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Abstract. Interest in dependency parsing increased because of its efficiency to represent
languages with flexible word order. Many research have applied dependency-based syntactic
analysis to different languages and results vary depending on the nature of the language. Lan-
guages with more flexible word order structure tend to have lower performances compared
to more fixed word order languages. This work presents, for the first time, a dependency-
based parsing for Tagalog language, a free word order language. The parser is tested using
manually assigned POS and auto-assigned POS data. Experiment results show an average
of about 78% accuracy on unlabeled attachment scores, and about 24% on complete depen-
dency scores. As the position of the sentence head is not fixed, we look into sentence head
accuracy as assigned by the parser. Results show that around 83% - 84% of the sentence head
are assigned correctly.
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1 Introduction
Morphologically rich languages (MRL) are languages where word-level information affects syn-
tactic relations (Tsarfaty et al., 2010). Recently, MRL have drawn attention in statistical parsing.
While state-of-the-art parsers brought high performance scores for languages such as English and
Japanese, this is not true for MRLs. Dependency parsing techniques and approaches are devel-
oped for languages with relatively fix word orders; however, they are not successful when applied
for MRL. In the 2007 CoNLL Shared Task on Dependency parsing, languages such English and
Catalan have top scores while languages with free word order and higher degree of inflection have
lower scores (e.g. Arabic, Basque)(Nivre et al., 2007). Although factors such as small data can
contribute to the degradation of the parser performance, linguistic factors such as morphologi-
cal inflection and freeness in word order have made it difficult to parse MRL with models and
techniques developed with languages like English (Tsarfaty et al., 2010).

In this paper we look into a state-of-art dependency parser applied on Tagalog language. Prior
to this work, there is no known data-driven dependency-based parsing for Tagalog. Tagalog is the
national language of the Philippines and is a member of the Austronesian language family. It is
a morphologically rich language which has affixations, stress shifting, consonant alteration, and
reduplication (Nelson, 2004). Affixations include prefixation, infixation, suffixation and circum-
fixation, where two or three affixes are attached to a root word. Highly inflected verbs show verbal
focus (actor, object, etc.) and aspect (perfective, imperfective, and contemplated).

Aside from its morphological complexity, sentences are word order free. In Tagalog sentences,
predicate comes first for pragmatically unmarked clauses but the NP complements take flexible
positions in the sentence (Kroeger, 1993). Figure 1 showing possible orders of the complements
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Figure 1: Three (3)of the possible translations of the sentence ”The man gave the woman a book”

in the Tagalog sentence ”Nagbigay ng libro sa babae ang lalaki” (The man gave the woman a
book). According to Schachter and Otanes (1972) as mentioned in Kroeger (1993), ”the sentences
include exactly the same components, are equally grammatical, and are identical in meaning”.
On the other hand, as briefly explained in Section 3, adverbial and nominal phrases may take
pre-verbal position.

For Tagalog sentences, dependency-based syntactic parsing is preferred over phrase-structure
based analysis because dependency analysis does not rely on word positions(Tsarfaty et al., 2010),
instead, sentence representations are based on links between words, called dependencies.

Due to limited resource, this work deals only with unlabeled data. Our corpus are annotated
with dependency heads but do not include dependency relations of the word (e.g.NMOD, ROOT).
We look into the unlabeled attachment scores (UAS), or the number of correct heads, as well as
complete scores. We also look into the number of sentence heads correctly predicted. The free
word order nature of Tagalog may put a verb at the initial position or after a nominal or adverbial
element in the sentence.

We briefly introduce dependency parsing in section 2, section 3 briefly explains sentence
structures in Tagalog and section 4 discusses the how heads are assigned to words in a sentence.
Sections 5 describes the experiment set-up and results. Finally, we discuss some issues found in
the parsing results in section 6.

