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General introduction 
 

Recent advances in theories, algorithms, and computational capabilities have 

enhanced large-scale quantum-chemical calculations intended for biomolecules, 

macromolecules, supramolecules, and molecular clusters. Noncovalent interactions, e.g., 

hydrogen bond, π-π stacking interaction, and charge-transfer interaction, play an 

important role in determining geometry, property, and function of these systems. DFT, 

which is a popular quantum-chemical methodology at present, includes the electron 

correlation effect through one-body equation similar to the HF method. This is why 

DFT usually gives reasonable energetics and properties with relatively short 

computational time. However, most of XC functionals for DFT cannot reproduce 

noncovalent interactions. Dispersion-dominant interactions are especially difficult to be 

described, even qualitatively. The dispersion force originates in long-range electron 

correlation, whereas pure XC functionals are given by local variables such as electron 

density. 

To describe noncovalent interactions within the DFT framework, a number of 

dispersion correction methods have been developed during the last decade. The DFT-D 

method by Grimme et al. explicitly adds interatomic dispersion energies into the total 

energy using predetermined dispersion coefficients. Though this method is simple and 

widely utilized for applications, the empirical nature may deteriorate the predictive 

capability of quantum-chemical calculations. Nonlocal functionals such as vdW-DF by 

Langreth, Lundqvist, and coworkers are proposed to enable non-empirical dispersion 

correction. However, the non-locality requires numerical calculation of doubly spatial 

integral, which may increase computational time significantly. 

Sato and Nakai proposed the LRD method in 2009. Similar to nonlocal functionals, 

this method computes dispersion correction energy based on electron density. The 

doubly spatial integral is avoided by the multicenter-multipole expansion. According to 

the numerical assessment of the LRD combined with the LC-BOP functional, 

interaction energies and potential energy curves of molecular complexes were 

accurately reproduced. However, geometry optimization based on the analytical energy 

gradient of the LRD method was not available. Moreover, these numerical assessments 
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had been limited for closed-shell ground-state systems. Further theoretical development 

and assessment of the LRD method were required to enhance the applicability. 

While the methodology to treat the dispersion force in DFT is still a developing 

area, WFT can treat the dispersion interaction through the electron correlation theory 

such as the MP perturbation and the coupled-cluster method. The systematic 

improvement of accuracy is possible by increasing the cutoff order of wavefunction 

expansion. Therefore, one can calculate noncovalent interactions accurately if sufficient 

computational resource is available. 

One of the remaining problems in WFT is the difficulty in estimating nuclear 

quantum effects and isotope effects, which are important in protonic interactions such as 

the hydrogen bond. The electronic structure calculation based on the BO approximation 

is performed using point charges of nuclei. To consider nuclear quantum effects, one has 

to solve the Schrödinger equation for nuclei based on the potential energy hypersurface 

obtained by the electronic structure calculation. This procedure is difficult to be applied 

to polyatomic molecules. The NOMO method is a non-BO theory that describes nuclear 

wavefunction as the multiplication of NOs. The NOMO method can treat nuclear 

quantum effects and isotope effects with comparative computational time to 

conventional WFT. While the NOMO method has been developed to treat not only 

nuclear quantum effects but also nonadiabatic effects, the application to noncovalent 

interactions has not been performed. 

Part I of this thesis summarizes studies on the extension of the LRD method, which 

is a density-dependent dispersion correction method for DFT. In Part II, the isotope 

effect in noncovalent interactions is investigated using the NOMO method, which is a 

WFT including nuclear wavefunction. 

Part I consists of four chapters. Chapter 1 gives the review of dispersion correction 

in the field of DFT. As for the LRD method, the theoretical background of its low 

empiricism and computational cost is explained in detail. 

In Chapter 2, the LRD method is extended to the SCF treatment. Previous LRD 

calculations were performed in the post-SCF manner, where the dispersion correction 

energy is calculated using converged electron density. Since the LRD energy is 

dependent on electron density similar to XC functionals, it should be extended to fully 
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SCF calculation by implementing dispersion potential for the Fock matrix. An efficient 

algorithm enabled us to compute the differentiation of atomic polarizabilities with 

respect to electron density. According to the numerical assessment, the dispersion 

potential brought about negligible changes on total energy and electronic distribution. 

Computational time and number of interactions were also unchanged. Based on the SCF 

treatment, the analytical gradient of the LRD energy was developed. The inclusion of 

the LRD energy gradient improved intermolecular equilibrium geometric parameters 

especially in the case of dispersion-dominated molecular complexes. 

In Chapter 3, the performance of the LRD method for open-shell systems is 

numerically assessed. Dispersion coefficients and atomic polarizabilities by the LRD 

method behaved reasonably in open-shell atoms and molecules. In open-shell van der 

Waals complexes, the LRD method combined with the LC exchange provided accurate 

interaction energies compared to highly parameterized XC functionals. In phenalenyl 

radical π-stacked dimer, which has a delocalized SOMO, the dispersion correction is 

essential to reproduce the potential energy curve despite the existence of covalent 

interaction owing to the overlap of two SOMOs. These results show the usefulness of 

the LC-BOP+LRD approach for open-shell noncovalent interactions. 

In Chapter 4, the LRD method is extended to the excited-state calculation based on 

TDDFT. Recently, excited-state molecular complexes are studied using TDDFT. 

Although previous studies applied ground-state dispersion correction to the excited state, 

the dispersion correction based on excited-state electronic structure has not been 

examined. In this chapter, state-specific dispersion correction method is developed by 

using the difference density matrix of TDDFT. Numerical assessment was performed 

for exciton-localized systems consisting of π-π*/n-π* excited molecule and a 

ground-state molecule. The LRD method combined with the LC-BOP functional 

accurately reproduced interaction energies and their shifts from the ground state. 

Furthermore, the LRD method improved the binding energy of aromatic excimers even 

though the exciton delocalization and charge-transfer interaction are dominant 

components of intermolecular attraction forces. 

Part II consists of three chapters. Chapter 5 introduces the quantum-chemical 

theory based on the BO approximation and the NOMO method. The reason why nuclear 
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quantum effects and isotope effects are easily treated by the NOMO method is also 

mentioned. 

In Chapter 6, the GIE in the hydrogen bond is theoretically analyzed. According to 

previous experimental and theoretical studies, the isotopic substitution of atom X (X = 

H and D) in the hydrogen bond A-X···B was found to shorten the A-X bond and 

elongate the X···B distance. While the intramolecular bond shrinkage is explained by 

the anharmonicity of potential energy, the intermolecular elongation was not clearly 

interpreted. In this chapter, the NOMO method is applied to interpret the intermolecular 

GIE in terms of interaction energy components. First, the RVS-SCF method, which is an 

interaction energy decomposition method for conventional HF calculations, was 

extended to the NOMO framework. As a result of calculating the shift of energy 

components, the intramolecular bond shrinkage was found to weaken the electrostatic 

interaction. On the other hand, the intermolecular bond elongation was clarified to 

weaken the exchange-repulsion interaction to stabilize the total system. 

In Chapter 7, the GIE in the dihydrogen bond is investigated using the NOMO 

method. This interaction is represented as A-X···X-B (X = H, D, and T), where the 

proton acceptor in the hydrogen bond is replaced with negatively charged hydrogen 

atom. Although the dihydrogen bond has been noticed both experimentally and 

theoretically, few studies on the isotope effect were reported. In this chapter, geometry 

optimizations for X = H, D, and T were performed using the analytical energy gradient 

of the NOMO/HF energy. The averaged distance of X···X increased with increasing 

nuclear mass. This tendency is opposite to the shrinkage of intramolecular covalent 

bonds. Thus, the weakening of X···X interaction was discovered as the isotope effect of 

the dihydrogen bond. 

Finally, future prospects are stated after the results of each chapter are briefly 

summarized. 
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Chapter 1 
Theoretical Background 
 

DFT is currently a popular quantum-chemical methodology. The electron 

correlation effect included in one-body equation provides reasonable energetics and 

properties with relatively short computational time. However, most of XC functionals 

used in DFT cannot reproduce dispersion-dominant noncovalent interactions. This is 

why a number of dispersion correction methods including the LRD method have been 

developed. The first section of this chapter briefly reviews dispersion correction 

methods proposed for DFT. Then, the formulation of the LRD method is explained. 

 

1.1. Dispersion correction methods for density functional theory 
 

A simple and straightforward approach for dispersion correction is to add 

atom-atom dispersion energies. The most widely used method based on such scheme is 

the DFT-D2 proposed by Grimme [1]. 

 

∑
<

− −=
ba

ab
ab

ab

Rf
R
CsEE )(damp6

6
6DFTD2DFT                                  (1.1) 

 

Here, abC6  denotes the dispersion coefficient for atom pair ab, s6 is a global scaling 

factor that depends on the XC functional, and Rab is an interatomic distance. In order to 

avoid near-singularities for small R, a damping function f damp must be multiplied. The 

dispersion coefficients are calculated from a formula which couples ionization 

potentials and static polarizabilities of isolated atoms. A problem with the DFT-D2 

method is that the dispersion coefficients are predetermined and constant quantities. 

Therefore, the same coefficient will be assigned to an element no matter what its 

oxidation or hybridization state. However, the errors introduced by this approximation 

can be large, e.g., the carbon C6 coefficients can differ by almost 35% between the sp 

and sp3 hybridized states [2]. As for the refinement of DFT-D2 named DFT-D3 [3], the 

environmental dependence is captured by considering the number of neighbors each 
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atom has. 

The XDM model [4] is another environment-dependent scheme, exploiting the 

existence of a region of electron density depletion around an electron, so-called XC hole. 

This model gives the C6 coefficient as 
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where αa is the atomic polarizability, ρ(r) is the electron density, and )(rσφi  is the ith 

occupied orbital with σ spin. a
d 2

X  is interpreted as the exchange-dipole moment. In 

the XDM model, the C6 coefficients are altered through two effects. First, the 

polarizabilities of atoms in molecules are scaled from their reference atom values 

according to their effective atomic volumes. Second, the dipole moments respond to the 

chemical environment through changes of the exchange hole. The computational cost is 

relatively high, comparable to the cost of a hybrid functional [5]. 

The methods mentioned above require predetermined input parameters to calculate 

the dispersion interaction, either the C6 coefficients directly or the atomic 

polarizabilities. On the other hand, the nonlocal correlation functional does not rely on 

external input parameters but rather obtain the dispersion interaction directly from the 

electron density. The representative is the vdW-DF proposed by Langreth, Lundqvist, 

and coworkers [6]. Using the vdW-DF, the XC energy EXC is computed as follows: 

 

DFvdW
C

LDA
C
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XXC
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Eq. (1.5) represents that the correlation energy is the sum of local (LDA) and nonlocal 

(vdW-DF) energies in order to avoid double counting. The dispersion energy is included 

in the nonlocal correlation energy given by a doubly spatial integral of the electron 

density ρ(r) and the integration kernel φ(r1, r2). The straightforward integration of Eq. 

(1.6) requires a higher computational cost than GGAs or hybrid functional. 

Román-Pérez and Soler reduced the computational cost of vdW-DF by an efficient 

implementation [7]. Another approach to reduce computational cost is avoiding the 

doubly integral by the expansion of the nonlocal correlation energy. The LRD method 

[8,9] is based on this idea as explained in the next section, enabling density-dependent 

dispersion correction with low computational cost. 

Finally, we mention the approach dependent on virtual orbitals. In the context of 

DFT, orbitals can be used to calculate the correlation energy according to the 

adiabatic-connection fluctuation dissipation theorem [10]. The particular approach 

which has received attention recently is the RPA [11,12]. Although results have been 

encouraging, RPA shares with the post-HF methods a high computational cost 

(approximately proportional to the fourth power of the system size) and slow 

convergence with respect to basis set size. 

In summary, the properties of individual dispersion correction method are 

compared in Table 1.1. The LRD method is found to be a well-balanced approach in 

terms of reliability and efficiency. 

 

 

Table 1.1. Properties of the dispersion correction methods for DFT. 

 Reference for C6 C6 depend on Additional cost Ref. 
DFT-D2 various constant negligible [2] 
DFT-D3 TDDFT geometry negligible [4] 

XDM polarizabilities atomic volume, 
exchange hole ≈ hybrid DFT [5] 

LRD C6 calculated density small [8,9] 
vdW-DF C6 calculated density ≈ 50 % of GGA [7] 
RPA none orbitals large [11,12] 
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1.2. Local response dispersion method 
 

This section explains the LRD method formulated by Sato and Nakai [8,9]. Let us 

begin with the second-order dispersion energy expression between isolated 

(distinguishable) molecules A and B in the ground-state [13], 

 

∑∑ +
−=⋅⋅⋅

A

m

B
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B
n

A
m

BA
AB

BA Vnm
BAE

ωω

2

disp

00ˆ
][ ,                             (1.7) 

 

where ABV̂  is the electrostatic interaction operator between molecules A and B, A0  

and Am  are the ground and the mth excited states of the molecule A, and A
mω  is the 

corresponding excitation energy, with similarly defined quantities for B. The atomic 

units are used throughout in this section. Applying the following integral 

transformation: 
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Eq. (1.7) is equivalently expressed as 
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in terms of the dynamic density response functions χA and χB defined by 
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with B analogs, where ∑ −=
A

i i )()(ˆ 3 rrr δρ  is the density operator. 

A key to separate variables of integration is a multicenter multipole expansion of 

the intermolecular Coulomb operator. A molecular volume has to be divided or 
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distributed into constituent atoms. For this purpose, the atomic partition function wa(r) 

is introduced. Thus, Coulomb interaction between electrons at r1 in molecule A and r2 in 

molecule B leads 
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where the normalization condition 1)( =∑A

a aw r  is inserted. Vectors are written using 

Rab = Rb − Ra, ra1 = r1 − Ra, and rb2 = r2 − Rb, with Ra and Rb being position vectors of 

atoms a and b. Here and in the following, labels a and b are used for atoms belonging to 

molecules A and B, respectively. All vectors, multipole moments, and polarizabilities 

are in the space-fixed global coordinate system. 

Scaled by the weight functions inside summations of Eq. (1.11), the Coulomb 

operator is reasonably expanded on its centers a and b. Such an expansion in terms of 

spherical harmonics is a well-established matter. According to the Stone’s book [13], 
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where Rab is the internuclear distance. Rlm is the regular solid Harmonics. ab
mlmlS

2211 ,  is 

the angular factor of the multipole expansion defined by 
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where the 2×3 matrix is Wigner’s 3-j symbol and MLC ,  is the spherical harmonics with 

Racah’s normalization factor evaluated at the polar angles of the unit vector 

ababab R/ˆ RR = . 

By expanding the Coulomb operator with distributed multipole moments centered 
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on each nucleus, the second-order dispersion energy between two separated molecules 

can be written as 
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where 121 ++= lln . Note that the order of dispersion energy is defined as 

⋅⋅⋅=+ ,10,8,6n'n . )i(, uaa'
l'm'lmα  is interpreted as the atomic )( a'a =  or atomic pair 

)( a'a ≠  polarizability. 
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In order to obtain a convenient expression of Eq. (1.14), the polarizabilities have to be 

localized. This is achieved by relying on the local response approximation to the 

response function [14], 
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where 2
0=qω  specifies a practical approximation made for the dispersion relation. As for 

the LRD method, the dispersion relation proposed by Vydrov and van Voorhis [15] is 

adopted, 
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where 3/12
F )3( ρπ=k  is the local Fermi wave vector, )2( Fρρ ks ∇=  is the reduced 

density gradient, and λ is an empirical parameter introduced for adjusting decay of the 

response at the density tail. Substituting Eq. (1.17) into Eq. (1.16), 
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The polarizability density α(r,iu) is given by 
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In terms of composite variables { }1;;,,, ≥≤≤−∈ llmllmu'ut't , the LRD energy is 

finally obtained as 
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Note that the restriction with respect to aa'  and bb'  is removed to include the 

intramolecular dispersion interaction. Instead, the damping function a'b'ab
t'u'tuf ,

,  is 

introduced to prevent divergence at short internuclear distances. The interaction 

function ab
tuT  factorizes into radial and angular parts 
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To impose the hermiticity with single-center spatial integrals, the atomic pair 

polarizabilities are approximated as follows: 
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where )(a'aα  is numerically computed with spatial mesh points { }ir  and the weights 

{ }iw  distributed around atom a 
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Becke-type [16] and Stratmann-Scuseria-Frisch [17] partition functions were practically 

adopted as wa(r) in Ref. [8] and [9], respectively. 

Next, let us explain the damping function. In the LRD method, a'b'ab
t'u'tuf ,

,  in Eq. 

(1.22) is given as follows: 
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where R  is the damping radius. From numerical tests, three- and four-center 

interactions were required to reproduce asymptotic behavior while two-center 

interaction was sufficient to reproduce interaction energies at the equilibrium geometry. 

Therefore, larger radii are adopted for three- and four-center interactions, i.e., 
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The interaction involving atoms aa'  and bb'  is damped with the sum of effective 

radii of the constituent atoms, estimated from the static dipole polarizabilities obtained 

within the local response model 
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where κ and R0 are the global constants fitted for rare-gas interactions. Here, aα  is the 

static atomic polarizability, defined as 
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with the last integral approximated by numerical quadrature as in Eq. (1.25). The 

polarizability should be computed at a small finite frequency (0.01 a.u. in Ref. [9]) for 

stabilizing the integration of polarizability density given by Eq. (1.20). 
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Chapter 2 
Self-Consistent Field Treatment and Analytical Energy 
Gradient of Local Response Dispersion Method 
 

2.1. Introduction 
 

The LRD method was proposed as a density-dependent dispersion correction 

method with computationally efficiency [1,2]. This method is derived from the 

second-order perturbation energy between two isolated molecules, and based on the 

local response approximation to the density response function [3]. Because the LRD 

method calculates the dispersion coefficient using electron density and its gradient only, 

the numerical quadrature for conventional XC functionals is available. Small additional 

cost is required because the doubly numerical spatial integral is avoided by the 

multicenter-multipole expansion. Sato and Nakai reported the derivation, 

implementation, and numerical assessment based on two-center (atom-atom) 

interactions in the first paper of the LRD method [1]. Considering the two-center 

interactions was sufficient to reproduce the interaction energy of S22 benchmark set 

accurately [4]. In their second paper [2], multicenter interactions including three-center 

and four-center terms reproduced molecular C6 coefficients and asymptotic behavior of 

molecular complexes. 

In the previous reports, the LRD energy was added to the total DFT energy as a 

perturbation, namely, post-SCF approach. In other words, electron spin densities were 

not optimized with respect to the total energy. In addition to the XDM model [5], the 

nonlocal van der Waals functional such as vdW-DF [6,7], VV09 [8], and VV10 [9] were 

implemented self-consistently. The extension of the LRD method to fully SCF 

calculation is important from the theoretical point of view, because it enhances 

robustness and applicability. 

