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ABSTRACT 

Human friendly environment often poses challenging problems for mobile robot 

navigation. Terrains such as entrance steps, stairs are non-continuous and difficult to navigate. 

Many mechanism has been proposed to tackle this problem. Most common solution involve 

using a crawler belt wheels to increase the mobility of the robot, in the expense of increased 

weight and reduced speed. Wheels with adaptive legs in lunar rovers such as the NASA 

Soujourner [3][4] and the Ecole Polytechnique Federale de Lausanne (EPFL) Shrimp robot 

[5] uses a combination of movable wheels to adapt and traverse non-continuous terrains. This 

mechanism increases the complexity of the structural and driving mechanism of the robot. 

More advance approach such a biped humanoid robot mimics human gait to traverse complex 

terrain. Such robotic platform requirement highly complex mechanism and control system. 

The limitation of the above mentioned approaches is the relatively slow moving speed 

when traversing non-continuous stepped terrain. These approaches use a relatively static 

manner to keep the robot balance when traversing an obstacle. By contrast, animals tend to 

approach a stepped terrain in a more dynamic manner. When jumping up or down a step, 

human tend to utilize forward momentum to push ourselves forward so that we are able to 

overcome the obstacle in a dynamic and efficient manner. The main challenge of this research 

is to design an approach to enable mobile robots to negotiate a stepped terrain efficiently.  

In this thesis, we introduce BBot [28][29], a two wheeled mobile robot that is able to 

traverse common terrains such as steps and stairs in an efficient manner. BBot is a two 

wheeled robot consists of a lower body with wheels and a movable upper body connected by 

springs. The robot hops using the impact force released by pre-tensioned springs. Dynamic 

nature and simple design combine sturdy construction and complexity. Static instability 

requires that the attitude of the airborne robot be under active control to ensure a balanced 

landing. Torque generated by rotating the drive wheels determines the angle of body tilt. BBot 



 
 

can descend step terrains and leap over gap obstacles swiftly and securely. The experiment 

results shows that our prototype BBot is able to negotiate step terrains in an efficient and 

reliable manner. Our proposed balance method expands the traversable environment of a 

conventional two wheeled robot. 
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Chapter 1              
Introduction 

 

 

 

1.1 Background 
Mobile intelligent robots are expected to play an increasing role in aiding humans in 

various tasks. Advancements in robotic technologies have enabled increasing number of 

robots to be deployed in the fields of exploration, surveillance, health care, and entertainment. 

Robots that need to operate in an uncontrolled human environment will have to be able to 

navigate stepped and uneven terrain. Properly implemented control methods will ensure the 

usability and safe deployment of these robots. Different designs and methods were developed 

to tackle the stair climbing problem. Different designs are summarized below.  

 

1.1.1 Rocker Boogie Design 

Many existing stair climber robots, lunar explorers use rocker-bogie mechanisms or 

crawler mechanisms. Rocker-bogie design used in lunar rovers, for example the Sojourner 

developed by NASA [3][4] and the Shrimp robot developed by EPFL [5], uses a combination 

of adaptive legs with the efficiency of wheels to traverse uneven terrain and steps. Robots 

using these mechanisms rely on the static stability of the platform to perform step traversal. 

Relying on static stability has drawbacks of low moving speed as well as increased 

complexity in the structure design. Any external perturbation which forces these robots 

outside their basin of stability will lead to loss of control and inability to recover. 
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1.1.2 Legged robot 

Biped robots that mimic human gait have been developed to tackle the robot mobility 

problem in complex human environment. Well known examples of biped robot includes 

ASIMO [36] from Honda Inc., HRP-3 from Kawada Technologies as well as Atlas from 

Boston Dynamics. These robots are highly complex and requires sophisticated control 

algorithm to keep the robot balance. Simpler hexapod robots such as RHex [1][2] is 

developed to enable the robot to traverse various uneven terrains. 

 

1.1.2 Jumping robots 

In nature animals tend to jump over uneven terrains. Compare to static approach, jumping 

utilizes the dynamic natural of the body to increase efficiency and reduce energy consumption. 

Many bio-inspired jumping robots have been developed.7g [10], Grillo [11], MSU robot [12] 

and mowgli [13] are some examples of jumping robot. The linkage leg system and springs 

mechanism enables the robot to jump over large obstacles. The main drawbacks on these 

robots are the lack of efficient horizontal movement capabilities and are incapable of 

traversing large area due to limited mobility. Accuracy of movement is also compromised due 

to the discrete jumping nature of these robots. 

Kikuchi and colleagues [17] introduced a wheeled robot that is able to hop up and down 

stairs. The robot consists of a wheel base and a spring-loaded movable upper body mass. The 

robot uses the upper body mass to generate lifting force for jumping and soft landing. The 

limitation of the robot is that the attitude of the robot during jumping is not actively control. 

In other words, safe landing of the robot is not guaranteed under the influence of external 

disturbances. iHop [18][19] is another example of jumping robots. It is uses the momentum of 

two weight wheels and a lockable hopping mechanism to achieve hopping and balancing. 

iHop exhibits hoping capability but it is not shown that the robot is capable of climbing up or 

down step terrains. 

 

1.1.3 Crawler robot 

Crawler type robot [7] is a common design for search and rescue robot that needs to 

overcome uneven terrains. One advantage of the crawler robot is the stability and robustness 

in tackling uneven terrain. Many crawler robots have been deploy in search and rescue 
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operation due to its reliability in negotiating unknown environment. However the main 

drawback of the crawler is the relatively slow movement of the robot. 

 

1.2 Problem Statement 
As impressive these robots are, they also have some drawbacks. Some of these robots are 

both too complex and thus expensive, or they use tracks, which are not appropriate for indoor 

environments. These robots usually exploit the static stability of their support polygon and are 

passively balanced. This leads to coarse and slow dynamic responses of the robots when 

traversing stepped terrains and limits their performance. Also any external perturbation which 

forces the robot out of its basin of stability might lead to catastrophic failure. To ensure a 

rapid and stable transition through stepped terrain, a more robust control approach which 

takes into account the dynamics of the system is desired. 

Dynamically stable robots offer better agility and are more robust to external disturbances. 

Such advantages can be used to achieve rapid, stable transition through stepped terrain. In our 

research, we focus specifically on using a two-wheeled robot to travel continuously through 

stepped terrain without losing balance. The problem of maintaining balance with a falling 

two-wheeled robot is highly non-linear. The nature of the balance problem changes as the 

robot is in different phases of motion. A free falling robot is a different control problem than a 

robot climbing a step or traversing flat ground. Two-wheeled robots have been a popular 

research platform due to their simple design yet complex dynamic behavior. Most of the 

research literature available focuses on continuous ground balance. The problem of balancing 

a two-wheeled robot through discontinuous terrain has received relatively little attention. 

Related research includes a reconfigurable hopping rover as proposed in Schmidt-Wetekam et 

al. [18][19]. The hopping rover resembles a 3 dimensional reaction wheel pendulum with a set 

of orthogonally arranged drive wheels. The drive wheels are used to provide torque for 

attitude correction to re-orient the vehicle during flight and ground balance. The hopping 

action is provided by an extendable leg. The hopping robot exhibited good dynamic stability 

on a flat surface, but performance on a stepped surface was not evaluated. 
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1.3 Goal of this Thesis 

1.3.1 Aims 

The goal of this thesis is to develop a robot that is able to traverse stepped terrain is an 

efficient and reliable manner. We have chosen the two wheeled robot as our research platform 

due to its simplicity in design while still exhibiting complex dynamic behavior. Our robot 

fulfills the following aims: 

1) to develop a step traversing robot that is able to negotiate non-continuous ground terrains, 

i.e. stairs and step in a dynamic manner. 

2) to develop a novel method to actively control the attitude of a robot in midair. 

3) to verify the proposed method of control enables a conventional two wheeled robot to 

traverse stepped terrain and extend the traversable terrain. 

 

1.3.2 Innovation and contribution of this research 

This research demonstrates a two wheeled robot that is able to traverse stepped terrains 

while maintaining balance. The proposed method introduces an effective way to control the 

attitude of a two wheeled robot in air, which is critical to a safe landing. Our proposed method 

uses the wheels of the robot to generate balancing torque and requires no additional actuators 

or mechanical changes to a conventional two wheeled robot. 

 

1.4 Methodology 
In this thesis, we proposed a novel approach enabling the two wheeled inverted pendulum 

to traverse stepped terrain. The robot consists of a two wheeled lower body platform and a 

movable upper body mass connected by springs. The robot achieves hopping action by 

utilizing the impact force produced by releasing pre-tensioned springs. Due to statically 

unstable property of the robot, the attitude of the robot has to be actively controlled during 

airborne to ensure stability upon landing. The tilt angle of the robot body is controlled by 

torque generated by rotating the drive wheels. The dynamic nature of the robot enables it to 

climb up and down step terrains, leap over gap obstacles in a swift and robust manner. 
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1.5 Thesis Outline 
This thesis contains three primary parts: Part I introduces the theory and basics of a 

reaction wheel pendulum; Part II introduces the two wheeled inverted pendulum and explores 

the effect of the wheel as a reaction wheel for attitude control; and Part III introduces BBot, a 

prototype two wheeled inverted pendulum that is capable of traversing stepped terrain and 

hopping. The layout of the thesis is as follows: 

 

I. Theory and basics of a reaction flywheel and a two wheeled inverted pendulum. 

 Chapter 2 introduces the theoretical analysis, modeling, simulation, control and 

balancing a reaction wheel pendulum and a two wheeled inverted pendulum. 

II. To develop a step traversing two wheeled inverted pendulum. 

 Chapter 3 introduces the hardware and embedded electronics needed to build 

an inverted pendulum robot. 

 Chapter 4 explores the possibility of using the wheels as a reaction wheel to 

actively control the attitude of the robot in air. The development of a prototype, 

BBot-1 is discussed in detail. Experiment results of the robot in negotiating 

steps with various heights and length is discussed. 

III. To developed a hopping two wheeled robot capable of traversing stepped terrains. 

 Chapter 5 introduces BBot-2, a hopping two wheeled robot with active 

airborne control. This chapter discussed the mathematical analysis of the robot, 

design and implementation, as well as the balance control of the platform.  

Finally, Chapter 6 concludes the effectiveness of BBot in negotiating stepped terrain 

compares to existing robots, and discuss about the future works to enable BBot to be deployed 

into real world situations. 
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Chapter 2              
Reaction wheel pendulum and the inverted 

wheeled pendulum 

 

2.1 Introduction 
The inverted pendulum system is a popular problem often used as a simplified model to 

study complex problems. The study of flight dynamics of a rocket, balancing of biped 

humanoid robot is often simplified using the inverted pendulum model to understand the 

complex behavior of the systems. The inverted pendulum consists of a pendulum attached to a 

pivot point below its center of mass. The pivot point is mounted on a movable platform. The 

inverted pendulum is statically unstable and requires active control to keep it upright. The 

control of the inverted pendulum system can be categorized into two main groups:  

1. where the actuator is placed on the pendulum (e.g. reaction wheeled pendulum, model 

of biped humanoid) 

2. where the actuator is placed at the pivot point (e.g. wheeled pendulum, pendulum on a 

cart, etc... ) 

In this chapter, we will describe the modeling of wheeled pendulum and reaction wheeled 

pendulum and detailed analysis of the system dynamics. This chapter will serve as a 

foundation for the analysis of BBot in the subsequent chapters. 
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2.2 Reaction wheel pendulum 
The reaction wheel pendulum is first introduced by Spong et al. [20][21]. It is one of the 

simplest inverted pendulum in terms of construction and analysis. The reaction wheel 

pendulum consists of a rotating flywheel mounted on the pendulum driven by an actuator. 

The lower end of the pendulum is free to rotate at its pivot. The pendulum achieves balance 

using the torque generated by accelerating the flywheel. However simple it is, the system 

exhibits interesting non-linear dynamics which provides a lot of insights into how to design a 

controller to balance such a system. In this section, we will provide an overview of the 

mathematical analysis and simulation of a reaction wheel pendulum. 

