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Summary 
The malaria parasite P. falciparum invades human red blood cells (RBCs). During 

invasion a compartment surrounding the parasite, the so-called parasitophorous vacuole 

(PV), is formed. The parasite resides and develops within the PV, which protects the 

parasite from the host cell cytosol. During its intraerythrocytic growth the parasite 

exports a vast number of proteins to the host cell in order to maintain its survival within 

the RBC. Proteins, which are directed to the host cell cytosol and host cell membrane, 

respectively, therefore are challenged to cross the parasite plasma membrane, the PV 

and the parasitophorous vacuolar membrane (PVM). However, the secretion and export 

mechanisms of many parasite proteins are still not understood. 

 

The current study focuses on the discovery of an alternative secretory pathway to the 

ER/Golgi route in the malaria parasite P. falciparum in infected RBCs. Two proteins 

appeared to be promising candidates of an alternative secretory pathway: the PfADP-

ribosylation factor 1 (ARF1) and the Pfadenylate kinase 2 (AK2). Both proteins 

contained a N-myristoylation site at their N-terminus, which is indicative for N-

myristoylation. N-myristoylation is a co-translational modification of a protein, whereby 

a fatty acid (myristate) is irreversibly attached to the glycine residue at the N-terminus 

of a protein via the PfN-myristoyltransferase (NMT). A preceding proteomic analysis of 

the parasitophorous vacuole and a reporter construct study proposed for both PfARF1  

(determined by a proteomic study) and PfAK2 (determined by a reporter construct 

study) PV localization although both proteins lacked a signal peptide. That’s why it was 

hypothesized whether or not N-myristoylation would drive protein secretion across the 

parasite plasma membrane (PPM). The subcellular localization of the PfARF1/GFP 

parasites and the PfAK2/GFP parasites, respectively, were analyzed via epifluorescence 

microscopy and biochemical methods. In parallel, another batch of reporter constructs 

were generated and analyzed, where the N-myristoylation site of PfARF1 (this study) 

and PfAK2 (Ma et al., 2012), respectively, was removed (PfARF1G2A/GFP and 

PfAK2G2A/GFP). Live cell imaging showed that the fusion protein ARF1/GFP was 

localized as dot-like structures in the parasite. In contrast, the phenotype of the fusion 
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protein of the PfARF1G2A/GFP parasites showed an evenly distributed signal in the 

parasite cytosol. Further analysis of the subcellular localization of the PfARF1 strongly 

supports its localization to compartments of the early secretory pathway of the parasite, 

but no localization in the PV. In contrast, the fusion protein PfAK2/GFP localized to a 

ring-like structure around the parasite indicating PV localization. The PfAK2G2A/GFP 

parasites showed a cytosolic localization of the fusion protein (Ma et al., 2012). 

Biochemical analyses revaled that the fusion protein PfAK2/GFP was secreted into the 

PV when the N-myristoylation site was present. Furthermore, it could be shown that the 

N-terminus of the PfAK2 protein is sufficient for parasite plasma membrane targeting, 

stable membrane anchoring and subsequent protein translocation across the PPM. A 

possible role of the early secretory pathway in PfAK2 trafficking and the folding state 

of PfAK2 prior to translocation across the PPM was also examined. However, the exact 

mechanism how PfAK2 is translocated across the PPM still remains elusive. 
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Zusammenfassung 
Der Malariaerreger P. falciparum befällt rote Blutkörperchen im Menschen. Bei der 

Invasion der Erythrozyten formt der Parasit eine sogenannte parasitophore Vakuole 

(PV), die ihn dann umgibt. Der Parasit verbleibt und entwickelt sich in dieser PV, die 

ihn vom Zytosol der Wirtszelle schützt. Während des intraerythrozytären Wachstums 

exportiert der Parasit eine hohe Anzahl seiner eigenen Proteine in die Wirtszelle um 

sein Überleben in der Wirtszelle zu sichern. Proteine, die entweder in das Zytosol oder 

der Membran der Wirtszelle exportiert werden, müssen zunächst die Plasmamembran 

des Parasiten (PPM), die PV und die anliegende parasitophore Vakuolenmembran 

(PVM) passieren. Der Sekretions- und Exportmechanismus vieler Parasitenproteine ist 

jedoch noch immer unbekannt.  

	
  
Ziel dieser Arbeit ist es alternative Sekretionswege zum klassichen ER/Golgi 

Sekretionsweg im Malariaparasiten P. falciparum aufzudecken. Zwei Proteine schienen 

geeignete Kandidaten eines alternativen Sekretionsweges zu sein: der PfADP-

Ribosylierungsfaktor 1 (ARF1) und die PfAdenylat kinase 2 (AK2). Beide Proteine 

besitzen eine N-myristoylierungsstelle am N-terminus was auf eine N-myristoylierung 

des jeweiligen Proteins hindeutet. N-myristoylierung ist eine ko-translationale 

Modifizierung eines Proteins, wobei eine Fettsäure (Myristat) irreversibel am Glycinrest 

am N-terminus eines Proteins durch die PfN-myristoyltransferase (NMT) angehängt 

wird. Eine vorangegangene Proteomuntersuchung der parasitophoren Vakuole und eine 

Untersuchung mit Reporterkonstrukten ergab für PfARF1 (Proteomuntersuchung) und 

PfAK2 (Analyse der Reporterkonstrukte) eine PV Lokalisation, obwohl beiden ein 

Signalpeptid fehlt. Deshalb wurde die Hypothese aufgestellt, dass N-myristoylierung 

womöglich an der Proteinsekretion über die Plasmamembran des Parasiten beteiligt sein 

könnte. Demnach wurde die subzelluläre Lokalisation der PfARF1/GFP Parasiten  und 

der PfAK2/GFP Parasiten mithilfe von Epifluoreszenzmikroskopie und biochemischen 

Methoden untersucht. Parallel dazu wurden Reporterkonstrukte generiert und analyisert, 

bei denen die N-myristoylierungsstelle von PfARF1 (diese Arbeit) und  PfAK2 (Ma et 

al., 2012) entfernt wurden (PfARF1G2A/GFP und PfAK2G2A/GFP). Beim live cell 

imaging war das Fusionsprotein ARF1/GFP als punktförmige Struktur im Parasiten
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erkennbar. Der Phänotyp des Fusionsproteins der PfARF1G2A/GFP Parasiten dagegen 

zeigte ein zytosolisches Signal im Parasiten. Weitere Analysen im Hinblick auf die 

subzelluläre Lokalisation des PfARF1 deuten auf eine Lokalisation dieses Proteins mit 

Kompartimenten des frühen Sekretionsweges des Parasiten hin jedoch auf keine 

Lokalisation in der PV. Im Gegensatz dazu war das Fusionsprotein PfAK2/GFP als 

ringförmige Struktur sichtbar was auf eine PV Lokalisation hindeutet. Die 

PfAK2G2A/GFP Parasiten zeigten hingegen eine zytosolische Lokalisation des 

Fusionsproteins (Ma et al., 2012). Biochemische Untersuchungen konnten zeigen, dass 

das Fusionsprotein PfAK2/GFP in Anwesenheit der N-myristoylierungsstelle in die PV 

sekretiert wurde. Des Weiteren konnte gezeigt werden, dass der N-terminus von PfAK2 

das Protein zur Plasmamembran führt und eine stabile Membranverankerung hervorruft 

bevor die Translokation über die Plasmamembran des Parasiten erfolgt. Eine mögliche 

Rolle des frühen Sekretionsweges im Transport von PfAK2 und der Faltungszustand 

von PfAK2 vor der Translokation über die Parasitenplasmamembran wurden ebenfalls 

untersucht. Dennoch ist der genaue Mechanismus der Proteintranslokation über die 

Plasmamembran des Parasiten nicht bekannt. 
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1 Introduction 

1.1 Malaria  
Since ancient times a disease today referred to as malaria ('mal' 'aria' meaning 'bad air') 

has been noted to have a detrimental effect on people’s life quality, impeding 

population growth and affecting settling patterns throughout human history (Carter and 

Mendis, 2002; Sallares et al., 2004). Today malaria is recognized as one of the largest, 

life-threatening, infectious diseases in the world, caused by a eukaryotic parasite of the 

genus Plasmodium and transmitted by a bite of an infected female Anopheles mosquito. 

Although the causative agent of this disease was identified in the late 19th century 

malaria continues to be a major health problem in tropical and subtropical parts of the 

world, where billions of people are still exposed to this deadly disease (Fig. 1) (WHO 

2011; cdc). In 2010 approximately 216 million clinical cases were reported by the 

World Health Organisation with 80 % occurring in African regions alone. Also 90 % of 

the 655 000 cases of deaths by malaria were registered in Africa (WHO 2011). In 

malaria-endemic regions pregnant women and children under the age of five (86 % of 

malaria deaths) succumb to this lethal disease more frequently than other groups of 

people as stated by the WHO in 2011. Countries, in which malaria is prevalent are also 

the ones suffering from a high poverty rate and a low economic growth making malaria 

prevention control and treatment more difficult (Gallup and Sachs, 2001; Sachs and 

Malaney, 2002). 	
  

 

 

 

 

 

 

 

 

Figure 1.1 Malaria distribution 
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To date five different species of the genus Plasmodium – P. vivax, P. ovale,  

P. malariae, P. falciparum and P. knowlesi - are known to cause malaria in humans. 

While P. vivax and P. ovale, the causative agents of tertian malaria, and P. malariae, the 

causative agent of quartian malaria, are less likely to lead to severe forms of malaria 

outbreaks in humans, P. falciparum infections are mostly responsible for the high 

morbidity and mortality rates in endemic regions of Africa (cdc). Only recently  

P. knowlesi, a Plasmodium species known to infect macaque monkeys with malaria, 

was discovered to cause malaria in humans as well. (Singh et al., 2004; Cox-Singh et 

al., 2008). 

 

Since the early 20th century many projects emerged to fight this deadly disease 

involving the use of the synthetic insecticide dichlorodiphenyl-trichloroethane (DDT) 

to prevent transmission by mosquitoes and the chemical compound chloroquine, known 

to inhibit the development of the blood-stage parasite. However, the increasing 

resistance in the mosquitoes and the Plasmodium-species, respectively, and the adverse 

effect of DDT on the environment made these attempts over the period of time 

unfruitful (cdc). Nevertheless, many malaria eradication programmes, especially in the 

early 21st century, are determined to reduce the high malaria casualties by the use of 

bed-nets treated with insecticide, artemisin-based combination therapies, etc. In fact the 

combination of these various methods has reduced the number of malaria cases of 

deaths by around 33 % since 2000 as registered in African regions, which are monitored 

by the WHO (WHO 2011). However, the number of malaria infections is still high and 

strains resistant to the available current anti-malarial drugs are already occurring. That 

is why continuous study on the biology of the parasite, to eventually develop an 

efficient vaccine and developments of new drugs against malaria, still needs to be 

continued. 

 

1.2 The complex life-cycle of Plasmodium falciparum 
Plasmodium falciparum has a very complex life-cycle involving mosquitoes as vectors 

and humans as hosts for its survival. The transmission of P. falciparum into a human 

occurs when an infected female Anopheles mosquito bites a human for a blood-meal 
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thereby injecting saliva into the human. The saliva of an infected mosquito contains 

asexual forms of the parasite, the so-called sporozoites, which after entering the 

circulatory blood system travel to and invade liver cells for invasion (exo-erythrocytic 

stage). After entering liver cells the sporozoites multiply asexually and re-differentiate 

into thousands of merozoites in a process referred to as schizogony (Shortt, 1951). 

These thousands of merozoites are initially released in so-called merosomes (detached 

membrane-bound structures from the host cell) into the blood stream to escape the 

immune system (Sturm et al., 2006). Once the merozoites are completely released into 

the blood stream they target and invade red blood cells (erythrocytic stage). Following 

invasion a single merozoite multiplies into 20-30 daughter cells in an asexual process 

which takes about 48 hours: Initially the merozoite (now called the ring-stage) increases 

in size (0-12 hours post invasion) resulting into the more mature trophozoite form (12-

30 hpi) before the nucleus of the trophozoite form divides into many nuclei forming the 

so-called multinucleated schizont (30-48 hpi). After division of the multinucleated 

schizont into many individual merozoite forms the red blood cell ruptures releasing the 

newly formed parasites into the circulatory system to invade new erythrocytes (Wenk 

and Renz, 2003; Cowman and Crabb, 2006). However, a late trophozoite-stage 

occasionally also differentiates into a sexual form of the parasite, the gametocytes, 

which remain in the erythrocyte. Only when the erythrocytes containing these 

gametocytes are taken up via a blood-meal by a mosquito do they transform into 

gametes - male and female - in the gut of the mosquito. Fusion of the male and female 

gametes leads to a diploid zygote, the motile ookinete, which forms eventually an 

oocyst in the midgut of the mosquito. There the haploid sporozoite-forms are produced 

after many rounds of mitotic division (Wenk and Renz, 2003; Beier et al., 1998; 

Matuschewski, 2006). Eventually, these asexual sporozoites travel through the mosquito 

body to the salivary glands of the mosquito, where they can enter the host, once the 

infested mosquito bites a human re-starting the cycle (Fig. 1.2) (Matuschewski, 2006). 
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The first symptoms caused by P. falciparum infection emerge after a week or even 

longer, when the infected individual suffers from headache, fever or chills. This is 

usually a result of the intraerythrocytic growth of the parasite, which is followed by 

rupture of the erythrocyte and the release of new merozoites. If the P. falciparum 

infection is not treated within the next 24 hours, it can lead to severe illness due to rapid 

spreading of infected red blood cells in the circulatory system. This affects several 

organs, for example the nervous system (cerebral malaria) and can lead to metabolic 

acidosis and anemia as a consequence of hemolysis, resulting in coma and death of the 

infected person (Miller et al., 2002; reviewed in WHO 2013).  

Figure 1.2 Life-cycle of P. falciparum 

A bite of a female Anopheles mosquito leads to the transmission of the malaria parasite into the 

human. Initial asexual multiplication takes place within the liver cells, before the infective 

merozoite form invades and multiplies within the red blood cells. The gametocytes, the sexual 

forms of the parasite, are produced in the human; however, the sexual development of  

P. falciparum occurs in the midgut of the mosquito (according to Ménard, 2005). 	
  



1	
  	
  Introduction	
   5	
  

1.3 The intraerythrocytic stage 

1.3.1 P. falciparum-infection leads to extensive modification of the red blood cell  
	
  
Plasmodium belongs to the phylum Apicomplexa - a large and diverse group of obligate 

intracelluar parasitic protists – which has one feature in all of their invasive stages in 

common: the apical complex. The apical complex, containing three secretory organelles 

– the micronemes, the rhoptries and the dense granules – enables parasites like 

Plasmodium to actively invade their host cells distinguishing this group from other 

pathogens regarding their mode of invasion (Aikawa, 1971; Cowman and Crabb, 2006).  

Interestingly, the merozoites - the invasive forms of P. falciparum produced during 

infection in humans - choose to invade erythrocytes, terminally differentiated cells, 

which lack a nucleus, subcellular organelles and do not perform any lipid- and protein 

synthesis (Mohandas and Gallagher, 2008). To reside and asexually multiply within this 

kind of a host cell therefore demands extensive modifications of the erythrocyte by the 

parasite. Already the invasion process, which comprises 1) the initial binding of the 

parasite to the host cell, 2) its repositioning and 3) the formation of a tight junction with 

the host cell (Dvorak et al., 1975; Bannister and Dluzewski, 1990) accompanied by the 

discharge of various proteins from the secretory organelles (Kats et al., 2008; Dowse et 

al., 2008; Cowman and Crabb, 2006) leads to a disruption of the red blood cell 

membrane and also affecting its cytoskeletal protein composition (McPherson et al., 

1993; Roggwiller et al., 1996). However, the major alterations of the host cell takes 

place once the parasite has gained entry into the red blood cell and starts exporting a 

large number of its own proteins into the host cell cytosol and membrane (Maier et al., 

2009; Marti et al., 2005). One of the prominent protein, which is exported to the red 

blood cell membrane, is the so-called P. falciparum erythrocyte membrane protein 1 

(PfEMP1). PfEMP1 is a large protein of the size of 200-350 kDa and is responsible for 

antigenic variation. These proteins are the major cause of the pathogenicity of  

P. falciparum-infection due to their characteristics to adhere to receptors of the 

endothelium preventing destruction of infected red blood cells (RBCs) by the immune 

system (Su et al., 1995; Baruch et al., 1995). Their presentation on the surface of the 

RBC is supported by another kind of protein, the knob-associated histidine rich protein 

(KAHRP), which causes knob-like protrusions in the erythrocyte membrane (Culvenor 
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et al., 1987; Pologe et al., 1987; Trager et al., 1966; Crabb et al., 1997). The interaction 

between PfEMP1 proteins and KAHRP not only increases the chances of receptor 

binding and sequestration of infected cells under the flow conditions of the circulatory 

system (Crabb et al., 1997), but also leads to increased rigidity of the erythrocyte 

membrane (Glenister et al., 2002). Another key aspect in the survival of the parasite is 

the nutrient acquisition throughout its intraerythrocytic development. Therefore  

P. falciparum not only modifies host cell transporters for constitutive nutrient uptake, 

but was also found to create new permeability pathways (NPPs) in the membrane of the 

host cell (Kutner et al., 1985; Kirk, 2001).  

 

1.3.2 Novel structures and compartments in P. falciparum-infected red blood cell 

Apart from the already mentioned secretory organelles at the apical complex harbouring 

different lipids and proteins, which mainly play a role in the invasion process of the 

merozoite, other structures and compartments formed by P. falciparum during its 

intraerythrocytic development are also only found in the phylum Apicomplexa and in 

particular in Plasmodium (Fig. 1.3).  

An ultrastructural analysis of the infected RBC supported the long-standing notion of 

the existence of parasite produced membranous structures in the erythrocyte cytosol: the 

Maurer’s clefts. These thin structures are composed of an electron-dense coat with a 

translucent lumen most likely located in close proximity to the erythrocyte membrane, 

possibly supporting the trafficking of parasite proteins to the host cell membrane 

(Aikawa et al., 1986; Wickert and Krohne, 2007; Lanzer et al., 2006). Another set of 

membranous network also located in the red blood cytosol and found to play a role in 

nutrient acquisition is the so-called tubovesicular network (TVN) (Atkinson and 

Aikawa, 1990; Lauer et al., 1997). These tubular and vesicular membranous structures 

seem to be connected with the membrane of the parasitophorous vacuole (PV) (van Ooij 

et al., 2008), a compartment which is formed by the parasite during host cell invasion 

and which surrounds the parasite throughout its entire development inside the RBC 

(Lingelbach and Joiner, 1998). The PV is a compartment existing in some of the 

Apicomplexan parasites like Toxoplasma and Plasmodium and acts as a barrier between 

parasite and host cell cytosol. Although the PV itself is topologically different from the 



1	
  	
  Introduction	
   7	
  

parasite and the host cell, the parasitophorous vacuolar membrane (PVM) seems to 

consist of proteins and lipids of the host cell (Lauer et al., 2000; Murphy et al., 2004), 

but is also proposed to be of parasite origin (Bannister and Dluzewski, 1990), this still 

being a matter of debate. The cellular function of the PV is not fully understood, 

however, it is suggested to play a role in the protection of the parasite from detrimental 

substances of the host cell cytosol and enables nutrient uptake for parasite growth 

(Lingelbach and Joiner, 1998). According to two independent screening studies of 

parasite exported proteins to the host cell by Marti and colleagues and Hiller and 

colleagues more than 250 proteins were discovered to be secreted through the PVM 

(Marti et al., 2004; Hiller et al., 2004), many of them being responsible for the virulence 

of P. falciparum infection. However, a proteomic approach to study the PV content 

revealed not only a large number of proteases and chaperones possibly playing a role in 

the lysis process during parasite release, but also revealed many proteins of unknown 

function. In general, the role of the PV can be attributed to a sorting compartment for 

distinguishing between resident PV proteins and proteins en route to the host cell, 

leaving the latter ones to pass through the PVM (Nyalwidhe and Lingelbach, 2006).  

 

	
  
	
  

Figure 1.3 Compartments of P. falciparum-infected red blood cell 

Left side: Trophozoite stage of P. falciparum-infected red blood cell displaying the nucleus, the ER, the 

Golgi-complex, the mitochondrion (M), the food (digestive) vacuole (DV) and the apicoplast (A) within 

the parasite cytosol. The parasite is surrounded by the PV, from which the TVN is formed and found 

located inside the erythrocyte cytosol similar to the Maurer’s clefts (MCs). At the erythrocyte membrane 

knob-like protrusions are shown (K). Right side: Schizont-infected RBC with the apical organelles: 

rhoptries (R), micronemes (MN) and dense granules (D) (modified according to Deponte et al., 2012).  
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Apart from the PV two other compartments are also present in the parasite: the food 

vacuole and the apicoplast (apicomplexan plastid). The food vacuole is formed by a 

cytosomal system, membrane-enclosed structures of parasite origin, which take up 

hemoglobin in portion – hemoglobin makes up 95 % of the red blood cell cytosol- 

during parasite growth. Inside the food-vacuole hemoglobin is degraded, and heme is 

crystallized to the dark-pigment hemozoin (Francis et al., 1997). The apicoplast is a 

non-photosynthetic four-membrane-bound plastid located in the cytosol of the parasite 

and found to be crucial for the parasite’s survival. Its function is not fully understood 

but it seems to play a role in fatty acid, isoprenoid and heme synthesis (Waller and 

McFadden, 2005). Although Plasmodium contains some compartments characteristic 

only of Apicomplexan parasites, the following common eukaryotic compartments are 

also found in the parasite: Plasmodium falciparum has a nucleus harbouring a haploid 

genome (Gardner et al., 2002), a single mitochondrion containing its own, but highly 

reduced genome (Bender et al., 2003) and the common compartments of the secretory 

system found in all eukaryotic cells. These are the endoplasmic reticulum (ER) and an 

unstacked Golgi-complex. Both compartments, however, show some differences in their 

morphology to their counterparts in higher eukaryotes (Couffin et al., 1998; Van Wye et 

al., 1996). 

 

1.3.3 Protein secretion mechanisms in the P. falciparum-infected red blood cell  

Being a eukaryotic organism, protein secretion in P. falciparum via the early secretory 

pathway is most likely to resemble that of other eukaryotes. However, there are many 

exceptions to the rule since Plasmodium harbours compartments, which are missing in 

other eukaryotic cells and to which proteins are directed to. Before focusing on the 

protein secretion mechanism during the intraerythrocytic stage of P. falciparum the 

general model for the early secretory pathway - keeping in mind that there are many 

variations to the rule across eukaryotes - in eukaryotes is described: 

The early secretory pathway in eukaryotes: Early studies on intracellular protein 

trafficking in eukaryotes included morphological, genetic and biochemical analyses 

mainly on yeast in order to identify the components of the secretory membrane system 

and to understand the underlying molecular mechanisms of its regulation (Palade, 1975; 

Rothman, 1994). In brief: secretory protein synthesis begins in the cytosol at ribosomes, 
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which are associated with the endoplasmic reticulum (rough ER) - a large intracellular 

compartment spread throughout the cytoplasm, consisting of many membranous layers 

interconnected with each other and mainly specialized in protein- and lipid biosynthesis. 

The pre-proteins contain a N-terminal signal peptide (SP) of mostly 15-30 hydrophobic 

amino acids, which is produced during translation and is recognized and bound to a so-

called signal recognition particle (SRP). The SRP stops protein translation, then binds 

to the SRP-receptor in the ER membrane that directs the entire SRP-ribosome complex 

to a translocator residing in the ER membrane – the Sec61 complex, which is known to 

be highly conserved in bacteria and eukaryotic cells – where protein translation 

proceeds once the SRP/SRP-receptor is released. The proteins are co-translationally 

transferred across the ER membrane, where soluble proteins are fully released into the 

lumen of the ER after translation, whereas integral membrane proteins become 

embedded in the ER membrane. The signal peptide is cleaved off by a signal peptidase. 

Many of the soluble and integral membrane proteins either become resident ER proteins 

or are further trafficked to the plasma membrane or other compartments. The forward 

trafficking of these proteins is dependent on another compartment, the Golgi-complex, 

which consists of tubular membranous structures, divided into functionally distinct cis-, 

medial and trans-Golgi stacks. The proteins leave the ER once they are packaged into 

vesicles termed COPII-coated-vesicles. These vesicles then fuse with the cis-Golgi and 

progressively move through the medial- and trans-Golgi (anterograde transport) in a 

budding and fusion process, before they are released from the Golgi-complex to the cell 

surface or to other compartments inside the cell. During the vesicular transport through 

the Golgi-complex proteins are post-translationally modified by resident Golgi-enzymes 

specialized in performing different kinds of glycosylation reactions. Retrograde 

transport from the cis-Golgi towards the ER via COPI-coated vesicles occurs when ER 

resident proteins accidentally enter the anterograde secretion pathway. They are 

recognized via their XDEL ER-retrieval sequence by specialized receptors located at the 

cis-Golgi and are trafficked back to the ER (Fig. 1.4) (Blobel and Dobberstein, 1975a; 

Blobel and Dobberstein, 1975b; Palade, 1975; Rothman, 1994; Alberts et al., 2008). 
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Early secretory pathway in P. falciparum: Many different in vitro and in silico 

studies on the intraerythrocytic stage of P. falciparum revealed the existence of some 

components playing a role in the early secretory pathway. These are for example the 

gene homologue of the mammalian α-subunit of the Sec61 translocon PfSec61 (Couffin 

et al., 1998) and the lumenal proteins of the ER PfERC2 and PfBIP (Kumar et al., 1991; 

La Greca et al., 1997) supporting the existence of an ER in the parasite cytosol. The 

existence of a Golgi apparatus was initially doubted since typical Golgi stacks could not 

Figure 1.4 Simplified model of the classical secretory pathway of the eukaryotic cell 

Protein translation begins in the cytosol at ribosomes associated with the ER. Proteins destined to be secreted 

to the extracellular space contain a signal peptide (SP) at their N-terminus, which is recognized and bound to a 

signal recognition particle (SRP). Translation stops until the SRP-ribosome complex is bound to a SRP-

receptor, which then trafficks the entire SRP-ribosome complex to a translocon in the ER-membrane (Sec 61 

complex), where the protein is co-translationally translocated across the ER membrane. This protein is then 

trafficked via vesicles generated from the ER to the Golgi-complex and is released from the Golgi-complex 

via vesicles into the extracellular space. The trafficking of proteins from the ER towards the plasma 

membrane is referred to as anterograde trafficking. However, ER-proteins, which accidentally escape the ER, 

are transferred back from the Golgi to the ER, in a process called retrograde transport.  
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be found by electron microscopy (Aikawa, 1988) and parasite proteins were not 

subjected to any kind of N-linked glycosylation (Dieckmann-Schuppert et al., 1992). 

However, other studies revealed the existence of typical Golgi proteins like the ERD2-

receptor, which binds to proteins with a KDEL-retrievel sequence (Elmendorf and 

Haldar, 1993), the GTPase Rab 6 (van Wye et al., 1996) and the Golgi re-assembly 

stacking proteins 1 and 2 (Struck et al., 2005; Struck et al., 2008a; Struck et al., 2008b) 

indicating the existence of a possible rudimentary Golgi-complex. Furthermore, the 

gene of the ADP-ribosylation factor 1, a small GTPase important for vesicular 

trafficking in the early secretory pathway, was isolated, expressed and characterized 

from P. falciparum and more recently its crystal structure was also determined (Stafford 

et al., 1996; Cook et al., 2010). These findings are in accordance with an in silico 

analysis by Gardner and colleagues in 2002. They identified potential homologue gene 

candidates of proteins involved in the early secretory pathway like for example the SRP, 

a signal peptidase and proteins involved in the budding and fusion of secretory vesicles 

(Gardner et al., 2002). Furthermore, studies with the fungal metabolite Brefeldin A 

(BFA), a known inhibitor of the secretory pathway, was shown to inhibit the secretion 

of a number of parasite proteins (Benting et al., 1994; Hinterberg et al., 1994; 

Baumgartner et al., 2001; Lippincott-Schwartz, 1989).  

Many of the proteins secreted from P. falciparum not only contain the 'classical' signal 

sequence found in other eukaryotic organisms, but also revealed a modified version of 

the SP: a prolonged stretch of hydrophobic amino acids of up to 80 amino acids and 

recessed from the N-terminus of the protein (Lingelbach, 1993; Cooke et al., 2004). In 

addition, it could be shown that proteins containing the classical signal sequence are 

directed towards the parasite plasma membrane (PPM), the PV and the PVM, 

respectively, while those containing the recessed signal are found transported beyond 

the PVM en route to the host cell (Albano et al., 1999; Lingelbach, 1993). Here, too, 

many exceptions to the rules exist, like in the case of STEVOR (Przyborski et al., 2005) 

and the histidine-rich protein 2 (HRP2) (Howard et al., 1986), both containing a 

classical signal sequence, but are found exported to the host cell. Further trafficking of 

exported proteins, after entering the classical secretory pathway, is postulated to occur 

in a vesicle-mediated process (two-step model): vesicles containing the exported 

proteins fuse with the PPM and release the content into the lumen of the PV, before the 



1	
  	
  Introduction	
   12	
  

protein is trafficked to the host cell across the PVM (Ansorge et  al., 1996; Charpian 

and Przyborski, 2008).  

Protein secretion beyond the PVM: Compared to protein secretion in higher 

eukaryotes, in which many secretory proteins are subsequently secreted to the 

extracellular milieu via exocytosis by just crossing one membrane - the plasma 

membrane of the respective cell - many malarial proteins are found and predicted to be 

exported beyond the PVM (Marti et al., 2004; Hiller et al., 2004). This calls for 

additional targeting signals in the amino acid sequence of these proteins. Indeed a 

conserved motif consisting of five amino acids (RxLxE/Q/D), referred to as 

Plasmodium export element (PEXEL) or host targeting signal (HT), was found in two 

independent in silico and reporter construct studies. They are present at the N-terminus 

of the exported proteins in close proximity to the recessed signal peptide (~ 20 amino 

acids downstream). These studies enabled the identification of a large number of 

proteins – soluble and transmembrane proteins -  coded in the parasite genome and 

containing the PEXEL motif (~ 8 % of proteins), which are ever since collectively 

called the 'exportome' of P. falciparum (Marti et al., 2004; Hiller et al., 2004). 

Furthermore, the predicted genes of the malarial 'exportome', containing the PEXEL 

motif are found to be localized at subtelomeric regions of the parasite genome, where 

proteins responsible for host cell modifications are normally found (Maier et al., 2008). 