This chapter formulates and assesses the SCF treatment by explicit derivation of 

dispersion potential for the LRD method. Furthermore, analytical energy gradient based 

on the SCF treatment is developed. The numerical assessments are also performed to 

compare the results between SCF and post-SCF treatments. The geometry optimizations 
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with the present method are also examined.  

 

 

2.2. Theory 
 

This subsection briefly reviews the LRD method. By expanding the Coulomb 

operator with distributed multipole moments centered on each nucleus, the second-order 

dispersion energy between two molecules can be written as 
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nn'
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aa'
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disp ,                                   (2.1) 

 

where aa'  and bb'  run over atoms in molecules A and B, respectively. The order of 

dispersion energy is defined as ⋅⋅⋅=+ ,1 0,8,6n 'n . In terms of composite variables 

{ }1;;,,, ≥≤≤−∈ llmllmu'ut't , Eq. (2.1) is rewritten as 
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Note that the restriction with respect to aa'  and bb'  is removed to include the 

intramolecular dispersion interaction. The interaction function ab
tuT  factorizes into 

radial and angular parts, 
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and the atomic pseudo-polarizabilities are defined with atomic partition functions, 
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The conventional post-SCF treatment calculates the LRD energy using converged 

electron density obtained without the dispersion potential. Here, the dispersion potential 

is added to the KS Fock matrix. The SCF treatment requires the derivatives of the 

dispersion energy with respect to the density matrix elements. The density dependence 

originates from two parts; namely, the multipole polarizabilities aa'
tt'α  giving interaction 

coefficients and the effective radii used in the damping functions. In consequence, the 

derivatives are compactly written in terms of the polarizability derivatives, 
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The direct evaluation of this formula, however, faces difficulty in keeping and 

treating a large number of polarizability derivatives, which increase as the density 

matrix size and atom pair aa'  become large. To make the problem tractable, the order 

is reversed between multipole couplings (sum over tt'  and the iu integral) with the 

spatial integrals. 
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where 
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Thus, the derivatives with respect to density variables { }ββαβααβα γγγρρξ ,,,,∈  

become as follows: 
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It should be noted that Eqs. (2.7) and (2.9) still inhibit an efficient implementation, 

since aa'
tt'β  is to be at hand when working for the atomic center a in XC-like quadrature. 

aa'
tt'β , as defined in Eq. (2.3), is obtained after completing single center spatial integrals 

for all atoms, by accumulating the interactions involving aa'  pair. Thus, the author 

designed that the evaluation of Eq. (2.7) at the nth iteration of the SCF procedure uses 
aa'
tt'β  in Eq. (2.9) computed at the (n-1)th iteration. The first cycle adopts null potential. 

This iterative scheme corresponds to the use of an approximate electronic gradient in 

the SCF procedure, leading to the proper solution. The SCF is expected to converge 

safely because of the relatively small effect of dispersion terms on the total KS 

potential. 

Provided the SCF convergence, analytical gradient of the LRD energy with respect 

to nucleus a is formulated as follows: 

 

∑∫
∞

∂
∂

−=
∂
∂

a' a

aa'
tt'aa'

tt'
a

uuuE
0

LRD )i()i(d
RR

βα  

∑∫ ∑








∂
∂

+
∂
∂

∂
∂

−
a'

a'

a

a'
a'

a
a' Z

wZw
R

r
rR

rrr
)(

2
)(

)()(d
ξ ξ

ξ
.                    (2.10) 

 

The first term is an explicit differentiation of the interaction function and damping 

function with respect to nuclear coordinates. The other two terms are derived in analogy 

with the analytical gradient of conventional XC functionals [10]. The former is a 

differentiation with respect to density-dependent terms, which is easily derived from the 

dispersion potential. The latter arises since the partition function depends on the nuclear 

configuration and hence has a nonzero gradient with respect to nuclear displacements. 
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2.3. Implementation 
 

The LRD method described above was implemented into Gaussian 09 package 

[11], both as post-SCF and SCF procedures. The present code can afford full inclusions 

of up to tenth order interactions and partially account for up to 14th interactions. 

Because of minor numerical impact, the different rank of polarizabilities are excluded, 

i.e., l'l =  in Eq. (2.5). Furthermore, the tenth order dipole-octapole 

{ } { } { }1,3,3,1, 21 =ll  and higher order interactions are truncated. In the numerical 

assessment, the LRD energy was calculated considering sixth, eighth, and tenth order 

two-center and sixth order multicenter interactions. Becke-type atomic partition 

function without atomic-size adjustments [12], which is the default in the Gaussian 

program, was adopted. The imaginary frequency integrals in Eqs. (2.2), (2.9), and (2.10) 

were approximated by ten-point Gauss-Chebyshev quadrature. Because the variable u 

was changed to 21 uut +=  and the integrand is an even function, the domain of 

these integrals [0, ∞) can be transformed into [-1, 1] to apply the quadrature. 

 

 

2.4. Numerical assessment 
2.4.1. Computational details 

 

LC [13] Becke-88 [14] with one-parameter progressive correlation [15] functional 

was adopted in all calculations. The range separation parameter μ for LC was 0.47. In 

the LRD calculation, the dielectric model parameter and the damping parameters were 

taken from the previous work [2]: λ = 0.232, κ = 0.600, and R0 = 3.22 in atomic units, 

respectively. The 6-311++G(3df,3pd) [16-18] and 6-31++G(d,p) [18,19] basis sets were 

adopted in the assessment of the SCF treatment and geometry optimization, 

respectively. 
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2.4.2. SCF treatment 

 

First, the SCF effect is discussed from the viewpoint of energy, charge, and 

computational cost. Table 2.1 shows total and LRD energies of the S22 benchmark set 

[4] obtained by the post-SCF and SCF procedures. Geometries were taken from the 

literature [5]. Comparing with the post-SCF results, the SCF treatment gives lower total 

energies. However, the energy differences are extremely small: two orders of magnitude 

less than the dispersion energies. Similar trend of the SCF effect has been reported in 

the XDM model [5]. It is interesting that the variations of the LRD energies by the SCF 

treatment are approximately twice of those of the total energies.
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Table 2.1. Total energies Etot and LRD energies ELRD of the S22 benchmark set by the post-SCF and SCF procedures (in Hartree).  

 Etot  ELRD 

 Post-SCF SCF  Post-SCF SCF 
Ammonia dimer –112.884537  –112.884538  (–0.549)  –0.000828  –0.000829  (–1.093) 
Water dimer –152.632075  –152.632076  (–0.242)  –0.000572  –0.000572  (–0.480) 
Formicacid dimer –378.886820  –378.886821  (–0.814)  –0.002593  –0.002595  (–1.621) 
Formamide dimer –339.144172  –339.144173  (–1.690)  –0.003130  –0.003134  (–3.372) 
Uracil dimer –827.924080  –827.924087  (-6.845)  –0.010871  –0.010884  (–13.688) 
2-pyridoxine-2-aminopyridine -625.645677  -625.645689  (–12.428)  –0.011500  –0.011524  (–24.902) 
Adenine-thymine WC complex –919.405776  –919.405792  (–16.582)  –0.015710  –0.015743  (–33.211) 
Methane dimer –80.790741  –80.790744  (–2.938)  –0.001255  –0.001261  (–5.882) 
Ethene dimer –156.715767  –156.715770  (–2.819)  –0.003028  –0.003034  (–5.626) 
Benzene-methane –271.976314  –271.976324  (–10.014)  –0.006430  –0.006450  (–20.037) 
PD-benzene dimer –463.162120  –463.162175  (–54.941)  –0.015066  –0.015177  (–110.750) 
Pyrazine dimer –527.294513  –527.294554  (–41.174)  –0.013089  –0.013172  (–82.920) 
Stacked uracil dimer –827.909548  –827.909591  (–43.478)  –0.018401  –0.018488  (–87.407) 
Stacked indole-benzene –594.414319  –594.414407  (–87.951)  –0.021240  –0.021418  (–177.535) 
Stacked adenine-thymine –919.400162  –919.400251  (–88.641)  –0.027188  –0.027367  (–178.646) 
Ethene-ethyne –155.465162  –155.465166  (–3.516)  –0.001999  –0.002006  (–7.030) 
Benzene-water –307.896338  –307.896348  (–10.049)  –0.006267  –0.006287  (–20.133) 
Benzene-ammonia –288.022638  –288.022648  (–10.672)  –0.006397  –0.006419  (–21.376) 
Benzene-hydrogen cyanide –324.784386  –324.784393  (–7.544)  –0.006447  –0.006462  (–15.106) 
T-shaped benzene dimer –463.161707  –463.161727  (–20.186)  –0.011564  –0.011604  (–40.549) 
T-shaped indole-benzene –594.415077  –594.415109  (–31.259)  –0.015692  –0.015755  (–62.785) 
Phenol dimer –613.401627  –613.401647  (–20.210)  –0.013145  –0.013185  (–40.535) 

* Differences of two schemes are shown in parentheses (in μHartree).
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Table 2.2 shows the CPU times and the number of SCF iterations. The CPU times 

are extremely close to each other. The SCF iterations are equal except for 

benzene-methane, even in which the difference is one iteration. The results in Tables 2.1 

and 2.2 confirm that the SCF treatment does not lead to large variations of the energy 

and computational cost. 

 

 

Table 2.2. Total CPU time TSCF and SCF interactions NSCF for the single-point calculation of the 

S22 benchmark set by the post-SCF and SCF procedures of the LRD method. 

 TSCF  NSCF 

 Post-SCF  SCF  Post-SCF SCF 
Ammonia dimer 0:01:16 0:01:16  10 10 
Water dimer 0:00:46 0:00:44  10 10 
Formicacid dimer 0:06:31 0:06:16  11 11 
Formamide dimer 0:09:53 0:09:31  12 12 
Uracil dimer 2:34:22 2:26:11  15 15 
2-pyridoxine-2-aminopyridine 2:49:16 2:35:48  16 16 
Adenine-thymine WC complex 4:41:05 4:18:23  15 15 
Methane dimer 0:01:56 0:01:53   9  9 
Ethene dimer 0:05:14 0:05:22   9  9 
Benzene-methane 0:23:33 0:26:02  10 11 
PD-benzene dimer 2:03:23 1:54:51  12 12 
Pyrazine dimer 1:26:34 1:22:44  13 13 
Stacked uracil dimer 3:20:53 3:06:15  15 15 
Stacked indole-benzene 4:19:28 4:07:33  15 15 
Stacked adenine-thymine 6:40:51 6:29:10  16 16 
Ethene-ethyne 0:03:34 0:03:25  11 11 
Benzene-water 0:21:57 0:21:24  12 12 
Benzene-ammonia 0:25:16 0:24:50  12 12 
Benzene-hydrogen cyanide 0:26:21 0:24:27  12 12 
T-shaped benzene dimer 1:44:57 1:49:52  12 12 
T-shaped indole-benzene 3:28:14 3:29:35  14 14 
Phenol dimer 2:33:04 2:37:10  14 14 

* TSCF is shown in hours:minutes:seconds. 
** X5680 (3.33GHz) processor on a single core was used. 
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Table 2.3. Mulliken charges calculated by the post-SCF and SCF  

procedures of the LRD method. 

  Post-SCF SCF 
Water dimer Oa –0.9309    –0.9312  (–0.0002) 

 Ha 0.4088  0.4086  (–0.0002) 

 Hb 0.5546  0.5551  (0.0006) 

 Ob –0.9756  –0.9748  (0.0007) 

 Hc 0.4716  0.4711  (–0.0004) 
Benzene-methane Ca –0.0649  –0.0644  (0.0005) 

 Cb –0.0557  –0.0552  (0.0005) 

 Ha 0.0511  0.0507  (–0.0004) 

 Hb 0.0521  0.0518  (–0.0003) 

 Cc –0.4483  –0.4428  (0.0055) 

 Hc 0.0399  0.0404  (0.0005) 

 Hd 0.3807  0.3730  (–0.0077) 
PD-benzene dimer Ca 0.5151  0.4876  (–0.0275) 

 Cb –0.0783  –0.0780  (0.0003) 

 Cc –0.1982  –0.1927  (0.0056) 

 Cd –0.2010  –0.1833  (0.0177) 

 Ha 0.0283  0.0288  (0.0004) 

 Hb 0.0251  0.0246  (–0.0005) 

 Hc 0.0520  0.0514  (–0.0006) 

 Hd 0.0565  0.0563  (–0.0002) 
Benzene-water Ca –0.0282  –0.0288  (–0.0006) 

 Cb –0.0622  –0.0615  (0.0007) 

 Cc –0.1962  –0.1937  (0.0025) 

 Cd –0.0622  –0.0615  (0.0007) 

 Ha 0.0553  0.0552  (–0.0001) 

 Hb 0.0563  0.0564  (0.0001) 

 Hc 0.0571  0.0572  (0.0001) 

 Hd 0.0580  0.0577  (–0.0003) 

 O –0.9692  –0.9658  (0.0034) 

 He 0.4180  0.4175  (–0.0005) 

 Hf 0.6268  0.6226  (–0.0042) 
* Differences of two schemes are shown in parentheses. 
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Next, let us examine the SCF effect on the electronic structure. Table 2.3 shows 

Mulliken atomic charges obtained by the post-SCF and SCF calculations for four 

complexes in the S22 set: water dimer, benzene-methane, PD benzene dimer, and 

benzene-water as representatives of hydrogen-bonded, C-H/π interacted, π/π stacked, 

and O-H/π interacted systems, respectively. Geometries and atomic labeling for 

symmetry-unique atoms are shown in Figure 2.1. For most of atoms, the difference is 

small as expected, less than 10–3. However, some atomic charges are obviously changed 

by introducing the dispersion potential. In terms of the absolute value, atomic charges of 

C and Hd in the benzene-methane and those of O and Hf in the benzene-water decrease 

more than 3×10–3. In the PD-benzene dimer, atomic charges of Ca and Cd changes more 

than 10–2. 

For more detailed analysis, Figure 2.2 describes the density difference maps of the 

benzene-methane, PD-benzene dimer, and benzene-water. Here, blue and red areas 

indicate increases and decreases in densities, respectively. Obviously, the intramolecular 

electron density decreases, and intermolecular one increases in all systems. As for the 

benzene-methane and benzene-water complexes, the electron density increases around 

the hydrogen atom faced to the aromatic ring, which decreases the positive value of 

Mulliken charge. The PD-benzene dimer has greatly density-increasing area, which is 

consistent with the relatively large change of Mulliken charge. The diffused electron 

may contribute to the increase of atomic polarizability and dispersion correction energy. 

In contrast, the intermolecular electron density may destabilize the electrostatic 

interaction. Thus a clear trend was found, i.e., the electron redistribution from molecules 

to intermolecular spaces while atomic charges do not change significantly. 
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Figure 2.1. Geometries and labeling of (a) water dimer (Cs), (b) benzene-methane 

complex (C3), (c) PD-benzene dimer (C2h), and (d) benzene-water complex (Cs).



 

28 
 

 
 
 

 
Figure 2.2. Density difference maps for (a) benzene-methane complex, (b) PD- benzene dimer, and (c) benzene-water complex. The maps 

are obtained by subtracting post-SCF electron density from SCF one. The iso-surfaces are taken at the values +0.00002 electron/Å3 (blue) 

and −0.00002 electron/Å3 (red). 
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2.4.3. Analytical energy gradient 

 

Now, let us discuss the geometry optimization. Table 2.4 summarizes the 

optimized intermolecular geometric parameters of the same complexes considered in 

Table 2.3. 

 

 

Table 2.4. Optimized geometric parameters obtained with and without the LRD method. 

 LC-BOP LC-BOP+LRD Ref. 
Water dimer      

R(HbOb) 1.900  (–0.052) 1.899  (–0.052) 1.952  
R(OaOb) 2.866  (–0.044) 2.866  (–0.044) 2.910  
θ(OaHbOb) 173.3  (0.5) 173.4  (0.6) 172.8  
φ(OaHbObHc) 61.9  (5.1) 61.8  (5.0) 56.8  

Benzene-methane      
R(XHd) 3.969  (1.339) 2.750  (0.120) 2.630  
R(XCc) 4.196  (0.480) 3.840  (0.124) 3.716  
φ(CaXCcHc) 174.3  (0.7) 173.5  (0.0) 173.5  

PD-benzene dimer      
R(XaXb) 5.939  (2.174) 3.924  (0.159) 3.765  
R(CaXb) 4.841  (1.467) 3.461  (0.087) 3.374  
θ(CaXaXb) 33.3  (–29.9) 60.6  (–2.6) 63.2  

Benzene-water      
R(XHf) 2.673  (0.142) 2.519  (–0.012) 2.531  
R(XO) 3.529  (0.093) 3.384  (–0.051) 3.436  
θ(XHfO) 148.0  (–8.6) 149.3  (–7.3) 156.6  
θ(XHeO) 82.0  (3.7) 80.4  (2.1) 78.3  

* Units of distance R, angle θ, and dihedral φ are Å, deg, and deg, respectively. 
** Deviations from reference values are shown in parentheses. 

 

 

Here, X designates the center of an aromatic ring as shown in Figure 2.1. Reference 

geometries are taken from the S22 benchmark set [4], in which water dimer was 

optimized at the CCSD(T)/cc-pVQZ level, and the others were optimized at the 

CP-corrected MP2/cc-pVTZ level. Although MP2 is occasionally inaccurate to estimate 
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interaction energy especially in dispersion-dominated complexes, it well reproduces the 

CCSD(T) geometry according to the investigation about the geometry optimization of 

molecular complexes by Hobza et al. [20]. The LRD method does not change the 

geometry of the water dimer considerably. In the case of the benzene-methane complex 

and the PD-benzene dimer, the deviations of all geometric parameters from the 

reference are dramatically decreased by including the LRD contribution. As for the 

benzene-water complex, the deviations of the geometric parameters still remain to some 

extent in spite of a great improvement from the LC-BOP case. In conclusion, the 

analytic gradient of the LRD method becomes more important as the dispersion 

contribution increases. 

 

 

2.5. Conclusion 
 

This chapter has treated the SCF procedure based on the dispersion potential from 

the LRD method. The efficient scheme to evaluate the atomic pseudo-polarizability, 

which is required for the dispersion potential, was achieved by the iterative procedure. 

In analogy with conventional XC functionals, the analytic gradient of the LRD method 

was derived from the differentiation with respect to density in the dispersion potential. 

The SCF effect on the energy and electronic structure was numerically assessed. 