 

2.2.1 Mathematical model 

 

 
Figure 2-1: 2D schematic model of a reaction wheel pendulum 

 

The reaction wheel pendulum can be modeled as a disc mass attached to the end of a pole. 

The disc is free to rotate about the end of the pole and the system is free to rotate about the 

fulcrum attached to the ground. Figure 2-1 shows the 2D schematic diagram of a reaction 

wheel pendulum.  We obtain the equations of motion of the system by deriving the Euler-

Lagrange equation: 
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Jθ̈ − MLgsinθ =  −τ 

Jfθ̈f =  τ 

 

where 

J = Jp + MpLp
2 + Jm + MmLm

2 + Jf + MfLf
2 

ML = MpLp + MmLm + MfLf 

Linearizing the equations of motion around small angle value of θ, the equations of motions 

can be rewritten as: 

θ̈ −
MLg

J
θ =  −

τ

J
 

θ̈f = 
τ

Jf
 

 

Table 2-1: List of symbols 

Symbols Units Description 

Mp kg Mass of robot body 

Mm kg Mass of motor 

Mf kg Mass of flywheel 

Lp m Length of center of mass of robot body to ground 

Lm m Length of center of mass of motor to ground 

Lf m Length of center of mass of flywheel to ground 

Jp kgm2 Moment of inertia of robot body 

Jm kgm2 Moment of inertia of motor 

Jf kgm2 Moment of inertia of flywheel 

θ rad Angle of tilt of robot body 

θ̇ rad/s Angular velocity of robot body 

θf rad Angular position of flywheel 

θ̇f rad/s Angular velocity of flywheel 

τ Nm Input torque 

g kgms−2 Gravity 

 

From equations of motion, we know that the angular acceleration of the flywheel is 

directly proportional to the applied torque from the actuator. Torque is generated from the 
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acceleration of the flywheel. It is important to note that due to the fact that acceleration of the 

flywheel is finite, once the actuator is saturated (i.e. spinning at maximum velocity) no more 

torque can be generated. The generated torque will applied an opposing torque in the opposite 

direction to the pendulum.  

 

2.2.2 Simulation 

We have constructed a reaction wheel model in MATLAB to validate the equations of 

motion and investigate the behavior of the system. We use MATLAB ode45 to solve the 

differential equations derived in the previous section. The non-linear and linear system of the 

reaction wheel pendulum system is simulated and compared. 

 
Figure 2-2: Animated drawing of the reaction wheeled pendulum in MATLAB 

 

Figure 2-2 shows the snapshot of the animated drawing of the reaction wheel pendulum. 

The parameters of the simulation is summarized in the table below: 

 

 

 

 

 
Table 2-2: reaction wheel simulation parameters 

Parameter Value 
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Mass of pole, Mp 0.2kg 

Mass of wheel, Mf 0.125kg 

Length of pole, Lp 0.2m 

Radius of wheel, r 0.1m 

Maximum applicable torque, τmax 0.4Nm 

 
Figure 2-3: Large angle simulation of a non-linear reaction wheel pendulum 

 

Figure 2-3 shows that the simulation results of the non-linear system over the course of 

10s. Initial position of the pendulum is set to 10 degrees away from vertical top and allowed 

to swing freely after release. The system is assumed to be friction free. Due to lack of friction 

angular position and velocity of the reaction wheel remains constant. The angular position and 

velocity of the pole exhibits non linearity behavior. Maximum pole angular velocity occurs 

when the pole is at vertical downward position, when pole angular position is zero. On the 

contrary, minimum pole angular velocity (zero) occurs when the pendulum swings to the 

highest point. 
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Figure 2-4: Large angle simulation of a linear reaction wheel pendulum 

 

On the other hand, the simulation of the linear system exhibits very different response. 

Figure 2-4 shows the response the angular position and velocity of a linear system. Angular 

position and velocity display a sine wave response. This response does not comply with the 

actual response of a reaction wheel pendulum. The main reason of this inaccurate response is 

due to the large angle of swing of the simulation.  

  
(a) (b) 

Figure 2-5: (a) Small angle simulation of a non-linear reaction wheel pendulum. (b) Small angle 

simulation of a linear reaction wheel pendulum 
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Figure 2-5 shows the similar response for both non-linear and linear system for small 

angle simulation of the reaction wheel pendulum. It can be confirmed that a linear system is 

only valid under small angle assumption. The validity of this assumption will serve as a basis 

for the design of a linear controller in the following section. 

 

2.3 Inverted wheeled pendulum 
The inverted wheeled pendulum is an inverted pendulum attached to a wheeled platform. 

The motorized wheels generates balancing torque to keep the pendulum upright. A differential 

drive wheeled platform provides the ability for the system to spin on the spot, offering 

additional maneuverability. Personal transportation device such as the SegwayTM  and 

Hoverboard are examples of application of the inverted wheeled pendulum model.  

 

2.3.1 Mathematical model 

In this section we will derive the equations of motion for the wheeled inverted pendulum. 

 
Figure 2-6: 2D model of the wheeled inverted pendulum 
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Table 2-3: List of symbols for inverted pendulum model 

Symbols Units Description 

mb kg Mass of robot body 

mw kg Mass of wheel 

Jb kgm2 Moment of inertia of robot body 

Jw kgm2 Moment of inertia of wheels 

r m Wheel radius 

l m Length between center of mass of body and wheels 

lb m Length of body's center of mass to robot's center of 
mass 

lw m Length of wheel axis to robot's center of mass 

Gr  Gear ratio 

g ms−2 Gravity 

θb rad Tilt angle of robot body 

θw rad Rotational angle of wheels 

θm rad Rotational angle of motor 

θ̇f rad/s Angular velocity of flywheel 

τG Nm Motor torque in ground phase 

τA Nm Motor torque in airborne phase 

 

Figure 2-6 shows the 2D model of a wheeled inverted pendulum. The mathematical model 

of the system is derived using Lagrangian mechanics. The Lagrangian  

L = T − U 

is defined as the difference between the kinetic energy and potential energy of the system. 

The Euler Lagrangian equations of motion is given by: 
d

dt
(
∂L

∂q̇i
) −

∂L

∂qi
= Qi   i = 1,2, … , n 

where  q = [θw θb]
T are the generalized coordinates representing the angular position of 

the wheels and the inclination angle of the robot’s body. The kinetic energy of the body, Tb, 

and the kinetic energy for the wheels, Tw, are expressed as: 

Tb =
1

2
mbr

2θ̇w
2
+ mblrθ̇wθ̇bcosθb +

1

2
(Jb + mbl

2)θ̇b
2
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Tw =
1

2
mwr2θ̇w

2
+

1

2
Jwθ̇w

2
 

The potential energy for the robot is given by  

U = mbgl cos θ̇b 

The Lagrangian of the system is hence: 

L =
1

2
(mb + mw)r2θ̇w

2
+ mblrθ̇wθ̇bcosθb +

1

2
(Jb + mbl

2)θ̇b
2
+

1

2
Jwθ̇w

2
− mbgl cos θ̇b 

Evaluating the Euler Lagrangian equation for each of the coordinates gives the equation of 

motion as  

(Jw + (mb + mw)r2)θ̈w + mbrlcosθbθ̈b − mbrlθ̇b
2
sin θb = −τG 

(Jb + mbl
2)θ̈b + mbrl cos θb θ̈w − mbgl sin θb = τG 

 

Rearranging the equation in to matrix form, we get: 

M(q)q̈ + C(q, q̇) + G(q) =  [
−τG

τG
] 

Where inertia matrix M(q) is  

M(q) =  [
Jw + (mb + mw)r2 mbrlcosθb

mbrl cos θb Jb + mbl
2 ] 

The vector coriolis/centrifugal forces is 

C(q, q̇) = [−mbrlθ̇b
2
sin θb

0
] 

and the vector of gravitational forces is 

G(q) = [
0

−mbgl sin θb
] 

 

The derived equations of motion represents the behavior of the wheeled inverted 

pendulum system. Detailed analysis of the system will be deferred to the next chapter where 

the actual parameters of the system is defined. 

 

2.4 Conclusion 
 This chapter provides the detailed derivation of the equations of motion of both the 

reaction wheel pendulum and the wheeled inverted pendulum. The derived equations will 
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served as a basis for further analysis of the actual robot in the subsequent chapters. In the next 

chapter, we will look at some hardware components required to construct the robot. 
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Chapter 3                
Hardware and embedded electronics 

 

 

3.1 Introduction 
Simulation of a system provides valuable insights into the behavior and how a system 

reacts to a certain excitation or external disturbances. Simulation provides a way to 

understand and test a system before constructing an actual system. Hardware prototyping 

involves construction of an actual system. Various kinds of considerations such as choice of 

sensor, processing unit, power, mechanical designs need to be considered to make the whole 

system works. In this section, we provide an overview of the hardware construction of BBot. 

 

3.2 Sensors 
In simulations, system states are readily available. However in the actual system, not all 

system states and data can be obtained. Some system states might need to be estimated or 

derived implicitly from physical sensor data. The choice of sensors and sensing algorithm 

greatly affects the quality and usefulness of data acquired. The following table summarizes 

the list of sensors used to measure corresponding states of the robot. 
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Table 3-1: Sensor used for state measurement 

Sensor Measure state 

Accelerometer, gyro Body angular velocity, body angle 

Ultrasonic sensor Robot height 

Encoder Wheel angular velocity, wheel angle 

 

3.2.1 Accelerometer 

An accelerometer is a device which measures acceleration forces. Accelerations applied to 

the sensor includes static acceleration such as gravity, or dynamic forces due to object 

acceleration or vibration. A tri-axis accelerometer consists of three orthogonal sensing axes to 

measure acceleration in all x, y, z direction. Besides measurement acceleration, another 

primary usage of accelerometer is to detect inclination. This is due to the fact that there is 

constant global gravitation acceleration on the surface of the Earth. When the accelerometer is 

static, the gravitation force detected by the sensor provides a directional vector indicating the 

direction of gravity.  

From this data, we can calculate the angle of tilt by taking the cosine angle between the 

accelerometer horizontal axis (e.g. x axis) and the horizon. Note that this method of angle 

calculation is only reliable when the accelerometer is not under any influence from 

acceleration. Another drawback in using accelerometer to calculate inclination angle is due to 

the noisy nature of accelerometer data. In other words, angle obtain using only accelerometer 

will not be reliable.  

 

3.2.2 Gyroscope 

A gyroscope is a device that measures rotational velocity. A gyroscope output is 

proportion to the angular velocity. A triple axis MEMS gyroscope can measure angular 

velocity around x, y and z axes. By integrating the output of a gyroscope, we can calculate the 

angular position with respect to an initial value. Due to the fact that a gyroscope can only 

detect a local rotation, without any external reference, it is impossible to use only gyro to 

detect the angle of tilt. 
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3.2.3 Inertial measurement unit (IMU) 

Given the pros and cons of both accelerometer and gyro sensors, it is possible to combine 

the two sensors to detect inclination. This kind of sensor used to detect orientation is refered 

as an inertial measurement unit (IMU). The IMU includes an accelerometer and a gyroscope. 

Theoretically, rotational angle can be calculated from direct integrations of gyroscope data. 

However due to bias noise of gyroscope, angle calculated from integration will drift overtime. 

This leads to inaccurate angle estimation. We can use the accelerometer as a reference to 

improve the angle estimation and compensate the gyro angle drift. Various fusion methods 

such as Kalman filter [33], complementary filter [32] and direct cosine matrix (DCM) filter 

[34] have been proposed to estimated the orientation of the sensor. Each approach poses 

different accuracy and calculation complexity. From our experiments, we found that Kalman 

filter sensor fusion provides the best accuracy and robustness compare to other methods. This 

is especially obvious when the sensor undergoes large influence of linear acceleration, when 

the robot is moving. 
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Figure 3-1:  Comparison of angle estimation between Kalman filter, DCM filter and complementary 

filter under the influence of linear acceleration. Angle calculated from Kalman filter shows little 

influence from linear acceleration. 

