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ABSTRACT. The aim of the present paper is the investigation of temporal instabilities and spatial localization 
due to the Lüders behavior, the Portevin–Le Chatelier effect and the shoulder or necking effect during uniaxial 
tension tests of aluminum-magnesium alloy. This paper presents the brief description of the test procedure and 
experimental results of carrying out research by the combined use of a servo-hydraulic biaxial test system 
Instron 8850 and a non-contact 3-D digital image correlation measurement system Vic-3D. The digital image 
correlation is a highly effective computer-vision-based technique, which provides estimation of the 
displacement and strain fields on specimen surface by matching the reference subsets in the undeformed image 
(before loading) with the target subsets in the deformed images (captured during test). The evolution of 
inhomogeneous axial strain and axial strain rate fields has been illustrated for each stage of material’s 
deformation. To estimate the kinematics of serrated or jerky flow due to the strain bands propagation, the strain 
versus time curves and strain diagrams are given here. The experimental results show the recurrence in the 
strain distribution leveling along the specimen gauge. The changing between the macroscopic localization of the 
plastic flow, namely the running of the Lüders and PLC bands and the recovery of strain field homogeneity, has 
been observed. 
  
KEYWORDS. Portevin–Le-Chatelier effect; Serrated plastic flow; Yield plateau; Aluminum-magnesium alloy; 
Digital Image Correlation. 
 
 
 
INTRODUCTION 
 

or projecting and numerical model’s development of structures should be taken into the account not only 
mechanical and strength characteristics of materials, but also its behavior singularity. There are a lot of studies 
concerning the deformation and fracture processes in materials, occurring irregularly on all scales of observation: 

micro-, meso- and macroscopic scales [1, 2]. Theoretical and experimental research of temporal instabilities and spatial 
localization during the tensile tests of different metals and alloys has been conducted for more than two hundred years all 
over the world [1–4]. The main types of macroscopic occurrences of the plastic deformation inhomogeneity are: the 
Lüders bands nucleation at the stage of the yield drop and plateau forming; an irregular plastic flow appearing either as the 
staircase phenomenon on the stress versus strain curves – the so-called Savart–Masson effect during force loading – or 
the serrated or jerky flow due to the Portevin–Le Chatelier (PLC) effect during kinematic loading [5–12]. Another 
widespread example of spatial inhomogeneity is the shoulder or necking effect at the postcritical deformation stage, which 
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manifests itself as local thinning of the specimen’s transverse [13]. Analysis of fundamental and current scientific literature 
has revealed the relevance of the issue despite its long history [14]. Furthermore, appearance of the advanced test 
equipment, high-effect measuring systems and high-accuracy facilities for carrying out basic and applied research caused a 
great increase of scientists’ concern focused on the aspects of the macroscopic localization of plastic flow, especially the 
local strain bands propagation, the influence of strain rate and temperature regimes, the chemical composition, specimen 
geometry, grain size and orientation, etc. on the occurrence of the PLC behavior [15–19]. 
In this work a technique based on the digital image correlation (DIC) method has been used for study of spatial-time 
inhomogeneity of serrated plastic flow Al-Mg alloy. The DIC is a highly effective non-contact computer-vision-based 
technique, which provides estimation of the displacement and strain fields on specimen surface by matching the reference 
subsets in the undeformed image (before loading) with the target subsets in the deformed images (captured during test) 
[20].   
This paper presents, in the first part, the brief description of the test procedure of carrying out experimental investigations 
by the combined use of a servo-hydraulic biaxial test system Instron 8850 and a non-contact 3-D digital image correlation 
measurement system Vic-3D [21]. The Vic-3D system can be used for problem solving of deformable solid mechanics: 
experimental investigation of non-uniform strain fields and analysis of failure conditions in bodies with concentrators of 
different geometry, research of inelastic material deformation processes in complex strain-stress conditions, study of 
displacement and strain fields evolution during crack initiation, damage accumulation and material failure, etс. In the 
following, the representative load (P, kN) versus displacement (u, mm) curve observed during tensile tests on an Al-Mg 
alloy sheet specimens is shown. Then, a detailed description of the Lüders bands, the PLC bands initiation and 
propagation, the correspondence between the deformation bands and the serrations on the P–u curves is given. The 
macroscopic localization of axial strain due to the necking effect at the post-critical deformation stage is illustrated as well. 
In conclusion, the recurrence in the strain distribution leveling along the specimen gauge is shown. The change between 
the macroscopic localization of the plastic flow, namely the running of the Lüders and PLC bands and the recovery of 
strain field homogeneity, has been observed. 
 