Figure 2: An example of a dependency structure. (Source: McDonald and Pereira, 2006)
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2 Dependency Parsing

Dependency analysis creates a link from a word to its dependents. When two words are con-
nected by a dependency relation, one takes the role of the head and the other is the dependent
(Covington, 2001). The straightforwardness of dependency analysis has been used in other NLP
tasks such as word alignment (Ma et al., 2008) and semantic role labeling (Hacioglu, 2004). De-
pendency parsers developed were either graph-based (McDonald and Pereira, 2006) or transition-
based parsers (Nivre and Scholz, 2004; Yamada and Matsumoto, 2003). Syntactic analysis for
different languages also use dependency parsers such as in Japanese (Kudo and Matsumoto, 2001;
Iwatate et al., 2008), English (Nivre and Scholz, 2004), Chinese (Chen et al., 2009; Yu et al., 2008)
to mention some.

The task of dependency-based parsing is to construct structure for an input sentence and iden-
tify the syntactic head of the word in the sentence(Nivre et al., 2007). Figure 2 shows a sentence
with dependency arcs (below) and its equivalent dependency tree structure(top). Each word in
the sentence has one syntactic head except for the root or the head of the sentence. Dependency
trees can be projective or non-projective. It is projective if no arcs cross over when drawn above
the sentence, while it is non-projective when there are edges crossing each other. Non-projective
dependency is a result of parsing languages with more flexible word order such as German and
Czech(McDonald and Pereira, 2005).

In this work, we applied the graph-based maximum spanning tree(MST) parser of McDonald
and Pereira (2006) on Tagalog language. In MST, a sentence as x = x1 · · ·xn is represented as a
set of vertices V = v1 · · · vn in a weighted directed graph G. A dependency tree y of a sentence
is a set of edges (i, j), where (i, j) ∈ E in the graph G, E ⊆ [1 : n] × [1 : n] and edge (i, j)
exists if there is a dependency from word xi to word xj in the sentence. The maximum spanning
tree of graph G is a rooted tree y ⊆ E that maximizes the score

∑
(i,j)∈y s(i, j), where s(i, j) is

the score of a dependency tree y. For detailed explanation of MST, please refer to McDonald and
Pereira (2006).

3 Tagalog Sentences

3.1 Pre-verbal Position

As shown in Fig. 1, Tagalog NP complements take flexible position in the sentence. However,
nominal and adverbial elements may take pre-verbal position (Kroeger, 1993) such as the sen-
tences in Fig. 3.

(a) ay-inversion

(b) Topicalization

Figure 3: Sentences with pre-verbal elements (Source: Kroeger, 1993, p. 123)

3.2 Non-verbal Predicates

In addition to verbs, prepositional, nominal and adjectival phrases take predicate positions in the
sentence (Kroeger, 1993) . Figure 4 shows two sentences with non-verbal predicates. Sentence
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(a) Predicate Adjective

(b) Predicate NP

Figure 4: Examples of sentences with non-verbal predicate (Source: Kroeger, 1993, p. 131)

4a has an adjective ”bago” (new) as predicate while sentence 4b has the NP ”opisyal sa hukbo”
(officer in the army) as predicate.

Other linguistic explanations of Tagalog structures can be found in (Kroeger, 1993). Nagaya
(2007) also explains Tagalog syntax and pragmatics and how they interact in Tagalog clauses.

4 Dependency Heads

From the part-of-speech annotated corpora available, we manually assigned heads to words in
the sentences. Deciding ”What heads what?” may sound simple, however, often it is not. Nivre
(2005) discussed some criteria in distinguishing the head and dependent relations. For Tagalog,
we applied a head-complement, head-modifier, head-specifier relations principle.

In general, predicate comes before its complements, thus, annotating such sentences is straight-
forward, such as in Fig. 5 for the sentence ”Bumili ang lalaki ng isda sa tindahan” (The
man bought a fish at the store). The verb bumili (bought, actor focus) heads the complements
lalaki(man), isda (fish) and tindahan (store) and ang, ng and sa are dependents of the noun they
specify. Head-specifier relation refer to the determiner and noun relation.

