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Chapter 1

Introduction

1.1 Research Background and Motivation

Scheduling is a decision making practice that plays a decisive role in most man-

ufacturing and services industries, which has significant impact on increased pro-

ductivity, customer satisfaction, cost reduction and overall competitive advantage.

However, with the development of modern manufacturing industries, the customers

are demanding high-variety products, which have contributed to an increase in prod-

uct complexity. Therefore, the effective scheduling system becomes more essential

to face the competitive markets. An effective scheduling leads to increase in capac-

ity utilization efficiency, thereby shortening the time required to complete jobs and

consequently increasing the profitability of an organization in present competitive

environment. The Flow Shop Scheduling Problem (FSSP) is generally considered to

be one of the most critical issues in manufacturing industries of steel, semiconductor,

textile, furniture and etc.

In flow shop production environment, the permutation FSSP and reentrant FSSP

are two representative scheduling problems, which are most investigated in this dis-

sertation. The jobs of permutation FSSP are to be processed through a series of ma-

chines for optimizing number of required criteria. The permutation FSSP is proved

to be NP-hard and even small size problems are difficult to solve. The reentrant

1



1. INTRODUCTION

FSSP is a more complex problem than permutation FSSP. It usually appears in the

semiconductor industries, in which the routes of jobs on the machines are identical

as in permutation FSSP, but the jobs must be processed by several machines in mul-

tiple times. Minimizing makespan (the time interval required to complete all the

jobs) is one of the most essential criteria for the manufacturing industries to reduce

cost and improve productivity. The first target of this dissertation is to minimize

makespan for permutation FSSP. Furthermore, the highly competitive industries,

such as food, beverage and semiconductor industry, also need on-time delivery to

response the stress of competition on the markets. These industries have to offer a

great variety of different and individual products while customers are expecting or-

dered goods to be delivered on time. Hence, there is a requirement of multi-objective

scheduling system through which all the objectives can be achieved simultaneously.

To solve the multi-objective permutation FSSP and reentrant FSSP is the second

target in this dissertation.

Due to the great complexity of permutation FSSP and reentrant FSSP, many

researchers have dealt with such problems using some heuristic approaches, such as

genetic algorithm, simulated annealing, taboo search and etc. However, based on the

traditional methods it is hard to deliver an effective solution in a limited computation

time, especially for large size problems. Since last decades, numerously prospective

researches have demonstrated that quantum computing is much efficient and fast for

solving various complex problems on the quantum computer. Recently, the merging

evolutionary computation and quantum computing have taken a great progression.

Inspired by the concept of quantum computing, a new approach called Multi-update

Mode Quantum Evolutionary Algorithm (MMQEA) has been proposed. MMQEA

is innovated by q-bit individual and q-gate. The q-bit individual has a probabilistic

representation of the solutions inspired by the superposition of q-bit. The q-gate

with multi-update mode is used to renovate the quantum states of q-bit individ-

ual to evolve towards better solutions. The numerous experiments have verified

that MMQEA have good global search ability, fast convergence behavior to address

permutation FSSP with makespan criterion.

2



1.2 Scope of Present Work

Based on the achievement of MMQEA, an effective multi-objective optimiza-

tion algorithm called Parallel Quantum Evolutionary Algorithm (PQEA) has been

developed to solve the multi-objective permutation FSSP. PQEA, a universal com-

putation technique, is applicable for solving a variety of multi-objective optimization

problems. The experimental results on benchmark problems has demonstrated that

PQEA advances the most of famous algorithms both in low computational cost and

dominated solution attainment. Although PQEA has already archived better solu-

tions on the multi-objective permutation FSSP, there is still some space to promote

more. To further improve solution quality and accelerate convergence of PQEA, Al-

ternated Neighborhood Search (ANS) procedure is proposed. The wide search space

is exploited by the interaction of neighborhoods in ANS which combines with PQEA

obviously improved the convergence speed without cost of any external computation

time.

In order to verify the practical applicability of developed approach, PQEA has

been tested in a multi-objective reentrant FSSP of a real-world semiconductor fac-

tory. Due to the complexity of reentrant FSSP, the Quantum-to-Job (Q-to-J)

method that transforms quantum states to real reentrant-job’s identifiers is pro-

posed. The results show that solutions obtained by PQEA have significantly im-

proved both makespan and on-time delivery criteria, comparing with the previous

used one in this factory.

1.2 Scope of Present Work

In present work, quantum-inspired optimization approaches have been proposed for

single objective and multi objective flow shop scheduling problems. The MMQEA

and PQEA are developed for single objective and multi-objective flow shop schedul-

ing problems with the performance measures including maximum tardiness, makespan,

penalty cost for tardy jobs. This work will also benefit the development of optimiza-

tion techniques that can be applied to other combinatorial optimization problems.

Further, present works demonstrate the suitability and applicability of MMQEA and

PQEA on single and multi objective knapsack problems. The ANS is neighborhood

3



1. INTRODUCTION

based local search strategy, which can also been applied for scheduling the jobs in

a job shop or open shop manufacturing system with other performance measures

such as total flow time, total weighted tardiness, number of tardy jobs and etc. Pro-

posed approaches are practical for scheduling any number of jobs on m-machines

in production shop environment for meeting the said multi-objectives for achieving

organizational and individual goals.

1.3 Outline of This Dissertation

This dissertation falls into six chapters. The background, problem, motivations are

described in chapter 1. Chapter 2 introduces the MMQEA for permutation FSSP

with makespan criterion. Chapter 3 presents the proposed PQEA framework to

solve the multi-objective permutation FSSP in which the makespan and maximum

tardiness are optimized, simultaneously. To further improve the performance of

PQEA, Chapter 4 describes neighborhood based local search ANS which consists of

basic procedure and two neighborhood structures MOINS and MOEXC. Chapter 5

states the proposed Q-to-J and combines with PQEA to solve a scheduling problem

in a real-world semiconductor factory, providing the comparison of system perfor-

mance before and after using proposed approach. Finally, conclusions and some

suggestions for further work in this area are presented in chapter 6.

4



Chapter 2

MMQEA for Permutation FSSP

with Makespan Criterion

2.1 Introduction

In artificial intelligence, an evolutionary algorithm (EA) is a subset of evolutionary

computation and a genetic population based meta-heuristic optimization algorithm.

EA uses some mechanisms inspired by biological evolution: reproduction, mutation,

recombination, and selection. Candidate solutions to the optimization problem play

the role of individuals in a population, and the fitness function determines the envi-

ronment within which the solutions “live”. EA differs with traditional optimization

techniques in that it involves a search from a “population” of solutions, not from a

single point, and applies the principle of survival of the fittest to produce successively

better approximations to a solution. The “recombination” and “mutation” are used

in EA to generate new approximate solutions that are biased towards regions of the

space for which good solutions have already been seen. Evolution of the population

takes place after the repeated application of the above operators. Up to now, several

different types of evolutionary search methods were developed independently, such

as evolutionary programming, genetic algorithms and etc.

5



2. MMQEA FOR PERMUTATION FSSP WITH MAKESPAN
CRITERION

Quantum computer was proposed in the early 1980s [1], [2], which is a device

for computation that makes direct use of quantum mechanical phenomena, such as

superposition and entanglement, to perform operations on data. The basic principle

behind quantum computation is that quantum properties can be used to represent

data and perform operations on data [3]. The most famous quantum algorithms

such as Shors quantum factoring algorithm [4],[5] and Grovers database search al-

gorithm [4], [6] demonstrate that quantum computer is more powerful than classical

computers on specialized problem. In recently, research on merging evolutionary

computing and quantum computing has been progressed actively, such as paper [7],

[8], [9] and etc. Han and Kim proposed quantum evolutionary algorithm (QEA) that

integrated some concept and principles of quantum computer such as a quantum bit

(q-bit) and superposition state to EA. The result of QEA shows that it performs

well, even with a small population, without premature convergence compared with

the conventional GA. Due to it’s high efficacy, QEA has been applied to solve many

kinds of NP-hard problems, such as the researches [10], [11] and etc. QEA uses

a q-bit as a probabilistic representation, defined as the smallest unit of informa-

tion. The q-bit individual consists of a string of q-bit, which has the advantage that

it can represent a linear superposition of states (binary solutions) in search space

probabilistically. The quantum gate is designed as variational operator to update

the state of q-bit in individual to search the fitter solution. However, in QEA, each

q-bit individual evolves independently, in which the state of q-bit is updated on only

situation, that causes the convergence of algorithm in early and effects on the search

capability directly, especially in a large population.

Therefore, a novel approach of multi-update mode and corresponding individual

structure are proposed. Inspiration from the characteristic quantum entanglement,

an individual of MMQEA comprises two interactional q-bit strings. Each q-bit string

of the individual provides its evolutionary information to other one and also can re-

ceive information from the interactional one in every generation, which maintains the

population more diversified and avoid premature. Multi-update mode is proposed

as a variational operator to drive the individuals toward better solutions and even-

tually toward a single state. By these inherent mechanism, the proposed algorithm

6



2.2 Main Framework of MMQEA

can treat the more balance between exploration and exploitation compared with

previous quantum evolutionary algorithm. To demonstrate the applicability and

efficiency of MMQEA, the permutation FSSP and knapsack problems are applied

to test the performance, and comparing with GA and previous QEA.

This chapter is organized as follows. Section 2 firstly introduces some basics of

quantum computing and presents the MMQEA details in later. Section 3 applies

MMQEA to knapsack problems and permutation FSSP, summarizes the experimen-

tal results and analyzes the characteristics of MMQEA. Concluding remarks follow

in Section 4.

2.2 Main Framework of MMQEA

2.2.1 Basics of Quantum Computing

Before describing MMQEA, the basics of quantum computing are presented briefly

in the following. A q-bit is a smallest unit of quantum information. It has some

similarities to a classical bit, but is overall very different. The difference is that

whereas a bit must be either 0 or 1, a q-bit can be 0, 1, or a superposition of both.

So a q-bit has a characteristic that it can represent three states simultaneously. The

state of a q-bit can be represented as Eq. 2.1.

|ψ〉 = γ|0〉+ η|1〉 (2.1)

Here, γ and η are probability amplitudes which in general are complex numbers.

When we measure this q-bit in the standard basis, the probabilities of outcome |0〉
and |1〉 are |γ|2, |η|2, respectively. As the absolute squares of the amplitudes are

probabilities, γ and η must follow the below constraint.

|γ|2 + |η|2 = 1 (2.2)

In quantum computing, quantum gates, which are represented by matrices, can
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be visualized as rotations of the quantum state on the Bloch sphere [12]. It is a

reversible gate and can be represented as a unitary operator U acting on the q-bit

basis states satisfying U ′ ∗U = U ∗U ′, where U ′ is the hermitian adjoint of U . There

are several quantum gates, Rotation gate and Hadamard gate and etc, for various

quantum algorithms to update the states of quantum system [13].

In MMQEA, the q-bit is also treated as basic unit information. MMQEA is

designed with a novel q-bit individual and the multi-update mode as a variational

operator, which are presented in following section.

2.2.2 Proposed Quantum Individual Structure

The q-bit string (object) with m q-bits is defined as:

q =

[

γ1

η1

∣

∣

∣

∣

γ2

η2

∣

∣

∣

∣

...

...

∣

∣

∣

∣

γm
ηm

]

(2.3)

where, |γi|2 + |ηi|2 = 1, i = 1, 2, ..., m. If there is, for instance, a three q-bit string

with three pairs of amplitudes such as:

[

1√
2

1√
2

∣

∣

∣

∣

∣

− 1√
2

1√
2

∣

∣

∣

∣

∣

1
2√

3
2

]

(2.4)

Then, states of the q-bit string can be represented as:

−1/4|000〉−
√

3/4|001〉+1/4|010〉

+
√

3/4|011〉−1/4|100〉−
√

3/4|101〉

+ 1/4|110〉+
√

3/4|111〉 (2.5)

The above result means that the probabilities of the states |000〉 , |001〉 , |010〉 ,
|011〉 , |100〉 , |101〉 , |110〉 and |111〉 , are 1/16, 3/16, 1/16, 3/16, 1/16, 3/16, 1/16 and

3/16, respectively, and also indicates that this q-bit string contains the information

of eight states.
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2.2 Main Framework of MMQEA

In quantum computing, if there is a system with two or more objects, quantum

entanglement is a property of the system in which the quantum states of the these

objects are linked together so that the quantum states of one object can no longer

be adequately described without full mention of its counterpart [14]. It means that

these objects in system interact with each other. The state of one object is not

entirely independent of other states, and its state is dependent on another state

in some way. The most EAs individuals are lack of evolving themselves to adjust

the balance of exploitation and exploration, on which rely on biological operator to

maintain the population diversity. The individual in MMQEA inspired by quantum

entanglement, which composed of a pair of q-bit strings, the each q-bit string is

not evolved lonely, while the other q-bit string provides its evolutionary history

information to it to birth next generational q-bit string. So the MMQEA has the

ability to keep population diversity by individual itself. The individual of MMQEA

is called Dq-bits (double q-bit strings). The individual structure is defined as:

Definition 1: A Dq-bits individual is composed of a pair of q-bit strings are

given as

dj(t) =

[

qαj (t)

qβj (t)

]

(2.6)

Where t is generation times, j is the index of individual in population. The

length of q-bit string is m. α and β are q-bit update modes, will be introduced in

next subsection. qαj (t) and qβj (t) are q-bit strings, the states of which are updated

by α-update and β-update mode respectively. They are shown in Eq. 2.7.

qαj (t) =

[

γtαj1
ηtαj1

∣

∣

∣

∣

γtαj2
ηtαj2

∣

∣

∣

∣

...

...

∣

∣

∣

∣

γtαjm
ηtαjm

]

qβj (t) =

[

γtβj1
ηtβj1

∣

∣

∣

∣

γtβj2
ηtβj2

∣

∣

∣

∣

...

...

∣

∣

∣

∣

γtβjm
ηtβjm

]

(2.7)

Where, γ and η are coefficient of |0〉 and |1〉 as represented in last section.

MMQEA is a probabilistic algorithm similar with the other EAs, however, maintains

9
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|1>
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1
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Figure 2.1: Polar plot of rotational gate

a population of Dq-bits individuals, as MMQ(t) = {d1(t), d2(t), . . . , dn(t)}, n is size

of population.

2.2.3 Quantum Gate Instruction

In quantum computing, q-gate usually is a reversible unitary matrix [15]. Han and

Kim designed a q-gate for QEA [16], as Eq. 2.8. The q-gate U(∆θji) is employed to

update the state of q-bit of individual.

U(∆θji) =

[

cos(∆θji),
sin(∆θji),

− sin(∆θji)
cos(∆θji)

]

(2.8)

The ∆θji is a rotation angle of each q-bit toward either |0〉 or |1〉 state. A q-bit

through the q-gate updating as Eq. 2.9 can get a new q-bit and always the next

generation q-bit states satisfied
∣

∣γt+1
ji

∣

∣

2
+

∣

∣ηt+1
ji

∣

∣

2
= 1.

[

γt+1
ji

ηt+1
ji

]

=

[

cos(∆θji), − sin(∆θji)
sin(∆θji), cos(∆θji)

]

∗
[

γtji
ηtji

]

(2.9)
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2.2 Main Framework of MMQEA

Algorithm 1: Main Procedure of MMQEA

Input: T - Maximal Generation times, m- Length of q-bit String, n-
Population Size.

Output: b- Final Founded Best Solution.

begin
t← 0;

1 Initialize MMQ(t);

2 Make Pc(t) by observing the states of qαj (t) and qβj (t) in MMQ(t);

3 Evaluate Pc(t);
4 Store the best solutions among Pc(t) into B(t);

while t < T do
t← t+ 1;

5 Make Pc(t) by observing the states of qαj (t− 1) and qβj (t− 1);

6 Evaluate Pc(t);
7 Store the best solutions among B(t− 1) and Pc(t) into B(t);
8 Store the best solution b among B(t);

9 Update qαj (t) and qβj (t) using α-update mode and β-update mode,
respectively;

10 if immigration condition satisfied then
Cover all the items of B(t) with b;

end

end

end

The polar plot of rotational q-gate for updating the state of a q-bit is depicted in

Fig. 2.1. We should design the value of angle parameters ∆θji for the different kinds

of problems to control the convergence of algorithm. In this chapter, the rotated

direction on clockwise is considered as positive rotation.

2.2.4 Proposed Procedure of MMQEA

The structure of MMQEA is described in the Algorithm 1.

(1) MMQ(t) is initialized. All of q-bit states of individuals are given as:

[

γtαji
ηtαji

]

=

[

1√
2

1√
2

]

,

[

γtβji
ηtβji

]

=

[

1√
2

1√
2

]

(2.10)
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It means that all the individuals that consist of q-bit with the same states, represent

the linear superposition of all possible states with same probability in the first step.

Where, i is the position of q-bit in the q-bit string, from [1, m], j is the individual

index in population, from [1, n].

(2) The Pc(t) is population of solutions as Eq. 2.11. The binary solutions in Pc(t)

are transformed from the q-bit strings by observing procedure. The observing proce-

dure is described as following. Let δ be a random number generated from the uniform

distribution [0, 1]. If ηtαji satisfies
∣

∣ηtαji
∣

∣

2
> δ, then the bit xαji(t) of the binary string

is set to 1, otherwise set to 0. Thus, binary string xαj (t) = {xαj1(t), xαj2(t), ..., xαjm(t)}
is formed. The same way is applied to produce xβj (t). The binary solutions xαj (t)

and xβj (t) are observed from qαj (t), qβj (t), respectively.

Pc(t) =

(

xα1 (t), xα2 (t), ..., xαn(t)

xβ1 (t), xβ2 (t), ..., xβn(t)

)

(2.11)

(3) All the binary solutions xαj (t) and xβj (t) are evaluated to give their fitness

values.

(4) The initial best solutions are selected among the binary solutions in Pc(t), and

stored into B(t), where B(t) = {b1(t), b2(t), . . . , bn(t)}, bj(t) = max{xαj (t), xβj (t)}1.
xαj (t) and xβj (t) are observed by two q-bit strings of the jth individual, until here

t = 0.

(5, 6) In the repetition loop, binary solutions in Pc(t) are formed by observing

xαj (t−1) and xβj (t−1) as the step 2, each binary solution is evaluated for the fitness

value.

(7) In this step, B(t) is updated. B(t) saves n current best solutions that are

used to update the states of q-bit strings in each individual. If the solution xαj (t) or

xβj (t) is better than bj(t−1), then bj(t)← xαj (t) or xβj (t), otherwise bj(t)← bj(t−1).

(8) The solution b, which is selected the best one from B(t), is recorded as the

current global best solution.