 
EXPERIMENTAL PROCEDURE 
 

he material used for experimental investigations of the spatial-time inhomogeneities and effects of localized plastic 
strain bands’ propagation is an aluminum-magnesium alloy (GOST 4784-97; 2.2% Mg, 0.6% Mn, 0.4% Fe, 
0.4%Si). The research program included tests on uniaxial tension of the flat dog-bone tensile specimens (Fig. 1) 

with the geometrical parameters shown in Tab. 1. The samples were made in accordance with the Russian Standard 
GOST 1497-84 «Metals. Test Methods on Tension».  
 

 
Figure 1: The sketch of the flat dog-bone tensile specimens (GOST 1497-84). 

 
All mechanical tests on uniaxial tension were performed in a servo-hydraulic biaxial test system Instron 8850 with 
constant loading rate in the range of 0.5 to 10.0 mm/min throughout the experiment at room temperature. The Instron 
8850 is intended for static tests on tension, torsion, compression, flexure and combined tests on tension-torsion with the 
axial force capacity up to ±100 kN, the torque capacity up to ±1000 Nm and fatigue tests with various wave shapes and 
frequency up to 30 Hz; the loading rate from 0.1 mm/min up to 240 mm/s. 
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Designation L l B b a r 

Size, mm 120.0 50.0 22.0 12.0 2.0 5.0 
 

Table 1: The geometrical parameters of the flat dog-bone specimens of Al-Mg alloy for tests on uniaxial tension. 
 

The registration of strain fields’ evolution was conducted by the non-contact 3-D digital image correlation measurement 
system Vic-3D with the recording rate of 15 images per second and DCP cameras resolution of 4.0 Mp. It is the multi-
camera system which can be used for problem solving of deformable solid mechanics: experimental investigation of non-
uniform strain fields and analysis of failure conditions in bodies with concentrators of different geometry, research of 
inelastic material deformation processes in complex strain-stress conditions, study of displacement and strain fields 
propagation during crack initiation, damage accumulation and material failure, etc.  
 

 
 

Figure 2: Experimental setup for uniaxial tension of Al-Mg specimens. 
 

The procedure of the uniaxial tension loading experiment with the measuring of surface deformations includes several 
steps: preparation of specimen’s surfaces by coating with white and black spray paint to generate random pattern; 
attaching the specimen to the hydraulic fixtures with flat specimen platens; calibration of the stereovision system with the 
set of target grids; synchronization of the imaging and loading data by using the image acquisition system Vic-Snap and a 
data collector. All analyses were performed by the software Vic-3D with a subset size of 19×19 pixels2 and with a step size 
of 4 pixels between subset centers. Data extraction through image analysis was carried out by using the NSSD criterion 
(normalized sum of squared difference). The displacement data was converted into strain values by using the Lagrangian 
strain tensor. 
 
 
RESULTS 
 

ig. 3 shows the representative load-displacement curve of uniaxial tension test on the flat dog-bone tensile 
specimen with a displacement rate of 5.0 mm/min, which corresponds to an average strain rate of 0.1 min-1.  The 
curve includes the following stages: the linear elastic stage; the stage of yield drop and plateau forming; the 

extended stage of material’s hardening; and the post-critical deformation stage. It is important to note that there are a 
great number of local drops of load or “serrations” on the load versus displacement curves called the Portevin–Le 
Chatelier effect (PLC) [9].  
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Figure 3: The load-displacement curve of the uniaxial tension of the dog-bone Al-Mg specimen. 
 
 

Elastic Deformation Stage 
To estimate the kinematics and irregularity of plastic flow during uniaxial tensile tests of Al-Mg alloy sheet, the axial strain 

fields ( yy ) and the strain rate fields ( yy ) have been determined on the specimens surfaces. Fig. 4 contains the singled 

out elasto-plastic deformation stage of the P–u curve (Fig. 3) for the detailed description of the material behavior, 
especially during the Lüders band nucleation. Consequently, the stage of yield drop and yield plateau forming is under 
observation. 
 

 
 

Figure 4: The initial stage of the load-displacement curve of the uniaxial tension of the dog-bone Al-Mg specimen. 
 