 

Figure 3-1 shows the comparison of performance between Kalman, DCM, and 

complementary filters in angle estimation. The IMU sensor is accelerated back and forth 

horizontally. The lower graph shows the corresponding raw accelerometer data. Ideally the 

estimated angle of the IMU should remain constant zero. From the figure, we conclude that 

the complementary filter performs poorly especially during acceleration. This is due to the 

fact that the complementary filter estimates the angle based on weighted angles from 

accelerometer and gyro sensor. This fixed ratio does not take into account the influence of 

varying accelerations. The DCM filter fluctuated less that the complementary filter, but the 

influence from linear acceleration was still obvious. By contrast, the Kalman filter showed 

little  fluctuation in angle estimation [30]. 
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3.2.4 Ultrasonic distant sensor 

The ultrasonic distance sensor is a sensor that uses ultra sound to measure distance. The 

sensor consist of a signal emitter and a receiver. The emitter sends out a pulse signal and the 

receiver detects any reflected pulse. By comparing the delay between output and input signal, 

the sensor is able to deduct the distant of an object in front of the sensor. The ultrasonic 

sensor can be used to detect the height of the robot above ground when the robot is in air. The 

ultrasonic sensor is chosen over other distant sensor (e.g. infrared sensor) due the larger 

measurement distant and accuracy. 

 

3.2.5 Encoder 

Encoder is a rotary disc with tiny strips engraved. By shining a light beam through the 

strips, we can obtain pulses of light when the disc rotates. Counting the pulses enables us to 

track the relative rotation of an attached object with high precision. A microcontroller can be 

used for pulse counting. The encoder is attached to the motor to enable use to calculate the 

position and rotational speed of a motor. 

 

3.3 Microcontroller 

3.3.1 Mbed prototype platform 

One of the requirement of the robot is to be fully self contained. In other words, the robot 

needs to be able to process all sensor data without an external connected PC. The reason for 

this requirement is due to the fact that any tangling wire or connection to an external pc for 

data acquisition and control will affect the results of our jumping robot. There are various 

choices of data processing unit available in the market. Powerful single board computer such 

as Raspberry Pi, Beagle Bone board provides attractive implementation choices. To keep the 

form factor, weight and power requirement to minimum, we decided to use an embedded 

microcontroller to perform all calculations on board of the robot. Taking in to account factors 

such as size and power consumption, we have chosen the Mbed microcontroller as our 

development platform. Mbed platform is a microcontroller based on the design of a 32-bit 

ARM Cortex-M3 architecture. The microcontroller, running at a frequency of 96MHz, has 



Chapter 3.  Hardware and embedded electronics 

21 
 

sufficient processing power to perform all the calculations. The microcontroller also has 

sufficient peripherals to interface with all the sensors.  

 

3.4 Mechanical design 
 

  

Figure 3-2: Mechanical design of the two wheeled pendulum 

 

 
Figure 3-3: First prototype of BBot-1 

We have listed the following requirements which the prototype robot needs to meet: 

1. fully self contain (battery and control circuit included) 

2. Sturdy enough to withstand repeated impact forces from falling from high steps 
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Figure 3-2 shows the CAD design of the prototype robot. The first version of BBot 

[27][28] prototype is shown in Figure 3-3. The main chassis is made of sturdy Duracon 

material. Onboard electronics board consist of power circuit, main microcontroller, an inertia 

measurement unit (IMU) and motor driver. An ultrasonic distance sensor attached to the bottom 

of the robot is used to detect the relative height of the robot from ground during experiment. The 

robot is equipped with a bluetooth interface to communicate with an external pc for data logging 

and remote control. Figure 3-4 shows the overview of the system architecture of the robot. Table 

3-2 summarizes the physical parameters of the BBot-1. 

 
Figure 3-4: System architecture of BBot-1 
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Table 3-2: Physical parameters of BBot-1 

Overall size (W)130x(L)230x(H)190mm 

Total mass 1.53kg 

Mass of body 0.995kg 

Mass of wheels 0.535kg 

Moment of body 4.913x10-3 kgm2 

Moment of wheels 1.354x10-3 kgm2 

Motor Maxon RE-25 12V 10W 

Gear head 3.8:1 Maxon 26mm planetary gear head 

Timing belt 4mm 5:3 speed ratio 

Battery 11.1V 2200mAh lithium polymer 

Battery life Approx. 2 hours 

Sensors ADXL345 Accelerometer 

ITG3200 gyro 

Parallax ping ultrasonic sensor 

Maxon MR 512 ppr encoder 

 

3.4 Conclusion 
 In this chapter we provide an overview of the hardware and electronics needed to 

construct a two wheeled pendulum platform. Choices of sensors, controller unit and hardware 

design are important to ensure the robot behaves close to expected behavior. Unlike 

simulation, a physical construction of the robot introduces unknown parameters which are 

hard to model. Physical parameters of the robot such as moment of inertia, center of mass is 

predicted using computer aided design (CAD) software. The parameters are verified 

experimentally. Besides hardware consideration, special care is need when designing the 

embedded processing software.  
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Chapter 4               
Stair traversing two wheeled robot 

 

4.1 Introduction 

4.1.1 Background 

Existing two wheeled robot platforms operates under the assumption that the robot is 

constantly in contact with the ground. This assumption limits the traversable terrain to 

continuous ground. The problem of enabling the two wheeled robot to traverse non 

continuous ground terrain poses an interesting challenge. This chapter explores the possibility 

of a two wheeled robot to traverse down a non-continuous ground step. When travelling down 

a stepped terrain, the robot undergoes state transition from on-ground to airborne and back to 

on-ground phase. This transition may repeat for continuous stepped terrain. Conventional 

control scheme will fail to keep the robot in balance during state phase transition. We 

proposed a novel attitude control scheme to control the attitude of the robot during airborne. 

During free fall, a two wheel robot behaves similar a reaction wheel pendulum, with pivot 

point at the center of mass [27]. Hence it is possible to use the momentum of the wheels to 

generate correction torque to alter the orientation of the robot and ensure a safe landing.  
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4.2 Dynamic Model 

 
Figure 4-1: Unique phases when traversing through a step 

 

During the process of traversing a stepped terrain, the robot undergoes phase transition as 

shown in Figure 4-1. In order to simplify the analysis of the problem, we separate the motion 

into three unique phases: 

1. Ground 

2. Airborne 

3. Impact phase 

We introduce additional assumptions to further simplify the assumption process: 

1. Both of the drive wheels leaves the edge of step at the same time (i.e. moment around 

roll direction is zero during flight) 

2. Fall height is within average stair height 

3. Air resistance during freefall is neglected 

4. The friction between wheels and ground contact is a large  

Assumption 1 allows us to simplify the problem into a two dimensional pendulum 

problem for easier analysis. Under assumption 4, the robot lands without slipping. We use the 

mathematical model derived in chapter 2 to analyze the behavior of the robot when travelling 

on ground. However during airborne, a new set of equations has to be derived to accurately 

represents the behavior of the robot. Figure 4-2 shows the additional 2D model of the robot 

during airborne. During airborne the robot behaves like a freefall reaction wheel. We can use 

the reaction wheel equations of motion derived in chapter 2 to understand how the robot 

behaves when falling. 
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Figure 4-2: The 2D model of two wheeled robot (a) on ground and (b) in air 

 

4.2.1 Airborne model 

The airborne model is derived based on the reaction wheel model presented in chapter 2. 

During freefall, any external forces applied to the system is treated as disturbance forces. 

Under such circumstances, the model can be simplified into a 2D reaction wheel pendulum 

with pivot at its centre of mass. Eliminating the potential energy terms and the displacement 

terms, the simplified model becomes 

[
Jw 0

0 Jb + mblb
2 + mwlw

2] [
θ̈w

θ̈b

] = [
τA

−τA
] 

Solving the equations fro the relationship between θw and θb yields 

θb = −
Jw

Jb + mbl
2
θw 

 

From the above equation we can see that during free fall the change of angle of inclination is 

directly proportional to the angular displacement of the wheels due to the conservation of 

angular momentum.  

 

4.2.2 Impact 

Upon landing, the robot experience phase transition from airborne to ground. Depending 

on the height of the fall, the robot experience different impact forces at the moment the 

wheels make contact with the ground. The collision is not perfectly inelastic. In actual 
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experiment, right after landing, the robot experience rebound before settling down. The design 

of BBot-1 does not include any active suspension system and hence rebounding problem 

becomes more obvious as height of fall increases. The rebound cause by the impact depends 

greatly on the coefficient of restitution for different ground material. Due to difficulty of 

determining such parameter, we do not derive the impact model. Instead, under assumption 2, 

robot falls from average stair height, the rebound is small and can be neglected. In practice, 

we mitigate the problem of rebound and impact forces by treating them as disturbance to 

airborne controller. The next section will discuss the design of the controller in detail. 

 

4.3 Control scheme 
The motion of the robot traversing through a step involves different phase transitions. 

Instead of designing a universal controller to balance the robot throughout the phase 

transitions, it is simpler to design separate controllers for each phase and use an additional 

controller to switch between phases. The architecture of the feedback system is shown in 

Figure 4-3.  

 

 
Figure 4-3: Structure of feedback controller 

 

4.3.1 Ground balance control 

The robot will remain balance if we keep the body inclination angle θb close to zero. To 

design a linear controller, the ground model equations of motion derived in chapter 2 is 
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linearized about the unstable equilibrium. Arranging the equations into state-space 

representation yields 

ẋG = AGxG + BGu 

where 

xG =

[
 
 
 
θw

θ̇w

θb

θ̇b ]
 
 
 

, AG = [

0 1
0 0

0 0
a23 0

0 0
0 0

0 1
a43 0

],   BG = [

0
b2

0
b4

] 

a23 =
−p12

p11p22 − p12p21
mblg 

a43 =
p11

p11p22 − p12p21
mblg 

b2 =
−p11−p22

p11p22 − p12p21
 

b4 =
p11+p21

p11p22 − p12p21
 

p11 = Jw + (mw + mb)r
2 

p12 = mbrl 

p21 = mbrl 

p22 = Jb + mbl
2 

The linear quadratic regulator (LQR) is used to design a linear full state feedback controller 

which minimizes the quadratic cost function 

J(u) =  ∫ xG
T

b

a

QxG + uTRu dx 

The values of matrix Q and R are chosen experimentally. The final feedback control input u is 

given by 

u = τG = −KGxG + kg1θwref 

where KG = [kg1 kg2 kg3 kg4] is the feedback gain matrix. θwref is the reference value 

for controlling the rotational angle of the wheel. We can control the motion of the robot by 

change the reference value through a remotely connected pc. The system is simulated in 

MATLAB to examine the effectiveness of the controller.  
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Figure 4-4: Simulation results of on ground feedback controller 

 

Figure 4-4 shows the simulation results of position control of the controller. The robot 

starts from vertical position and is instructed to move to a reference point 0.4m forward. From 

the graph, the robot reaches to the reference point in roughly 2 seconds. From the body angle 

plot, the robot is able to keep the angle of tilt around equilibrium point. 

 

4.3.2 Airborne control 

The linear model derived in the previous section is used to design a linear controller. 

Controlling the attitude of the robot during freefall is relatively simple due to the direct 

proportional relationship of the body angle and wheel angle. The control law used to control 

the inclination angle is 

u = τA = ka1(θbref − θb) − ka2θ̇b − ka3θ̇w 
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where ka1, ka2 and ka3 are feedback gains and θbref is the reference body tilt angle during 

airborne. The angular position of the wheels θw is not included as we are not interested in 

controlling the position of wheel. 

 

 
Figure 4-5: Simulation results of airborne feedback controller 

 

Figure 4-5 shows the simulated feedback responses of the airborne feedback controller. 