Interestingly, more recent studies revealed that the first three residues of the PEXEL 

motif (RxL) are actually cleaved during the early secretory pathway in the ER by an 

aspartic protease, which has been identified as Plasmepsin V, followed by N-acetylation 

of the cleaved protein (Chang et al., 2008; Boddey et al., 2010; Russo et al., 2010). 

Although different models for further trafficking towards the PV involving the 

remaining PEXEL residues and Plasmepsin V dependent export, respectively, have 

been proposed, none of it has been verified (Boddey et al., 2010; Crabb et al., 2010). 

Another model, although heavily debated, suggests the role of 

Phosphatidylinositol(3,4,5)-triphosphate (PIP3) in PEXEL-protein delivery to the PV 

(Bhattacharjee et al., 2012). Whatever the mode of protein secretion in the late secretory 

pathway (Golgi è PPM è PVM) might be, it seems like that exported proteins are 

first secreted into the PV before being directly translocated across the PVM in an ATP-

dependent process as shown in two independent localization studies with exported 
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proteins (Ansorge et al., 1996; Wickham et al., 2001). This corresponds with the earlier 

mentioned two-step model in protein secretion (Charpian and Przyborski, 2008) 

assigning the PV as a transit compartment. This finding coincides with experiments 

using the dihydrofolate reductase system (DHFR) showing that exported proteins need 

to be unfolded before passing the PVM (Gehde et al., 2009). This observation strongly 

suggest the existence of a translocation system in the PVM. In fact, an ATP-driven 

translocon, composed of five different Plasmodium proteins, was found in the 

membrane of the PV and appears to be a possible candidate responsible for protein 

translocation of exported proteins across the PVM. Since PEXEL proteins seem to be 

unique to the Apicomplexan Plasmodium the translocon termed Plasmodium translocon 

of exported proteins (PTEX) also consists of parasite proteins restricted to the 

Plasmodium genome (de Koning-Ward et al., 2009; Bullen et al., 2012). However, this 

transport model system only seems to fit for the export of soluble parasite protein, since 

proteins containing a 'transmembrane domain' would rather end up in the parasite 

plasma membrane, when secreted via the secretory pathway. One solution to this 

dilemma would be the way these proteins are synthesized meaning that they are initially 

synthesized as 'soluble' proteins, which take up their membrane topology only after 

entering their destination in the host cell. This hypothetical model actually coincides 

with solubility studies of different transmembrane containing exported proteins 

(Papakrivos et al., 2005; Przyborski et al., 2005; Saridaki et al., 2009).  

However, some well-known exported proteins of P. falciparum lack the typical PEXEL 

motif and they are generally termed PEXEL-negative exported proteins (PNEPs). These 

are for example the skeletal-binding protein 1 (SBP1), the membrane-associated 

histidine-rich protein 1 (MAHRP1) and the ring exported proteins 1 and 2 (REX 1 and 

2). These proteins are resident proteins of the Maurer’s clefts, which not only lack a 

distinguishable PEXEL motif, but also a typical signal sequence for ER entry. However, 

localization and solubility studies revealed the existence of a single transmembrane 

region in each of these proteins - except for REX 1, which contains a recessed signal 

peptide – which appears to be responsible for entering the secretory pathway. This is 

furthermore supported by studies revealing their sensitivity to BFA (Saridaki et al., 

2009; Spycher et al., 2008; Dixon et al., 2008; Haase et al., 2009). However, the further 

transport of these proteins, which pass the PV and PVM until reaching their final 
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destination in the host cell cytosol, still remains enigmatic. The transport process 

possibly involves other, not yet identified atypical signals/regions in the amino acid 

sequence of these proteins and possibly also other kind of translocons in the PVM. 

Since the number of exported PNEPs in the malaria genome might be greater than 

known to date, the chance to discover alternative secretory pathways in  

P. falciparum is quite high.  

 

1.4 Unconventional protein secretion 

As described in the previous chapter, secretory proteins are released into the 

extracellular milieu via the conserved secretory pathway universal to almost all 

eukaryotic organisms: the 'classical secretory pathway' involving the ER/Golgi-

complex. In contrast, many studies in the past years have revealed the secretion of a 

small number of proteins, which lack a signal peptide to enter the classical secretory 

pathway and were not affected in their secretion to the cell surface in the presence of 

BFA (Rabouille et al., 2012). Thus, these proteins were found to be secreted in a mostly 

ER-to-Golgi independent manner into the extracellular space (Fig. 1.5). That is why this 

mode of secretion is referred to as 'unconventional protein secretion' and is used by a 

small number of proteins involved in cell survival, angiogenesis and in inflammatory 

responses (Nickel, 2005).  

In general, two mechanisms for unconventional protein secretion were discovered: 

vesicular pathways versus non-vesicular pathways. A well-studied candidate of the non-

vesicular pathway is the Fibroblast growth factor 2 (FGF2) – a protein involved in 

angiogenesis – which was found to be directly translocated across the plasma membrane 

(Schäfer et al., 2004). The translocation process requires the interaction with 

phosphoinositide phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2) - a component 

located at the inner leaflet of the plasma membrane - and heparan sulfates found at the 

outer leaflet of the plasma membrane (Temmerman et al., 2008; Zehe et al., 2006). 

Another candidate secreted in a non-vesicular mechanism is for example the yeast 

mating factor α, which is translocated via the membranous ABC transporter Step6 

(McGrath and Varshavsky, 1989). Other unconventional secretion pathways involve 

vesicle-mediated secretion, as in the case of interleukin 1β (IL1β) (Rubartelli et al., 
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1990). Although the mechanism of the processing pattern of IL1β and the components 

involved are mostly understood (Franchi et al., 2009), the nature of the vesicles 

responsible for trafficking IL1β to the plasma membrane is still not clear. One model 

proposes the secretion of IL1β via secretory lysosmes, a compartment assigned to have 

a dual function: degradation of proteins, but also storage of secretory proteins before 

regulated release to the extracellular space upon external stimuli (Andrei et al., 1999; 

Griffiths, 1996). However, two further mechanisms were also suggested to be involved 

in the secretion of IL1β: microvesicle shedding at the external side of the plasma 

membrane (MacKenzie et al., 2001) and the formation of multivesicular bodies (MVB), 

respectively, which are vesicles formed inside endosomes and are afterwards released as 

vesicles into the extracellular space, then referred to as 'exosomes' (Stoorvogel et al., 

2002). Just recently, other studies discovered an unusual vesicle-mediated secretion 

pattern of the acyl-CoA-binding protein A (AcbA) from Dictyostelium discoideum 

involving proteins responsible for the formation of autophagosomes. The 

autophagosomes then fuse with the plasma membrane to release AcbA (Cabral et al., 

2010; Duran et al., 2010; Manjithaya et al., 2010). In addition, some studies imply the 

role of endosomes, which form multivesicular bodies to fuse with the plasma 

membrane. This hypothesis is supported by the findings of proteins, which are 

characteristic of this pathway (Duran et al., 2010; Manjithaya et al., 2010). Furthermore, 

the yeast ortholog to the mammalian GRASP1 is proposed to play a role in secretion of 

AcbA as well (Kinseth et al., 2007). Last but not least, a pathway termed the 'Golgi 

bypass' is used by transmembrane proteins. These proteins initially enter the classical 

secretory pathway and are eventually released at the plasma membrane, but on their 

way avoid the Golgi-complex. This for instance is characterized by their insensitivity to 

BFA (Grieve and Rabouille, 2011).  

The appearance of the increasing number of unconventionally secreted proteins and the 

different mechanisms involved raises the question, why some proteins are differently 

secreted from the cell, compared to the huge majority of secretory proteins, which uses 

the classical ER-to-Golgi pathway. So far, two hypotheses to address this question exist: 

First, it is assumed that in the case of FGF2, this protein, while trafficked through the 

classical secretory pathway, would bind at a very early stage to glycoproteins, leading to 

aggregation of the protein and non-secretion of FGF2. The second model, however, 
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proposes the secretion of a non-functional protein due to posttranslational modification, 

caused while trafficking via the ER/Golgi pathway. Indeed, the latter model was 

supported by experiments with FGF2. A signal peptide was fused to FGF2 directing this 

protein into the classical secretory pathway, however, the protein was not secreted into 

the extracellular space in its functional form (Nickel, 2010; Wegehingel et al., 2008). 

Since many of the proteins involved in unconventional protein secretion seem to be 

biomedically relevant, they appear to be suitable drug targets, if their mode of secretion 

and the components involved would be totally independent of the ER-to-Golgi route.  

 

 

Interestingly, mechanisms of unconventional protein secretion also appear in protozoan 

parasites as described for the Leishmania hydrophilic acylated surface protein B 

(HASPB) (Denny et al., 2000) and the Calcium-dependent protein kinase 1 (CDPK1) 

of P. falciparum (Möskes et al., 2004). Both proteins show the same mode of 

unconventional protein secretion: dual acylation of the N-terminus of the respective 

Figure 1.5 Unconventional protein secretion mechanisms 

Four different types of unconventional protein secretion mechanisms are illustrated. Type1: Vesicular 

trafficking via lysosomal secretion. Type 2: Non-vesicular trafficking via plasma membrane resident 

transporters. Type 3: Vesicular trafficking via formation of multivesicular bodies. Type 4: Membrane 

blebbing is the microvesicle shedding at the external side of the plasma membrane. Missing in this 

illustration: Golgi-bypass pathway (according to Nickel, 2005). 
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proteins, which mediates export to the extracellular surface and the parasitophorous 

vacuole, respectively. The role of acylation-dependent export is discussed in the next 

chapter.   

 

1.5 Role of fatty acid acylation of proteins in plasma membrane 
binding 

1.5.1 Protein N-myristoylation 
	
  
N-myristoylation is a co- and post-translational modification of proteins found in all 

eukaryotic cells. Proteins are characterized as N-myristoylated, when a 14-carbon 

saturated fatty acid (myristate) is irreversibly attached to the N-terminal glycine residue 

of the target protein. The glycine residue at the N-terminus of a protein sequence is a 

prerequisite for N-Myristoylation to take place. At first, methionine - the initiating 

amino acid in the protein sequence 'Met-Gly-...' - is removed by a methionine 

aminopeptidase during translation, leaving the glycine residue at the 2nd position of the 

N-terminus exposed. The myristate from Myristoyl-CoA is then linked to the glycine 

residue via an amide bond by the N-myristoyltransferase (NMT) (Fig. 1.6). NMT is an 

enzyme present in all eukaryotic cells and was discovered to be essential for the 

viability of different eukaryotic organisms (Resh, 1999; Wright et al., 2010). 

Importantly, NMT protein substrates require in addition to the glycine residue at the N-

terminus specific amino acids downstream of the protein sequence – serine or threonine 

are usually found at position 6 and lysine and arginine, respectively, are found at 

position 7/8 - to be recognized by the NMT (Resh, 1999). However, more recent studies 

showed that N-myristoylation also posttranslationally takes place in cells undergoing 

apoptosis involving caspase cleavage (Zha et al., 2000).   
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N-myristoylation is commonly found in proteins involved in signal transduction (protein 

kinases and phosphatases), Gα proteins, calcium-binding proteins, ADP-ribosylation 

factors (ARF) and also MARCKS (membrane and cytoskeletal-bound proteins) as 

known for mostly animal and fungal cells. Most of these proteins play a role in 

signalling processes and in the case of the ARFs in vesicular shuttling revealing their 

functional importance in these organisms (Resh, 2006). Furthermore, bioinformatic 

studies, using prediction models, revealed that about 0.5 % of the proteome in 

eukaryotes appear to be substrates of the NMT (Maurer-Stroh et al., 2002). It appears 

that apart from viral proteins, bacterial proteins can also be subjected to  

N-myristoylation by the N-myristoyltransferase of their respective eukaryotic host cell 

(Maurer-Stroh and Eisenhaber, 2004). The myristoyl moiety enables a reversible 

binding of the protein to the plasma membrane and to other intracellular membranes in 

a eukaryotic cell, respectively. However, due to the low binding energy of myristate to 

the phospholipids of a membrane (approximately 10-4 M Kd) a myristoylated protein 

cannot efficiently anchor to the plasma membrane (Peitzsch and McLaughlin, 1993). In 

order to achieve a sufficient binding to the phospholipid bilayer, a second signal within 

the amino acid sequence of the myristoylated protein is required. This hypothesis is 

referrred to as the 'two-step model'. The second signal can either be another fatty acid 

group like palmitate (16-carbon saturated fatty acid) or a polybasic cluster of amino 

acids, located in proximity to the N-myristoylation site. The binding of the respective 

protein to the membrane occurs when ten of the fourteen carbon atoms of the myristate 

insert into the phospholipid bilayer and the polybasic cluster of amino acids interacts 

with the acidic phospholipids of the cellular membrane (electrostatic interaction). The 

dual binding property induced by the myristate and the polybasic domain synergize 

leading to a stable anchoring of the protein to the membrane (Murray et al., 1997; 

Murray et al., 1998; Sigal et al., 1994; Buser et al., 1994). A similar mechanism to 

establish a strong membrane attachment is achieved by dual acylation of a protein with 

a myristate and a palmitate moiety (Resh, 1999), which will be discussed in more detail 

Figure 1.6 Co-translational N-myristoylation 

During translation the initiating methionine is removed by a methionine aminopeptidase (MetAP). Then 

the 14-carbon saturated fatty acid (myristate) is irreversibly attached to the glycine residue at the second 

position of the protein sequence via the Myristoyl-CoA by the N-myristoyltransferase (NMT) (according 

to Wright et al., 2010).   
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in the next section. Interestingly, the attachment of a myristate to a respective protein 

also plays a role in membrane targeting to the right target membrane (Murray et al., 

1998), although the mechanisms involved here are not yet understood. Further, the 

membrane anchoring of N-myristoylated proteins can be characterized as a dynamic 

process, since the myristate moiety on the respective protein switches between two 

different conformations: it is either exposed on the outside of the protein enabling 

membrane attachment, or it is segregated into a hydrophobic groove of the protein 

leading to detachment from the membrane. This mechanism known as the 'myristoyl 

switch' can be induced by e.g. a ligand or electrostatic interaction (Fig. 1.7) 

(McLaughlin and Aderem, 1995). A ligand induced myristoyl switch has been 

characterized for the ADP-ribosylation factor (ARF) proteins, which are regulated by 

the binding of GTP, which induces the exposure of the myristoyl moiety - initially 

located in a hydrophobic pocket in its GDP-bound form - and subsequent binding to the 

membrane (Amor et al., 1994). MARCKS proteins, on the other hand, are regulated by 

protein kinase C (PKC), which phosphorylates the stretch of the N-terminal polybasic 

serine residues - the second motif required for membrane binding in the two-step model 

– leading to an increased negative charge at the polybasic domain. This diminishes the 

electrostatic interaction with acidic phospholipids leading to the dissociation of the 

respective protein from the plasma membrane (Thelen et al., 1991).  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 1.7 Two-signal model of myristate-mediated protein binding to the membrane 

The low binding energy of the myristoyl-group on the protein promotes reversible binding to the 

membrane. A second signal is required for stable membrane anchoring: either a polybasic cluster of 

amino acids to interact with the negatively charged phospholipid groups of the membrane via 

electrostatic interaction or a second saturated fatty acid like palmitate. Blue circle (protein), red 

(myristate), pink (palmitate) (according to Wright et al., 2010).  
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1.5.2 Protein-Palmitoylation 

Similar to N-myristoylation protein palmitoylation is a lipid modification, whereby 

usually a 16-carbon saturated fatty acid is attached to a cysteine residue via a thioester 

bond. Compared to the irreversible attachment of myristate to a protein, palmitoylation 

was found to be a reversible modification (Linder and Deschenes, 2003). This is due to 

the labile thioester linkage between protein and palmitate. The dynamic feature of 

protein palmitoylation is regulated by palmitoylation and depalmitoylation in regard to 

the function and localization of the respective protein (Zacharias et al., 2002; 

Wedegaertner and Bourne, 1994). So far, two different classes of enzymes responsible 

for palmitoylation and de-palmitoylation have been discovered: Protein acyltransferases 

(PATs) catalyze palmitate transfer to the respective protein, while the protein 

acylthioesterases are in charge of removing palmitate from the protein (Resh et al., 

2006; Mitchell et al., 2006). Interestingly, no consensus sequence for palmitoylation 

exists except for the presence of the cysteine residue and in addition in vitro studies 

revealed a non-enzymatic addition of palmitate from palmitoyl-CoA to proteins (Bañó 

et al., 1998). However, proteins which are subjected to palmitoylation are usually 

peripherally attached membrane proteins or proteins containing a transmembrane 

domain. Proteins containing a transmembrane domain are usually palmitoylated at the 

junction between cytoplasm and membrane or at the C-terminus located in the 

cytoplasm. In contrast, the peripherally associated membrane proteins can be dually 

acylated or are just palmitoylated by adjacent cysteine residues. A cysteine residue at 

the N-terminus often exists in close proximity to a lipidation site like a preceding  

N-myristoylation site. Upon palmitoylation a protein becomes more hydrophobic, which 

leads to a strong protein-membrane anchoring (two-step model). Dually acylated 

proteins with palmitoylation and preceding N-myristoylation are found among Gα 

proteins and tyrosine kinases and frequently exhibit the motif 'Met-Gly-Cys' at their  

N-terminus (Smotrys and Linder, 2004; Nadolski and Linder, 2007). Mutational 

analyses revealed that substitution of either of the amino acids responsible for lipid 

modification leads to a decrease or even loss of the protein binding capacity to the 

plasma membrane (Resh, 1999). More intriguingly, some studies claim that these dually 

fatty acid acylated proteins are targeted to specific membrane regions of the plasma 

membrane, the so-called rafts. Rafts are microdomains in the plasma membrane, which 
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are enriched in cholesterol and sphingolipids. However, the mechanism responsible for 

this observation has not been verified to date (Smotrys and Linder, 2004). In summary, 

palmitoylation is an important feature of proteins in regard to protein-membrane 

attachment, trafficking of transmembrane proteins and regulation of intracellular 

signalling processes of many proteins (Linder and Deschenes, 2003). 

1.6 Acylated proteins as candidates of an alternative secretory 

pathway in P. falciparum? 

1.6.1 P. falciparum ADP-ribosylation factor 1 

Like other eukaroytic organisms, the malaria parasite Plasmodium falciparum also 

contains genes encoding the ADP-ribosylation factor (ARF), a small GTP binding 

protein, which plays a crucial role in vesicular trafficking (Stafford et al., 1996; Boman 

and Kahn, 1995). ARF proteins belong to the superfamily of Ras proteins – a small 

group of GTPases – and are involved in a number of cellular processes, like for example 

in vesicular biogenesis and trafficking processes of the secretory pathway (Boman and 

Kahn, 1995). To date six highly conserved members of the ARF protein family are 

known for mammalian cells (Kahn et al., 1991). However, so far, only one of the two 

genes encoding ARF proteins, the gene arf1, in P. falciparum, is isolated, expressed and 

characterized (Stafford et al., 1996) and structurally determined (Cook et al., 2010). One 

of the functions attributed to ARF proteins is their role in the COPI pathway (retrograde 

transport from cis-Golgi to the ER), where they recruit other coat proteins and initiate 

vesicle formation upon activation. Activation of the soluble GDP-bound ARF to the 

GTP-bound form, which is able to bind to the membrane is catalyzed by the guanine 

nucleotide exchange factors (GEFs). The attachment to the membrane occurs, when the 

N-myristoylation site at the N-terminus of the protein is exposed in the GTP bound 

conformation of ARF. However, once the GTP on the ARF protein is hydrolyzed to 

GDP by GTPase activating proteins (GAPs) ARF is released from the membrane and 

the myristoyl moiety is covered in a hydrophobic groove of the protein. The release of 

ARF from the vesicle also leads to the detachment of other coat proteins from the 

vesicle, whereby ARF functions as a trigger. The vesicle formation and cargo 
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trafficking in e.g. the anterograde pathway depends on the cycling of ARF between its 

soluble GDP-bound state and the membrane-associated GTP-bound state (Boman and 

Kahn, 1995; Kirchhausen, 2000).  

Although some components of the classical secretory pathway are gradually being 

identified within the parasite cytosol, some studies also report the export of these 

components and the presence of secretory vesicles in the host cell. These findings 

implicate the existence of a vesicle-mediated secretion pathway for some parasite 

proteins from the parasite cytosol to their host cell and host cell membrane, respectively 

(Trelka et al., 2000; Taraschi et al., 2001). Further studies, apart from 

electronmicroscopical evidence, supporting the model of a dual operating system in the 

parasite cytoplasm and the host cell cytosplasm, are missing. On the contrary, a new 

study with GFP reporter constructs proposed the localization of the components 

involved in the secretory pathway exclusively to the parasite cytosol (Adisa et al., 

2007). Another interesting aspect observed by Stafford and colleagues is that a high 

mRNA level of PfARF1 is reached during merozoite formation, shortly before a high 

level of msp1 mRNA – merozoite surface protein 1 (MSP1) is located on the merozoite 

surface - is expressed. They hypothesize a role of PfARF1 in MSP1 shuttling to the 

merozoite surface via the ER-to-Golgi pathway (Stafford et al., 1996). A different 

observation regarding the localization of ARF was made by a recent proteome analysis 

of the PV, where PfARF1 was found to be located in the PV of the parasite (Nyalwidhe 

et al., manuscript in preparation), this hypothesis, however, still needs to be reviewed. 

1.6.2 P. falciparum adenylate kinase (2) 
 
Adenylate kinases are ubiquitous enzymes, which play an important role in energy-

dependent and nucleotide signalling processes. This enzyme catalyzes the following 

magnesium dependent reversible reaction: ATP + AMP ⇔2 ADP maintaining the ratio 

between AMP and ATP in response to the cellular energy need. To date eight different 

isoforms of adenylate kinases have been discovered in mammalian cells showing 

distinct intracellular compartmentalization, a localization in different tissues and a 

developmentally regulated gene expression (Dzeja and Terzic, 2009). In contrast, two 

adenylate kinases (PfAK1 and PfAK2), a GTP:AMP phosphotransferase (PfGAK) and 

two adenylate kinase-like proteins (PfAKLP1 and PfAKLP2) have been characterized 
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in the malaria parasite P. falciparum to date (Ulschmid et al., 2004; Rahlfs et al., 2009; 

Ma et al., 2012). These findings reveal the need of the parasite for a high level of 

adenylate kinase activity to deal with the increased ATP-turnover rate due to the high 

energy consumption for example during invasion, but also for the biosynthesis of 

macromolecules. Indeed, infected erythrocytes compared to non-infected cells reveal an 

increased glucose uptake, a substrate of the glycolytic pathway, responsible for 

producing high amounts of ATP (Roth, 1990). Differences in the kinetic properties of 

adenylate kinases might be a result of the distinct subcellular localization and in case of 

the mammalian adenylate kinase isoenzymes also might be due to tissue-specificity. 

The mammalian AK1, for example, is mostly found in brain and muscle cells revealing 

its high activity in these cells and also in erythrocytes, whereas mammalian AK2 is 

predominantly found in the intramembrane space of the mitochondria in liver, kidney, 

heart and spleen. Mammalian AK3, however, is largely found in the mitochondrial 

matrix of the liver and the heart and is actually a GTP:AMP phosphotransferase 

showing a high substrate specificity to GTP rather than ATP (Khoo and Russell, 1972; 

Wilson et al., 1976; Tomasselli et al., 1979; Dzeja and Terzic, 2009). P. falciparum 

AK1 exhibits a higher substrate specificity (75 U/mg) compared to AK2 (10 U/mg), 

which might be a result of the distinct subcellular localization (Ulschmid et al., 2004). 

In fact, immunofluorescence analyses with reporter constructs revealed the localization 

of PfAK1, PfAKLP1 and PfAKLP2 in the parasite cytosol. The PfGAK, however, was 

assigned to the mitochondrion of the parasite being a possible homologue to the 

mammalian GAK. More intriguingly, the phenotype of PfAK2 was different, insofar, 

that the observed signal of the chimera was a ring-like structure around the parasite with 

a knob-like protrusion formed towards the PV and the host cell (Ma et al., 2012). The 

amino acid sequence of PfAK2 has a N-myristoylation site and studies on expressed 

recombinant PfAK2 and PfNMT revealed PfAK2 to be a substrate of  

PfNMT (Rahlfs et al., 2009). Further, the group of Becker could also show that 

substitution of the glycine residue by alanine at the N-terminus of PfAK2 changes the 

localization of adenylate kinase 2 to a rather cytosolic signal as observed for PfAK1 

(Ma et al., 2012). These results, taken together, identify PfAK2 as a N-myristoylated 

membrane-bound protein.  
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1.7 Objective 
	
  
Over the years many studies on the intraerythrocytic stage of the malaria parasite  

P. falciparum have already revealed a great amount of information on protein secretory 

pathways different from the ER/Golgi route as a result of the parasite’s development 

within the red blood cell. However, the secretory pathway of many parasite proteins, 

especially those involved in the pathogenesis, still remain obscure.  

 

This study focuses on the existence of alternative secretory pathways to the classical 

secretory pathway during the intraerythrocytic stage of P. falciparum. A preceding 

proteomic analysis of the parasitophorous vacuole revealed the secretion of parasite 

proteins into the PV, which lack any known signal sequence (Nyalwidhe et al, 

manuscript in preparation). A small percentage of the proteins identified in the PV 

contained a putative myristoylation site, including the P. falciparum ADP-ribosylation 

factor 1 (ARF1) – a protein known to be myristoylated in eukaryotic cells. Since it is 

known that the myristoylation site of ARF1 can anchor this protein to membranes, it 

was hypothesized that this protein might bind to the inner leaflet of the parasite plasma 

membrane and is subsequently flipped over into the PV. In order to validate these 

results on the subcellular localization of PfARF1 reporter construct studies, co-

localization studies, fluorescence analyses and biochemical analyses were performed. In 

parallel to PfARF1, a different study revealed the secretion of another protein into the 

PV, the so-called Pfadenylate kinase 2. Similar to PfARF1, this protein also lacks a 

signal sequence, but contains a N-myristoylation site and was found to be a substrate of 

PfNMT (Ma et al., 2012; Rahlfs et al., 2009). To further validate and investigate the 

subcellular localization of PfAK2 mutagenesis analyses, fluorescence analyses, 

biochemical analyses and a translocation study with the mDHFR fusion system were 

carried out. Finally, the sequences of the N-terminus of PfARF1 and PfAK2 were 

compared to each other to identify possible key differences in their amino acid 

sequences. Potential motifs in the sequence of PfAK2, which might play a role in the 

translocation process of this protein across the parasite plasma membrane, which were 

missing in the sequence of PfARF1, were sought. Subsequently, a chimeric reporter 

construct of the N-terminus of both proteins was designed and analyzed via 

fluorescence and biochemical methods.  
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2 Materials and Methods 
The appliances, materials and chemicals used are listed below, including the reference 

to the companies and the company headquarters they were purchased from.  