1If the optimization problem is for minimization, bj(t) = min{xα
j (t), xβ

j (t)}.
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2.2 Main Framework of MMQEA

Table 2.1: Rotational direction θi
xji bji(t) γtαji ∗ ηtαji ≥ 0 γtαji ∗ ηtαji < 0

α update mode

0 0 0 0
0 1 +∆θi −∆θi
1 0 −∆θi +∆θi
1 1 0 0

β update mode

0 0 0 0
0 1 −∆θi +∆θi
1 0 +∆θi −∆θi
1 1 0 0

(9) Update procedure is a core technique of MMQEA. For describing the update

approach, we should firstly denote that “F” is objective function, which is used

to calculate a binary solution to a value, the binary solution xj = xαj (t) or xβj (t)

and bj(t) is the jth item in B(t). The q-gate represented in last section used to

update all the q-bits of individual, where ∆θji is a rotational angle of each q-bit

toward either |0〉 or |1〉 state in polar coordinates. The rotational direction of ∆θji

is obtained as a function of bji(t) (the ith bit of the bj(t)) and xji (the ith bit of

the binary solution xj). We should contrast the binary numbers that are in the

same positions of bj(t) and xj to deicide rotational direction of ∆θji for the q-bit

in same position of q-bit string. The rotational directions are set by some intuitive

reasons. There are four kinds of situation to contrast two binary numbers to decide

rotational direction, which are represented as Table 2.1. The absolute value of ∆θji

should be designed in compliance with the application problem, usually from 0 to

0.02π [11]. In MMQEA, an individual is consisted of double q-bit strings, while they

are updated by different strategies which are called α-update mode and β-update

mode defined as bellow:

Definition 2: α-update mode: Binary solution xj used to update qαj (t), only

if F(xj) ≥ F(bj(t))
1, where, rotated direction of ∆θji as Table 2.1.

The means of “+” and “−” in the above tables is that rotated angle on clockwise

or anticlockwise to change the probability of the 1 (or 0) state to that of 0 (or 1)

1If the optimization problem is for minimization, condition in Definition 2 and Definition 3
change to F(xj) < f(b) and F(xj) ≥ f(b), respectively.
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b
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Figure 2.2: One part of multi update mode

state. The state of q-bit also decides the rotated direction, if the q-bit located in

the first or third quadrant rotated direction is opposite with in second or fourth

quadrant.

Definition 3: β-update mode: Binary solution xj used to update qβj (t), only

if F(xj) < F(bj(t)), where, rotated direction of ∆θji as Table 2.1.

The q-bit strings qαj (t) and qβj (t) have the evolved history information of them-

selves by α and β update modes respectively, after some generational evolution. If

the qαj (t) and qβj (t) are always evolved by above mentioned α and β independently,

obviously, they are both easily trap on local optimum. So this chapter proposes a

multi-update structure that makes qαj (t) and qβj (t) are not evolved alone, in every

generation while each q-bit string is updated, it always considers the other ones

history evolutionary information. As at the generation t, firstly, both qαj (t) and

qβj (t) are observed to get binary strings xαj (t) and xβj (t) (as a and c procedure in

Fig. 2.2), respectively. The F(xαj (t)), F(xβj (t)) and F(bj(t)) values of the solutions

xαj (t), x
β
j (t) and bj(t) decide the update mode on the individual. If the condition

“F (xαj (t)) ≥ F (bj(t))&&F (xβj (t)) ≥ F (bj(t))” is satisfied, the update mode that is

presented in Fig. 2.2 is employed. Since xαj (t) and xβj (t) are both fitter that current

best solution bj(t), the state of q-bit string qαj (t) is updated twice by xαj (t) and xβj (t)

14



2.2 Main Framework of MMQEA

( )jq t!

( )jx t!

( )jq t"

( )jx t"

( 1)jq t! #
!-update

"-update
( 1)jq t" #

!-update
( )jq t! *( )j

q t
!

( )jx t!

( )jq t"

( )jx t"

( 1)jq t! #
!-update

( )jq t!

*( )jq t"

( )jx t!

( )jq t"

( )jx t"

"-update
( 1)jq t" #

"-update

( )jq t!

( )jx t!

( )jq t"

( )jx t"

( 1)jq t! #

( 1)jq t" #
"-update

!-update

A:  F(xj
!(t)) " F(bj(t)) && F(xj

#(t)) " F(bj(t))D:  F(xj
!(t)) " F(bj(t)) && F(xj

#(t)) $ F(bj(t))

B:  F(xj
!(t)) $ F(bj(t)) && F(xj

#(t)) " F(bj(t))C:  F(xj
!(t)) " F(bj(t)) && F(xj

#(t)) $ F(bj(t))

Figure 2.3: Status of multi update mode

(b and d procedures in Fig. 2.2), whereas the state of qβj (t) is not updated to keep

the foregone state.

There are four situations to compare the value of F(xαj (t)), F(xβj (t)) and F(bj(t)).

The multi-update structure is as Fig. 2.3. The update methods for updating indi-

vidual depend on magnitude F(xαj (t)), F(xβj (t)) and F(bj(t)), which present at the

part A, B, C and D of Fig. 2.3. Part A is same as Fig. 2.2. Part B: if bj(t)

is worse than xβj (t) but fitter than xαj (t), x
β
j (t) is copied to xj (xβj (t)→xj), Then,

the states of qαj (t) are updated by α-update on xj and bj(t), at one time xαj (t)→xj ,
β-update is processed on qβj (t) with xj and bj(t), to get qαj (t + 1) and qβj (t + 1),

respectively. If bj(t) is better than xαj (t) and xβj (t), firstly xβj (t) and bj(t) are used

to update the state of qβj (t) on β-update to get a new q-bit string qβj
∗
(t), and then

xαj (t)→xj, β-update is continuously processed to update qβj
∗
(t) with xj and bj(t) to

get qβj (t + 1), as Part C. Part D: if bj(t) is worse than xαj (t) but fitter than xβj (t),

α-update and β-update are processed on xαj (t), q
α
j (t) and xβj (t), q

β
j (t) respectively,

to get qαj (t+ 1) and qβj (t+ 1).

(10)The immigration condition is designed as a parameter of generation times.

The immigration mechanism is used to lead MMQEA having a fast convergence for
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finding the optimal solution. Here, “tm” and “t” are immigration-term and current

generation time, respectively. If the remainder of “t/tm” is zero, best solution b is

transferred to cover for all items of B(t). All the individuals have a same global

best solution b to guide the evolvement of q-bit strings in individuals.

2.3 Comparisons and Experimental Results Anal-

ysis

2.3.1 MMQEA Application for Knapsack Problems

2.3.1.1 Knapsack Problem and Test Data

The knapsack problem [17], a representative combinatorial optimization problem, is

used to investigate the performance of MMQEA and to demonstrate the applicability

of the proposed algorithm. It can be described as selecting from among various

items, which are most profitable, and the given knapsack has limited capacity. The

knapsack problem is formalized as:

Given a set of m items and a knapsack, select a subset of the items so as to

maximize the profits f(x):

f(x) =

m
∑

i=1

pi ∗ xi (2.12)

Subject to

m
∑

i=1

wi ∗ xi ≤ C (2.13)

Where, x = (x1, x2, . . . , xm), xi is 0 or 1, pi is the profit of item i, wi is the weight

of item i, and C is the capacity of knapsack. If xi = 1, the ith item is selected for

the knapsack. In this chapter, strongly correlated sets of data are considered as

wi = uniformly random [1, v]; pi = wi + r; v = 10 and r = 5.
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The following average knapsack capacity was used:

C =
1

2

m
∑

i=1

wi (2.14)

The data are unsorted. Three knapsack problems with 100, 250, and 500 items

were considered.

2.3.1.2 Implementation on Knapsack Problem

MMQEA for the knapsack problem consists of a basic structure of MMQEA and a

repair procedure to satisfy the capacity constraint. An MMQEA individual with a

pair of q-bit strings that have m q-bits represents two linear superposition solutions

at one time to the problem. The length of q-bit string is same as the number of

items. Firstly, the all q-bits of individuals are initialized with same states. It means

that all the items are selected with the same probability. Since the evolved state

of q-bit is a similar probabilistic evolution, the observing procedure, which makes

the superposition solution to binary solution, can be considered as a summarization

of evolved history information of q-bit strings. The observing procedure that is

presented in step 2 of MMQEA in section 2.2.4 transforms the quantum states to

a binary solution. Then binary solutions should be evaluated on step 3 and 6 of

MMQEA. The repair procedure presented as Algorithm 2 is used before evaluating

because of some solutions that observed from q-bit string may be infeasible. Only

if the solutions exceed the constraints of problems, the repair procedure is used to.

QEA also uses the same repair procedure.

In the knapsack problem, the magnitude of |∆θji| has an effect on the speed

of convergence. In our experiments, for comparing with the QEA, MMQEA and

QEA for knapsack problem selected the same value, as |∆θji| = 0.015π. In our

experiments, the generation time “T” of MMQEA and QEA are both set as 1000.

The immigration-term “tm” is designed with 200. Until the termination condition

is satisfied, MMQEA is still running in the while loop.
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Algorithm 2: Infeasible solution repair procedure

Input: xj(t)- Infeasible binary solution.
xj(t) = xj1(t), xj2(t), ..., xjm(t).

Output: x∗j (t)- Feasible binary solution.

begin
Knapsack-overfilled ← true;
while Knapsack-overfilled do

Select an ith item from knapsack;
if xji(t) == 1 then

xji(t) ← 0;
if

∑m

i=1wi ∗ xji(t) ≤ C then
Knapsack-overfilled ← false;

end

end

end
while Not Knapsack-overfilled do

Select an kth item from knapsack;
if xjk(t) == 1 then

xjk(t) ← 0;
if

∑m

i=1wi ∗ xji(t) > C then
Knapsack-overfilled ← true;

end

end

end
xjk(t)← 0;
x∗j (t)← xj(t);

end

2.3.2 MMQEA Performance Comparisons

In this Section, The experiment results of MMQEA for knapsack problems are used

to compare with QEA and GA. The population size of MMQEA1, MMQEA5, and

MMQEA10 are set as 1, 5, and 10, respectively. As a performance measure of the

algorithms, it collects the best solutions found within 1000 generations over 30 runs,

recorded the elapsed time per run, which is summarized in Table 2.2 and Table 2.3,

where the data of QEAs and GAs columns are organized from Han’s paper[7].

The population size of GA10 and GA50 are 10 and 50, where (0.3, 0.15) is selected
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Table 2.2: Performance comparisons of MMQEA and QEA

Items Value
QEAs MMQEAs

QEA2 QEA10 MMQEA1 MMQEA5 MMQEA10
b 597.7 603.3 622.4 634.3 640.1
m 591.8 592.3 614.9 621.1 629.8

100 w 582.5 582.4 608.5 616.9 620
t 0.021 0.04 0.047 0.201 0.489
σ 4.84 3.308 2.01 1.89 1.48
b 1480.2 1499.7 1544.9 1558.4 1571.9
m 1464.5 1476.2 1512.7 1520.4 1542.7

250 w 1445.1 1460.8 1505 1510.2 1519
t 0.055 0.101 0.109 0.519 0.911
σ 9.554 6.321 5.909 4.98 3.901
b 2899.7 2917.1 2999.8 3023.6 3030.1
m 2876.4 2907.9 2962.9 2996.7 2998.3

500 w 2836.2 2874.1 2908.8 2982.9 2984.4
t 0.117 0.211 0.22 1.232 2.51
σ 12.832 9.411 10.01 4.079 3.001

as ordered pair of the mutation and crossover probabilities that gave the maximum

profits. In the QEA, one q-bit string is regarded as an individual. The population

size of QEA1, QEA2 and QEA10 are 1, 2, and 10 and have 1, 2 and 10 q-bit

strings, respectively. In Table 2.2, where b, m and w are the final best values, mean

values and the worst values, respectively. Unit of t is second per run; σ represents

the mean squared error of results. As Table 2.2 and Table 2.3 shows, MMQEAs

yielded much better results compared to GAs and QEAs with 100 items which is

a relatively simple one compared with the other cases. In the cases 250 and 500

items, MMQEAs found the better solutions within a short time compared to GAs.

The results also gained that MMQEAs perform well even with a small population.

Compared the MMQEA1 with QEA2 and MMQEA5 with QEA5 that have same

number of q-bit strings, MMQEA1 and MMQEA5 get the better solutions due to

Multi-update modes are applied.

Fig. 2.6 shows the progress of the best values, worst values and the mean values of

the population evolvement found by QEAs and MMQEAs over 30 runs for 100, 250,

19



2. MMQEA FOR PERMUTATION FSSP WITH MAKESPAN
CRITERION

Table 2.3: Performance comparisons of MMQEA and GA

Items Value
GAs MMQEAs

GA10 GA50 MMQEA1 MMQEA5 MMQEA10
b 597.6 602.2 622.4 634.3 640.1
m 587.8 593.6 614.9 621.1 629.8

100 w 577.6 582.6 608.5 616.9 620
t 0.154 0.786 0.047 0.201 0.489
σ 5.227 4.958 2.01 1.89 1.48
b 1455 1472.5 1544.9 1558.4 1571.9
m 1436.7 1452.4 1512.7 1520.4 1542.7

250 w 1415.2 1430.1 1505 1510.2 1519
t 0.357 1.804 0.109 0.519 0.911
σ 11.377 10.324 5.909 4.98 3.901
b 2828.1 2856.1 2999.8 3023.6 3030.1
m 2807.2 2831 2962.9 2996.7 2998.3

500 w 1781 2810.1 2908.8 2982.9 2984.4
t 0.706 3.559 0.22 1.232 2.51
σ 14.142 11.264 10.01 4.079 3.001

and 500 items. Each picture exhibits the two algorithms in same number of q-bits

strings. Three different scale problems are tested. MMQEA1 perform significantly

better than QEA2 on the best values of every generation for the three different scale

problems. With the increase of individuals in MMQEA and QEA, MMQEA5 also

is better than QEA10 on the progress of the best values, worst values. The lines

of average values in each figure are calculated by 30 times run. The best values of

each run in every generation are collected. The average values of MMQEAs are also

larger than QEAs in 1000 generations.

Fig. 2.4 and Fig. 2.5 show the best running of MMQEAs and QEAs for three

scaled problems, in which the mean error square values of solutions in every gener-

ation time are presented. We can see from above Fig. 2.4 and Fig. 2.5, whatever

problems are, the value of mean error square in MMQEAs is greater than QEAs at

every generation time. So MMQEAs can maintain the solutions of population more

diversity. The mean error square line of QEA2 varies smoothly in Fig. 2.4, how-

ever the outputs of MMQEA1 in three different scaled problems fluctuate markedly
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Figure 2.4: Mean squared error in every generation of MMQEA1 and QEA2

even with only one individual. That illustrated our MMQEA could preserve the

population of solutions with a variation of diversity. With the increase of number

of individuals, as showing in Fig. 2.5, MMQEA5 always keep the population of

solutions diversity to guide the evolution avoiding in early convergence.

2.3.3 MMQEA for Permutation FSSP

2.3.3.1 Permutation FSSP Statement

The permutation FSSP can be formulated as follows. Each of n jobs from the set

J = {J1, J2, . . . , Jn} has to be processed on m machines M1, M2, . . . , Mm. Without

loss of generality, it is assumed that the jobs are processed in the order of indices
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Figure 2.5: Mean squared error in every generation of MMQEA5 and QEA10

of machines. Oji is defined as the ith operation of job Jj processed on machine Mi,

and working time of Oji is pji. At any time, each machine can process at most one

job and each job can be processed on at most one machine. The sequence in which

the jobs are to be processed is the same for each machine.

In literature, this criterion is usually referenced by F/permu/Cmax [18], consid-

ered as objective function to reduce the makespan, which is the overall processing

time. Let π = ( π(1), π(2), . . . , π(n) ) be a permutation, where π(a) is the ath job

of permutation π, n is number of jobs. Ω denotes the set of all such permutations,

and π ∈ Ω. Cmax(π) is makespan of permutation π. Suppose that Ci
π(j) is the

completion time of job π(j) on machine Mi. The mathematical formulation can be
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(f) MMQEA5 and QEA10 for 500 items

Figure 2.6: Experimental results of QEAs and MMQEAs for knapsack problems
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Figure 2.7: Gantt chart of permutation FSSP with makespan criterion

described as below.

C1
π(1) = pπ(1),1

Ci
π(1) = Ci−1

π(1) + pπ(1),i

C1
π(j) = C1

π(j−1) + pπ(j),1

Ci
π(j) = Max{Ci

π(j−1), C
i−1
π(j)}+ pπ(j),i

(2.15)

where j = 2, 3, . . . n, i = 2, 3, . . . m. Under these specifications, the makespan

Cmax(π) is given by Cm
π(n), which is the completion time of last job π(n) on machine

Mm. The permutation FSSP with makespan criterion is to find a permutation π∗

from Ω, such that:
π∗ = arg min

π∈Ω
Cmax(π)

Cmax(π) = Cm
π(n)

(2.16)

Fig. 2.7 shows a gantt chart of the permutation π sequentially process on 5

machines, where π=(π(1), π(2), π(3), π(4), π(5))= (J1, J5, J3, J2, J4). The makespan

Cmax(π) is obtained by the last finished operation O45 of job J4 on machine M5.

2.3.3.2 Implementation of MMQEA for Permutation FSSP

Although q-bit string can represent a linear superposition of solutions, it cannot be

used directly for solving FSSP. Because the flowshop code we want is a permutation
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Figure 2.8: Transformation of quantum states to permutation FSSP’s job code

of all jobs in a decimal system from 1 to M , but q-bit representation is a pair

of complex numbers γ and η. So a converting mechanism should be put forward

specially aiming at FSSP for evaluation, which is described as following.

A q-bit individual dj(t) of length ⌊log2
n + 1⌋∗n represents a linear superposition

of solutions to the problem. In the step of initialization, all the q-bit states initialized

as 1/
√

2. The observing procedure as represented in section 2.4 are employed to

transform quantum states to binary string. Thus, a binary string x(t) with the

length of ⌊log2
n + 1⌋ ∗ n is formed. Every ⌊log2

n + 1⌋ ∗ n bits of binary string

need convert into a decimal code, and then we get a decimal string D(t) of length

J . Order a permutation of D(t) from small to big. If values of two numbers are

different, let smaller number denotes the job with smaller index; otherwise, let the

first one denote the job with smaller index. This permutation is the final flow shop

code. The decode process could be carried out as following: firstly finished the

arrangement of all operations upon machines for the first job, and then turn to the

next job and until last job. Fig. 2.8 shows an example with 4 jobs converts from

quantum codes to job codes.