The initial body tilt angle θb is set to –90 degrees. Reference angle θbref set to zero. The robot 

is able to recover to upright position in roughly 0.4s. In actual robot, changes in angle of tilt 

will be less that 90 degrees and hence response time will be much faster.  

 



Chapter 4.  Stair traversing two wheeled robot 

31 
 

4.3.3 Switching controller 

During phase transition the switching controller chooses the appropriate control scheme to 

keep the robot upright. The switching condition depends on the height of the robot above 

ground based on readings from the ultrasonic distance sensor. The switching controller is 

implemented as follow: 

u = {
τG, |h| ≤ hthreshold 

τA, |h| > hthreshold 
 

 

where τG and τA are the control efforts calculated from the ground and airborne controller 

respectively, and hthreshold is the height threshold value determined experimentally. Impact 

detection is conducted by analyzing the readings from accelerometer. 

 
4.3.4 Periodic control of continuous step traversing 

The previous sections discuss the control scheme traversing a single stepped terrain. In the 

case of traversing a flight of stairs, the motion can be considered as the continuous transition 

between ground and airborne phases. The length of steps in a flight of stairs is short. 

Consequently the duration of the robot in one phase is short. We found that deactivating 

position control when travelling down a flight of stairs improve the overall stability of the 

robot. This can be achieved by using another set of control gains, obtained by setting 

corresponding weight of the wheel angle, θw in the weight matrix Q to zero [30]. Once the 

robot reaches the bottom of the stairs, position control is reactivated. 

 

4.4 Experiment and Discussions 
The effectiveness of the proposed method is evaluated by driving the two wheeled robot 

down stepped terrains with different height and environment. The robot is remotely controlled 

by pc via bluetooth connection. Internal states of the robot such as body inclination angle θb, 

body angular velocity θ̇b, wheel position θw and velocity θ̇w and sensor reading of ultrasonic 

distant sensor is logged. Motion of the robot is captured using a high speed camera at 240 fps 

for visual analysis. Experiment on specific terrain is repeated multiple times to confirm the 

effectiveness of our approach. 

 



Chapter 4.  Stair traversing two wheeled robot 

32 
 

4.4.1 Single step (19cm) 

In the first experiment, the step of 19cm high is used. This is the average height of stair 

step. The robot is placed on top of the step and controlled to move forward to fall off the step. 

Reference distance is set to 1m.  

 
Figure 4-6: Body inclination angle θb, wheel velocity �̇�𝐰, height from ground and motor torque 

against time plot when traversing through a stepped terrain of height 19 cm 

 

Figure 4-6 shows the plot of the body inclination angle θb, wheel angular velocity θw, 

height from ground and motor torque against time. For t < 3.9s the robot is balancing while 

maintaining body angle within ±2°. At time t = 3.9s the robot moves forward. Body angle 
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increases. From the wheel angular velocity plot (at t = 3.9 s) we can see that the motor spins 

backward to tilt the robot forward, before spinning forward to keep the robot balance. The 

reason of this behavior is due to the nonholonomic nature of the two wheeled robot.  

Height-from-ground graph plots the sensor reading from the ultrasonic sensor, mounted 

on the bottom of the body. The fluctuation of the sensor reading when the robot is balancing 

still is due to the fact that the sensor has a resolution of 1 cm. We can dictate the phase of the 

robot by analysis the height-from-ground plot. The spike at t = 5s  from height-from-ground 

vs. time plot indicates that the robot approaches the edge of the step. The reference body 

angle during airborne θbref is determined experimentally. The value of θbref was fixed at 5° 

throughout the experiments. The airborne phase lasted roughly 0.15 seconds. A second spike 

can be seen from the height-from-ground plot at t = 5.5 s. This spike is caused by rebound of 

the robot after landing. During this rebound phase, the switching controller switches back and 

forth between ground and airborne controller, which causes the large fluctuation of the body 

tilt angle. Once the robot settles down at t = 6 s, the robot kept moving forward until it 

reached to the reference position (at t = 7 s). 

 

 
Figure 4-7: Snapshot of the motion of traversing through a single stepped terrain 

 

Figure 4-7 shows the corresponding snapshots of the motion. Despite the presence of un-

modeled non-linear disturbances (e.g. friction and impact forces) the proposed controller 

performs well and is able to keep the robot balance when traversing stepped terrain. 

 

4.4.2 Single high step (70cm) 

In this experiment, a step (table) of height 70cm is used. The purpose of this experiment is 

to investigate the limitation of our robot. Figure 4-8 shows the experiment data plots.  
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Figure 4-8: Tilt angle θb, wheel velocity �̇�𝐰 relative height from ground and motor torque against 

time plot of experiment of a fall from table of 70 cm high 

 

Similarly the robot is controlled to move forward at time t = 1.6s. At time t = 2.5s the 

robot falls off the edge and impacts on ground at time t = 3s. During freefall the airborne 

controller tries to keep the body angle closed to the reference angle. Upon landing, the motor 

torque fluctuated as the controller tried to balance the robot. Large disturbance force caused 

by the impact increases the torque needed to keep the robot balanced. At time t = 5.5s the 

robot reaches the reference position. 
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Figure 4-9: The consecutive snap shots of the experiment of falling off a table of 70 cm high 

 

Figure 4-9 shows the corresponding snap shots of the experiment. Due to the height of the 

fall, the robot experienced significant rebound. During some of the experiments, we also 

observed uneven landing which causes sideways disturbance to the robot. Nevertheless, the 

controller is able to keep the robot balance under large disturbance. 

 

4.4.3 Continuous steps and stairs 

For the robot to be practical, it has to be able to traverse continuous steps. In this 

experiment, a double stepped terrain is used. Similarly the robot starts from the top of the 

steps and moved forward. Height of the steps is 19cm. The experiment results are shown in 

Figure 4-10. 
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Figure 4-10: Body inclination angle θb, wheel velocity �̇�𝐰, height from ground and motor torque 

against time plot of experiment through a double stepped terrain 

 

Two consecutive spikes can be seen from Height-from-ground versus time plot at time t = 

2.5s and t = 3s.  These peaks correspond to the traversing motion of two consecutive steps. 

During the entire motion, the robot switches from ground phase to airborne phase (at t = 2.5s) 

and back to ground phase (at t = 2.8s) followed by another set of ground-to-airborne and 

airborne-to-ground phases at t = 3s and t = 3.2s respectively. Body angle fluctuates between –

4° and 13° during the transition phases. The main reason of these fluctuations is due to un-

modeled impact forces on landing. One problem we observed in this experiments is the 

change in forward direction during consecutive step. After the first step, impact force changes 
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yaw heading direction of the robot. This causes the robot to fall and land unevenly. This 

rotational disturbance in roll direction cannot be actively compensated. However, the 

robustness of the controller has successfully kept the robot in balance. Figure 4-11 shows the 

corresponding snapshots of the experiment. 

 
Figure 4-11: Experiment snap shots of the robot falling through two steps continuously 

 

We have also conducted experiments on different environment and ground surfaces. 

Figure 4-12 shows the snapshots of the robot traversing concrete steps with slanting angle. 

The steps are relatively far apart. The controller effectively treat this terrain as a single step 

fall on different time interval. The steps are not flat and are slightly slanted. However, we 

found that slight slanting does not affect the behavior of the robot. 

 

 
Figure 4-12: Snap shots of experiment of traversing on outdoor concrete stepped terrain 

 

Figure 4-13 shows the experiment of the robot traversing through a flight of steps. As 

mentioned in previous section, due to short distance between consecutive steps, ground 

position control is temporarily turned off until the robot reaches the last step. Similarly the 

main problem encountered when traversing through continuous flight of steps is the change in 

forward direction. As can be seen from Figure 4-13, the robot falls with the right wheel first in 
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the second step. This effect can permeate to the next step in increasing manner and may lead 

to failure. The current robot prototype does not have yaw control and can only move forward 

and backward. One solution to this problem is to use differential drive mechanism to align the 

robot to the edge before each fall.  

 
Figure 4-13: Experiment of the robot traversing three consecutive stair steps 

 

4.5 Conclusion 
In our experiment we have proven that it is possible for a two-wheeled robot to traverse 

through non-continuous stepped terrain dynamically. During freefall the robot uses the drive 

wheels to generate balancing torque to keep itself upright for a successful landing. The 

dynamic approach enables the robot to traverse through steps in a fast manner. Our prototype 

two-wheeled robot is able to traverse step up to a height of 70 cm. The two-wheeled robot is 

also able to traverse continuous steps. However, we found that without active yaw control, the 

robot is unable to recover from yaw misalignment when leaving the step. This causes 

rotational disturbance in roll direction. As the number of steps increases,  in the worse case, 

the robot will fail to recover.  

In the next chapter, we will introduce the second version of our prototype, BBot-2. The 

next prototype will try to tackle the problems that we found. We will introduce differential 

drive system to the platform to enable yaw control and step alignment ability. Suspension 

system will be introduced to mitigate the effect of rebound. Finally, an active hopping 

mechanism will be designed to attempt step traversing in upward direction as well. 
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Chapter 5          
BBot - A hopping two wheeled robot 

 

5.1 Introduction 
The previous chapter introduces the implementation of a step traversing two wheeled 

robot. The implementation provides a foundation for the hopping two wheeled robot we will 

be introducing in this chapter. The improved version of the two wheeled robot, BBot-2 will 

attempt to address the shortcomings that was identified in the previous prototype. 

In this chapter, we introduce the hopping two wheeled robot BBot-2. The robot utilizes 

the movement of a spring loaded mass to create momentum to achieve hopping motion. Our 

goal is to develop a mobile robot that is able to traverse common terrains such as steps and 

stairs in an efficient manner. The previous prototype BBot-1 can only move forward and 

backward. During landing, BBot-1 also experience recoil issue. In order to improve these 

problems, BBot-2 introduces a differentiate drive system to increase the mobility of the robot. 

The robot includes a hopping mechanism consists of a spring loaded movable upper body. 

This moveable upper body also reduces the impact recoil [30]. In the following sections we 

introduce the hopping mechanism and control algorithms. We discuss the experimental results 

and compare to the theoretical findings, as well as the limitations of the current model. 
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5.2 Mathematical model 
In this section, we present the analysis of the robot during a hopping motion. We break 

down the hopping motion into three different phases [30]:  

1) ground balance 

2) pre-airborne impact 

3) airborne balance.  

Figure 5-1 shows the 3 phases during a hop. Separate models are derived and analyzed for 

each phase. 

 

 
Figure 5-1: Three steps during hopping motion. Step 1) Spring is compressed to store potential 

energy. 2) Spring is released. Potential energy converts into kinetic energy 3) Conservation of 

momentum causes robot to lift off from ground. 
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5.2.1 Ground balance and airborne phase 

 
Figure 5-2: 2D model of ground and airborne model 

 

Figure 5-2 depicts the dynamic behavior of the robot on the ground and in the air in 

simplified two-dimensional models. The ground and airborne model is identical to the model 

introduced in the previous chapter, detailed discussion will be omitted: 

Ground model: 

(Jw + (mb + mw)r2)θ̈w + mbrlcosθbθ̈b − mbrlθ̇b
2
sin θb = −τG 

(Jb + mbl
2)θ̈b + mbrl cos θb θ̈w − mbgl sin θb = τG 

Airborne mode: 

(Jb + mblb
2 + mwlw

2)θ̈b = −τA 

Jwθ̈w = τA 

 

5.2.2 Pre-airborne impact phase 

The hopping capability of BBot-2 introduces an additional phase to the life cycle of the 

robot motion. Before a hop, BBot-2 undergoes a pre-airborne impact phase, which includes 

the following stages: 

1. Compression of the spring increases potential energy. 

2. Release of the spring converts potential energy into kinetic energy.  

3. Upper body mass impacts on body frame and causes the robot to lift off from ground.  
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Hopping is achieve by converting the string potential energy to kinetic energy. The energy 

transition can be broken down in three stages. 

1. The upper body mass is manually corked to store potential energy in the spring. Store 

potential energy is proportional to the spring constant k and compressed distance 

Delta z. 