The variations of LRD and total energies were considerably small comparing between 

the post-SCF and SCF treatments. Although atomic charges do not change significantly, 

the electron redistribution from intramolecules to intermolecular spaces was clearly 

observed. The efficiency, namely, SCF iterations and CPU times were extremely close 

to each other with and without dispersion potential in the SCF procedure. The geometry 

optimizations for weakly interacting systems were also examined. The LRD method 

greatly improved the intermolecular geometric parameters, especially for the dispersion- 

dominated complexes. 
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Chapter 3 
Local response Dispersion Method for Open-Shell Systems 
 
3.1. Introduction 

 

The LRD method [1,2] has been developed as one of the dispersion correction 

methods for DFT. Similar to the nonlocal correlation functionals, this method computes 

dispersion correction energy non-empirically. Additional computational cost is low 

because of the local response approximation to the density response function [3] and the 

multicenter-multipole expansion of the Coulomb operator. The LRD method realized 

accurate calculation of interaction energy [1,2] and potential energy curve [2]. In 

addition to dispersion-dominated systems, numerical assessments in hydrogen-bonded 

systems [1,2] and charge-transfer complexes [4] also provided satisfactory results. 

While all of these assessments were performed for closed-shell systems, a number 

of studies regarding open-shell intermolecular interactions have been reported. For 

example, open-shell van der Waals complexes have been theoretically studied from the 

viewpoint of precursor or intermediate of chemical reactions [5]. The intermolecular 

interaction between stable organic radicals that have delocalized SOMOs has also 

attracted attention [6]. However, the applicability of the LRD method to such systems is 

not obvious, because the effect of spin polarization is neglected. 

The purpose of this chapter is to investigate the performance of the LRD method in 

open-shell systems. First, the dispersion coefficient of atoms and the atomic 

polarizability in carbon compounds are discussed. Then, interaction energies and 

magnetic coupling constants of open-shell complexes are calculated using the LRD 

method and the LC exchange functional.
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3.2. Numerical assessment 
3.2.1. Atomic dispersion coefficient and polarizability 

 

First, the C6 dispersion coefficients of open-shell atoms and atomic polarizabilities 

of carbon compounds were computed. LC [7] Becke-88 exchange [8] with 

one-parameter progressive correlation [9] functional (LC-BOP) was adopted to generate 

electron density. The range separation parameter μ for the LC scheme was 0.47. The HF 

density was used only for hydrogen because of no XC interaction. The dielectric model 

parameter of the LRD method was 0.232 au [2]. The GAMESS program package [10] 

was utilized for all calculations in this subsection. 

The sixth-order dispersion coefficient between molecules A and B is given by 

 

∫
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,                                      (3.1) 

 

where )i( uAα  is the dynamic dipole polarizability of the molecule A. If A and B 

designate an identical atom, the LRD method gives the polarizability as follows: 
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Table 3.1 summarizes AAC6  coefficients of open-shell atoms estimated by the LRD 

method and the VV09 model [11]. The dispersion coefficients of alkali metals and 

gallium are severely underestimated. As for the LRD method, the dispersion coefficient 

of hydrogen, which is regarded as a completely spin-polarized system, is overestimated. 

Though MAPD from Ref. [12-14] is larger than previously reported error of C6 

coefficients by the LRD method for closed-shell molecules (6.0%) [2], the present 

treatment resulted in smaller MAPD than the VV09 model. Correlation between the 

spin multiplicity of atoms and percentage deviation of the dispersion coefficient is not 

confirmed. This result implies that the density dependency of the polarizability model is 

more important than the spin dependency for the accuracy of dispersion coefficients. 
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Table 3.1. AAC6  coefficients of open-shell atoms estimated using the aug-cc-pVQZ basis set. 

 
Spin 

multiplicity 

AAC6  coefficient (a.u.) 
LRD VV09a Ref. 

N 4 26.07  (8.2) 27.65  (14.7) 24.10 b 
P 4 212  (14.4) 179  (−3.2) 185 c 
As 4 258  (4.8) 222  (−9.8) 246 c 
C 3 50.8  (9.1) 47.0  (0.9) 46.6 c 
O 3 15.77  (5.9) 18.19  (22.2) 14.89 b 
Si 3 342  (12.2) 253  (−17.0) 305 c 
S 3 137  (2.1) 130  (−3.0) 134 c 
Ge 3 321  (−9.2) 251  (−29.1) 354 c 
Se 3 201  (−4.2) 190  (−9.5) 210 c 
H 2 8.03  (23.6) 6.75  (3.8) 6.50 d 
Li 2 1100  (−20.8) 565  (−59.3) 1389 d 
B 2 112.6  (13.2) 87.6  (−12.0) 99.5 c 
F 2 9.72  (2.1) 12.21  (28.3) 9.52 c 
Na 2 1037  (−33.3) 669  (−57.0) 1556 d 
Al 2 545  (3.2) 353  (−33.1) 528 c 
Cl 2 89.3  (−5.6) 94.7  (0.1) 94.6 c 
Ga 2 350  (−29.8) 255  (−48.8) 498 c 
Br 2 153  (−5.6) 158  (−2.5) 162 c 
MPE (%)   (−0.6)  (−11.9)  
MAPE (%)   (11.5)  (19.7)  

* Percentage errors are shown in parentheses. 
a Ref. [11]. b Ref. [12]. c Ref. [13]. d Ref. [14]. 

 

 

Table 3.2 shows static dipole polarizabilities of carbon atoms in several compounds. 

Note that the static atomic polarizability was calculated using Eq. (1.30). Though the 

aug-cc-pVQZ basis set provided larger values, both basis sets resulted in the same 

tendency. All polarizabilities of carbon in molecules are smaller than that of the free 

atom. Methane takes the smallest value due to the electron localization, in other words, 

lack of π electron. Carbon atoms belonging to CO and CN have larger polarizabilities 

than in the other molecules. This may be originated in the negative charge and unpaired 

electron at the carbon atoms. The carbon atoms in phenalenyl radical, which is known 

as a stable hydrocarbon radical illustrated in Figure 3.1, have four different 

polarizabilities because of different chemical environment. These values decrease in the 

order of Ca, Cb, Cc, and Cd, approaching to the polarizability of benzene. This is 
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interpreted as the larger electronic delocalization of the central carbon atom than that of 

outer ones. Thus, the atomic polarizability was found to reasonably reflect the electron 

distribution even in the case of spin-polarized systems. 

 

 

Table 3.2. Static atomic polarizabilities of carbon atom estimated by Eq. (1.30). 

 Spin 
multiplicity 

Polarizability (a.u.) 

 6-31G(d,p) Aug-cc-pVQZ 
C (atom) 3 10.31  11.91   
CN 2 8.14  8.79   
Ca (Phenalenyl) 2 7.43  7.66 a 
Cb (Phenalenyl) 2 7.34  7.66 a 
Cc (Phenalenyl) 2 6.67  7.06 a 
Cd (Phenalenyl) 2 6.57  6.99 a 
CO 1 8.06  9.32   
Benzene 1 6.57  6.99   
Methane 1 3.56  3.63   

a Calculated using the cc-pVQZ basis set. 

 

 
Figure 3.1. SOMO of phenalenyl radical by the LC-UBOP/6-31G(d,p) calculation. 
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3.2.2. Open-shell van der Waals complexes 

 

Next, interaction energies and equilibrium geometries of open-shell van der Waals 

complexes are investigated using the LRD method combined with the LC-BOP 

functional. The summation of the LRD energy is truncated up to tenth order. The 

damping parameters were taken from the previous work [2], i.e., κ = 0.600 au and R0 = 

3.22 bohr. In the calculation of interaction energies, the BSSE was corrected by the CP 

method [15]. Hereafter, all calculations were performed in the unrestricted manner using 

the modified Gaussian 09 package [16]. 

The geometries were taken from Refs. [17-23]. For comparison, unrestricted DFT 

calculations on the basis of ωB97X-D [24] and M06-2X [25] functionals, which are 

highly parameterized to reproduce thermodynamic properties as well as noncovalent 

interactions, were also performed besides the UMP2 calculation. Here, the accuracy of 

these methods for closed-shell intermolecular interactions are denoted: MADs of the 

S22 benchmark set by LC-BOP+LRD, ωB97X-D, M06-2X, and MP2 are 0.29 [2], 0.22 

[24], 0.40 [26], and 0.98 [26] in kcal/mol, respectively. The (99,590) and (75,302) grids 

were used for the M06-2X functional and the other XC functionals, respectively. The 

aug-cc-pVTZ basis set was adopted for UDFT and UMP2 calculations. 

The interaction energy and its deviation from the reference, MD, and MAD are 

summarized in Table 3.3. The complexes are arranged with respect to interaction 

energies. As expected, the LC-BOP functional without dispersion correction failed to 

reproduce the interaction energy. In particular, the opposite sign was obtained in the five 

weakest complexes, i.e., O2···O2, NO···Ar, CN···Ne, OH···He, and NH···He. The 

application of the LRD method significantly reduced the deviations. The ωB97X-D 

functional underestimated the interaction in all complexes, although it is highly accurate 

for the S22 benchmark set. The empirical dispersion correction (-D) may contribute to 

the underestimation because it cannot treat the increase of dispersion coefficients in 

open-shell systems. The M06-2X functional overestimated the interaction of the three 

weakest complexes. The complexes including helium or neon, i.e., CN···Ne, OH···He, 

and NH···He are difficult systems due to the small reference interaction energies less 

than 50 cm–1. The performance of the UMP2 method for them was moderate compared 



 

38 
 

to DFT. However, it severely underestimated interaction energies of HO2···H2O, 

NO···H2O, and NO···Ar, indicating numerical instability of the perturbative approach. 

Overall, the MD and MAD of the LC-BOP+LRD method are smaller than those of the 

other approaches. 

The optimized intermolecular geometric parameters of open-shell van der Waals 

complexes are summarized in Table 3.4. Note that all reference geometries correspond 

to global minimums of potential energy surfaces. Since OH···CO, NH···NH, OH···N2, 

and SH···N2 have linear geometries [17,18], only noncovalent bond distances are 

summarized. The global minimum of O2···O2 has X-shaped geometry [21]. The 

geometric parameters of the other complexes [17,19,23] are defined in Figure 3.2, 

where X designates the center of mass of a diatomic radical. The LRD method scarcely 

changed the noncovalent bond lengths in the electrostatically stabilized systems. For 

more weakly bound complexes such as NO···H2O and SH···N2, the LRD method 

improved the equilibrium geometries. In the case of dispersion-dominated complexes 

such as O2···O2, OH···He, and NH···He, the LRD method significantly reduced the 

deviations of intermolecular distances. From Tables 3.3 and 3.4, the LC-BOP+LRD 

method is found to be useful to estimate interaction energies and equilibrium geometries 

of open-shell van der Waals complexes within the DFT framework.
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Table 3.3. CP-corrected interaction energies of open-shell van der Waals complexes. 

 
Spin 

multiplicity 
Interaction energy (cm–1) 

LC-UBOP LC-UBOP+LRD UωB97X-D UM06-2X UMP2 Ref. 
HO2···H2O 2 −602  (150) −801  (−49) −634  (118) −807  (−55) −419  (333) −752 a 
OH···CO 2 −614  (109) −704  (19) −674  (49) −630  (93) −758  (−35) −723 b 
NH···NH 5 −647  (46) −733  (−40) −632  (61) −648  (45) −672  (21) −693 c 
OH···N2 2 −351  (129) −448  (32) −350  (130) −375  (105) −473  (7) −480 b 
NO···H2O 2 −291  (171) −399  (63) −383  (79) −414  (48) −240  (222) −462 d 
SH···N2 2 −80  (172) −215  (37) −137  (115) −111  (141) −272  (−20) −252 b 
OH···Ar 2 −3.9  (136.5) −104.0  (36.4) −24.0  (116.4) −88.6  (51.8) 128.3  (268.7) −140.4 e 
O2···O2 5 28.7  (159.9) −158.4  (−27.1) −2.1  (129.2) −158.3  (−27.1) −150.6  (−19.3) −131.2 f 
NO···Ar 2 32.6  (148.5) −134.0  (−18.1) −37.0  (78.9) −111.9  (4.0) −93.1  (22.8) −115.9 g 
CN···Ne 2 3.3  (42.7) −56.1  (−16.6) −0.6  (38.8) −89.0  (−49.5) −30.2  (9.2) −39.4 c 
OH···He 2 2.8  (32.9) −42.6  (−12.6) 7.6  (37.6) −85.6  (−55.6) −13.4  (16.6) −30.0 h 
NH···He 3 5.7  (25.5) −33.9  (−14.1) 2.9  (22.8) −50.3  (−30.5) −10.0  (9.8) −19.8 c 
MD   (110.2)  (0.8)  (81.3)  (22.5)  (69.6)  
MAD   (110.2)  (30.4)  (81.3)  (58.7)  (81.9)  

a RCCSD(T)/aug-cc-pVTZ + midbond function [17]. 
b Averaged value of the CCSD(T)/CBS limits predicted with different interpolation methods [18]. 
c RCCSD(T)/aug-cc-pVQZ + midbond function [17]. 
d RCCSD(T)/aug-cc-pVTZ + midbond function [19]. 
e RCCSD(T)/aug-cc-pVQZ + midbond function [20] 
f RCCSD(T)/ANO[6s5p3d2f] + midbond function [21]. 
g UCCSD(T)/CBS limit [22]. 
h RCCSD(T)/aug-cc-pVTZ + midbond function [23]. 



 

40 
 

Table 3.4. Optimized geometric parameters of three open-shell van der Waals complexes.  

The units for distance and angle are Å and deg, respectively. 

  LC-UBOP LC-UBOP+LRD Ref. 
OH···CO R(H···C) 2.327  (−0.007) 2.316  (−0.017) 2.333 a  
NH···NH R(H···N) 2.453  (−0.003) 2.454  (−0.002) 2.456 b  
OH···N2 R(H···N) 2.354  (0.034) 2.338  (0.018) 2.320 a  
NO···H2O R(X···Ob) 3.73  (0.07) 3.64  (−0.02) 3.66 c  

 α 44.4  (−6.6) 51.1  (0.1) 51.0 c  

 β 113.5  (5.0) 107.9  (−0.6) 108.5 c  
SH···N2 R(H···N) 2.838  (0.222) 2.776  (0.160) 2.616 a  
O2···O2 R(O···O) 3.896  (0.494) 3.334  (−0.068) 3.402 d  
OH···He R(X···He) 3.35  (0.34) 2.97  (−0.04) 3.01 e  

 α 70.8  (2.0) 70.4  (1.6) 68.7 e  
NH···He R(X···He) 3.97  (0.62) 3.21  (−0.14) 3.35 b  

 α 63.4  (1.1) 64.9  (2.6) 62.3 b  
a Ref. [18]. b Ref. [17]. c Ref. [19]. d Ref. [21]. e Ref. [23].  
* Differences from the references are shown in parentheses. 

 

 

 

 
Figure 3.2. Geometric parameters of (a) NO···H2O and (b) NH···He. 
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3.2.3 Nitroxide radical dimer 

 

In this subsection, the magnetic coupling constant and singlet-triplet separation of 

nitroxide radical dimer (H2NO·)2 are focused on as well as the interaction energy. This 

system is suitable for investigation of the applicability of the LC-BOP+LRD method to 

molecular magnetism, because it is the simplest model of nitroxide derivatives. The 

geometry of monomer is taken from an experimental study [27]: R(N-O) = 1.28 Å, 

R(N-H) = 1.01 Å, and ∠H-N-H = 122.7°. The geometric parameters of dimer are 

defined in Figure 3.3 (a). 

The magnetic coupling constant J between radicals A and B is given by 

 

LS2HS2

HSLS

><−><
−

=
SS

EEJ ,                                          (3.3) 

 

where ELS and EHS are total energies of low-spin (singlet) and high-spin (triplet) states, 

respectively [28]; J corresponds to the effective exchange integral in the Heisenberg 

model. Figures 3.3 (a) and (b) show the J values obtained using the cc-pVDZ basis set. 

Reported data calculated by the MkMRCC method [29] were adopted as reference. The 

results of the LC-BOP functional without dispersion correction are excluded because of 

a small difference in the J values: for example, the LRD energy contributed to J only by 

−1.4 cm– 1 at Rx = 0.0 Å and Rz = 3.4 Å. In the case of Rx = 0.0 Å, negative 

(antiferromagnetic) values increased exponentially with decreasing Rz because of the 

SOMO-SOMO overlap. On the other hand, J became ferromagnetic with increasing Rx. 

In both cases, the LC-BOP+LRD and ωB97X-D functionals behaved similarly to the 

reference. The M06-2X functional resulted in more antiferromagnetic curves. In 

addition to the LC-BOP+LRD and ωB97X-D functionals, the CAM-B3LYP and 

LC-ωPBE functionals also evaluated accurate coupling constants [29]. This fact 

indicates the importance of the long-range correction. 

The singlet-triplet separation ΔES-T is defined as the difference between 

corresponding total energies, 
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tripletsingletTS EEE −=∆ − .                                            (3.4) 

 

Since the spin-unrestricted method yields open-shell singlet state including spin 

contamination, the AP method [28] was applied. According to the AP method, the total 

energy of the singlet state is corrected as follows: 

 

singlet
2

singletsingletAP ><×+=− SJEE .                                  (3.5) 

 

Calculated ΔES-T is summarized in Figures 3.3 (c) and (d). Without the AP method, all 

functionals underestimated ΔES-T. The AP method approximately doubled ΔES-T. Similar 

to the J values, the LC-BOP+LRD and ωB97X-D functionals with the AP method 

provided reasonable curves of ΔES-T. The results explain the importance of eliminating 

spin contamination. 

The singlet-state interaction energy ΔEint is described in Figures 3.3 (e) and (f). The 

aug-cc-pVTZ basis set was adopted for UDFT calculations. The reference interaction 

energy was calculated at the APUCCSD(T)/CBS level, which is obtained using <S2> of 

the UMP1 wavefunction by the aug-cc-pVQZ basis set and the UCCSD(T)/CBS total 

energy evaluated by following formula: 

 

)( pVTZccaug
COR(UMP2)

pVTZccaug
T))COR(UCCSD(

CBS
COR(UMP2)

pVQZccaug
UHF

CBS
UCCSD(T)

−−−−−− −++= EEEEE ,          (3.6) 

 

where CBS
COR(UMP2)E  was estimated by the Helgaker’s extrapolation method [30]. ΔEint is 

obtained by 

 

monomersingletint 2EEE −=∆ ,                                          (3.7) 

or 

monomersinglet-APint 2EEE −=∆ .                                        (3.8) 
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As shown in Figures 3.3 (e) and (f), ΔEint obtained by Eq. (3.7) did not agree with the 

reference in the region of small Rx. The APLC-UBOP without dispersion correction 

underestimated ΔEint. The APUωB97X-D also underestimated ΔEint. Similar to the case 

of open-shell van der Waals complexes, this result may be originated in the empirical 

dispersion correction. The APLC-UBOP+LRD calculation was able to describe 

quantitatively accurate potential energy curve. Thus, the elimination of spin 

contamination, accurate long-range exchange, and density-dependent dispersion 

correction are required to reproduce the potential curve of open-shell singlet state of 

radical dimers. 
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Figure 3.3. Magnetic coupling constants J, (a) and (b), singlet-triplet separation ΔES-T, 
(c) and (d), and interaction energy ΔEint, (e) and (f), of the nitroxide radical dimer. The 
distances of Rx and Rz are defined by an illustration in (a). Rz changes from 3.0 to 5.0 Å 
with fixing Rx = 0.0 Å in (a), (c), and (e). Rx changes from 0.0 to 2.0 Å with fixing Rz = 
3.4 Å. 