Based on the above encoding method, MMQEA does not produce infeasible

solutions. So it does not require any additional repair procedure for MMQEA solved

permutation FSSP. The other parts of MMQEA are same as Algorithm 1. The value

of |∆θi| is also set as 0.015π.
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Table 2.4: Experimental results of each algorithm for permutation FSSP

Problem Value
GAs QEAs MMQEAs

GA10 GA50 QEA2 QEA10 MMQEA1 MMQEA5

TA-20×5

b 1313 1300 1297 1297 1297 1297
m 1366.4 1344.8 1334 1315.3 1310.2 1308.3
w 1416 1370 1377 1339 1339 1339
t 0.343 1.982 0.23 1.38 0.22 1.39
σ 35.09 16.15 17 12.4 11.39 10.26

TA-20×10

b 1791 1711 1680 1686 1670 1656
m 1903 1806.5 1741.3 1711.2 1711.7 1703.7
w 1995 1860 1803 1734 1758 1734
t 0.423 2.32 0.283 1.69 0.259 1.7
σ 47.62 31.7 30.24 14.3 19.71 21.3

TA-20×20

b 2453 2453 2403 2394 2400 2388
m 2538.9 2538.9 2440.5 2435.5 2437.5 2435.1
w 2588 2588 2487 2469 2473 2456
t 0.53 2.69 0.39 2.11 0.4 2.03
σ 50.6 33.03 21.56 16.48 16.4 16.79

TA-50×5

b 2889 2845 2753 2741 2752 2746
m 2974.7 2907.1 2788.3 2782.1 2787.8 2793.6
w 3070 2993 2833 2844 2827 2842
t 0.792 3.78 0.61 3.12 0.61 3.12
σ 53.3 33.9 18.37 22.62 22.44 27.68

TA-50×10

b 3503 3413 3316 3296 3279 3246
m 3645 3562.1 3381.3 3366.7 3348.1 3358
w 3727 3646 3477 3446 3415 3421
t 0.841 3.95 0.69 3.22 0.62 3.19
σ 54.08 52.58 36.1 39.03 36.42 44.2

TA-50×20

b 4541 4528 4249 4280 4230 4189
m 4654.4 4601.4 4349.5 4362.4 4328.6 4310.1
w 4798 4684 4441 4502 4412 4400
t 0.982 4.02 0.73 3.41 0.71 3.33
σ 59.15 34.4 44.7 55.6 44.72 44.18
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2.4 Summary

2.3.4 Experiments and Analysis on Permutation FSSP

The experiment data are from the benchmark on flowshop problem which can be

found in Taillard’s home page 1. The 6 different scale problems are tested on the

experiments. In Taillard’s problems, there are many cases for a scale problem. The

first case of these problems are used.

In this chapter, MMQEA compares with QEA and GA without any external

local search procedure. The same encoding method is employed on MMQEA and

QEA for FSSP, in which other parts are similar with the basic structures of MMQEA

and Han’s QEA, respectively. The permutations of job numbers are considered as a

coding strategy for GA algorithm, of which mutation is implemented by exchanging

the two jobs on chromosomes. The two point crossover is used. In GA, the probabil-

ity of crossover and mutation are both set to 0.3, which obtained the better results

compared with other parameters. The obtained final makespan of three algorithms

are summarized in Table 2.4. These algorithms are tested on 6 different scaled prob-

lems in where such as TA-20×5 represents the problem with 20 jobs and 5 machines.

Each case for every algorithm runs 30 times at the 500 generations. Table 2.4 gathers

the mean value and best, worst value. The population size of GA10, GA50, QEA2,

QEA10, MMQEA1 and MMQEA5 are 10, 50, 2, 10, 1, 5, respectively. We can see

clearly from this table that MMQEAs is evidently better than GAs even with little

individuals. MMQEA5 outperforms QEA10 with 3%, 6% and 7% improvement on

20×10 (20 jobs 10 machines), 50×10 and 50×20 problems. On the other hand, Al-

though MMQEAs and QEAs consumed the similar computational times on all test

problems, comparing with GAs, MMQEA costed less computational times to find

near-optimal solutions.

2.4 Summary

This chapter presents a novel evolutionary algorithm, called MMQEA, inspired by

the concept of quantum computing. An individual is defined as a pair of interactional

1http://mistic.heig-vd.ch/taillard/ problemes.dir/ ordonnancement.dir/ordonnancement.html
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q-bit strings for the probabilistic representation. Multi-update mode is designed as a

variation operator on the q-bit individuals, inspired by quantum entanglement. The

proposed MMQEA is characterized in the q-bit representation for the population

diversity and the evolutionary history information of double q-bit strings also is

considered to guide the evolutionary direction of individuals to avoid premature

convergence.

For driving the individuals toward better solutions, the multi-update modes is

employed, in which the evolutionary information of q-bit string in individual will be

considered to evolve the other q-bit string that also provides its evolutionary infor-

mation. The most advantages of MMQEA are little parameters to be set and the

individual has the ability that evolves itself to keep a balance between exploration

and exploitation. Firstly, knapsack problems were used for testing the performance

of MMQEA. The experiment showed MMQEA could maintain population of solu-

tions more diversity and gain more quality result. For further testing the ability

of MMQEA’s application, the permutation FSSP was applied for MMQEA. The

results also were comparable.
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Chapter 3

PQEA for Multi-Objective

Permutation FSSP

3.1 Introduction

In the world around us, it is rare for any problem to concern only a single value or

objective. Generally, multiple objectives or parameters have to be met or optimized.

Multi-objective Optimization (MOO) is the process of simultaneously optimizing

two or more conflicting objectives subject to certain constraints. MOO problems

can be found in various fields: product and process design, aircraft design, the oil and

gas industry, or wherever optimal decisions need to be taken in the presence of trade-

offs between two or more conflicting objectives. Maximizing profit and minimizing

the cost of a product; maximizing performance and minimizing fuel consumption

of a vehicle; and minimizing weight while maximizing the strength of a particular

component are examples of MOO problems. For these kinds of problems, there is

no single optimal solution, but a set of alternative solutions. If these solutions are

optimal, they are called pareto-optimal solutions[19], [20]. It means that no other

solutions in the search space are superior to them when all objectives are considered.

The multi-objective permutation FSSP is a typical MOO problem, while minimizing

makespan and job tardiness are considered as two criteria. Because makespan is a
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measure of system utilization while maximum tardiness can be regarded as a measure

of performance in meeting customer’s due dates. A. Nagar et al. [21] has summarily

surveyed that the most widely used criteria are related to minimizing makespan and

job tardiness in permutation FSSP, and the trade-off between the criteria has been

demonstrated.

Up to now, a number of different evolutionary algorithms (EA) have been sug-

gested to solve MOO problems. For reviewing of previous researches, Zhang’s

MOEA/D [22], Deb’s NSGA-II[23] and Ishibushi’s MOGLS [24] have been paid

great attention to. These algorithms demonstrated the necessary additional opera-

tors for converting a simple EA to a (Multi-Object Evolutionary Algorithm) MOEA.

All above algorithms can be summarized in two common features that are based on

non-dominated sorting and decomposing MOO problem into a number of scalar sub-

problems. The first feature is employed in the NSGA-II, where the individuals are

ranked in different levels, in other words, each of them is given a fitness value. Then,

the individuals in diverse levels were selected as population members for the next

generation. The Pareto Front which is decomposed into a number of scalar objec-

tive optimization sub-problems is the feature of MOEA/D and MOGLS. MOEA/D

uniformly generates a set of weighted vectors and transfers MOO problem to many

sub-problems that are simultaneously optimized in a generation. Several methods

for building scalar functions can be found in the literatures [25], [26], [27]. The most

popular ones among them include the weighted sum approach and Tchebycheff ap-

proach [26]. The weighted sum approach is widely used for solving the discrete MOO

problems in the paper[28]. The Tchebycheff approach works well when the optimal

solutions are a concave or convex pareto fronts[29].

Based on achievement of last chapter, a multi-objective quantum evolutionary

algorithm based on parallel model, which is called PQEA (parallel quantum evo-

lutionary algorithm) is proposed in this chapter. In the initialization step, PQEA

evenly decomposes MOO problem into many scalar optimization sub-problems by

a set of weighted vectors. One sub-problem is associated with a weighted vector.

All sub-problems are classified into several groups based on the similarities of the

weighted vectors. In the main evolution part, the groups of sub-problems are parallel
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3.2 Basic Components of PQEA

evolved by a population of quantum individuals. The probabilistic representation

is the most feature of q-bit individual, in which the evolutionary information for

optimizing a problem can be memorized during the evolution progression. Because

of the similarities of neighboring sub-problems, a q-bit individual is applied to or-

derly address the sub-problems in one group. Thus, the evolutionary information

in the q-bit individual for optimizing a sub-problem can be shared with its neigh-

borhoods. By parallel evolving the groups of neighboring sub-problems, we attempt

to obtain the pareto solutions that exhibit more extensive distribution and dom-

inated performance. To demonstrate the effectiveness of PQEA, it is applied to

solve multi-objective permutation FSSP to compare with the current state-of-the-

art methods, such as MOEA/D, NSGA-II and MOGLS. The performance of PQEA

on Multi-Objective Knapsack Problems (MOKPs) is also investigated.

This chapter is organized as follows. Section 2 introduces some key concepts of

quantum evolutionary algorithm and gives an overview of the MOO problems. The

weighted sum approach for MOO problem is also reviewed. The proposed PQEA

is described in Section 3 in detail. The comparison of PQEA and other famous

MOO evolutionary algorithms on multi-objective permutation FSSP and MOKPs

is the subject of Section 4, which is divided into two parts: methodology of the

comparison and experimental results. The last section concludes this research and

offers the future perspectives.

3.2 Basic Components of PQEA

Quantum-inspired evolutionary algorithm (QEA) applies quantum computing prin-

ciples to enhance classical evolutionary algorithms. QEA is firstly proposed by Han

and Kim in paper[7] where some major principles of quantum computing are used,

such as the quantum bit, the linear superposition of states and the quantum rotation

gate.

Like other EAs, QEA is also characterized by the representation of the individ-

ual, the evaluation function, and the population dynamics. Some definitions and

operators in QEA are given as follows:
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3. PQEA FOR MULTI-OBJECTIVE PERMUTATION FSSP

(1) Population Construction: The QEA maintains a population of q-bit individ-

uals, likes Q(t), and Q(t) = {qt(1), qt(2), . . . , qt(v)} at generation t, where v is the

size of population, and qt(i) is a q-bit individual defined as

qt(i) =

[

γti1
ηti1

∣

∣

∣

∣

γti2
ηti2

∣

∣

∣

∣

. . .

. . .

∣

∣

∣

∣

γtim
ηtim

]

(3.1)

where, m is the number of q-bits in a q-bit individual, and i = 1, 2, . . . , v.

The |ψtij〉, which is quantum state of jth q-bit in qt(i), can be represented as:

|ψtij〉 = γtij|0〉+ ηtij |1〉 (3.2)

(2) Observing Procedure: The observing procedure is used to transform a q-bit

individual to a binary solution. Suppose xt(i) is the binary solution, and xt(i) =

{x1
t (i), x

2
t (i), . . . , x

m
t (i)}, here, xjt (i) is 0 or 1, j = 1, 2, . . . , m. The xt(i) is generated

from the q-bit individual qt(i), in which the xjt (i) is obtained by observing the state

of |ψtij〉. The observing procedure can be described as:

Let τj be a random number generated from the uniform distribution (0, 1]. If τj

satisfies
∣

∣ηtij
∣

∣

2
> τj , then xtij ← 1, otherwise xtij ← 0.

Thus, the binary solution xt(i) can be obtained from qt(i) by iterating above

observing procedure m times. After that, a fitness value of xt(i) could be evaluated

based on the problem specification.

(3) Updating q-bit Individual States: In classical EA, variation operators like

crossover or mutation operations are used to explore the search space. The quantum

analog for these operators is called a q-gate. In QEA, the q-gate, which is represented

by matrices, can be visualized as rotations of the quantum state on the Bloch Sphere

[6]. The q-gate U(△θ) is designed for QEA, as below equation:

U(∆θ) =

[

cos(∆θ),
sin(∆θ),

− sin(∆θ)
cos(∆θ)

]

(3.3)

where, ∆θ is a rotation angle of each q-bit toward either |0〉 or |1〉 state. In this

study, the U(△θ) is used to modify the quantum state of q-bit. The jth q-bit at
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generation time t in individual qt(i) is updated as follows:

[

γt+1
ij

ηt+1
ij

]

=

[

cos(∆θ),
sin(∆θ),

− sin(∆θ)
cos(∆θ)

]

∗
[

γtij
ηtij

]

(3.4)

The q-bit state of |ψt+1
ij 〉 also hold

∣

∣γt+1
ij

∣

∣

2
+

∣

∣ηt+1
ij

∣

∣

2
=1. The qt+1(i) can be obtained

by sequentially updating the state of q-bit in qt(i) based on Eq. 3.4. We should

design the value of angle parameters ∆θ for different kinds of problems to control

the convergence of algorithm [30]. In this chapter, the rotated direction on clockwise

is considered as positive rotation, and ∆θ is limited in the range [0, π/2].

The main procedure of QEA is to iteratively execute the observing and update

procedure until the terminal condition is met. The more details of QEA can be

referred in the researches [31].

3.3 Main Framework of PQEA

3.3.1 MOO Problem Statements

A general MOO problem can be described as a vector function maps a set of decision

variables to another set of objectives, as follow:

Formally:

Min/Max Y = f(X)
= {f1(X), f2(X), . . . , fJ(X)}

Where,







X = (x1, x2, . . . , xm)
Y = (y1, y2, . . . , yJ)
X ∈ Ω







(3.5)

where, X is decision variable vector, xi is decision variable (i = 1, 2, . . . ,m). Y is

objective value vector and fj is one of objective function (j is from 1 to J ). The

solution space is Ω. The set of solutions of a multi-objective optimization problem

consists of all decision vectors for which the corresponding objective vectors cannot

be improved in any dimension without degradation in another. These vectors are
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known as Pareto Optimal. Mathematically, the concept of pareto optimality is as

follows: Assume, without loss of generality, a maximization problem and consider

two decision vectors a, b ∈ X. then, a is said to dominate b. That is also written as

a ≻ b. If and only if fi(a) ≥ fi(b), i ∈ {1, 2, . . . , J} and fj(a) > fj(b) for at least one

index j ∈ {1, 2, . . . , J}. All decision vectors which are not dominated by any other

decision vector of a given set are called non-dominated solutions[32].

3.3.2 Decomposition Approach Used in PQEA

There are several approaches for converting the problem of approximation of the

pareto optimality into a number of scalar optimization problems. The weighted

sum approach is one of most popular methods to convert a multi-objective problem

into a number of scalar optimization problems. It is widely employed on discrete

MOO problems, such as MOGLS for flow shop scheduling problem [33], MOEA/D

for knapsack problem[34], and so on. The explanations of this approach present as

follow:

Let Λ = (λ1, λ2, . . . , λJ)
T be a weighted vector, λj ≥ 0 for all j = 1, 2, . . . , J and

∑J

j=1 λj = 1. MOO problem can be changed to a single objective sub-problem as:

min /max g(x) =
J
∑

i=1

λi∗fi(x) (3.6)

To obtain the pareto optimal solutions of a MOO problem, many different

weighted vectors Λ are used in the above scalar optimization problem.

Parallel quantum evolutionary algorithm (PQEA) using the weighted sum ap-

proach decomposes the MOO problem by a set of even spread weighted vectors.

Firstly, the set of weighted vectors will be classified into some groups according to

the euclidean distance between each two vectors. After that, the evolution of a q-bit

individual is used to address the sub-problems of one group. The population size of

q-bit individuals is same as the number of groups.
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Figure 3.1: Weighted vectors classification on two objective problems

3.3.3 Weighted vector classification for PQEA

Suppose S(Λ)=λ1, λ2, . . . , λN , is a set of even spread weighted vectors, and N is

number of vectors. Here, λi= {λi1 ..., λiJ}, and
∑J

j=1 λ
i
j = 1, i=1, 2, ..., N . The set of

weighted vectors are equally divided into v groups, such as G(1), G(2),..., G(v). The

G(u) likes as G(u) = {λ1(u), λ2(u), ..., λT (u)} which maintains T closest weighted

vectors of λ1(u), where u = 1, . . . , v.

The procedure of weighted vectors classification is described as follow:

• Step 1. The λ1(1), which is the first weighted vector ofG(1), is set as: λ1(1) =

λ1, and λ1 is removed from S(Λ). Where, λ1 specialized as λ1={λ1
1, ..., λ

1
J−1, λ

1
J}

={0.0, ..., 0.0, 1.0}.

• Step 2. Select T -1 closest Euclidean distances of λ1(1) from S(Λ) to create

the group 1, such as G(1)={λ1(1), λ2(1), . . . ., λT (1)}. The selected weighted

vectors will be removed from S(Λ).

• Step 3. The G(2) is formed by selecting the T closest Euclidean distances of

λT (1) from S(Λ). The same way is used to form G(3), G(4),. . . , G(v), where

v =
⌈

N
T

⌉

.
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Fig.3.1 presents an example of weighted vector classification on bi-objective,

where N, v and T are 17, 4 and 4, respectively. There are 4 q-bit individuals is used

to address the the sub-problems in 4 (v=4) groups with parallel evolution.

Algorithm 3: General Framework of PQEA

1 Input : MaxGeneration, N , T , C
2 Output: PNDS

Initialization:
3 Generate a set of even spread weight vectors, λ1, λ2,..., λN ;
4 Classify the weight vectors into G(1), G(2), ...G(v) by weight vectors

classification, where v =
⌈

N
T

⌉

;
5 Initialize Q(t), t← 0, δ ← 1;

for i← 1 to v do
6 Select g

(

x
∣

∣λδ(i)
)

as objective function for qt(i);
7 Generate a binary solution xt(i) by observing the states of qt(i);
8 Repair\Improve xt(i) to pt(i) by the problem specialized approach;

9 Evaluate pt(i) to fitness value by g
(

x
∣

∣λδ(i)
)

;
10 UpdatePNDS(PNDS, pt(i));
11 bδ(i)← pt(i);

end
Main parts:
t← 1;
while t < MaxGeneration do

12 for i← 1 to v do
13 if MOD(t, C) = 0 then
14 Select the g

(

x
∣

∣λδ(i)
)

as objective function for qt(i);

15 Find the best solution x for g
(

x
∣

∣λδ(i)
)

from PNDS, and bδ(i)← x;

end
16 Generate a binary solution xt(i) by observing the states of qt(i);
17 Repair\Improve xt(i) to pt(i) by the problem specialized approach;

18 Evaluate pt(i) to fitness value by g
(

x
∣

∣λδ(i)
)

;
19 if pt(i) is better than bδ(i) then

bδ(i)← pt(i);
end

20 UpdatePNDS(PNDS, pt(i));
21 UpdateQuanStates(qt(i), b

δ(i), pt(i));

end
t+ +;

end
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3.3.4 General Framework of PQEA

At each generation t, PQEA with sum weighted approach maintains:

• Q(t)={qt(1), qt(2), ..., qt(v)} is a population of q-bit individuals at generation t.

The qt(i) is evolved for the sub-problems in G(i), i=1, 2, ..., v. The population

size of Q(t) is same as the number of weighted vector groups v.

• B (1) , B (2) , . . . , B (v) are set of solutions. For i = 1, 2, ..., v, B (i) likes as:

B (i) =
{

b1(i), b2(i), . . . , bT (i)
}

. The B (i) holds the best solutions for the sub-

problems that are formulated by the weighted vectors in G (i), such as, bj(i)

holds the best solutions for g (x |λj(i)).

• Population of non-dominated solutions (PNDS ), which is used to maintain the

non-dominated solutions found during the evolution.

The q-bit individual qt(i) in Q(t) can be represented as below:

qt(i) =

[

γti1
ηti1

∣

∣

∣

∣

γti2
ηti2

∣

∣

∣

∣

. . .

. . .