2. The upper body mass is released to unleashed stored potential energy. Potential 

energy is converted into kinetic energy. The upper body mass accelerates upwards. 

3. The upper body mass impacts on the robot frame. The Law of Conservation of 

Momentum mandates changes in the velocities of the upper body mass and the lower 

body according to the following equation: 

m1v1 = (m1 + m2)v2 

 

With sufficient kinetic energy, the robot lifts off from the ground. Airborne phase begins 

the moment the wheels rise above ground. Jump height is directly proportional to the potential 

energy stored in the spring. Assuming potential energy is zero for the uncompressed spring 

(Delta z = 0), the potential energy of the system is 

E0 =
1

2
k∆z2 − m1g∆z 

Neglecting energy lost from friction, the total energy just before impact is 

E1 =
1

2
m1v1

2 

The Law of Conservation of Energy dictates that the velocity of m1 prior to impact is 

v1 = √
2

m1
(
1

2
k∆z2 − m1g∆z) 

Assuming a perfectly inelastic collision occurs after impact, the Law of Conservation of 

Momentum requires that the velocity of the robot obeys the following equation: 

v2 =
m1

m1 + m2
v1 

The energy right after impact is 

E2 =
m1

m1 + m2
E0 =

m1

m1 + m2
(
1

2
k∆z2 − m1g∆z) 
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The maximum height of the jump is 

h =
E2

(m1 + m2)g
=

m1

(m1 + m2)2g
(
1

2
k∆z2 − m1g∆z) 

 

Jump height increases in direct proportional to k and Delta z. 

 

5.3 Design and Implementation 
The stair climbing robot developed by kikuchi et al. [17] uses a movable upper body mass 

to create momentum for lift. The movement of the mass is constrained to the maximum 

extension length of the spring. This design requires a tall body frame to accommodate the full 

movement of the mass. The drawback of this design is that the large movement of the upper 

body mass would result in a large shifting in the center of mass. Such movement increate the 

difficulty to keep the robot balance, especially is statically unstable robot like BBot. To solve 

this problem our design limits the vertical movement of the upper body mass using a stopper. 

Figure 5-3 shows the 2D CAD model of BBot. Figure 5-4 shows the actual prototype of BBot. 

The upper body contains two 11.1V lipo batteries to power the motors and electronic 

components respectively. The upper body slides vertically along a slider. It is connected to the 

lower body frame with tension springs that pull upwards. 

 
Figure 5-3:  CAD Model of BBot-2 
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Spring tensioning mechanism is not implemented in this version of the prototype. The 

movable upper body mass is manually "corked" before performaning a jump motion. A servo 

activated latch controls the locking and releasing of the upper body. Varying the mass of the 

upper body affect the jump height.  

 
Figure 5-4: BBot-2 prototype 

 

The lower body consists of two differential wheels powered separately by dc motors, a 

main electronic control board, and an ultrasonic distance sensor. The lower body mass is 

made as light as possible to achieve higher jump height. The energy conversion efficiency n  

is defined as the ratio of the kinetic energy at takeoff to the energy stored in the compressed 

spring before takeoff. The equation for conversion effiency is 

n =
E2

E0
=

1

1 + r
 

 

where r=m2=m1. 
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Figure 5-5: Plot of conversion efficiency for different upper body masses m1 and lower body masses 

m2 combination. Efficiency is proportional to m1. Reducing m2 increases efficiency. 

 

Figure 5-5 plots the conversion efficiency for various combination of upper and lower 

body masses. Increasing upper body mass m1 increases the efficiency of energy conversion. 

For a fixed m1, lower body mass m2 is inversely proportional to the efficiency of energy 

conversion. In other words, conversion efficency is maximized by increasing m1 while 

minimizing m2. 

 

 
Figure 5-6: Simplified 2D model of the robot used for body weight simulation. 
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Figure 5-6 shows a simplified 2D model used to simulation the effect of body weight on 

jump height. We use Working Model 2D simulation software for simulation. The upper body 

mass m1 is constrained to move vertically inside the robot frame m2. Movement of m2 is not 

contrained. m2 and spring constant k are fixed. Gravitational force is set to 9.8m/s2. Air 

resistance is ignore. Delta z is initialized to 0.15m.  

 

 
Figure 5-7: Height against time plot of various upper body mass 

 

Figure 5-7 shows the plot of the jump height versus upper body masses. From the plot we 

can tell that the jump height is not linearly proportional to upper body mass. A small upper 

body mass does not generate sufficient jumping energy. A large upper body mass reduces the 

acceleration of the upper body mass and reduced generated jump force. 
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Figure 5-8: Height versus upper body mass plot 

 

Figure 5-8 shows the plot of jump height h versus upper body mass m1. Optimum m1 

occurs at the maximum point of the curve: 

m1optimal =
m2k∆z

4m2g + k∆z
 

Our design uses four separate springs arranged in parallel with a spring constant of 

250N/m and m2 of 1.8kg. m1 is set at 1.2kg, close to the optimum of 1.22kg. The HxDxW 

dimensions are 300x160x420mm. 

 

5.4 Balance and attitude control 
The control scheme used in BBot-2 is similar to BBot-1, which parameters tuned to suit 

the physical parameters of BBot-2. The overview of the control scheme is shown in figure 5-9. 
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Figure 5-9: Overview of BBot-2 control scheme 

 

 
Figure 5-10: Feedback controller scheme for BBot-2. 4 user reference input left wheel velocity 

�̇�𝐰𝐥𝐞𝐟𝐭 ,right wheel velocity �̇�𝐰𝐫𝐢𝐠𝐡𝐭 body tilt angle θb and body tilt angular velocity �̇�𝐛 are used to 

control the motion of BBot. 

 

Figure 5-10 shows the detailed feedback control block diagram of the system. In addition 

to forward and backward motion, the newly introduced differential drive enables BBot to 
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rotate in yaw direction. An additional yaw controller is used to control yaw movement. The 

control input states are left wheel velocity θ̇wleft, right wheel velocity θ̇wright, body tilt angle 

θb and body tilt angular velocity θ̇b. Setting θb and θ̇b to zero will keep the robot upright. 

θ̇wleft and θ̇wright reference controls the motion of the robot. 

We have introduced an additional yaw controller to control the yaw of the robot: 

uyaw = Kyaw(ryaw − xyaw) 

ryaw = [θyawref θ̇yawref]
T
 

xyaw = [θyaw θ̇yaw]
T
 

 

where the yaw angle θyaw and yaw velocity θ̇yaw are the differences between left and right 

wheel angles and wheel velocities.  

 

5.4.1 Height and phase transition detection 

 
Figure 5-11: Flow diagram showing the phase transition detection scheme using both ultrasonic 

sensor and accelerometer data. 

 

Similar to BBot-1, we used an ultrasonic distance sensor to measure the height of the 

robot from ground. The sensor is placed at the bottom of the robot facing down. In BBot-1, a 

simple thresholding on the distance sensor is used to determine the phase transition of the 

robot from air to ground. This approach tends to have false detection. When the robot is 

moving, a large tilt angle will cause ultrasonic waves from the sensor the reflects away from 

the sensor. To improve phase detection robustness, we includes accelerometer data for impact 
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detection. When the robot lands, a distinct acceleration data from the accelerometer can be 

used to determined if impact occurs reliably. 

 

5.5 Experiment Results 
BBot-2 is a self-contained robot with an on-board microcontroller processing all sensor 

data and perform balance control the robot. BBot-2 connects to a host pc via Bluetooth 

connection for remote control. Real time sensor data is streamed to the host pc and logged at a 

rate of 100Hz. We conducted the step traversing experiment, manual tossing experiment and a 

hopping experiment to validate the performance of BBot-2 

 

5.5.1 Step traversing experiment 

 
Figure 5-12: The robot traverses a stepped terrain of height 17cm. The robot uses the drive wheels to 

generate balancing torque to control its attitude in air. Upon landing, the robot switches to ground 

balance mode to keep balance. 

 

In this experiment, the robot traverse a single step terrain. The step height is 17cm. Figure 

5-12 shows the snap shots of the motion. Figure 5-13 shows the corresponding raw sensor 

data plot against time. Height data plots the height calculated from the ground to the sonar 

sensor. The height data has an offset of 5cm above ground when the robot is balancing still, 

indicating the ultrasonic distant sensor is attached 5cm above ground. AccZ graph plots the 

linear acceleration along z axis (pointing up). At time t = 1.86s, the peak in the measurement 
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indicates that the robot is not in contact with the ground and is freefalling. The controller 

switches into airborne control mode. We have set the reference body tilt angle for airborne 

controller to a small positive value (+6 degrees), to tilt the robot backwards during airborne. 

The reason for this is to compensate the forward momentum during landing and reduce the 

torque needed to balance upon landing. BBot-2 has a higher center of mass compare to BBot-

1. This is analogous to landing with feet in front and uses momentum to bring the body to a 

neutral position. At time t = 2.02s, large fluctuation in the accelerometer readings indicates a 

landing event. Phase changed is detected and the robot switches into ground mode to keep its 

balance. At the moment of impact upon landing, we observed the upper body mass moves 

downward to absorb the impact force from the ground. Compare to BBot-1, the rebound 

effect is mitigated by this mechanism. From the height versus time plot, there is a false 

positive indication of increase height right after landing. This is due to the fact that ultrasonic 

waves bounds away from the ground when the body tilt angle is large. The overall 

performance of the BBot-2 is more stable compare to the previous prototype. 
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Figure 5-13: Height, vertical acceleration and body angle plot against time during step traverse.  

Solid red line and dotted red line indicates the beginning and the end of an airborne phase. 
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5.6.2 Toss landing experiment 

 
Figure 5-14: Snapshot of the toss landing experiment. 

 

The next experiment is designed to test the stability of the robot during airborne. When 

tossing the robot, rotational torque is introduced. Without attitude control the rotational torque 

will cause the robot to tilt away from vertical and will not be able to maintain balance upon 

landing. When attitude control is on, the controller constantly keep robot close to vertical 

position. Upon landing, the small tilt angle require less balancing torque to keep the robot 

upright without saturating the motors. Figure 5-14 shows the snapshots of the toss landing 

experiment. Figure 5-15 shows sensor data plotted against time. Red solid lines in the graphs 

indicate the instant when the robot is released. At time t = 4.5s the robot reaches peak height 

and starts to free fall. During this period, the airborne controllers is activated to maintain a 

positive body tilt angle in air. Landing occurs at time t = 4.7s. The toss experiment introduces 

large rotational torque to the robot. From time t = 4.7s ~ 5.5s, the robot rocks back and forth 

to keep balance before settling down on a stable upright position at t > 6s. The motor duty 

graph shows that the pwm duty for the motor, which is proportional to the torque apply to the 

motor. The maximum pwm duty of the motor is below 40%, indicating that the motor is not 

saturated at any point of time during the whole motion. 
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Figure 5-15: Vertical acceleration, body angle and motor during plot against time. Red solid line 

indicates the time when the robot is released. Dashed line shows the instant when the robot hits the 

ground. Throughout the motion, the motor duty is below 50%, indicating the motor is not saturated. 
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5.6.3 Hopping experiment 

 
Figure 5-16: Hopping motion demonstrated by the prototype robot. 

 

In this section, we test the hopping ability of BBot-2. The springs are pre-tensioned by 

manually corking the upper body weight. A servo activated locking mechanism is used to 

lock the upper body weight in place. The servo is remotely controlled to release the movable 

upper body. Figure 5-16 shows the snapshots of a hopping action. Figure 5-17 shows the 

sensor data plots against time. The upper body is accelerated upwards when the lock is 

released. The upper body mass impacts on the stopper at time t = 2.38s, converting stored 

potential energy into lifting force. This lifting force causes the robot to jump. The robot 

switches into airborne mode. At time t = 2.55s, large accelerometer reading indicates robot 

landing. The controller switches back to ground balance mode. The hopping motion is 

completed. From height plot, the jump height can be deduced from the maximum changed in 

height, i.e. roughly 4cm. The actual jump height is less than simulated results due to the 

following reasons:  

1. The simulation does not take into account friction force generated in the sliding joint. 

The friction contributes to energy lost. 

