoQosRMcb_profile3global_role_customerServiceService">

3 <port name="BPEL2BPELNoQosRMcb_profile3global_role_customerServicePort"

4 binding ="

tns:BPEL2BPELNoQosRMcb_profile3global_role_customerServiceBinding">

5 <soap:address location="http:// localhost:50002/

BPEL2BPELNoQosRMServiceService/BPEL2BPELNoQosRMService"/>

6 </port>

7 </service >

8 ...

Listing A.1: Extract of the WSDL file to be changed

Composite Application and Deployment In order to deploy the processes the files for
each role have to be packed into one BPEL module and then added to a JBI Composite
Application for each role2. The so created Composite Applications can then be deployed on a
GlassFish Application Server; the two Composite Applications have to be deployed on different
servers.

2More information about how to generate BPEL modules and Composite Applications with NetBeans IDE
can be found in the “SOA Application Learning Trail” of NetBeans at http://www.netbeans.org/kb/trails/
soa.html

http://www.netbeans.org/kb/trails/soa.html
http://www.netbeans.org/kb/trails/soa.html

142 APPENDIX A. USER MANUAL

A.2 Manual of the Backend System

GlassFish Configuration After installation and before the dummy backend can be de-
ployed, some configuration of the GlassFish Application Server has to be done. The following
list contains all important tasks to enable GlassFish to run the backend system:

• Enabling SSL: To enable SSL for Web service communication see the Java EE 5 Tuto-
rial.3

• Enabling Log4j: Log4j is used as logging tool within the system. In order to enable
Log4j for GlassFish an up-to-date Log4j Jar and a Log4j property file has to be referenced
in the “Path settings” of GlassFish. To change the “Path Settings” use the Admin Console
of GlassFish; the required settings can be found in the in the tab “JVM Settings”. To
enable Log4j the absolute path to the jar file has to be entered in the text box “System
Classpath”, e.g., “D:\glassfish\domains\domain1\lib\”. If the Log4j property file also
is in the same path you are done; if not it is necessary to add this path as well. An example
of a preconfigured Log4j configuration file can be found within the project distribution.

• JMS Queue creation: A JMS Queue is needed for temporarily storing messages. First
create a“Physical Destination” in“Configuration” -“Java Message Service”with any name
and type “javax.jms.Queue”. Then go to “Resources” - “JMS Resources” - “Destination
Resources” and create a new JMS resource with the name “jms/pi3b2biWaitingMessages
Queue” using the physical destination you just created and the type “javax.jms.Queue”.
Finally, go to “JMS Resources” - “Connection Factories” and create a connection factory
with the name “jms/pi3b2biCF” and type “javax.jms.QueueConnectionFactory”.

• JDBC Pool configuration: As mentioned above the backend system needs a database
to save some information. This database has to be registered in GlassFish. The required
settings have to be done under the path “Resources” - “JDBC” - “JDBC Resources”.
Create a new JDBC resource there with JNDI-Name “jdbc/sample”. If no DB pool
already exists, a pool has to be created first.

• Web service property file: Furthermore the file webservice.properties has to be
referenced by the server system classpath - therefore the same procedure as for “Enabling
Log4j” has to be done. The file webservice.properties contains the addresses of all
needed Web services. These Web services are the SignatureCreation service and the profile
specific addresses of the BPEL processes. For each profile four Web service addresses
are needed to cover the four possible QoS combinations which are realized with WS-*
standards. The default addresses reference BPEL processes deployed at the localhost.
Also, there is a variable named “jms.maxRetryCount” which sets the maximum number
a message should be tried to deliver to the backend’s state machine.

Deployment The backend system needs to be deployed on two different hosts; both config-
ured as described above. Before running the application the needed BPEL processes and the

3Available at: http://java.sun.com/javaee/5/docs/tutorial/doc/bnbxw.html

http://java.sun.com/javaee/5/docs/tutorial/doc/bnbxw.html

A.2. MANUAL OF THE BACKEND SYSTEM 143

QoS realizing Web services have to be installed. See sections A.1 and A.3 for information on
how to achieve this.