∣

∣

∣

∣

γtim
ηtim

]

(3.7)

where m is the number of q-bits, i.e., the string length of the q-bit individual.

The pseudo code of PQEA is presented in Algorithm 3, more details explanations

are given in the following.

(1) Some parameters are given before PQEA is started:

• MaxGeneration: a stop criterion for PQEA.

• N : number of total weighted vectors in PQEA.

• T : number of weight vectors in one group.

• C: a constant integer used to control the evolution times on a sub-problem.

(2) Output the solutions while stop condition is met.

(3,4) A set of uniform spread of N weighted vectors: S(Λ) = {λ1, λ2, . . . , λN} is

generated. And, S(Λ) is classified into some groups by the weighted vector classifi-

cation.
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Figure 3.2: General framework of proposed PQEA

(5) All of q-bit states of individuals are initialized as:

[

γtij
ηtij

]

=

[

1
/√

2
1
/√

2

]

(3.8)

Here, i is the individual index in population and i=1, 2, ..., v, j is the position of

q-bit in, j=1, 2, ..., m. It means that all the q-bit individuals that consist of q-bit

with the same states, which represents the linear superposition of all possible states

with same probability in the initialization step.

(6) In the loop of initialization step, each q-bit individual is set with a corre-

sponding fitness function that is formulated by the first weighted vector in every

group.

38



3.4 PQEA for Multi-Objective Permutation FSSP

(7∼9) The binary solution x0(i), which is transformed from the q-bit individual

q0(i) by observing procedure, is repaired or improved to p0(i) by some problem

specialized approaches. After that, the p0(i) is evaluated to give a level of its fitness

by g(x |λ1(i)).

(10,11) UpdatePNDS(PNDS, p0(i)): all the solutions that are dominated by p0(i)

are removed from PNDS, and p0(i) is added into PNDS if no solutions in PNDS

dominate p0(i). Then, b0(i) is initialized by p0(i), and i=1, 2, ..., v.

(12) In the main parts, all individuals qt(1), qt(2),..., qt(v) are parallel evolved

to deal with the sub-problems in every group, which proceeds in the inner loop.

(13∼15) Each q-bit individual is independently processed in dealing with a sub-

problem within C generation times. After the C generation evolution, the neigh-

boring sub-problem in the same group is continuously called to evolve by the same

q-bit individual. Here, the δ controls which sub-problem is operated in successively.

The δ, which relates with C, T and current generation time t, can be represented

as below.

δ = 1 +MOD(⌈t/C⌉ , T ) (3.9)

It’s clear that the δ is limited in [1, T ]. So, the “T” sub-problems in a group will be

successively evolved by a q-bit individual, until the stop condition is met.

(16∼20) These procedures are similar to (7∼11).

(21) UpdateQuanStates(qt(i), b
δ(i), pt(i)): This step makes the q-bit individuals

converge to the fitter states. We should contrast the binary numbers that are in

the same positions of bδ(i) and pt(i) to deicide the value of ∆θ for the q-bit in same

position of q-bit individual. The ∆θ are set by some intuitive reasoning for different

problems, and more details of this step can be found in papers[35][11].

3.4 PQEA for Multi-Objective Permutation FSSP

In this section, first of all, PQEA is implemented to compare with the famous

multi-objective algorithms MOEA/D, MOGLS and NSGA-II on multi-objective
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permutation FSSP. The computational experiments are conducted on the bench-

mark problems of multi-objective permutation FSSP to verify the four algorithms

performance. To further confirm the applicability of proposed algorithm, the Multi-

Objective Knapsack Problems (MOKPs) are used to test the efficiency of PQEA.

As the description in Chapter 2, the permutation FSSP consists of scheduling

given jobs with same order at all machines. The job can be processed on at most

one machine; meanwhile one machine can process at most one job. The most com-

mon objective for this problem is makespan. However, multi-objective approach for

scheduling to reduce maximum tardiness is important. Hence, in this chapter, we

consider the permutation FSSP with multi-objectives of makespan and maximum

tardiness. The objective is to find a set of non-dominated solutions, which minimize

makespan and maximum tardiness simultaneously, for decision maker.

3.4.1 Criteria Formulations for Permutation FSSP

Among due date based criteria, the minimization of the maximum tardiness is the

most common one, which is often represented as F/permu/Tmax [18]. Let π =

( π(1), π(2), . . . , π(n) ) be a permutation, where π(a) is the ath job of permutation

π, n is number of jobs. Ω denotes the set of all such permutations and π ∈ Ω. The

permutation FSSP with this criterion is to find a permutation π∗ from Ω, which is

defined as follows:

π∗ = arg min
π∈Ω

Tmax(π) (3.10)

Tmax(π) = Max
j∈[1,n]

{

Tπ(j)

}

Tπ(j) = Max
{

Cm
π(j) −Dπ(j), 0

} (3.11)

where Tmax(π) is maximum tardiness of π, Tπ(j) and Dπ(j) present the tardiness and

due date of job π(j), respectively. When the value of Tπ(j) is negative, tardiness of

job π(j) is given as 0, otherwise, the difference between the completion time and

due date of job π(j) is set as tardiness value.

Suppose that Ci
π(j) is the completion time of job π(j) on machine Mi. As men-

tioned in chapter 2, the makespan Cmax(π) is given by Cm
π(n) which is the completion
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Figure 3.3: Gantt chart of 5×5 permutation FSSP

time of last job π(n) on machine Mm. The permutation FSSP with makespan cri-

terion is to find a permutation π∗ from Ω, such that:

π∗ = arg min
π∈Ω

Cmax(π)

Cmax(π) = Cm
π(n)

(3.12)

A gantt chart of the permutation π sequentially process on 5 machines presents in

Fig. 4.1, where π=(π(1), π(2), π(3), π(4), π(5))= (J1, J5, J3, J2, J4). The makespan

Cmax(π) is obtained by the last finished operation O45 of job J4 on machine M5. The

due date of every job is fixed given in the figure. For this example, the completion

time of jobs J1, J5 are early than their due date, whereas the jobs J2, J3 and J4

have tardiness to catch the due dates. Maximum tardiness of the π is generated

by J4. We want to find some solutions that can simultaneously minimize makespan

and maximum tardiness.

Based on the above mentioned, the bi-criteria optimization problem for permu-

tation FSSP can be formalized as

Minimize
π∈Ω

{Cmax(π), Tmax(π)} (3.13)
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The final solutions for bi-criteria optimization problem consist of all permutations

π (π ∈ Ω) for which the corresponding objective values cannot be improved in

any dimension without degradation in another. These permutations are known as

Pareto Optimal Solutions [36]. Mathematically, the concept of pareto optimality is

as follows: assume that π, π∗ ∈ Ω, π dominates π∗, if and only if the condition Eq.

3.14 or Eq. 3.15 is satisfied.

Cmax(π) ≤ Cmax(π
∗)

∧

Tmax(π) < Tmax(π
∗)

(3.14)

Cmax(π) < Cmax(π
∗)

∧

Tmax(π) ≤ Tmax(π
∗)

(3.15)

The permutations π and π∗ which are not dominated by each other of a given

set are called non-dominated solutions.

3.4.2 Implement of PQEA for Multi-Objective Permutation

FSSP

To solve the multi-objective permutation FSSP, PQEA needs transformation proce-

dure and normalization objective to vary some steps in its general framework. Each

q-bit individual in PQEA contains ⌊logn2 +1⌋ ∗ n q-bits to represent a linear super-

position of solutions to this problem, where n is number of jobs to be processed.

As the description in Chapter 2, using the transformation procedure converts the

quantum states to real permutation FSSP codes. The transformation procedure is

implemented in the steps (7)∼(8) and (17)∼(18) of PQEA.

Due to the disparately scaled objectives of multi-objective permutation FSSP,

we incorporate a simple objective normalization technique into PQEA. For example,

the makespan and maximum tardiness of 20× 20 (20 jobs and 20 machines) bench-

mark problem are belong to the range of [3315, 3696] and [97, 1075], respectively,

which are all normalized into the space of [0, 1] to evaluate the fitness values. The
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benchmark problems can be found at here1. A lot of effort has been made on the

issue of objective normalization in the communities of both mathematical program-

ming and evolutionary computation. Normalize objective values of members x using

the equations below:

Cmax(x) =
Cmax(x)− Cmin

Cmax − Cmin
(3.16)

Tmax(x) =
Tmax(x)− Tmin

Tmax − Tmin
(3.17)

Where, Cmax(x) and Tmax(x) are the normalized objective values for makespan and

maximum tardiness. In these equations, Cmax and Cmin are maximum and minimum

makespan values in reference solutions. The maximum and minimum tardiness

values in reference solutions are represented by Tmax and Tmin, respectively. In

20× 20 case, learning from reference solutions Cmax, Cmin, Tmax and Tmin are equal

to 3696, 3315, 97 and 1075. In such way, the range of each objective value becomes

[0, 1]. Thus, the fitness evaluation function g(x|λδ(i)) in PQEA for multi-objective

permutation FSSP can be replace by below equation:

g(x|λδ(i)) = λδ1(i) ∗ Cmax(x) + λδ2(i) ∗ Tmax(x) (3.18)

3.4.3 Related Approaches for Multi-Objective Permutation

FSSP

In the literatures, for solving multi-objective permutation FSSP with the criteria of

makespan and maximum tardiness, some good results are reported by Arroyo[37]

and Chang[38], who employ MOGLS algorithm and NSGA-II, respectively. PQEA

compares with MOGLS and NSGA-II through computational experiments. The

main procedure and genetic operations of MOGLS and NSGA-II for multi-objective

permutation FSSP are simply described as follows.

1http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/research/pdf_file/

multiobjective/EMO_ReSubmission_Ishibuchi.html
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The MOGLS and NSGA-II are genetic algorithm based multi-objective opti-

mization techniques. A list of job number is represented as a chromosome in the

population of MOGLS and NSGA-II. The genetic operations in MOGLS and NSGA-

II are implemented by two point crossover and insertion mutation. Because good

results appear in the researches [39] and [40], in which these genetic operations are

used.

• MOGLS: it is same as PQEA, also decomposes this problem into a number of

scalar optimization sub-problems using sum weighted approach. An iteration

of the MOGLS algorithm starts with a population P with L solutions, and a

set of random weights is selected to determine the objective function which

should be normalized by using the Eq. 3.18. The operators of selection,

recombination and mutation are applied to the elements of P until reaching

a population P ′ with L elite solutions. Then L elite solutions are randomly

selected from the current set of non-dominated solutions and included in the

set P ′. A restricted local search is applied to each solution in P ′. More

specifically, a random neighbor y′ of y ∈ P ′ is generated and if its fitness is

better than that of y, it replaces y, otherwise, the local search initiated from

y terminates. The number of neighborhoods examined from each y ∈ P ′ is

limited, and a new population P is formed to start a new iteration.

• NSGA-II: it uses non-dominated sorting for fitness assignments of individual

in population. All individuals are not dominated by any other individuals,

are assigned as front rank 1. All individuals only dominated by individuals

in front rank 1 are assigned into front rank 2, and so on. Selection is made

using tournament between two individuals. The individual with the lowest

front number is selected if the two individuals are from different fronts. The

individual with the highest crowding distance is selected if they are from the

same front. i.e., a higher fitness is assigned to individuals located on a sparsely

populated part of the front. There are S parents and in every iteration S new

individuals (offspring) are generated. Both parents and offspring compete with

each other for inclusion in the next iteration.
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3.4 PQEA for Multi-Objective Permutation FSSP

3.4.4 PQEA Performance Measure

For the naturalness of multi-criteria problems, many performance indices should

be used for comparing the performance of different algorithms [41]. The distance

measure (D-measure) and coverage measure (C-measure), which are most popular

metric methods, are simply described as following.

• D-measure: This performance measure is based on calculating the average dis-

tance of obtained non-dominated solutions with actual parato optimal results.

Let G be the actual parato optimal results and A is obtained non-dominated

solutions. The average distance from A to G is defined as:

D(A, G) =

∑

v∈G
d(v, A)

|G| (3.19)

where d(v, A) is the minimum Euclidean distance between v and the front

in A. The D-measure should measure both the diversity and convergence at

one time. The low value of D-measure illustrates that obtained A is very

close to the actual pareto optimal solutions without missing any part of the

pareto optimum. The low value of D-measure illustrates that obtained A is

very close to the reference solutions, without missing any part of the reference

solutions. In our experiments, the reference solutions of the tested problems

are generated by great parameters with huge number of solution evaluations.

• C-measure: It is also called set coverage. Let A and B be two approximations

to the pareto solutions of a MOO problem, C(A,B) is defined as the percentage

of the solutions in B that are dominated by at least one solution in A.

C(A, B) =
|{u ∈ B|∃v ∈ A : v ≻ u}|

|B| (3.20)

Here, v dominates u that is represented by v ≻ u. C(A,B) = 1 means that

all fronts in B are dominated by or same with some fronts in A. C(A,B) = 0
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3. PQEA FOR MULTI-OBJECTIVE PERMUTATION FSSP

means that there are no front in B is covered by any front of A. In general,

C(A,B) = 1 is not necessarily equal to 1− C(B,A).

The objective space of each test problem is normalized so that the minimum

and maximum values of each objective among the reference solutions are 0 and 100,

respectively. For example, the rectangle [3315, 3696]× [97, 1075] specified by the ref-

erence solutions of 20×20 problem was normalized into the square [0, 100]× [0, 100].

Using the normalized objective space, the D-measure is calculated to compare the

performance of each algorithm on multi-objective permutation FSSP.

3.4.5 Simulation Results and Analysis

To demonstrate the efficiency of proposed method, four different scaled multi-objective

permutation FSSP benchmark problems are applied for comparing, 20×20 (20 jobs

and 20 machines), 40×20, 60×20 and 80×20 problems, which is provided by the

research[28].

The good results are reported by Arroy [37] and Chang[38] who adopt the pa-

rameters setting as follow.

• Population Size: popSize=80;

• Mutation Probability: PM=0.6;

• Crossover Probability: PC=0.8;

For fair comparisons, MOGLS and NSGA-II use the same parameters as the

advisement of two papers. In MOGLS, a elite population size L needs to be set.

The size of L is given by 50.

PQEA for multi-objective FSSP used the below parameters designs. The value of

rotated angel is same as the one that used in Chapter 2. Based on these parameters,

the number of weighted vector groups becomes 15 (N/T ). Consequently, there are

15 q-bit individuals exit in population.

• Number of initialized weight vectors: N=150;

• Number of neighbor sub-problem in one group: T=10;

• Rotation angle value for updating quantum state: ∆θ = 0.01π;
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3.4 PQEA for Multi-Objective Permutation FSSP

Table 3.1: Comparison of PQEA using D-measure under same computational times

Test Problem Algorithms MOGLS NSGA-II PQEA Improved

20×20

Ave 18.4 18.9 16.7 11.6%
Min 12.8 10.5 9.7 7.6%
Max 25.6 27.2 23.0 15.4%
SD 3.6 3.5 4.0 —

40×20

Ave 82.1 76.9 69.5 9.6%
Min 60.9 50.7 45.4 10.5%
Max 95.6 99.4 97.8 1.6%
SD 10.6 12.8 7.2 —

60×20

Ave 62.0 59.1 48.3 18.3%
Min 54.7 50.2 35.4 29.5%
Max 67.8 72.3 64.8 10.4%
SD 4.5 6.1 3.4 —

80×20

Ave 549.0 505.5 453.2 10.3%
Min 505.5 380.3 326.0 14.3%
Max 591.9 621.5 538.4 13.4%
SD 50.3 55.0 24.1 —

All the compared algorithms PQEA, MOGLS and NSGA-II have been indepen-

dently run for 30 times for each test instance on identical computers (Centrino (R)

2.0 GHZ, 2.00 GB). The three algorithms are implemented by Java language with

Eclipse SDK 3.62 version programmed by same data structures to create a fair com-

parison environment. The terminated condition for the three algorithms is using 5

seconds.

To have a fair comparison, three algorithms are independently executed 30 times.

Table 3.1 collects the average, maximum, minimum and standard deviation of D-

measure values among the 30 times execution. Comparing with NSGA-II, based

on the Eq. 3.21 the average dispersion performance for 20×20, 40×20, 60×20 and

80×20 problems have been further improved by 11.6%, 9.6%, 18.3% and 10.3%,

respectively. Here, Dm(PQEA) and Dm(NSGA-II) mean the average D-measure
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Figure 3.4: Boxplot of C-measure values on PQEA and NSGA-II for multi-objective
permutation FSSP

values generated by PQEA and Dm(NSGA-II).

Imp % =
|Dm(NSGA-II)−Dm(PQEA)|

Dm(NSGA-II)
× 100 (3.21)

The lower D-measure results illustrates that PQEA obtains near-pareto optimal

solutions with even dispersion and without solutions loss of entire pareto front.

Because NSGA-II is better than MOGLS on the D-measure, to further verify the

effectiveness of PQEA, NSGA-II and PQEA are compared based on the C-measure.

Fig.3.4 presents the boxplot that are summarizing 30 results of C-measure values for
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PQEA and NSGA-II. The larger value of coverage rate is generated by C(PQEA,

NSGA-II), which indicates that most solutions of PQEA are dominating solutions

of NSGA-II, reversely, only little solutions of PQEA are dominated by NSGA-II.

Fig. 3.5 and Fig. 3.6 give the non-dominated solution that generated by PQEA,

MOGLS and NSGA-II under 30 runs. We can observe that PQEA performs well.

In 20×20 and 60×20 problem, PQEA shows dominant on the both criteria. The

dispersion of solutions of PQEA is also smooth than MOGLS and NSGA-II.

3.5 Experimental Comparisons of PQEA on MOKPs

In this section, PQEA compares with MOEA/D, MOGLS and NSGA-II on multi-

objective knapsack problems (MOKPs). The MOKPs is widely used to test the

performance of the multi-objective algorithms, such as the researches [22] [29]. The

experiment described in this chapter is a continuation of the experiments performed

by Zhang[22], Zitzler[42] and Jaszkiewicz[43]. We use a similar way of evaluating

the approximations to the pareto optimal solutions.

3.5.1 Multi-objective Knapsack Problems

The MOKPs are briefly given as follows. Given a set of I items and a set of J

knapsacks, where pji, wji are the profit and weight values of item i in knapsack j.

The cj is the capacity of knapsack j, we want to find a vector x = {x1, x2, . . . , xI} ∈
{0, 1}I that maximizes

fj(x) =

I
∑

i=1

xi ∗ pji, j = 1, 2, . . . , J (3.22)

subject to

I
∑

i=1

wji ∗ xi ≤ cj ,j = 1, 2, . . . , J (3.23)
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The “xi = 1” means that item i is selected and put in all knapsacks. The MOKPs,

which is the classic combinational problem, has been demonstrated to be a NP-hard

problem. Since Jaszkiewicz[43] has proposed a set of test instances as benchmark

problems for MOO algorithms, many MOO algorithms has used it for testing, such

as papers[22], [26], [44] [45], [46], and etc. We will also use these instances for

comparison. The instances have two, three, and four objectives and 250, 500, and

750 items. The instances were generated randomly with uncorrelated profits and

weights. The capacities of knapsacks are equal to half the total weight of items. As

a result, about 50% of items are expected to be in the pareto optimal solutions.