2. Discrepancy between simulated spring constant and actual spring constant used in 

the robot. 
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3. Simplified assumption that the impact collision is fully inelastic in simulation. Actual 

impact collision event is more complex. Energy lost during energy transition is not 

taken into account in the simulation 

Nevertheless, the prototype BBot-2 proved that the proposed approach enables the robot 

to achieve hopping motion. 
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Figure 5-17: Acceleration, body angle and motor duty plots of the hopping motion. Red solid line 

indicates the instant when hopping starts (t = 2.38s). Dashed line indicates the moment the robot 

lands (t = 2.55s). 
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5.7 Conclusion 
This chapter introduced the implementation of a hopping two wheeled robot, BBot-2. The 

modeling and analysis, hardware construction and control scheme are presented. We have 

built a prototype and conducted experiments to verify the performance of the robot. The 

experiments confirms that BBot-2 is able to traverse stepped terrain and performs hopping 

motion. However we observed a few limitations of BBot-2. Current jump height of the robot 

is relatively small. This is due to the mechanical constructions of the robot. In order to 

improve the jump height of the robot, the current sliding joint has to be replaced by a 

lubricated ball bearing sliding joint to further reduce the friction. The robot has to be able to 

clear a jump height larger than 17cm to be able to climb up stairs. One solution to this 

problem is to scale up the prototype to accommodate larger springs to create larger lifting 

force. 

One problem we observed in the hopping mechanism design is the recoil effect when the 

upper body impacts on the body frame. The collision is partially inelastic, contrast to 

assumption of a perfectly inelastic collision in the simulation. This effect reduces the energy 

conversion efficiency and hence reduce the total jump height. In the current prototype, 

parameters such as the airborne reference tilt angle is experimentally decided. For future work, 

we plan to investigate the relationship between the reference tilt angle, forward velocity and 

jump height so that the robot is able to determine the optimal attitude during airborne 

automatically.  
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Chapter 6                 
Conclusions and Future work 

Non-continuous terrains, such as steps and stairs, pose a challenging obstacles for mobile 

robots. Existing robots usually employs a static and slow approach to clear a stepped 

obstacles. In contrast, animals tends to jump over a step in a swift and dynamic manner. In 

this research, we aim to develop a robot that is able to negotiate a non-continuous terrain in a 

dynamic manner. We have created BBot, a two wheeled robot capable of traversing stepped 

terrain and hopping. We proposed to use the driving wheels of the robot to generate balancing 

torque when the robot is in air. Using the drive wheels eliminate the need for an additional 

actuator. The propose method enables conventional two wheeled robot to traverse stepped 

terrain without modification. The dynamic nature of this approach enables the robot to 

negotiate stepped terrain in a dynamic and fast manner. We have presented the theoretical 

analysis as well as the design of a working prototype. We have also presented a control 

scheme for the robot based on our theoretical analysis. Experiment shows that the proposed 

method enables a two wheeled robot to traverse a stepped terrain, which is not possible before. 

Current prototype, BBot-2, is able to travel down stepped terrain effectively. The robot is 

capable of hopping 4cm above ground. The hopping height is significantly less than simulated 

results due to mechanical constraints and perfect world assumption in the simulation. Current 

prototype suffers from a few limitations. The current mechanical design does not convert 

stored potential energy to lifting force effectively. Assumptions of perfectly inelastic collision 

of the upper body mass with the chassis does not reflects the real situation. An improved 

model of the system needs to be investigated to better model the real world situation. Current 

jump height is small for practical application in real world environment.  
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Appendix A: Electronics 

Mbed controller board circuit schematics 
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Mbed controller board circuit layout 
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Appendix B: Embedded program source code  

common.h 

const int ON = 1; 
const int OFF = 0; 
//Gravity at Earth's surface in m/s/s 
const double g0 = 9.812865328; 
//Number of samples to average. 
const int SAMPLES = 4; 
//Number of samples to be averaged for a null bias calculation 
//during calibration. 
const int CALIBRATION_SAMPLES = 128; 
//ITG-3200 sensitivity is 14.375 LSB/(degrees/sec). 
const double GYROSCOPE_GAIN = 1 / 13.5; 
//Full scale resolution on the ADXL345 is 4mg/LSB. 
const double ACCELEROMETER_GAIN  =0.004 * g0; 
//Sampling accelerometer & gyroscope at 200Hz. 
const double SENSOR_RATE  = 0.005; 
//Updating filter at 40Hz. 
const double FILTER_RATE = 0.005; 
// balance rate 1ms 
const double BALANCE_RATE = 0.005; 
 
const char ENCODER_ADD_08 = 0x08; // define the I2C Address 
const char ENCODER_ADD_09 = 0x09; // define the I2C Address 
const int ENC_RESOLUTION = 512*2; 
const double GEAR_RATIO = 6.24853; 
const int ZERO_DUTY = 51; 
 
 
 //toggle bit a ON and OFF; 
inline void toggle(DigitalOut &a) {a=a^1;} 
 
//Convert from radians to degrees. 
inline double toDegrees(double x) {return x * 57.2957795;} 
 
//Convert from degrees to radians. 
inline double toRadians(double x) {return x * 0.01745329252;} 
 
inline double motor(double x) {return (1.875+1.25*x/100)/3.3;} // x: PWM duty, 50 will stop motor  
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main.cpp 

#include "mbed.h" 
#include "common.h" 
#include "ADXL345_I2C_6DOF.h" 
#include "ITG3200_6DOF.h" 
#include "IMUKalman.h" 
#include "Ping.h" 
 
#include "Wiimote.h" // Wii Remote message decoding 
#include "Encoder_dspic.h" 
 
//#define DEBUG 
#define BLUETOOTH 
//-- Peripheral Declaration --// 
DigitalOut led1(LED1); 
DigitalOut led2(LED2); 
DigitalOut led3(LED3); 
DigitalOut led4(LED4); 
 
Serial pc(USBTX, USBRX); 
//USB Bluetooth 
Serial bluetooth(p13, p14); 
// IMU 
ADXL345_I2C accelerometer(p9, p10); 
ITG3200 gyroscope(p9, p10); 
IMUKalman myfilter(0.0001, 0.0003, 0.69, FILTER_RATE); 
// dspic Encoder 
Encoder_dspic encoder(p9, p10, 1024, ENCODER_ADD_08); 
// Ping 
Ping Pinger(p7); 
// Sabertooth 
PwmOut Motor(p24); 
DigitalOut MotorOn(p25); 
 
typedef struct { 
    float alpha; //alpha value (effects x, eg pos) 
    float beta; //beta value (effects v, eg vel) 
    float xk_1; //current x-estimate 
    float vk_1; //current v-estimate 
} AlphaBeta; 
 
AlphaBeta ab_x; 
 
//-- Parameters --// 
const double a_Bias[3] = {22.875000, 0.484375, -20.234375 }; // x y z 
const double w_Bias[3] = {6.250000, -14.562500, -24.796875 }; // x y z 
 
//Accelerometer and gyroscope readings for x, y, z axes. 
volatile double a_x; 
volatile double a_y; 
volatile double a_z; 
volatile double w_x; 
volatile double w_y; 
volatile double w_z; 
unsigned int current_buf = 1; 
 
// States 
enum {ONGROUND, AIRBORNE, RECOVERY, STOP}; 
int state; 
int previousState; 
bool invertBalance = false; 
 
// Motor Control 
//float gear_ratio = GEAR_RATIO;//3.8*50/30; 
bool isReset = true; 
bool isControlOn = true; 
bool executeOnce=false; 
bool executeOnceGround = false; 
bool PositionControlOn = true; 
double last_theta, last_theta_m; 
double theta_ref = toRadians(0); 
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double theta_m_ref = 0; 
double dtheta_m_ref = 0; 
double ref_air_theta = toRadians(5); 
double speed = 1800; 
int duty = ZERO_DUTY; 
int height = 0; 
 
// Gains 
// Without extension 
double K[4] = {5.4772,    4.7691 ,115.4771  ,11.2818}; 
double Knp[4] = {005,3 ,120  ,12.2818}; 
//double Knp[4] = {0.1,3 ,120  ,10}; 
double Krw[4] ={ 250,   17, 0,  1}; 
double Kib[4] = {-0.2, -1, 400, 30};  // invert balance gains 
double Kscale = 1 ; 
double Kscale_rw=1; 
// With extension 
//double K[4] = {3,4, 131.0243,  13.1250}; 
//double Krw[4] ={ 150.0036,   14.4472, 0,    0.3}; 
 
 
Ticker readsensorsTicker; 
Ticker filterTicker; 
 
/** 
 * Prototypes 
 */ 
void sampleSensors(void); 
float acc_angleX(void); 
double gyro_rateX(void); 
float acc_angleY(void); 
double gyro_rateY(void); 
void printAngle(void); 
void filter(void);                  //Update the filter and calculate the Euler angles. 
 
void InitializeAlphaBeta(float x_measured, float alpha, float beta, AlphaBeta* pab); 
void AlphaBetaFilter(float x_measured, float dt, AlphaBeta* pab); 
void wii_data(char * data); 
inline void cls(); 
inline void limit(double &input, const double &min, const double &max); 
void Timer0_init(double sec); 
void Timer1_init(double sec); 
void Timer2_init(double sec); 
 
double  dtheta_m;// debug 
 
void reset (void) { 
    theta_m_ref = 0; 
    theta_ref = toRadians(0); 
    // reset parameters 
    last_theta = 0; 
    last_theta_m = 0; 
    encoder.reset(); 
    ab_x.xk_1 = 0; 
    ab_x.vk_1 = 0; 
} 
 
void balanceControl(void) { 
    double error_theta_m; 
    double error_dtheta_m; 
    double theta_m;//, dtheta_m; 
    double theta, dtheta; 
    double tmp_duty = ZERO_DUTY; 
     
    // Update states 
    previousState = state; 
    theta = myfilter.getAngle(); 
    theta_m = (encoder.read())/GEAR_RATIO; 
    AlphaBetaFilter(theta_m, BALANCE_RATE, &ab_x); 
    height = Pinger.Read_cm(); 
     
    if ( ( fabs(theta) > toRadians(70) ) || !isControlOn){ 
        led2 = led3 = led4 = OFF; 
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        state = STOP; 
        isReset = true; 
    } else { 
     //   if (height > 17){ 
     //       executeOnceGround = true; 
     //   } 
        // On ground 
        if ( height < 11 ){//|| PositionControlOn  ) { 
       //     if (executeOnceGround) 
       //         executeOnce = true;    
          
            if ( (fabs(theta) < toRadians(10)) && isReset   ) { 
                // Recovery range, unset reset flag 
                isReset = false;       
            } else if ( (fabs(theta) < toRadians(70)) && !isReset   ) { 
                // Balance mode 
                led2 = led3 = led4 = OFF; 
                state = ONGROUND; 
                led2 = ON; 
            } else {             
                // Recovery mode 
                led3 = ON; 
                state = STOP; 
            } 
        } else { 
            // Airborne 
            if (!isReset){ 
                led2 = led3 = led4 = OFF; 
                led4 = ON; 
                state = AIRBORNE; 
                PositionControlOn = false; 
            } else { 
                   
                // Recovery mode 
                led3 = ON; 
                state = STOP; 
            } 
         
        } 
    } 
    switch (state) { 
        case ONGROUND: 
            MotorOn = ON; 
            if (false ){//executeOnceGround){ 
                tmp_duty = ZERO_DUTY; 
            } else { 
                tmp_duty = 0; 
                theta_m_ref += dtheta_m_ref * BALANCE_RATE; 
                error_theta_m = theta_m_ref - ab_x.xk_1; 
                limit (error_theta_m, -toRadians(270), toRadians(270)); 
                error_dtheta_m =  - ab_x.vk_1; 
                theta = myfilter.getAngle(); 
                if (PositionControlOn){// && !executeOnceGround){ 
                // Theta Motor 
                    tmp_duty = K[0] * (error_theta_m);                  // P  theta_m            
                 