At the initial stage, the process of material’s deformation was running uniformly up to the upper yield point ( В
Т ) or the 

yield drop (point I, Fig. 4). Fig. 5 presents the axial strain fields on the specimen’s surface for the load level of 2.45 kN. 
For visualization of the deformation field configuration, the two-dimensional and three-dimensional ( , ,yy x y ) 

representations are reported. It can be clearly seen that the mean value of the axial strain is fixed on the level of 0.18 %. 
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(a) (b)

 
(c)

Figure 5: Axial strain (a), (c) and axial strain rate (b) fields on the specimen’s surface (corresponding to point I, Fig. 4). 
 
 

Stage of Yield Plateau Forming 
The rapid jump of the axial strain level up to 0.93%yy   was registered on the specimen surface from the grip side at 

the moment of transition from the yield drop to the yield plateau or the lower yield point ( Н
Т ). At the same time, the 

load value declined to 2.40 kN. The experimental data depicted in Fig. 6 corresponds to point II of the load-displacement 
curve (Fig. 4). It is the moment when the front of the localized plastic strain nucleated and started to propagate along the 
specimen gauge. According to the scientific literature, this is the well-known example of the unstable plastic flow of the 
material, the so-called Lüders behavior [1, 2, 4, 14]. The strain rate at the top of the front swiftly increased to 

2.66% /yy s  .  

 
 

(a) (b)

 
(c)

Figure 6: Axial strain (a), (c) and axial strain rate (b) fields on the specimen’s surface (corresponding to point II, Fig. 4). 
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(a) (b)

 
(c)

Figure 7: Axial strain (a), (c) and axial strain rate (b) fields on the specimen’s surface (corresponding to point III, Fig. 4). 
 

When the front reached the opposite side of the specimen, the configuration of the axial strain fields became almost 
homogeneous (Fig. 8). It is important to note that in the region where the front of the localized strain had passed, the 
material’s deformation processes stopped until the next deformation stage - the material hardening stage.  
 

(a) (b)

 
(c)

Figure 8: Axial strain (a), (c) and axial strain rate (b) fields on the specimen’s surface (corresponding to point IV, Fig. 4). 
 
To conduct numerical analysis and show regularities in the Lüders band motion, the diagrams of axial strain and the axial 
strain rate were calculated along the central line of specimen (in the line of loading). The curves I IVt t , shown in Fig. 9, 
correspond to points I–VI of the P–u curve (Fig. 4). The velocity of the strain band propagation was about 7.7 mm/s or 
462 mm/min and remained quite stable during the whole stage of the yield plateau forming. It is known that during the 
Lüders band motion the slope of the load-displacement curve is approximately zero, in other words the load remained at 
the level of 2.4 kN. The macroscopic increase of specimen was provided by the localized deformation in the region of the 
strain band.  
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(a)

 
(b)

Figure 9: Diagrams of axial strain (a) and the axial strain rate (b) for the stage of the yield plateau forming (corresponding to points I–
IV, Fig. 4). 
 
To estimate the inhomogeneity caused by strain band propagation, the following values have been calculated:  max

yy  — 

a maximum value of local axial strain; av
yy  — an average value of axial strain determined by using the complementary 

module of the Vic-3D system’s software ‘virtual extensometer’; max
yy  — a maximum value of local axial strain rate; and 

yy  — a macroscopic axial strain rate (Tab. 2). The ‘virtual extensometer’ works similarly to a mounted extensometer, 

except the former does not contact and damage a specimen surface as the latter. With the help of the ‘virtual 
extensometer’ it is possible to simulate the use of several ‘extensometers’ on the same specimen. Also it is used after test 
at the step of experimental data post-processing. During the running of the localized deformation band (the time period 

II IVt t ) the local axial strain rate stayed in the range of 140.0 to 160.0 %/min while the macroscopic axial strain rate was 
only 10.0 %/min.  
 

Time max
yy , % av

yy , % max
yy , %/s yy , %/s 

It  0.25 0.18 0.54 0.17 

IIt  0.86 0.23 2.64 0.17 

IIIt  1.49 0.73 2.31 0.17 

IVt  1.49 1.29 2.55 0.17 
 

Table 2: Values of strain and strain rate calculated for points I – IV on the load-displacement curve. 
 