Usage of the Backend System The backend system is generic for all profiles and roles -
so first you have to choose which profile should be tested (See Fig. A.1). In the next step
the performing role is determined (See Fig. A.2). Depending on this decisions you are able
to start a new process or not. In each profile only one role is able to initiate a new process.
For example, in profile 3 “Basic Order Only” a customer sends an order to a supplier. Hence,
the customer begins the process. After clicking the button “Start new process” a message is
sent to the corresponding BPEL process which then controls the process by sending messages
or requests of messages (“ReadyToReceiveXXX”) to the backend. Simply “handle” all incoming
messages in the order they appear at the web interface. The message overview screen is shown
in figure A.3.

The backend system does not know which QoS features are actually accepted by
the BPEL processes for incoming messages. Thus, the user must know which QoS-
Features are activated and must therefore activate the right options while sending
a business document such as an order or an invoice.

Logging the Exchanged Messages To see the different QoS realizations in action it is
possible to trace the exchanged messages using various possibilities. One possibility is to enable
the Web service monitoring feature of GlassFish. This is useful to see the incoming message
for the QoS features which are realized by Web services. To enable monitoring click on the
menu item “Web Services” and choose the Web service you want to monitor by clicking on the
service name. Click“Monitor”and enable the monitoring under the tab“Configuration”. There,
set the Monitoring level to “HIGH”. The logged message can be found in the Tab “Messages”.
Unfortunately the messages do not contain any of the WS-* information, e.g., a WS-Security
header because the logging is on a too high level of the service stack. To see this information,
logging on the network layer is needed. For logging on the network layer various tools such as
TCPmon4 and Wireshark5 exist.

4Available at: https://tcpmon.dev.java.net/
5Available at: http://www.wireshark.org/

https://tcpmon.dev.java.net/
http://www.wireshark.org/

144 APPENDIX A. USER MANUAL

Figure A.1: Start page of the backend system

A.2. MANUAL OF THE BACKEND SYSTEM 145

Figure A.2: Selection of the performing role

146 APPENDIX A. USER MANUAL

Figure A.3: Screen showing the pending messages

A.3. MANUAL OF THE WEB SERVICES 147

A.3 Manual of the Web services

Building the Web services Each Web service includes an Ant build file which generates a
deployable .jar file in the folder dist of the according Web service. To build a Web service,
check the path of the GlassFish server in the build.xml and alter this path if necessary.
Afterwards, execute Ant in the directory of the Web service to be built by typing in ant in the
root directory of a Web service. This procedure is the same for every Web service.

Deploying the Web services The deployment is also almost the same for every Web service.
Deploy the .jar file of the Web service to be deployed to GlassFish. This .jar file is located
in the folder dist of the Web service root folder.

Configuration of the Web services Most of the required Web services work without con-
figuration, however the AuthorizationCheck Web service as well as the two Signature Web
services need some configuration.

For AuthorizationCheck Web service authorizations users have to be added. Therefor, open the
User2ServiceAuthorizationManagementNoQosService, use the method addOperation and
type in the user name in the first field, the profile id in the second field and the operation in the
third field. By using the keyword “all” for the operation field the specified user gets any rights
in the specified profile. In order to cancel authorizations, use the method deleteOperation,
which works exactly like addOperation, only the other way round.

Both Web services concerning the signature need writing permission to a local device, e.g., D:,
in order to store the signed and normalized documents temporarily. For further information,
see section 4.3.4.4.

Appendix B

Used Tools

B.1 IDEs

• Eclipse 3.4 http://www.eclipse.org/

• NetBeans 6.1 Patch 4 Candidate (200810140114) + OpenESB addons http://www.netbeans.
org

• IBM Rational Software Architect v7 http://www.ibm.com/software/awdtools/architect/
swarchitect/

B.2 Test

• soapUI 2.0 http://www.soapui.org/

• Wireshark 1.0.5 http://www.wireshark.org/

B.3 Runtime

• Java SE Development Kit (JDK) 6 Update 11 http://java.sun.com/

• GlassFish ESB Release Candidate 1 https://open-esb.dev.java.net/

B.4 Documentation

• TeXnicCenter 1.0 RC1 http://www.texniccenter.org/

• MikTex 2.7 http://www.miktex.org/

148

http://www.eclipse.org/
http://www.netbeans.org
http://www.netbeans.org
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.soapui.org/
http://www.wireshark.org/
http://java.sun.com/
https://open-esb.dev.java.net/
http://www.texniccenter.org/
http://www.miktex.org/

B.4. DOCUMENTATION 149

• MS Office 2003 http://office.microsoft.com

http://office.microsoft.com

Appendix C

ebBP Modeling Naming Conventions

These naming conventions are the basis for the used naming expressions in the ebBP files.
These conventions may differ slightly in special situations for uniqueness reasons.