3.5.2 Implementations of Comparing Algorithms for MOKPs

To implement MOO algorithm on MOKPs, it needs a repair method to recover

the infeasible solutions. The greedy repair procedure presents in Algorithm 4 that

proposed by Jaszkiewicz [47]. Let x = (x1, x2, ..., xI) be an infeasible solution for

MOKPs. Due to pji and wji are nonnegative, one can remove some items from it

(i.e., change the values of some xi from 1 to 0) to make it feasible. In the approach of

Fig.4, items are removed one by one from x until x∗ becomes feasible. An item with

the heavy weights (i.e.,
∑

j∈ω wji) in the overfilled knapsacks and little contribution

to the profits of all knapsacks is more likely to be removed.

Note that the greedy repair procedure is the only heuristic that takes into account

the value of the current scalarizing function. We did not use iterative improvement.

The main reason for that was preservation of compatibility with the experiment of

MOEA\D and MOGLS.

For the fair comparisons, the four algorithms use the same repair approach.

3.5.3 Parameters Setting

Same with the PQEA, MOEA/D also decomposes the MOO into N sub-problems

by a set of even spread weighted vectors λ1, ..., λN . In order to guarantee a fair

comparison, theN for PQEA are set same as MOEA/D of Zhang[22] on all the tested

instances, where N is 150, 200 and 250 for 250*2, 500*2 and 750*2, respectively.
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3. PQEA FOR MULTI-OBJECTIVE PERMUTATION FSSP

Algorithm 4: Repair Procedure On MOKP

Input: A solution x = (x1, x2, . . . , xI)
T

Output: A feasible solution x∗ = (x∗1, x
∗
2, . . . , x

∗
I)
T

begin
while x is not feasible do

Create the set of ψ, where
ψ = {i |xi = 1, and 1 ≤ i ≤ I };

Set ω is built as:
ω = {j |1 ≤ j ≤ J , and

∑I

i=1wjixi > cj};
Select k ∈ ψ such that:

k = arg min
j∈ψ

g(x|λ )−g(xj−|λ)
P

i∈ω

wij

where, xj− = (xj−1 , xj−2 , . . . , xj−I )T , xj−j = 0

and for all i 6= j, xj−i = xi;
xk ← 0;

end
x∗ ← x.

end

(The 250*2 means the problem have 250 items and 2 knapsacks). The N is 351

for all the instances of three objectives. The neighbor size of weighted vector in a

group “T” is set as 10 for all the instances. The rotation angle △θ is 0.01π which is

advised by last chapter for knapsack problems. The investigation of setting different

T and C values is taken in next section.

The genetic operators in MOEA/D, MOGLS and NSGA-II used the one-point

crossover operator and the standard mutation operator. The setting of the parame-

ters of MOEA/D for MOKPs is identical with the paper[22], in which the mutation

and crossover probabilities are selected as 0.01 and 1.00, respectively. The MOGLS

and NSGA-II used same probabilities for genetic operators. In order to guarantee

fair comparisons, the MOGLS adopts same parameters with Jaszkiewicz[43].

The both algorithms terminating at 100,000 individuals have been evaluated.

In our experiments, the 250, 500 and 750 items for 2, 3 objectives are considered.

Zitzler [41] provided us the actual pareto solutions of 250, and 500 items for bi-

criteria problems. But there is not actual pareto optimal solutions of other test
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Table 3.2: Comparison of each algorithm using D-measure on two objective problem.
(The smaller one is better, “SD” means standard deviation.)

Algorithms MOEA/D MOGLS NSGA-II PQEA

250*2

Ave 26.83 32.33 39.01 20.92

Min 21.54 20.14 28.21 15.76

Max 28.07 40.86 43.31 26.60

SD 2.94 4.15 3.28 2.50

500*2

Ave 64.61 82.40 97.85 34.69

Min 55.49 63.10 70.93 28.10

Max 73.47 92.13 103.31 50.12

SD 4.76 9.40 5.52 4.56

750*2

Ave 176.99 274.21 300.21 70.41

Min 156.60 206.30 260.08 53.81

Max 214.34 321.12 340.21 84.20

SD 13.73 22.72 9.80 6.69

instances. Jaszkiewicz [43] has produced a very good upper approximation pareto

optimal solutions to the other instances by using the linear programming methods,

in which a number of uniformly distributed weighted vectors are applied to convert

the MOKPs to many single objective problems. These single objective problems

are solved one by one. In our experiments, G is set as such an approximation to

compare the performance of D-measure for each algorithm.

3.5.4 Experiment Results and Discussions

E-ach algorithm has been independently executed in 30 times. Table 3.2 and 3.3

present the average, minimum, maximum and standard deviation of D-measure val-

ues in PQEA, MOEA/D, MOGLS and NSGA-II for each instance. The comparisons

of average C-measure values between PQEA and other algorithms on all instances

are given in Table 3.4 and Fig. 3.7.

Fig.3.9 plots the distributions of non-dominated solutions with the lowest D-

measure in 30 runs of PQEA, MOEA/D and MOGLS on the 750*2 Instances. We
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Table 3.3: Comparison of each algorithm using D-measure on three objectives prob-
lem. (The smaller one is better, “SD” means standard deviation.)

Algorithms MOEA/D MOGLS NSGA-II PQEA

250*3

Ave 92.14 141.71 169.21 98.81

Min 82.97 99.12 120.12 81.97

Max 105.45 190.67 223.10 105.36

SD 13.02 31.23 15.31 13.03

500*3

Ave 257.39 419.23 439.10 251.5

Min 223.68 278.91 310.63 213.72

Max 306.27 500.10 512.32 297.30

SD 24.42 39.02 22.19 20.69

750*3

Ave 460.98 768.41 942.30 412.57

Min 417.93 610.82 720.32 338.87

Max 534.18 810.23 1001.29 511.62

SD 23.08 51.79 28.65 19.97

Table 3.4: Average C-measure values on the 6 tested instances. (The MOEA/D,
MOGLS, NSGA-II, and PQEA are represented by ‘E’,‘G’,‘N ’ and ‘P ’, respectively
and the bigger one is better.)

Instance C(P,E) C(E,P ) C(P,G) C(G,P ) C(P,N) C(N,P )

250*2 45.91 38.74 57.21 36.82 71.32 19.32

500*2 88.82 5.48 92.11 3.82 79.72 12.91

750*2 97.78 0.89 94.21 5.91 89.31 12.10

250*3 39.31 25.63 45.78 32.91 60.86 23.93

500*3 60.92 7.43 54.31 12.12 70.67 19.82

750*3 78.55 1.54 69.32 2.51 82.30 22.31

can learn from Table 3.2 and 3.3 that MOEA/D performs better than MOGLS and

NSGA-II. For further teasing the PQEA and MOEA/D, Fig.3.10 shows the evolution

of the average D-measure value in 30 runs with the number of the evaluation times

(the times of calling of the repair method) in PQEA and MOEA/D for each test

instance.
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Based on the experiment results, we can make the following remarks:

• Table 3.2, 3.3 and 3.4 reveal that the final obtained non-dominated solutions

by PQEA is better than that obtained by MOEA/D, MOGLS and NSGA-

II, in terms of both D-measure and C-measure, for the most test instances

except instance 250*3 in which PQEA is slightly worse than MOEA/D in D-

measure. Taking instance 750*2 as an example, on average, 97.78% of the

final non-dominated solutions generated by MOEA/D are dominated by those

generated by PQEA, and only 2.42% vice versa. The 92.11% and 89.31% of

the final non-dominated solutions of MOGLS and NSGA-II are dominated by

PQEA.

• Table 3.2, 3.3 also show that the standard deviation of D-measure values in

PQEA, MOEA/D, MOGLS and NSGA-II. The smaller standard deviation

values has implied that PQEA and MOEA/D have more stable performance

than MOEA/D and NSGA-II.

• The difference between the approximations generated by PQEA, MOEA/D,

MOGLS and NSGA-II on instances 750*2 can be visually detected from Fig.3.9.

The approximations of PQEA are closer to reference solutions than MOEA/D’s

and MOGLS’s, while the approximations of NSGA-II are only centralized in

middle part.

• Fig.3.10 clearly indicates that for the test instances of two objectives, PQEA

costs fewer times of evaluation (number of solutions are tried) than MOEA/D

for minimizing the D-measure value, which suggests that PQEA is more effi-

cient and effective than MOEA/D on the two objectives. The two algorithms

perform similar on the three objectives of MOKPs.

Based on the above analysis, we can summarize that the PQEA obviously outper-

forms MOGLS, NSGA-II and MOEA/D on the bi-objective problems, and PQEA

produces similar results with MOEA/D for the more objectives on these MOKPs

test instances.
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Figure 3.7: Boxplot of C-measure compared values for PQEA and MOEA/D

56



3.5 Experimental Comparisons of PQEA on MOKPs

Best result obtained 

by T=10, C=20.

Figure 3.8: Parameters examination for PQEA

3.5.5 Investigation of Parameters Setting in PQEA

T and C are two important parameters in PQEA. In order to examine the effect of

parameters T and C on the search ability of PQEA, we performed computational

experiments using various specifications of T and C. More specifically, we examined

90 combinations of 9 values of T (i.e., T=2, 4, 6, 8, 10, 12, 14, 16, 18) and 10 values

of C (i.e., 10, 20, 30, 40, 50, 60, 70, 80, 90, 100). Using each combination of T and

C, our PQEA was applied to each test problem 30 times under the same stopping

condition (i.e., evaluation of 100,000 solutions). The average value of the D-measure

obtained from each combination of T and C is shown in Fig.3.8 for the 250×3 test

problem where shorter bars mean better solutions. In this figure, we can observe

that good results were obtained from combinations of T and C in where C = 20,

and T = 8, 10, 12.
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3.6 Summary

This chapter proposes a parallel quantum evolutionary algorithm (PQEA) for multi-

objective optimization on discrete problems. PQEA uses a set of even weighted vec-

tors to decompose the MOOP into a number of scalar optimization sub-problems.

Each sub-problem is associated with a weighted vector. All sub-problems are classi-

fied into several groups based on the their similarities. The groups of sub-problems

are parallel evolved by a population of q-bit individuals. Because the neighboring

sub-problems in one group should have close optimal solutions, a q-bit individual is

applied to orderly address the sub-problems in one group. All groups of sub-problems

are optimized in parallel. On the other hand, the probabilistic representation is the

most features of q-bit individual. The evolutionary information for optimizing the

sub-problem in the q-bit individual can be shared to optimize its neighborhoods.

This work utilizes the feature of q-bit individual and the similarities of solutions of

sub-problems in one group to find pareto optimal solutions for MOOP.

To solve the multi-objective permutation FSSP, PQEA are implemented with a

transformation procedure which is describing in last chapter. The benchmark prob-

lem is employed to compare the performance of PQEA and state of art algorithms

MOGLS and NSGA-II. Through numerous experimental tests, the results show that

PQEA outperforms than MOGLS and NSGA-II with near 12.4% improved disper-

sion performance on the 4 different scaled problems. The coverage rate comparisons

among each algorithm are evaluated, PQEA is also competitive.

To further confirm the applicability of PQEA, other kind of combinatorial prob-

lem multi-objective knapsack problems are applied to compare with MOEA/D, due

to the high efficacy of MOEA/D on this problem. The experimental results have

shown that PQEA is obviously better than MOEA/D in two objective problems.

The PQEA is able to generate much better non-dominated solutions than those pro-

duced by MOGLS and NSGA-II in the same number of function evaluations on more

objective problems, in which PQEA and MOEA/D obtain similar performance.
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Figure 3.9: Plots of non-dominated solutions with the lowest D-measure in 30 Runs
of PQEA, MOEA/D and MOGLS on the 750*2 instances
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Figure 3.10: Comparison of average D-measure values for PQEA and MOEA/D
during evolution progression
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Chapter 4

Hybridization of ANS for

Multi-Objective Permutation

FSSP

4.1 Introduction

The hybridization of a proper local search with evolutionary algorithm can improve

the convergence and stable performance of an algorithm to find a near-optimal

solution [48]. For permutation FSSP, there are many researchers developed hy-

bridization methods to address permutation FSSP on the criterion of minimizing

makespan, such as Ekşioğlu et al. [49], Tasgetiren et al. [50], and Ben Daya et al.

[51]. Because of many benefits can be yielded from makespan minimization, such

as increasing productivity, saving electricity and labor cost etc [52]. On the other

hand, Grabowski et al. [53] [54] and Koulamas [55] proposed the hybrid approaches

to solve the permutation FSSP with the single criterion of minimizing maximum

tardiness. These approaches gained better results on permutation FSSP with the

criterion of minimizing makespan or maximum tardiness. However, it cannot be

used in multi-objective permutation FSSP, because one criterion is considered and
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other criterion is ignored.

The last chapter has discussed the performance of PQEA, MOGLS and NSGA-II

on multi-objective permutation FSSP. These approaches are pure evolution algo-

rithm without integrating any properties of permutation FSSP. To further improve

solution quality, the multi-objective local search should be designed to combine with

these approaches. However, in the literatures, there is seldom found the such local

search procedure except Ishibuchi et al. [56]. In his approach, the individuals of

population are selected to perform local search based on a probability parameter.

The local search procedure is implemented by generating some neighborhood solu-

tions using a neighborhood structure. A set of arbitrarily weighted parameters is

applied to control the search direction of local search procedure. They also discuss

the balance between genetic search and local search for multi-criteria permutation

FSSP, and asserted that local search can be much more efficiently executed than

genetic search while more effective neighborhood structures are constructed.

Although this approach has obtained lots of good solutions, the common neigh-

borhood structure is a cause of low efficiency on optimizing bi-criteria simultane-

ously. And, using local search procedure for an individual that bases on randomly

weighted parameters would waste much computational resource on searching an

uncertain and unpredicted direction. To improve the search ability to reach more

extensive and distributed solutions, in the beginning, this chapter proposes two

neighborhood structures that are called as MOINS and MOEXC. Any movement

based on MOINS and MOEXC attempts to reduce both criteria: makespan and max-

imum tardiness. Moreover, Alternated Neighborhood Search (ANS) is developed.

The search direction of ANS on an individual is naturally decided by interaction

of MOINS and MOEXC instead of randomly weighted parameters. To verify the

efficiency of ANS, four different scaled problems are used to test. The formal lo-

cal search procedure is implemented with various kinds of neighborhood structures

compares to ANS.

This chapter is organized as follows. Section 2 briefly introduces how to identify

the critical jobs and active blocks in a permutation FSSP. The proposed neighbor-

hood structures MOINS and MOEXC are described in Section 3 in details. Mean-
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while, the core of ANS is taken in later. The hybridization of ANS with multi-

objective evolutionary algorithm on bi-criteria permutation FSSP and comparison

are the subject of Section 4, which is divided into two parts: methodology of com-

parison and experimental results. The last section concludes this research and offers

the future perspectives.

4.2 Critical Jobs and Active Block Identification

Although the critical jobs and active blocks are very significant properties for permu-

tation FSSP, they are only applied on minimizing makespan until now. Grabowski

[57] [54] and Ruiz [58] have used the properties to develop some neighborhood struc-

tures on the single criterion permutation FSSP (makespan minimization). However,

in this chapter, the new neighborhood structures that simultaneously minimize both

criteria are proposed by utilizing the properties. The definitions of critical jobs and

active blocks are reviewed as following.

The permutation FSSP can be formulated as follows. Each of n jobs from the set

J = {J1, J2, . . . , Jn} has to be processed on m machines M1, M2, . . . , Mm. Without

loss of generality, it is assumed that the jobs are processed in the order of indices

of machines. Oji is defined as the ith operation of job Jj processed on machine

Mi, and working time of Oji is pji. A sequencing of jobs can be represented by a

permutation π = (π(1), . . . , π(n)), where π(a) is the ath element of permutation π.

As we described in Chapter 2, the permutation FSSP with this criterion is to find a

such permutation π∗ from Ω:

π∗ = arg min
π∈Ω

Cmax(π) (4.1)

For any permutation π, the makespan Cmax(π) value can be found by the following

equation:

Cmax(π) = Max
1≤t1≤...≤tm−1≤n

t1
∑

j=1

pπ(j)1 +

t2
∑

j=t1

pπ(j)2 + ...+

n
∑

j=tm−1

pπ(j)m (4.2)
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( )i! ( )j!

Figure 4.1: Grid graph of a permutation FSSP instance with 8 machines and 9 jobs

Here, the sequence of integers t = (t1, t2, ..., tm−1) defines a path P (π, t) from

beginning operation Oπ(1),1 to last operation Oπ(n),m, where the ti (ti ∈ t) presents

the element index in permutation π.

Let L(P (π, t)) be the length of path P (π, t). It can be written as:

L(P (π, t)) =

t1
∑

j=1

pπ(j)1 +

t2
∑

j=t1

pπ(j)2 + ...+

n
∑

j=tm−1

pπ(j)m (4.3)

Then, for any permutation π we can get that:

Cmax(π) ≥ L(P (π, t)) (4.4)

P (π, t) is any path in π. The longest path P (π, l), l = (l1, l2, ..., lm−1), gives the

makespan value of permutation π such as:

Cmax(π) = L(P (π, l)) (4.5)

The path P (π, l) is also called as critical path [51]. The jobs of set A are defined
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as critical jobs of π, where

A = {π(lj) |π(lj) 6= π(lj′) lj , lj′ ∈ l} (4.6)

A sequence of jobs

Bk = {π(lk−1), π(lk−1 + 1), ..., π(lk)} (4.7)

is called the kth active block in π, and k ∈ {1, 2, ..., |A|}. The π(lk−1) and π(lk) are

adjacent critical jobs of permutation π. If k = 1, l0 is defined as l0=1.

For the instance of Fig. 4.1, this permutation π = (π(1), π(2), π(3), π(4), π(5), π

(6), π(7), π(8), π(9)), we can find the longest path P (π, l), l = (2, 4, 7, 8, 9, 9, 9),

and the set of critical jobs is A = {π(2), π(4), π(7), π(8), π(9)}. Based on above

definitions, there are 5 active blocks B1, B2, B3, B4 and B5 for this instance, where,

B1={π(1), π(2)}, B2={π(2), π(3), π(4)}, B3={π(4), π(5), π(6), π(7)}, B4={π(7), π

(8)}, B5={π(8), π(9)}.

4.3 Alternated Neighborhood Search

Alternated Neighborhood Search (ANS) contains two main parts: “multi-objective

neighborhood structures” and “ANS procedure”. The multi-objective neighbor-

hood structures are proposed based on two theorems in permutation FSSP. The

interaction of neighborhood structures that guides search direction presents in ANS

procedure.

We can find many types of neighborhood structures that are using a movement

based on interchanging jobs on machines in the literatures[51][59][60]. The neigh-

borhood structures of “Two Point Insertion” and “Two Point Exchange” are the

most commonly applied and described as follows.

Firstly, let (u, v) be a pair of position numbers in a permutation π.