2.1 Materials and Chemicals 

2.1.1 Appliances 
 

Appliances Company Company headquarters 
Agarose gel chambers Gibco BRL Neu Isenburg 

Analytical balance 2412 Sartorius Göttingen 

Autoclave Thermo Scientific USA 

Blotting apparatus Phase Lübeck 

Centrifuge (5804R) Eppendorf Hamburg 

Flow Herasafe Thermo Scientific USA 

Gel documentation system INTAS Göttingen 
Electroporator (gene 
PulserII) Bio-Rad USA 

Incubator B5060-EC/CO2 Heraeus Hanau 

Incubator Shaker (G25) New Brunswick Scientific 
Co USA 

Magnetic columns Miltenyi Biotech Bergisch Gladbach 

Magnetic stirrer IKA Staufen 

Mikro 22 R Centrifuge Hettich Tuttlingen 

PCR cycler Biometra Göttingen 

pH meter  Bio-Rad München 

Powersupply Bio-Rad München 

Precision balance 1205 MP Sartorius Göttingen 

Thermoblock Heidolph Schwabach 

Thermomixer 5436 Eppendorf Hamburg 

VARIO Mac Separator Miltenyi Biotech Bergisch Gladbach 
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Vortexer (Reax 2000) Heidolph Schwabach 

Waterbath Köttermann Uetze/Hänigsen 
 

2.1.2 Materials 
 

Materials Company Company headquarters 
Centrifuge tubes  Eppendorf Hamburg 

Cryotubes Sarstedt Nümbrecht 
Culture flasks (25 cm2 and 
75 cm2) Greiner Frickenhausen 

Erlenmeyer flasks Kobe Marburg 

Electroporation cuvettes Bio-Rad USA 

Exposure cassettes Rego Augsburg 

Falcon tubes Greiner Frickenhausen 

Gel loader tips VWR Darmstadt 
Medical X-ray films RX 
NIF Fuji Japan 

Microscope slides VWR Darmstadt 

Nitrocellulose membrane Schleicher & Schuell Dassel 

Petri dishes VWR/Greiner Darmstadt 

Pipette tips Sarstedt/Greiner Nümbrecht/Frickenhausen 

Plastic material Sarstedt//Greiner Nümbrecht/Frickenhausen 

Whatman paper Schleicher & Schuell Dassel 
 

2.1.3 Chemicals 
 

Chemicals Company Company headquarters 
Agar Roth Karlsruhe 

Agarose Roth Karlsruhe 

Ammonium peroxodisulfate (APS) Roth Karlsruhe 

Ammonium sulfate ((NH4)2SO4) Roth Karlsruhe 

Ampicillin Roth Karlsruhe 

Bovine serum albumin PAA Cölbe 

Calcium chloride (CaCl2) Roth Karlsruhe 
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Chloroform Merck Darmstadt 

Cresol red Sigma Aldrich Taufkirchen 

Diethyl pyrocarbonate (DEPC) Roth Karlsruhe 

Dimethylsulfoxide (DMSO) Fluka Neu-Ulm 

1,4-dithio-DL-threitol (DTT) Fluka Neu-Ulm 

Dipotassium phosphate (K2HPO4) Roth Karlsruhe 

Disodium phosphate (Na2HPO4) Roth Karlsruhe 

Ethanol p.a. (EtOH) Roth Karlsruhe 

Ethidium bromide (EtBr) Sigma Taufkirchen 
Ethylendiamintetra-acetic acid 
(EDTA) Roth Karlsruhe 

EGTA Roth Karlsruhe 

Glutaraldehyde Roth Karlsruhe 

Glycine Roth Karlsruhe 

Glycerol anhydrous AppliChem Darmstadt 

Hoechst 33258 Molecular Probes USA 

Hydrochloric acid 37 % Roth Karlsruhe 

Hydrogen peroxide (H2O2) Merck Darmstadt 

Isopropanol Merck Darmstadt 

Luminol AppliChem Darmstadt 

LB-agar (Lennox) Roth Karlsruhe 

Magnesium chloride (MgCl2) Roth Karlsruhe 

Magnesium sulfate (MgSO4) Roth Karlsruhe 

Methanol Roth Karlsruhe 

Milk powder Roth Karlsruhe 
NNN’N-tetra methylene ethylene 
diamine (TEMED) Roth Karlsruhe 

o-Cresolsulfonephtalein (Cresol red) Sigma Aldrich Taufkirchen 

p-coumaric acid Roth Karlsruhe 

PageRuler Prestained Protein Ladder Fermentas USA 

Pepton Roth  Karlsruhe 
Phenylmethylsulfonyl fluoride 
(PMSF) Serva Heidelberg 
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Potassium acetate (CH2CO2K) AppliChem Darmstadt 

Potassium chloride (KCl) Roth Karlsruhe 
Potassium dihydrogen phosphate 
(KH2PO4) 

Roth Karlsruhe 

Protease Inhibitor Cocktail Set III Calbiochem USA 

Proteinase K AppliChem Darmstadt 

RNaseOUT Invitrogen USA 
RostisolV®HPLC Gradient Grade 
Water Roth Karlsruhe 

Rotiphorese Gel 30 Roth Karlsruhe 

Saponin Roth  Karlsruhe 

SOB-Medium Roth Karlsruhe 

Sodium carbonate (Na2CO3) Roth Karlsruhe 

Sodium chloride (NaCl) Roth Karlsruhe 

Sodium sulfite (Na2SO3) Roth Karlsruhe 

Sodium dodecyl-phosphate (SDS) AppliChem Darmstadt 

Sodium hydroxide (NaOH) Merck Darmstadt 

Streptolysin O S.Bhakdi University Mainz 

Sucrose Roth Karlsruhe 

Trichloroacetic acid Roth Karlsruhe 

Tris AppliChem Darmstadt 

Triton X-100 Roth Karlsruhe 

TRIzol® Reagent Invitrogen Groningen 

Urea Roth Karlsruhe 

Yeast extract Roth Karlsruhe 
 
 

2.1.4 Cell Culture Materials 
 

Cell culture materials Company Company headquarters 
AlbuMaxII Invitrogen Groningen 
Blasticidin S InvivoGen USA 
D-Sorbitol Roth Karlsruhe 
Gelafundin B. Braun AG Melsungen 
Giemsa Merck Darmstadt 



2	
  	
  Materials and Methods	
   29	
  

Human erythrocyte 
concentrate (A/rh+ and O/rh+) 

University medical centre 
Marburg, Bloodbank Marburg 

Human Plasma (A/rh+) 
University medical centre 
Marburg/Giessen, 
Bloodbank 

Marburg 

Hypoxanthine PAA Cölbe 
RPMI 1640 Gibco Karlsruhe 
RPMI 1640 PAA Cölbe 
WR99210 Jacobus Pharmaceuticals USA 
 

2.1.5 Molecular Biological Kits 
	
  

Molecular Kits Company Company headquarters 
Gel Extraction Kit Seqlab Göttingen 

PCR Purification Kit Seqlab Göttingen 

Minipreparation Kit Seqlab Göttingen 

Plasmid Maxi Kit  Qiagen Hilden 
 

2.2 Enzymes 
 

Enzymes Company Company Headquarter 
DNase AppliChem Darmstadt 

KOD DNA polymerase Novagen Darmstadt 

RNase AppliChem Darmstadt 
SuperScriptTM III one-step 
RT-PCR system Invitrogen Groningen 

T4 DNA Ligase Invitrogen Groningen 

Taq DNA polymerase New England Biolabs Schwalbach 
Restriction enzymes (AvrII, 
BsshII, KpnI, XhoI, XmaI,) New England Biolabs Schwalbach 
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2.3 Antibodies 
In the following table the primary and secondary antibodies used are listed, with a 

reference to the source of supply. 

 
Primary antibody 

Dilution 
factor  
(IFA) 

Dilution factor 
(Western 
blotting) 

 
Obtained from 

Chicken anti-GFP (polyclonal) 1:500 --- abcam 

Mouse anti-GFP (monoclonal) --- 1:1000 abcam 

Mouse anti-Band3 (monoclonal) --- 1:1000 Sigma aldrich 

Rabbit anti-aldolase (polyclonal) --- 1:5000 Group Lingelbach 

Rabbit anti-ARF (polyclonal) 1:2000 1:1000 Group Holder 

Rabbit anti-Exp1 (polyclonal) --- 1:500 Group Lingelbach 

Rabbit anti-SERP (polyclonal) --- 1:1000 Group Lingelbach 
 
 

Secondary antibody Company Company 
Headquarter 

Goat anti-chicken Cy2 JacksonImmunso Research 
Laboratories USA 

Goat anti-mouse HRP DAKO Glostrup 

Goat anti-rabbit HRP DAKO Glostrup 

Swine anti-rabbit HRP DAKO Glostrup 
 

2.4 Solutions and buffers 
In this section the solutions and buffers used for molecular biological and 

proteinbiochemical work are listed.  

Solutions and buffers Individual components 
Ammonium peroxodisulfate (APS) 10 % in ddH20 

Ampicillin stock: 50 mg/ml  
working concentration: 50 µg/ml  

Blocking solution for IFA 3 % BSA in PBS (pH 7.4) 
Blocking solution for western blotting 5 % milk powder in PBS (pH 7.4) 

Colony mix 
1 ml Cresol red solution 
600 µl Taq buffer (10 x) 
120 µl dNTPs 10 mM 
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4.28 ml water, sterile 

Cresol red solution 
0.1 g o-Cresolsulfonephtalein 
60 % sucrose 

Developer (X-ray) 

 6.4 mM Metol 
80 mM Hydroquinone 
571 mM sodium sulfite (Na2SO4) 
452 mM sodium carbonate (Na2CO3) 
34 mM potassium bromide (KBr) 

DNA extraction buffer A 
100 mM sodium chloride (NaCl) 
50 mM sodium acetate (NaOAc), pH 5.2 
1 mM EDTA 

DNA loading dye (6x) 

1 % bromophenol blue 
30 % glycerol 
50 mM Tris/HCl, pH 8 
5 mM EDTA 

ECL solution 
5 mM Luminol 
0.8 mM p-coumaric acid 
200 mM Tris/HCl pH 8.5 

Electrophoresis running buffer 
124 mM Tris 
960 mM glycine 
0.05 % SDS 

Fixation buffer 
4 % paraformaldehyde 
0.00075 % glutaraldehyde 
in PBS (pH 7.4) 

Permeabilization buffer 0.1 % Triton X-100 in PBS (pH 7.4) 

Phosphate buffered saline (PBS) 

140 mM sodium chloride (NaCl) 
2.7 mM potassium chloride (KCl) 
1.4 mM monopotassium phosphate 
0.8 mM disodium phosphate 

Ponceau S staining solution 
0.2 % Ponceau S 
3 % trichloroacetic acid 

Quenching buffer 125 mM glycine in PBS (pH 7.4) 

Sample buffer (2x) for proteins 

100 mM Tris/HCl pH 6.8 
5 mM EDTA 
20 % glycerol 
4 % SDS 
0.2 % bromphenolblue 
100 mM dithiothreitol  

Separating buffer (4x) 1.5 M Tris/HCl pH 8.8 

Stacking buffer (4x)  
500 mM Tris/HCl pH 6.8 
0.4 % SDS 



2	
  	
  Materials and Methods	
   32	
  

Taq buffer (10x) 

200 mM Tris/HCl pH 8.8 
100 mM potassium chloride (KCl) 
100 mM ammonium sulfate 
20 mM magnesium sulfate (MgSO4) 
1 % Trion X-100 

TE-buffer (10 x) 
890 mM Tris 
890 mM acetate 
20 mM EDTA 

Western blot transfer buffer 

48 mM Tris/HCl pH 9.5 
39 mM glycine 
0.04 % SDS 
20 % methanol 

 
The media used for culturing and growing bacteria are listed in the following: 
 
Media Individual components 
LB (Luria-Bertani)-agar 35 g/l LB agar 

SOC-medium 
SOB medium (autoclaved) 
20 mM glucose (sterile filtered) 

Super broth medium, pH 7.0 

35g/l tryptone 
20 g/l yeast extract 
5 g/l sodium chloride 
5 ml/l sodium hydroxide 

 
The solutions used for culturing P. falciparum are listed in the following:  
 
Solutions Individual components 

Blasticidin S hydrochloride 
Stock solution: 10 mg/ml 
working concentration: 4 µg/ml 

Cytomix  

120 mM KCl  
0.15 mM CaCl2 
2 mM EGTA 
10 mM K2HPO4/KH2PO4, pH 7.6 
25 mM HEPES, pH 7.6 

Freezing solution 
28 % glycerol 
3 % d-sorbitol 
0.65 % sodium chloride 

RPMI medium 
500 ml RPMI medium supplemented with 
- 50 ml of heat-activated human plasma 
- 20 µg/ml neomycin 
- 200 µM hypoxanthine 

Thawing solution I.   12 % sodium choride (NaCl) 
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II.  1.6 % sodium chloride (NaCl) 
III. 0.9 % sodium chloride, 0.2 % glucose 

WR99210 
20 mM stock (8.6 mg in 1ml DMSO) 
working concentration: 5 nM 

 

2.5 Vectors and oligonucleotides  

2.5.1 Vectors 
	
  
The following table displays the basic vectors used for this study. 

Basic vectors Selectable 
marker Resistance Tag Reference 

pARL2_GFP β-Lactamase, 
DHFR 

Ampicillin, 
WR99210 GFP J. Przyborski,  

N. Gehde 

pARL2_mCherry_BSD 
β-Lactamase, 
Blasticidin S 
deaminase 

Ampicillin, 
Blasticidin mCherry J. Przyborski, 

S. Külzer 

 

2.5.2 Oligonucleotides 
	
  
The following oligonucleotides were designed for this study and purchased from 

Eurofin MWG Operon. The restriction sites are underlined and the mutations introduced 

by site-directed mutagenesis in the following nucleotide sequences are highlighted. 

 
Denotation Primer sequence 5’à3’ 

Oligonucleotides used for the vectors 

pARL_F CGTTAATAATAAATACACGCAG 

pARL_R GGCGGATAACAATTTCACACAGG 

GFP+54_R GTGCCCATTAACATCACCATC 

Prefoldin subunit, putative (PF3D7_0904500) 

Pref_XhoI_F GGCTCGAGATGGGTGATATAAAACAAAACAAATATG 

Pref_XhoI_F_G2A GGCTCGAGATGGCTGATATAAAACAAAACAAATATG 

Pref_AvrII_R GGCCTAGGATTAAGATCTATCCTATTTCCAAACTTC 

Calcium dependent protein kinase 4 (PF3D7_0717500) 

CDPK4_XhoI_F GGCTCGAGATGGGACAAGAGGTATCGAG 

CDPK4_XhoI_F_G2A GGCTCGAGATGGCACAAGAGGTATCGAG 
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CDPK4_AvrII_R GGCCTAGGATAATTACAAAGTTTGACTAGCATATCC 

ADP-ribosylation factor 1 (PF3D7_1020900) 

ARF1_XhoI_F GGCTCGAGATGGGTTTATATGTAAGTAGGTTATTTAATC
G 

ARF1G2A_XhoI_F GGCTCGAGATGGCTTTATATGTAAGTAGGTTATTTAATC
G 

ARF1_AvrII_R GGCCTAGGTTTGGCATTATTTAAGTGTGTGGTTAGC 
ARF11-17/+ C4/-V5/AK2+18-

37 _XhoI (F) _ KpnI (R) 
(produced by GeneArt® 
Gene Synthesis) 

GGCTCGAGATGGGTTTATGCTATAGTAGGTTATTTAATC
GTTTATTTCAAAAGAAAGATGAAGAGGAAAAAAAGAA
GAGAAAAAAAAGAAAAAGAAAATATATATTTTAAATG
GAGCAGGTACCGC 

Adenylate kinase 2 (PF3D7_0816900) 

AK2_XhoI_F GGCTCGAGATGGGATCATGTTATAGTAGAAAAAATAAA 

AK2G2A_XhoI_F GGCTCGAGATGGCATCATGTTATAGTAGAAAAAATAAA 

AK2C4A_XhoI_F GGCTCGAGATGGGATCAGCTTATAGTAGAAAAAATAAA 

AK2G2AC4A_XhoI_F GGCTCGAGATGGCATCAGCTTATAGTAGAAAAAATAAA 

AK2_AvrII_R GGCCTAGGATTGGGGTTATCATCTATAATGGAG 

AK2(Δ21-30)_F_oe-PCR* CATTAGATGAAGAGGAAATATATATTTTAAATGGAGCAT
CTGGG 

AK2(Δ21-30)_R_oe-PCR* GATGCTCCATTTAAAATATATATTTCCTCTTCATCTAATG
ATATTGTTG 

AK21-37_KpnI_R GGGGTACCTGCTCCATTTAAAATATATATTTTTTTTTTCT
TCTT 

Exported-protein1 (PF3D7_1121600) 

Exp1_XhoI_F CGCTCGAGATGAAAATCTTATCAGTATTTTTTC 

Exp1_AvrII_R GCCTAGGGTGTTCAGTGCCAGTTACGAGG 
* primers for overlapping-extension PCR (oe-PCR) 

 
 

2.5.3 Plasmids designed for this work 
	
  
The following table comprises the plasmids generated for this work. The basic vectors 

were used as backbone and the nucleotide sequences were introduced into these vectors. 

 
Vector 

Proteins 
selected/mutated/ 
detection system  

 
Origin 

pARL2_Pref_GFP Chaperone this work 

pARL2_mPref_GFP *G2A mutation this work 
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pARL2_CDPK4_GFP Kinase this work 

pARL2_mCDPK4_GFP *G2A mutation this work 

pARL2_ARF1_GFP GTPase, wildtype this work 

pARL2_ARF1G2A_GFP *G2A mutation this work 

pARL_AK2_GFP Kinase, wildtype Group Becker, 
Giessen 

pARL_AK2G2A_GFP *G2A mutation Group Becker, 
Giessen 

pARL2_AK2C4A_GFP ǂC4A mutation this work 

pARL2_AK2G2AC4A_GFP *G2AǂC4A mutation this work 

pARL2_AK2(Δ21-30)_GFP Deletion of polybasic 
amino acids (Δ 21-30) this work 

pARL2_AK21-37_GFP 1-37 amino acids of  
N-terminus of AK2 this work 

pARL2_ARF11-17/+C4/-V5AK2+18-

37_GFP 

GTPase, ǂC4 addition, 
removal of V5, 
addition of polybasic 
cluster of AK2  

this work 

pARL2_AK2_mDHFR Kinase, wildtype this work 

pARL2_Exp1_mCherry_BSD PVM-marker this work 

pARL2_Grasp1_mCherry_BSD cis-Golgi-marker J. Riedel, bachelor 
thesis 

pARL2_Rab6_mCherry_BSD trans-Golgi-marker J. Riedel, bachelor 
thesis 

pARL2_Sec12_mCherry_BSD ER-marker J. Riedel, bachelor 
thesis 

*G2A = glycine replaced with alanine at 2nd position at the N-terminus 
ǂC4A = cysteine replaced with alanine at 4th position at the N-terminus 
 
 

2.6 Cells and Organisms 
	
  

Strain Genotpye Reference 

E. coli TOP 10 --- Invitrogen 

 
P. falciparum 3D7 

Clone derived from NF54 
(isolated in the 
Netherlands) 

The Walter and Eliza 
Insitute of Medical 
Research, Melbourne, 
Australia 
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2.7 Bioinformatics 
In silico analyses of the nucleotide sequences and the resulting proteins were performed 

using the following databases.  

Genetic databases websites 

BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi 

ClustalW http://www.ebi.ac.uk/Tools/msa/clustalw2 

ExPASy http://www.expasy.org/ 

GeneDB http://www.genedb.org/Homepage 

OrthoMCL DB http://orthomcl.org/orthomcl/ 

PlasmoDB http://plasmodb.org/plasmo/ 

SignalIP http://www.cbs.dtu.dk/services/SignalP/ 
 

2.8 Cell culture techniques 

2.8.1 In-vitro cultivation of Plasmodium falciparum  

All of the work was performed with the Plasmodium falciparum strain 3D7. The 

genome sequence of this clone, which was isolated from a patient in Amsterdam was 

analyzed by Gardner and his colleagues in 2002 (Gardner et al., 2002). 

 

Asexual stages of P. falciparum were cultivated in suspension culture flasks in A+ 

human erythrocytes at a hematocrit of 4 % and in RPMI medium, which was 

supplemented with 0.2 % hypoxanthine, 10 % human plasma and 0.1 mg/ml neomycin 

(stock 10 mg/ml) according to Trager and Jensen (Trager and Jensen, 1976). The culture 

was maintained at 37 °C and gassed with 90 % N2, 5 % O2 and 5 % CO2 in an incubator.  

The parasitemia was checked by Giemsa-stain every day. Therefore a blood-drop from 

the suspension culture was taken from the bottom of the flask and smeared onto the 

slide. The smear was air-dried, fixed in MetOH for 30 seconds and then stained with a 

diluted Giemsa-solution (1:10 in H2O) for at least 10 minutes. The Giemsa-stain was 

washed off the slide and the parasitemia was checked with a light microscope using 

immersion oil for a 100 x magnification of the specimen. The ratio of infected to non-

infected cells was calculated after looking at different optical sections of the slide and 

the parasitemia was determined. The culture was then further cultivated, accordingly. 
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Synchronized cultures at ring-stage were split only when they reached a parasitemia 

above 10 %, while cultures containing late-stage parasites, were split when reaching a 

parasitemia above 5 %. A high parasitemia was only maintained when the infected cells 

were harvested shortly after for experiments. 

2.8.2 Synchronization of Plasmodium falciparum with Sorbitol 

Sorbitol synchronization of parasites was performed on a mainly ring-infected culture to 

eliminate mature parasites based on the increased permeability of erythrocytes infected 

with late-stage parasites compared to ring-stage parasites. As a result, highly 

synchronized ring-stage parasites were obtained for further cultivation (Lambros and 

Vanderberg, 1979). The culture was centrifuged at 1,600 x g for 2 minutes before the 

cell pellet was resuspended in 5 % Sorbitol-solution and incubated for  

8 minutes at room temperature. Once the incubation was over, the entire mixture of 

Sorbitol and cells was spun at 1,600 x g for 2 minutes, and washed 2-3 times with RPMI 

before being further cultured.  

2.8.3 Enrichment of trophozoite-stage parasites via Gelafundin flotation  

Trophozoite-stage parasites were required and used for most of the experiments. That is 

why Gelafundin-based synchronization of trophozoite-infected cells was performed 

(Pasvol et al., 1978). Therefore a culture containing initially about 5 % late-stage 

parasites was sedimented in a centrifugation step, and the pellet was resuspended in  

8 ml of the Gelafundin-solution and incubated for 10 minutes at 37 °C in a water bath. 

During the incubation time knob-associated cells float into the upper phase of the 

Gelafundin cell mixture, while non-infected and ring-stage parasites are found at the 

bottom. The upper-phase, containing enriched trophozoite-infected cells, was 

transferred to a new tube and spun at 1,600 x g for 2 minutes. The pellet obtained was 

resuspended in RPMI and the parasitemia was determined. The volume of RPMI added 

to the pellet equalled 10 x the volume of the pellet. Usually a 50 – 60 % enrichment of 

trophozoites after Gelafundin treatment was achieved. 

2.8.4 High enrichment of late-stage parasites using a high gradient magnetic field 

A different method to obtain highly enriched parasites at late-stage was the application 

of a high gradient magnetic field. This method enables a high synchronization and 
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enrichment of late-stage parasites based on the property of the malaria parasite to digest 

hemoglobin (Fe(II) diamagnetic complex) to hemozoin (Fe(III) paramagnetic complex). 

The paramagnetic properties of hemozoin are used to isolate Plasmodium-infected red 

blood cells at late-stage in the presence of a high magnetic field (Paul et al., 1981). 

For the magnetic isolation of parasitized red blood cells a VarioMACS Separator 

(Miltenyi Biotec) and the appropriate magnetic columns (MACS; CS columns, Miltenyi 

Biotec), were used. Prior to magnetic isolation, the column was washed with 3 % BSA 

(dissolved in PBS, pH 7.4) and was fitted into the VarioMACS separator. The culture 

should contain initially a parasitemia of around 3-5 % infected cells at late stage. The 

culture was transferred from the flask into a 50 ml tube and then poured on the top of 

the CS column. The CS columns are composed of ferromagnetic fibers and when fitted 

to the VarioMACS Separator, the magnetic field is amplified, evoking a high gradient 

within the column. This allows an increased magnetic isolation of parasitized red blood 

cells. Once the entire culture was passed through the column, the column was washed 

with pre-warmed PBS (pH 7.4) until the eluent was free from red blood cells. The 

column was removed from the VarioMACS Separator and fitted into a bracket fixed to 

a stand and eluted with 2 x 15 ml PBS (7.4) in a 2 x 15 ml falcon tube. The eluent was 

centrifuged at 1,600 x g for 3 minutes, and the pellet from both tubes were pooled 

together, washed twice with pre-warmed RPMI medium before a blood-smear of 5 µl 

was prepared. The parasitemia, when using magnet-based isolation of infected cells, 

was always around 80 %.  

2.8.5 Transfection and Co-transfection of Plasmodium falciparum 

Transfection was performed with Plasmodium-infected erythrocytes at ring-stage with a 

parasitemia of 5 – 10 % (Wu et al., 1995). Plasmid-DNA (100 µg) was prepared by 

ethanol precipitation, air-dried and subsequently resuspended in 30 µl TE buffer. The 

DNA was properly mixed and dissolved at 50 °C before 370 µl of cytomix and 200 µl 

of ring-stage infected cells were added. The whole mixture was transferred to a 0.2 cm 

gap electroporation cuvette and pulsed at 0.310 kV at 950 µF (high capacitance). The 

time constant was always between 8 – 12 msec. Once electroporation was carried out, 

the cells were transferred to a 25 cm2 cell culture flask containing 12 ml of pre-warmed 

RPS (Gibco) media and 400 µl O+ erythrocytes. The media used for transfection was 

supplemented with 5 % human plasma, 0.25 % AlbuMax, hypoxanthine and neomycin. 
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The culture was maintained at 37 °C in an incubator. After 4-8 hours the appropriate 

drug, depending on the selection cassette integrated into the plasmid, was added to the 

culture. Either the parasites were selected with 5 nM WR99210, when the hDHFR was 

expressed or 4 µg/ml of BSD was added to the culture, when Blasticidin S deaminase 

was expressed from the selection cassette. In the first five days after transfection the 

medium was changed daily and the appropriate drug was added to the cells. Once no 

live parasites could be seen, the medium was only changed twice a week and the blood 

(O+ erythrocytes) was changed every two weeks after transfection. The parasites were 

held under drug pressure. Once parasites were seen, which usually took 2-3 weeks, 

three to five aliquots with a parasitemia of 5 -10 % were frozen as stocks. When the 

parasitemia was about 5 %, the parasites were transferred from a 25 cm2 to a 75 cm2 

culture flask and were cultured in RPMI medium and A+ erythrocytes.  

Co-transfection was performed as follows: P. falciparum ring-stage parasites were 

transfected successively with each of the constructs (construct 1 and construct 2, each 

containing a different selection cassette and a different gene of interest). Once one of 

the transfectants containing for example construct 1 started growing these parasites 

were synchronized with Sorbitol or Gelafundin. The synchronized ring-stage parasites 

can then be transfected with construct 2, containing a different gene of interest and 

another selection cassette. These newly co-transfected parasites were then kept under 

drug selection of WR99210 and BSD and after 2-3 weeks the co-transfected parasites 

started growing expressing both proteins from each constructs.  

2.8.6 Cryopreservation of Plasmodium falciparum-infected erythrocytes 

An in-vitro culture of P. falciparum-infected red blood cells was frozen at ring-stage 

when a parasitemia of 5 -10 % was reached. The whole culture was centrifuged at  

1,600 x g for 2 minutes and the cell sediment was mixed in a ratio of 1:1 with a freezing 

solution, transferred to a cryotube and instantly snap-frozen in liquid nitrogen. The 

cryotube containing the frozen cells was incubated for about 10 minutes in liquid 

nitrogen before being put into long-term storage in a liquid nitrogen tank. 

2.8.7 Thawing of cryopreserved Plasmodium falciparum-infected erythrocytes 

The snap-frozen parasites in a cryotube were thawed at room temperature and 

transferred to a 15 ml tube. 200 µl of solution I containing 12 % sodium chloride 
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dissolved in ddH2O (autoclaved) was added dropwise to the thawed parasites. After an 

incubation time of 3 minutes, 5 ml of solution II containing 1.6 % sodium chloride 

dissolved in ddH2O (autoclaved), was added dropwise to the cells. The cells were 

incubated again for 3 minutes at room temperature before solution III containing 0.9 % 

sodium chloride dissolved in ddH2O (autoclaved) mixed with 0.2 % glucose dissolved 

in ddH2O (sterile filtered), was added to the thawed cells drop by drop. Once the 

incubation time of 3 minutes was over, the cells were sedimented at 1,600 x g for  

2 minutes and washed twice with pre-warmed RPMI medium before being transferred 

to a new flask for culturing. Thawed transfectants were subjected to the appropriate 

drug 24 hours later after thawing. 

 

2.9 Molecularbiological methods 

2.9.1 Cultivation of Escherichia coli 

E.coli strain Top10 was grown in the common bacterial growth medium Super Broth 

liquid, supplemented with the antibiotic ampicillin to a final concentration of 50 µg/ml 

for selection. LB-agar (Luria-Bertani) was used as a growth substrate for culturing 

bacteria on a solid medium. 

Liquid cultures of E. coli were inoculated with the clone containing the desired plasmid 

and grown overnight at 37 °C with constant shaking. Plasmid DNA preparation was 

performed either in a small-scale (mini preparation) or large-scale (maxi preparation) 

isolation process. 

2.9.2 Preparation of electrocompetent bacterial cells (E. coli strain TOP10) 

A single colony of E. coli TOP10 was used to inoculate 10 ml of Super Broth at 37 °C 

to set up an overnight preculture. 600 ml of Super Broth were then inoculated with 6 ml 

of the preculture until the cells were grown to an OD of 0.6, which took about  

3.5 hours with constant shaking at 37 °C. The cells were then harvested at 6,000 x g for 

10 minutes at 4 °C. The supernatant was discarded and the pellet was resuspended in 

600 ml ddH2O and harvested again. This step was repeated three times before washing 

the pellet a final time with 600 ml of 10 % glycerol/ddH2O. The cells were kept on ice 

during the whole procedure. Finally, the pellet was resuspended in 1.2 ml of ice-cold  
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10 % glycerol. Aliquots of 100 µl were made using sterile 1.5 ml reaction tubes, snap 

frozen with liquid nitrogen and stored at – 80 °C.  

2.9.3 Mini- and Maxipreparation for isolation of plasmid DNA  

Plasmid DNA from E. coli was isolated using Plasmid-preparation kits from Qiagen 

according to the manufacturer’s protocols. The main steps in the isolation of plasmid 

DNA involve the disruption of the bacterial cells by alkaline lysis and neutralization of 

the lysate. A silica membrane column is used for the binding of the plasmid DNA from 

the cleared lysate, which is subsequently eluted in TE-buffer (Qiagen Protocol).  

To obtain plasmid DNA, using the Maxipreparation procedure, the bacterial pellet was 

resuspended in twice the volume recommended by the manufacturer’s protocol of the 

buffers P1, P2 and P3 (Przyborski et al., 2005).  

2.9.4 Transformation of E. coli cells 

E.coli TOP10 cells were transformed with plasmid DNA using electroporation. 50 µl of 

the electrocompetent cells were thawed on ice and then mixed with the ligation reaction. 

The ligation reaction contained the plasmid DNA, which was purified by precipitation 

with EtOH as described in section 2.9.13 and was then resuspended in 10 µl ddH2O. 

The mixture of electrocompetent cells and DNA-solution was then transferred to a pre-

cooled electroporation cuvette and pulsed by a voltage of 2 kV, with a capacitance of  

25 µF and a resistance of 200 Ω. Immediately after electroporation the cells were 

resuspended in pre-warmed SOC medium and incubated in a shaker at 37 °C for 1 hour. 

100 µl of the cell suspension was plated on a pre-warmed LB agar plate supplemented 

with ampicillin. The rest of the cell suspension was harvested by 1,000 x g for 2 

minutes to reduce the volume before plating. The plates were incubated at 37 °C 

overnight.  

2.9.5 Isolation of genomic DNA from Plasmodium falciparum 

Isolation of genomic DNA was performed with trophozoite stages of P. falciparum. The 

parasitemia was about 5–10 %, before the parasites were isolated from infected 

erythrocytes by saponin lysis at a final concentration of 0.1 %. The pellet was washed a 

couple of times before it was resuspended in 200 µl PBS (pH 7.4). In the next step, 2 x 

DNA extraction buffer A and 100 µl of 20 % SDS were added to the sample, mixed by 
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inversion before being extracted with an equal amount of phenol-chloroform followed 

by centrifugation at 28,600 x g for 30 minutes. The phenol-chloroform extraction leads 

to a separation between DNA and proteins, by which the DNA can be found in the 

upper phase. The DNA in the upper phase was transferred to a new 1.5 ml tube, 

precipitated with ethanol, and dissolved in 500 µl TE-buffer (pH 8.0). The DNA-

solution was then subjected two more times to phenol-chloroform extraction with a 

subsequent centrifugation step at 28,600 x g for 30 min to gain more purified DNA by 

removing all the other cell constituents. The top phase was collected and chloroform 

extraction was performed one more time to remove all the phenol left in the sample. In a 

final step the upper phase was collected once again and precipitated with ethanol before 

being dissolved in 50-100 µl TE-buffer (pH 8.0).  

2.9.6 Isolation of mRNA from Plasmodium falciparum 

Similar to the isolation of genomic DNA from P. falciparum RNA was obtained by 

saponin treatment of late-stage Plasmodium-infected cells. Therefore, a total of  

2 x 108 cells were subjected to 0.1 % saponin and incubated on ice for 5 min followed 

by a centrifugation step at 2,500 x g for 5 minutes. The supernatant was discarded and 

the pellet was washed twice with PBS (pH 7.4) before resuspending the pellet in 

preheated Trizol reagent. The pellet dissolved in Trizol was then incubated on a 

Thermomixer at 37 °C for 5 minutes. 200 µl of chloroform was added to the pellet, 

mixed and spun at 28,600 x g for 30 min. The supernatant was removed and the pellet 

was washed with 70 % ethanol several times, before the pellet was air-dried. Finally, the 

pellet was dissolved in an appropriate amount of DEPC-treated water and 1 µl of 

RNaseOUT was added. RNaseOUT is a non-competetive inhibitor, which inhibits 

RNase A, RNase B and RNase C.  