Material Hardening Stage 
With further increase in load, the PLC phenomenon characterized by serrations in the load-displacement curve due to the 
repeated initiation and propagation of localized plastic strain bands along the specimen during tensile test is observed. 
Under kinematic loading the serrations appeared as repeated oscillations of the applied stress. To study the PLC behavior, 
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interrelation between numerous serrations and the strain band distribution has been performed. The change in 
configuration of axial strain fields (Fig. 10, a) and axial strain rate fields (Fig. 10, b) caused by distribution of the particular 
PLC band is illustrated as follows. The time gap ( t ) between captured pictures was 0.3 second.  
 

(a) (b)
 

Figure 10:  Evolution of axial strain (a) and axial strain rate fields (b) due to propagation of the PLC band during the time period 

1 6t t . 
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Figure 11: The PLC behavior characterized by serrations in the load-displacement curve. 
 
The results of the experiments indicated that jerky flow in the tensile Al-Mg specimen happened by interchange of 
continuous propagation of a single band and stochastic nucleation of bands (Fig. 11). The evolution of deformation fields 
during the time period 1 6t t  corresponding to the flat region in the curve, the slope of the load-displacement curve is 
insignificant (Fig. 3). From the side of the top grip, the localized plastic strain band nucleated and started to run toward 
the bottom grip. The angle between the specimen axis and the strain band was approximately 59° [8].    
The PLC band passed lengthwise the specimen surface with constant rate of about 20.7 mm/s or 1242.0 mm/min (Fig. 
12). The diagrams of strain and strain rate were extracted along the specimen axis corresponding to the time period 

1 6t t . Similarly to the Lüders band propagation, the material actively deformed only in the region of the localized strain 
band, at the PLC band front.    
 

 
(a) 

 
(b) 

Figure 12: Diagrams of axial strain (a) and the axial strain rate (b) during the time period 1 6t t . 

http://www.gruppofrattura.it
http://dx.medra.org/10.3221/IGF-ESIS.27.10&auth=true


 

T.V. Tretiakova et alii, Frattura ed Integrità Strutturale, 27 (2014) 83-97; DOI: 10.3221/IGF-ESIS.27.10                                                             
 

92 
 

(a) (b)

Figure 13: Evolution of axial strain (a) and axial strain rate fields (b) due to nucleation of the PLC bands during the time period 

7 12t t . 
 

As clearly shown in Tab. 3, the local axial strain rate is about 80.0 %/min whereas the macroscopic strain rate is 
10.0 %/min. The material’s deformation in the area of the localized plastic strain band happens 8 times faster than the 
specimen deformation.  
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Time max
yy , % av

yy , % max
yy , %/s yy , %/s 

1t  1.98 1.73 0.52 0.17 

2t  2.01 1.76 1.51 0.17 

3t  2.09 1.81 1.36 0.17 

4t  2.16 1.86 1.29 0.17 

5t  2.17 1.91 1.37 0.17 

6t  2.20 1.96 1.23 0.17 
 

Table 3: Values of strain and strain rate calculated for the time period 1 6t t . 

 
When the strain band reached the opposite side of the sample, the stochastic nucleation of localized plastic strain bands 
has been observed on the specimen surface during the time period 7 12t t , as mentioned above (Fig. 13). The time gap 
( t ) between captured pictures was 0.3 second. The angle between the specimen axis and the strain bands repeatedly 
changed in the range of ±59°.    
It is necessary to point out that in the region where the previous band passed, material deformation stopped; thus, 
specimen elongation took place due to the deformation of peripheral regions of gauge length (close to the grips) (Fig. 14). 
Besides, it is clearly seen that the plastic deformation was happening by jerks (Fig. 14, b). As shown in Tab. 4, the local 
axial strain rate changed in the range of 65.0 to 105.0 %/min.  
 

 
(a)

 
(b)

Figure 14: Diagrams of axial strain (a) and the axial strain rate (b) during the time period 6 7 12,t t t . 

 
The time moment 12t  corresponds to the recovery of the strain field homogeneity on the specimen surface. The 
recurrence in the strain distribution leveling along the specimen gauge was observed during the material hardening stage. 
To estimate the regularities of this behavior, the next PLC band’s nucleation and propagation has been studied as well. 
Therefore, Fig. 15 represents the continuous propagation of the single strain band (the time period 1 7t t  ). The time gap 
( t ) between captured pictures was 0.3 second. When the strain band passed the specimen gauge, the stochastic initiation 
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of the bands was observed repeatedly. Further, the changing between the macroscopic localization of the plastic flow and 
the recovery of strain field homogeneity was registered.  
 