Figure 5: Dependency relations between words in the sentence ”Bumili ang lalaki ng isda sa
tindahan”

4.1 Modifiers

Modifiers may appear in a linear order relative to the modified phrase (noun phrase or
verb)(Kroeger, 1993). They are connected with the noun phrase using a linker ”na” such as in
”mabait na bata” (good kid). However, when a modifier ends with a vowel or the letter ”N” such
as ”matalino” (smart) and ”antokin” (sleepy), the modifier is suffixed with -ng or -g (i.e. ”matali-
nong bata”(smart kid), antoking bata(sleepy child)). The latter case has a more direct annotation,
while the former has to be decided which heads linker ”na”. In this case, since the existence of
linker ”na” depends on the modifier, we assigned the modifier as the head of the linker. Figures
6a and 6b illustrates these dependencies.
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(a) ”a good kid” (b) ”smart kid ”

Figure 6: Dependencies for modifiers and nouns

Figure 7: Dependency structure for the sentence with ”ay”- inversion

4.2 Sentence Head

In case of a verbal predicate, the head of the VP phrase is the head of the sentence. However,
Section 3 explains different positions of verb in a sentence. One pre-verbal position of a sentence
is the use of lexeme ay. The sentence in Fig. 5 can be written as ”Ang lalaki ay bumili ng isda
sa tindahan” as in Fig. 7. The meaning of the sentence did not change; however, the nominative
argument ang lalaki is placed before the verb bumili(bought). According to Kroeger (1993), ay
could be treated as a kind of sentence-level auxiliary. In this case, if a sentence is in an ay-inversion
format, ay is assigned as the head of the sentence instead of the verb. The nominative argument
marked by determiner ang becomes a sibling of the verb. Sentences with non-verbal predicates
follow the basic head-modifier rule in case it is adjectival or PP predicates, making the head of the
modified phrase the head of the sentence.

5 Experiment

5.1 Data

The sentences used in the experiment were extracted from POS annotated Tagalog corpora con-
sisting of novels and short articles. We only chose sentences of lengths L, for 4 ≥ L ≤ 20. Longer
sentences have tendencies of lower accuracies while shorter sentences tend to perform better (Mc-
Donald and Nivre, 2008). A total of 2,741 sentences were used for the experiments. The total
number of sentences were then divided into 5 parts for a 5-fold cross validation. Table 1 gives
the data distribution in the 5-fold cross validation while Table 2 shows the distribution of the Test
and Training data by sentence lengths. Compared to other treebanks, Tagalog data set is relatively
small; however, this is the start in building Tagalog Dependency Treebank for future work.

Table 1: 5-fold Cross Validation Data Distribution

Data Test Train
1 548 2,192
2 548 2,192
3 548 2,192
4 546 2,194
5 550 2,190

Number of Sentences per Part
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Table 2: Test Data Distribution by Length

Test Data Train Data
Data/Lengths 4-10 11-15 16- 20 4-10 11-15 16- 20

1 295 148 105 1,192 569 432
2 297 145 106 1,190 572 430
3 260 159 129 1,227 558 407
4 302 141 103 1,186 576 433
5 333 124 93 1,155 593 443

Table 3: POS Tagging Results

Test Data POS Accuracy
1 89.09
2 87.18
3 88.84
4 89.37
5 90.46
average 88.96

5.2 Experiment Set-up

5.2.1 POS Tagging. Auto-assigned part-of-speech (POS) tagging is done using a conditional
random fields (CRF) based tool CRF++1. We used a hierarchical tag set for Tagalog with 88
specific tags derived from 10 word categories (verb, noun, adjective, etc.)2. The same data set
described in Section 5.1 are used in training and testing the POS tagger. POS tagging result is
given in Table 3.

5.2.2 Parsing. We performed dependency parsing using McDonald and Pereira (2006)’s MST
Parser. To be able to run the parser with morphological features, we used the CoNLL-X shared
task format3. The parser is trained with fine-grained and coarse-grained POS tags. Coarse-grained
POS, fine-grained POS, word stem (lemma) and morphological features (affixes and reduplication)
are used as input to the parser. In our experiments, we used two word related feature settings. First,
we run the parser with word stem feature and no morphological features, which we refer as MST
1 in Table 4; then we run the parser using word stem and morphological features (affixes and
reduplication) (MST 2 in Table 4). Summary of features for the parser is presented in Table 4.
We also run our parsers with first - order and second - order dependencies. First-order dependency
scores are limited to single edge dependency while second-order dependency takes the score of
two adjacent edges. Please refer to McDonald and Pereira (2006) for further explanations on
first-order and second-order dependencies.