(a) (b) 
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Figure 3.3. (continued.) 
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3.2.4. Phenalenyl radical dimer 
 

Finally, π-stacked dimer of 2,5,8-tri-tert-butyl-phenalenyl radical illustrated in 

Figure 3.4 was investigated. The NMR study revealed an interplanar covalent bond 

called the 12-center 2-electron bond formed by delocalized SOMOs [31]. The distance 

between the central carbon atoms determined by X-ray diffraction was 3.201 Å [32], 

which was shorter than the sum of van der Waals radii of two carbon atoms but 

considerably longer than conventional C-C bond. Since covalent and noncovalent 

interactions are expected to contribute to the stabilization concertedly, the LC-UBOP+ 

LRD calculation was performed as an example of application to large systems. 
 
 

 

Figure 3.4. Geometry of the 2,5,8-tri-tert-butyl-phenalenyl radical dimer extracted from 

the crystal structure. 
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The geometry of the 2,5,8-tri-tert-butyl-phenalenyl radical dimer was extracted 

from the crystal structure [32]. The 6-31+G(d) basis set was adopted in all theoretical 

calculations. The PCM [33] was adopted to consider the electrostatic solvation effect. 

The solute-solvent dispersion and repulsion energy were considered through the FT 

model [34]. 

Table 3.5 summarizes the magnetic coupling constant J and interaction energy 

ΔEint. In addition to the gas phase (i.e., no solvent effect) calculation, J and ΔEint in 

dichloromethane was estimated using the PCM and FT model. The negative J values are 

consistent with the interplaner covalent interaction. The CASSCF method and M06-2X 

functional resulted in larger J values than the experimental value. The LC-UBOP 

provided similar J value to the MRMP method. The LRD method negatively increased 

the J value, which may be due to the interplanar distribution of the SOMO electrons in 

the singlet state. The solvent effect was small; the PCM and FT model slightly increased 

and decreased the absolute J values, respectively. 
In terms of ΔEint in the gas phase, LC-UBOP+LRD, UωB97X-D, and UM06-2X 

qualitatively agreed with the MRMP method [35]. These interaction energies are 
considerably larger than the experimental enthalpies [36,37], indicating large solvent 
effect. However, the PCM is not sufficient to estimate the decrease of |ΔEint|. This is due 
to the small dielectric constant of dichloromethane. Including the solute-solvent 
dispersion interaction based on the FT model significantly decreased |ΔEint|. The reason 
for this underestimation in the case of the M06-2X functional is speculated as the 
incorrect long-range asymptotic behavior. The LC-UBOP+LRD and UωB97X-D 
interaction energies with and without the AP method are consistent with the 
experimental enthalpy. The results encourage the application of the LC-BOP+LRD 
method to large systems. 
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Table 3.5. Magnetic coupling constants J and interaction energies ΔEint of the 2,5,8-tri-tert-butyl-phenalenyl radical dimer. 

 J (cm–1)  ΔEint (kcal/mol) 

 Gas phase PCM PCM+FT  Gas phase  PCM  PCM+FT 

  w/o AP w/ AP  w/o AP w/ AP  w/o AP w/ AP 
LC-UBOP −1488 −1495 −1455  6.4 0.9  8.1 2.8  22.5 17.2 
LC-UBOP+LRD −1518 −1543 −1502  −23.7 −29.3  −22.1 −27.6  −7.6 −13.1 
UωB97X-D −1737 −1767 −1723  −25.9 −30.3  −24.1 −28.6  −9.7 −14.1 
UM06-2X −2120 −2146 −2108  −19.2 −23.0  −17.4 −21.2  −2.9 −6.8 
CASSCF(2,2) a −2256    1.1      
MRMP b −1451    −26.0      
Exp. −1161 c      −8.8 d, −9.5 d 

a Ref. [35]. The triplet state was calculated by the ROHF method. 
b Ref. [35]. The triplet state was calculated by the MP2 method. 
c Ref. [36]. 
d Enthalpy change of dimerization from Ref. [37]. 
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3.3. Conclusion 
 

The numerical assessment of the LRD method for open-shell systems was 

performed. The LRD method reproduced the dispersion coefficient of open-shell atoms 

accurately. Despite the lack of spin dependence, reasonable tendency of atomic 

polarizabilities was obtained because of the density dependence. As for the open-shell 

van der Waals complexes, the LRD method combined with the LC exchange functional 

evaluated the interaction energy accurately. The LC-BOP+LRD method also achieved 

reproduction of magnetic coupling constants and interaction energies of the radical 

dimers. These results support the availability of combination of the LRD method with 

the LC scheme to analyze and design magnetic materials based on organic radicals. 
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Chapter 4 
Local Response Dispersion Method for Excited-State 
Calculation based on Time-Dependent Density Functional  
Theory 
 
4.1. Introduction 

 

TDDFT was developed to investigate response properties and electronic dynamics 

of molecules. The TDKS equation, which is a fundamental equation in TDDFT, can be 

solved in three ways: by an eigenvalue problem [1-3], by time-dependent coupled 

perturbed equations [4-6], and by real-time propagation [7-9]. The solution of the 

eigenvalue problem is utilized to obtain excitation energies. Although the 

underestimation of Rydberg [10,11], charge-transfer [12], and core [13,14] excitation 

energies was pointed out as a serious drawback of TDDFT, appropriate mixing of the 

HF exchange term eliminated the problem. The long-range correction to the exchange 

functional improves the accuracy of Rydberg and charge-transfer excitations [15,16]. 

The core-valence-Rydberg-B3LYP hybrid functional [17-19] provides accurate energies 

for Rydberg and core excitations. Nowadays, TDDFT is a popular choice for treating 

excited states because of the balance between computational cost and accuracy. 

Hereafter, the term TDDFT is used in the context of solving the eigenvalue problem. 

TDDFT has been applied not only to single molecules but also to molecular 

complexes. For example, conformational changes of the pyridine-water complex [20] 

and its analogues [21,22], induced by π-π* and n-π* excitations, have been investigated. 

Geometries and interaction energies in the S1 state of anisole-ammonia [23,24] and 

anisole-water [24,25] complexes have also been investigated. In addition to the 

interaction between π-conjugated systems and small molecules, TDDFT has been 

applied to π/π stacked excited-states of aromatic hydrocarbon dimers [26-28], DNA 

base clusters [29-34], and dye aggregates [35]. The excited state of π/π stacked dimers is 

termed aromatic excimer, where exciton localization and charge-transfer interaction 

increase the binding energy and decrease the intermolecular distance from the ground 

state. 
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In the field of time-independent DFT, a number of dispersion correction methods 

[36-46] have been developed to improve the description of weakly bound complexes 

due to the local nature of exchange-correlation functionals. Since the same functionals 

are used in TDDFT, the dispersion correction method should be applied to excited-state 

molecular complexes. However, most of the dispersion correction methods have not 

been applied to TDDFT. In particular, the widely used DFT-D method [37-39] was 

adopted in several studies [24,27,35] in which dispersion coefficients prepared for the 

ground state were straightforwardly applied to the excited state. In terms of reliability, 

state-specific dispersion correction is desired, in which the electron redistribution 

induced by electronic excitation is reflected. 

The purpose of this chapter is to combine TDDFT and the LRD method [45,46] for 

the excited-state calculation of molecular complexes. The LRD method calculates 

dispersion correction energies using the electron density and gradient with low 

computational cost. First, the LRD treatment within the TDDFT framework is explained. 

Then, the proposed method is numerically tested for exciton-localized and exciton- 

resonance systems, namely, π-conjugated systems interacting with unconjugated 

molecules and aromatic excimers. 

 

 

4.2. Theory 
 

In this chapter, the state-specific dispersion correction within the TDDFT 

framework is examined on the basis of the LRD method. The dispersion correction 

energy ELRD for the excited state is computed after calculating excitation energies. The 

dispersion-corrected total energy is estimated as the sum of the ground-state energy 

without dispersion correction EDFT, the excitation energy ωTDDFT, and ELRD. 

 

LRDTDDFTDFTLRDTDDFT EEE ++=+ ω                                     (4.1) 
 

This posteriori treatment is thought to be reasonable because the self-consistent 

treatment of the LRD method developed in Chapter 2 did not change total energies and 
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electron distribution significantly. 

Previously, the ground-state LRD energy was derived from the intermolecular 

dispersion energy between two molecules [45,46]. Here, the derivation of the 

excited-state LRD energy is discussed. Assuming a molecule A in the mth excited state 

and a molecule B in the ground state, the second-order perturbation theory gives the 

intermolecular dispersion energy as [47] 
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where ABV̂  is the electrostatic interaction operator between two molecules. Am  and 
B0  are the mth excited and the ground states of the molecules A and B, respectively. 
A

m'm→ω  is the change of energy with respect to molecule A between mth and m' th 

excited states. Applying the following integral transformation: 
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the intermolecular dispersion energy is expressed as 
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in terms of the dynamic density response functions χA and χB defined by 
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where ∑ −=
A

i
A ')()(ˆ 3 rrr δρ  is the density operator. After the multicenter-multipole 
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expansion of the Coulomb operator, i.e. 
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let us approximate the response functions as follows: 
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where esρ  is the excited-state electron density of the whole system, and es
0=qω  is the 

dispersion relation computed by esρ  and its gradient. Eq. (4.8) is the application of the 

local response approximation, which was proposed by Dobson and Dinte [48] to the 

excited state. Similar to the ground state, the extension to the intramolecular interaction 

is possible by the multiplication of the damping function. Consequently, the LRD 

energy is obtained as 
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Here, the LRD energy is written in terms of composite variables ∈u'ut't ,,,  

{ }1;; ≥≤≤− llmllm . In this chapter, Becke-type partition function [49] was adopted 

for wa in Eq. (4.11). Eqs. (4.9)-(4.11) are essentially the same formulas presented in the 

previous subsection except replacing the ground-state electron density and its gradient 

with excited-state ones. 
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    To compute excited-state electron density, the relaxed difference density matrix P 

 

∑+=
µν

νµµν χχρρ )()()()( gses rrrr P ,                                 (4.12) 

 

is required, where )(gs rρ  is the ground-state electron density, and χμ is the atomic 

orbital. How to obtain the difference density matrix is explained hereafter. In TDDFT 

calculations, excitation energy ω and corresponding excitation vectors X and Y are 

obtained by solving a non-Hermitian eigenvalue equation [1], 
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The elements of matrices A and B are given as follows [3]: 
 

bjaiiaijabbjai KδδA ,, )( +−= εε                                        (4.14) 

and 

jbaibjai KB ,, = ,                                                   (4.15) 

 

where εp is the pth KS orbital energy. The above equations utilize the convention that {a, 

b, …} are virtual orbitals and {i, j, …} are occupied orbitals. Matrix element in Eqs. 

(4.14) and (4.15) is given by 

 

xc
, )|()|( 'rspq'x'rspq f'qsprc'rspqK σσσσσσ σσδσσ +−= ,                    (4.16) 

 

where {p, q, …} indicate general KS orbitals, and σ  and 'σ  are spin indices. 

)|( 'rspq σσ  is a two-electron integral in Mulliken notation, and cx is a mixing rate of 

the HF exchange integral in hybrid functionals. xc
'fσσ  is a Hessian matrix element of the 

exchange-correlation functional. Under the adiabatic approximation, xc
'fσσ  is given as 

the second derivative with respect to electron density: 
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According to previous studies [50,51], the relaxed one-particle difference density 

matrix P was derived for the computation of excited-state response properties and 

analytical gradients of excitation energies. The matrix P consists of two parts, 

 

ZTP += ,                                                     (4.18) 
 

where unrelaxed difference density matrix T contains three types of elements, 
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and 

0== σσ aiia TT .                                                  (4.21) 

 

The remaining part of the density matrix is obtained from the Z-vector equation: 
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where for arbitrary vectors V, 
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and xc
'''kcjbiag σσσ  is the third-order derivative of the exchange-correlation functional given 

as 

 

)()()(
)( xc

3
xc

'''
E''',,g

'''
''' rrr

rrr
σσσ

σσσ δρδρδρ
δ

= .                             (4.26) 

 

 

4.3. Computational details 
 

The LC [52] Becke-88 [53] exchange with the one-parameter progressive 

correlation [54] functional, as denoted by LC-BOP, was adopted in DFT and TDDFT 

calculations. The range separation parameter μ for the LC scheme is 0.33, which is 

suitable for describing the excited state [15]. In the LRD calculation, different ranks of 

polarizabilities were excluded, i.e., l'l =  in Eq. (4.11). The multipole expansion of the 

LRD energy is truncated up to sixth, eighth, and tenth order two-center and sixth order 

multicenter interactions. The dielectric model parameter λ and the damping parameters 

κ and R0 were optimized to reproduce the C6 dispersion coefficients of rare gas dimers 

[55] and their interaction energies at the equilibrium distances [56], respectively. The 

optimized parameters were λ = 0.234, κ = 0.59, and R0 = 3.83, in atomic units. The 

TDDFT+LRD calculations are performed by modifying the GAMESS program package 

[57]. For comparison, the CIS(D) [58] and the EOM-CCSD [59] calculations were 

performed using the Gaussian 09 package [60]. 
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4.4. Results and discussion 
4.4.1. Exciton-localized systems 

 

The author calculated molecular complexes consisting of single π-conjugated and 

single unconjugated molecules in the ground state and the lowest singlet n-π* and π-π* 

excited states. 16 systems, as shown in Figure 4.1, were taken from the S66 benchmark 

set [61,62]. Optimized geometries at the MP2/cc-pVTZ level were used in both ground- 

and excited-state calculations. The 6-311++G(2d,2p) basis set [63-65] was used in 

TDDFT(+LRD) and CIS(D) calculations. BSSE was eliminated by the Boys-Bernardi 

CP correction [66]. By using Xantheas notation [67], the CP-corrected interaction 

energy of the excited-state complex was described as follows: 

 

])[(])[(Δ *
LRD)TDDFT(

*
LRD)TDDFT( ABEABE βα∪

++ =  

]}[][{ LRD)DFT(
*

LRD)TDDFT( BEAE βαβα ∪
+

∪
+ +− ,                (4.27) 

]}[][{])[(])[(Δ MP2
*

CIS(D)
*

CIS(D)
*

CIS(D) BEAEABEABE βαβαβα ∪∪∪ +−= .               (4.28) 

 

In Eqs. (4.27) and (4.28), A and B correspond to π-conjugated and unconjugated 

molecules, respectively. α and β are basis functions of molecules A and B. The asterisk 

designates the excited state. Since E means total energy, the difference ΔE corresponds 

to interaction energy. 
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         #1           #2            #3           #4 

 
         #5           #6            #7           #8 

   
        #9             #10          #11           #12 

 

        #13          #14           #15            #16 
 

Figure 4.1. Structures of 16 complexes including a π-conjugated molecule taken from 

the S66 benchmark set. 
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The reference value of the interaction energy for the ground state was estimated at the 

CCSD(T)/CBS level [62]. For the excited-state reference, the author estimated the shift 

in the EOM-CCSD excitation energies induced by the intermolecular interaction, which 

is added to the ground-state reference: 

 

]}[])[({][])[( CCSD
*

CCSDEOM
CBS
CCSD(T)

*
CCSD(T)Est.EOM ABEABEABEABE βαβα ∪∪

−− −+∆=∆  

]}[][{ CCSD
*

CCSDEOM AEAE βαβα ∪∪
− −− .                  (4.29) 

 

This procedure was previously adopted in highly accurate calculations of S1-state 

potential energy surfaces of the benzene-argon complex [68] and its derivatives [69,70]. 

In the EOM-CCSD calculation, the 6-31+G(d) basis set [65,71,72] was adopted for 

benzene-cyclopropane, benzene-propane, and three complexes including uracil. The 

other systems were calculated using the 6-31++G(d,p) basis set [65,71,72]. 

First, the excited-state dispersion correction energies and atomic polarizabilities are 

compared with ground-state ones. Table 4.1 shows LRD energies of 16 molecular 

complexes. Both the π-π* and n-π* electronic excitations increase the LRD energy. The 

increase is small compared to the total LRD energy: the ratio is less than 2.5%. 
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Table 4.1. LRD energies of 16 complexes consisting of single π-conjugated and single unconjugated  

molecule taken from the S66 benchmark set (in mHartree). 

  Ground state π-π* excited state n-π* excited state 
#1 AcNH2-pentane –7.710      –7.803  (–0.093) 
#2 AcOH-pentane –7.217      –7.251  (–0.034) 
#3 Benzene-MeNH2 –5.186    –5.287  (–0.101)   
#4 Benzene-MeOH –4.921    –5.014  (–0.093)   
#5 Benzene-cyclopentane –9.505    –9.627  (–0.123)   
#6 Benzene-neopentane –10.107    –10.231  (–0.123)   
#7 Benzene-water –3.602    –3.677  (–0.075)   
#8 Peptide-MeNH2 –3.784      –3.870  (–0.086) 
#9 Peptide-pentane –9.368      –9.423  (–0.055) 
#10 Peptide-water –2.328      –2.378  (–0.050) 
#11 Pyridine-MeNH2 –4.524    –4.609  (–0.085) –4.598  (–0.075) 
#12 Pyridine-MeOH –3.103    –3.158  (–0.056) –3.149  (–0.046) 
#13 Pyridine-water –2.457    –2.490  (–0.033) –2.504  (–0.047) 
#14 Uracil-cyclopentane –10.298    –10.460  (–0.163) –10.335  (–0.037) 
#15 Uracil-neopentane –11.034    –11.185  (–0.152) –11.063  (–0.029) 
#16 Uracil-pentane –11.022    –11.159  (–0.137) –11.069  (–0.047) 

* Differences from the ground state are shown in parentheses.
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Figure 4.2. Geometry and labeling of the pyridine-MeNH2 complex. 