• Two Point Exchange (EXC): exchange the positions of the jobs that currently

located in u and v.
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• Two Point Insertion (INS): step 1, remove the job π(u) from the schedule π,

and the jobs between u and v are arranged forward one unit; step 2, set job

π(u) to position v.

It is noted that u is always smaller than v, because the double numbers are randomly

generated, the small one is given to u, and bigger one is set as v.

4.3.1 Theorems about Two Criteria

Based on the two theorems, new neighborhood structures for bi-criterion permu-

tation FSSP are presented in this subsection. The theorem 1 has been stated by

Graboski [57]. It was applied to minimizing makespan using INS or EXC by the

papers [61] [57] [59]. Theorem 2 only focuses on minimizing maximum tardiness.

The description and proof procedure of theorem 2 are originally illustrated by us.

Here, π(u) and π(v) represent the uth and vth jobs in π.

Theorem 1 (Grabowski[57]): Suppose the permutation π′′ is generated from

π by a movement. The movement is to exchange the job π(u) and π(v) or insert

π(u) to v on π. If π(u) and π(v) are in the same active block, then:

Cmax(π
′′) ≥ Cmax(π) (4.8)

Theorem 2: For any permutation π, π(t) is maximum tardiness job in π. The

permutation π′′ is obtained by the movement of π(t) to v. If v > t, then:

Tmax(π
′′) ≥ Tmax(π) (4.9)

Proof:

Because of v > t, we can assume that x is an integer from {0, 1, ..., v − t} and

t+ x = v (4.10)

The permutation π likes as:

π = (π(1), π(2), . . . , π(t− 1), π(t), . . . , π(v), . . . , π(n)).

After the movement of π(t) to v, we get that:
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π′′ = (π(1), π(2), ..., π(t− 1), ..., π(v), ..., π(t), ..., π(n)).

π′′=(π′′(1), π′′(2), ..., π′′(t− 1), π′′(t), ..., π′′(v), ..., π′′(n)).

The completed time of jobs π(t) and π′′(v) are Cm
π(t), C

m
π′′(v) on the last machine

Mm.

Besides, It can be learned from π and π′′ that sub-permutations (π(1), π(2), ...,

π(t − 1)) and (π′′(1) , π′′(2), ..., π′′(t − 1)) are same, moreover π(t) and π′′(v) are

identical jobs.

So, we have
Cm
π(t−1) = Cm

π′′(t−1)

Dπ′′(v) = Dπ(t)

Pπ′′(v),m = Pπ(t),m

(4.11)

Based on the Eq. 2.15, the following formulas hold,

Cm
π(t) ≥ Cm

π(t−1) + Pπ(t),m (4.12)

Cm
π′′(v) = Cm

π′′(t+x) ≥ Cm
π′′(t−1) + Pπ′′(t),m

+ Pπ′′(t+1),m + ... + Pπ′′(t+x),m (4.13)

Using Eq. 4.13 to minus Eq. 4.12, below equation can be obtained.

Cm
π′′(v) − Cm

π(t) ≥ Pπ′′(t+1),m + ...+ Pπ′′(t+x),m (4.14)

and,

Pπ′′(t+1),m + ...+ Pπ′′(t+x),m ≥ 0 (4.15)

therefore,

Cm
π(v) − Cm

π(t) ≥ 0 (4.16)

According to the Eq. 3.11, we can get that:

Tmax(π) = Tπ(t) = Cm
π(t) −Dπ(t)

Tmax(π
′′) ≥ Tπ′′(v) = Cm

π′′(v) −Dπ′′(v)

(4.17)
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Thus, the following equation is generated.

Tmax(π
′′)− Tmax(π) ≥ Cm

π′′(v) − Cm
π(t) (4.18)

By the Eq. 4.16 and Eq. 4.18, we can conclude that:

Tmax(π
′′)− Tmax(π) ≥ 0 (4.19)

This completes the proof.

Theorem 1 encourages the movement on π(u) and π(v) that belong to different

active blocks to decrease the makespan Cmax(π). Theorem 2 states a way to reduce

search space for finding a solution that minimizes maximum tardiness.

4.3.2 Multi-objective Neighborhood Structures

The targets of above theorems are for minimizing makespan and maximum tardiness,

respectively. Integrating the two theorems, any movement based on the multi-

objective neighborhood structures simultaneously improves two objectives. The

multi-objective neighborhood structures: multi-objective insertion (MOINS) and

multi-objective exchange (MOEXC) are proposed as below.

4.3.2.1 Definitions of MOINS and MOEXC

Firstly, some notations are given. Let permutation π is π=(π(1), π(2), ..., π(t), ..., π(n)).

The job π(t) has maximum tardiness. There are k active blocks in π, such as

{B1, B2, ..., Bh−1, Bh, Bh+1, ..., Bk}. According to Eq. 4.7, suppose the job π(t) in

the hth active block Bh (π(t) ∈ Bh).

Definition 1. MOINS: Let π be a current permutation. A neighbor of π

using “two point insertion” scheme is generated by inserting job π(u) to position v.

The values of u and v are listed as Table 4.1.

The work flow of MOINS presents as:
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Figure 4.2: MOINS neighborhood structure
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Figure 4.3: MOEXC neighborhood structure

Step 1. Randomly generate an integer u, which is limited to [1, t). Here, [1, t)

means u belongs to the range that is from 1 to t, including 1 but t is exclusive.

Step 2. Identify which category the job π(u) belongs to. As Table 4.1, the

category 1 is π(u) ∈ Bi, i = 1, 2, ..., h − 1. If u ∈ {x|(π(x) ∈ Bh) ∩ (x < t)}, it is

defined as category 2.

Step 3. Determine the parameter v based on categorization of π(u). If the π(u)

is in category 1, v is randomly generated from [t + 1, n]. Otherwise, v is given by

π(v) which is randomly selected from Bj , j = h+ 1, h+ 2, ..., k.

Step 4. Move the job π(u) to v by “two point insertion” scheme.

In MOINS, job π(u) which is in front of π(t) will be inserted to v, and v is behind

t. Fig. 4.2 shows the new permutation π′′ is obtained by MOINS using the first

category. The job π(u), (u = 2, π(2) ∈ B1) is moved to position v (v > t+ 1) to get

π′′, such as: π′′ = (π(1), π(3), π(4), ..., π(t), ..., π(v), π(2), π(v + 1), ..., π(n)).

Definition 2. MOEXC: Let π be a current permutation. The job π(t) has
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Table 4.1: Movement of job positions in neighborhood structure MOINS

Job π(u) Possible positions of v

Category 1
π(u) ∈ Bi,

v ∈ [t+ 1, n]
i = 1, 2, ..., h− 1

Category 2
u ∈ {x|(π(x) ∈ Bh) π(v) ∈ Bj,

∩(x < t)} j = h + 1, h+ 2, ..., k

maximum tardiness in π. A neighbor of π using “two point exchange” scheme is

generated by interchanging the positions of job π(t) and π(v), where π(v) ∈ Bi,

i = 1, 2, ..., h− 1.

The processes of MOEXC like as:

Step 1. Randomly selected a job π(v) from Bi, where i = 1, 2, ..., h−1. Specially,

if h = 1, Bi is defined to B1.

Step 2. Exchange the jobs π(t) and π(v) by “two point exchange” scheme.

The maximum tardiness job π(t) exchanges with the jobs that belong to different

active blocks, and these active blocks are before π(t). The movement that is based

on MOEXC can be visualized on Fig. 4.3. The new permutation π′′ is generated as:

π′′=(π(1), π(2), π(t), π(4), ..., π(t− 1), π(v), π(t+ 1), ..., π(n).

4.3.2.2 Investigation of MOINS and MOEXC

According to Theorem 1, in order to reduce the makespan Cmax(π), the jobs that

are applied for MOINS or MOEXC are selected from different active blocks. On the

other hand, both MOINS or MOEXC forwardly move the maximum tardiness job

π(t) from the previous position, to reduce Tmax(π).

Suppose πins and πexc are generated by π using MOINS and MOEXC, respec-

tively.

πins=(π(1), ..., π(u−1), π(u+1), ..., π(t), π(t+1), ..., π(v),π(u), π(v+1), ..., π(n)).
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Because the job π(u) is inserted to position v in MOINS, the maximum tardiness

job π(t) moves from t to t − 1. As the description of theorem 2, the Tmax(πins) is

smaller than Tmax(π) in most cases.

πexc=(π(1), ..., π(v − 1), π(t), π(v + 1), ..., π(t− 1), π(v), π(t+ 1), ..., π(n)).

In πexc, the job π(t) exchanges with π(v). The maximum tardiness job π(t) is

moved to position v, where v < t. It also complies with theorem 2 for reducing

maximum tardiness.

As above mentioned, MOEXC and MOINS are designed by integrating the two

theorems. Any movement based on MOEXC or MOINS simultaneously considers

the effect of two criteria.

4.3.3 Alternated Neighborhood Search Procedure

The basic idea of ANS is systematically changing of neighborhood structures within

a local search. The interaction between neighborhood structures naturally explore

the search direction into dominant area. Let Nk, (k = 1, 2) denote a set of pre-

selected neighborhood structures, permutation δ is selected for applying Alternated

Neighborhood Search procedure. N1 andN2 use neighborhood structures of MOINS,

MOEXC respectively. The pseudo-codes of ANS procedure present on Algorithm 5.

The parameter k decides when and which neighborhood structure is called. While k

is equal to 1, neighborhood structureN1 always takes to search until it cannot deduce

makespan any more. Otherwise, k is set to 2, neighborhood structure N2 is invoked.

However, in the process of N2, if a better permutation δN2 with low maximum

tardiness is found, k is renewed by 1 so that N1 is applied for continuing search

based on permutation δ (δN2 → δ). If the procedure cannot find a permutation with

lower maximum tardiness by N2, then k ← 3. The procedure of ANS will stop.

The interaction of double neighborhood structures can be conclusively visualized

as Fig. 4.4. The permutation δ is applied for local search. The new permutations

that are sequentially generated by ANS represent in alphabetical order (for example,

δN1

a → δN1

b ... → δN2

h ). Solid lines represent a permutation with lower makespan or
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Algorithm 5: Alternated Neighborhood Search

Input: δ - The schedule is selected to apply local search.
m - Makespan of current schedule δ.
t - Maximum tardiness of current schedule δ

Output: S(δ) - A set of neighborhood schedules of δ
begin

Set k → 1, and kmax → 2;
while k < kmax do

if k == 1 then
Schedule δINS is obtained by MOINS neighborhood structure
based on δ;
if fM(δINS) < m then
m← fM(δINS);
δ ← δINS;
else k = k + 1;
S(δ)← {S(δ)

⋃

δINS};
end
if k == 2 then

Schedule δEXC is obtained by MOEXC neighborhood structure
based on δ;
if fT (δEXC) < t then
t← fT (δEXC);
δ ← δEXC;
k ← 1;
else k = k + 1;
S(δ)← {S(δ)

⋃

δEXC};
end

end

end

maximum tardiness (such as δN1

a , δN1

b and etc.) is obtained. If the obtained per-

mutation (such as δN1

c , δN1

e and etc.) has big objective value, it is drawn as broken

lines and curve lines indicate the former permutation gets back. In the beginning,

N1 is used. When the makespan cannot be reduced any more by N1, the objective

is turned into finding lower maximum tardiness using N2. But if the better permu-

tation with lower maximum tardiness is generated, the movement based on N1 is

reemployed to reduce makespan. In this instance, N1, N2 are called 5 times and 3
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Figure 4.4: Search direction of ANS

times, respectively. Finally, local search procedure will generate a set of permuta-

tions s(δ), in which any permutation that is generated by whichever neighborhood

structure is contained. Regardless of their objective values, 8 permutations of the

instance in Fig. 4.4 are saved in s(δ). The search direction of this example is from

δ to δN2

f , such as δ → δN1

a → δN1

b → δN2

d → δN2

f .

4.3.4 Combination of ANS with Multi-Objective Approaches

4.3.4.1 Hybridization of ANS with NSGA-II

The genetic operations in NSGA-II are implemented by INS mutation and two

point crossovers for multi-objective permutation FSSP. Because better solutions are

generated from the combination of two point crossover and the INS mutation at the

last chapter. NSGA-II uses non-dominated sorting for fitness assignments which

are presented in Fig. 4.5. Individuals that are most dominant are assigned as front

rank 1. The individuals only dominated by individuals in front rank 1 are assigned

into front rank 2, and so on. Selection is made using tournament between two

individuals.
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Figure 4.5: Non-dominated sorting method in NSGA-II

The combination of ANS with NSGA-II is called as NSGA-II-ANS in which the

INS are used as mutation method. At every generation, only the individuals that

are assigned in rank 1 employ ANS procedure. An individual which applies ANS

procedure will generate an additional set of neighborhood individuals. To maintain

the extensity of pareto fronts, all neighborhood individuals of the set are added

into current population. Such as the example of Fig. 4.5, eight individuals in rank

1 are applied local search procedure, the obtained neighborhood individuals and

former individuals in current population are put together to form a larger population.

Non-dominated sorting method of NSGA-II classifies all individuals of the larger

population into several ranks. The elites of individuals in larger population are

filtered by tournament selection to construct the population of next generation.

4.3.4.2 Hybridization of ANS with PQEA

The combination of ANS with PQEA calls as PQEA-ANS. As the description in last

chapter, the PNDS stores the non-dominated solution during evolution progression.

At every generation, PNDS is updated when a new binary solution is produced by

q-bit individuals. Because of the solutions in PNDS with the binary expression, it is
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necessary to construct a new set ‘EP ’ to maintain the job-based solutions. Because

ANS is a job-based local search procedure. At every generation of PQEA, all binary

solutions in PNDS are converted to job-based solutions to apply ANS procedure.

The solutions that generated by ANS are saved in ‘EP ’. Until meeting the stop

condition, ‘EP ’ will output the non-dominated solutions found by PQEA-ANS.

4.4 Experiments

4.4.1 Test Problems and Performance Measures

To demonstrate the efficiency of proposed method, four different scaled multi-criteria

permutation FSSP problems are applied for comparing, 20×20 (20 jobs and 20

machines), 40×20, 60×20 and 80×20. The same test data used in last chapter

are applied to compare the performance of each algorithm. The D-measure and

C-measure also are relied on verifying the efficiency of proposed ANS.

4.4.2 Comparisons of Neighborhood Structures and ANS

The motivation of proposing MOINS and MOEXC is explained in before section.

More specifically, we have pointed out that any movement base on MOINS or

MOEXC attempts to improve the two objectives, simultaneously. For examining

the validity of MOINS and MOEXC, the INS, EXC, MOINS and MOEXC are im-

plemented as mutation methods for NSGA-II to compare with our NSGA-II-ANS.

For fair comparison, the same parameters are set as following.

• Population Size: popSize=60;

• Mutation Probability: PM=0.6;

• Crossover Probability: PC=0.8;

• Terminated Condition: Evamax=100,000;
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Table 4.2: Comparison of neighborhood structures using D-measure by 100,000
individual evaluations (The smaller one is better)

Test Ave&SD NSGA-II NSGA-II-
Problems Values INS EXC MOINS MOEXC ANS

20×20
Ave 5.7 6.0 4.4 5.8 3.6
SD 4.6 4.5 1.6 2.3 1.3

40×20
Ave 18.6 18.2 13.4 16.3 8.8
SD 3.8 4.6 2.4 3.0 2.1

60×20
Ave 17.6 16.8 11.3 15.3 7.1
SD 3.5 2.8 2.7 2.9 2.1

80×20
Ave 110.2 115.3 69.3 62.3 37.9
SD 35.6 32.0 15.2 11.1 7.6

The Evamax is the maximum number of evaluations time. The algorithms terminate

at Evamax solutions tried.

The performances of five methods are compared using the D-measure. The aver-

age values (Ave) of D-measure over 30 times are shown together with the standard

deviation (SD) in Table 4.2. We can see this table that MOINS and MOEXC ob-

tain better D-measure values than INS and EXC on most of problems. In 20× 20,

40× 20 and 60× 20 problems, MOINS gets lower D-measure values than MOEXC,

but MOEXC outperforms than MOINS on more complicated problem 80× 20. The

ANS has improved the convergence of NSGA-II by learning the results of NSGA-II-

ANS, which not only products lower D-measure values but also has little SD values

on all problems. The small D-measure values indicate that the non-dominated so-

lutions of NSGA-II-ANS are closer to reference solutions than other methods. In

other words, the solutions of NSGA-II-ANS are superior on both criteria.

In order to further verify the validity of proposed methods, all the comparing

algorithms will terminate at same computation time. In Table 4.3, we show the

average values of D-measure obtained by each algorithm when the same computation

time was used as the stopping condition. The execution of each method was iterated

in 15 seconds. From this table, we can get that better results were obtained from

our NSGA-II-ANS than other ones. Although NSGA-II using MOEXC generates a
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Table 4.3: Comparison of neighborhood structures using D-measure under same
computation time. (The small one is better)

Test Ave&SD NSGA-II NSGA-II-
Problems Values INS EXC MOINS MOEXC ANS

20×20
Ave 5.8 6.7 4.1 6.0 3.9
SD 3.5 3.8 1.8 2.3 1.4

40×20
Ave 18.2 18.0 12.4 16.5 9.7
SD 5.0 5.8 1.8 2.3 1.64

60×20
Ave 18.4 18.9 9.5 15.3 8.1
SD 3.1 3.8 2.7 2.9 2.2

80×20
Ave 130.3 121.8 76.4 67.1 63.9
SD 37.0 35.8 11.2 12.4 11.4

comparable result on 20× 20 problem, MOEXC greatly outperforms than INS and

EXC on large scale problems. Also, the results of MOINS obviously better than INS

and EXC on all problems.

4.4.3 Hybridization Approaches Comparisons

The performance of NSGA-II can be improved by hybridization with local search.

To increase the convergence speed of NSGA-II to the pareto front, Ishibuchi et al.

[56] have proposed a local search method combined with NSGA-II. Here, it is called

as “F NSGA-II” and simply described as follows.

F NSGA-II: The former local search approach is implemented as following. At

every generation of F NSGA-II, first of all, it randomly generates a weight [w1, w2]

for two objectives, and w1 + w2 = 1, to birth a single objective f(δ).

f(δ) = w1 ∗ Tmax(δ) + w2 ∗ Cmax(δ) (4.20)

Next, based on objective f(δ) tournament selection is applied to choose a permuta-

tion δ from current population. Permutation δ with a local search probability PLS

is improved by a local search procedure. The local search procedure is implemented
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Table 4.4: The evaluation of F NSGA-II using different local search operations by
D-measure. (The smaller one is better)

Test Ave&SD F NSGA-II.ver.1
Problems Values INS INSAB EXCAB MOINS MOEXC

20×20
Ave 5.7 5.0 5.1 4.2 5.5
SD 2.3 2.1 2.1 1.3 2.3

40×20
Ave 18.3 20.8 20.2 14.0 17.0
SD 6.4 6.4 4.5 3.8 3.8

60×20
Ave 16.7 17.0 17.8 13.1 15.8
SD 4.3 2.7 2.8 2.8 3.1

80×20
Ave 100.7 112.2 114.3 84.5 96.0
SD 27.7 34.6 31.0 23.6 25.3

Table 4.5: Examination of F NSGA-II using different local search operations by
D-measure. (The smaller one is better)

Test Ave&SD F NSGA-II.ver.2 F NSGA-II.ver.3 NSGA-II-
Problems Values MOINS MOEXC MOINS MOEXC ANS

20×20
Ave 4.7 4.5 4.7 5.9 3.6
SD 1.2 1.6 1.3 2.4 1.3

40×20
Ave 12.8 12.9 13.3 16.7 8.8
SD 2.7 3.1 2.9 3.3 2.1

60×20
Ave 9.6 9.8 9.5 11.3 7.1
SD 2.5 2.5 2.3 3.7 2.1

80×20
Ave 67.4 65.4 63.5 62.0 37.9
SD 10.5 9.8 9.0 10.9 6.6

by generating k neighbors of δ using a local search operation (such as INS or EXC).