2.9.7 Quantification of nucleic acid  

DNA and RNA, respectively, absorb UV light. That is why the concentration of nucleic 

acids can be determined using a spectrophotometer. The optical density (OD) is 

measured at 260 nm using a quartz cuvette. An absorbance unit of 1 at 260 nm 

correlates to 50 µg/ml of double-stranded DNA and 40 µg/ml of RNA, respectively.  

If the DNA is not contaminated with proteins the OD at 260 nm/280 nm ratio will be 

1.8. A lower ratio, however, indicates a low contamination of the DNA.  
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2.9.8 Reverse transcriptase PCR  

Following isolation of total RNA from P. falciparum as described in 2.9.6 the mRNA 

was transcribed into cDNA by reverse transcriptase (RNA-dependent DNA 

polymerase). In vitro amplification of the coding sequences was performed in one-step 

using the SuperScript III one-step RT-PCR kit (Invitrogen), a system, which combines 

two enzymes, the SuperScript Reverse Transcriptase and the Taq High Fidelity enzyme. 

Initially the mRNA is converted into the single-stranded cDNA template at 45–60 °C 

degrees by the SuperScript Reverse Transcriptase, before the cDNA is used as a 

template for the Taq High Fidelity enzyme. The cycling conditions were set according 

to the primer annealing temperature and the size of the target sequences.  

Table 2.1 Standard reaction mix for cDNA synthesis 

Reagent Volume 

2 x reaction mix 25 µl 

sense primer (50 pmol/µl) 1 µl 

anti-sense primer (50 pmol/µl) 1 µl 

template (approximately 1 µg/µl) 1 µl 

SuperScript III RT / Platinum Taq 
Polymerase High fidelity enzyme mix 2 µl 

autoclaved distilled water to 50 µl 

 
 

Table 2.2 Standard program for cDNA synthesis followed by PCR amplification 
Reaction Temperature Time Cycles 

1. cDNA synthesis 50 °C 30 min 
1 

2. pre-denaturation 94 °C 2 min 

3. denaturation 94 °C 15 sec 
 

39 4. annealing 55 °C 30 sec 

5. extension 68 °C 1 min/kb 

6. final extension 68 °C 5 min 1 

7. end of program 4 °C --- --- 
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2.9.9 Polymerase chain reaction 

The polymerase chain reaction was performed according to Mullis and colleagues 

(Mullis et al., 1986). The oligonucleotides for in-vitro amplification of DNA- and RNA-

fragments were ordered from Eurofins MWG Operon and the list of primers can be 

found in section 2.5.2. The oligonucleotides were chosen according to a melting 

temperature between 50 °C – 65 °C, which was determined using the program 

Oligonucleotide Property Calculator. The stock-solution of the oligonucleotides was 

adjusted to 50 pmol/µl with DEPC-treated water and stored at -20 °C. 

 

DNA-fragments, which were required for further cloning, were amplified using the 

KOD Hot Start DNA Polymerase. For colony PCR, however, the Taq polymerase was 

used, since a proofreading activity of the polymerase was not required (colony PCR: 

section 2.9.16). The cycling conditions were set according to the primer annealing 

temperature and the size of the target sequences.  

Table 2.3 Standard reaction mix for PCR with KOD Hot Start DNA Polymerase 

Reagent Volumina 
10 x PCR buffer for KOD Hot Start DNA 

Polymerase 5 µl 

MgSO4 (25 mM) 3 µl 

dNTP (2 mM each) 5 µl 

sense primer (50 pmol/µl) 1 µl 

anti-sense primer (50 pmol/µl) 1 µl 

template (approx. 1 -200 ng/µl) 1 µl 

KOD Hot Start DNA Polymerase (1 U/ µl) 1 µl 

ddH2O (autoclaved) to 50 µl 

total amount 50 µl 
 

Table 2.4 Standard PCR program with KOD Hot Start DNA Polymerase 
Reaction Temperature Time Cycles 
1. activation 95 °C 2 min  

2. denaturation 95 °C 20 sec  
35 
 3. annealing 50 °C 30 sec 
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4. extension 72 °C 20 sec /1 kb 

5. final extension 68 °C 10 min  

6. end of program 4 °C ---  
 

Table 2.5 Colony PCR program with Taq polymerase 

Reaction Temperature Time Cycles 

1. denaturation 94 °C 2 min  

2. denaturation 94 °C 15 sec 
 

25 3. annealing 50 °C 30 sec 

4. extension 72 °C 60 sec /1 kb 

5. final extension 68 °C 10 min  

6. end of program 4 °C ---  
 

2.9.10 In-vitro site-directed mutagenesis 

In-vitro site directed mutagenesis is a technique used to introduce mutations like point-

mutations, deletions or insertions into the gene of interest. To obtain a deletion mutation 

via site-directed mutagenesis, two internal primers in addition to the flanked primers 

(forward and reverse primer), were required. As internal primers oligonucleotides were 

designed missing the bases to be deleted. These primers were designed to be 

complementary to the target sequence lacking the amino acids to be deleted and they 

were partially complementary to each other in order for them to hybridize in a final 

PCR reaction. In the first step, two PCR reactions were performed separately from each 

other according to the PCR standard program: the first PCR reaction mix contained the 

flanked forward primer and the internal reverse primer, while the second PCR reaction 

mix contained the internal forward primer and the flanked reverse primer. Initially, the 

5’à3’ part of the gene was amplified in each of the PCR reaction producing fragments 

with complementary overhangs, which then can hybridize in a final PCR reaction. 

Therefore the amplified products from each of the PCR reactions were mixed in a ratio 

of 1:1 being the template for the final PCR. The mutated DNA sequence was then 

amplified using both of the flanked primers (see Fig. 2.1) (Ho et al., 1989).  
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2.9.11 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments based on their size. 

This method relies on the migration of negatively charged DNA in an electrical field 

towards a positive pole using agarose gel as medium (Sambrook and Russell, 2001). 

The DNA samples were mixed with 6 x times loading buffer and depending on the 

expected size of the DNA the DNA fragments were separated in an agarose gel at 

concentrations ranging from 0.8 – 1.0 %. Agarose was made by mixing agarose powder 

with 1 x TAE buffer, which was also used as electrophoresis buffer and heated in a 

microwave until complete melting. Ethidium bromide was added to a final 

concentration of 0.5 µg/ml. Ethidium bromide is a fluorescent dye, which intercalates 

with DNA molecules and enables the visualization of DNA fragments in a gel when 

exposed to UV-light. To determine the size of the DNA fragments ranging from 100 bp 

to 12 kb 5 µl of a DNA ladder was added to the gel as well and the gel was run at 90 V 

for 20 – 40 minutes, depending on size of the DNA fragments to be analyzed. The gel 

was visualized with an ultraviolet transilluminator and pictures were taken with the Gel 

IX Imager.  

2.9.12 Purification of DNA 

DNA purification, after amplification by PCR or restriction digests, was performed 

using a PCR purification kit (Seqlab) according to the manufacturer’s protocol; 

alternatively, the desired DNA fragment ('band') was excised from an agarose gel and 

then purified with a gel-extraction kit (Seqlab) following the manual of the supplier.  

2.9.13 Ethanol precipitation of DNA 

Precipitation of DNA with ethanol is required to concentrate DNA in aqueous solutions. 

Since ethanol is less polar than water nucleic acids are less soluble in ethanol. In the 

presence of ethanol and salt DNA tends to fall out of solution. Therefore 2 volumes of 

100 % ethanol and 1/10 volume of sodium acetate (pH 5.2) was added to the DNA, 

mixed well and spun at 33,000 x g for 20 min at 4°C. The supernatant was removed and 

the pellet was washed with 70 % ethanol at 28,600 x g for 20 minutes at 4 °C before 

being air-dried and dissolved in either ddH2O or TE-buffer.  
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2.9.14 Restriction of DNA 

Restriction of DNA was performed using specific restriction endonucleases, which are 

able to recognize, bind and cut to specific recognition sites in the DNA. Digestion of 

plasmids and PCR products was performed in a total volume of 10 – 30 µl, respectively, 

with the appropriate restriction enzymes, a suitable buffer and if required 1 mg/ml of 

BSA. Incubation times and temperature varied depending on the restriction enzymes 

used. Subsequently, the digested DNA was purified using a PCR purification kit 

(Seqlab) and analyzed by agarose gel electrophoresis. 

2.9.15 Ligation of DNA 

Insert and vector, which were digested with the same restriction enzymes creating 

matching sticky ends, were ligated in the general molar ratio of 3:1 (insert:vector). The 

ligation reaction was performed overnight at 16 °C in a total volume of 20 µl using 1 U 

of the T4 DNA ligase (Invitrogen) and a 5 x suitable ligase buffer (Invitrogen). Usually 

100 ng of the vector was used for the ligation reaction and the required amount of insert 

could be calculated according to the following formula:  

 

100 ng Vector * Insert (kb) * 3 = Insert (ng) 
Vector (kb) 

 
 
Subsequently, the DNA was ethanol-precipitated (section 2.9.13) and dissolved in 10 µl 

ddH2O before transformation of electrocompetent E. coli cells was performed (section 

2.9.4). 

2.9.16 Screening for positive clones with colony PCR  

Colony PCR enables the screening of E. coli colonies after transformation for 

identification of those clones containing the desired plasmid insert. Therefore a single 

bacterial clone on an agar plate was first transferred to a replica plate, before being 

added to the PCR reaction mix as the template. Cresol red was used as loading dye. The 

oligonucleotides selected were both the forward or reverse primer of the insert and the 

forward or reverse primer starting from a region inside the vector, respectively. The 

colony PCR was performed in a total volume of 25 µl containing the concentration of 

the dNTPs, the Taq polymerase, the Taq buffer and the primers in proportion to a 
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standard PCR (Table 2.4). The PCR program was similar to the standard PCR program, 

except for the reduction in the number of cycles to 25 (Table 2.5).  

2.9.17 Sequencing of DNA 

Plasmids sent for sequencing were isolated and purified with a purification kit from 

Seqlab according to the manufacturer’s protocol. Samples were sequenced either at 

Seqlab Sequence Laboratories (Göttingen GmbH) or at GATC Biotech (Konstanz).  

2.9.18 Generation of plasmid constructs for transfection 

2.9.18.1 Overview of the vector used 

The following vectors were designed by J. Przyborski, N. Gehde and Simone Külzer. 

The pARL2_GFP vector contains the coding region for the human dihydrofolate 

reductase, which confers resistance to WR99210. The pARL_mCherry vector contains 

the coding region for Blasticidin S deaminase, which confers resistance to Blasticidin. 

The genes of interest were not integrated into the genome. The CRT (chloroquine 

resistance transporter) promoter is a low-expression promoter and was used for 

episomal gene expression.  

 

 
 

2.9.18.2 Constructs designed using the pARL2_GFP vector  

In-vitro amplification of the cDNA from RNA from P. falciparum (strain 3D7) was 

performed for the following genes of P. falciparum using the one-step RT-PCR Kit 

(Invitrogen). The stop codon was omitted.  

 
• PF3D7_0904500 (Prefoldin subunit, putative) 
• PF3D7_0717500 (Calcium-dependent protein kinase 4) 
• PF3D7_1020900 (ADP-ribosylation factor 1) 
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The primers used contained a XhoI (forward primer) and AvrII (reverse primer) 

restriction site for integration of the PCR product into the pARL2_GFP vector. Both the 

PCR product and the vector were digested with the same restriction enzymes XhoI and 

AvrII. The resulting construct was denoted with the Plasmodb ID, the restriction site 

and the orientation of the primer as exemplified for the coding sequence of ARF: 

PF3D7_1020900_XhoI_F. Another set of constructs was made with the above-

mentioned coding sequences by in-vitro site directed mutagenesis. The genes selected 

(PF3D7_0904500, PF3D7_0717500, PF3D7_1020900 and PF3D7_0816900) for 

analysis contained a supposed myristoylation site, glycine, at the 2nd position of the N-

terminus, which was changed to alanine (G2A) using a forward primer containing the 

respective mutated codon. The PCR products contained the respective point mutation 

and were integrated into the pARL2_GFP vector (e.g. PF3D7_1020900G2A_XhoI_F). 

Genomic DNA of P. falciparum was extracted to obtain the coding sequence of 

PF3D7_0816900 (adenylate kinase 2). Five further constructs using PF3D7_0816900 as 

the gene of interest were generated via site-directed mutagenesis. When making the first 

construct a putative palmitoylation site with cysteine at the 4th position of the N-

terminus was changed to alanine by designing a forward primer with the respective 

mutated codon. A second construct was generated by mutating both the myristoylation 

and the putative palmitoylation site of PF3D7_0816900 by using a forward primer with 

both of the mutations. The forward and reverse primer contained a XhoI and AvrII 

restriction site, respectively, to be integrated into the pARL2_GFP vector. Each of the 

PCR products comprising the respective mutated codon was amplified with the standard 

PCR program and was subsequently integrated into the pARL2_GFP vector following 

digestion of the PCR product and vector with the same restriction enzymes prior to 

ligation. Another construct with the coding sequence of PF3D7_0816900 was generated 

via site-directed mutagenesis by overlap extension PCR (Ho et al., 1989) deleting a 

stretch of polybasic amino acids at the N-terminus (Δ 21-30) of the gene. As internal 

primers oligonucleotides were designed missing the bases to be deleted 

[AAGAAAAAAAAAATATATATTTTAAATGGA corresponding to amino acids 21-

30 of the N-terminus of PF3D7_0816900]. The PCR was performed in a two-step 

reaction as described in section 2.9.10. The final PCR product lacking the amino acids 

21-30 at the N-terminus was integrated into pARL2_GFP after digestion with XhoI and 
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AvrII restriction enzymes. The following figure exemplifies the steps required in a site-

directed mutagenesis PCR for the following gene: PF3D7_0816900 (Fig. 2.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Another construct was designed by amplifying the N-terminus of PF3D7_0816900 up to 

37 amino acids with a forward primer containing a XhoI restriction site and a reverse 

primer containing KpnI as restriction site. The N-terminus of PF3D7_0816900 was 

fused upstream to GFP into the pARL2_GFP vector. The amplified PCR product and 

the vector were digested with the restriction enzymes XhoI and KpnI. Additionally, a 

chimeric construct of PF3D7_1020900 (ADP-ribosylation factor1) and 

PF3D7_0816900 (adenylate kinase 2) was created. Therefore, the N-terminus of 

PF3D7_1020900 with up to 17 amino acids was synthesized, introducing a putative 

palmitoylation site at position 4 and removing the valine residue at position 5. The 

Figure 2.1 In-vitro site directed mutagenesis by overlap extension PCR (modified according 

to Ho et al., 1989) 
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sequence was further extended with part of the N-terminus of PF3D7_0816900 ranging 

from the amino acid at position 18 to 37, which contains the polybasic stretch of amino 

acids of PF3D7_0816900. The synthesized sequence contained the restriction sites XhoI 

and KpnI and was cloned into the pARL2_GFP vector by fusing the insert upstream to 

GFP.  

The list of the constructs made with the corresponding primer sequences can be found 

in section 2.5.  

 

2.9.18.3 Constructs designed for co-localization studies inserted into the pARL_BSD 

vector  

The sequences of the following genes from P. falciparum (3D7 strain) were amplified 

using cDNA, which was transcribed from the RNA and integrated into the pARL_BSD 

vector. The following three constructs were generated by Jan Riedel (BSc candidate / 

Group Lingelbach).  

 
• PF3D7_1116400 (Sec 12) 
• PF3D7_1017300.1 (Grasp 1) 
• PF3D7_1144900 (Rab 6) 

 
The sequence of PF3D7_1121600 was amplified from the genomic DNA of  

P. falciparum (3D7 strain) designed with the restriction sites XhoI (forward primer) and 

AvrII (reverse primer). The PCR product was cloned into pARL_BSD vector after 

digestion with the respective restriction enzymes.  

 

2.10 Biochemical methods 

2.10.1 Cell fractionation of Plasmodium falciparum-infected red blood cells 

Trophozoite-infected cells were enriched using Gelafundin flotation or magnet based 

separation and subjected to hypotonic lysis. A total amount of 2 x 108 cells was 

resuspended in 1 mM Tris (stock: 10 mM) and lysed by repeated cycles of freezing and 

thawing in liquid nitrogen. Following centrifugation at 36,000 x g for 20 minutes at  

4 °C, the lysate was separated into soluble and pellet fraction. The soluble fraction was 

spun again at the same speed to remove any remaining membrane contaminants before 
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being boiled in sample buffer at 100 °C for 10 minutes. The pellet fraction was washed 

4-6 times in PBS (pH 7.4) containing 1 mM PMSF and PIC (1:200 dilution), boiled in 

sample buffer at 100 °C for 10 minutes and used for analysis by SDS-PAGE and 

immunoblotting.  

2.10.2 Streptolysin O permeabilization of Plasmodium falciparum-infected 

erythrocytes 

Streptolysin O (SLO) is known to be an important toxin produced by gram-positive 

bacteria of the genus Streptococcus. This toxin is able to bind to surface-exposed 

membrane cholesterol permeabilizing the membrane by causing holes up to 30 nm to 

the membrane (Bhakdi et al., 1985). SLO treatment of Plasmodium-infected cells leads 

to permeabilization of the erythrocyte membrane leaving the PVM and the parasite 

intact.  

To identify and further analyze the subcellular localization of P. falciparum proteins in 

infected erythrocytes SLO treatment was performed. Immediately after enrichment of 

the trophozoite-stage infected erythrocytes with Gelafundin or magnet based separation 

a total of 2 x 108 cells were treated with 3 hemolytic units (HU) of SLO in 188 µl of 

PBS (pH 7.4). The cells were incubated at room temperature for 6 minutes and gently 

mixed every 2 minutes. Following incubation the cells were spun at 1,000 x g for  

3 minutes. The supernatant was transferred to a new 1.5 ml eppendorf tube, washed two 

more times to remove any remaining contamination with the membrane fraction. The 

pellet was washed 4-6 times with PBS (pH 7.4) containing 1 mM PMSF and PIC (1:200 

dilution). Subsequently, the pellet containing the intact parasite and intact PV was 

resuspended in an appropriate volume of PBS (pH 7.4) and was either directly used for 

experiments or was further separated into soluble and pellet fraction. Therefore the 

pellet fraction containing the intact parasite with the surrounding PV was dissolved in  

1 mM Tris buffer (stock: 10 mM Tris in ddH2O) and subjected to three repeated cycles 

of freeze and thaw. The lysed cells were spun at 28,600 x g for 20 minutes and the 

supernatant containing the soluble fraction was transferred to a new tube and washed 

two more times. The pellet fraction was washed 4 to 6 times with PBS (pH 7.4) 

containing protease inhibitors and was finally dissolved in an appropriate amount of 

PBS. All the samples obtained so far 1) supernatant fraction and 2) pellet fraction were 
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diluted in sample buffer and immediately boiled at 100 °C for 10 minutes in heating 

block before being stored at – 80 °C.   

2.10.3 Saponin lysis of Plasmodium falciparum-infected erythrocytes 

Saponin is a glycoside, which is commonly found in plants and is able to lyse 

erythrocytes by forming complexes with cell membrane cholesterol leading to the 

permeabilization of the membrane. Saponin is known to disintegrate the erythrocyte 

membrane and the parasitophorous vacuolar membrane of P. falciparum but leaves the 

parasite intact (Beaumelle et al., 1987).  

Following Gelafundin or magnet based enrichment of trophozoite-stage infected 

erythrocytes a total of 2 x 108 cells were treated with 0.02 % saponin (stock 1mg/ml) 

dissolved in PBS (pH 7.4) containing 1 mM PMSF. The cells were incubated at room 

temperature for 3 minutes with only gently mixing. Once the incubation time was over, 

the cells were immediately centrifuged at 2,800 x g for 5 minutes at 4 °C. The 

supernatant was transferred to a new 1.5 ml eppendorf tube, while the pellet was 

washed 4-6 times with PBS (pH 7.4) containing 1 mM PMSF and PIC (1:200 dilution). 

To remove all the residual membrane in the supernatant fraction another centrifugation 

step was performed at 36,000 x g for 20 minutes at 4 °C. Sample buffer was added to 

the supernatant and the pellet, which was dissolved in PBS (pH 7.4) containing 1 mM 

PMSF and PIC (1:200 dilution). Both samples were boiled at 100 °C for 10 minutes in a 

heat block before further usage.   

2.10.4 Protease protection assay 

The protease protection assay was performed with trophozoite-stage parasites. 

Therefore the parasites were enriched using Gelafundin flotation or magnet based 

separation and treated with 0.02 % saponin (stock: 1 mg/ml) and SLO (3 HU), 

respectively. The supernatant was separated from the pellet fraction by centrifugation at 

2,500 x g for 5 minutes followed by further centrifugation steps of the supernatant at 

28,600 x g for 20 minutes at 4 °C removing all remaining cell debris. Subsequently, 

sample buffer was added to the supernatant fraction and the whole sample was boiled at 

100 °C for 10 minutes. The saponin and SLO pellet, respectively, was washed 4-6 times 

with PBS (pH 7.4) and divided for the majority of the experiments into two samples 

each containing 1 x 108 cells. Sample 1) was just dissolved in PBS (pH 7.4) being the 
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negative control, while sample 2) was treated with 1 mg/ml Proteinase K being the test 

sample. The samples were then incubated on ice for 30 minutes. Once the incubation 

time was over, 1 mM PMSF and PIC were added to the samples to prevent further 

protease activity and incubated for 3 minutes at room temperature. Subsequently, 

sample buffer was added to the samples and they were boiled at 100 °C for 10 minutes 

in a heat block before storage at – 80 °C.  

2.10.5 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a widely 

used method to separate proteins on the basis of their molecular weight. SDS is a 

detergent known to disturb the 3-dimensional structure of the protein and applies an 

overall negative charge to the proteins forming SDS-polypeptide complexes. This 

enables the separation of proteins in a polyacrylamide gel, based only on their 

molecular weight, eliminating the differences in mass:charge ratio of the proteins. 

Protein samples were mixed and heated in 2 x loading buffer containing the reducing 

agent dithiothreitol (DTT), which reduces the disulfide bonds within the proteins. The 

samples obtained after 1) saponin lysis, 2) SLO-lysis, 3) cell fractionation or after  

4) treatment with Proteinase K were dissolved in an appropriate buffer before being 

mixed 1:1 with 2 x sample buffer and heated at 100 °C for 10 minutes in a heat block.  

Electrophoresis was performed using a discontinuous buffer system and a 12 % 

polyacrylamide gel. The protein samples were run initially at 90 V leaving the proteins 

to migrate in the stacking gel, before the voltage was increased to 120 V once the 

proteins entered the separation gel. The protein ladder used to determine the molecular 

weight of the proteins was a Prestained Protein Ladder (Fermentas).  

Table 2.6 Pipetting scheme for a 12 % gel 

Reagent Stacking gel Separation gel (12 %) 

Gel buffer (4x) 2.5 ml 7.5 ml 

30 % acrylamide 1.3 ml 12 ml 

ddH2O 6.2 ml 10.25 ml 

APS 250 µl 200 µl 

TEMED* 15µl 25 µl 
*N,N,N’,N’-Tetramethylethylenediamine 
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2.10.6 Semi-Dry-Immunoblotting 

After separation of the proteins by gel electrophoresis they were electrophoretically 

transferred from the gel onto a nitrocellulose membrane for detection of the proteins by 

antibodies. The membrane was placed on the polyacrylamide gel and 'sandwiched' 

between 3 Whatman papers on each side, which were prior submerged in a western blot 

transfer buffer. Then the entire 'sandwich' was transferred to a blotting chamber. The 

transfer was carried out at 1 mA/cm2 for approximately 1 hour. The electric field 

enables the proteins to move from the gel onto the membrane, displaying a copy of the 

protein pattern, which was originally in the polyacrylamide gel. After the 

electrophoretic transfer the membrane was stained with Ponceau red solution for five 

minutes and then rinsed in distilled water until protein bands were visible. The Ponceau 

staining was washed off with PBS (pH 7.4) for about 10 minutes before the membrane 

was blocked with 5 % milk powder (dissolved in PBS) for 1 hour at room temperature 

with constant shaking. This blocking step of the membrane is important to avoid 

unspecific binding of antibodies. The primary antibody was diluted in a 5 % milk 

solution to the desired working concentration (section 2.3) and incubated with the blot 

for 2 -3 hours at room temperature or overnight at 4 °C, depending on the antibody 

used. The membrane was then washed 3 times for 10 minutes with PBS (pH 7.4) to 

remove all unbound primary antibodies. The secondary antibody conjugated to 

Horseradish Peroxidase (HRP) was diluted 1:2000 in 5 % milk solution and added to 

the membrane for 1-2 hours at room temperature with constant shaking. Once the 

incubation time was over, the membrane was washed 3 x times with PBS (pH 7.4) to 

remove unbound antibodies. Antibody reactive-proteins were detected using the 

Enhanced Chemiluminescence (ECL) detection system. Therefore the membrane was 

incubated with a substrate (luminol) that reacts with the conjugated secondary antibody 

in an enzyme-substrate reaction producing a fluorescent signal. The chemiluminescence 

was detected using a medical X-ray film.  
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2.11 Fluorescence microscopy 

2.11.1 Live cell imaging  

Plasmodium-infected cells were visualized using the Zeiss Axio Observer inverse 

epifluorescence microscope system. The cells were sedimented via a centrifugation step 

to obtain a cell pellet containing Plasmodium-infected and non-infected cells. The pellet 

was then washed 3 times with RPMI medium. For staining of nuclear DNA Hoechst dye 

was added (10 µg/ml) to the cells, which were resuspended in 1 ml RPMI, and 

incubated for 5 - 10 min at room temperature on a shaker. The cells were then ready to 

be visualized at room temperature using the inverse epifluorescence microscope with 

the appropriate filter sets and the Axiovision 4 software. Appropriate exposure times 

were chosen to prevent bleach out of the samples. All the data shown, represents at least 

6-12 images taken for each sample.   

2.11.2 Immunofluorescence assay  

The immunofluorescence assay was performed according to Tonkin (Tonkin et al., 

2004). Plasmodium-infected cells were fixed with 4 % paraformaldehyde/0.0075 % 

glutaraldehyde dissolved in PBS (pH 7.4) for 30 minutes at 37 °C. In a next step, 

glycine at a final concentration of 125 mM in 0.1 % TritonX-100/PBS 

(solubilization/permeabilization buffer) was added to the cells and incubated for  

15 minutes on a roller at room temperature before the cells were sedimented at  

1,000 x g for 2 minutes. The cells were then blocked in 3 % BSA/PBS for 1 hour. The 

primary antibody used was prepared in 3 % BSA/PBS and the cells were incubated with 

the primary antibody overnight at 4 °C. Once the primary antibody was removed, the 

cells were washed 3 times for 10 minutes with PBS (pH 7.4) before they were incubated 

with the appropriate secondary antibody for 2 hours at room temperature. The cells 

were washed again 3 times for 10 minutes with PBS (pH 7.4) before they were 

visualized by epifluorescence microscopy. The nuclear DNA of the fixed parasites was 

stained with Hoechst (50 ng/ml). Depending on the primary antibodies used (section 

2.3) the appropriate Cy2- or Cy3-conjugated secondary antibody was employed in a 

1:2000 dilution range.  
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2.11.3 Image processing with Image J 

ImageJ is an open source Java-written program (http://rsbweb.nih.gov/ij/) used to 

process images. Images taken with the aforementioned epifluorescence microscope 

were imported into ImageJ64, converted to 8-bit grayscale and each image was 

subjected to background subtraction. Using the ImageJ plugin RGBmerge the RGB 

channels were split into red, green and blue before the individual images were overlaid. 

Before the images were saved as TIF files they were adjusted with the 

brightness/contrast tool. In order to make the figures, the figures were imported from 

ImageJ to PowerPoint (Microsoft). The figures were then compiled and saved as TIF 

files.  
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2.12 Experimental design 
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3 Results 
 
A previous study of the parasitophorous vacuolar proteome of the intraerythrocytic 

stage of P. falciparum revealed the secretion of a number of proteins without a signal 

sequence. Approximately 50 % of the proteins lacked a signal sequence or any other 

known motifs responsible for the secretion of P. falciparum proteins into the PV. 

However, ~ 5 % of these proteins contained a glycine residue at the N-terminus, which 

is indicative for potential N-myristoylation (Nyalwidhe et al., manuscript in 

preparation). Proteins which lack a signal peptide but are N-myristoylated like the 

Leishmania HASPB and the Plasmodium CDPK1 have already been shown to be 

secreted into the extracellular space and the PV, respectively, suggesting that  

N-myristoylation can be seen as a mode of protein secretion among protists (Denny et 

al., 2000; Möskes et al., 2004). This hypothesis was further supported by a recent study 

of the P. falciparum adenylate kinase 2 (PfAK2). This protein was proposed to be 

secreted into the PV, potentially involving N-myristoylation in the secretion process 

(Ma et al., 2012).  

 

3.1 Selected candidate proteins 
The selected candidate proteins for this study - Prefoldin (PF3D7_0904500), Calcium-

dependent protein kinase 4 (CDPK4) (PF3D7_0717500) and the ADP-ribosylation 

factor 1 (ARF1) (PF3D7_1020900) - were first analyzed with the Myristoylator 

prediction program (www.expasy.com), from which the PfCDPK4 (PF3D7_0717500) 

and the PfARF1 (PF3D7_1020900) were highly predicted to be myristoylated, 

compared with PfPrefoldin (PF3D7_0904500). Another selected candidate protein of 

this study was the PfAK2 (PF3D7_0816900), which has already been shown to be 

myristoylated by the PfNMT (Rahlfs et al., 2009). In addition, all of these proteins were 

checked for the presence of a signal peptide using the prediction program SignalP 4.1. 

Server and none of them were predicted to contain a signal peptide.  
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Table 3.1 Prediction of N-myristoylation according to the Myristoylator prediction tool 
 PF3D7__0904500 

Prefoldin 

PF3D7__0717500 

CDPK4 

PF3D7__1020900 

ARF1 

Myristoylator: 

Predicted as ... 
non-myristoylated 

myristoylated 

(High confidence) 

myristoylated 

(High confidence) 

 

In the following each of the proteins is described briefly: 

Prefoldin is a molecular chaperone – a chaperone promotes correct protein folding – 

which interacts with other chaperones and was found in both eukaryotes and archaea 

(Vainberg et al., 1998). The function of Prefoldin fits with the identification of a great 

number of chaperones in the PV proteome analysis (Nyalwidhe and Lingelbach, 2006).  