 

 

Table 4.2 represents static atomic polarizabilities of the pyridine-MeNH2 complex 

obtained by Eq. (1.30). In the π-π* excitation, polarizabilities of all atoms belonging to 

pyridine increase. This tendency is consistent with the fact that the π-π* excited-state 

polarizability of benzene is larger than that of the ground state [73,74]. Polarizabilities 

of Hi and Hj also increase, which may reflect the diffusion of π electron density. The 

other atoms in MeNH2 are nearly unchanged. In contrast, the n-π* excitation 

significantly decrease the polarizability of Na atom while the other atomic 

polarizabilities in pyridine and those of Hi and Hj increase as in the π-π* excited state. 

These trends are consistent with the electron redistribution of the n-π* excitation. 

Although the change of LRD energies is not significant, the atomic polarizabilities 

indicates the robustness of the present treatment compared to applying a ground-state 

dispersion correction to the excited state. 
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Table 4.2. Static atomic polarizabilities of the pyridine-MeNH2 complex calculated by Eq. 

(1.30) using ground-state, lowest π-π* excited-state, and lowest n-π* excited-state electron 

density (in a.u.). 

 Ground state π-π* excited state n-π* excited state 
Pyridine  Ca 7.81  8.03  (0.22) 8.11  (0.30) 

Cb 7.31  7.42  (0.11) 7.52  (0.21) 
Cc 7.13  7.34  (0.21) 7.53  (0.40) 
Cd 7.24  7.32  (0.08) 7.47  (0.23) 
Ce 7.93  8.18  (0.25) 8.32  (0.39) 
Ha 4.22  4.43  (0.21) 4.50  (0.28) 
Hb 3.56  3.66  (0.09) 3.63  (0.07) 
Hc 3.49  3.90  (0.41) 4.02  (0.53) 
Hd 3.59  3.67  (0.09) 3.64  (0.05) 
He 3.56  3.75  (0.19) 3.85  (0.29) 
Na 6.45  6.49  (0.05) 5.67  (–0.78) 

MeNH2  Cf 4.55  4.55  (–0.00) 4.54  (–0.01) 
Hf 6.32  6.35  (0.03) 6.11  (–0.20) 
Hg 3.34  3.33  (–0.01) 3.31  (–0.03) 
Hh 3.57  3.56  (–0.01) 3.53  (–0.04) 
Hi 4.33  4.48  (0.15) 4.52  (0.19) 
Hj 7.50  7.62  (0.12) 7.68  (0.18) 
Nb 4.71  4.74  (0.02) 4.68  (–0.03) 

* Differences from the ground state are shown in parentheses. 

 

 

Interaction energies in the π-π* and n-π* excited states are summarized in Tables 

4.3 and 4.4, respectively. The LRD method improves the accuracy of interaction 

energies in dispersion-dominated systems. The TD-LC-BOP+LRD approach provides a 

small MD and MAD. In contrast, the CIS(D) method, which can be thought of as an 

analogue of MP2 for the excited state, severely overestimates the interaction energies of 

the uracil-cyclopentane and uracil-neopentane complexes in the π-π* excited state and 

underestimates those in the n-π* excited state. These deviations were interpreted as a 

breakdown of the perturbation due to nearly degenerated states at the CIS level. For 

example, the lowest singlet n-π* and π-π* CIS excitation energies of the 

uracil-neopentane complex were calculated to be 6.346 and 6.355 eV, respectively. 
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Table 4.3. Lowest singlet π-π* excited-state interaction energies of 11 molecular complexes from the S66 benchmark set  

(in kcal/mol).  
 

 TD-LC-BOP TD-LC-BOP+LRD CIS(D) Est. EOM-CCSD(T) 
#3 Benzene-MeNH2 –0.79  (2.01) –2.74  (0.06) –2.93  (–0.13) –2.80  
#4 Benzene-MeOH –1.71  (1.77) –3.55  (–0.06) –3.49  (–0.01) –3.49  
#5 Benzene-cyclopentane –0.05  (3.40) –3.11  (0.34) –4.02  (–0.57) –3.45  
#6 Benzene-neopentane –0.12  (2.74) –2.79  (0.07) –3.21  (–0.35) –2.86  
#7 Benzene-water –1.81  (0.86) –2.88  (–0.21) –2.48  (0.20) –2.67  
#11 Pyridine-MeNH2 –2.35  (1.84) –4.06  (0.13) –3.96  (0.23) –4.19  
#12 Pyridine-MeOH –7.45  (0.25) –8.37  (–0.67) –7.04  (0.66) –7.70  
#13 Pyridine-water –7.40  (–0.25) –7.96  (–0.80) –6.48  (0.67) –7.15  
#14 Uracil-cyclopentane –0.46  (4.06) –3.85  (0.68) –5.83  (–1.31) –4.52  
#15 Uracil-neopentane –0.69  (3.50) –3.77  (0.43) –9.00  (–4.80) –4.20  
#16 Uracil-pentane –0.73  (4.62) –4.47  (0.88) –5.47  (–0.12) –5.35  
 MD  (2.26)  (0.08)  (–0.50)  
 MAD  (2.30)  (0.39)  (0.82)  

* Differences from the ground state are shown in parentheses. 
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Table 4.4. Lowest singlet n-π* excited-state interaction energies of 11 molecular complexes from the S66 benchmark set  

(in kcal/mol). 
 

 TD-LC-BOP TD-LC-BOP+LRD CIS(D) Est. EOM-CCSD(T) 
#1 AcNH2-pentane –0.05 (2.81) –2.48 (0.29) –2.62 (0.14) –2.76 
#2 AcOH-pentane –0.30 (2.73) –2.67 (0.36) –2.87 (0.17) –3.03 
#8 Peptide-MeNH2 –5.67 (1.15) –6.97 (–0.15) –6.31 (0.51) –6.82 
#9 Peptide-pentane –0.40 (3.66) –3.52 (0.55) –3.93 (0.13) –4.07 
#10 Peptide-water –4.28 (0.35) –4.81 (–0.19) –4.09 (0.54) –4.63 
#11 Pyridine-MeNH2 –0.77 (1.90) –2.50 (0.17) –3.17 (–0.50) –2.67 
#12 Pyridine-MeOH –1.06 (0.51) –2.01 (–0.44) –1.77 (–0.20) –1.57 
#13 Pyridine-water –0.74 (–0.12) –1.31 (–0.70) –0.88 (–0.27) –0.62 
#14 Uracil-cyclopentane –0.10 (4.16) –3.26 (0.80) –2.59 (1.47) –4.06 
#15 Uracil-neopentane –0.24 (3.41) –3.29 (0.36) –1.72 (5.37) –3.65 
#16 Uracil-pentane –0.33 (4.63) –4.06 (0.90) –4.32 (0.65) –4.96 
 MD  (2.29)  (0.18)  (0.73)  
 MAD  (2.31)  (0.44)  (0.90)  

* Differences from the ground state are shown in parentheses. 
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Next, excitation-induced shifts of interaction energies in Table 4.5 are focused on. 

While the shifts of the π-π* interaction energies take both positive and negative values, 

most shifts of the n-π* interaction energies are positive. This is because the electron 

redistribution accompanied by the n-π* transition is considerably larger than that 

accompanied by the π-π* transition and it destabilizes the intermolecular interaction. 

Especially in the pyridine-MeOH and pyridine-water complexes, largely positive shifts 

were obtained due to the loss of an electron at the nitrogen atom, which serves as an 

acceptor in the hydrogen bond. The LRD method provides small negative effects on the 

interaction energy shifts. Satisfactory agreement between the TD-LC-BOP(+LRD) 

approach and the reference was confirmed. From these results, the TD-LC-BOP+LRD 

approach was found to be effective in describing excited-state interaction energies and 

their shifts from the ground state.
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Table 4.5. π-π* and n-π* excitation-induced interaction energy shifts of 16 molecular complexes from the S66 benchmark set (in kcal/mol). 

  π-π* excitation  n-π* excitation 
  

TD-LC-BOP 
TD-LC-BOP 

CIS(D) 
Est. EOM-  

TD-LC-BOP 
TD-LC-BOP 

CIS(D) 
Est. EOM- 

  +LRD CCSD(T)  +LRD CCSD(T) 
#1 AcNH2-pentane      –0.68 –0.67 –0.17 –0.77 
#2 AcOH-pentane      –0.07 –0.08 –0.60  –0.12 
#3 Benzene-MeNH2 –0.29 –0.26 –0.25 –0.40      
#4 Benzene-MeOH –0.47 –0.45 –0.50 –0.68      
#5 Benzene-cyclopentane –0.02 –0.01 –0.20  –0.06      
#6 Benzene-neopentane –0.05 –0.08 –0.22  –0.01      
#7 Benzene-water –0.44 –0.43 –0.52 –0.62      
#8 Peptide-MeNH2      –0.65 –0.62 –0.62 –0.74 
#9 Peptide-pentane      –0.19 –0.18 –0.40 –0.19 
#10 Peptide-water      –0.49 –0.47 –0.58 –0.57 
#11 Pyridine-MeNH2 –0.29 –0.31 –0.15 –0.22  –1.29 –1.26 –0.64 –1.30 
#12 Pyridine-MeOH –0.39 –0.39 –0.15 –0.19  –6.00 –5.97 –5.11 –5.94 
#13 Pyridine-water –0.37 –0.37 –0.14 –0.18  –6.29 –6.27 –5.45 –6.35 
#14 Uracil-cyclopentane –0.43 –0.47 –2.08 –0.43  –0.14 –0.12 –1.16 –0.03 
#15 Uracil-neopentane –0.32 –0.36 –5.75 –0.51  –0.13 –0.12 –4.98 –0.04 
#16 Uracil-pentane –0.45 –0.46 –1.15 –0.54  –0.04 –0.06 –0.01 –0.15 
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4.4.2 Exciton-resonance systems 

 

The spectroscopic parameters shown in Figure 4.3 were calculated with respect to 

sandwich dimers of benzene, cytosine, and adenine using the LC-BOP functional and 

the LRD method.  

 

 

 
Figure 4.3. Schematic diagram of the potential energy curves of an aromatic dimer in 

the ground and excited states with spectroscopic parameters. 
 

 

Note that at the dissociation limit, one molecule is in the lowest π-π* excited state and 

the other is in the ground state. Geometries of monomers were optimized at the 

LC-BOP/6-31G(d,p) level. D6h symmetry was imposed on the benzene dimer, and Cs 

symmetry was imposed on the cytosine and adenine dimers. For all theoretical methods, 

BSSEs of the binding and repulsion energies were corrected by the CP method. The 

binding energy was calculated using the following formula: 

 

][][])[(Δ LRD)DFT(
*

LRD)TDDFT(
*

LRD)TDDFT( AEAEAAE βαβα ∪
+

∪
++ +=  

])[( *
LRD)TDDFT( AAE βα∪

+− .                           (4.30) 

 

This is equivalent to Eq. (4.27) in principle, except that the sign is reversed. 
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The results are summarized in Table 4.6. Previously reported values based on ab 

initio calculations [75-78] are also listed for comparison. In terms of the equilibrium 

distance Re, TD-LC-BOP is similar to ab initio calculations, and the LRD method does 

not change Re. Without the dispersion correction, the binding energy is underestimated, 

which was also confirmed in the previous TDDFT calculation of the cytosine excimer 

[29]. The LRD method increases the binding energy and decreases the repulsion energy. 

The accuracy of these quantities is improved by the dispersion correction, although the 

delocalization of an exciton and the charge-transfer interaction are thought to be 

dominant interaction components in aromatic excimers. It was found that the dispersion 

correction at a shorter intermolecular distance compared to the ground state was 

important in determining the binding and repulsion energies. The absorption and 

fluorescence energies decrease slightly because the dispersion correction energy in the 

excited state is larger than that in the ground state. This tendency was also observed in 

the exciton-localized systems. In conclusion, the LC-BOP+LRD approach is effective in 

describing not only ground-state molecular complexes but also excited-state ones 

including aromatic excimers. 
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Table 4.6. Spectroscopic parameters of aromatic excimers estimated by the TDDFT(+LRD) approach and high-level ab initio theories.  

 Basis set Re (Å) Binding 
(eV) 

Repulsion 
(eV) 

Absorption 
(eV) 

Fluorescence 
(eV) Ref. 

Benzene dimer        
TD-LC-BOP 6-311++G(2d,2p) 3.06 0.31 0.64 5.46 4.51 this work 
TD-LC-BOP+LRD 6-311++G(2d,2p) 3.06 0.54 0.42 5.46 4.50 this work 
CASPT2 ANO (C[4s3d2p]/H[3s2p]) 3.05 0.43 0.39 4.98 4.16 [71] 
CCSDR(3) extrapolated aug-cc-pVQZ 3.05 0.50 0.34 5.07 4.22 [72] 

Cytosine dimer        
TD-LC-BOP 6-31++G(d,p) 3.06 0.17 0.76 5.04 4.11 this work 
TD-LC-BOP+LRD 6-31++G(d,p) 3.06 0.44 0.50 5.03 4.09 this work 
CASPT2 ANO (C,N,O[3s2d1p]/H[2s1p]) 3.08 0.58 0.43 4.41 3.40 [73] 

Adenine dimer        
TD-LC-BOP 6-31++G(d,p) 3.12 0.35 0.57 5.44 4.52 this work 
TD-LC-BOP+LRD 6-31++G(d,p) 3.12 0.71 0.22 5.43 4.50 this work 
CASPT2 ANO (C,N[3s2d1p]/H[2s1p]) 3.06 0.83 0.28 5.25 4.14 [74] 

* The CP correction is applied to the calculation of binding and repulsion energies. 
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4.5. Conclusion 
 

In this chapter, the LRD method was extended to the TDDFT excited-state 

calculation. The state-specific dispersion correction energy was calculated using the 

difference density matrix, which is usually used to calculate excited-state response 

properties. Numerical assessments were performed for exciton-localized and 

exciton-resonance systems. For the exciton-localized systems, the TD-LC-BOP+LRD 

approach adequately reproduced the reference interaction energies and their shifts from 

the ground state. The LRD method was also required to reproduce the binding energy of 

the excimer state, even though the exciton delocalization and the charge-transfer 

interaction played a dominant role in stabilizing an aromatic excimer. In conclusion, the 

LC-BOP+LRD method is useful in describing not only ground-state molecular 

complexes but also those in the excited state. 
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Chapter 5 
Theoretical Background 
 

One of the problems in WFT is the difficulty in estimating nuclear quantum effects 

and isotope effects, which are important in protonic interactions such as the hydrogen 

bond. Almost all electronic structure calculations have been performed based on the BO 

approximation [1], which makes it difficult to obtain nuclear wavefunction. The NOMO 

method [2] has been developed as a computationally inexpensive non-BO WFT. In this 

Chapter, the treatment of electrons and nuclei under the BO approximation is explained 

besides the theory of the NOMO method. 

 

5.1. Born-Oppenheimer approximation 
 

A quantum mechanical theory for molecules deals with the (nonrelativistic) 

time-dependent and/or time-independent Schrödinger equations that involve the 

total .wavefunction of nuclei and electrons: 

 

),,(),,(),(ˆ t
t

itH XxXxRr Ψ
∂
∂

=Ψ ,                                  (5.1a) 

),(),(),(ˆ XxXxRr Ψ=Ψ EH ,                                      (5.1b) 

 

where x  and X  represent all coordinates of electrons and nuclei: =},,{ 21 xx  

},,,,{ 2211 ωω rr  and },,,,{},,{ 221121  ΩΩ= RRXX , respectively. Here, =r  

},,{ 21 rr  and },,{ 21 RRR =  correspond to the spatial coordinates of electrons and 

nuclei, and },,{ 21 ωω=ω  and },,{ 21 ΩΩ=Ω  to their spin coordinates. 

The Hamiltonian is described as follows:  
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where nT̂  and eT̂  are nuclear and electronic kinetic operators, and nnV̂ , neV̂ , and 
eeV̂  are n-n, n-e, and e-e Coulomb operators, respectively. eN  and nN  mean the 

numbers of electrons and nuclei. The subscripts of },{ qp  and },{ QP  run over all 

electrons and nuclei, respectively. 

In the BO treatment, the electronic Hamiltonian is first defined by, 

 

)(ˆ),(ˆ)(ˆ)(ˆ),(ˆ eenennee rRrRrRr VVVTH +++= .                        (5.3) 

 

Note that nnV̂  and neV̂  include the nuclear coordinates. Since the time scale of the 

nuclear motion is assumed to be sufficiently slower than that of electronic motion due to 

the remarkable difference of their masses, the electronic .wavefunction might be 

determined by solving the time-independent electronic Schrödinger equation with a 

fixed nuclear configuration, 

 

);()();();(ˆ eeee XxRXxRr mmm EH Φ=Φ ,                                (5.4) 

 

where the subscript m identifies the electronic state. 

The total .wavefunction, ),,( tXxΨ  or ),( XxΨ  in Eq. (5.1) can be expanded in 

terms of the eigenfunctions of eĤ  as follows: 

 

∑ ΦΦ=Ψ
m

mm tt ),();(),,( ne XXxXx ,                                  (5.5a) 

∑ ΦΦ=Ψ
m

mm )();(),( ne XXxXx .                                     (5.5b) 
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The function for the expansion, ),(n tm XΦ  or )(n XmΦ , corresponds to the 

nuclear .wavefunction. 

Inserting Eq. (5.5) into Eq. (5.1), a set of coupled differential equations for the 

nuclear .wavefunction is derived: 

 

),(),(),()]()(ˆ[ nnnen t
t

itCtET m
n

nmnmm XXXRR Φ
∂
∂

=Φ+Φ+ ∑ ,              (5.6a) 

)()()()]()(ˆ[ nnnnen XXXRR mm
n

nmnmm ECET Φ=Φ+Φ+ ∑ .                   (5.6b) 

 

Here, mnC  is a coupling term defined as follows: 

 
neneene ˆ);(ˆ);(2);()(ˆ);( P

P
nPmnmmn TC ττ ⋅ΦΦ−ΦΦ= ∑ XxXxXxRXx ,        (5.7) 

where 

)(
2

1ˆn
P

P
P M

R∇=τ .                                              (5.8) 

Then, 

 
nnn ˆˆˆ PPP t−=⋅ττ .                                                   (5.9) 

 

Note that no approximation is introduced to derive Eq. (5.6). 