5.3 Result

The Tagalog parsers are tested using manually assigned POS tags and automatically tagged POS
data. The manually assigned data is considered as the gold data in this work. Dependency parsing
results are shown in Table 5 for the manually assigned POS tags and Table 6 for the auto-tagged
POS. The parser is evaluated using unlabeled attachment score (UAS), or the accuracy of the total

1 CRF++ by Taku Kudo http://crfpp.sourceforge.net/
2 Unpublished work
3 CoNLL-X website http://ilk.uvt.nl/conll/
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Table 4: Parser Features

*CPOSTAG =coarse-grained POS tag, POSTAG=fine-grained POS tag

MST1 word form (or punctuation), lemma (word stem),
CPOSTAG, POSTAG

MST2 word form (or punctuation), lemma (word stem),
CPOSTAG, POSTAG , morphological info (affixes, reduplication)

Table 5: Test results using manually assigned POS tags

MST 1 MST 2
Test Data 1st Order 2nd Order 1st Order 2nd Order

UAS Complete UAS Complete UAS Complete UAS Complete
1 0.787 0.253 0.792 0.246 0.788 0.239 0.790 0.239
2 0.785 0.251 0.788 0.261 0.772 0.228 0.775 0.242
3 0.781 0.206 0.783 0.204 0.771 0.201 0.777 0.202
4 0.779 0.222 0.783 0.250 0.779 0.248 0.777 0.231
5 0.755 0.230 0.761 0.246 0.759 0.241 0.755 0.235
Ave 0.777 0.232 0.781* 0.241 0.773 0.231 0.774 0.229

* at α = 0.05, MST1 2nd order UAS is significant

number of correct heads assigned to each word. Complete dependency analysis is also computed,
or the number of sentences with (all) correct dependencies.

Affixes and reduplication information have helped in deciding the POS tags (Manguilimotan
and Matsumoto, 2009), thus we expected the same for parsing. However, this is not the case. In
Table 5, results show that 2nd-order MST1 features obtained the highest accuracy in both UAS
and complete scores for manually-tagged data compared to the test results using MST2 features. It
is to be noted that MST1 features do not include affix and reduplication information while MST2
has these features as described in Table 4. This may imply that correct POS information have
helped choose the head of the word and the use of other morphological information have harmed
the performance of the parser. On the other hand, the auto-tagged POS data in Table 6 shows
different results. The 2nd-order MST2 has the highest UAS but 2nd-order MST1 and 1st-order
MST2 has the highest in complete scores. The error in POS tagging (about 11%) have affected
the parsing results, but the morphological information (MST2) may have helped in choosing the
correct head of the word.

Aside from dependency accuracies, we also looked at the sentence head selection accuracy.
Here, we only considered correct sentence heads as chosen by the MST parser. Results are pre-
sented in Tables 7 and 8. The parser is about 84% accurate in choosing the sentence head for test
data with gold POS tags and about 83% for auto-tagged POS. Heads of shorter sentences were
mostly chosen correctly by the parser compared to those of longer sentences. Also, sentences with
heads in initial positions have mostly predicted correctly than those with pre-verbal elements such
as adverbial phrases, except for sentences with lexeme ”ay” as heads where they were mostly
correctly predicted.
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Table 6: Test results using auto-assigned part-of-speech tags

MST 1 MST 2
Test Data 1st Order 2nd Order 1st Order 2nd Order

UAS Complete UAS Complete UAS Complete UAS Complete
1 0.767 0.213 0.770 0.218 0.767 0.218 0.778 0.211
2 0.756 0.228 0.760 0.233 0.758 0.226 0.756 0.220
3 0.761 0.178 0.761 0.187 0.753 0.187 0.761 0.184
4 0.748 0.217 0.749 0.213 0.759 0.222 0.760 0.215
5 0.733 0.202 0.737 0.219 0.741 0.221 0.740 0.219
Ave 0.753 0.207 0.755 0.214 0.756 0.214 0.759* 0.209