Time max
yy , % av

yy , % max
yy , %/s yy , %/s 

7t  2.22 1.98 1.09 0.17 

8t  2.25 2.02 1.17 0.17 

9t  2.33 2.07 1.74 0.17 

10t  2.40 2.10 1.13 0.17 

11t  2.41 2.12 1.45 0.17 

12t 2.51 2.15 1.13 0.17 
 

Table 4: Values of strain and strain rate calculated for the time period 7 12t t . 

 
 

 
(a)

 
(b)

Figure 15: Diagrams of axial strain (a) and the axial strain rate (b) during the time period 12t , 1 7t t  . 

 
Material Softening Stage 
It is well established that during tensile test of plastic materials the ‘shoulder’ or ‘necking’ effect at the material softening 
stage or the co-called postcritical deformation stage, which manifests itself as local thinning of the specimen cross-section. 
When the strain bands’ propagation had faded away, the increase of plastic strain localization occurred in the central part 
of the specimen. For example, the evolution of the axial strain rate fields at the stage of the ‘necking effect’ initiation is 
illustrated in Fig. 16, the load level of 4.75 kN. The time gap ( t ) between captured pictures was 0.15 second. The 
moment of the angle change between the specimen axis and the strain band is shown. 
To analyse the spatial inhomogeneity at the stage of the necking effect evolution, the diagrams of axial strain are calculated 

for the time period * *
1 6t t . The time gap ( t ) between captured pictures was 1.57 second. As shown in Tab. 5, value of 

the local axial strain rate rapidly increased with the increase of the localized plastic strain value in the central part of 
specimen gauge.  
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(a) (b) 

Figure 16: Evolution of axial strain rate fields during the initiation of the ‘necking effect’ (a) and the picture of the fractured flat dog-
bone tensile specimen (b). 
 
 

 
Figure 17: Diagrams of axial strain at the post-critical stage (the time period * *

1 6t t ). 

 

Time max
yy , % av

yy , % max
yy , %/s yy , %/s 

*
1t  36.49 22.93 2.76 0.17 
*
2t  40.65 23.19 2.76 0.17 
*
3t  45.45 23.45 3.70 0.17 
*
4t  51.19 23.71 4.40 0.17 
*
5t  57.93 23.99 4.65 0.17 
*
6t  64.79 24.26 4.80 0.17 

 

Table 5: Values of strain and strain rate calculated for the time period * *
1 6t t . 

 
The macroscopic failure of the specimen was at the load level of 4.26 kN, the average value of axial strain of 24.43 % and 
the local axial strain of 70.44 %. The picture of the flat dog-bone specimen with the crack after tension test is represented 
in Fig. 16 (b).  
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CONCLUSIONS 
 

he present investigation has shown that the non-contact 3-D digital image correlation measurement system Vic-
3D is a highly effective computer-vision-based technique, which provides estimation of the temporal instabilities 
and spatial localization due to the Lüders behavior, the Portevin–Le Chatelier effect and the shoulder or necking 

effect during uniaxial tension tests of aluminum-magnesium alloy. The evolution of inhomogeneous axial strain and axial 
strain rate fields has been illustrated for each stage of material’s deformation. To estimate the kinematics of serrated or 
jerky flow due to the strain bands propagation, the strain versus time curves and strain diagrams are given here. The 
experimental results show the recurrence in the strain distribution leveling along the specimen gauge. The changing 
between the macroscopic localization of the plastic flow, namely the running of the Lüders and PLC bands and the 
recovery of strain field homogeneity, has been observed. The results provide an important data base for the development 
of the theoretical and numerical description of the material behavior in conditions of the serrated flow appearance, 
especially of the mechanisms and regularities of the Lüders and PLC bands nucleation and propagation.  
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NOMENCLATURE 
 
L  Total length of the specimen (mm)
l  Gauge length of the specimen (mm)
B  Total width of the specimen (mm)
b  Width of the specimen (mm) 

a  Thickness of the specimen (mm) 
r  Transition radius from the grip part to the gauge length of the specimen (mm) 
P  Load (kN) 
u  Displacement (mm) 

yy  Axial strain (%) 
max
yy  Maximum value of local axial strain (%) 
av
yy  Average value of axial strain (%) 
max
yy  Maximum value of local axial strain rate (%/s) 

yy  Macroscopic axial strain rate (%/s) 
В
Т  Upper yield point (MPa) 
Н
Т  Lower yield point (MPa) 
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