When neglecting all the coupling terms mnC , namely, 

 
0=mnC ,                                                      (5.10) 

 

Eq. (5.6) becomes 

 

),(),()]()(ˆ[ nnen t
t

itET mmm XXRR Φ
∂
∂

=Φ+ ,                           (5.11a) 

)()()]()(ˆ[ nnnen XXRR mmmm EET Φ=Φ+ .                              (5.11b) 
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In this case, the total .wavefunction is given by 

 

),();(),,( ne tt mm XXxXx ΦΦ=Ψ ,                                   (5.12a) 

)();(),( ne XXxXx mm ΦΦ=Ψ .                                      (5.12b) 

 

The approximation in Eq. (5.10) corresponds to the BO approximation. In this treatment, 

the nuclear motion can be determined by a single electronic state. 

If the diagonal term mmC  is taken into account, 

 

)();()(ˆ);(),(0 nene RXxRXx mmmmmmn UTCnmC ≡ΦΦ=≠= ,         (5.13) 

 

the following equations are derived: 

 

),(),()]()()(ˆ[ nnnen t
t

itUET mmmm XXRRR Φ
∂
∂

=Φ++ ,                    (5.14a) 

or 

)()()]()()(ˆ[ nnnnen XXRRR mmmmm EUET Φ=Φ++ .                       (5.14b) 

 

The treatment in Eq. (5.13) is called the adiabatic approximation in distinction from the 

BO approximation. The total wavefunction is given by the same formula as Eq. (5.12). 

The energy contribution due to )(n RmU  is occasionally called the diagonal BO 

correction term, which represents the coupling between the electronic and nuclear 

motions within the adiabatic approximation. 

The BO approximation derives the individual working equation for the electronic 

and nuclear motions, i.e. Eqs. (5.4) and (5.11), respectively. The electronic structure 

theory such as WFT and DFT handles Eq. (5.4). Furthermore, this separation enables to 

treat the nuclear motion classically. For example, one can solve the Newton’s 
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equation-of-motion, 

 

2

2n )(
t

ME P
P

P

m

∂
∂

=
∂

∂
−

R
R

R ,                                           (5.15) 

 

instead of the nuclear Schrödinger equation (5.11a). This treatment corresponds to the 

molecular dynamics simulation, in which nuclei are expressed by classical charged 

particles. 

 

 

5.2. Nuclear orbital plus molecular orbital method 
 

Here, one-particle .wavefunctions of a nucleus and an electron are introduced. In 

the standard quantum chemistry, the one-particle .wavefunction of an electron in a 

molecule is called MO. Similarly, the one-particle .wavefunction of a nucleus is named 

NO. Since electrons are fermionic particles, Ne-electron .wavefunction is given by 

antisymmetric product of the MOs. On the contrary, Nn-nucleus .wavefunctions are 

given by antisymmetric and symmetric products of the NOs for fermionic and bosonic 

nucleus, respectively. For example, a reference state 0Φ  can be described by a simple 

product of Ne-electron and Nn-nucleus .wavefunctions as follows: 

 

e
0

n
00 Φ⋅Φ=Φ ,                                                  (5.16) 

KJI ϕϕϕ =Φ n
0 ,                                              (5.17) 

kji ϕϕϕ =Φ e
0 .                                               (5.18) 

 

The subscripts {I, J, …, K} and {i, j, …, k} are the labels for expressing occupied NOs 

and MOs, respectively. The notations {A, B, …, C} and {a, b, …, c} are used for 

unoccupied NOs and MOs, respectively. 

This section introduces the NOMO/HF method [2,3], which gives the HF 
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equations to determine both NOs and MOs for the Hamiltonian in Eq. (5.2). Using 

Lagrange’s method of undetermined multipliers, one therefore minimizes the following 

functional, 

 

( ) ( )∑∑ −−−−ΦΦ=
en

,,
00

ˆ
N

ji
ijjiij

N

JI
IJJIIJH δϕϕεδϕϕεL .              (5.19) 

 

As a result, NOMO/HF equations are derived as follows: 

 

IIIf ϕεϕ =n
NOMO

ˆ ,                                                (5.20) 

iiif ϕεϕ =e
NOMO

ˆ ,                                                (5.21) 

( ) nn
elecnuc

nn
NOMO ˆˆˆˆˆˆˆ vtJKJtf

i
i

I
II +≡++= ∑∑  ,                            (5.22) 

( ) ee
nucelec

ee
NOMO ˆˆˆˆˆˆˆ vtJKJtf

I
I

i
ii +≡+−+= ∑∑ .                            (5.23) 

 

Here, Ĵ  and K̂  are Coulomb and exchange operators, respectively. In Eq. (5.22), the 

minus and plus signs are used for fermionic and bosonic nuclei, respectively. The Fock 

operator includes mean-field type of coupling between NOs and MOs. This is similar to 

the unrestricted HF scheme. The extension from the MO/HF method to the NOMO/HF 

method is straightforward. Actually, the NOMO/HF .wavefunction satisfies Koopmans’ 

theorem and Brillouin’s theorem. Therefore, various correlated methods developed 

within the BO approximation are applicable to the NOMO model. 

Next, let us discuss the expansion of NOs. In the conventional MO method, the 

usage of GTFs for expanding MOs has been accepted since Boys’ proposal [4] because 

it has computational merits such as evaluation of four-center integrals. It is opposite to 

the fact that the exact .wavefunctions of hydrogen-like atoms are STFs. Then, how 

should the NOs be expanded? Most parts of nuclear .wavefunctions correspond to the 

vibrational motion: that is, 3Nn-6 degrees of freedom. The exact .wavefunction of the 
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harmonic oscillator is the product of a hermitian polynomial and a GTF. Thus, it might 

be reasonable to think that the GTFs are used as the basis functions to expand the NOs. 

In particular, the exponents of the GTFs are directly connected with the vibrational 

frequencies. A simple scheme has been proposed in order to determine the NBFs by this 

relationship [3]. 

In the conventional MO method, the deviation between the HF and full-CI 

calculations is due to the electron correlation effect. On the other hand, in the NOMO 

formalism, the deviation is originated from electron-electron (e-e), electron-nucleus 

(e-n) and nucleus-nucleus (n-n) correlations. The MP2 perturbation theory for the 

NOMO method was formulated to consider these correlations [2,5,6]. 

As in the case of conventional perturbation theory, the Hamiltonian Ĥ  is 

partitioned into the unperturbed part 0Ĥ , for which the HF Hamiltonian is used, and 

the perturbation Ω̂ . 

 

Ω+= ˆˆˆ 0HH ,                                                   (5.24) 

∑∑ +=
p

pP
P

ffH )(ˆ)(ˆˆ en0 rr  

∑∑∑ ++=
µ

µ )(ˆ)(ˆ)(ˆ en rrr vtt
p

pP
P

,                                (5.25) 

∑∑ −=Ω
<

−

µ
µ

νµ
µν )(ˆˆ 1 rvr  .                                          (5.26) 

 

where )(ˆ µrv  in Eq. (5.26) represents NOMO/HF potential for μth particle.  

By the definition of Møller-Plesset perturbation theory, the NOMO/MP2 energy 

expression is written by 

 

nneneecorr EEEE ∆+∆+∆=∆ ,                                       (5.27) 

where 

∑
<< −−+

ΦΩΦ
=∆

baji baji

ab
ij

E
,

2

ee0
ee

ˆ

εεεε
,                                      (5.28) 
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∑ −−+

ΦΩΦ
=∆

AaIi AaIi
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iI

E
,,,
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en0
en

ˆ

εεεε
,                                      (5.29) 

∑
<< −−+

ΦΩΦ
=∆

BAJI BAJI

AB
IJ

E
,

2

nn0
nn

ˆ

εεεε
.                                    (5.30) 

 

Here, eeE∆ , enE∆ , and nnE∆  correspond to e-e, e-n, and n-n many-body effects. The 

subscripts i, j (I, J) and a, b (A, B) represent electronic (nuclear) occupied and virtual 

orbitals, respectively. While 0Φ  denotes the NOMO/HF .wavefunction, ab
ijΦ , aA

iIΦ , 

and AB
IJΦ  correspond to the two-particle excitation configurations. The 

NOMO/MP1 .wavefunction ΨNOMO/MP1 is defined as follows: 

 

0NOMO/MP1 Φ=Ψ ∑∑ −−+

ΦΩΦ
Φ+

−−+

ΦΩΦ
Φ+

<< AaIi AaIi

aA
iIaA

iI
baji baji
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ijab
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,,,
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0ee
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εεεεεεεε
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0nn
ˆ
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.                             (5.31) 
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Chapter 6 
Interpretation of Geometric Isotope Effect in Hydrogen Bond 
 

6.1. Introduction 
 

The GIE, defined as geometric changes caused by isotopic substitution, has been 

investigated for various hydrogen-bonded systems. The GIE plays an essential role in 

the hydrogen bond because it may affect the entire bond structure and physical 

properties. In solid-state physics, shifts in the hydrogen bond length induced by 

deuteration have long been known as the Ubbelohde effect [1]. Ichikawa [2-5] and 

Sokolov [6] examined geometries of hydrogen-bonded ferroelectric materials in detail 

and discovered relations between the GIEs and drastic increases in phase-transition 

temperatures induced by deuteration. The GIEs in the liquid and gas phases have also 

been investigated by NMR [7-9], X-ray and neutron diffraction [10], and microwave 

spectroscopy [11-13]. Recently, the GIEs in hydrogen-bonded molecules were 

theoretically investigated with quantum-chemical calculations [14-23] and path-integral 

molecular dynamics [24]. 

Both theoretical and experimental studies [7-24] demonstrated the following trend 

of the GIE: in the hydrogen bond A-X···B (X = H and D), the intramolecular bond A-X 

shrinks and the intermolecular bond X···B elongates when X is changed from hydrogen 

to deuterium. The intramolecular bond shrinkage is ascribed to the fact that the 

anharmonicity of the adiabatic potential is reduced by the decrease in zero-point energy, 

whereas the origin of the intermolecular bond elongation has remained unclear. Because 

the intermolecular elongation cannot be explained by the anharmonicity, it is natural to 

consider the elongation as a secondary effect owing to the isotope effect in the 

proton-donor molecule. 

The intermolecular elongation is expected to be interpreted by decomposing the 

intermolecular interaction into physical energy components such as electrostatic, 

exchange-repulsion, polarization, and charge-transfer interactions by using the energy 

decomposition methods [25-34]. For the energy analysis, the nuclear quantum effects 

need to be incorporated; the NOMO theory [35-40], which introduces the NO as well as 
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the MO, can be employed to estimate nuclear quantum effects. Similar or equivalent 

approaches have been reported [20,41-43], and these theories have been utilized 

successfully to study the isotope effect in intermolecular interactions [14-18,20-23,44]. 

In this chapter, the isotope effect on interaction energy components in 

hydrogen-bonded systems are investigated by the NOMO theory. The RVS-SCF method 

[29] is adopted as the energy decomposition method. The organization of this chapter is 

as follows. In the following section, the extension of the RVS-SCF method to the 

NOMO scheme is described. The computational details are then discussed, and the 

intermolecular bond elongation is interpreted according to the energy components. 

Finally, conclusions are presented. 

 

 

6.2. Theoretical aspects 
 

The RVS-SCF method based on the conventional MO procedure decomposes the 

interaction energy at the HF level MO/HF
INTE  as follows: 

 

RVS
RES

RVS
CT

RVS
PL

RVS
EX

RVS
ES

MO/HF
INT EEEEEE ++++= ,                           (6.1) 

 

where EES, EEX, EPL, ECT, and ERES represent the energy components of electrostatic, 

exchange repulsion, polarization, charge-transfer interactions, and residual term, 

respectively. Although RVS
ESE  and RVS

EXE  are integrated in the original paper [29], it is 

convenient to treat them separately when analyzing hydrogen-bonded systems. Similarly, 

the interaction energy obtained by the NOMO/HF method [35,36], in which MOs and 

NOs are determined by the SCF procedure, can be decomposed into the same 

components as the MO method: 

 

RVS
RES

RVS
CT

RVS
PL

RVS
EX

RVS
ES

NOMO/HF
INT EEEEEE ++++= .                          (6.2) 

Before defining each interaction component, an orbital interaction scheme is 
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introduced. As shown in Figure 6.1, the Fock matrix is constructed in the MO and NO 

spaces of constituent fragments and partitioned into ES, EX, PL, CT, and NR blocks. 

For simplicity, two fragments, namely, fragments I and II, with one quantum nucleus for 

each fragment are considered. The Fock matrix is expressed on the basis of occupied 

and virtual orbitals of fragments I and II, i.e., occ. (I), occ. (II), vir. (I), and vir. (II). 

Each energy component is obtained by zeroing out nonrelated off-diagonal blocks of the 

Fock matrix. 
NOMO/HF
INTE  is obtained by subtracting the sum of fragment energies EI + EII from the 

energy of the combined system EI+II: 

 

{ }IIIIII
NOMO/HF
INT EEEE +−= + .                                        (6.3) 

 
RVS
ESE  is obtained in the manner described by the KM analysis [25-27]: 

 

{ }IIIIII
RVS
ES ]ES[ EEEE +−= + .                                        (6.4) 

 

In Eq. (6.4), only the diagonal blocks of the Fock matrix, namely, ES blocks, are 

retained to calculate ]ES[III+E . Because ES blocks contain exchange integral terms, the 

differential overlap between the atomic orbitals of fragments I and II is set to zero in the 

calculation of ]ES[III+E : 

 

0)()( e
II

e
I =∈∈ rr νµ χχ ,                                               (6.5) 

 

where e
µχ  is the atomic orbital for electrons. RVS

EXE  is defined as the energy shift 

induced by the inclusion of EX blocks: 

 

ES][]EXES[ IIIIII
RVS
EX ++ −+= EEE .                                   (6.6) 
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occ. (I) occ. (II) vir. (I) vir. (II) occ. (I) vir. (I) occ. (II) vir. (II)
occ. (I) ES EX PL(I) CT(I→II)
occ. (II) EX ES CT(II→I) PL(II)
vir. (I) PL(I) CT(II→I) ES 0
vir. (II) CT(I→II) PL(II) 0 ES
occ. (I) ES NR(I)
vir. (I) NR(I) ES

occ. (II) ES NR(II)
vir. (II) NR(II) ES

0

0

Molecular orbital Nuclear orbital

0

0

 
Figure 6.1. Reduced spaces of the Fock matrix for the RVS-SCF energy decomposition in the NOMO scheme. Basis of the Fock matrices 

are occupied and virtual orbitals of fragments I and II, as denoted by occ. (I), occ. (II), vir. (I), and vir. (II), respectively. Elements of 0 

(zero) subspaces are set to zero.
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In evaluating RVS
ESE  and RVS

EXE , the SCF procedure is not performed to preserve 

the .wavefunction of the isolated fragments. RVS
PLE  is formulated as the stabilization 

induced by mixing the occupied and virtual MOs within each fragment. In the NOMO 

calculation, virtual NOs of the polarized fragment are mixed with the occupied NO for 

the purpose of nuclear relaxation: 

 

EX]ES[)]I(NRPL(I)EXES[ IIIIII
RVS
PL +−+++= ++ EEE  

EX]ES[)]II(NRPL(II)EXES[ IIIIII +−++++ ++ EE .                 (6.7) 

 
RVS
CTE  is formulated as the stabilization energy obtained by delocalization from 

occupied MOs of one fragment to virtual MOs of the other. In the NOMO calculation, 

all virtual NOs are mixed to relax the nuclear wavefunctions: 

 

]NR(II)NR(I)II)CT(IPL(I)EXES[III
RVS
CT ++→+++= +EE  

NR(I)]PL(I)EXES[III +++− +E  

]NR(II)NR(I)I)CT(IIPL(II)EXES[III ++→++++ +E  

NR(II)]PL(II)EXES[III +++− +E .                              (6.8) 

 

In order to correct the BSSE, the following CP correction [45] is subtracted from 
NOMO/HF
INTE  and RVS

CTE : 

 

)vir.(I)occ.(I),()vir.(II)occ.(II),( IIIIII
RVS
INT(CP) EEEEE −+−=∆ ,              (6.9) 

)vir.(I)()vir.(II)( IIIIII
RVS
CT(CP) EEEEE −+−=∆ .                         (6.10) 

 

In Eqs. (6.9) and (6.10), the MOs treated as ghost orbitals are shown in parentheses. 

In the post-HF interaction energy based on the conventional MO method, another 

component, which originates in the correlation energy, appears because the RVS-SCF 
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method can be applied only to the HF interaction energy: 

 

COR
INT

MO/HF
INT

HF-MO/post
INT EEE += .                                       (6.11) 

 

In the NOMO/MP2 method [37,38], which is the second-order Møller-Plesset 

perturbation theory based on the NOMO/HF wavefunction and is adopted in this chapter, 

the correlated wavefunction is expressed as a summation of two-electron excited 

configurations, one-electron and one-nucleus excited configurations, and two-nucleus 

excited configurations. Therefore, COR
INTE  in Eq. (6.11) can be divided into 

electron-electron (ee), electron-nucleus (en), and nucleus-nucleus (nn) contributions. 

 

COR(nn)
INT

COR(en)
INT

COR(ee)
INT

NOMO/HF
INT

NOMO/MP2
INT EEEEE +++= .                    (6.12) 

 
 
6.3. Computational details 
 

In this chapter, HOX···OH2, HOX···NH3, H2CNX···OH2, H2CNX···NH3, 

H3CX···OH2, and H3CX···NH3 complexes were calculated using the NOMO/MP2 

method [37,38]. Their geometries are schematically illustrated in Figure 6.2.
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Figure 6.2. Hydrogen-bonded systems considered in this chapter: (a) HOX···OH2, (b) 

HOX···NH3, (c) H2CNX···OH2, (d) H2CNX···NH3, (e) H3CX···OH2, and (f) 

H3CX···NH3. Note that nuclei of atom X are treated as the wavefunction of proton and 

deuteron. 

(c) 

X 

X X 

(b) 

X X 

(a) 

(d) 

X 

(e) (f) 
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Here, the nuclei of atom X were treated as the wavefunction of proton or deuteron, and 

the others were treated classically, i.e., as point charges. These complexes contain 

typical examples of the hydrogen bond between second-row atoms and hydrogen. In the 

correlation energy calculation, core electrons were not frozen. The 6-311++G(3d,3p) 

basis set [46-48] and (5s5p5d) primitive Gaussian functions are adopted as EBFs and 

NBFs, respectively. Exponents of the NBFs are determined by the even-tempered 

scheme [49]. For geometry optimization, the gradient of the NOMO/MP2 energy with 

respect to each basis center was calculated numerically. It is worth noting that the 

orbital centers of the EBFs were set to the positions of corresponding nuclei or the 

orbital centers of the NBFs. Bond distances are estimated using the averaged positions 

of quantum nuclei R0, which can be evaluated as the expectation value of the nuclear 

position operator as follows: 

 

NOMO/MP1NOMO/MP1

NOMO/MP1NOMO/MP1
0

ˆ

ΨΨ
ΨΨ

=
R

R .                                     (6.13) 

 

All calculations are performed by modifying the GAMESS program package [50]. 