The attributes are depicted in red, the strings are depicted in green.

Business Signals

name = name of the tags specification
nameId = capital letters of the names in lower case letters + 2

Specification

nameId = capital letters of the names in lower case letters + bpss2

Business Documents

nameId = bd + name

Specification

name = nameId
name = {common | basic} + NES2 0 + name of the business document with a capital
letter at the beginning

For custom XSD files only the name of XSD type will be used!

150

151

Business Transactions

name = the purpose/function of the business transaction
nameId = bt + name (abbreviations of long words using the abbreviation dictionary)

RequestingRole / RespondingRole

name = { initiator | responder}
nameId = nameId of the business transaction + role + name

RequestingBusinessActivity / RespondingBusinessActivity

name = description of the function of the activity
nameId = nameId of the business transaction + ba + {req | resp}
DocumentEnvelope
name = name of the sent document
nameId = name of the business transaction + doc + name
ReceiptAcknowledgement
name = ra
nameId = name of the business transaction + ack + name
ReceiptAcknowledgementException
name = rae
nameId = name of the business transaction + ack + name
AcceptanceAcknowledgement
name = aa
nameId = name of the business transaction + ack + name
AcceptanceAcknowledgementException
name = aae
nameId = name of the business transaction + ack + name

Notification

name = notify + the name of the sent document

Commercial Transaction

name = issue + the name of the sent document

152 APPENDIX C. EBBP MODELING NAMING CONVENTIONS

Information Distribution

name = distribute + the name of the sent document

Business Collaborations

Of a profile:
nameId = cb probile{1 | 2 | 3 | 4 | 5 | 6 | 7 | 8}global
Of an inner collaboration:
nameId = cb inner + function of this transaction

Role Supplier / Role Customer

name = {Supplier | Customer}
nameId = nameId of the business collaboration + role + name (lower case only)

For all the BTAs, CAs, Decs, following rule is applied when used in an inner collaboration:
After the first -Sign an additional information field is inserted into the nameId field:
{cbsi | cbesi | cbscn | cbescn}
The abbreviations are explained in the abbreviation dictionary.

For all Successes and Failures, following rule is applied when used in an inner collaboration:
Before the nameId one of the following expressions is inserted:
{cbsi | cbesi | cbscn | cbescn}
The abbreviations are explained in the abbreviation dictionary.

Start

name = start of the + name of the business collaboration
nameId = start + nameId of the business collaboration

Business Transaction Acivity

name = the purpose of the activity, often derived from the name of the business transaction
nameId = bta + often derived from the nameId of the business transaction

Collaboration Activity

name = the purpose of the activity, often derived from the name of the business transaction
nameId = ca + often derived from the nameId of the business transaction

153

Decision

name = description after which action this decision occurs
nameId = dec + part after the sign of the name of the action before the decision

Success

nameId = success

Failure

nameId = {techFail | businessFail}

Abbreviation Dictionary

App - Application
Resp - Responding
cbsi - collaboration send invoice
cbesi - collaboration external send invoice
cbscn - collaboration send credit note
cbescn - collaboration external send credit note

Appendix D

List of previous University of Bamberg
reports

154

Bamberger Beiträge zur Wirtschaftsinformatik

Stand August 26, 2009

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

155

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st
edition, June 1994

 Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2nd edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichteten
Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für ver-
teilte Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

156 APPENDIX D. LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

157

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

158 APPENDIX D. LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint
in: Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-
Szenarien. Februar 2007

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: to be announced

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

159

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) G. Scheithauer and G. Wirtz: Applying Business Process Management Systems? A
Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer and Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performancs. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

160 APPENDIX D. LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

	1 Introduction
	1.1 Business-2-Business-Integration
	1.2 The Necessity of QoS Features
	1.3 Problem Identification and Definition

	2 Fundamentals
	2.1 The Universal Business Language (UBL) and the Northern European Subset (NES)
	2.2 The ebXML Business Process Specification Schema Technical Specification (ebBP)
	2.3 Web Services
	2.4 Web Services Business Process Execution Language
	2.5 WS-* Standards
	2.5.1 WS-Addressing
	2.5.2 WS-Security
	2.5.3 WS-ReliableMessaging
	2.5.4 WS-Policy
	2.5.5 XML Signature