CDPK4 contains a putative myristoylation site similar to CDPK1, a parasite protein, 

which was found to be myristoylated and secreted beyond the parasite plasma 

membrane due to N-myristoylation (Möskes et al., 2004). Therefore it is reasonable to 

hypothesize that CDPK4 might also be targeted to the PV in an acylation-dependent 

manner.  

ADP-ribosylation factor 1 is a highly conserved eukaryotic protein, which was found 

to be myristoylated at the N-terminus in various organisms including other protists.  

PfARF1 shows an overall structural and sequence similarity to the human ARF1 (Cook 

et al., 2010). Although ARFs are known to be mainly involved in vesicular trafficking 

of the secretory pathway (Boman and Kahn, 1995), the PV proteome approach assigned 

the localization  of PfARF1 to the PV.  

Pfadenylate kinase 2 was suggested to be located in the PV according to localization 

studies with GFP reporter constructs and fluorescence analyses of the respective protein 

(Ma et al., 2012). However, biochemical evidence and the mechanisms involved in the 

secretion of PfAK2 into the PV are still missing.  

 

To further analyze and investigate the localization of these candidate proteins and the 

potential secretion mechanism mutagenesis, fluorescence and thorough biochemical 

analyses were performed.  
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3.1.1 PfARF1 shows a different subcellular localization upon removal of the  

N-myristoylation site in P. falciparum-infected red blood cells 

To figure out whether or not PfPrefoldin, PfCDPK4 and PfARF1 were indeed secreted 

into the PV and whether this is dependent on myristoylation, plasmids were constructed 

to express each of these proteins fused to GFP, creating chimeric fusion proteins. In 

parallel, a similar batch of these constructs was generated, where the glycine residue at 

the N-terminus of each of the proteins was changed to alanine (G2A) removing the 

putative N-myristoylation site. All of these constructs driven by the low-expression 

CRT promoter in the pARL2 plasmid were then transfected individually into the  

P. falciparum 3D7 strain for episomal expression. The resulting transgenic parasites 

were then analyzed via epifluorescence microscopy regarding the subcellular 

localization of the protein (wildtype versus G2A mutant). Both the PfPrefoldin/GFP 

fusion protein and the variant PfPrefoldinG2A/GFP showed a strong cytosolic signal in 

the parasite indicating no difference in the subcellular localization between these two 

transgenic parasite lines (Fig. 3.1 A). The subcelluar localization of both 

PfCDPK4/GFP and PfCDPK4G2A/GFP also showed a strong cytosolic signal in the 

parasite and no differences in their subcellular localization pattern (Fig. 3.1 B). These 

findings with PfPrefoldin and PfCDPK4 contradict the outcome of the PV proteome 

analysis, since a ring-like structure around the parasite would be expected for PV 

localization as was found with the PfAK2/GFP (Fig. 3.4 A and Ma et al., 2012). 

Furthermore, the removal of the putative N-myristoylation site did not have any effect 

on the subcellular localization of the respective proteins. 

The wildtype PfARF1/GFP also did not show the expected ring-like structure around 

the parasite indicative of PV localization. However, PfARF1/GFP was found to be 

localized to 1 to 2 dot-like structures in the parasite cytosol, while the variant of it, the 

PfARF1G2A/GFP, showed a cytosolic localization (Fig. 3.1 C). This difference was 

further analyzed by subjecting the wildtype and variant parasite lines to hypotonic lysis 

and analyzing the samples via SDS-PAGE, western blotting and immunodetection. 

Hypotonic lysis was performed to distinguish between soluble and membrane-bound 

proteins. The full-length PfARF1 has a molecular weight of 21 kDa, while GFP has a 

molecular weight of 27 kDa. In the western blot analysis a band of approximately  

48 kDa was detected in the supernatant fraction of the PfARF1/GFP and the 
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PfARF1G2A/GFP parasite samples corresponding to the size of the fusion protein. As 

expected, a band of similar size could also be detected in the membrane-bound protein 

fraction of the PfARF1/GFP sample, but was missing in the PfARF1G2A/GFP sample. 

These results indicate that the removal of the N-myristoylation site indeed affects the 

subcellular localization of the PfARF1 protein in the parasite. Band 3 was used as a 

marker protein for the membrane fraction, while the plasmodial aldolase was used as a 

marker protein for the soluble fraction and both proteins were detected in the expected 

fractions with the respective antibodies. 
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Figure 3.1 Live cell imaging of selected candidate proteins and biochemical analysis of  
PfARF1/GFP and PfARF1G2A/GFP 
(A, B) The fluorescence images of the PfPrefoldin/GFP compared to the corresponding mutant transgenic 

parasite line and PfCDPK4/GFP compared to PfCDPK4G2A/GFP parasites, respectively, show no 

differences between their phenotypes. The subcellular localization of the wildtype and the respective 

modified form of the protein appears to be similar. (C) The PfARF1/GFP fusion protein appears like  dot-

like structures in the parasite cytosol, while the phenotype of the ARF1G2A/GFP variant shows an evenly 

distributed cytosolic signal. This indicates that the N-myristoylation site affects the subcellular 

localization of the protein. (D) Hypotonic lysis performed on the wildtype and the variant  

PfARF1/GFP parasite line, respectively, revealed a soluble protein pool in both samples. However, a 

membrane-bound protein pool could only be detected with an α-GFP antibody in the PfARF1/GFP 

parasite sample. As a control for proper hypotonic lysis Band 3 was used as a marker protein for the 

membrane fraction and aldolase was used as a marker protein for the soluble fraction and detected with 

the respective antibodies. DIC channel for high-contrast; in merge: green (GFP),  blue (Hoechst = nucleus 

dye). Scale bar – 3 µm. 
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3.1.2 PfARF1 shows co-localization with marker proteins of the compartments of 

the secretory pathway  

To further analyze the subcellular localization of PfARF1 a co-localization study with 

already verified marker proteins of the secretory pathway of P. falciparum was 

performed. Since ARF proteins are involved in the vesicle biogenesis of the secretory 

pathway PfARF1/GFP transgenic parasites were co-transfected with each of the 

following constructs individually: PfSec12 fused to mCherry in pARL2; PfGrasp1 fused 

to mCherry in pARL2; PfRab6 fused to mCherry in pARL2. PfSec12 was identified as 

localized to the ER (Lee et al., 2008) and is a protein known to be involved in the 

vesicle formation of the anterograde transport (Barlowe and Schekman, 1993).  

PfGrasp1 – Grasp proteins were found to play a role in the stacking of the Golgi- 

complex (Barr et al., 1997) – and was found to localize to the less elaborate Golgi-

complex of P. falciparum (Struck et al., 2005). PfRab6 - the Rab6 protein of the Rab 

GTPase family was found to play a role in the intra-Golgi transport in eukaryotic cells 

(Martinez and Goud, 1998) – was found at the P. falciparum Golgi-complex (de Castro 

et al., 1996). Furthermore, a co-localization study with PfExp1 - an integral membrane 

protein localized to the PVM of the parasite during the blood-stage (Günther et al., 

1991) - was performed as another attempt to investigate further the findings of the PV 

proteome analysis. Therefore PfARF1/GFP transgenic parasites were co-transfected 

with PfExp1 fused to mCherry in the pARL2 vector. As a control PfARF1G2A/GFP 

transgenic parasites were transfected with each of the marker constructs individually.  

During live cell imaging the signal of PfSec12/mCherry was observed in close 

proximity to the nucleus as a discrete structure that to a certain extent overlapped with 

the dot-like cytosolic signal of PfARF1/GFP indicating partial co-localization, which 

can be seen in the merge channel. PfGrasp1/mCherry showed similar to PfARF1/GFP 

dot-like structures in the parasite cytosol near the parasite nucleus, which also resembles 

the fluorescence analyses of PfGrasp/GFP transgenic parasites performed by Struck and 

colleagues (Struck et al., 2005). Merged images of PfARF1/GFP and 

PfGrasp1/mCherry showed a strong co-localization of both proteins. PfRab6/mCherry 

also showed dot-like structures in the parasite. This observation coincides with the 

findings of de Castro and colleagues, where they claim that the maximal expression of 

this protein occurs at the trophozoite stage of P. falciparum during intraerythrocytic 
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development (de Castro et al., 1996). PfRab6/mCherry partially co-localizes with 

PfARF1/GFP, however, a complete co-localization like that seen for  

PfGrasp1/mCherry and PfARF1/GFP could not be observed between the dot-like 

cytosolic signal of PfARF1/GFP and PfRab6/mCherry in the merged images. These 

findings, taken together, clearly reveal the localization of PfARF1 to compartments 

involved in the secretory pathway inside the parasite cytosol. In the co-localization 

study with the PfARF1/GFP protein co-expressed with PfExp1/mCherry a prominent 

ring-like structure around the parasite could be visualized during live cell imaging for 

PfExp1/mCherry. However, some signal could also be seen within the cytoplasm of the 

parasite. This finding corresponds to the results of a previous study where the fusion 

protein PfExp1/GFP was analyzed with respect to its localization during the blood-stage 

and was found to be partially localized to the food-vacuole of the parasite in addition to 

a PVM localization (Adisa et al., 2003). Merged images of PfARF1/GFP and 

PfExp1/mCherry showed no overlapping of the signals. This indicates that no co-

localization between PfARF1 and the PVM marker of PfExp1 was detected, which is 

contradictory to the hypothesis of PV localization of PfARF1.  
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Figure 3.2 Co-localization of PfARF1/GFP with proteins localized to compartments of the secretory 
pathway  
(A) PfARF1/GFP shows partial co-localizaton with the plasmodial ER marker protein PfSec12. (B)  

PfGrasp1, a marker protein of the cis-Golgi-complex, shows dot-like structures within the parasite, which 

strongly overlap with the dot-like structures of PfARF1/GFP. (C) PfRab6, a marker protein of the trans-

Golgi-complex, also show dot-like structures within the parasite, which partially overlap with the dot-like 

signals of the wildtype PfARF1. (D) PfExp1 is an integral PVM protein as can be seen from the 

prominent ring-like structure; however no overlap of the signal with PfARF1/GFP was visible. (A,B,C,D) 

The marker proteins of each compartment were also co-expressed with the PfARF1G2A/GFP. DIC channel 

for high-contrast; in merge: green (GFP), red (mCherry), blue (Hoechst = nucleus dye). Scale bar – 3 µm. 

 

3.1.3 PfARF1 is not secreted into the PV in the blood-stage according to 

biochemical analyses 

Since the data from the PV proteome analysis and the fluorescence microscopy study 

are contradictory, a biochemical approach was performed. Therefore the PfARF1/GFP 

and PfARF1G2A/GFP transgenic parasite lines were subjected to Streptolysin O and 

saponin treatment, respectively, and were then further analyzed by SDS-PAGE, western 

blot analysis and immunodetection. Streptolysin O is a bacterial-pore forming protein, 

which induces pores in the red blood cell membrane (RBCM) resulting in the release of 

the erythrocyte cytosol but leaving the PV and the parasite intact (Bhakdi et al., 1985). 

Saponin, however, is a detergent, which disintegrates the red blood cell membrane and 
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the parasitophorous vacuolar membrane resulting in the release of the erythrocyte 

cytosol and the vacuolar content and only leaving the PPM and the parasite intact 

(Beaumelle et al., 1987). The supernatant fraction after SLO lysis contains the red blood 

cell cytosol, while after saponin treatment the erythrocyte cytosol and the content of the 

PV is found in the supernatant fraction. The pellet fraction after SLO lysis contains the 

permeabilized RBCM, the intact PV and the intact parasite, while the pellet fraction 

after saponin lysis contains the parasite with an intact parasite plasma membrane and 

the permeabilized PVM and RBCM.  

SLO Lysis Saponin Lysis 
and 

 

An analysis in which the respective transgenic parasite line is subjected to each of these 

methods and then the results are compared with each other enables the identification of 

the subcellular localization of the examined protein. In addition to the SLO and saponin 

treatment, a protease protection assay was performed. Therefore the pellet fraction after 

each of the two treatments was divided into two aliquots containing equal cell numbers, 

then one of the aliquots was treated with Proteinase K and leaving the other untreated 

(control). After SLO lysis and Proteinase K treatment those proteins which are located 

outside of the PV will be degraded by the presence of Proteinase K, while proteins 

protected by the PVM and the PPM remain unaffected. After saponin lysis followed by 

Proteinase K treatment those proteins which would be located beyond the parasite 

plasma membrane will be degraded, while the proteins protected by the PPM meaning 

inside the parasite, remain unaffected. The plasmodial soluble serine rich protein 

(SERP) located in the PV was used as a control to demonstrate that the PV remained 

intact after SLO lysis. Pfaldolase - a protein found in the cytosol of the parasite - was 

used as a control protein to show that the parasite remained intact after SLO and 

saponin treatment, respectively. A positive control for an efficient protease digestion in 

each of the experiment itself was not performed; however, the efficiency of protease 

digestion was shown for one of the variants of PfAK2 (detailed in Fig. 3.7 C): the 

fusion protein analyzed (PfAK2G2AC4A) was protected by the PPM after saponin 

treatment. Proteinase K was given access to the fusion protein by permeabilizing the 

PPM of the saponin treated cells with a detergent (Triton X 100) and it was shown that 

Proteinase K was able to digest the fusion protein. This example indicates the efficiency 
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of Proteinase K for digestion of the fusion protein of one of the PfAK2 variants. The 

protease protection assay was performed for each of the different variants with the same 

concentration and incubation time as performed for this particular variant (see Fig 3.7 C 

for further detail).  

In the following experiment the GFP antibody detected PfARF1/GFP in the western 

blot analysis, while an antibody directed against PfARF1 detected both the endogenous  

PfARF1 and the fusion protein PfARF1/GFP. Fig 3.3 displays the results of the SLO 

and saponin lysis performed on the PfARF1/GFP and the PfARF1G2A/GFP transgenic 

parasite lines, respectively. The PV marker protein PfSERP and the parasite marker 

protein Pfaldolase are both found after SLO lysis and Proteinase K treatment 

predominantly in the pellet fraction. This indicates that the PV and the parasite almost 

remained intact and that both proteins were not accessible to Proteinase K. However, a 

faint band of approximately 40 kDa could also be detected with an α-aldolase antibody 

in the SLO supernatant fraction of the PfARF1/GFP transgenic parasite sample. The 

band size, however, is much weaker compared to the band size in the SLO pellet 

fractions. Although the majority of the control proteins were found in the SLO pellet 

fraction indicating an almost proper lysis, some lysis of parasites during the SLO and 

saponin treatment and during the incubation time did occur. This, however, is difficult 

to be avoided completely, which is a general issue of this treatment procedures as was 

also found in other studies using these lysis methods for investigation of protein 

localization in P. falciparum infected cells (Ansorge et al., 1997; Spielmann et al., 

2006; Heiber et al., 2013). A band of approximately 50 kDa was detected with the α-

GFP antibody which corresponds to the size of the fusion protein in both the SLO pellet 

fraction treated with Proteinase K and the untreated one of the ARF1/GFP and 

ARF1G2A/GFP transgenic parasite samples, respectively. This indicates that the fusion 

proteins ARF1/GFP and ARF1G2A/GFP, respectively, are not located beyond the PVM 

since the band in the SLO pellet fraction treated with Proteinase K was not digested. 

This indicates that both of the fusion proteins do not cross the PVM to be secreted into 

the host cell (Fig. 3.3 A). A positive control of efficient Proteinase K digestion for this 

particular experiment is missing, however, the efficiency of Proteinase K digestion of a 

fusion protein in general is shown for one of the variants (PfAK2G2AC4A/GFP in Fig. 3.7 

C). After saponin treatment and Proteinase K treatment of the samples of both 
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transgenic parasite lines PfSERP was detected in the supernatant fraction meaning that 

the PV was lysed as expected. Pfaldolase was detected in both the saponin pellet 

fraction treated with Proteinase K and the untreated saponin pellet fraction indicating an 

almost retention of an intact parasite. Similar to the result of the SLO treatment aldolase 

was also detected in the supernatant fraction of the PfARF1/GFP sample as a very faint 

band. Thus, a small amount of aldolase was released during the lysis procedure 

indicating some lysis of parasites during the saponin treatment. However, the majority 

of the protein was detected in the pellet fraction.	
  PfSERP could also be detected in the 

saponin pellet fraction, but the band of approximately 130 kDa disappeared upon 

Proteinase K treatment. This probably means that SERP sticks to membranes and was 

difficult to wash off the membrane despite many washing steps of the pellet fraction 

during sample preparation. Upon proteinase treatment it could be removed from 

sticking to the membrane. However, a band of ~ 50 kDa corresponding to the 

PfARF1/GFP and the PfARF1G2A/GFP fusion protein, respectively, was found in the 

saponin pellet fraction when detected with an α-GFP antibody and in the saponin pellet 

treated with Proteinase K (Fig. 3.3 A). This indicates that the fusion protein was not 

accessible to Proteinase K digestion and therefore is not secreted beyond the parasite 

plasma membrane. This result corresponds to the fluorescence and co-localization 

studies showing that PfARF1 is solely found in the parasite cytosol and is not secreted 

beyond the parasite plasma membrane. To further support this observation the 

PfARF1/GFP transgenic parasite line was subjected to a co-localization study with an 

antibody against plasmodial ARF1, which was also used to detect the endogenous 

PfARF1 after SLO and saponin treatment, respectively. Indeed the antibody co-

localized partially with the fusion protein PfARF1/GFP as can be seen in the 

overlapping dot-like structures, but also endogenous plasmodial ARF1 could be 

detected as punctuate structures in the parasite cytosol. Furthermore, a band 

corresponding to the endogenous PfARF1 of about 21 kDa and to the fusion protein of 

50 kDa could be detected with the plasmodial α-ARF1 antibody in both the SLO and 

saponin pellet fractions (Fig. 3.3 C). Furthermore, the bands were also detected in each 

of the fractions, which were treated with Proteinase K. The endogenous ARF1 and the 

PfARF1/GFP fusion protein were not affected by Proteinase K treatment indicating that 

they were protected within the parasite cytosol. A small amount of the endogenous ARF 
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protein could also be detected in the supernatant fraction after SLO and saponin 

treatment, respectively. This indicates that some of the parasites were lysed during each 

of the treatment why some of the endogenous ARF protein could be detected in the 

supernatant fraction similar to the amount of the marker protein aldolase found in the 

supernatant fraction. A possible reason why the GFP-tagged ARF protein was not found 

in the supernatant might be that the amount of protein episomally expressed might be 

far less than the amount of the expression of the endogenous aldolase and ARF protein 

in the parasite, why despite some lysis of the parasites during the procedures the amount 

of GFP-tagged ARF was too less to be detected. This explanation is furthermore 

supported by the intensity of the bands of the endogenous ARF compared to the GFP-

tagged version. However, a band of around 35 kDa appears strongly in the supernatant 

fraction after SLO and saponin treatment, but also to a less extent in the SLO pellet 

fractions (+/- Proteinase K). This could be the result of cross-reactivity of the antibody 

to exported parasite proteins in the host cell or host cell proteins and also within the 

parasite (Fig. 3.3 C). Images of the immunofluorescence study also occasionally, but 

not always revealed a weak detection of structures in the host cell cytosol by the 

plasmodial α-ARF1 antibody. Taken together, although PfARF1 was hypothesized to be 

localized to the PV according to the PV proteome approach, fluorescence and 

biochemical analyses revealed its localization solely within the parasite cytosol to 

compartments of the classical secretory pathway.  
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Figure 3.3 PfARF1/GFP is not secreted beyond the parasite plasma membrane according to a 
biochemical approach 
(A) The PfARF1/GFP transgenic parasites and the respective variant were both subjected to SLO and 

saponin lysis, followed by a protease protection assay. PfSERP and Pfaldolase were used as controls as a 

PV marker protein and parasite marker protein, respectively. All of the marker proteins could be detected 

with their respective antibodies after SLO and saponin lysis of the two transgenic parasite lines 

predominantly in the expected compartments. However, lysis of some parasites did occur during the SLO 

and saponin treatment, respectively, why a small amount of aldolase was also detected in the supernatant 

fraction. The fusion proteins PfARF1/GFP and PfARF1G2A/GFP were detected with an α-GFP antibody 

after SLO and saponin lysis, respectively, in the pellet fractions and also the pellet fractions treated with 

Proteinase K. (B) Co-localization between the PfARF1/GFP and an α-ARF1 antibody directed against the 

plasmodial endogenous ARF1 (which will also detect the fusion protein tagged with GFP) can be seen in 

the fluorescence images. According to the biochemical approach the plasmodial α-ARF1 antibody 
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detected a strong band at 21 kDa and a weaker band of approximately 50 kDa in the SLO and saponin 

pellet fractions (-/+ Proteinase K addition). A small amount of the endogenous ARF protein was also 

detected in the supernatant fraction, which might be due to lysis of some parasites during the procedure. 

A strong protein band of ~ 35 kDa was also detected in the supernatant fraction and in both pellet 

fractions (-/+ Proteinase K) of saponin treated PfARF1/GFP parasites which might result from cross-

reactivity of the antibody with other parasite proteins. DIC channel for high-contrast; in merge: green 

(GFP), red (α-ARF1), blue (Hoechst = nucleus dye). Scale bar – 3 µm.  

	
  
	
  

3.2 Is PfAK2 secreted beyond the parasite plasma membrane? 
	
  
Similar to the reporter construct studies designed for PfPrefoldin, PfCDPK4 and  

PfARF1 Ma and colleagues generated fusion proteins with the full-length PfAK2 fused 

to GFP and created a variant of it, the PfAK2G2A/GFP. In the variant the  

N-myristoylation site was removed by changing the glycine residue at the N-terminus of 

the protein to alanine. Both of these constructs were transfected individually into the  

P. falciparum 3D7 strain and were episomally expressed with the low-expression 

promoter CRT by Ma and colleagues. A repetition of the fluorescence analysis of the  

PfAK2/GFP transgenic parasite line and the PfAK2G2A/GFP - first shown by Ma and 

colleagues (Ma et al., 2012) - was performed in this study to visualize the difference 

between the wildtype phenotype of the PfAK2/GFP fusion protein and the  

PfAK2G2A/GFP fusion protein and for subsequent comparison with the following 

variants made and analyzed in this study. Interestingly, the phenotypes of the  

PfAK2/GFP fusion protein and PfAK2G2A/GFP fusion protein differed in their protein 

localization pattern when visualized by fluorescence microscopy. While the 

PfAK2/GFP showed a ring-like structure around the parasite with a knob-like 

protrusion, which are referred to as 'loops' the signal from the PfAK2G2A/GFP was 

rather found to be evenly distributed in the cytosol of the parasite (Fig. 3.4 A and Ma et 

al., 2012). This indicates that the N-myristoylation site has an effect on the localization 

of PfAK2. These findings were further analyzed via hypotonic lysis by Ma and 

colleagues with samples of both transgenic parasite lines (PfAK2/GFP and 

PfAK2G2A/GFP, respectively). While the AK2/GFP fusion protein was found in the 

membrane fraction consistent with the role of membrane-anchoring due to myristate, 

the variant form, where the N-myristoylation site was removed, was found entirely in 
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the soluble fraction (Ma et al., 2012). Further, Ma and colleagues proposed that the full-

length AK2 localizes to the PVM. This was shown by a co-localization study of 

PfSERP and PfExp1 with the PfAK2/GFP parasite line by the overlap of the signals of 

PfExp1 and PfAK2/GFP in the merged image (Ma et al., 2012). However, biochemical 

evidence on the subcellular localization of PfAK2 and further explanation on the 

secretion process of PfAK2 are still missing.  

 

To verify the findings of Ma and colleagues the transgenic parasite lines of  

PfAK2/GFP and PfAK2G2A/GFP were subjected to Streptolysin O and saponin lysis 

before being analyzed by SDS-PAGE, western blotting and immunodetection. SLO 

treatment was performed on the sample of the PfAK2/GFP transgenic parasite line (Fig. 

3.4 B). The pellet fraction after SLO lysis contains the intact PV and parasite and the 

permeabilised RBCM, while the SLO supernatant fraction only contains the erythrocyte 

cytosol. The band of approximately 60 kDa detected in the SLO pellet fraction by an α-

GFP antibody corresponds to the size of the fusion protein consisting of the full-length 

PfAK2 (32.5 kDa) and GFP (27 kDa). Proteinase K treatment of the SLO pellet fraction 

did not lead to the disappearance of the band indicating that the fusion protein 

PfAK2/GFP was not digested by Proteinase K, hence it is not located at the outer face 

of the PVM. Bands corresponding to the size of the marker proteins PfSERP and 

Pfaldolase were each found in the pellet fractions meaning that the PV was not lysed 

after SLO treatment of the parasitized cells but remained intact. In a next step the 

saponin lysis in combination with Proteinase K treatment was performed to figure out 

whether or not the AK2 protein was secreted beyond the PPM. Saponin treatment of 

parasitized cells leads to the retention of an intact parasite and to disintegration of the 

RBCM and PVM resulting in the release of the erythrocyte cytosol and the vacuolar 

content (supernatant fraction). Hence the pellet fraction after saponin treatment contains 

the intact parasite, the permeabilized PVM and RBCM, while the supernatant fraction 

after saponin treatment contains the erythrocyte cytosol and the vacuolar content. After 

saponin treatment bands corresponding to the size of the the marker proteins of both 

compartments - PV (marker protein: SERP) and parasite (marker protein: aldolase) - 

were found predominantly in the expected fractions. A positive control of efficient 

Proteinase K digestion for this particular experiment is missing, however, the efficiency 
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of Proteinase K digestion of a fusion protein is shown for one of the variants 

(PfAK2G2AC4A/GFP in Fig. 3.7 C).  

Although a band of 130 kDa corresponding to PfSERP could also be detected in the 

saponin pellet fraction of the PfAK2/GFP parasitized cells the band disappeared after 

Proteinase K treatment indicating that SERP sticks to membranes and was not properly 

removed during the washing steps after saponin treatment. Also a small amount of 

aldolase was detected in the supernatant fraction after saponin treatment, the majority of 

aldolase was found in the pellet fraction. This is a general issue of this procedure which 

could also be seen in different P. falciparum studies (Ansorge et al., 1997; Spielmann et 

al., 2006; Heiber et al., 2013). However, the band of ~ 60 kDa in the saponin pellet 

fraction of the sample from the PfAK2/GFP transgenic parasite line when treated with 

Proteinase K disappeared. This indicates that Proteinase K had access to the fusion 

protein (Fig 3.4 B) what indicates that AK2 fused to GFP was not protected by the 

parasite plasma membrane. This finding corresponds to the findings of Ma and 

colleagues in which they claim PfAK2 to be located beyond the PPM. To further 

support the role of N-myristoylation in the secretion process beyond the PPM the 

PfAK2G2A/GFP variant was analyzed in the same manner. Since the marker proteins of 

the PV (SERP) and parasite (aldolase), respectively, were almost found in the expected 

fractions after SLO and saponin treatment, respectively, an almost proper lysis did take 

place. However, similar as observed for the saponin treated PfAK2/GFP parasites, the 

PV marker protein SERP also was detected in the pellet fraction, but almost disappeared 

in the saponin pellet fraction treated with Proteinase K. This suggets that SERP sticks to 

membranes and is difficult to remove despite many washing steps during sample 

preparation. However, the band in the saponin pellet fraction of the variant 

PfAK2G2A/GFP still could be detected by an α-GFP antibody after Proteinase K 

treatment. This indicates that the fusion protein was not digested by proteinase and that 

Proteinase K had no access to the fusion protein. From this observation it can be 

concluded that the N-myristoylation site indeed plays a role in the localization of the  

P. falciparum AK2 protein. Two different phenotypes could be observed in the 

fluorescence analyses comparing the wildtype protein and one where the  

N-myristoylation site was removed (Ma et al., 2012). This is consistent with the 

findings of the biochemical approach in which the wildtype fusion protein was found 
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digested upon Proteinase K treatment after saponin lysis. This indicates that the 

wildtype protein is secreted into the PV, while the variant of this protein, which lacks 

the N-myristoylation site, remained protected within the parasite cytosol (Fig. 3.4).  
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Figure 3.4 Live cell imaging and a biochemical approach of the PfAK2/GFP transgenic parasite line 
and the variant PfAK2G2A/GFP  
(A) Live cell imaging of the PfAK2/GFP expressing parasites reveals a ring-like structure of the fusion 

protein, while the signal of the fusion protein of the PfAK2G2A/GFP parasites appears to be cytosolic. DIC 

channel for high-contrast; overlay (green =GFP; Hoechst = nucleus dye). Scale bar – 3 µm. (B) The 

PfAK2/GFP transgenic parasites and the respective variant were both subjected to SLO and saponin lysis, 

followed by a protease protection assay. PfSERP and Pfaldolase were used as PV marker protein and 

parasite marker protein, respectively. All of the marker proteins could be detected with their respective 

antibodies predominantly in the expected compartments after SLO and saponin lysis. However, aldolase 

was also sometimes detected in the supernatant fraction, which indicates that a small amount of parasites 

did lyse during the whole procedure. The fusion proteins PfAK2/GFP and PfAK2G2A/GFP were detected 

with an α-GFP antibody after SLO and saponin lysis in the SLO pellet fraction and also the pellet fraction 

treated with Proteinase K. However, while the variant of the fusion protein PfAK2G2A/GFP was detected 

in both saponin pellet fractions (-/+ Proteinase K addition), the wildtype fusion protein could not be 

detected in the saponin pellet fraction treated with Proteinase K. This indicates that the protein was 

accessible to Proteinase K. The size-marker is presented in kDa.  

 

	
  

3.2.1 A multiple sequence alignment  

Ma and colleagues already performed a multiple sequence alignment with PfAK2,  

PfAK1, the two PfAKLPs, PfGAK and the human AK6, in which they showed that the 

N-terminus of PfAK2 differed from the N-termini of the other aligned proteins (Ma et 

al., 2012). In this study, a further multiple sequence alignment (MSA) of PfAK2 with 

putative adenylate kinase 2 proteins of other Plasmodium species and other 

Apicomplexa was performed. Except for Plasmodium cynomolgi (B strain) – a 

Plasmodium species known to infect monkeys – which harbours the adenylate kinase 2 

protein, only putative adenylate kinase 2 proteins were identified for the other 

Plasmodium species. Interestingly, other parasitic protozoa such as Babesia bovis and 

some Leishmania species also contain an adenylate kinase 2 protein. That is why 

Babesia bovis and Leishmania infantum were also included in the MSA.  