The objective f(δ) decides whether δ is replaced by neighbors of δ. All the permu-

tations in current population are iterated using local search procedure. There are

double parameters PLS and k should be set in F NSGA-II.

There are three versions of F NSGA-II in our experiments. The F NSGA-

II.ver.1, F NSGA-II.ver.2 and F NSGA-II.ver.3 have used the mutation method INS,

MOINS and MOEXC, respectively. The parameters of popSize, PM , PC and Evamax
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Figure 4.6: Comparison of C-measure values in 30 executed times using Boxplot.
(A is better than B, only if C(A,B) is bigger than C(B,A))

for F NSGA-II are set as 60, 0.6, 0.8, and 100,000, respectively. Specifically, it is

needed to give the parameters of k and PLS for F NSGA-II, which are advised as

k = 80 and PLS = 0.02 by many experiments. All the algorithms are severally exe-

cuted 30 times for comparing the D-measure. As Table 4.5 shown, firstly, the five

neighborhood structures are implemented as local search operations for F NSGA-

II.ver.1. The five neighborhood structures are INS, INSAB (jobs insertion based on

adjacent active block), EXCAB (jobs exchange based on active block), MOINS and

MOEXC. The INSAB and EXCAB are proposed by B. Ekşioğlu [49] and Grabowski

[57], respectively, for the single objective of minimizing makespan. The INSAB is
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inserting a job into adjacent active blocks, more details can be found in those pa-

pers. The EXCAB exchanges the jobs that belong to different active blocks. We

can find that F NSGA-II.ver.1 performs very well when the MOINS and MOEXC

are applied as local search operations.

Learning from Table 4.2, while MOINS and MOEXC act as the mutation in pure

NSGA-II, the good results are obtained. So, MOINS and MOEXC are selected as

mutation methods for F NSGA-II.ver.2 and F NSGA-II.ver.3, respectively. Table

4.5 also gives out the results of F NSGA-II.ver.2 and F NSGA-II.ver.3 in which the

MOEXC and MOINS are also applied as local search operations. We can see that al-

though F NSGA-II.ver.2 and F NSGA-II.ver.3 have improved the D-measure results,

our NSGA-II-ANS are still obviously better than F NSGA-II.ver.2 and F NSGA-

II.ver.3.

Using the C-measure, the NSGA-II-ANS compare to the best performances of

F NSGA-II in four problems, such as F NSGA-II.ver.1 (MOINS) for 20×20 prob-

lem, F NSGA-II.ver.2 (MOINS) for 40×20 problem, F NSGA-II.ver.2 (MOINS) for

60×20 problem and F NSGA-II.ver.3 (MOEXC) for 80×20 problem. The compar-

isons of C-measure are shown in Fig. 4.6. Each boxplot collects the set coverage

between NSGA-II-ANS and F NSGA-II. A boxplot provides a simple graphical sum-

mary of a set of data. It shows a measure of central location (the median), two

measures of dispersion (the range and inter-quartile range), the skewness (from the

orientation of the median relative to the quartiles) and potential outliers (marked

individually). We can see from this figure that coverage rate of NSGA-II-ANS is

bigger than F NSGA-II. It indicts that most solutions of NSGA-II-ANS are dominat-

ing F NSGA-II, whereas only little solutions are covered by F NSGA-II. Especially,

in the larger scale 80 × 20 problem, averagely, above 80 percent non-dominated

solutions of F NSGA-II is covered by NSGA-II-ANS.

To see Table 4.2 and 4.3, some similar D-measure results are gotten by pure

NSGA-II, while MOINS and MOEXC are used as mutation methods. To investigate

the distribution of final non-dominated solutions, Fig. 4.7 and Fig. 4.8 state the non-

dominated solutions that are generated by NSGA-II, F NSGA-II and NSGA-II-ANS

under 30 runs. It can be observed from this figure that NSGA-II-ANS performs well
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Table 4.6: Improvement of ANS for PQEA and NSGA-II on D-measure. (Compu-
tation time is 15 seconds)

Test D-
NSGA-II

NSGA-II-
PQEA

PQEA-
Imp %

Problem Measure ANS ANS

20×20
Ave 5.8 3.9 5.1 4.2 23.5%
SD 3.5 1.4 4.2 2.3 -

40×20
Ave 18.2 9.7 14.3 11.8 32.2%
SD 5.0 1.64 2.9 2.3 -

60×20
Ave 18.4 8.1 13.4 10.1 39.6%
SD 3.1 2.2 3.4 2.9 -

80×20
Ave 130.3 63.9 119.3 68.9 46.4%
SD 35.8 11.4 38.7 7.9 -

in most instances. In 40×20 problems, The NSGA-II-ANS shows dominant on both

criteria. With problem scale increased, more extensive non-dominated solutions are

produced by NSGA-II-ANS. The solutions of NSGA-II-ANS not only are widely and

smoothly distributed but also have great advance on both objectives on the problem

of 80×20.

An attainment surface [62] is a kind of trade-off surface obtained by a single

run of MOEA algorithm. It uses a dashed/dotted line to enclose the dominated

area of non-dominated solutions. The 50% attainment surface shows the estimated

attainment surface obtained by at least 50% of multiple runs, which represents the

average performance of algorithms in many runs. As shown in Fig. 4.9 and Fig.

4.10, the performance of three methods is very close on the 20×20 problem, however

with the increasing of complexity of problems, the NSGA-II-ANS is obviously better

than NSGA-II and F NSGA-II. The dominant area of NSGA-II-ANS are more wide

than others, which also indicates that the ANS has improved the convergence of

NSGA-II. The experimental results also certify the guidance of search direction in

NSGA-II-ANS is better than randomly weighted strategy of F NSGA-II.
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4.4.4 Improvement of ANS for PQEA

In last section, numerous experiments have demonstrated the efficiency of hybridiza-

tion of ANS with NSGA-II to compare with the previous research of Ishibuchi et al.

[56]. In this section, the performance of hybridization of ANS with PQEA is inves-

tigated. The PQEA-ANS, NSGA-II-ANS, PQEA and NSGA-II are independently

executed 30 times. All algorithms are terminated at 15 seconds. The NSGA-II

adopts the INS mutation and two point crossover, because the better results are

founded by these genetic operations. PQEA and NSGA-II use the same parame-

ters as in last chapter. Table 4.6 collects average D-measure values and standard

deviation (SD) obtained by each algorithm in 30 execution times.

We can learn from this table that although PQEA shows its better performance

than NSGA-II, after merging ANS procedure, the NSGA-II-ANS is slightly bet-

ter than PQEA-ANS. Comparing with the achievement of PQEA in last chapter,

based on the Eq. 4.21 the dispersion performance for 20×20, 40×20, 60×20 and

80×20 problems have been further improved by 23.5%, 32.2%, 39.6% and 46.4%, re-

spectively. Here, Dm(PQEA) and Dm(NSGA-II-ANS) mean the average D-measure

values generated by PQEA and Dm(NSGA-II-ANS).

Imp % =
|Dm(NSGA-II-ANS)−Dm(PQEA)|

Dm(PQEA)
× 100 (4.21)

4.5 Summary

This chapter deals with the permutation flow shop scheduling problem on the

bi-criteria: makespan and maximum tardiness. Alternated Neighborhood Search

(ANS) procedure which contains double neighborhood structures is proposed. Any

movement on a schedule based on proposed neighborhood structures simultaneously

takes effect on double objectives. These neighborhood structures are not found in

any literature research before. The search direction of ANS is naturally guided by

interaction of proposed neighborhood structures instead of random weighted strat-

egy. ANS integrates with famous multi-objective evolutionary algorithm, NSGA-II
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(Non-dominated Sorting Genetic Algorithm-II) has improved the distribution of

solutions and convergence. The numerous comparisons show efficiency of ANS is

better than most of algorithms even with same number of individual evaluations,

same computational time and parameter setting.

Although results of proposed approach are very attractive on most measures, as

the future study, the permutation FSSP with three or more criteria motivate us to

modify ANS and develop more advanced neighborhood structures.
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Figure 4.7: Attainment of non-dominated solutions for 20×20 and 40×40 cases
under 100,000 evaluation times
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Figure 4.8: Attainment of non-dominated solutions for 60×60 and 80×80 cases
under 100,000 evaluation times
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Figure 4.9: 50% attainment surfaces of each algorithm on 20×20 and 40×40 cases
under 100,000 evaluation times
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Figure 4.10: 50% attainment surfaces of each algorithm on 60×60 and 80×80 cases
under 100,000 evaluation times
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Chapter 5

PQEA with Q-to-J Method for

Multi-Objective Reentrant FSSP

5.1 Introduction

The reentrant FSSP is a more complex problem than permutation FSSP. It usually

appears in the semiconductor manufacturing, in which the routes of jobs on the

machines are identical as in permutation FSSP, but the jobs must be processed by

several machines in multiple times. For example, in semiconductor manufacturing,

each wafer re-visits the same machines for multiple processing steps. The wafer

traverses flow lines several times to produce different layer on each circuit.

The evaluation of proposed approaches for actual production cases is studied in

this chapter. Simulations upon data are conducted from a real-world semiconduc-

tor factory, in which the procedure final testing of semiconductor products is main

concerned. The semiconductor final testing is the last procedure of semiconductor

production, which is responsible for the function detection, final assembly and pack-

age work before the semiconductor products are shipped out to customers. This

Semiconductor Final Testing Problem (SFTSP) case includes almost all the flow-

shop factors as reentry characteristic, serial and batch processing stages, job-clusters

and parallel machines. Since the critical equipment needs to be utilized efficiently
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at a specific testing stage, the scheduling arrangement for the jobs is then playing

an important role in order to reduce both the makespan and penalty cost in total

final testing progress.

In order to verify the practical applicability of developed approach in before

chapter, PQEA has been tested in this multi-objective reentrant FSSP of a real-

world case of SFTSP. Due to the complexity of reentrant FSSP, the Quantum-to-Job

(Q-to-J) method that transforms quantum states to real reentrant-jobs identifiers

is proposed. The famous multi-objective algorithm NSGA-II is also implemented

to solving this problem comparing with PQEA. The investigation of the efficacy of

PQEA by contrasting between obtained schedules and factory previous one is taken

out.

This chapter is organized as follows. Section 2 firstly introduces the process

procedure of SFTSP in this factory and presents the formulations of two objectives in

later. Section 3 applies PQEA and NSGA-II to this actual production case. Section

4 summarizes the simulation results and analyzes the performance of PQEA.

5.2 Reentrant FSSP Statement

In semiconductor industry, reentrant operations occur because the wafers may un-

dergo some processes several times during production, in which multiple layers are

required for the final product. We call this manufacturing shop as reentrant FSSP,

which is defined as that a set of n jobs need to be processed on m machines follow-

ing the same route and every job must be processed on certain machines more than

once. In this section, firstly, the investigation of production model for a SFTSP in

real-world semiconductor factory is presented. And, the formulation of objective

function is described later.

5.2.1 Instruction of Real-world Reentrant FSSP

The manufacturing processes of a real-world factory for a semiconductor final testing

is studied in here. The production model of this factory covers all manufacturing
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Figure 5.1: Workflow of actual process in reentrant FSSP

process stages in the semiconductor factory, which includes the stages processing

jobs serially and the stages processing jobs in a batch manner. The case is taken

from a semiconductor final testing factory located in Taiwan. This factory receives

orders from other many semiconductor factories required to test their product’s

quality. For the case investigated, jobs of various product types that came from

different semiconductor factories are to be processed on the flow line with reentry

at critical resource stage (final testing) many times.

Due to the large increasing demand in semiconductor products, most semicon-

ductor final testing factories allocate the machine capacity to the semiconductor

product. Therefore, we concentrate on the scheduling problem of semiconductor

products in this factory. For the Semiconductor Final Testing Scheduling Problem
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Table 5.1: Processing types and number of machines at each stage

Work Center Test Cycling Burn Laser VM/scan Bake Package

Process stage 1, 3, 5 2 4 6 7 8 9
Processing type Serial Batch Batch Serial Serial Batch Serial
Machine Numbers 5 12 12 8 8 6 10

(SFTSP), the manufacturing process includes the following nine stages, (1) FT-1,

(2) Cycling, (3) FT-2, (4) Burn-In, (5) FT-3 (6) Laser Mark, (7) VM/Scan, (8)

Bake/Package, and (9) Shipping, as displayed in Fig. 5.1. We note that jobs in the

following three stages, FT-1, FT-2, and FT-3, share the same group of resources

(testers). The FT-1, FT-2, and FT-3 are final testing 1, 2 and 3, respectively.

At FT-1 stage, the tester combined with handler is used to test the basic func-

tions and conductivity of chips, which are tested individually through a specific

load board with socket bases by some parallel serious machines. For the FT-2 stage,

chips are tested within certain times. FT-2 determines the failure rate and detects

potential reliability problems of products. At Burn-In stage, ten thousands of chips

are arrayed in the oven, where the Burn-In operation is performed at the same time

on the batch machines. For the FT-3 stage, basic testing such as the conductivity

testing is executed again. After completing all testing operations, some information

is marked on the top surface of the chips, such as the device code, manufacturing

date. For the UM/Scan stage, the appearance of each chip is examined manually

or by computer scanner. At the last step, before shipping to customer, chips are

packaged with plastic tubes.

5.2.2 Case Study of Real-world Reentrant FSSP

For the case investigated, at each stage, a set of identical machines of two types are

arranged in parallel. One type of machine is dedicated to the serial stage, which can

receive only one lot of chips each time. The other type of machine is dedicated to

the batch stage, which can receive lots of chips up to 10 lots at the same time. Table

5.1 shows the process stage, processing type, and the number of parallel machines
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Table 5.2: Processing time of operations on each process stage

Operation Product type
A B C D E F

1 30 30 30 30 35 30
2 360 360 360 360 720 720
3 30 30 30 30 35 30
4 1440 1440 1440 1440 1440 1440
5 30 30 30 30 35 30
6 30 30 30 30 35 30
7 30 30 30 30 35 30
8 0 600 0 360 0 600
9 30 30 30 30 35 30

at each work center. The reentries occur at stage 1, 3, 5, which are processed by 5

identical machines.

In this case, there are six different product types of jobs are required to go

through all these nine operations in sequence, and the processing time may vary,

depending on the product type of the jobs. Further, only jobs with the same product

type can be processed together in a batch machine. Table 5.2 presents the processing

time of six different product types of jobs at 9 stages. The processing time of each

operation uses the “Minute”as the time unit. Usually, this factory receives two

orders for the six different production types of chips at a week. Each order includes

a variety of product type containing the required quantity of lots and the due date.

Table 5.3 describes the two orders considered in our case, which includes 53 lots in

the first order and 67 lots in the second order. Due to the reentry characteristic in

Table 5.3: product types, required quantity of lots and the due date for the two
orders in the case

Order 1 2

Product type A B C D E F A B C D E F
Number of lots 10 12 15 9 3 4 30 4 25 3 1 4
Due date (in days) 3.5 1.5 2 2.5 1 0.5 4.5 4 3.5 4.5 3.5 3
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5.2 Reentrant FSSP Statement

FT-1, all the jobs have to visit this stage multiple times. And learned from above

tables, a batch process takes quite a bit longer time than a serial process. Therefore,

a thoughtless arrangement of the scheduling may result in a large waste of waiting

time and cost. The target in this case is to find the schedule solution that minimizes

the makespan and reduce the penalty cost for the tardy jobs.

5.2.3 Lot-dispatching Approach for Reentrant FSSP

The Burn-In machines are critical resource in this case, because of long processing

time at a batch stage, high electricity cost and limitation of machine capacity. At

this case, each Burn-In machine can parallel process the same type of chips with a

maximum batch size. To adequately utilize the Burn-In machines, a full-load policy

is needed to collect lots of the same product type chips until meeting the maximum

batch size, and then to choose a possible machine to perform the operation for the

entire batch simultaneously.

In this case, the maximum batch size of Burn-In machine is 10. Under the full-

load policy, the number of required lots chip in each type is divided by 10. The 10

lots chips are considered as a job. And also the remainder is held as a job. For the

example of Table 5.3, the 40 lots chips of ‘A’ product type are divided into 4 jobs,

of which each job has 10 lots chips. Consequently, there are 18 jobs J1, J2, . . . , J18

are generated by the lot-dispatching approach for this real-world production case.

5.2.4 Objective Functions of Reentrant FSSP

There are 18 jobs to be processed at 7 stages in order of nine stages. The jobs that

visit stage 1 for the first time is called as first-pass jobs; those visit stage 1 for the

second time second-pass jobs and those for the third time third-pass jobs. Therefore,

we can consider that there are total 54 jobs containing 18 first-pass jobs, 18 second-

pass jobs and 18 third-pass jobs in the schedule. A job is regarded as completed

only when its third-pass job is finished at stage 9. Fig. 5.2 shows an example of

schedule in which each job visits stage 1 three times and its index number occurs

exactly three times.
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J3 J2 J4 J9 J3

The first-pass job of job J3 The second-pass job of job J3

J6 J5 J12 J4 J3 J1 J18

The third-pass job of job J3

...

Figure 5.2: Reentrant job sequence

The notations and formulations used in the objective functions of minimizing

makespan and penalty cost are described. The index for jobs is denoted by i (i =

1, 2, . . . , 18) and the index for operations is expressed as j (j = 1, 2, . . . , 9). At a

batch stage, we suggest arranging a job to be processed on a machine which has least

present workload (waiting time). Let Fj (j = 2, 4, 8) denote the minimum machine

workload at batch stage 2, 4, 8. The workload of the chosen machine is then added

by a processing time of this job. Other notations are as follows:

• J (1)
i , J

(2)
i , J

(3)
i : first-pass job, second-pass job and third-pass job of job Ji.

• I(1)
i , I

(2)
i , I

(3)
i : the index for jobs J

(1)
i , jobs J

(2)
i and jobs J

(3)
i in a schedule.

• π: the schedule includes all jobs J
(1)
i , jobs J

(2)
i and jobs J

(3)
i .

• π∗: sub-schedule extracted from π which includes only jobs J
(3)
i .

• pj(J (1)
i ), pj(J

(2)
i ), pj(J

(3)
i ): processing time of job J

(1)
i , J

(2)
i and J

(3)
i , respec-

tively, at stage j.