 

 

6.4. Results and discussion 
 

First, the geometries of the hydrogen-bonded systems mentioned in the previous 

section were optimized at the NOMO/MP2 level. After the full optimization based on 

the numerical gradient calculation, the intermolecular distance, i.e., distance between 

hydrogen (deuterium) and proton- (deuteron-) acceptor atom, was reoptimized by 

scanning the CP-corrected interaction energy. Optimized distances of the intramolecular 

bond A−X and the intermolecular bond X···B in the hydrogen bond A−X···B (X = H 

and D) are listed in Table 6.1. Bond distance shifts induced by deuteration are shown in 

parentheses. 
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Table 6.1. Optimized bond distances of hydrogen-bonded systems obtained  

by the NOMO/MP2 method (in Å). 

 Bond X = H X = D  

Intramolecular distance     

HOX···OH2 O−X 0.9657 0.9612 (–0.0045) 

HOX···NH3 O−X 0.9711 0.9664 (–0.0047) 

H2CNX···OH2 N−X 1.0230 1.0182 (–0.0048) 

H2CNX···NH3 N−X 1.0258 1.0207 (–0.0051) 

H3CX···OH2 C−X 1.0982 1.0912 (–0.0070) 

H3CX···NH3 C−X 1.0984 1.0911 (–0.0074) 

Intermolecular distance     

HOX···OH2 X···O 1.9920 2.0003 ( 0.0083) 

HOX···NH3 X···N 1.9953 2.0065 ( 0.0112) 

H2CNX···OH2 X···O 2.2816 2.2842 ( 0.0026) 

H2CNX···NH3 X···N 2.2566 2.2649 ( 0.0083) 

H3CX···OH2 X···O 2.7242 2.7327 ( 0.0085) 

H3CX···NH3 X···N 2.8622 2.8760 ( 0.0138) 

* Changes from X = H to D are shown in parentheses. 
** The CP correction is applied to the optimization of the intermolecular distance. 

 

 

The GIEs in the hydrogen bond, namely, the intramolecular bond shrinkage and the 

intermolecular bond elongation, are reproduced qualitatively. The bond length shifts 

except for A−X and X···B are significantly small, i.e., less than 3 × 10-4 Å. 

Interaction energies and their components at the optimized geometries are 

summarized in Table 6.2. Here, negative (positive) values correspond to attractive 

(repulsive) interactions. The CP correction is applied to the calculation of RVS
CTE ,  

NOMO/HF
INTE ,  COR(ee)

INTE ,  COR(en)
INTE , and  NOMO/MP2

INTE . 
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Table 6.2. Decomposition of the NOMO/MP2 interaction energy at optimized geometries (in kcal/mol).  
 

 
NOMO/HF interaction energy component  Correlation effect 

 NOMO/MP2
INTE    RVS

ESE   RVS
EXE   RVS

PLE   RVS
CTE   RVS

RESE   NOMO/HF
INTE  

  COR(ee)
INTE   COR(en)

INTE  
HOX···OH2 X = H –8.194 5.769 –1.019 –0.773 0.092 –4.125  –0.899 0.162 –4.862 
 X = D –8.013 5.656 –0.969 –0.753 0.080 –3.998  –0.879 0.100 –4.778 
 Δ 0.180 –0.113 0.050 0.020 –0.012 0.126  0.020 –0.062 0.084 
HOX···NH3 X = H –11.503 9.683 –1.734 –1.610 0.063 –5.102  –1.545 0.215 –6.432 
 X = D –11.214 9.451 –1.644 –1.566 0.052 –4.920  –1.502 0.130 –6.292 
 Δ 0.290 –0.232 0.090 0.045 –0.010 0.182  0.043 –0.085 0.140 
H2CNX···OH2 X = H –4.432 2.937 –0.507 –0.314 0.040 –2.276  –0.824 0.090 –3.010 
 X = D –4.362 2.894 –0.493 –0.305 0.036 –2.230  –0.824 0.069 –2.985 
 Δ 0.070 –0.043 0.014 0.009 –0.004 0.046  –0.001 –0.020 0.025 
H2CNX···NH3 X = H –6.424 5.539 –0.953 –0.802 0.027 –2.613  –1.324 0.170 –3.767 
 X = D –6.242 5.396 –0.913 –0.774 0.023 –2.510  –1.312 0.112 –3.710 
 Δ 0.182 –0.143 0.040 0.028 –0.004 0.103  0.012 –0.057 0.057 
H3CX···OH2 X = H –0.745 0.777 –0.163 –0.076 0.023 –0.185  –0.454 0.061 –0.578 
 X = D –0.688 0.741 –0.157 –0.071 0.022 –0.154  –0.447 0.042 –0.559 
 Δ 0.057 –0.036 0.006 0.005 –0.001 0.030  0.007 –0.019 0.018 
H3CX···NH3 X = H –1.003 1.135 –0.219 –0.154 0.031 –0.210  –0.561 0.075 –0.695 
 X = D –0.925 1.076 –0.210 –0.144 0.029 –0.174  –0.546 0.051 –0.669 

 Δ 0.078 –0.059 0.009 0.010 –0.002 0.036  0.015 –0.025 0.026 

* Changes from X = H to D are denoted as Δ. 
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Note that COR(nn)
INTE  does not appear because only one nucleus is treated 

quantum-mechanically at the same time. According to NOMO/MP2
INTE , the calculated 

systems are classified into strongly interacting systems (HOX···OH2, HOX···NH3, 

H2CNX···OH2, and H2CNX···NH3) and weakly interacting systems (H3CX···OH2 and 

H3CX···NH3). In all systems, the total interaction energy NOMO/MP2
INTE  is less negative in 

X = D than in X = H, which is in agreement with the results of previously reported 

quantum-chemical calculations [18,22]. COR(ee)
INTE  is usually less negative than RVS

ESE . 

However, it plays an important role in H3CX···OH2 and H3CX···NH3 because of its 

comparability to NOMO/MP2
INTE . The small positive values of COR(en)

INTE  can be attributed to 

the electronic delocalization around a proton or deuteron because of the formation of a 

hydrogen bond. In terms of the isotope effect, the negative components shift toward the 

positive direction, and vice versa. In other words, the absolute values of all components 

become small owing to deuteration. It is worth mentioning that the absolute values of all 

components and their isotopic shifts in the NH3 complexes are larger than those in the 

H2O complexes. 

Now, the RVS-SCF energy components are focused on. RVS
ESE  and RVS

EXE  are 

dominant attractive and repulsive components in all systems, respectively. For 

H3CX···OH2 and H3CX···NH3, the absolute value of RVS
ESE  is smaller than that of 

RVS
EXE , which indicates the weakness of the electrostatic interaction in C−X···O and 

C−X···N hydrogen bonds. RVS
PLE  and RVS

CTE  are considerably less negative than RVS
ESE , 

and RVS
RESE  is less than 0.1 kcal/mol in all systems. The above analysis reveals that the 

interaction energies NOMO/HF
INTE  are approximately determined by RVS

ESE  and RVS
EXE . 

Because these results are consistent with the results of intermolecular perturbation 

theory [51], it is inferred that the RVS-SCF method in the NOMO scheme appropriately 

describes the property of the hydrogen bond. 

The isotopic shifts of energy components can be analyzed by introducing an 

intermediate model to describe intermolecular and intramolecular scenarios. In the 

intermediate model, atom X is deuterium, and the intermolecular distance is fixed at the 

optimized value for X = H. The other geometric parameters agree with the optimized 

values for X = D. The intermediate model denoted by geometry (b) in the case of 

HOX···OH2 is illustrated in Figure 6.3 (b). As shown in Figure 6.3, geometries (a) and 
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(c) correspond to the optimized geometries with X = H and X = D, respectively. The 

process of geometry (a) to (b) corresponds to the isotope substitution with fixed 

intermolecular distance. Because the wavefunction of a proton-acceptor molecule is 

supposed to be almost invariant by deuteration, the difference in energy components 

between geometries (a) and (b) is regarded as the isotope effect in the proton-donor 

molecule. In contrast, the process of geometry (b) to (c) corresponds to the structural 

relaxation. The effect of the intermolecular bond elongation can be analyzed by 

comparing energy components in geometry (b) with those in (c).
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Figure 6.3. Geometric and energetic relations of three conditions: (a) optimized geometry with X = H, (b) 

intermediate model, and (c) optimized geometry with X = D. The illustration of bond distance shifts is exaggerated.
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Energy component shifts from geometry (a) to (b) are listed in Table 6.3. Note that 

the data are given in cal/mol. RVS
ESE∆  is constantly positive, which is consistent with the 

decrease in atomic charge in proton- (deuteron-) donor molecules [15,20,22,23]. 

Although RVS
ESE   is small in H3CX···OH2 and H3CX···NH3, it is interesting that 

RVS
ESE∆  in those systems is comparable to that in more strongly interacting systems. 
RVS
EXE∆  has large positive values in HOX···OH2 and HOX···NH3, while it is negative in 

H2CNX···OH2, H3CX···OH2, and H3CX···NH3. RVS
PLE∆  is positive and correlates with 

NOMO/MP2
INTE∆ . Although RVS

PLE∆  is always smaller than RVS
ESE∆ , the contribution of 

RVS
PLE∆  to the destabilization of total interaction is not negligible in strongly interacting 

systems. RVS
CTE∆  and COR(ee)

INTE∆  are considerably small, though their sign is dependent 

on the element of proton- (deuteron-) donor atom. COR(en)
INTE∆  is negative because 

COR(en)
INTE  must converge to zero along with the increase in nuclear mass. From the 

results obtained, various trends of energy component shift caused by the intramolecular 

isotope effect can be observed. In addition, it can be seen that the electrostatic 

interaction plays an important role in the destabilization of total intermolecular 

interaction in any systems. 

Energy component shifts from geometry (b) to (c) are listed in Table 6.4. RVS
EXE∆  

has a large negative value, reflecting the short-range nature of the exchange-repulsion, 

whereas RVS
ESE∆ , RVS

PLE∆ , RVS
CTE∆ , and COR(ee)

INTE∆  are positive. These trends correctly 

reflect the intermolecular bond elongation. In all systems, RVS
ESE∆  is larger than RVS

PLE∆ , 
RVS
CTE∆ , and COR(ee)

INTE∆ . COR(en)
INTE∆  is negligibly small. Owing to the cancellation of 

RVS
EXE∆  and other components, NOMO/MP2

INTE∆  is considerably small. The negativity of 
NOMO/MP2
INTE∆  indicates that the stabilization energy due to the decrease in exchange- 

repulsion interaction exceeds the loss of attractive interactions. From a quantitative 

point of view, the isotopic shifts of interaction energy components are rather different 

for each system. The absolute values of them are affected by the strength of 

intermolecular interaction and the width of intermolecular bond elongation. From the 

results mentioned above, the bond elongation was found to be determined by the 

sensitive balance between the exchange-repulsion interaction and other components. 
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Table 6.3. Energy component shifts from geometry (a) to (b) (in cal/mol), which are regarded as the effect of the intramolecular bond  

shrinkage in proton-donor molecule. 

 
NOMO/HF interaction energy component  Correlation effect 

 NOMO/MP2
INTE∆   RVS

ESE∆   RVS
EXE∆   RVS

PLE∆   RVS
CTE∆   RVS

RESE∆   NOMO/HF
INTE∆

 

     COR(en)
INTE∆  

HOX···OH2 62.3 61.7 25.4 0.1 –11.0 138.5  7.4 -61.4 84.5 
HOX···NH3 70.3 120.8 36.6 -6.2 –9.8 211.6  13.5 –83.7 141.4 

H2CNX···OH2 52.4 –16.1 10.5 6.3 –3.8 49.5  –4.3 –20.0 25.2 

H2CNX···NH3 91.2 1.1 20.3 10.5 –4.2 118.8  –4.9 –56.4 57.5 

H3CX···OH2 44.6 -14.0 2.9 3.4 –0.8 36.1  1.1 –18.7 18.4 

H3CX···NH3 52.1 –10.9 3.4 4.5 –1.4 47.7  2.9 –24.0 26.7 

 

Table 6.4. Energy component shifts from geometry (b) to (c) (in cal/mol), which are regarded as the effect of the intermolecular bond elongation. 

 
NOMO/HF interaction energy component  Correlation effect 

 NOMO/MP2
INTE∆   RVS

ESE∆   RVS
EXE∆   RVS

PLE∆   RVS
CTE∆   RVS

RESE∆   NOMO/HF
INTE∆

 

     COR(en)
INTE∆  

HOX···OH2 117.9 –174.8 24.9 20.3 –0.6 –12.2  12.5 –1.0 –0.7 
HOX···NH3 219.5 –353.0 53.4 50.7 –0.4 –29.7  29.7 –1.4 –1.3 

H2CNX···OH2 17.9 –26.8 3.1 2.5 –0.1 –3.4  3.6 –0.2 0.0 

H2CNX···NH3 90.8 –144.2 19.8 17.5 –0.2 –16.2  16.8 –1.1 –0.5 

H3CX···OH2 12.1 –22.3 2.7 1.8 –0.3 -6.0  6.2 –0.4 –0.1 

H3CX···NH3 25.9 –47.6 5.6 5.5 –0.7 –11.3  11.7 –0.7 –0.3 
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Now, let us summarize the intramolecular and intermolecular effects. In weakly 

interacting systems such as H3CX···OH2 and H3CX···NH3, the decrease of electrostatic 

interaction by deuterization causes the intermolecular GIE to reduce the 

exchange-repulsion interaction. In more strongly interacting systems, the destabilization 

obtained by the intramolecular effect originates in the exchange-repulsion and 

polarization interactions as well as the electrostatic interaction. 

 

 

6.5. Conclusion 
 

In this chapter, the isotopic shift of interaction energy components in hydrogen- 

bonded systems was investigated in order to interpret the intermolecular GIE by the 

RVS-SCF method extended to the NOMO scheme. The total GIE was divided into two 

processes: namely, the intramolecular bond shrinkage and the intermolecular bond 

elongation. The RVS-SCF analysis on the GIEs clarified that the isotope effect in 

proton-donor molecule led to the decrease in the electrostatic interaction in all systems 

and the exchange-repulsion interaction for two strongly interacting systems. In contrast, 

the intermolecular bond elongation stabilizes the hydrogen-bonded systems because the 

stabilization obtained by the exchange-repulsion interaction always exceeded the 

destabilization by the other energy components. As shown in the appendix, the results 

obtained with the KM + NOMO approach are close to the RVS-SCF + NOMO ones. 

Consequently, the intermolecular GIE is approximately interpreted as a process 

reducing the exchange-repulsion interaction after the decrease of electrostatic 

interaction. 
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Appendix 
 

The KM analysis [25-27] is also extended to the NOMO scheme in addition to the 

RVS-SCF method. In the original KM analysis [25,26], the HF interaction energy is 

decomposed as 

 

KM
MIX

KM
CT

KM
PL

KM
EX

KM
ES

MO/HF
INT EEEEEE ++++= .                           (6.A1) 

 
KM
PLE  and KM

CTE  do not converge at the basis set limit because the exchange interaction 

is neglected in their calculation. The refined KM energy decomposition can be written 

as follows [27]: 

 

KM
RES

KM
CTPLX

KM
EX

KM
ES

MO/HF
INT EEEEE +++= .                               (6.A2) 

 

Here, Eq. (6.A2) is extended to the NOMO/HF method: 

 

KM
RES

KM
CTPLX

KM
EX

KM
ES

NOMO/HF
INT EEEEE +++= .                              (6.A3) 

 
KM
ESE  and KM

EXE  are calculated in the same manner as the corresponding components in 

the RVS-SCF scheme: 

 

{ }IIIIII
KM
ES ]ES[ EEEE +−= + ,                                      (6.A4) 

ES][]EXES[ IIIIII
KM
EX ++ −+= EEE .                                  (6.A5) 

 

The polarization and charge transfer interactions are integrated into KM
CTPLXE . In the 

NOMO calculation, all NOs are optimized by including NR blocks. 

 

]EXES[]NRCTPLX(I)EXES[ IIIIII
KM
CTPLX +−+++= ++ EEE  
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]EXES[]NRCTPLX(II)EXES[ IIIIII +−++++ ++ EE .             (6.A6) 

 

The following CP correction is subtracted from KM
EXE  and KM

EXE  to remove the BSSE: 

 

)occ.(I)()occ.(II)( IIIIII
KM
EX(CP) EEEEE −+−=∆ ,                        (6.A7) 

)vir.(I)()vir.(II)( IIIIII
KM
CTPLX(CP) EEEEE −+−=∆ .                       (6.A8) 
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occ. (I) occ. (II) vir. (I) vir. (II) occ. (I) vir. (I) occ. (II) vir. (II)
occ. (I) ES EX CTPLX(I) CTPLX(I)
occ. (II) EX ES CTPLX(II) CTPLX(II)
vir. (I) CTPLX(I) CTPLX(II) ES 0
vir. (II) CTPLX(I) CTPLX(II) 0 ES
occ. (I) ES NR
vir. (I) NR ES

occ. (II) ES NR
vir. (II) NR ES

Molecular orbital Nuclear orbital

0

0
0

0
 

 

Figure 6.A1. Reduced spaces of the Fock matrix for the KM energy decomposition in the NOMO scheme. Basis of the Fock matrices are 

occupied and virtual orbitals of fragments I and II, similar to the RVS-SCF method shown in Figure 6.1.
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Table 6.A1. Interaction energy components of the KM analysis at  

NOMO/MP2 optimized geometries (in kcal/mol). 