Only the N-terminus (1-50 positions) is presented in the following graphic (Fig. 3.5). 

The entire sequence alignment can be found in the appendix. The N-terminus of PfAK2 

clearly revealed motifs, which are missing in the N-terminus of PfAK1, but also in the 

N-termini of the other adenylate kinase 2 proteins of the other Plasmodium species and 

the other parasitic protozoa. Apart from the glycine residue at the N-terminus, which 
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has already been shown to be myristoylated by plasmodial NMT (Rahlfs et al., 2009), a 

cysteine residue at the 4th position was found at the N-terminus of plasmodial AK2 

indicative for a putative palmitoylation site. According to the 'two-step model' a stable 

membrane anchoring of a myristoylated protein requires either a palmitoylation site or a 

polybasic cluster of amino acids close by. The N-terminus of PfAK2 harbours in 

addition to a putative palmitoylation site a polybasic cluster of lysine residues at the N-

terminus. These motifs might play a role in stable protein anchoring and secretion 

beyond the parasite plasma membrane as was already shown for the Leishmania 

HASPB and the Plasmodium CDPK1: both proteins contained in addition to a N-

myristoylation site a palmitoylation site at their N-terminus (Denny et al., 2000; Möskes 

et al., 2004). However, these  motifs were not found in the other verified and putative 

adenylate kinase 2 proteins aligned. 

 

	
  

Figure 3.5 A multiple sequence alignment of the N-terminus of PfAK2 and other verified and 
putative adenylate kinase 2, respectively, in other Plasmodium species and other parasitic protozoa 
PfAK2 (PF3D7_0816900) was aligned to PfAK1 (Pf3D7_1008900), PbAK2, putative 

(PBANKA_071390), PcAK2, putative (PCHAS_072300), PkAK2, putative (PKH_051560),  

PvAK2, putative (PVX_094660), PyAK2, putative (PYYM_071400), PcAK2 (PCYB_081850),   

BbAK2 (bbov|XP_001609458.1) and LiAK2 (linf|LinJ.34.0130). The N-terminus of PfAK2 clearly 

differs from the N-termini of the other aligned proteins, insofar as it contains a verified N-myristoylation 

site (Rahlfs et al., 2009), a putative palmitoylation site at the 4th position and a polybasic cluster of lysine 

residues (each motif marked in grey). None of the other AK2 proteins contain either of these motifs. The 

alignment was created using ClustalW and only the first 50 positions are shown. The entire sequence 

alignment can be found in the appendix.  
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3.2.2 A putative palmitoylation site at the N-terminus of PfAK2   

In order to figure out whether or not PfAK2 has a putative palmitoylation site at the N-

terminus the cysteine residue at position 4 was changed to alanine. The resultant  

PfAK2C4A/GFP transgenic parasite line was first visualized by fluorescence microscopy 

before being subjected to hypotonic, SLO and saponin lysis followed by SDS-PAGE, 

western blotting and immunodetection. Fluorescence analysis of the PfAK2C4A/GFP 

transgenic parasites reveals a different phenotype to the wildtype PfAK2/GFP (Fig. 3.4 

A). Instead a ring-like structure as visualized for the wildtype PfAK2/GFP expressing 

parasites the GFP signal of this variant lacking the putative palmitoylation site appears 

cytosolic. Interestingly, patch-like accumulation at some regions within the parasite 

cytosol can be seen especially in the early trophozoite stage of the parasite (marked with 

a white arrow in Fig. 3.6 A), but also in late-stage parasites. This observation coincides 

with the findings of the hypotonic lysis, which was used to distinguish between soluble 

and membrane fraction of the parasitized cells. For the soluble fraction the plasmodial 

aldolase was used as a marker protein, while for the membrane fraction the PfExported 

protein 1 (Exp1) - an integral membrane protein of the PVM (Günther et al., 1991)- was 

used as a marker protein. A band of about 60 kDa could be detected with an α-GFP 

antibody in both fractions corresponding to the size of the fusion protein  

PfAK2C4A/GFP. A soluble and membrane-bound pool of this protein could be detected. 

Antibodies against PfExp1 and Pfaldolase were used to detect these proteins in the 

soluble and membrane fraction, respectively, as a control for proper separation (Fig. 3.6 

B). SLO treatment of the transgenic parasites of the PfAK2C4A/GFP line revealed that 

the GFP chimera was found in both SLO pellet fractions (+/- Proteinase K). This 

indicates that no digestion of the fusion protein took place. A positive control of 

efficient Proteinase K digestion for this particular experiment is missing, however, the 

efficiency of Proteinase K digestion of a fusion protein in general is shown for one of 

the variants (PfAK2G2AC4A/GFP in Fig. 3.7 D). The detection of the marker proteins 

PfSERP and Pfaldolase by their respective antibodies in the SLO pellet fraction 

indicates that proper lysis by SLO had occured since their correct localization indicates 

an intact PV. A strong GFP signal was obtained in the pellet fraction of saponin treated 

PfAK2C4A/GFP transgenic parasites, which was detected by the α-GFP antibody. The 

band in the saponin pellet fraction treated with Proteinase K was of similar size and 
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intensity indicating that the fusion protein lacking the putative palmitoylation site was 

protected by the parasite plasma membrane, hence not secreted beyond the PPM. Also 

the compartments seem to be almost intact after saponin treatment of the parasitized 

cells since the bands corresponding to the size of PfSERP and Pfaldolase were 

predominantly detected in the expected fractions. Again SERP sticks to the membrane 

in the saponin pellet fraction but almost disappeared after Proteinase K treatment. Here 

also a small amount of aldolase is detected in the supernatant fraction indicating some 

lysis of the parasites during the treatment. From these observations it can be concluded 

that the PfAK2C4A variant exists in a soluble and membrane-bound form possibly 

resulting from the unstable binding of the myristoyl moiety to a membrane. This can be 

seen by the fluorescence images due to some patch-like accumulation of the GFP signal 

in the overall cytosolic signal inside the parasite. Further, a partial soluble and 

membrane-bound pool of the protein was found after hypotonic lysis. The lack of the 

cysteine residue at the N-terminus prevented secretion of the protein beyond the parasite 

plasma membrane as indicated by saponin lysis and the protease protection assay.   
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Figure 3.6 The PfAK2C4A/GFP transgenic parasite line shows a cytosolic localization and is not 
secreted beyond the parasite plasma membrane 
(A) Live cell imaging of the PfAK2C4A/GFP parasite line in early and late trophozoite stages show patch-

like structures within the parasite, which is different to the wildtype phenotype. DIC channel for high-

contrast; in merge: green (GFP),  blue (Hoechst = nucleus dye). Scale bar – 3 µm. (B) After hypotonic 

lysis a band corresponding to the size of the fusion protein could be detected in the soluble and membrane 

fraction. Pfaldolase was used as a control for the soluble fraction and PfExp1 was used as a control for the 

membrane fraction. (C) PfAK2C4A/GFP parasites were subjected to SLO and saponin lysis. The marker 

proteins PfSERP of the PV and Pfaldolase of the parasite were both found predominantly in the expected 

fractions indicating an almost proper SLO lysis and saponin lysis, respectively. However, minimal 

amounts of aldolase could also be detected in the supernatant fraction and a small amount of SERP was 

also found in the saponin pellet fraction even after Proteinase K treatment. This indicates that some 

parasites did indeed lyse during the whole procedure. The size markers are presented in kDa.   

	
  

3.2.3 The PfAK2G2AC4A expressing parasites localize to the parasite cytosol 

To further examine the role of the N-myristoylation site and the putative palmitoylation 

site a further transfectant line was generated. Therefore the N-myristoylation and the 

putative palmitoylation site were removed from PfAK2 by changing the respective sites 

to alanine. The resultant PfAK2G2AC4A/GFP transgenic parasite line was visualized by 

fluorescence microscopy and then subjected to biochemical analyses. The  

PfAK2G2AC4A/GFP parasites showed a strong cytosolic signal of the fusion protein when 

observed by fluorescence microscopy (Fig. 3.7 A), which differs in location from the 

GFP signal seen with the wildtype transgenic parasite strain. The cytosolic localization 

of the GFP chimera is further supported by the hypotonic lysis study where a band 

corresponding to the PfAK2G2AC4A/GFP of 60 kDa could be detected in the soluble 
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fraction by an α-GFP antibody. PfExp1 was detected in the membrane fraction, while 

Pfaldolase was detected in the soluble fraction showing that a clear separation took 

place during the lysis procedure (Fig 3.7 B). The parasites were subjected to SLO and 

saponin lysis. This time the pellet fraction of the SLO and saponin lysis, respectively, 

were equally divided into for samples and were treated as followed: 1) untreated 

(control), 2) addition of Proteinase K, 3) addition of Proteinase K and Triton X-100 and 

4) addition of Triton X-100 and PIC/PMSF. Triton X-100 was used to permeabilize the 

PPM giving Proteinase K access to degrade the GFP chimera, once it is released upon 

Triton X-100 treatment of the cells. This positive control shows the efficacy of 

Proteinase K digestion of the fusion protein (disappearance of the protein band in this 

fraction). Treatment of the parasizited cells with only Triton X-100 showed that the 

protein band of the GFP chimera is still present meaning that Triton X-100 is not 

causing the disappearance of the protein band (negative control). PIC and PMSF were 

added to prevent degradation of the fusion protein by endogenous proteases. The fusion 

protein was affected by Triton X-100 permeabilization and Proteinase K treatment, but 

not by Triton X-100 permeabilization alone. In the SLO and saponin treated samples of 

the PfAK2G2AC4A/GFP transgenic parasite line, respectively, the GFP chimera was 

detected in the pellet fraction treated with Proteinase K and in the untreated one. This 

indicates that the fusion protein is not secreted beyond the PVM and the PPM, 

respectively. The marker proteins ensuring correct lysis and correct performance of the 

protease protection assay were detected predominantly in the expected fractions. 

However, in the SLO treated samples a small amount of SERP could also be detected in 

the supernatant fraction indicating that some lysis during the SLO treatment of the 

parasitized cells did occur (Fig. 3.7 C). In saponin treated samples a minimal amount of 

Pfaldolase and the GFP chimera could also be detected in the supernatant fraction, 

however the protein signal detected was much weaker compared to the signal found in 

the pellet fraction (Fig. 3.7 C). This indicates that some parasites were lysed during this 

sensitive procedure. This extended biochemical analysis of PfAK2G2AC4A/GFP was 

performed with a positive control for verification of Proteinase K efficacy towards the 

fusion protein. In conclusion, it can be stated that these findings are similar to the 

findings of the PfAK2G2A/GFP variant, which lacks the N-myristoylation site and was 

also localized to the cytosol of the parasite. The N-myristoylation motif seems crucial 
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for membrane binding and probably membrane targeting. This conclusion can be made 

since no membrane bound pool of proteins could be detected following hypotonic lysis. 
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Figure 3.7 Removal of acylation sites at the N-terminus of PfAK2 localizes the fusion protein to the 

cytosol of the parasite(A) Fluorescence analyses of the PfAK2G2AC4A/GFP parasites clearly showed a 

cyotosolic localization of the fusion protein PfAK2G2AC4A/GFP. DIC channel for high-contrast; in merge: 

green (GFP), blue (Hoechst = nucleus dye). Scale bar – 3 µm. (B) After hypotonic lysis performed on this 

transgenic parasite line a band of approximately 60 kDa corresponding to the GFP chimera was detected 

solely in the soluble fraction with an α-GFP antibody. Pfaldolase was used as a marker protein for the 

soluble fraction and PfExp1 was used as a marker protein for the membrane fraction. (C) The parasites 

were subjected to SLO and saponin lysis. The pellet fraction of the SLO and saponin lysis, respectively, 

were equally divided into for samples and were treated as followed: 1) untreated (control), 2) addition of 

Proteinase K, 3) addition of Proteinase K and Triton X-100 and 4) addition of Triton X-100 and 

PIC/PMSF. Triton X-100 was used to permeabilize the PPM so that Proteinase K is able to degrade the 

GFP chimera, once it is released upon Triton X-100 treatment of the cells. This positive control shows the 

efficacy of Proteinase K degradation of the fusion protein (disappearance of the protein band in this 

fraction). Treatment of the parasizited cells with only Triton X-100 showed that the protein band of the 

GFP chimera is still present meaning that Triton X-100 is not causing the disappearance of the protein 

band (negative control). PIC and PMSF were added to prevent degradation of the fusion protein by 

endogenous proteases. PfSERP of the PV and Pfaldolase of the parasite were both found predominantly 

in the expected fractions indicating an almost proper SLO lysis and saponin lysis, respectively. However, 

aldolase was also found in the supernatant fraction of saponin treated parasitized cells and a small amount 

of SERP was detected in the supernatant fraction of SLO treated samples. This indicates that some of the 

parasites did lyse during the procedures. Both proteins were affected by Triton X-100 permeabilization 

and Proteinase K treatment, but not by Triton X-100 permeabilization alone. The size markers are 

presented in kDa.   
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3.2.4 Is a third motif involved in the secretion process of Pf AK2? 

The MSA revealed a stretch of lysine residues (ten lysines with one interspersed 

glutatmate residue) at the N-terminus of PfAK2 at close proximity to the  

N-myristoylation site. According to the 'two-step model' of membrane binding by 

myristoylated proteins a polybasic stretch of amino acids in addition to the myristoyl 

moiety leads to a stable membrane anchoring of myristoylated proteins to a membrane 

(Murray et al., 1997). To investigate the role of the lysine residues at the N-terminus of 

PfAK2 these amino acids were deleted via overlapping extension PCR and the resultant 

construct PfAK2Δ21-30/GFP was transfected into the 3D7 P. falciparum line. Live cell 

imaging showed a ring-like structure with a protrusion similar to the wildtype GFP 

chimera, although the protrusion is less prominent compared to the wildtype 

PfAK2/GFP (Fig. 3.8 A). Subsequent analyses on the subcellular localization of this 

protein were performed via hypotonic lysis, SLO and saponin lysis followed by SDS-

PAGE, western blotting and immunodetection. The hypotonic lysis clearly separated the 

soluble from the membrane fraction of proteins, since Pfaldolase was detected in the 

soluble fraction and PfExp1 was found in the membrane fraction. The GFP signal from 

the PfAK2Δ21-30/GFP fusion protein could be detected with an α-GFP antibody in the 

membrane fraction showing that this variant protein is membrane-bound, which is in 

accordance with the findings of the fluorescence analyses (Fig. 3.8 B). In the SLO 

treated samples a band corresponding to the size of the GFP chimera could be detected 

in both the untreated SLO pellet fraction and the SLO pellet fraction treated with 

Proteinase K. This indicates that PfAK2Δ21-30/GFP is not secreted beyond the PVM. 

Faint bands observed with a slightly lower molecular weight than the  

PfAK2/GFP fusion protein possibly are degradation products. A positive control of 

efficient Proteinase K digestion for this particular experiment is missing, however, the 

efficiency of Proteinase K digestion of a fusion protein was shown for one of the 

variants (PfAK2G2AC4A/GFP in Fig. 3.7 C). 

Surprisingly, a band of ~ 60 kDa was detected with an α-GFP antibody in the saponin 

pellet fraction treated with Proteinase K and in the untreated saponin pellet fraction. 

This indicates that the fusion protein was protected by the PPM. The marker proteins for 

each compartment – PV (marker protein: SERP) and parasite (marker protein: aldolase) 

– were found predominantly in the expected fractions, although a faint band of  
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Pfaldolase could also be detected in the supernatant fraction after SLO and saponin 

treatment, respectively. However, the signal detected in the pellet fraction was much 

stronger indicating that the parasites almost remained intact after SLO and saponin 

treatment, respectively. A faint band of PfSERP could also be detected in the pellet 

fraction but almost disappeared after Proteinase K treatment. This indicates that SERP 

stuck to the membrane and was not fully removed during the washing steps after 

saponin treatment (Fig. 3.8 C).  

Although a stable membrane anchoring was achieved with the PfAK2Δ21-30/GFP fusion 

protein in the parasitized cells as evidenced by fluorescence and hypotonic lysis, no 

secretion of the GFP chimera was found based on the results of the saponin treatment. 

From this, it can be concluded that the variant chimeric protein is stably bound to the 

parasite plasma membrane by the myristoyl moiety and by potential palmitoylation. 

However, the lack of the lysine residues seem to prevent the secretion of this protein 

beyond the PPM.   
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Figure 3.8 Deletion of a polybasic-cluster at the N-terminus of PfAK2 prevents secretion beyond the 
parasite plasma membrane 
(A) Live cell imaging of PfAK2Δ21-30/GFP parasites showed a ring-like structure of the fusion protein with 

a knob-like protrusion similar to the wildtype PfAK2/GFP. DIC channel for high-contrast; in merge: 

green (GFP),  blue (Hoechst = nucleus dye). Scale bar – 3 µm. (B) After hypotonic lysis of the PfAK2Δ21-

30/GFP parasites a band of ~ 60 kDa could be detected with an α-GFP antibody in the membrane fraction. 

Pfaldolase was used as a marker protein for the soluble fraction and PfExp1 was used as a marker protein 

for the membrane fraction. (C) The parasites were also subjected to SLO and saponin lysis.  

PfSERP of the PV and Pfaldolase of the parasite were both found predominantly in the expected fractions 

indicating proper SLO and saponin lysis, respectively. The band corresponding to the size of the fusion 

protein PfAK2Δ21-30/GFP was detected with an α-GFP antibody in the SLO and saponin pellet fraction 

(+/- Proteinase K addition). The size markers are presented in kDa.   

	
  
   

3.2.5 Is the N-terminus of PfAK2  - containing a N-myristoylation site, a putative 

palmitoylation site and a polybasic cluster of amino acids - sufficient for protein 

secretion? 

The preceding mutagenesis analyses of PfAK2 revealed that a N-myristoylation site is 

required for membrane binding and that a putative palmitoylation site likely plays a role 

in stabilizing the membrane anchoring of this protein. However, secretion of PfAK2 

beyond the PPM was not achieved when a polybasic cluster of amino acids was 

removed indicating its potential role in the secretion mechanism. To figure out whether 

or not these three motifs found at the N-terminus of PfAK2 are sufficient for an atypical 

secretion pathway the following chimeric construct was designed: the 1-37 amino acids 

of the PfAK2 protein sequence containing all three above mentioned motifs was fused 
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to GFP in the pARL2 vector and then transfected into the 3D7 P. falciparum parasite 

line. Fluorescence analyses of the respective transgenic parasite line revealed a similar 

phenotype to the wildtype AK2 that is a ring-like structure with a clear knob-like 

protrusion (Fig. 3.9 A). Furthermore, live cell imaging of the schizont-stage of the 

parasite showed a ring-like structure around each individual parasite (Fig. 3.9 A). 

Hypotonic lysis performed on this parasite line revealed that the GFP chimera was in 

the membrane-bound fraction. Faint bands of low molecular weight in the supernatant 

fraction could be degradation products of the fusion protein. Pfaldolase was used as a 

marker protein for the soluble fraction and PfExp1 was used as a marker protein for the 

membrane fraction. Both proteins were found in the expected fractions (Fig. 3.9 B). The 

SLO treated sample of the PfAK21-37/GFP transgenic parasite line revealed a band of 

approximately 25 kDa detected with an α-GFP antibody corresponding to the size of the 

fusion protein in the untreated SLO pellet fraction and the SLO pellet fraction treated 

with Proteinase K. Low molecular weight bands which appear in both pellet fractions 

possibly are degradation products. The detection of the marker proteins with the 

respective antibodies revealed their localization predominantly to the respective 

compartments displaying an almost proper SLO lysis, thus an intact PV and parasite. 

However, a a small amount of SERP was also detected in the supernatant fraction after 

SLO treatment indicating that some parasites did lyse during the SLO procedure.  

Interestingly, a GFP signal was found in the saponin pellet fraction, but not in the 

saponin pellet fraction treated with Proteinase K. This indicates that the protein was not 

protected by the PPM and was accessible to Proteinase K digestion. The marker 

proteins assuring proper saponin lysis were detected with an α-SERP antibody and an α-

aldolase antibody in the expected fractions: SERP in the supernatant fraction, whereby 

the signal detected in the pellet fraction was almost removed after Proteinase K 

treatment. This means that SERP sticks to membranes and was not sufficiently washed 

off despite many washing steps. Aldolase, however, was predominantly found in the 

pellet fractions (sample treated with Proteinase K and untreated sample), and only a 

faint band was also detected by an α-aldolase antibody in the supernatant fraction (Fig. 

3.9 B) indicating that some of the parasites did lyse during the procedure. These results 

indicates that the N-terminus of PfAK2 is sufficient for secreting the GFP chimera 

across and to the outer face of the PPM.  
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Figure 3.9 Live cell imaging and biochemical analyses of the PfAK21-37/GFP transgenic parasite line 
(A) The fluorescence analyses of the PfAK21-37/GFP parasites showed a ring-like structure with a clear 

knob-like protrusion of the fusion protein very similar to the phenotype of the wildtype PfAK2/GFP 

parasites. The schizont-stage of these parasites showed a clear signal of the fusion protein around each of 

the individual daughter cells. DIC channel for high-contrast; in merge: green (GFP),  blue (Hoechst = 

nucleus dye). Scale bar – 3 µm. (B) Biochemial analyses showed the fusion protein to be membrane-

bound, since the GFP chimera could be detected in the membrane fraction after hypotonic lysis.  

Pfaldolase was used as a marker protein for the soluble fraction and PfExp1 was used as a marker protein 

for the membrane fraction and were found in the expected fractions. Faint bands in the supernantant 

fractions might be degradation products of the fusion protein (C) The parasites were also subjected to 

SLO and saponin lysis. The marker protein of the PV PfSERP and the marker protein of the parasite 

Pfaldolase were both found predominantly in the expected fractions after SLO lysis and saponin lysis, 

respectively. The band corresponding to the size of the fusion protein PfAK21-37/GFP was detected by an 

α-GFP antibody in the SLO pellet fractions (+/- Proteinase K addition) and in the saponin pellet fraction. 

However, no band could be detected in the saponin pellet fraction treated with Proteinase K. The size 

markers are presented in kDa.    

	
  

3.2.6 The ARF1-AK2/GFP chimera is targeted to the parasite plasma membrane  

Plasmodial ARF1 contains a N-myristoylation site and it has been shown that it 

localizes to compartments of the early secretory pathway (by fluorescence analyses) and 

is partially membrane-bound (by hypotonic analyses). In contrast to PfAK2 plasmodial 

ARF1 lacks a putative palmitoylation site and a polybasic cluster of amino acids at the 

N-terminus. To figure out whether these two motifs are sufficient for secretion of 

N-myristoylated proteins to the plasma membrane and subsequent secretion beyond the 

parasite plasma membrane a chimeric construct consisting partially of the N-terminus of 

ARF1 and partially of the N-terminus of AK2 was generated and fused to GFP in the 

pARL2 vector prior to transfection in the P. falciparum 3D7 strain. Fluorescence 

analyses showed a phenotype similar to the wildtype AK2 with a ring-like structure 

containing a 'loop' like protrusion. However, occasionally also a ring-like structure with 

a dot-like protrusion was also observed (Fig. 3.10 A). Live cell imaging of the schizont-

stage of the PfARF11-17/+4C/-V5AK2+18-37/GFP parasites showed a ring-like structure 

around the individual parasites (Fig. 3.10 B). According to the results of the hypotonic 

lysis a strong GFP signal corresponding to the size of the GFP chimera could be 

detected in the membrane fraction and a faint band could also be seen in the soluble 

fraction. The soluble amount of the protein indicate some degradation products or it 
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could result from the pool of protein which at the time-point of harvest was not 

anchored to the membrane. However, the majority of this protein was found membrane-

bound. The marker proteins Pfaldolase and PfExp1 were detected in the respective 

fractions ensuring that proper separation of soluble and membrane fraction by hypotonic 

lysis had occured (Fig. 3.10 C). A proper SLO lysis on the PfARF11-17/+C4/-V5AK2+18-

37/GFP line was performed since the marker proteins PfSERP and Pfaldolase were both 

predominantly found in the pellet fractions. However, a small amount of SERP was also 

found in the supernatant fraction, which indicates that some of the parasites did lyse 

during the procedure, however the majority of the SERP protein was detected in the 

pellet fractions. The protease protection assay was almost efficient since a strong  

PfExp1 signal could be detected in the pellet fraction and only a faint band was found in 

the pellet fraction treated with Proteinase K. A saponin treatment was also performed on 

the respective transgenic parasite strain where aldolase could be detected solely in both 

pellet fractions (-/+Proteinase K treatment), while PfSERP was found in the supernatant 

and the pellet fraction. A strong GFP signal in the saponin pellet fraction without 

Proteinase K addition could be detected by an α-GFP antibody, but was also found 

present in the Proteinase K treated pellet fraction. This indicates that the  

PfARF11-17/+C4/-V5AK2+18-37/GFP fusion protein was protected by the parasite plasma 

membrane and that the protein is not secreted into the PV (Fig. 3.10 D). These results 

initially seem contradictory, since the phenotype of PfARF11-17/+C4/-V5AK2+18-37/GFP 

resembles that of the wildtype PfAK2/GFP but the protease protection assay showed no 

secretion of the GFP chimera of this transgenic parasite line compared to the wildtype 

fusion protein. One possible explanation might be that although the additional cysteine 

residue and the polybasic cluster of lysine residues added to the N-terminus of 

plasmodial ARF1 seem to traffic the chimeric protein to the parasite plasma membrane 

(determined by fluorescence analyses) and leads to a stable membrane anchoring 

(determined by hypotonic lysis), further amino acids in the N-terminal region of PfAK2 

also seem to play a role in the secretion process. The N-terminal part of PfARF1 

modified by the addition of the two AK2 motifs (cysteine residue at position 4 and a 

stretch of lysine residues with one interspersed glutamate residue) still differs by 11 

amino acids from the N-terminus of PfAK2.  
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Figure 3.10 Fluorescence and biochemcial analyses of the PfARF11-17/+C4/-V5AK2+18-37/GFP 

transgenic parasite line 

(A) Live cell imaging of the PfARF11-17/+C4/-V5AK2+18-37/GFP parasite line showed two slightly different 

phenotypes: some of the parasites show a ring-like structure with a knob-like protrusion, while others 

rather revealed just a ring-like structure with a prominent dot at one edge of the parasite. (B) Live cell 

imaging on the schizont stage of this parasite line showed a ring-like structure around each of the 

individual parasites separately. DIC channel for high-contrast; in merge: green (GFP),  blue (Hoechst = 

nucleus dye). Scale bar – 3 µm. (C) Biochemial analyses showed the fusion protein to be predominantly 

membrane-bound, since the GFP chimera could be detected in the membrane fraction after hypotonic 

lysis. However, a small amount of the fusion protein was also detected in the soluble fraction and a low 

molecular weight band might be degradation products. Pfaldolase was used as a marker protein for the 

soluble fraction and PfExp1 was used as a marker protein for the membrane fraction. (D) The parasites 

were also subjected to SLO and saponin lysis. PfSERP of the PV and Pfaldolase of the parasite were both 

found predominantly in the expected fractions after SLO lysis and saponin lysis, respectively. However, 

SERP was also detected in the SLO supernatant fraction meaning that some lysis of the parasite did take 

place during the SLO treatment. A small amount of aldolase was also found in the SLO and saponin 

supernatant fractions, respectively, which also indicates that some lysis of the parasites did occur. 

However, the majority of SERP and aldolase still could be detected in the expected fractions. The band 

corresponding to the size of the fusion protein PfARF11-17/+C4/-V5AK2+18-37/GFP was detected with an α-

GFP antibody in the SLO and saponin pellet fractions (+/- Proteinase K addition), respectively. The size 

markers are presented in kDa.   	
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3.3 The mDHFR fusion system 
Dihydrofolate reductase is a ubiquitous eukaryotic enzyme responsible for the catalysis 

of dihydrofolate to tetrahydrofolate in a NADP-dependent manner. It is also known to 

be involved in the de novo synthesis of certain amino acids (Schnell et al., 2004). 

Interestingly, Eilers and Schatz used the murine DHFR as an experimental system to 

analyze the folding state of a protein regarding import into mitochondria. They found 

that mDHFR could be stabilized in its tertiary structure in the presence of a folate 

analogue and was not unfolded even in the presence of chaperones (Eilers and Schatz, 

1986; Salvador et al., 2000). This characteristic feature of mDHFR was used to study 

the translocation of mitochondrial proteins into mitochondria by fusing the pre-

sequence of a mitochondrial protein to mDHFR and detecting its localization in the 

absence and presence of a folat analogue, respectively (Eilers and Schatz, 1986). Since 

then the mDHFR system has been used to study the folding state of proteins and to 

understand translocation mechanisms in various compartments, such as mitochondria 

and glycosomes (Eilers and Schatz, 1986; Häusler et al., 1996).  

To analyze the folding state and the possible involvement of a translocon in the 

secretion process of PfAK2 beyond the PPM the protein was fused to mDHFR in 

addition to GFP, cloned into the pARL2 vector and the plasmid was then transfected 

into the P. falciparum 3D7 line. These parasites were not negatively affected by WR 

treatment, since they expressed a hDHFR. Fluorescence and biochemical analyses were 

performed. The following fluorescence images show PfAK2/mDHFR/GFP expressing 

parasites in the presence of WR after incubation at 37 °C for 12 hours and in the 

absence of WR (control). According to the microscopical pictures no differences 

between the WR treated and untreated parasites could be seen (Fig. 3.11 A). Both 

parasite cultures show a similar phenotype corresponding to the wildtype PfAK2/GFP 

parasite strain indicating that the addition of WR does not seem to have an effect on 

protein localization. This observation was supported with further analyses by hypotonic 

and saponin lysis, SDS-PAGE, western blotting and immunodetection. Hypotonic lysis 

performed on the PfAK2/mDHFR/GFP parasites (+/-WR) revealed a band 

corresponding to the size of the GFP chimera in both samples, which was detected with 

an α-GFP antibody solely in the membrane fraction in the WR treated and untreated 

parasites. The marker proteins, Pfaldolase and PfExp1 were detected in the respective 
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fractions ensuring that proper separation of soluble and membrane fraction by hypotonic 

lysis had occured. To analyze the subcelluar localization of the fusion protein in the WR 

treated and untreated parasites saponin lysis was performed. Pfaldolase was detected in 

both pellet fractions (-/+Proteinase K treatment), while PfSERP was found in the 

supernatant and the pellet fraction indicating that proper lysis was achieved. A strong 

GFP signal in the saponin pellet fraction without proteinase K addition could be 

detected with an α-GFP antibody, but was not found in the Proteinase K treated pellet 

fraction of both parasite cultures: + WR and – WR. This indicates that the  

PfAK2/mDHFR/GFP fusion protein was not protected by the parasite plasma 

membrane in the absence and presence, respectively, of WR.    
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Figure 3.11 The mDHFR system was used to analyze the folding state of the PfAK2 protein in the 
blood-stage parasite 
The PfAK2/mDHFR/GFP parasites were split into two cultures: one was treated with the folate analogue 

WR for 6 hours, while the other parasite culture was left untreated (control). After 6 hours the cells were 

visualized via fluorescence microscopy (A) and harvested for biochemical analyses (B).   