* at α = 0.05, MST2 2nd order UAS is NOT significant

Table 7: Sentence Head Selection Accuracy with Manually Tagged POS

MST 1 MST 2
Test Data 1st Order 2nd Order 1st Order 2nd Order
1 85.40 86.50 85.95 86.86
2 82.66 82.30 81.39 80.84
3 84.12 84.12 83.21 83.39
4 81.45 81.27 80.73 80.73
5 88.12 87.93 88.48 88.85
Ave 84.35 84.43 83.95 84.13

6 Discussions

We looked at some words that we believed to have lower chances of ambiguity, for example,
determiners (DT) ang (the) and mga (plural marker for noun) considering that these do not require
morphological information. These two function words come together often to indicate plurality,
such as in ”ang mga bata” (the children) or ”ang mga bahay” (the houses). However, when
there are modifiers between the determiner ang or ang mga and the noun, the parser assigned
wrong head to the determiners. These cases may be isolated accounting part of the 10% error for
determiners in our data; however, this is still observable considering that distances between head
and dependent should not be a problem in MST parser.

Word categories that topped the errors in head selection are noun(NN), conjuncts(CC), ad-
jective(JJ) and adverb(RB). For NN, proper nouns such as titles (e.g. ”doktor tiburcio” (doctor
tiburcio), ”kapitan basilio” (captain basilio)) or a noun modifying another noun (e.g. ”balkon-
ahe=ng kawayan” (bamboo balcony or balcony made of bamboo)) are some cases that are found
to be inconsistent.

On the other hand, lexeme ”ng” is seen as ambiguous since it can function as a genetive marker
in ”kumain ng pan ang bata” (the child ate bread), where ”ng” is dependent on ”pan/NN” (bread),
or as a possessive marker in ”ang ina ng bata” (the child’s mother); in this case, ”ng” is dependent
on ”ina/NN” (mother). In both cases ”ng” is headed by a noun. The same is observed with ”sa”,
which can be a dative marker as in sentences in Fig. 3 or as part of an adverbial head phrase such
as in ”para sa” (for – benefactive), ”dahil sa” (because of – causative).

Although we did not include in Section 5.3, we initially run our parsers with sentence lengths
of greater than 30 words. Scores of those experiments are lower than the reported results in this
paper. This reiterates that shorter sentences perform better than longer sentences (McDonald and
Nivre, 2008). MST parser should not have a problem with distance, however, ambiguities in
sentences cannot be helped.
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Table 8: Sentence Head Selection Accuracy with Auto-Assigned POS Tags

MST 1 MST 2
Test Data 1st Order 2nd Order 1st Order 2nd Order
1 86.31 84.85 86.49 85.95
2 78.83 79.56 80.65 79.92
3 85.40 84.12 83.94 83.94
4 80.65 81.38 81.56 81.75
5 86.91 85.27 88.00 88.72
Ave 83.62 83.03 84.12 84.05

7 Summary

This paper introduces the first dependency-based syntactic analysis of Tagalog, a morphologically
rich and word order free language. We described the scheme we used in assigning the head of the
word. A state-of-the art dependency parser, MST parser, is used in our experiment. Experiments
are performed manually assigned POS, which is considered as the gold data, and automatically
tagged POS. When gold POS information are used, the parser tends to perform better when there
are no morphological information used as features. However, when auto-tagged POS are used, the
parser with morphological information has higher accuracy. This may indicate that morphological
information helps when POS tagging is not accurate.

Morphological information will be more interesting to examine in labeled dependency analysis,
especially verb affixes, because this will determine what kind of relationship does the verb have
with its arguments. However, our work only deals with unlabeled dependencies, thus semantic
relations of words are not included in our work.

Although dependency parsing is a more fitting framework than phrase-structure analysis in
dealing with languages with flexible word order it still does not perform better compared to lan-
guages with a more fixed word order. Parsing morphologically complex languages with free word
order gives rise to issues on the right data annotation, or what kind of morphological features are
to be included in the parser(Tsarfaty et al., 2010).

The parsing results for Tagalog is still not high enough compared to other languages. Whether
the factors of dependency parsing for Tagalog is the small sized data or the inadequacy of features,
we still have to know. As our future work, we aim to increase the size of the Tagalog dependency
treebank we have started. And since our current work deals only with unlabeled data, the next
step is to run parser with labeled dependency relations and see which morphological features best
solve issues in Tagalog dependency parsing.
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