 KM
ESE  KM

EXE  KM
CTPLXE  KM

RESE  

HOX···OH2     

X = H –8.194 5.781 –2.119 0.407 

X = D –8.013 5.665 –2.030 0.380 

Δ 0.180 –0.116 0.089 –0.027 

HOX···NH3     

X = H –11.503 9.697 –4.145 0.849 

X = D –11.214 9.462 –3.957 0.789 

Δ 0.290 –0.236 0.136 –0.032 

H2CNX···OH2     

X = H –4.432 2.942 –0.951 0.165 

X = D –4.362 2.899 –0.925 0.158 

Δ 0.070 –0.043 0.026 –0.007 

H2CNX···NH3     

X = H -6.424 5.550 –2.066 0.328 

X = D -6.242 5.406 –1.992 0.319 

Δ 0.182 –0.144 0.074 –0.009 

H3CX···OH2     

X = H –0.745 0.778 –0.265 0.047 

X = D –0.688 0.741 –0.252 0.045 

Δ 0.057 –0.036 0.012 –0.002 

H3CX···NH3     

X = H –1.003 1.137 –0.398 0.054 

X = D –0.925 1.078 –0.378 0.051 

Δ 0.078 –0.059 0.020 –0.003 

* Changes from X = H to D are denoted as Δ.
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Energy components of the KM analysis are shown in Table 6.A1. Here, the CP 

correction is applied to the calculation of KM
EXE  and KM

EXE . KM
ESE  is equivalent to RVS

ESE  

by definition, and KM
EXE  is close in value to KM

EXE . KM
CTPLXE  is slightly more negative 

than the sum of RVS
PLE  and RVS

CTE . Energy component shifts are summarized in Table 

6.A2. In the process of geometry (a) to (b), KM
ESE∆  is the dominant component that 

approximately contributes to the destabilization of intermolecular interaction although 
KM
CTPLXE∆  exceeds the sum of RVS

PLE∆  and RVS
CTE∆  in Table 6.3. In the process of 

geometry (b) to (c), KM
CTPLXE∆  is less negative than KM

ESE∆  though KM
CTPLXE∆  exceeds 

the sum of RVS
PLE∆  and RVS

CTE∆  in Table 6.4. Thus, the KM analysis was found to give 

the same conclusion as the RVS-SCF method with respect to the interpretation of the 

GIE in the hydrogen bond. 
 
 

Table 6.A2. Energy component shifts of the KM analysis (in cal/mol). 

 
KM
ESE∆  KM

EXE∆  KM
CTPLXE∆  KM

RESE∆  

Geometry (a) to (b)     
HOX···OH2 62.3  58.8  31.8  –14.5  

HOX···NH3 70.3  117.3  51.7  –27.8  

H2CNX···OH2 52.4  –16.4  19.1  –5.6  

H2CNX···NH3 91.2  0.4  26.1  1.2  

H3CX···OH2 44.6  –14.1  7.1  –1.6  

H3CX···NH3 52.1  –11.0  8.4  –1.8  

Geometry (b) to (c)     
HOX···OH2 117.9  –174.9  56.9  –12.2  

HOX···NH3 219.5  –353.0  136.4  –31.9  

H2CNX···OH2 17.9  –26.9  6.9  –1.4  

H2CNX···NH3 90.8  –144.4  48.0  –10.6  

H3CX···OH2 12.1  –22.3  5.1  –0.9  

H3CX···NH3 25.9  –47.6  12.0  –1.5  
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Chapter 7 
Investigation of Geometric Isotope Effect in Dihydrogen Bond 
 

7.1. Introduction 
 

A new type of hydrogen bond named dihydrogen bond has been actively studied 

from experimental point of view since 2000s [1,2]. Dihydrogen-bonded systems possess 

A−H+δ···-δH−B, where A designates more electronegative atoms than hydrogen and B 

designates less electronegative ones. Typically, nitrogen and oxygen are selected as A 

and boron, transition metals, and alkali metals are as B. As shown by the polarization δ, 

H−B acts as a proton acceptor and A as a proton donor. This completely differs from a 

typical behavior of conventional hydrogen-bonded systems in terms of the fact that the 

negatively charged H accepts a proton. 

Although a number of ab initio quantum chemical calculations [3-5] on the 

dihydrogen bond have been carried out, they do not consider nuclear quantum effects. 

In addition to the approach based on the path-integral molecular dynamic simulation [6], 

it is fruitful to adopt the NOMO method [7-20], which simultaneously determines 

nuclear and electronic .wavefunctions quantum-mechanically. Using analytic energy 

gradients in the HF calculation of the NOMO theory [16], geometric isotope effects by 

substituting H···H with D···D or T···T are examined to elucidate how quantum effect 

affects bond distances. 
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7.2. Theoretical aspects 
 

In this section, the analytic energy gradients of the NOMO/HF energy are 

formulated. The total Hamiltonian for nuclei and electrons is given by 

 

∑∑∑∑∑
<<

+−+∇−∇−=
QP PQ

QP

Pp pP

P

qp pqP
P

Pp
p r

ZZ
r
Z

rm
H

,

22
NOMO/HF

1)(
2

1)(
2
1ˆ xx .    (7.1) 

 

Here, the first and the second terms are electronic and nuclear kinetic operators, 

respectively. The other terms represent two-particle interactions. Note that the 

summation of p and q runs over electrons, and P and Q runs over nuclei. The 

NOMO/HF equations can be derived when the total HF .wavefunction 0Φ  is 

constructed by antisymmetric (or symmetric) products of the NOs and MOs. The 

NOMO/HF equation is derived by the usual variational technique. As a result, the 

NOMO/HF energy is described by, 

 

∑∑ +=
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μ, ν, λ, and σ represent nuclear or electronic basis functions. Eq. (7.5) consists of the 

elements of electronic and nuclear density matrices given by Eqs. (7.3) and (7.4), 

respectively. 

The analytic energy gradient for the NOMO/HF method with respect to a center 

X  of a basis function is formulated by, 
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Here, µνS  is overlap matrix between the μth and νth basis sets. 

 

7.3. Computational details 

 

This chapter examines the isotope effect in dihydrogen-bonded systems, 

NH4
+···BeH2, LiH···C2H2, and BH3···HF as shown in Figure 7.1: namely, Ha and Hb are 

substituted by deuterium or tritium. Since the isotope effect is normally caused by the 

nuclear motion such as zero-point vibration, which is the largest nuclear quantum effect 

in energy, at least Ha and Hb should be treated quantum-mechanically. For this purpose, 

the NOMO/HF calculations were performed in this chapter. In the NOMO calculations, 

the nuclei Ha, Hb and their isotope substitutions were treated as nuclear orbitals and the 
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others were classically treated as point charges. Strictly, the present calculations 

correspond to the semi-quantal (or semi-classical) approach. One of the main reasons 

for the usage of this approach is that the quantum effects of the heavier atoms are 

negligibly small. Another reason is that the many-body effect, in particular, 

electron-nucleus correlation, becomes stronger as the heavier atoms are treated. If the 

fully quantal approach is adopted, the accuracy of the NOMO/HF calculations should 

deteriorate. As a comparison, the conventional MO/HF calculations were carried out as 

well. 

The 6-311++G(d,p) set [21,22] was adopted as the EBFs. (5s5p5d) primitive 

Gaussian functions were used for the NBFs, of which the exponents were determined by 

the even-tempered scheme [8,23]. 

Geometry optimizations, which determine the positions of classical nuclei and the 

orbital centers of the NBFs, were performed by using the analytical energy gradient 

method in the NOMO theory as described in section 7.2. The averaged positions of 

quantal nuclei were evaluated as expectation values of nuclear position operator as 

follows:  

 

n
0

n
0000

ˆˆ ΦΦ=ΦΦ= RRR .                                       (7.7) 

 

The NOMO/HF calculations and geometry optimizations were performed by 

modifying the GAMESS program package [24]. In the geometry optimizations, Hessian 

was numerically calculated using the BFGS method [25-28]. 
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Figure 7.1. Geometries of NH4
+···BeH2, LiH···C2H2, and BH3···HF. 
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7.4. Results and discussion 
 

First, bond distances of H3NX+···XBeH (X = H, D, and T) were evaluated by the 

NOMO/HF method as well as the conventional MO/HF method. The results are 

summarized in Tables 7.1-7.3. Here, Xa, Xb, Hc, and Hd correspond to the labels 

described in Figure 7.1. 

Since the bond distances calculated by the MO/HF method correspond to the 

equilibrium distances, reflecting potential minima, the values are the same for X = H, D, 

and T. In other words, the values correspond to the classical limit of isotope 

substitutions: that is, nuclear mass mp → ∞. On the other hand, the bond distances 

calculated by the NOMO/HF method reflect the quantum effect of two hydrogen atoms, 

namely, the zero-point vibration. Therefore, the difference given by 

 

( ) ( )MO/HFNOMO/HFΔ RRR −=                                     (7.8) 

 

corresponds to the vibrational averaging shift, which originates from the nuclear 

quantum effect and the anharmonicity. In Table 7.1, the values of ΔR are given in 

parentheses. 

As is well-known in the conventional MO method, the evaluations of equilibrium 

distances are strongly affected by many-body effect, i.e. electron correlation. On the 

other hand, important factors for computing averaged distances are not only many-body 

effect but also vibrational averaging. The present chapter adopted the energy gradient 

technique at the NOMO/HF level as the first step. Thus, the many-body effect is not 

included in the present calculations. The NOMO/HF method can effectively take the 

vibrational averaging into account. Suppose that the many-body effect cancels out, the 

difference ΔR should be suitable in discussing the vibrational averaging, namely, the 

GIE. 
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Table 7.1. Bond distances (Å) of H3NX+···XBeH by the NOMO/HF and MO/HF methods. 

Bond 
NOMO/HF 

MO/HF 
X = H X = D X = T 

R(N-Xa) 1.0492  (0.0280) 1.0406  (0.0193) 1.0368  (0.0156) 1.0212  
R(Xa-Xb) 1.7260  (–0.0187) 1.7316  (–0.0131) 1.7342  (–0.0105) 1.7447  
R(Xb-Be) 1.3790  (0.0276) 1.3709  (0.0195) 1.3674  (0.0159) 1.3514  
R(Hc-N) 1.0103  (–0.0003) 1.0104  (–0.0002) 1.0104  (–0.0001) 1.0105  
R(Be-Hc) 1.3164  (–0.0004) 1.3166  (–0.0003) 1.3166  (–0.0002) 1.3169  

* Vibrational averaging shifts defined by Eq. (7.8) are shown in parentheses. 

 

As shown in Table 7.1, the absolute values of ΔR decrease for H3NX+···XBeH as 

a heavier isotope is treated, that is, H → D → T. The shifts are small in the N−H c and 

Be−Hd bonds because these atoms are treated classically. ΔR decrease in the N−X a and 

Xb−Be bonds for the heavier isotope substitutions. It is natural to interpret that the 

negative shifts are brought by the anharmonicity of the N−X a and Xb−Be potential 

curves. On the other hand, ΔR of the Xa−Xb bond increase as the heavier isotope is 

treated. It can be called an inverse isotope effect in the sense that the isotope effect 

shortens bond distances although normal isotope effect stretches bond distances.  

The potential energy curve of the Ha−Hb bond, which was calculated by the 

MO/HF method fixing the other geometric parameters, has a normal shape involving the 

anharmonicity [29]. Thus, the inverse isotope effect is not the primary effect. It can be 

speculated as follows: The heavier isotope substitution primarily brings about the 

smaller polarization of the N−X a and Xb−Be bonds, as seen in the shrinkage of these 

bonds. The smaller polarization secondarily leads to weakening the dihydrogen bond 

between Xa−Xb. 

Let us focus on bond distances of LiX···XC2H and H2BX···XF (X = H, D, and T). 

The distances of both complexes are shown in Tables 7.2 and 7.3, respectively. Here, the 

labels correspond to the description in Figure 7.1. The differences ΔR corresponding to 

the vibrational averaging shifts are given in parentheses. 
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Table 7.2. Bond distances (Å) of LiX···XC2H by the NOMO/HF and MO/HF methods. 

Bond 
NOMO/HF 

MO/HF 
X = H X = D X = T 

R(Li-Xa) 1.6327  (0.0285) 1.6243  (0.0201) 1.6206  (0.0163) 1.6043  
R(Xa-Xb) 2.2266  (–0.0240) 2.2324  (–0.0183) 2.2350  (–0.0157) 2.2507  
R(Xb-Ca) 1.0856  (0.0232) 1.0785  (0.0161) 1.0754  (0.0130) 1.0624  
R(Ca-Cb) 1.1859  (0.0008) 1.1857  (0.0006) 1.1856  (0.0005) 1.1851  
R(Cb-Hc) 1.0555  (0.0001) 1.0555  (0.0000) 1.0555  (0.0000) 1.0555  

* Vibrational averaging shifts are shown in parentheses. 

 

Table 7.3. Bond distances (Å) of H2BX···XF by the NOMO/HF and MO/HF methods. 

Bond 
NOMO/HF 

MO/HF 
X = H X = D X = T 

R(B-Xa) 1.2172  (0.0259) 1.2095  (0.0182) 1.2061  (0.0148) 1.1913  
R(Xa-Xb) 2.2247  (–0.0336) 2.2319  (–0.0264) 2.2347  (–0.0236) 2.2583  
R(Xb-F) 0.9183  (0.0202) 0.9124  (0.0143) 0.9098  (0.0116) 0.8981  
R(Hc-B) 1.1863  (–0.0003) 1.1864  (–0.0002) 1.1864  (–0.0002) 1.1866  

* Vibrational averaging shifts are shown in parentheses. 

 

 

Generally, both systems exhibit a similar tendency of H3NX+···XBeH: The absolute 

values of ΔR decrease as a heavier isotope is treated, that is, H → D → T. Specifically, 

Li−Xa and Xb−Ca bonds in LiXa···XbC2H and B−X a and Xb−F bonds in H2BXa···XbF 

are shortened because of the anharmonicity and Xa−Xb bond in both systems are slightly 

stretched because of the secondary isotope effect, i.e., the inverse isotope effect. 

Figure 7.2 illustrates the vibrational averaging shifts ΔR directly related to Xa and 

Xb in the three dihydrogen-bonded systems. Absolute shifts of Xa−Xb are in the order of 

H2BX···XF, LiX···XC2H, and H3NX+···XBeH. ΔR decreases for heavier isotopes and 

seem to approach zero for a large nuclear mass. This is consistent with the previous 

discussion on the classical limit mp→ ∞. The gradients with respect to the isotope 

substitutions H → D  → T are positive for Xa−Xb and negative for the others, which 

correspond to inverse and normal isotope effects, respectively. 
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Figure 7.2. Vibrational averaging shifts ΔR in the dihydrogen-bonded systems, H3NX+··· XBeH, LiX···XC2H, and H2BX···XF, which are 

the results of the NOMO/HF and MO/HF calculations. 

)XN( a−∆R
)XX( ba ⋅⋅⋅∆R

Be)X( b −∆R

)XLi( a−∆R
)XX( ba ⋅⋅⋅∆R

)CX( ab −∆R

)XB( a−∆R
)XX( ba ⋅⋅⋅∆R

F)X( b −∆R



 

120 
 

7.5. Conclusion 
 

This chapter investigated geometric isotope effects of the dihydrogen bond by 

using the analytical energy gradients in the HF calculations of the NOMO theory. The 

optimized structures of H3NX+···XBeH, LiX···XC2H, and H2BX···XF for X = H, D, 

and T demonstrated that the X···X bond distances are correlated with the weight of X, 

namely, H···H distance is shorter than D···D and T···T. It indicated that heavier isotope 

substitution weakens the dihydorogen bond. The bond shortening of typical covalent 

bonds with respect to the isotope substitution of X was also confirmed. 
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General conclusion 
 

In Part I of this thesis, the author performed the theoretical extension and 

numerical assessment of the LRD method. In Chapter 2, the LRD method was extended 

to the SCF treatment. An efficient algorithm enabled us to compute the differentiation of 

atomic polarizabilities with respect to electron density. Although total energy and 

electronic distribution changed negligibly from those by the post-SCF approach, the 

analytical gradient based on the SCF treatment enabled the geometry optimization of 

dispersion-dominated complexes. In Chapter 3, the performance of the LRD method for 

open-shell systems was numerically assessed. Dispersion coefficients and atomic 

polarizabilities by the LRD method behaved reasonably in open-shell atoms and 

molecules. The results of open-shell van der Waals complexes and radical dimers 

showed the usefulness of the LC-BOP+LRD method for open-shell noncovalent 

interactions. In Chapter 4, the LRD method was extended to the excited-state 

calculation. The difference density matrix of TDDFT enabled state-specific dispersion 

correction. The LRD method combined with the LC-BOP functional accurately 

reproduced interaction energies of π-π*/n-π* excited molecular complexes and their 

shifts from the ground state. Furthermore, the LRD method improved the binding 

energy of aromatic excimers even though the exciton delocalization and charge-transfer 

interaction are dominant components of intermolecular attraction forces. 

The results of Part I broadened the applicability of the LRD method to various 

phenomena: for example, the geometry searching of molecular clusters, the prediction 

of intermolecular magnetic interaction, and the investigation of photochemistry of 

molecular aggregates. Another interesting application of the LRD method is the 

physical adsorption on metallic surfaces. Not only dispersion force but also other 

interactions such as charge transfer and orbital-orbital interaction can be important. 

Before the application to metallic systems, further numerical assessment is required. 

The implementation of the LRD method in the program package using the plane-wave 

basis may be helpful. Theoretical advance might be required because of large deviations 

of C6 coefficients of metal atoms as reported in Chapter 3. The local response 

approximation and the dispersion relation are expected to be improved. 
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In Part II, the isotope effect in noncovalent interactions was theoretically 

investigated using the NOMO theory, which is a WFT determining both electronic and 

nuclear .wavefunctions. In Chapter 6, the intermolecular GIE in the hydrogen bond was 

analyzed. First, the RVS-SCF method, which is an interaction energy decomposition 

method for conventional HF calculations, was extended to the NOMO framework. As a 

result of calculating the shift of energy components, the intramolecular bond shrinkage 

weakened the electrostatic interaction. On the other hand, the intermolecular bond 

elongation weakened the exchange-repulsion interaction to stabilize the total system. In 

Chapter 7, the GIE in the dihydrogen bond was investigated using the analytical energy 

gradient of the NOMO/HF energy. The averaged distance of proton and hydride 

increased with increasing nuclear mass. This tendency was contrary to the shrinkage of 

intramolecular covalent bonds. 

For the future, the NOMO method is expected to be applied for other noncovalent 

interactions. For example, according to the recent study on the physisorption of 

cyclohexane on Rh(111) surface, the deuteration of cyclohexane weakens the 

surface-molecule interaction by 8.1 kJ/mol. This value is significantly larger than the 

weakening of the hydrogen bond reported in Chapter 6. The NOMO method will be 

helpful for the interpretation of this remarkable isotope effect. 

The author hopes that the methodologies treated in this thesis will provide novel 

insights of various phenomena related to noncovalent interactions. 
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第 1 回日本化学会関東支部大会，1P-052，東京，2007 年 9 月． 

 

11. “NOMO 法による二水素結合の量子効果に関する理論的研究” 

五十幡康弘・塚本泰弘・今村穣・星野稔・中井浩巳 

第 1 回分子科学討論会，3P042，仙台，2007 年 9 月． 
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3. Awards 

 

1. Best Student Talk, 5th Asian Pacific Conference of Theoretical and Computational 

Chemistry, December 2011. 

 

2. 優秀ポスター賞，第 1 回日本化学会関東支部大会，2007 年 10 月． 