(A) Live cell imaging on the PfAK2/mDHFR/GFP parasites in the absence and presence of WR, 

respectively, was performed showing a ring-like structure with a loop distribution of the fusion-protein. 

The phenotypes did not differ from each other regardless of WR addition. DIC channel for high-contrast; 

in merge: green (GFP),  blue (Hoechst = nucleus dye). Scale bar – 3 µm. (B) After hypotonic lysis a band 

corresponding to the size of the fusion protein was detected in the membrane fraction with an α-GFP 

antibody in the WR treated and untreated sample, respectively. Pfaldolase was used as a marker protein 

for the soluble fraction and PfExp1 was used as a marker protein for the membrane fraction and both 

proteins were detected in the expected fractions. (C) After saponin treatment of each of the  

PfAK2/mDHFR/GFP parasites (-/+WR) a band corresponding to AK2/mDHFR/GFP was only detected in 

the saponin pellet fraction, but not in the saponin pellet fraction treated with Proteinase K indicating that 

the fusion protein was not protected by the PPM. PfSERP of the PV and Pfaldolase of the parasite were 

both found predominantly in the respective fractions after saponin lysis. The size markers are presented in 

kDa.    
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4 Discussion 

Over the years more and more light has been shed on the secretion and export 

mechanisms for secretory proteins expressed by P. falciparum in infected RBCs. In 

particular, the existence of the PV, which separates the parasite from the host cell, calls 

for further secretory signals apart from the classical signal peptide. The identification of 

recessed hydrophobic domains instead of the classical signal peptide in many exported 

parasite proteins was an early hallmark of the parasite’s atypical protein secretory 

mechanisms (Lingelbach, 1993). The discovery of the PEXEL/HT motif in exported 

proteins led to the in silico identification of approximately 250 proteins, which were 

predicted to be exported to the host cell (malarial 'exportome') (Marti et al., 2004; Hiller 

et al., 2004). The PEXEL/HT motif resembles a motif (RxLR) found in some proteins 

of fungal plant pathogens, which are exported to the host plant cells (Dou et al., 2008).  

 

Some parasite proteins exported to the host cell such as for example the SBP1, REX1 

and REX2 lack a classical N-terminal signal sequence and the PEXEL motif and are 

generally termed PEXEL negative exported proteins (PNEPs) (Saridaki et al., 2009; 

Haase et al., 2009). The number of PNEPs are steadily growing indicating the possible 

existence of pathways different from the classical secretory pathway in the malaria 

parasite (Heiber et al., 2013). The importance of understanding the secretory 

mechanisms in parasite protein trafficking is based on the fact that many of these 

exported proteins are key players in the pathogenesis and the adherence properties of 

the infected RBC.  

 

Therefore the identification of unconventional secretory mechanisms - like found for a 

small number of proteins in other eukaryotic systems (see introductory section 1.4) - of 

the parasite and the components involved increases the chances of finding a suitable 

potential drug-target for the development of antimalarial drugs against the 

intraerythrocytic stage.  
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This study deals with the analysis of P. falciparum parasite proteins, which lack a signal 

peptide or a hydrophobic stretch of amino acids at the N-terminus but were found 

secreted beyond the parasite plasma membrane, with a focus on the P. falciparum 

adenylate kinase 2 (Ma et al., 2012). This protein was proposed to contain a N-

myristoylation site at its N-terminus, which was hypothesized to play a role in the 

secretion mechanism. This hypothesis was followed up in this work by further reporter 

construct studies, co-localization studies and biochemical analyses and the results are 

discussed here.  

 

4.1 The secretion hypothesis is based on the result of a preceding PV 
proteome analysis 

The parasitophorous vacuole is a compartment with a very small lumen surrounding the 

parasite and separating it from the host cell cytosol (Lingelbach and Joiner, 1998). An 

experimental approach to identify proteins of the PV already revealed 27 vacuolar 

proteins assigning many of them via in silico analysis as chaperones and proteases 

(Nyalwidhe and Lingelbach, 2006). Since it has already been shown that many exported 

proteins, which contain the PEXEL motif, cross the PVM before entering the host cell it 

can be hypothesized that chaperones might play a role in the unfolding of these proteins 

(Ansorge et al., 1996; Wickham et al., 2001; Gehde et al., 2009; Nyalwidhe and 

Lingelbach, 2006). A second vacuolar proteome analysis of the parasite from a similar 

proteomic study of the PV enabled the identification of ~ 200 vacuolar proteins, from 

which 96 proteins were analyzed for topogenic signals. Approximately 50 % of these 

proteins lacked any distinguishable signal peptide. To further validate these findings 

two proteins from the latter group were randomly selected, fused to GFP and their 

subcellular localization was analyzed. Indeed both of the proteins were found secreted 

confirming the proteomic results, although the mode of secretion was not understood. 

More interestingly, 5 % of the proteins of the PV proteome analysis which lacked any 

known signal peptide contained instead a putative N-myristoylation site indicating the 

role of N-myristoylation in protein secretion. The role of N-myristoylation in protein 

secretion has already been shown for P. falciparum CDPK1 (Möskes et al., 2004) and 

the Leishmania HASPB (Denny et al., 2000). Both studies showed by mutational 
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analyses that the N-myristoylation site at the N-terminus of CDPK1 and HASPB, 

respectively, is a prerequisite for membrane attachment.  

 

4.1.1 Does the 'Met-Gly...' motif at the N-terminus of PfPrefoldin 

(PF3D7_0904500), PfCDPK4 (PF3D7__0717500) and PfARF1 (PF3D7_1020900) 

affect their subcellular localization? 

One of the selected proteins from the proteome analysis is the chaperone Prefoldin 

(PF3D7_0904500), which contains a 'Met-Gly...' motif at the N-terminus. Although the 

secretion of a chaperone into the PV would fit a role of being a resident PV protein due 

to its function in promoting protein folding, the Myristoylator prediction tool did not 

predict Prefoldin to be myristoylated. This prediction was confirmed experimentally: a 

reporter construct study showed no difference in the subcellular localization of the 

fusion protein between the wildtype phenotype and the variant. In the variant the 

putative myristoylation site was removed by exchange of the glycine residue to alanine 

at the N-terminus of the protein. According to the GFP fluorescence analysis it seems 

like Prefoldin is located in the parasite cytosol. Due to the limited resolution of 

epifluorescence microscopy it cannot be completely ruled out that a small portion of 

Prefoldin is also located beyond the parasite plasma membrane indicating a dual 

localization of the protein. However, according to the fluorescence analysis the majority 

of the protein was localized to the parasite cytosol. Hypotonic lysis and cell 

fractionation should be performed to examine the solubility of this protein in order to 

find out whether or not this protein is completely soluble or a small amount of it is also 

membrane-bound, which however cannot be distinguished via live-cell imaging. If a 

membrane-bound population would be identified this could mean that the protein is able 

to bind to a membrane due to a myristate moiety and further experiments could involve 

metabolic labelling or recombinant expression of PfPrefoldin and PfNMT together in 

bacterial cells with subsequent analysis of myristoylation. This would help to find out 

whether or not PfPrefoldin is capable of being N-myristoylated. After these experiments 

are performed a biochemical analysis involving SLO and saponin lysis could be carried 

out to identify the accurate localization of PfPrefoldin. Although these experiments 

seem to be reasonable to perform recombinant expression of P. falciparum proteins in 
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bacterial cells is often tricky and difficult to conduct due to the high AT-content of the 

parasite genes (Gardner et al., 2002).  

 

PfCDPK4 (PF3D7__0717500) was also hypothesized to be N-myristoylated based on 

the 'Met-Gly...' motif at the N-terminus and predicted to be myristoylated according to 

the myristoylator prediction tool. In addition, a second P. falciparum CDPK, CDPK1, 

was shown to be secreted across the PPM and the process involved N-myristoylation 

(Möskes et al., 2004). CDPKs are found only in plants and Alveolates (including 

ciliates and Apicomplexa) and protein kinases of protists generally are evolutionarily 

remote to human kinases, which is why they are considered to be suitable drug targets 

(Tsekoa et al., 2009). Although CDPK4 is predicted to be N-myristoylated the 

fluorescence analysis showed no difference in the location of the fusion protein between 

the wildtype phenotype and the G2A variant. This result differs from the findings for 

CDPK1. The CDPK1 fusion protein showed a ring-like structure around the parasite 

compared to the parasites expressing the PfCDPK1G2A  protein where the signal was 

found to be cytosolic (Möskes et al., 2004). As found for Prefoldin, CDPK4 seem to be 

predominantly located in the parasite cytosol, however, the protein was only recently 

verified to be N-myristoylated (Wright et al., 2013). Therefore further analysis of the 

accurate subcellular localization of PfCDPK4 are required.  

 

ARF1 is another protein, which was identified in the proteome analysis of the PV and 

was proposed to be secreted into the PV. In contrast to PfPrefoldin and PfCDPK4 the 

fluorescence images of the PfARF1 (PF3D7_1020900) transgenic parasites clearly 

showed 1 to 2 dot-like structures of the fusion protein in the parasite cytosol. However, 

the exchange of the glycine residue to alanine at the N-terminus altered the localization 

of PfARF1G2A/GFP in the parasite to completely soluble. Since ARF1 is ubiquitous in 

eukaryotic cells and highly conserved among eukaryotes (Boman and Kahn, 1995) it 

can be hypothesized that PfARF1 is myristoylated as well, since N-myristoylation is 

crucial for its biological role. Cook and colleagues have already shown that similar to 

human ARF1, PfARF1 also contains a helix at the N-terminus, which is important for 

the biological function of ARFs (Cook et al., 2010). Hence, it is not surprising to see an 

effect on the subcellular localization of the G2A variant upon removal of the  
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N-myristoylation site. Furthermore, the results of the hypotonic lysis revealed a 

membrane-bound PfARF1/GFP in the PfARF1/GFP transgenic parasites in contrast to 

the PfARF1G2A/GFP form, where a membrane-bound pool of the fusion protein was 

absent. This indicates that upon myristoylation the protein is able to associate with a 

membrane once it is activated by GTP. GTP is hydrolyzed by ARFGAPs and in the 

GDP-bound form the protein is predominantly cytosolic (Stafford et al., 1996; Memon, 

2004). Although the fluorescence images (dot-like structures of PfARF1/GFP within the 

parasite) suggest a greater membrane-bound pool of the GFP chimera in the 

PfARF1/GFP parasites, the cell fractionation study shows a more prominent band in the 

soluble fraction. This discrepancy possibly results from the low resolution of the 

epifluorescence microscopy in which the membrane-associated pool of the ARF1/GFP 

chimera compared to the soluble pool cannot be distinguished. This observation can be 

supported by further studies on human ARF1 where it is postulated that the Golgi 

membrane actually presents a platform for the exchange of GTP and GDP to take place 

(Franco et al., 1996; Weiss et al., 1989). This indicates that the GDP-bound form of 

PfARF1 is in close proximity to the GTP-bound form, but is still cytosolic. Application 

of for example super resolution microscopy would help to provide a better visualization 

of the ratio of membrane-bound to cytosolic PfARF1 in the parasite.  

 

In summary it can be concluded that the findings of the proteome analysis contradicts to 

the results of the fluorescence analysis of the reporter constructs. Analyzing the PV 

proteome with the given methods (high-throughput-analysis) is not only a very difficult 

challenge but also has a high probability of identifying false-positives during the entire 

procedure. This is mainly because the PV has a very small lumen and contamination is 

likely to occur with proteins of the parasite cytosol or host cell cytosol, respectively, 

during the experimental procedure. However, with the given methods it cannot be 

completely ruled out that Prefoldin or CDPK4 do not have a dual localization. It could 

be that a very small amount of this protein is also present in the PV, and this is why it 

was detected in the proteome analysis. However, as mentioned before further analysis 

of the localization of these proteins are required.  
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Since ARF proteins are structurally and functionally well conserved in eukaryotes 

(Boman and Kahn, 1995) their physiological role is probably the same across all 

eukaryotic organisms including P. falciparum. That is why it is quite surprising that this 

protein was detected in the PV, since its function is to mediate vesicular formation and 

trafficking in the early secretory pathway (Boman and Kahn, 1995). Although 

recombinant PfARF1 was expressed in E. coli and characterized (Stafford et al., 1996) 

and its structure even determined (Cook et al., 2010) a localization study of this protein 

is still missing.   

  

4.1.2 Analysis of the subcellular localization of PfARF1 in P. falciparum-infected 

RBC 

According to the co-localization studies with marker proteins of the early secretory 

pathway PfARF1 shows partial co-localization with the ER-marker PfSec12 and the 

trans-Golgi-marker PfRab6. A strong co-localization could be observed with PfGrasp1, 

the cis-Golgi marker. These results are in accordance with what is known about the role 

of ARF1 in vesicular trafficking in eukaryotes. The human ARF1 for instance has been 

shown to be mostly present at the cis-Golgi complex according to immunofluorescence 

and electronmicroscopy studies (Stearns et al., 1990). Furthermore, the protein is 

involved in vesicle formation and trafficking mainly from the Golgi to the ER and also 

between the Golgi cisternae (D'Souza-Schorey and Chavrier, 2006). Since ARF1 

proteins are structurally and functionally highly conserved across eukaryotes the 

localization and function of this protein will possibly be similar in P. falciparum. This is 

probably the reason why the signal of the PfARF1/GFP chimera shows a strong overlap 

with the signal of the PfGRASP1/mCherry chimera. PfARF1 also shows partial co-

localization with PfRab6, a protein found to be ubiquitous across eukaryotes and 

involved in trans-Golgi trafficking (Martinez and Goud, 1998). Although the Golgi-

complex in P. falciparum is less elaborate compared to its counterpart in higher 

eukaryotes a trafficking pathway via the Golgi exists within the parasite. That is why 

the dot-like signals of PfARF1 overlapped predominantly with PfGrasp1, but also with 

PfRab6. In accordance with its function in retrograde trafficking a partial co-

localization of PfARF1 with the ER-marker PfSec12 – a protein, which has already 

been shown to localize to the ER of Plasmodium (Lee et al., 2008) – was also detected. 
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As found in the study of Lee and colleagues the distribution of PfSec12/mCherry was 

perinuclear (Lee et al., 2008). All of these results strongly support the localization of 

PfARF1 to the early secretory system of the parasite rather than a PV localization. In 

addition, a co-localization study with the PVM marker Exp1 clearly showed no overlap 

of the GFP signal of PfARF1/GFP with the signal of the PVM marker PfExp1/mCherry. 

The biochemical analysis of the fusion protein PfARF1/GFP supports the findings of 

the fluorescence analysis. The results obtained from the SLO and saponin lysis analyses 

in combination with the protease protection assay revealed that PfARF1/GFP is not 

secreted beyond the parasite plasma membrane. Using a plasmodial α-ARF1 antibody 

against the endogenous protein also showed the presence of PfARF1 in the parasite 

cytosol according to the biochemical analysis. This indicates that the endogenous 

protein is protected by the parasite plasma membrane. Taken together, the localization 

of PfARF1 can be assigned exclusively to the parasite cytosol according to the 

fluorescence study, the co-localization study and the biochemical analysis. This finding 

very much fits with the general physiological role of ARF1, which is the vesicular 

shuttling between compartments of the secretory pathway (Boman and Kahn, 1995). 

The finding of PfARF1 in the PV according to the preceding proteomic approach falls 

into the category of a false-positive candidate. 

 
 

4.2 Is PfAK2 a candidate protein of an alternative secretory 
pathway? 

Ma and colleagues created a reporter construct consisting of the adenylate kinase 2 

(PF3D7_0816900) fused to GFP in a pARL vector and transfected the plasmid into 3D7 

parasites. The fluorescence image clearly showed a ring-like structure with 'loops' of the 

fusion protein. They proposed that this protein is localized to the PV (Ma et al., 2012). 

However, the AK2 protein lacks a signal peptide or any other known signal motif 

typical for the parasite which would drive secretion into the PV. Interestingly, earlier 

studies had already revealed AK2 to be a substrate of the PfNMT indicating that this 

protein is myristoylated (Rahlfs et al., 2009). To find out whether N-myristolyation 

plays a role in secretion they generated another reporter construct, where the  

N-myristoylation site was removed (PfAK2G2A/GFP). The plasmid was transfected into 
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3D7 parasites and in these transgenic parasites the subcellular localization of the GFP 

chimera was clearly altered to being cytosolic and different from the ring-like structure 

seen for the fusion protein PfAK2/GFP. Further analysis of the PfAK2/GFP parasites 

revealed co-localization with Exp1, the integral membrane protein of the PVM, but not 

with the soluble serine rich protein (SERP) located in the PV. From this Ma and 

colleagues concluded that PfAK2 is localized to the PVM and with the membrane stain 

Bodipy-TR-ceramide the 'loops' were identified as membranous structures (Ma et al., 

2012). Their hypothesis was that this protein is secreted into the PV driven by  

N-myristoylation similar to the findings of PfCDPK1 (Möskes et al., 2004). Möskes and 

colleagues showed that PfCDPK1 was myristoylated in vivo and proposed its 

localization to the PV according to reporter construct and immunoelectron microscopy 

studies. In a further mutational analysis the N-terminal glycine residue was replaced 

with valin and the fusion protein CDPK1VG2/GFP relocated entirely to the parasite 

cytosol indicating the role of N-myristoylation in targeting and localization of this 

protein to the parasite plasma membrane (Möskes et al., 2004). Apart from  

P. falciparum CDPK1 the Leishmania HASPB is another candidate protein where it was 

shown via reporter construct studies that a myristate moiety at the N-terminus of this 

protein is a prerequisite for membrane anchoring (Denny et al., 2000).  

To further investigate the results of the P. falciparum AK2 protein the current study 

focused on biochemical analyses of both transgenic parasite lines obtained from Ma and 

colleagues. The biochemical analyses consisting of SLO and saponin lysis of the 

parasitized cells combined with a protease protection assay showed that the  

PfAK2/GFP protein was protected by the PVM, but not by the PPM after Proteinase K 

treatment. This indicates that the fusion protein is located either at the outer leaflet of 

the parasite plasma membrane or at the inner leaflet of the PVM. However, to date, no 

method is known to distinguish between these two locations. The biochemical analysis 

further revealed that the PfAK2G2A/GFP protein was not secreted to the outer face of the 

PPM, which is consistent with the findings of Ma and colleagues. This indicates that the 

N-myristoylation site affects the subcellular localization of the AK2/GFP protein similar 

to the finding for CDPK1 and the Leishmania HASPB. Further, the removal of the  

N-myristoylation site prevents membrane attachment and leads to a cytosolic 

localization of the AK2 protein.  
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In a next step Ma and colleagues performed a multiple sequence alignment (MSA) of  

PfAK2 with Pfadenylate kinase 1, adenylate kinase-like proteins of P. falciparum and 

adenylate kinases of other species. They showed that the N-terminus of PfAK2 clearly 

differed from the N-termini of the other adenylate kinases (Ma et al., 2012). The  

N-terminus of PfAK2 contained in addition to the glycine residue at the N-terminus, 

which is a requirement for N-myristoylation, also a cysteine residue at the 4th position 

and a stretch or polybasic cluster of lysine residues. In the current study the MSA was 

extended by including putative adenylate kinases of other Plasmodium species, a 

verified adenylate kinase 2 of P. cynomolgi and adenylate kinase 2 of two other 

parasitic protozoa: Babesia bovis and Leishmania infantum. The sequence alignment 

showed that only PfAK2 differs in the N-terminus from the N-termini of the other 

adenylate kinase 2 proteins. PfAK2 is the only protein, which contains the 

aforementioned motifs in contrast to the AK2 proteins of the other species, which were 

analyzed in the MSA. 

To further investigate the additional motifs of the PfAK2 protein of P. falciparum 

different variants of the PfAK2 protein were generated. The role of the putative 

palmitoylation site and the polybasic cluster of lysine residues at the N-terminus of  

PfAK2 were analyzed. Protein, which are known to be N-myristoylated are usually also 

dually acylated proteins meaning that they are modified at their N-terminus with 

myristate and palmitate. For example members of the Src family contain this 'two-signal 

model' which enables membrane binding (Resh, 1999). Analysis of the PfAK2C4A/GFP 

protein showed a different signal to the PfAK2/GFP fusion protein indicating that the 

cysteine residue close to the N-terminus affects the subcellular localization of this 

protein. This was further supported by biochemical analyses. The fusion protein was 

found to be soluble and membrane-bound and compared to the PfAK2/GFP fusion 

protein was not translocated across the PPM. The C4A variant was protected within the 

parasite according to the SLO and saponin analyses in combination with the Proteinase 

K treatment. The equal amount of membrane-bound to soluble protein indicates that 

although the N-myristoylation site is present and membrane-anchoring can take place, 

the low binding energy of the myristate to the phospholipids of its target membrane is 

not sufficient to achieve a stable membrane anchoring (Peitzsch and McLaughlin, 

1993). However, protein palmitoylation in addition to N-myristoylation is known to lead 
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to a stable membrane anchoring of a myristoylated protein due to the increased 

hydrophobicity of the protein (Resh, 2006). That is possibly why an equal amount of 

soluble to membrane-bound fraction of the PfAK2C4A/GFP chimera was found in the 

cell fractionation study. A similar phenotype to the PfAK2C4A/GFP chimera was also 

found with the PfCDPK1AC3/GFP (putative palmitoylation site was removed) chimera in 

the studies of Möskes and colleagues and with a palmitoylation-deficient mutant of the 

Leishmania HASPB (Denny et al., 2000). In the studies of Denny and colleagues they 

observed some association of the palmitoylation-deficient mutant - which was still able 

to be myristoylated - with the outer leaflet of the Golgi, why they proposed a model 

where HASPB is co-translationally myristoylated in the cytoplasm, then trafficked to 

the Golgi membrane to be palmitoylated by a putative palmitoyltransferase at the outer 

leaflet of the Golgi before being targeted and translocated across the plasma membrane 

(Denny et al., 2000).  

 

Another variant of this protein was generated where both the N-myristoylation site and 

the palmitoylation site were removed: PfAK2G2AC4A/GFP. Biochemical analysis 

revealed no membrane-bound fraction of this protein and no secretion to the outer face 

of the PPM due to the lack of the potential dual acylation sites. Similar to the study of 

the PfCDPK1 by Möskes and colleagues the studies on these three variant proteins -  

PfAK2G2A/GFP (Ma et al., 2012), PfAK2C4A/GFP and PfAK2G2AC4A/GFP –showed that 

a N-myristoylation site and the putative palmitoylation site are required for membrane-

targeting, correct localization to the parasite plasma membrane and stable membrane-

anchoring. The analyses of these proteins strongly suggests that stable membrane 

anchoring can only take place when the protein is dually acylated as for example known 

for members of the Src family (Resh, 1999). Intriguingly, a third motif present at the N-

terminus of the AK2 protein – a polybasic cluster of lysine residues – also affects the 

subcellular localization of the fusion protein. Although the phenotype of the PfAK2Δ21-

30/GFP transgenic parasites is similar to the wildtype phenotype of AK2 according to 

live cell imaging, the biochemical analysis revealed no secretion of this protein beyond 

the PPM. A polybasic cluster in proximity to a N-myristoylation site seems to increase 

the membrane anchoring due to the electrostatic interactions between the positively 

charged amino acids of the protein and the phospholipids of the parasite plasma 
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membrane (Resh, 2006). A similar feature was observed for MARCKS protein which 

uses a cluster of basic residues at the N-terminus in close proximity to the N-

myristoylation site to achieve stable membrane anchoring (Resh, 1999).  

A removal of the lysine residue stretch at the N-terminus still enabled a stable 

membrane-anchoring by myristate and possibly palmitate of the protein. This is 

consistent with the result of the hypotonic lysis of the parasitized cells, where only a 

membrane-bound fraction of this protein was detected. The absence of the lysine 

residues at the N-terminus prevents secretion of the protein beyond the PPM indicating 

a possible role of the cluster of basic amino acids in the translocation process of PfAK2 

across the PPM. This observation corresponds to the findings with the CDPK1 protein, 

which also contains these three membrane anchoring features, which were shown to be 

required for membrane binding and membrane anchoring (Möskes et al., 2004).  

To further analyze these findings the N-terminus of the AK2 protein (residues 1 to 37 

amino acids) was fused to GFP, the plasmid was transfected into 3D7 parasites and the 

subcellular localization of this fusion protein was analyzed. The PfAK21-37/GFP fusion 

protein showed a similar phenotype to PfAK2/GFP when visualized by live cell 

imaging. Furthermore, observation of the late-stage parasites showed that the signal of 

the fusion protein was found around each of the merozoites. Biochemical analysis also 

revealed a secretion of this protein to the outer face of the PPM, but not beyond the 

PVM. These results are similar to the findings for the PfAK2/GFP fusion protein by Ma 

and colleagues. This indicates that the N-terminus of the AK2 protein is sufficient for 

secretion of this protein beyond the PPM. These findings are similar to what is known 

about the Leishmania HASPB. Dual acylation of this protein has been shown to be 

important for plasma membrane targeting and plasma membrane anchoring. 

Furthermore, the N-terminus of this protein (residues 1 to 18 amino acids) fused to GFP 

was sufficient for translocation across the plasma membrane (Denny et al., 2000). These 

results are similar to the findings with PfAK2/GFP. This indicates that the P. falciparum 

AK2 protein belongs to the small number of proteins, which is secreted by an 

alternative secretory pathway involving dual acylation to the ER/Golgi route.  
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4.2.1 How much of the N-terminus of PfAK2 is required for targeting other 

myristoylated proteins like PfARF1 to the PPM and beyond?  

Compared to PfAK2 N-myristoylated PfARF1 localizes to the Golgi-membrane. The 

targeting mechanisms of myristoylated proteins to a specific membrane, however, is not 

understood (Murray et al., 1998). Interestingly, the study of the PfARF11-17/+C4/-

V5AK2+18-37/GFP transgenic parasites – the fusion protein consists of the N-terminus of 

ARF with incorporation of a putative palmitoylation site and a polybasic cluster of 

lysine residues - showed a similar phenotype to the wildtype fusion protein when 

visualized by epifluorescence microscopy. Also a predominant membrane-bound 

fraction was found as a result of the hypotonic lysis indicating that this protein is 

strongly anchored to the PPM. However, the biochemical analysis did not show any 

secretion of this protein to the outer face of the PPM. The schizont-stage also showed 

that the fusion protein localizes individually around the newly formed individual 

merozoites. This would indicate that the protein is indeed targeted to the parasite plasma 

membrane. A stable membrane-anchoring is also achieved, however, the additional 

putative palmitoylation site and the polybasic cluster of amino acids are not sufficient to 

secrete this protein beyond the PPM. These findings suggest that the PPM targeting and 

membrane anchoring are driven by the three motifs found at the N-terminus of PfAK2: 

a N-myristoylation site, a putative palmitoylation site and a polybasic cluster of lysine 

residues. However, the N-terminus of the modified PfARF1 still differs in 

approximately 11 amino acid positions from the AK2 N-terminus. This indicates that 

also other amino acids at the N-terminus of PfAK2 are possibly involved in the 

secretion process for the AK2 protein. Further variants of AK2 should be generated to 

find out which other amino acids apart from the already identified crucial motifs are 

required and involved in the secretion of this protein. Furthermore, it should be kept in 

mind that only the N-terminus of PfARF1 was analyzed and modified. Whether or not 

the full-length PfARF1 would show the same phenotype (PPM targeting instead of 

Golgi-membrane localization) upon N-terminal modification is not clear according to 

these results. Another experiment with the full-length ARF1 and the additional AK2 

motifs should be performed to see whether or not the results will be consistent. 

More interestingly, two slightly different phenotypes could be observed for the ARF11-

17/+C4/-V5AK2+18-37/GFP transgenic parasites. The fluorescence signal of the fusion 
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protein showed a clear 'loop' structure in some of the parasites similar to the findings 

with PfAK2/GFP. On the other hand, the signals of the fusion protein in some parasites 

was a less prominent 'dot' like structure instead of the 'loop'. Since it is not known what 

causes the 'loops' it is also is not clear why parasites expressing the same fusion protein 

can show slightly different fluorescence patterns. To analyze the 'loop' structure, the 

ratio between these two phenotypes should first be determined by live cell imaging.  

 

4.2.2 An analysis about the folding state of PfAK2 as it translocates from the 

parasite cytosol into the PV 

Eilers and Schatz applied the mDHFR system to investigate the translocation state of 

mitochondrial proteins. They could show that mDHFR fused to a mitochondrial 

presequence must be kept in a 'translocation-competent' state (unfolded) before crossing 

the membrane (Eilers and Schatz, 1986). Gehde and colleagues applied the mDHFR 

system for the first time in the investigation of cytosolic P. falciparum proteins, which 

were known to be trafficked to the host cell. They succeeded in showing that the GFP 

chimera consisting of the N-terminus of the soluble protein GBP130 - which is known 

to enter the host cell – and mDHFR and GFP have to be unfolded prior to entering the 

host cell. Therefore they postulated that soluble proteins destined to be secreted beyond 

the PVM possibly require a translocon for translocation across the PVM (Gehde et al., 

2009). Indeed, an ATP-driven translocon, the so-called PTEX machinery, was found in 

the PVM and was proposed to be a possible candidate of protein translocation for 

soluble proteins (de Koning-Ward et al., 2009; Bullen et al., 2012).  