	2.6 JAXB

	3 Analysis
	3.1 Modeling of NES-Profiles Using ebBP
	3.1.1 Modeling Practices Used
	3.1.1.1 The General Approach
	3.1.1.2 ebBP Modeling Elements
	3.1.1.3 UML Constructs

	3.1.2 Critical Modeling Issues
	3.1.2.1 The Parallel Execution Problem
	3.1.2.2 Loop Handling
	3.1.2.3 External Medium

	3.1.3 Modeling of the NES Profiles
	3.1.3.1 Basics of Modeling the NES Profiles
	3.1.3.2 Structure of the NES Profile Description
	3.1.3.3 Profile 1: Catalogue Only
	3.1.3.4 Profile 2: Catalogue with Updates
	3.1.3.5 Profile 3: Basic Order Only
	3.1.3.6 Profile 4: Basic Invoice Only
	3.1.3.7 Profile 5: Basic Billing
	3.1.3.8 Profile 6: Basic Procurement
	3.1.3.9 Profile 7: Simple Procurement
	3.1.3.10 Profile 8: Basic Billing with Dispute Response
	3.1.3.11 Business Collaboration sendInvoice and sendCreditNote with External Medium
	3.1.3.12 Business Collaboration sendInvoice and sendCreditNote without External Medium

	3.2 Evaluation of QoS Features
	3.3 Platform Selection - GlassFish vs. Tomcat
	3.3.1 GlassFish
	3.3.2 Tomcat
	3.3.3 Derivation of a Feature Test Plan
	3.3.3.1 Relevant Criteria for the Platform Selection
	3.3.3.2 Feature Test Plan

	3.3.4 (Feature) Tests and Results
	3.3.4.1 IDE-Integration
	3.3.4.2 Usability
	3.3.4.3 Standard Conformance
	3.3.4.4 Performance Tests and Results
	3.3.4.5 Functional QoS Feature Tests and Results

	3.3.5 Evaluation of the Feature Tests and Decision

	4 Design and Implementation
	4.1 Realization Strategies
	4.1.1 ebBP to BPEL Mapping Constructs
	4.1.1.1 Design of the Mapping Constructs
	4.1.1.2 Validation of Mapping Constructs

	4.1.2 Realization of QoS Features

	4.2 Design of WS-Interfaces
	4.2.1 Design of the Messages
	4.2.2 The Correlation Set
	4.2.3 Naming Conventions of the WSDLs
	4.2.4 Web Service Interfaces
	4.2.4.1 General Structure
	4.2.4.2 Various QoS Combinations

	4.3 Architectures and Implementations
	4.3.1 Overall Architecture
	4.3.2 Translator Architecture and Implementation
	4.3.2.1 General Architecture
	4.3.2.2 Architecture and Implementation of the main components
	4.3.2.3 Architecture and Implementation of Reader
	4.3.2.4 Architecture and Implementation of Transformer
	4.3.2.5 Architecture and Implementation of Generator
	4.3.2.6 Architecture and Implementation of Writer
	4.3.2.7 Architecture and Implementation of Utilities

	4.3.3 Backend Architecture and Implementation
	4.3.3.1 General Architecture and Implementation
	4.3.3.2 Architecture and Implementation of the Profile Handlers

	4.3.4 Web Service Architectures and Implementations
	4.3.4.1 Web Service: Archive
	4.3.4.2 Web Service: AuthorizationCheck
	4.3.4.3 Web Service: SchematronValidation
	4.3.4.4 Web Service: SignatureCreation
	4.3.4.5 Web Service: SignatureCheck
	4.3.4.6 Web Service: UUID
	4.3.4.7 Web Service: XPathEvaluation
	4.3.4.8 Web Service: XSDValidation

	5 Related Work
	6 Conclusion and Future Work
	Bibliography
	Appendix
	A User Manual
	A.1 Manual of the Translator
	A.2 Manual of the Backend System
	A.3 Manual of the Web services

	B Used Tools
	B.1 IDEs
	B.2 Test
	B.3 Runtime
	B.4 Documentation

	C ebBP Modeling Naming Conventions
	D List of previous University of Bamberg reports