                    //limit (error_dtheta_m, -toRadians(720), toRadians(720)); 
                    tmp_duty = tmp_duty + K[1] * (error_dtheta_m);             // D  theta_m 
                 
                    // Theta 
                    tmp_duty = tmp_duty + K[2] * ( 0 - theta);  // P  theta 
                    tmp_duty = tmp_duty - K[3] * myfilter.getdAngle();  // D  theta 
                 } else { 
                // Theta Motor 
                    tmp_duty = Knp[0] * (error_theta_m);                  // P  theta_m 
                               
                    tmp_duty = tmp_duty + Knp[1] * (error_dtheta_m);             // D  theta_m 
                    // Theta 
                    tmp_duty = tmp_duty + Knp[2] * ( theta_ref - theta);  // P  theta 
                    tmp_duty = tmp_duty - Knp[3] * myfilter.getdAngle();  // D  theta 
                 }    
                tmp_duty = ZERO_DUTY + Kscale * tmp_duty; 
                limit(tmp_duty, 1, 99); 
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            } 
            break; 
        case AIRBORNE: 
            
            MotorOn =  ON;   
         //   if (executeOnce){ 
         //       tmp_duty = ZERO_DUTY; 
        //    } else { 
                // Theta 
                theta = myfilter.getAngle(); 
                tmp_duty =  Krw[0] * (ref_air_theta - theta);            // P  theta     
                tmp_duty = tmp_duty - Krw[1] * myfilter.getdAngle();    // D  theta 
         
                // Theta Motor 
                theta_m = (encoder.read())/GEAR_RATIO; 
                //tmp_duty = tmp_duty - Krw[2] *  ab_x.xk_1;  
                tmp_duty = tmp_duty - Krw[3] * ab_x.vk_1;       // D  theta_m 
                 
                tmp_duty = ZERO_DUTY + Kscale_rw * tmp_duty; 
                 
                limit(tmp_duty, 1, 99); 
         //   } 
            break; 
        case STOP: 
            MotorOn =  OFF; 
            reset(); 
            break; 
        default: 
            MotorOn =  OFF; 
            reset(); 
    } 
    duty = (int)tmp_duty; 
    Motor = motor(duty); 
} 
 
void invertBalanceControl(void) { 
    double error_theta_m; 
    double error_dtheta_m; 
    double theta_m;//, dtheta_m; 
    double theta; 
    double tmp_duty = ZERO_DUTY; 
     
    // Update states 
    previousState = state; 
    theta = myfilter.getAngle(); 
    theta_m = (encoder.read())/GEAR_RATIO; 
    AlphaBetaFilter(theta_m, BALANCE_RATE, &ab_x);  
     
    if ( ( fabs(theta) > toRadians(45) ) || !isControlOn){ 
        led2 = led3 = led4 = OFF; 
        state = STOP; 
        isReset = true; 
    } else {            
        if ( (fabs(theta) < toRadians(10)) && isReset   ) { 
            // Recovery range, unset reset flag 
            isReset = false;       
        } else if ( (fabs(theta) < toRadians(70)) && !isReset   ) { 
            // Balance mode 
            led2 = led3 = led4 = OFF; 
            state = ONGROUND; 
            led2 = ON; 
        } else {             
            // Recovery mode 
            led3 = ON; 
            state = STOP; 
        }  
    } 
    switch (state) { 
        case ONGROUND: 
            MotorOn = ON; 
            tmp_duty = 0; 
            error_theta_m = - ab_x.xk_1; 
            error_dtheta_m =  - ab_x.vk_1; 
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            theta = myfilter.getAngle();  
             
            tmp_duty = Kib[0] * (error_theta_m);                  // P  theta_m            
         
            //limit (error_dtheta_m, -toRadians(720), toRadians(720)); 
            tmp_duty = tmp_duty + Kib[1] * (error_dtheta_m);             // D  theta_m 
         
            // Theta 
            tmp_duty = tmp_duty + Kib[2] * ( theta_ref - theta);  // P  theta 
            tmp_duty = tmp_duty - Kib[3] * myfilter.getdAngle();  // D  theta 
           
            tmp_duty = ZERO_DUTY - Kscale * tmp_duty; 
            limit(tmp_duty, 1, 99);  
            break; 
          
        case STOP: 
            MotorOn =  OFF; 
            reset(); 
            break; 
        default: 
            MotorOn =  OFF; 
            reset(); 
    } 
    duty = (int)tmp_duty; 
    Motor = motor(duty); 
} 
 
void startWiiCom(const char * wiiMAC); 
int main() { 
    //-- Initialization --// 
    state = ONGROUND; 
    previousState = ONGROUND; 
    //-- Detect is invert mode --// 
    if (accelerometer.getAz() >60000){ 
        theta_ref = toRadians(-12.5); 
        invertBalance = true; 
    } 
        
    // Serial COM 
#ifdef BLUETOOTH 
    bluetooth.baud(115200); 
    bluetooth.printf("Starting IMU filter test...\r\n"); 
#endif     
#ifdef DEBUG 
    pc.baud(115200); 
    pc.printf("Freefall pendulum...\r\n"); 
#endif 
    // Encoder 
    encoder.reset(); 
 
    InitializeAlphaBeta(0,0.65,0.12,&ab_x); //x position 
    //Calibrate IMU sensors. 
    //accelerometer.calibrate(a_Bias, CALIBRATION_SAMPLES); 
    //gyroscope.calibrate(w_Bias, CALIBRATION_SAMPLES); 
 
    // Sabertooth 
    Motor.period_us(30); 
    Motor = motor(ZERO_DUTY); 
 
    //Set up timers. 
    readsensorsTicker.attach(&sampleSensors, SENSOR_RATE); 
    filterTicker.attach(&filter, FILTER_RATE); 
    Timer0_init(BALANCE_RATE); 
    Timer1_init(0.05); //data printing 
    Timer2_init(0.01); // Pinger 
 
    //-- End Initialization --// 
    wait(0.5); 
     
    if (invertBalance){ 
        while(1){} 
    }else{ 
        // Wiimote 
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        char controller02[] = "00:1E:A9:71:B3:60";    // S.NAKAMURA 02 
       // char controller01[] = "00:1F:C5:4C:29:99";   // S.NAKAMURA 01 
        startWiiCom(controller02); 
    } 
} 
 
extern "C" void TIMER0_IRQHandler (void) {  // Balance Control 
    if ((LPC_TIM0->IR & 0x01) == 0x01) { // if MR0 interrupt, proceed 
        LPC_TIM0->IR |= 1 << 0;         // Clear MR0 interrupt flag 
        if (invertBalance){ 
            invertBalanceControl(); 
        } else { 
            balanceControl(); 
        } 
    } 
} 
 
extern "C" void TIMER1_IRQHandler (void) {  // Print data 
    if ((LPC_TIM1->IR & 0x01) == 0x01) { // if MR0 interrupt, proceed 
        LPC_TIM1->IR |= 1 << 0;         // Clear MR0 interrupt flag 
 
        toggle(led1); 
        //cls(); 
         
#ifdef BLUETOOTH 
        bluetooth.printf("%+f, %+f, %+f, %+f, %+4d, %+4d\r\n", toDegrees(ab_x.xk_1), toDegrees(ab_x.vk_1),  
toDegrees(myfilter.getAngle()), toDegrees(myfilter.getdAngle()), height, duty); 
        //bluetooth.printf("%+f,%+f,%+4d\r\n",  toDegrees(encoder.read())/gear_ratio,toDegrees(myfilter.getAngle()), Pinger.Read_cm()); 
#endif 
#ifdef DEBUG 
        //pc.printf("%+f\r\n", toDegrees( encoder.read() ) ); 
        pc.printf("%+f, %+f, %+f, %+f, %+4d, %+4d\r\n", toDegrees(ab_x.xk_1), toDegrees(ab_x.vk_1),  toDegrees(myfilter.getAngle()), 
toDegrees(myfilter.getdAngle()), height, duty); 
#endif 
        //pc.printf("%+f\n", toDegrees(myfilter.getAngle()) ); 
        //pc.printf("Enc: %f\r\n", toDegrees(encoder_left.read())) ; 
        //bluetooth.printf("%+f,%+f,%+f\r\n", toDegrees(0),toDegrees(myfilter.getAngle()),toDegrees(gyro_rateY())); 
    } 
} 
 
extern "C" void TIMER2_IRQHandler (void) {  // Pinger 
    if ((LPC_TIM2->IR & 0x01) == 0x01) { // if MR0 interrupt, proceed 
        LPC_TIM2->IR |= 1 << 0;         // Clear MR0 interrupt flag 
        Pinger.Send(); 
    } 
} 
 
void Timer0_init(double sec) { 
    LPC_SC->PCONP |=1<<1;            //timer0 power on 
    LPC_TIM0->MR0 = 24000000*sec-1;  // 24e6 ticks/sec 
    LPC_TIM0->MCR = 3;              //interrupt and reset control 
    //3 = Interrupt & reset timer0 on match 
    //1 = Interrupt only, no reset of timer0 
    NVIC_EnableIRQ(TIMER0_IRQn);    //enable timer0 interrupt 
    LPC_TIM0->TCR = 1;              //enable Timer0 
} 
 
void Timer1_init(double sec) { 
    LPC_SC->PCONP |=1<<2;            //timer1 power on 
    LPC_TIM1->MR0 = 24000000*sec-1;  // 24e6 ticks/sec 
    LPC_TIM1->MCR = 3;              //interrupt and reset control 
    //3 = Interrupt & reset timer1 on match 
    //1 = Interrupt only, no reset of timer1 
    NVIC_EnableIRQ(TIMER1_IRQn);    //enable timer1 interrupt 
    LPC_TIM1->TCR = 1;              //enable Timer1 
} 
 
void Timer2_init(double sec) { 
    LPC_SC->PCONP |=1<<22;            //timer2 power on(enable), timer 2 off by default, see table 46 of UM10360 LPC17xx user manual 
    LPC_TIM2->MR0 = 24000000*sec-1;  // 24e6 ticks/sec 
    LPC_TIM2->MCR = 3;              //interrupt and reset control 
    //3 = Interrupt & reset timer0 on match 
    //1 = Interrupt only, no reset of timer0 
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    NVIC_EnableIRQ(TIMER2_IRQn);    //enable timer0 interrupt 
    LPC_TIM2->TCR = 1;              //enable Timer0 
} 
 
void sampleSensors(void) { 
    // 4th order runge-kutta filter 
    // dt ~ 0.00065 
    unsigned int i; 
    int readings[3]; //Buffer for accelerometer readings. 
    static int sensor_buf[5]; 
    static int sensor_filter_buffer[4][5] = { {0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0} }; 
    accelerometer.getOutput(readings); 
 
    sensor_filter_buffer[current_buf][0] = (int16_t) readings[0];  //accX 
    sensor_filter_buffer[current_buf][1] = (int16_t) readings[1];  //accY 
    sensor_filter_buffer[current_buf][2] = (int16_t) readings[2];  //accZ 
 
    sensor_filter_buffer[current_buf][3] = gyroscope.getGyroX();   //gyroX 
    sensor_filter_buffer[current_buf][4] = gyroscope.getGyroY();   //gyroY 
 
    for (i=0; i < 5; i++) { 
        sensor_buf[i] = (sensor_filter_buffer[current_buf][i]/6 + 
                         sensor_filter_buffer[(current_buf+1)%4][i]/6 + 
                         sensor_filter_buffer[(current_buf+2)%4][i]/3 + 
                         sensor_filter_buffer[(current_buf+3)%4][i]/3); 
    } 
    current_buf = (current_buf+1) % 4; 
 