The mDHFR system was applied to analyze the folding state of the PfAK2 protein and 

the possible involvement of a translocon before the protein is secreted from the 

cytoplasmic site of the PPM into the PV. Fluorescence analysis showed no difference 

between the phenotype of the fusion protein of PfAK2/mDHFR/GFP transgenic 

parasites in the presence and absence of WR. A ring-like structure with a knob-like 

protrusion was observed. Since SLO lysis of the PfAK2/GFP wildtype parasites had 

already shown that the protein was not secreted beyond the PVM, this time the analysis 

was performed only with saponin treated lysates. It was investigated whether or not the 

protein is unfolded when it passes the PPM in order to enter the PV, which could mean 

that the secretion mechanism involves a translocon located in the PPM. Biochemical 
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analysis could show that the addition of the folate analogue WR, which is known to 

stabilize the tertiarty structure of mDHFR had no effect on the localization of the fusion 

protein. As found in the biochemical analysis of the PfAK2/GFP parasites, the  

PfAK2/GFP fusion protein was secreted beyond the PPM. This indicates that the protein 

did translocate across the PPM in a possibly folded configuration and was degraded 

upon exposure to Proteinase K. Although a positive control in this particular experiment 

is missing - to verify that WR indeed was able to bind to mDHFR and stabilize it - this 

experiment was performed in a way consistent with the protocol of prior mDHFR 

experiments with parasite proteins. Furthermore, the mDHFR system was usually 

applied to cytosolic proteins (Eilers and Schatz, 1986; Salvador et al., 2000) and not to 

membrane-attached proteins. The possible strong parasite plasma membrane attachment 

via the dual acylation sites and the polybasic cluster of lysine residues of the PfAK2 

protein would rather suggest a different mode of translocation.  

 

4.2.3 A model for PfAK2 protein anchoring to the PPM and secretion  

The study of Ma and colleagues already showed that N-myristoylation plays a key role 

in the secretion process of PfAK2 into the PV (Ma et al., 2012). The current study has 

further confirmed these findings by creating and analyzing different variants of the AK2 

protein. Thereby, a putative palmitoylation site and a polybasic cluster of amino acids 

were also found to be involved in the secretion process of this protein. However, a gene 

expression profile of the AK2 protein (PF3D7_0816900) during P. falciparum’s life-

cycle based on a high-density oligonucleotide array showed that this protein is not 

highly expressed during the erythrocytic asexual stages (Le Roch et al., 2003). Instead, 

a low gene expression was proposed in the first sexual stages of the parasite, the 

gametocytes, based on the transcriptome data (using a microarray approach) (Young et 

al., 2005) (see appendix). 

Although these high-throughput genomic and proteomic screening approaches enable a 

better understanding of gene and protein expression patterns in the different stages of  

P. falciparum’s life-cycle, incorrect findings cannot be excluded. This could mean that a 

gene is incorrectly given a low expression value, although it might be expressed in the 

asexual erythrocytic stage. In case of  PfAK2 (PF3D7_0816900) a further approach 

consisting of designing an antibody against PfAK2 would give a clue about whether or 
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not this protein is expressed in the asexual erythrocytic stages. Nevertheless, the 

findings of the reporter construct study of the AK2 protein still mirrors an atypical 

secretory signal of a secretory pathway involving N-myristoylation similar to the 

findings of PfCDPK1 (Möskes et al., 2004) and Leishmania HASPB (Denny et al., 

2000). In the following the results of the experiments with PfAK2 and its variant forms 

are summarized in an illustration as a model for a potential novel secretory pathway in  

P. falciparum: 
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Figure 4.1 A hypothetical model how PfAK2 is anchored to the parasite plasma membrane  

Initially the 14-carbon saturated fatty acid (myristate) is irreversibly attached to the glycine residue at the 

second position of the N-terminus of PfAK2 by the N-myristoyltransferase (NMT). (1) Due to the low 

binding energy of myristate the protein ist not stably anchored and can dissociate from the parasite 

plasma membrane. 2) To achieve stable membrane anchoring a 16-carbon saturated fatty acid (palmitate) 

is attached to a cysteine residue of a putative palmitoylation site at the N-terminus of PfAK2 via 

palmitoyl transferase (PAT). However, palmitoylation can also occur in the absence of PAT if  palmitoyl-

CoA is present (alternative palmitoylation mechanism), which is why this step is shown in brackets. 3) In 

the case of PfAK2 a third motif – a polybasic cluster of lysine residues at the N-terminus – is also 

involved in plasma membrane anchoring and subsequent translocation across the PPM.  

	
  
	
  

4.3 Concluding remarks on the analysis of PfAK2 as a candidate 

protein of an alternative secretory pathway in P. falciparum 

The initial experiments with PfAK2 were performed by Ma and colleagues who 

proposed a PVM localization of this fusion protein (shown by co-localization study with 

PfExp1). The biochemical approach of the current study suggests a localization either at 

the outer leaflet of the PPM or the inner leaflet of the PVM. The generation and 

subsequent analysis of variants of AK2 revealed that the N-terminus of this protein is 

important for parasite plasma membrane anchoring and subsequent secretion. 

Interestingly, the phenotypes of the fusion proteins of the PfAK2Δ21-30/GFP parasites 

and the PfARF11-17/+C4/-V5AK2+18-37/GFP parasites were similar to the phenotype of the 

fusion protein of the PfAK2/GFP parasites (Ma et al., 2012) when visualized by 

epifluorescence microscopy. All showed a ring-like structure with a clearly visible 

knob-like protrusion. However, they differed in their subcellular localization according 

to biochemical analyses: the PfAK2/GFP fusion protein is located beyond the PPM, 

while the variant proteins were located at the cytoplasmic site of the PPM. These 

findings indicate that the N-myristoylation site, the putative palmitoylation site and the 

cluster of basic residues are involved in plasma membrane targeting, anchoring and 

subsequent translocation across the PPM. However further amino acids at the N-

terminal region between the palmitoylation site and the row of basic amino acids also 

seem to be involved in the secretion process of this protein. 
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A difference in the localization between PPM and PVM via conventional fluorescence 

microscopy cannot be made due to the limited resolution. Electronmicroscopy or super 

resolution microscopy techniques might help further investigation of the proposed PVM 

localization of the fusion protein by Ma and colleagues similar to the proposal of this 

study which is localization of PfAK2 at the outer leaflet of the PPM or at the inner 

leaflet of the PVM.  

 

The knob-like protrusion which was observed in many of the cells expressing the 

variant proteins still remain an enigma. These 'extensions' have not been seen before 

with other parasite proteins fused to GFP. However, it is not known whether or not this 

observation is related to GFP expression, the expression of AK2 itself, or is a result of 

parasite plasma membrane anchoring via dual acylation of the fusion protein.  

 

One more important aspect regarding the biochemical analysis should be taken into 

consideration. The biochemical approach involving saponin treatment of the parasite is 

technically challenging. Although the SLO and saponin concentrations used for each of 

the experiment was not altered a proper lysis after SLO and saponin treatment, 

respectively, was most of the time not achieved. To achieve lysis of the PVM and to 

prevent lysis of the PPM at the same time required extensive titration of the saponin 

concentration to find out the right concentration to disintegrate the RBCM and the PVM 

and to avoid rupture of the PPM at the same time. Even then, a proper lysis without 

lysis of some parasites during the procedure was not achieved. As can be seen from the 

results minimal amounts of the marker protein aldolase, the parasite internal control, 

was frequently detected in the supernatant fraction after SLO and saponin treatment, 

respectively, indicating that during the procedure some parasites were lysed. However, 

the majority of aldolase could still be detected in the SLO and saponin pellet fractions 

indicating that most of the parasites remained intact. The marker protein of the PV - the 

soluble serine rich protein (SERP) - was always detected after saponin treatment not 

only in the supernatant fraction as expected, but also in the pellet fraction. This 

indicates that this protein sticks to membranes and is difficult to remove despite many 

washing steps during sample preparation. This explanation is likely to be valid, since 

Proteinase K treatment of the saponin pellet fraction led to the removal of SERP in the 
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saponin pellet fraction. The difficulty to achieve proper lysis is a general issue since the 

parasite internal control aldolase and the soluble PV protein SERP are never found 

completely in the expected fractions as could be shown for different localization studies 

of P. falciparum proteins involving these two lysis methods (Ansorge et al., 1997; 

Spielmann et al., 2006; Heiber et al., 2013). The efficacy of Proteinase K digestion in 

the SLO and saponin pellet fractions was performed on one of the variant form, the  

PfAK2G2AC4A/GFP transgenic parasites. Therefore the parasite plasma membrane was 

permeabilized with Triton X 100 with and without Proteinase K addition. In the 

detergent permeabilized parasites Proteinase K was able to degrade the fusion protein 

indicating its efficiency to degrade the fusion protein. However, a weak-point of all of 

these results might be the lack of positive control for all of the experiments performed 

individually, although the efficiency of Proteinase K digestion of an acylated protein 

(PfAK2) and a non-acylated protein (PfAK2G2AC4A/GFP) was shown. An indirect 

evidence that Proteinase K treatment worked for each of the experiment is that in 

saponin treated cells the SERP protein disappeared from the pellet fraction (possibly 

sticking to membranes) compared to the saponin pellet fraction treated with Proteinase 

K indicating the efficiency of Proteinase K digestion. 

Although the majority of the control proteins in each of the experiment was detected in 

the expected fractions after SLO and saponin treatment, respectively, indicating that the 

majority of the parasites analyzed remained intact during SLO and saponin treatment 

the results should still be carefully interpreted, especially because they mostly represent 

1-2 experiments where the SLO and saponin treatment almost worked properly meaning 

that a statistical significant result is missing.  

 

Most surprising is the fact that the N-terminus of PfAK2 differs from the N-terminus of 

the other adenylate kinases and that it was found localized beyond the PPM. These 

findings are surprising, especially because adenylate kinase 2 is usually found located at 

the intermembrane space of mitochondria of various tissue cells as for the human AK2, 

which is known to play an important role in the energy metabolism (Dzeja and Terzic, 

2009). It is difficult to speculate on why the parasite expresses the AK2 protein with a 

clearly different N-terminus compared to other AK2 proteins and why the N-terminus 

drives this protein into the PV. Nevertheless, the results of analysis for PfAK2 reveals 
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PfAK2 as a further candidate protein using a different pathway to the conventional 

ER/Golgi route with a similar mechanism found for PfCDPK1 (Möskes et al., 2004) and 

Leishmania HASPB (Denny et al., 2000).  

 

A screening of the P. falciparum genome for proteins with a predicted N-myristoylation 

site, a putative palmitoylation site and a large number of basic amino acids of the first 

50 amino acids of the N-terminus revealed quite a few potential proteins as candidates 

of this putative secretory pathway. In the following five of these proteins (including 

PfAK2 and PfCDPK1), which were found in the screening are listed (a list with further 

candidate proteins can be found in the appendix). It would be interesting to perform 

similar experiments with these candidate proteins in a future study. 

Table 4.1 Potential proteins of the P. falciparum genome as candidates of a novel secretory pathway 
	
  
 N-Myristoy-

lation 

Palmitoy- 

lation 

Basic 

residues 

Acidic 

residues 

Blood 

stage 

Sexual 

stage 

Pf adenylate kinase 2 

(PF3D7_0816900)  
! ! 17 7 ---- ! 

Pf calpain 

(PF3D7_0502300)  
! ! 15 11 ---- ! 

Pf protein 

phosphatase, putative 

(PF3D7_0810300)   

! ! 14 11 ! ! 

Pf CDPK1 

(PF3D7_0217500)  
! ! 13 5 ! ! 

Pf cAMP-dependent 

protein kinase 

(PF3D7_1223100)   

! ! 12 13 ! ! 

! 	
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5 Outlook 
	
  
Interestingly, a large number of atypical signal sequences and secretion mechanisms of 

parasite proteins were discovered as a result of the analyses of parasite protein secretion 

to the parasite’s different compartments (Lingelbach, 1993; Marti et al., 2004; Hiller et 

al., 2004). However, the secretion mechanisms of many parasite proteins into the PV or 

even to destinations in the host cell are still not understood. 

 

In this study two N-myristoylated proteins were analyzed as candidate proteins of an 

alternative secretory pathway: the PfADP-ribosylation factor 1 and the Pfadenylate 

kinase 2. While the results strongly support the localization of PfARF1 to compartments 

of the early secretory pathway, PfAK2 was found to be targeted to the plasma 

membrane of the parasite (PPM) and subsequently translocated across the PPM. Further 

analyses of the PfAK2 revealed the importance of a N-myristoylation site, a putative 

palmitoylation site and a polybasic cluster of lysine residues at its N-terminus for PPM 

targeting, membrane anchoring and subsequent secretion. The N-terminus of PfAK2  

(1-37 amino acids) was sufficient for trafficking this protein beyond the PPM. But the 

secretion of another N-myristoylated protein (PfARF1) was not achieved by the addition 

of the palmitoylation site and the polybasic cluster of amino acids (results of the 

analysis of the fusion protein of the PfARF11-17/+C4/-V5AK2+18-37/GFP parasites). This 

indicates that other amino acids at the N-terminus of PfAK2 also seem to play a role in 

the secretion process. Therefore more variants of AK2 should be generated and 

analyzed to figure out which other amino acids are important in the secretion process. 

However, the underlying mechanism of the secretion process for PfAK2 is not 

understood so far.  

 

Even if PfAK2 appears to be not expressed in the erythrocytic stage of the parasite’s life 

cycle (Le Roch et al., 2003) – this still needs to be verified via immunodetection with an 

antibody against PfAK2 with samples prepared from the intraerythrocytic stage of the 

parasite - it still represents a novel mechanism of protein secretion similar to the 
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findings of the PfCDPK1 (Möskes et al., 2004) and the Leishmania HASPB (Denny et 

al., 2000). Therefore it would be interesting to express this fusion protein in a 

mammalian system in regard to the anaylsis of the protein's subcellular localization. 

 

Intriguingly, the PfN-myristoyltransferase appears to be a promising drug target since 

essential parasite proteins require N-myristoylation to perform their biological function 

(Möskes et al., 2004; Rees-Channer et al., 2006). Hence, current research is focused on 

the design and synthesis of inhibitors of PfNMT and only recently PfNMT was 

validated to be an antimalarial drug-target (Rackham et al., 2013; Wright et al., 2013). 

Therefore, the discovery of further PfNMT candidate proteins contributes to the 

understanding of the importance and influence of PfNMT in different cellular processes. 

In the case of PfAK2/GFP N-myristoylation via PfNMT seems to be a prerequisite for 

membrane targeting, membrane anchoring and protein secretion. Further experiments 

could include studies with NMT inhibitors to analyze their effect on the subcellular 

localization of PfAK2/GFP. 
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7 Appendix 

7.1 Coding sequences (PlasmoDB, version 10.0) 
	
  
Sequence encoding the PfADP-ribosylation factor 1 (ARF1) (PF3D7_1020900) 
 
ATGGGTTTATATGTAAGTAGGTTATTTAATCGTTTATTTCAAAAAAAAGATGTACGTATT 
TTAATGGTTGGATTAGATGCTGCTGGAAAAACTACAATATTATATAAAGTAAAACTTGGT 
GAAGTTGTTACGACTATTCCAACAATAGGTTTCAATGTTGAAACTGTCGAATTTCGTAAC 
ATTTCATTTACCGTATGGGATGTAGGAGGACAAGATAAGATCCGACCTTTATGGAGACAT 
TATTATTCCAACACAGACGGATTAATATTTGTCGTAGATAGTAATGATAGAGAAAGAATA 
GATGATGCTCGTGAAGAATTACATAGAATGATAAATGAAGAAGAATTAAAAGATGCTATA 
ATTTTAGTCTTCGCTAATAAACAAGATTTACCAAATGCTATGTCAGCAGCTGAAGTTACA 
GAGAAATTACACCTTAACACTATAAGGGAAAGGAACTGGTTTATTCAATCCACCTGTGCC 
ACAAGGGGTGACGGATTGTACGAAGGTTTTGATTGGCTAACCACACACTTAAATAATGCC 
AAATAA!  
 (Sequence length: 546 bp) 
 
Predicted protein sequence of PfARF1 
 
MGLYVSRLFNRLFQKKDVRILMVGLDAAGKTTILYKVKLGEVVTTIPTIGFNVETVEFRN 
ISFTVWDVGGQDKIRPLWRHYYSNTDGLIFVVDSNDRERIDDAREELHRMINEEELKDAI 
ILVFANKQDLPNAMSAAEVTEKLHLNTIRERNWFIQSTCATRGDGLYEGFDWLTTHLNNA 
K 	
  
(Sequence length: 181 aa) 
 
Sequence encoding the Pfadenylate kinase 2 (AK2) (PF3D7_0816900) 
 
ATGGGATCATGTTATAGTAGAAAAAATAAAGTATCAACAATATCATTAGATGAAGAGGAA 
AAAAAAAAAGAAAAAAAGAAGAAAAAAAAAATATATATTTTAAATGGAGCATCTGGGTCA 
GGAAAAGATACACAATGTAGATTATTAGAAAAAAAATACAATTATAAAATAATTTGTATA 
AGTAAATTATTAAAAGAATATAAAGAAGAATATAATAAAGAAAATGTATTAAATGAAGAA 
GAAAATTATTTTGATGAAATAGAAAAATGTATGATAGATGGATCTTTAGTTAATGATCAA 
ATTGTTATAGAGATATTTCATAAACAATTGAACAAATATATAAATGATGATAAATATAAT 
GGTATTATAATAAATGGTTTTCCTAGAAATTATGAACAAGCTTTATTAATTATACAAAAC 
AATATAAGTATAACGAAATTTATAAATATACAAGTAGGAAAAGATACTCTATGGACAAGA 
ATAAATAATAGAATTATCGATCCAATTACAAATATAAGTTATAATGAAAATATAATACAA 
ATAATTAAAAAAAAAAGAGAAGGACAAGAACTATCAGACAAAGAACAAAAACAATTGATC 
ATAGACAATCATTTATATAATAATTTAAGTAATGATATTTTAGAAAGATTAACAAAAAGA 
AAAGATGACGAAGAACAGGTTTTCAATAAAAGGTTTCAATTATATATAGAAAGCGAACAA 
AAAATTAATTCTCTATTTAAAAATATTTGTAAAAATGTTGATGGAGAAAAATCGATAAAT 
GATATATTTGATCAAATATGCTCCATTATAGATGATAACCCCAATTAA! 	
  
Sequence length (828 bp) 
 
Predicted protein sequence of PfAK2 
 
MGSCYSRKNKVSTISLDEEEKKKEKKKKKKIYILNGASGSGKDTQCRLLEKKYNYKIICI 
SKLLKEYKEEYNKENVLNEEENYFDEIEKCMIDGSLVNDQIVIEIFHKQLNKYINDDKYN 
GIIINGFPRNYEQALLIIQNNISITKFINIQVGKDTLWTRINNRIIDPITNISYNENIIQ 
IIKKKREGQELSDKEQKQLIIDNHLYNNLSNDILERLTKRKDDEEQVFNKRFQLYIESEQ 
KINSLFKNICKNVDGEKSINDIFDQICSIIDDNPN  
(Sequence length: 275 aa) 
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7.2 Multiple sequence alignment (Clustal W: T-coffee) 
Pf_AK2          MGSC----------YSRKNKVSTISLDEEEKKKE--KKKKKKIYILNGASGSGKDTQCRLLEKKYNYKIICISKLLKEYKEEYN 
Pf_AK1          MNE-------------NLENFSTIDLLNELKRRYACLSKPDGRYIFLGAPGSGKGTQSLNLKKSHCYCHLSTGDLLREAAEKKT 
PBANKA_AK2_p    MVP---------------------------------PPPKKKVYIMNGPPGSGKDTHCVALSKKYNFEIITISELLKKYVKDNT 
PCHAS_AK2_p     MVS---------------------------------Q-KKKKVYIMNGPPGSGKDTHCVSLSKLYNFEIITISELLKKYVKENT 
PKH_AK2_p       MEQ----------------------------------KKGPKVFILNGAAGSGKDTQCRLIAEKYNFAVITISTLLKEYVSENE 
PVX_AK2_p       MSD-------------NLEKFSTVDLLNELKRRYSCLSKPDGRYIFLGAPGSGKGTQSLNLKKSHCYCHLSTGDLLREAAEKKN 
PYYM_AK2_p      MVS---------------------------------QKKKKKVYIINGPPGSGKDTHCVSLSKKYNFEIITISELLKKYVKDNT 
PCYB_AK2        MSD-------------NLEKFSTVDLLNELKRRYSCLSKPDGRYIFLGAPGSGKGTQSLNLKKSHCYCHLSTGDLLREAAEKKN 
BbAK2           MIFLRVLSLLFFATMSGLHGYETQTLVEELRRRYDCLSKPQGNFIFMGAPGSGKGTQSLLLRDSHCYCHLSTGDILRSAIRSGD 
LiAK2           M-----------------------------------------KIVMEGPPQGGKTTVASVVKERYGLCYVSTSEAVRNAVRLGN 
                *                                           :: *.. .** * .  : . :    :  .  ::.       
 
 
Pf_AK2          KE---N--------V--LNEEENYFDEIEKCMIDGSLVNDQIVIEIFHKQLNKYI----------------NDDKYNGIIINGF 
Pf_AK1          E----------------------LGLKIKNIINEGKLVDDQMVLSLVDEKLK-------------------TPQCKKGFILDGY 
PBANKA_AK2_p    NKD--DSCGKYAPGL--TDEEKNDLENIEKCICNGSLAPDNIVNKIFLKYFKSYSENSE------QDQTSESDIPSNGIIINGF 
PCHAS_AK2_p     SKD--PSCGKYVPGL--TDEEKKDLESIEKCISNGSLAPDNIVNKIFLKYFRRYSENGE------QDKASGSDTTSNGIIINGF 
PKH_AK2_p       ETGGGTSLSKDDESIEEIGKKNEDIKRIKRCMEDGSLVPDDTVIKVFVHRLGKYI---------------NGEKPCAGIVVNGF 
PVX_AK2_p       D----------------------LGNKIRNIINEGKLVDDDVVLTLVDDKLK-------------------SPQCKKGFILDGY 
PYYM_AK2_p      NKD--DSCGKYAPGL--TDEEKKDLENIEKCICNGSLAPDHIVNKIFLKYFKSYSENSEQDKNSEQDQAPESTTSSNGIIINGF 
PCYB_AK2        D----------------------LGNKIRNIINEGKLVDDDVVLTLVDDKLK-------------------SPQCKKGFILDGY 
BbAK2           P----------------------IGMEAKTYMDQGKLVPDDVVVKLIEGNIN-------------------SPRCSRGFILDGF 
LiAK2           SA---------------------YSSQLKQLIDNDELIPDSLEVKVVCEATR-------------------RPDCVNGFVLDGF 
                                                .  :  :..*  *      :.                        *::::*: 
 
 
Pf_AK2          PRNYEQALLIIQ----NNISITKFINIQVGKDTLWTRINNRIIDPITNISYNENIIQIIKKKREGQELSDKEQKQLIIDNHLYN 
Pf_AK1          PRNVKQAEDLNKLLQKNQTKLDGVFYFNVPDEVLVNRISGRLIHKPSGRIYHKIF------------------------NPPKV 
PBANKA_AK2_p    PRTYEQALLFKK----YKINVTKFINIVVSKETILKRIMNRAKDPVTNINYNLQIVKLIKKKRQGIKLTSEEEELLASQDDSYQ 
PCHAS_AK2_p     PRTYEQALLFKK----YKINVTKFINIVVSRESLLKRIMNRAKDPVTNINYNFQIIKLIKKKRQGIQLTSEEEELLASQNDSYQ 
PKH_AK2_p       PRTYEQALLFAK----NGIQVTSFINIQVKKENLMSRISSRMVDPVTNINYNAKAVEVLLKKKQGGHLTPEEGLILSSQGDAFK 
PVX_AK2_p       PRNVKQAEDLNKLLQTNQMKLNGVFYFNVPDDVLVKRISGRLIHKPSGRIYHKIF------------------------NPPKT 
PYYM_AK2_p      PRTYEQALLFKK----YKINVTKFINIVVSRETLLNRIMNRTKDPVTNINYNLQIVKLIKKKKQGIKLTIEEEELLASQDDTYQ 
PCYB_AK2        PRNVKQAEDLNKLLQTNQMKLNGVFYFNVPDDV---------------------------------------------------    
BbAK2           PRTETQADRLKTLLSNLGKRLNAVFLFECPDDEIQRRITGRLVHEPSGRVYHMTS------------------------KPPKV 
LiAK2           PRTRKQSRMMQDL---ENVKVDIVVELEISDKELQTRFGGRWYHPKSGRIYHTFY------------------------NPPLN 
                **.  *:  :          :  .. :    . 
 
 
Pf_AK2          NLSNDI-LERLTKRKDDEEQVFNKRFQLYIESEQKINSLFKN--ICKNVDGEKSINDIFDQICSII-------------DD---- 
Pf_AK1          PFRDDVTNEPLIQREDDNEDVLKKRLTVFKSETSPLISYYKNKNLLINLDATQPANDLEKKISQHI------------------- 
PBANKA_AK2_p    NLNDEI-IMRLERREDDNESTFNKRYNLYKENEEKIIPLFID--ICKNVDGENDINHNFQQICKII-------------QEE--- 
PCHAS_AK2_p     NLSDEI-IMRLERREDDNESTFNKRYNLYKENEEKIIPLFID--ICKNVDGENDINYNFQQICKII-------------QEE--- 
PKH_AK2_p       NISDEV-IARLSKRADDDEATFLKRFHLYEHNEEKIISLFPT--VYRSVDGNGSIEETFAQICAIL-------------DGEHEY 
PVX_AK2_p       PFKDDITNEPLIQREDDNEEVLKKRLNVFKSETTPLINYYKNKNLLINLDATQPANDLEKKISQHI------------------- 
PYYM_AK2_p      NLTDEI-IMRLERREDDNESTFNKRYNLYKENEEKIIPLFID--ICKNVDGENDINYNFQQICKII-------------QEE--- 
PCYB_AK2        --LDDITNEPLIQREDDNEEVLKKRLNVFKSETTPLINYYKNKNLLINLDATQPANDLEKKISQHI------------------- 
BbAK2           PMRDDITNEPLTQRKDDTLEVIRTRLDAYHKQTAPLIKYYENMHLLHRIDANRPEMKVNEEINKIV-------------ER---- 
LiAK2           AGKDDYTGEPLVQHSEDTPERIRQRMSQYRQQLSEVRSTFVG-NAWVTVEASGNVESVRNNVFAVLDPLYFAQTSKKVPKPW--- 
                   ::     * :: :*    :  *   :  .   :   :        ::.         ::   :                   
 
 
Pf_AK2          -NPN 
Pf_AK1          --DG 
PBANKA_AK2_p    ENYA 
PCHAS_AK2_p     ENYA 
PKH_AK2_p       TRLS 
PVX_AK2_p       --GG 
PYYM_AK2_p      ENYA 
PCYB_AK2        --GG 
BbAK2           VCTN 
LiAK2           WKFW 	
  

 

Figure A-1  A multiple sequence alignment of PfAK2 and other verified and putative adenylate 
kinase 2 proteins, respectively, in other Plasmodium species and other parasitic protozoa 
PfAK2 (PF3D7_0816900) was aligned to PfAK1 (Pf3D7_1008900), PbAK2, putative 

(PBANKA_071390), PcAK2, putative (PCHAS_072300), PkAK2, putative (PKH_051560),  

PvAK2, putative (PVX_094660), PyAK2, putative (PYYM_071400), PcAK2 (PCYB_081850),   

BbAK2 (bbov|XP_001609458.1) and LiAK2 (linf|LinJ.34.0130). The N-terminus of PfAK2 clearly 

differs from the N-termini of the other aligned proteins, insofar as it contains a verified N-myristoylation 

site (Rahlfs et al., 2009), a putative palmitoylation site at the 4th position and a polybasic cluster of lysine 

residues (each motif marked in grey). None of the other AK2 proteins contain either of these motifs. The 

alignment was created using ClustalW (T-coffee).  
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7.3 Expression profiles of PfAK2 (PlasmoDB 10.0 version) 
	
  
	
  
	
  
	
  
	
  
	
  

 

 

 

 

 

 

 

 

 

 

Figure A- 3 Gametocyte stages (I–V) transcriptomes of PF3D7_0816900 (Pf AK2) 

The expression profile of PF3D7_0816900 is based on a oligonucleotide microarray analysis (Young et 

al., 2005). In red: 3D7 parasites; in pink: MACS purified 3D7 parasites; in purple: isolate NF54. Different 

gametocyte stages (stage I–V) were analyzed (x-axis): days of gametocytogenesis. Y-axis: (rma) 

Affymetrix RMAExpress expression value (normalized by experiment). 

	
  

Figure A-2 Expression profile of PF3D7_0816900 (PfAK2) 

The expression profile of PF3D7_0816900 is based on a oligonucleotide microarray analysis (Le Roch et 

al., 2003). In blue: Sorbitol-synchronized 3D7 parasites; in purple: Temperature-synchronized 3D7 

parasites. Different stages of P. falciparum’s life-cycle were analysed (x-axis): ER= Early Rings; LR = 

Late Rings; ET= Early Trophs; LT= Late Trophs; ES=Early schizonts; LS= Late Schizonts; M=Merozoites; 

S=Sporozoites; G=Gametocytes. Y-axis: Log (base 2) ratio of Affymetrix RMAExpress expression value 

(normalized by experiment) to average RMAExpress value for all time points for a gene. 
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7.4 Potential proteins of the P. falciparum genome as candidate 
proteins of an alternative secretory pathway 

 N-Myristoy-

lation 

Palmitoy- 

lation 

Basic 

residues 

Acidic 

residues 

Blood 

stage 

Sexual 

stage 

Pf adenylate kinase 2 

(PF3D7_0816900)  
! ! 17 7 ---- ! 

Pf calpain 

(PF3D7_0502300)  
! ! 15 11 ---- ! 

Pf protein phosphatase, 

putative 
(PF3D7_0810300)   

! ! 14 11 ! ! 

Pf CDPK1 

(PF3D7_0217500)  
! ! 13 5 ! ! 

Pf cAMP dependent 

protein kinase 

(PF3D7_1223100)   

! ! 12 13 ! ! 

Pf ABC transporter (MDR 
family) (PF3D7_1339900)   

! --- 12 6 ---- ! 

Pf protein phosphatase 2c-

like (PF3D7_1309200)   
! ! 12 9 ---- ! 

Pf glideosome associated 

protein (PF3D7_1222700)   
! ! 11 20 ! ! 

Pf Conserved Plasmodium 

membrane protein, 

unknown function 

(PF3D7_0930800)   

! ! 10 12 ---- ! 

Pf conserved plasmodium 

protein (PF3D7_0913800)   
! ! 9 12 -- ! 

Pf secretory complex 

protein 61 alpha 

(PF3D7_1310600)   

! ! 8 3 ! ! 

Pf armadillo-domain 

containing rhoptry protein 

(ARO) (PF3D7_0414900)   

! ! 8 9 ! ! 

Pf inner membrane 

complex protein, putative 
(PF3D7_1011000)   

! - 7 8 ! ! 

!
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