• ̺: sub-schedule of J
(3)
i in increasing order of completion time at stage 8.

• Cs(π(Ii−1)), C∗
s (π(Ii−1)), Cs(̺(Ii−1)): completion time of the predecessor

of job Ji, in sequence π, π∗ and ̺, respectively, on the stage s.

• Cmax(π): makespan of schedule π.

• Pc(π): penalty cost of all late lots of schedule π.

Our target is to find a schedule π in the solution space Ω, which can be repre-

sented as Eq. 5.1. Where, Cmax(π) = max
i∈[1,18]

{C9(J
(3)
i )} and Pc(π) =

∑

µ (Cl −Dl),

in which penalty cost coefficient is denoted by µ. Cl and Dl are the completion time

and due date of the lot l.

Minimize
π∈Ω

{Cmax(π), Pc(π)} (5.1)

The calculation of makespan Cmax(π) is displayed as below equations. The Eq.

5.2, 5.4, 5.6, 5.7, 5.8, 5.10 present that the completion time of the job at a serial
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stage is depending on the bigger one of its finishing time on the previous operation

and the completion time of its preceding job on this operation. While at a batch

stage such as Eq. 5.3, Eq. 5.5, Eq. 5.9, the completion time is decided by the

bigger one of the present least machine workload and the job’s completion time on

the previous operation.

C1(Ji
(1)) = C1(π(Ii

(1) − 1)) + p1(Ji
(1)) (5.2)

C2(Ji
(1)) = max{F2, C1(Ji

(1))}+ p2(Ji
(1)) (5.3)

C3(Ji
(2)) = max{C1(π(Ii

(2) − 1)), C2(Ji
(1))}+ p3(Ji

(2)) (5.4)

C4(Ji
(2)) = max{F4, C3(Ji

(2))}+ p4(Ji
(2)) (5.5)

C5(Ji
(3)) = max{C1(π(Ii

(3) − 1)), C4(Ji
(2))}+ p5(Ji

(3)) (5.6)

C6(Ji
(3)) = max{C6(π

∗(Ii
(3) − 1)), C5(Ji

(3))}+ p6(Ji
(3)) (5.7)

C7(Ji
(3)) = max{C7(π

∗(Ii
(3) − 1)), C6(Ji

(3))}+ p7(Ji
(3)) (5.8)

C8(Ji
(3)) = max{F8, C7(Ji

(3))}+ p8(Ji
(3)) (5.9)

C9(Ji
(3)) = max{C9(σ(Ii

(3) − 1)), C8(Ji
(3))}+ p9(Ji

(3)) = Cmax(π) (5.10)

The other objective function for penalty cost Pc(π) likes as Pc(π) =
∑

µ (Cl −Dl),

where the coefficient µ is considered as 0.2, Cl and Dl are the completion time and

due date of the lot l. The µ is set as experience value that are learned from history

trade information.

5.3 PQEA with Q-to-J Method for Reentrant FSSP

Due to the probabilistic representation of q-bit individual in PQEA, it is needed

a Quantum-to-Job (Q-to-J) method that translates the quantum states to real job
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0 0 1 1 0 1 1 1 1 1 0 1

q-bit

String

Binary

Expression

Decimal

Codes

Jobs

Position

0.1 - 0.19 0.9 0.29 - 0.4 0.357 -0.6 0.7 0.5 0.78 0.81 0.2

0.98 0.989 0.45 0.95 0.843 0.821 0.72 0.712 - 0.899 0.56 0.62 0.98

0.29 -0.46 0.33 -0.6 0.7 0.41

0.73 0.83 0.91 0.72 0.32 -0.76

0 1 1 1 0 0

1 5 7 5 3 4

1 4 6 5 2 3

J1 J3J3J2J2J1

J1 J2J2J1J3J3

Job

Sequence

Jobs

Figure 5.3: Transformation of quantum States to reentrant job’s identifiers

identities. The PQEA combines Q-to-J method to solve this multi-objective reen-

trant FSSP, which is firstly introduced in this section. Additionally, to illustrate the

effectiveness of PQEA, the NSGA-II is also implemented to address this problem

comparing with PQEA.

5.3.1 Q-to-J Method Instruction

Although q-bit can represent a linear superposition of solutions, it cannot be used

directly for solving reentrant FSSP. Because the reentrant job code we want is a per-

mutation of jobs with reentry, but q-bit representation is a pair of complex numbers

[γ, η]. So a converting mechanism (Q-to-J method) should be put forward specially

aiming at reentrant FSSP for evaluation, which is an innovation in this chapter. It

is described as following.

A q-bit individual with length of ⌊logn2 +1⌋∗n∗m probabilistically represents the

positions of job J1, J1, J1, . . . , Jn, Jn, Jn in the solution. Here, n and m are number

of jobs and reentry times (in this case, n = 18, m = 3). Every ⌊logn2 +1⌋ q-bits are

used to determine a job or reentrant job’s position which is from 1 to n ∗m. There

are 3 steps in procedure of Q-to-J method.

• Step 1. Apply the observing procedure to convert q-bit individual into binary
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string. Every ⌊logn2 +1⌋ bits of binary string is transferred into a decimal

number, and then a decimal string with length n is obtained.

• Step 2. Order this decimal string from small to large. If values of two numbers

are different, let smaller number has priority to decide the corresponding job’s

position in ahead of sequence; otherwise, the first number firstly determines

the corresponding job’s position in ahead.

• Step 3. Generate reentrant flow shop codes by arranging jobs J1, J1, J1, . . . ,

Jn, Jn, Jn to their appointed positions.

For example, consider a three-job and twice-reentries problem. Suppose a binary

string is [001 | 101 | 111 | 101 | 011 | 100], which is observed from a q-bit represen-

tation, then the decimal string is [1 5 7 5 3 4]. From small to large, the positions of

jobs J1, J1, J2, J2, J3, and J3 are [1 4 6 5 2 3]. Thus, the reentrant flow shop codes

can be got as J1, J3, J3, J1, J2, J2. Example can be seen from Fig. 5.3.

5.3.2 PQEA with Q-to-J Method

To solve multi-objective reentrant FSSP, the main procedure of PQEA is similar

with the description of PQEA for multi-objective permutation FSSP in chapter 3.

The Q-to-J Method is used to evaluate a binary solutions when it is generated by

observing the quantum state of q-bit individual.

The parameter of PQEA for multi-objective reentrant FSSP are set as following:

• Number of initialized weight vectors : N=100;

• Number of neighbor sub-problem in one group: T=10;

• Rotation angle value for updating quantum state: ∆θ = 0.01π;

Based on the Q-to-J method, It does not require any other repair procedure to

deal with the infeasible solutions.
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5.3.3 Implement of NSGA-II for Actual Reentrant FSSP

Case

The NSGA-II algorithm and its detailed implementation on reentrant FSSP can be

found in paper [63]. An individual is represented by sequence of reentrant jobs. This

algorithm has been demonstrated as one of the most efficient algorithms for multi-

objective optimization on a number of scheduling problems. A brief description of

NSGA-II for reentrant FSSP is as follows: NSGA-II uses non-dominated sorting for

fitness assignments. Individuals that are not dominated by any other individuals are

assigned in front rank 1. The others only dominated by individuals in front rank 1 are

assigned into front rank 2, and so on. Selection is made using tournament between

two individuals. The individual with the lowest front number is selected if the

two individuals are from different fronts. The individual with the highest crowding

distance is selected if they are from the same front. i.e., a higher fitness is assigned

to individuals located on a sparsely populated part of the front. There are p parents

and in every iteration p new individuals (offspring) are generated. Both parents

and offspring compete with each other for inclusion in the next iteration. list of job

numbers is represented as an individual for encoding the problem. The mutation

and crossover is implemented by one point insertion and two point crossover. The

two point crossover is an ordinary one that calls for two points to be selected on

the parent organism strings. Segment genes between the two points are swapped

between the parent organisms, rendering two child organisms. Several crossover

and mutation operations are measured in genetic algorithms for reentrant FSSP

problems. The better results are reported by the combination of one point insertion

and two point crossover, and parameters are set as following.

• Population Size: popSize=90;

• Mutation Probability: PM=0.3;

• Crossover Probability: PC=0.8;
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Figure 5.4: Obtained non-dominated solutions of PQEA and NSGA-II for multi-
objective reentrant FSSP

5.4 Experimental Results and Discussion

5.4.1 Comparison of PQEA and NSGA-II

Both algorithms are independently executed 30 times. The C-measure and D-

measure are used to test the performance of PQEA and NSGA-II on this actual

production case. D-measure needs a set of Pareto-optimal solution or a near Pareto-

optimal solution for evaluating the obtained solutions by PQEA and NSGA-II. The

average distance of reference solution (near Pareto-optimal solution) set to obtained

solutions is the criterion of D-measure to compare the performance of each algorithm.

The reference solution set of this problem is found by using the PQEA and NSGA-II.

Each algorithm was applied to this actual problem with much longer computation

time and larger memory storage than the other computational experiments in this

chapter. More specifically, we used the many combination of parameter specification

in all two algorithms for finding the reference solution, in which the terminal con-

dition is cost computation time more than 3 days. We chose only non-dominated

solutions as reference solutions from 20 solution sets obtained by ten runs of the

three algorithms for this problem. The obtained reference are presented in Fig. 5.4,

where, we can observe the existence of a clear tradeoff between the two objectives.
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Figure 5.5: Comparison of PQEA and NSGA-II on multi-objective Reentrant FSSP

Three algorithms are executed 30 times severally. Fig. 5.4 shows the non-

dominated solutions that are generated by each algorithm, in which the most ob-

tained non-dominated solutions in 30 executed times. We can roughly gain from

this figure that the performance of NSGA-II seems having good behavior on this

problem. The non-dominated solutions of PQEA have both smaller makespan and

penalty cost.

Fig. 5.5 presents the boxplots that are summarizing 30 results of D-measure and

C-measure for the two algorithms. Such as Fig. 5.5(a), boxplot of PQEA states the

results of D-measure by 30 times runs of PQEA algorithm, of which the median value

is about 130. We can learn from this figure that PQEA generates the low value of
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Table 5.4: Dominated solutions generated by PQEA on multi-objective reentrant
FSSP

PQEA Imp %

Makespan 3765 3670 3650 3585 3600 3560 3525 3545 8.1%
Penalty Cost 3008 3010 3190 3322 3581 4039 4273 4590 24.4%

Table 5.5: Dominated solutions generated by NSGA-II on multi-objective reentrant
FSSP

NSGA-II Imp %

Makespan 3755 3725 3695 3665 3635 3630 3610 4.8%
Penalty Cost 3276 3354 3408 3411 3532 3736 3946 27.2%

D-measure comparing with NSGA-II. It illustrates that the obtained non-dominated

solutions of PQEA are close to the reference solutions, with seldom missing any part

of the reference solutions. Besides, the shape of boxplots of PQEA appears shorter

than NSGA-II. It means that the standard deviation variances of D-measure in this

problem of 30 runs are smaller than NSGA-II. PQEA has a stabile performance.

Furthermore, the coverage rate of PQEA is bigger than NSGA-II, which is presented

at Fig. 5.5(b). It is indicted that most solutions of PQEA dominates solutions of

NSGA-II, whereas only little solutions are dominated by NSGA-II.

5.4.2 Improvement of PQEA and NSGA-II in Real-World

Case

The previous scheduling system using in this factory applies the Earliest Due Date

(EDD) policy to generate a schedule. The jobs which has little time to deliver to

customs will be processed in a high priority. By the EDD policy, only one solution

is obtained, because the penalty cost for tardiness job is only considered. However,

finally, PQEA and NSGA-II obtains a lot of non-dominated solutions which are

optimal on two objectives: minimize makespan and penalty cost. To compare with
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PQEA, NSGA-II and EDD, the solutions that are better than previous on both

objective generated by PQEA and NSGA-II are collected in Table 5.4 and Table

5.5. These comparing solutions are also shown in Fig. 5.6.

Imp (Cmax)% =

(

Cmax(π
∗)− 1

n

∑n

i=1Cmax(πi)

Cmax(π∗)

)

× 100 (5.11)

Imp (Pcost)% =

(

Pcost(π
∗)− 1

n

∑n

i=1 Pcost(πi)

Pcost(π∗)

)

× 100 (5.12)

Based on the previous scheduling system, solution π∗ with Cmax(π
∗) = 3860 of

makespan and Pcost(π
∗) = 4620 penalty cots is caused. To compare with obtained

non-dominated solutions of PQEA and NSGA-II, based on Eq. 5.11 and Eq. 5.12,

the makespan is averagely improved about 8.1%, 4.8% and penalty cost is reduced

near 24.4% and 27.2%, respectively. Here, πi (i = 1, 2, ..., n) is non-dominated

solution obtained by PQEA or NSGA-II.
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5.5 Summary

In this chapter, we present an actual SFTSP case includes almost all the flow-shop

factors as reentry characteristic, serial and batch processing stages, job-clusters and

parallel machines. The target of the problem is to find optimal solutions with

both the makespan and penalty cost optimized. To apply PQEA on the reentrant

FSSP, a transformation method Q-to-J that translates the quantum states to real job

identities is proposed. The computational simulation results reveal that PQEA with

Q-to-J has a good performance for finding better solutions in this problem. By using

the proposed scheduling approach, there are 8 schedules that obtained by PQEA

are dominating the previous one. The makespan and penalty cost for tardiness are

obviously be reduced. Moreover, NSGA-II is also implemented to solve this problem

comparing with our PQEA. The experimental results shows that PQEA with Q-to-J

method is significantly better than NSGA-II both in dispersion of non-dominated

solutions and high convergence rate.

103



Chapter 6

Conclusion

6.1 Conclusion and Summary

This thesis has deal with permutation FSSP and reentrant FSSP with multiple

objectives including minimization of makespan, maximum tardiness and maximum

penalty cost of tardy jobs simultaneously. The two problems are NP-hard and even

with small size problems are difficult to solve. To obtain some good solutions, the

quantum-inspired optimization approaches are proposed by merging the concept

and principles of quantum computing to evolutionary algorithm. The comparative

analysis and experiment have demonstrated its effectiveness for solving the two

problems.

The makespan is an important criterion to measure the utilization of produc-

tion recourses and strongly related with production cost. In the literature, there

are many heuristic methods have been proposed to address the permutation FSSP

with makespan criterion. However, based on the traditional methods it is hard to

deliver an effective solution in a limited computation time, especially for large size

problems. In order to effectively deliver a solution, an innovated evolution algo-

rithm, called MMQEA, is proposed based on the concept of quantum computing.

MMQEA is characterized by the representation of individual, evaluation function

and population. However, instead of numeric or symbolic representation, MMQEA
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uses q-bit string to probabilistically represent the job sequences. A q-bit individual

of MMQEA contains a pair of q-bit strings. There are two update modes that are

proposed to update the quantum state of q-bit individual, in which each q-bit string

relies on its corresponding update mode to renovate quantum state. Based on the

two update modes, each q-bit string of the q-bit individual provides its evolution-

ary information to other one and also receives other one’s evolutionary information

during the evolution, which maintains the population more diverse to exploit global

optimal solution. For permutation FSSP with makespan criterion, MMQEA out-

performs traditional approaches, which has improved the makespan near 3%, 6%

and 7% on 20×10 (20 jobs 10 machines), 50×10 and 50×20 problems. Furthermore,

to verify the applicability of MMQEA, knapsack problems are used to compare

MMQEA with current famous approaches, the performance of MMQEA still are

attractive.

The highly competitive industries, such as food, beverage, semiconductor in-

dustry, also needs on-time delivery to response the stress of competition on the

markets. These factories desire a multi-objective scheduling system that simultane-

ously optimizes makespan and maximum tardiness to improve the competitiveness.

Utilizing the achievement of MMQEA, PQEA framework is proposed to solve this

multi-objective problem. To obtain an even distribution of solutions, firstly, PQEA

decomposes uniformly this multi-objective problem into a number of scalar opti-

mization sub-problems by decomposition method. All the sub-problems are classi-

fied into several groups according to their similarities. One q-bit individual is used

to address the sub-problems of a group. Since q-bit individual is a probabilistic rep-

resentation, it can share evolutionary information of the neighboring sub-problems

in same group. Without loss any solutions of Pareto Front, a population of q-bit in-

dividuals are parallel evolved. Comparing with current state-of-the-art algorithms,

PQEA outperforms all of them, with 11.6%, 9.6%, 18.3% and 10.3% improvement

on dispersion performance for 20×20, 40×20, 60×20 and 80×20 problems.

Although PQEA has generated better solution on multi-objective FSSP, there

are still some spaces to be promoted. PQEA combines ANS to further improve the

convergence and dispersion performances of PQEA on multi-objective permutation
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FSSP. ANS is developed by utilizing the properties of active blocks for permutation

FSSP. Firstly, two neighborhood structures Multi-Objective Insertion (MOINS) and

Multi-Objective Exchange (MOEXC) are designed in order to improve efficiency

of perturbation. Any perturbation based on MOINS and MOEXC take positive

effect on all objectives simultaneously, which can obviously improve convergence.

ANS controls the search direction by systematically changing the neighborhood of

MOINS and MOEXC to exploit more dominated solutions. The other advantage

of ANS is no need to set parameters. Under the same computational times as

terminal condition, numerous comparisons show that ANS has improved dispersion

performance near 23.5%, 32.2%, 39.6%, and 46.4% on 20×10, 40×20, 60×20 and

80×20 problems.

Finally, the application of proposed algorithms in a real-world semiconductor fac-

tory is studied. For the real-world case investigated, jobs of various product types

are to be processed on the flow line with reentry at critical resource stage (final

testing) many times, which is a reentrant FSSP. This factory desires a scheduling

system that to reduce makespan and penalty costs for tardiness job simultaneously.

To apply PQEA on the reentrant FSSP, a transformation method Q-to-J that trans-

lates the quantum states to real job identities is proposed. By using the proposed

scheduling approach, there are 8 schedules that obtained by PQEA are dominat-

ing the previous one. The makespan and penalty cost for tardiness are averagely

reduced by 8% and 27%, respectively.

6.2 Future Work Prospects

From the previous investigation on quantum-inspired optimization approaches to

permutation FSSP and reentrant FSSP, although these approaches achieve some

attractive solutions, there is still much space to improve. In the present work, the

procedure of translation quantum states to real job identifies is a factor to increase

the complexity of proposed methods, because one job needs several quantum bits to

represent its position in job sequence. In the future, it is necessary to develop a way

that uses little q-bit for job’s representation. The initialization of quantum state is
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other point to improve more. The quantum-inspired optimization approaches use

a random strategy to start the searching procedure. In other words, all the q-bit

are initialized with same quantum states. Merging the knowledge-based dispatching

rules of FSSP to the initialization steps of proposed approaches, is a better way to

find more dominated solutions effectively.

On the other hand, recently, the factory automation has been advanced that each

machine has self diagnostic sensors as well as a network interface and is monitored

online even remotely. The flexibility and the accuracy of controlling machines for re-

configuration and rescheduling are also improved. Therefore, the need for extending

the proposed to generate an efficient schedule with consideration of more compli-

cated constraints, more flexible objective functions and more dynamic features.
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