    a_x = (sensor_buf[0] - a_Bias[0]) * ACCELEROMETER_GAIN; 
    a_y = (sensor_buf[1] - a_Bias[1]) * ACCELEROMETER_GAIN; 
    a_z = (sensor_buf[2] - a_Bias[2]) * ACCELEROMETER_GAIN; 
 
    w_x = toRadians((sensor_buf[3] - w_Bias[0]) * GYROSCOPE_GAIN); 
    w_y = toRadians((sensor_buf[4] - w_Bias[1]) * GYROSCOPE_GAIN); 
    w_z = 0; 
} 
 
float acc_angleX() { 
    return  atan2(a_y,a_z);//-(atan2(-a_z, a_y)-(3.14159/2.0)); 
} 
 
double gyro_rateX() { 
    //return -w_y; 
    return w_x; //6dof around x axis 
} 
float acc_angleY() { 
    return  atan2(a_x,a_z);//-(atan2(-a_z, a_y)-(3.14159/2.0)); 
} 
 
double gyro_rateY() { 
//    return -w_x; 
    return -w_y; // 6dof around x axis 
} 
 
float acc_angleY_invert()     
{   
    //return  atan2(a_x,-a_z); // facing upward 
    return  atan2(a_x,-a_z);   // facing downward -(atan2(-a_z, a_y)-(3.14159/2.0)); 
} 
 
double gyro_rateY_invert() 
{ 
//    return -w_x; 
//  return -w_y; // facing upward 6dof around x axis 
    return w_y; //  facing downward  
} 
 
void printAngle(void) { 
 
    pc.printf("%f,%f,%f\n", toDegrees(myfilter.getAngle()), acc_angleY(),gyro_rateY()); 
} 
 
void filter(void) { 
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    // execute kalman filter pitch 
    // dt = 0.00002 
    if (invertBalance){ 
        myfilter.updateFilter(acc_angleY_invert(), gyro_rateY_invert()); 
    } else { 
        myfilter.updateFilter(acc_angleY(), gyro_rateY()); 
    } 
} 
 
void InitializeAlphaBeta(float x_measured, float alpha, float beta, AlphaBeta* pab) { 
    pab->xk_1 = x_measured; 
    pab->vk_1 = 0; 
    pab->alpha = alpha; 
    pab->beta = beta; 
}    
 
void AlphaBetaFilter(float x_measured, float dt, AlphaBeta* pab) { 
    float xk_1 = pab->xk_1; 
    float vk_1 = pab->vk_1; 
    float alpha = pab->alpha; 
    float beta = pab->beta; 
    
    float xk; //current system state (ie: position) 
    float vk; //derivative of system state (ie: velocity) 
    float rk; //residual error  
     
    //update our (estimated) state 'x' from the system (ie pos = pos + vel (last).dt) 
    xk = xk_1 + dt * vk_1; 
    //update (estimated) velocity  
    vk = vk_1; 
    //what is our residual error (mesured - estimated) 
    rk = x_measured - xk;  
    //update our estimates given the residual error. 
    xk = xk + alpha * rk; 
    vk = vk + beta/dt * rk; 
    //finished! 
     
    //now all our "currents" become our "olds" for next time 
    pab->vk_1 = vk; 
    pab->xk_1 = xk; 
} 
 
Wiimote wii; 
// this is called by the USB infrastructure when a wii message comes in 
void wii_interrupt() { 
 
    // temporary action triggers 
    if (wii.up)   { 
        theta_m_ref = theta_m_ref + toRadians(20); 
    }  
    if (wii.down)   { 
        theta_m_ref = theta_m_ref - toRadians(20); 
    } 
    if (wii.left) { 
        dtheta_m_ref = toRadians(speed);         
    } else if (wii.right) { 
        dtheta_m_ref = toRadians(-speed);         
    } else { 
        dtheta_m_ref = 0;   
    } 
         
    if (wii.home) { 
      //  led3 = ON; 
        theta_m_ref = 0; 
        theta_ref = toRadians(0); 
         
        encoder.reset(); 
        ab_x.xk_1 = 0; 
        ab_x.vk_1 = 0; 
     //   executeOnce=false; 
    //    executeOnceGround=false; 
        PositionControlOn = true; 
    } 
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    if (wii.a) { 
     //   executeOnceGround=false; 
        PositionControlOn = false; 
    } 
    if (wii.b) { 
      //  led3 = ON; 
        PositionControlOn = true; 
        theta_m_ref = toRadians(1.5*360); 
        
    } 
    if (wii.plus){ 
        isControlOn = true; 
    } 
         
    if (wii.minus){ 
        isControlOn = false; 
    } 
    if (wii.one){ 
        speed += 360; 
        limit(speed, 360, 2520);     
    } 
    if (wii.two) { 
        speed -= 360; 
        limit(speed, 360, 2520); 
    } 
} 
 
inline void limit(double &input, const double &min, const double &max) 
{ 
    if (input > max) input = max; // duty limit 
    if(input < min) input = min; 
} 
 
inline void cls() { 
    pc.putc(27);   //Print "esc" 
    pc.printf("[2J"); 
} 
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IMUKalman.h 

 
#ifndef IMU_KALMAN_H 
#define IMU_KALMAN_H 
 
#include "mbed.h" 
 
class IMUKalman { 
 
public: 
      /** 
     * Constructor. 
     * 
     * @param 
     */ 
     // Constructor 
    IMUKalman(float Q_angle, float Q_gyro, float R_angle, float rate); 
     
    // input angle and dot_angle have to be same signed,i.e. both clocked wise positive/negative     
    void updateFilter(float angle, float dot_angle); 
     
    float getAngle(void);  
    float getdAngle(void); 
private: 
    struct Gyro1DKalman 
    { 
        /* These variables represent our state matrix x */ 
        float x_angle,  
              x_bias; 
        /* Our error covariance matrix */ 
        float P_00, 
              P_01, 
              P_10, 
              P_11;     
         
        /*  
         * Q is a 2x2 matrix of the covariance. Because we 
         * assuma the gyro and accelero noise to be independend 
         * of eachother, the covariances on the / diagonal are 0. 
         * 
         * Covariance Q, the process noise, from the assumption 
         *    x = F x + B u + w 
         * with w having a normal distribution with covariance Q. 
         * (covariance = E[ (X - E[X])*(X - E[X])' ] 
         * We assume is linair with dt 
         */ 
        float Q_angle, Q_gyro; 
        /* 
         * Covariance R, our observation noise (from the accelerometer) 
         * Also assumed to be linair with dt 
         */ 
        float R_angle; 
    }; 
     
    struct Gyro1DKalman filter; 
    float _filterRate; 
    float _angle;     
    float _dangle;     
     
    // Kalman predict 
    void ars_predict(float gyro);     
     
    // Kalman update 
    float ars_update(float angle_m); 
     
}; 
#endif /* IMU_KALMAN_H */ 
  



Appendix 

82 
 

IMUKalman.cpp 

#include "IMUKalman.h" 
#include <math.h> 
 
IMUKalman::IMUKalman(float Q_angle, float Q_gyro, float R_angle, float rate) 
{ 
    filter.Q_angle = Q_angle; 
    filter.Q_gyro  = Q_gyro; 
    filter.R_angle = R_angle; 
 
    filter.x_angle =0.0; 
    filter.P_00 =0.0; 
    filter.P_01 =0.0; 
    filter.P_10 =0.0; 
    filter.P_11 =0.0; 
     
    _filterRate = rate; 
} 
        
void IMUKalman::updateFilter(float angle_m, float dotAngle) 
{ 
   // ars_predict(dot_angle);    // Kalman predict         (float(yrate)-w_yBias ) *GYROSCOPE_GAIN; 
   // _angle = ars_update(angle);   
    _dangle = dotAngle - filter.x_bias; 
    filter.x_angle += _filterRate * (dotAngle - filter.x_bias); 
    filter.P_00 +=  - _filterRate * (filter.P_10 + filter.P_01) + filter.Q_angle * _filterRate; 
    filter.P_01 +=  - _filterRate * filter.P_11; 
    filter.P_10 +=  - _filterRate * filter.P_11; 
    filter.P_11 +=  + filter.Q_gyro * _filterRate; 
     
    float y = angle_m - filter.x_angle;     
    float S = filter.P_00 + filter.R_angle; 
    float K_0 = filter.P_00 / S; 
    float K_1 = filter.P_10 / S; 
     
    filter.x_angle +=  K_0 * y; 
    filter.x_bias  +=  K_1 * y; 
     
    filter.P_00 -= K_0 * filter.P_00; 
    filter.P_01 -= K_0 * filter.P_01; 
    filter.P_10 -= K_1 * filter.P_00; 
    filter.P_11 -= K_1 * filter.P_01; 
     
    _angle = filter.x_angle; 
} 
     
float IMUKalman::getAngle(void) 
{ 
   return _angle; 
}            
float IMUKalman::getdAngle(void) 
{ 
   return _dangle; 
}       
 
 
/* 
 * The predict function. Updates 2 variables: 
 * our model-state x and the 2x2 matrix P 
 *      
 * x = [ angle, bias ]'  
 *  
 *   = F x + B u 
 * 
 *   = [ 1 -dt, 0 1 ] [ angle, bias ] + [ dt, 0 ] [ dotAngle 0 ] 
 * 
 *   => angle = angle + dt (dotAngle - bias) 
 *      bias  = bias 
 * 
 * 
 * P = F P transpose(F) + Q 
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 * 
 *   = [ 1 -dt, 0 1 ] * P * [ 1 0, -dt 1 ] + Q 
 * 
 *  P(0,0) = P(0,0) - dt * ( P(1,0) + P(0,1) ) + dt&#65394; * P(1,1) + Q(0,0) 
 *  P(0,1) = P(0,1) - dt * P(1,1) + Q(0,1) 
 *  P(1,0) = P(1,0) - dt * P(1,1) + Q(1,0) 
 *  P(1,1) = P(1,1) + Q(1,1) 
 * 
 * 
 */ 
void IMUKalman::ars_predict(float dotAngle) 
{ 
    filter.x_angle += _filterRate * (dotAngle - filter.x_bias); 
    filter.P_00 +=  - _filterRate * (filter.P_10 + filter.P_01) + filter.Q_angle * _filterRate; 
    filter.P_01 +=  - _filterRate * filter.P_11; 
    filter.P_10 +=  - _filterRate * filter.P_11; 
    filter.P_11 +=  + filter.Q_gyro * _filterRate; 
} 
 
/* 
 *  The update function updates our model using  
 *  the information from a 2nd measurement. 
 *  Input angle_m is the angle measured by the accelerometer. 
 * 
 *  y = z - H x 
 * 
 *  S = H P transpose(H) + R 
 *    = [ 1 0 ] P [ 1, 0 ] + R 
 *    = P(0,0) + R 
 *  
 *  K = P transpose(H) S^-1 
 *    = [ P(0,0), P(1,0) ] / S 
 * 
 *  x = x + K y 
 * 
 *  P = (I - K H) P 
 * 
 *    = ( [ 1 0,    [ K(0), 
 *          0 1 ] -   K(1) ] * [ 1 0 ] ) P 
 * 
 *    = [ P(0,0)-P(0,0)*K(0)  P(0,1)-P(0,1)*K(0), 
 *        P(1,0)-P(0,0)*K(1)  P(1,1)-P(0,1)*K(1) ] 
 */ 
float IMUKalman::ars_update(float angle_m) 
{ 
    float y = angle_m - filter.x_angle;     
    float S = filter.P_00 + filter.R_angle; 
    float K_0 = filter.P_00 / S; 
    float K_1 = filter.P_10 / S; 
     
    filter.x_angle +=  K_0 * y; 
    filter.x_bias  +=  K_1 * y; 
     
    filter.P_00 -= K_0 * filter.P_00; 
    filter.P_01 -= K_0 * filter.P_01; 
    filter.P_10 -= K_1 * filter.P_00; 
    filter.P_11 -= K_1 * filter.P_01; 
     
    return filter.x_angle; 
} 
 


