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ABSTRACT
We present FLO (From Lines to Overdensities), a new technique to reconstruct the hydrogen

density field for the Lyα forest lines observed in high-resolution QSO spectra. The method is

based on the hypothesis that the Lyα lines arise in the low to intermediate density intergalactic

gas and that the Jeans length is the typical size of the Lyα absorbers. The reliability of FLO is

tested against mock spectra obtained from cosmological simulations. The recovering algorithm

gives satisfactory results in the range from the mean density to overdensities of ∼30 and

reproduces correctly the correlation function of the density field and the 1D power spectrum

on scales between ∼20 and 60 comoving Mpc. A sample of Lyα forests from 22 high-resolution

QSO spectra is analysed, covering the redshift range 1.7 � z � 3.5. For each line of sight,

we fit Voigt profiles to the lines of the Lyα forest, providing the largest, homogeneous sample

of fitted Lyα lines ever studied. The line number density evolution with redshift follows

a power-law relation: dn/dz = (166 ± 4) [(1 + z)/3.5](2.8±0.2) (1σ errors). The two-point

correlation function of lines shows a signal up to separations of ∼2 comoving Mpc; weak lines

[logN (H i) < 13.8] also show a significant clustering but on smaller scales (r � 1.5 comoving

Mpc). We estimate with FLO the hydrogen density field toward the 22 observed lines of sight.

The redshift distribution of the average densities computed for each QSO is consistent with

the cosmic mean hydrogen density in the analysed redshift range. The two-point correlation

function and the 1D power spectrum of the δ field are estimated. They are both consistent with

the analogous results computed from hydrosimulated spectra obtained in the framework of the

concordance cosmological model. The correlation function shows clustering signal up to ∼4

comoving Mpc.

Key words: intergalactic medium – quasars: absorption lines – cosmology: observations –

large-scale structure of Universe.

1 I N T RO D U C T I O N

Semi-analytical and hydrodynamical simulations (e.g. Cen et al.

1994; Zhang, Anninos & Norman 1995; Hernquist et al. 1996;

Miralda-Escudé et al. 1996; Bi & Davidsen 1997; Davé et al. 1997;

Zhang et al. 1997; Theuns, Leonard & Efstathiou 1998; Machacek
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et al. 2000) suggest that the Lyα forest arises from fluctuations of

the low-density intergalactic medium (IGM) that trace the under-

lying matter density field over cosmic time. The dynamical state

of the low-density IGM is governed mainly by the Hubble expan-

sion and by gravitational instabilities. As a consequence, the physics

involved is quite simple and mildly non-linear. The statistical analy-

sis of the Lyα forest provides information on the dynamical growth

and thermal state of the IGM, and on the correlation properties of

the (dark) matter in the Universe. Correlations of the Lyα forest

lines were detected with a 4–5σ confidence by various authors at

typical scales �v � 350 km s−1 observing at high-resolution indi-

vidual lines of sight (Cristiani et al. 1995; Lu et al. 1996 at z ∼ 3.7;
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Cristiani et al. 1997 at z ∼ 3; Kim, Cristiani & D’Odorico 2001 at

z ∼ 2). This velocity range corresponds to scales �2.5 h−1 Mpc

(assuming negligible peculiar velocities). The ‘cosmic web’ sce-

nario (Bond, Kofman & Pogosyan 1996) is favoured against that

of a population of pressure confined clouds (Sargent et al. 1980)

thanks also to the analysis of the line correlation observed in close

pairs of QSO lines of sight, implying absorber sizes of a few hun-

dred kpc (e.g. Smette et al. 1992; Bechtold et al. 1994; Smette et al.

1995; Fang et al. 1996; Dinshaw et al. 1997; Crotts & Fang 1998;

Petitjean et al. 1998; D’Odorico et al. 1998; Rauch et al. 2001;

Young, Impey & Foltz 2001; Becker, Sargent & Rauch 2004). The

analysis of multiple lines of sight at slightly larger separations

(smaller than a few arcminutes), makes it possible to compute the

transverse correlation function for which a clustering signal is de-

tected up to velocity separations of ∼200 km s−1, or about 3h−1

comoving Mpc (e.g. Rollinde et al. 2003; Coppolani et al. 2006;

D’Odorico et al. 2006).

Traditionally, absorption spectra were decomposed into Voigt

profiles which were then identified with individual discrete absorp-

tion systems. Information on the physical state of the gas originating

the absorptions comes directly from the fit parameters: redshift, col-

umn density and Doppler broadening (linked to the temperature). In

the new paradigm the emphasis of the analysis has shifted to statis-

tical measures of the transmitted flux (e.g. the flux power spectrum)

more suitable for absorption arising from a continuous density field.

However, the interpretation of statistical quantities of the continuous

flux field and their relation with the physical properties of the gas

requires a non-trivial comparison with full hydrodynamical high-

resolution simulations that are computationally expensive.

The aim of this paper is to extend the line-fitting approach by

identifying a new statistical estimator linked to the physical proper-

ties of the underlying IGM. This new estimator will also overcome

the two main drawbacks of the Voigt fitting method:

(i) the subjectivity of the decomposition into components: the

same absorption can be resolved by different scientists (or software

tools) in different ways, both in the number of components, and in

the values of the output parameters for a single component;

(ii) the blanketing effect of weak lines: they can be hidden by the

stronger lines, so that their exact number density is unknown and

has to be inferred from statistical arguments. Unfortunately, since

the weak lines are also the most numerous, the uncertainty in their

exact number is transformed into a systematic error of the computed

statistical quantities.

This new estimator is identified in the hydrogen density field, nH,

which is linked to the measured H I column densities through the

formula (Schaye 2001)

N (H I) � 3.7 × 1013 cm−2(1 + δ)1.5−0.26αT −0.26
0,4 �−1

12

×
(

1 + z

4

)9/2 (
�b h2

0.024

)3/2 (
fg

0.178

)1/2

, (1)

where δ ≡ nH/〈nH〉 − 1 is the density contrast, T0,4 ≡ T0/104 is

the temperature at the mean density, �12 ≡ �/10−12 is the H pho-

toionization rate, fg ≈ �b/�m is the fraction of the mass in gas and

α depends on the ionization history of the Universe. Equation (1)

relies on three main hypotheses: (i) Lyα absorbers are close to local

hydrostatic equilibrium, i.e. their characteristic size will be typically

of the order of the local Jeans length (LJ); (ii) the gas is in photoion-

ization equilibrium; (iii) the equation of state, T = T0(δ + 1)α holds

for the optically thin IGM gas (Hui & Gnedin 1997).

The procedure to recover the H density field from the list of Lyα

line column densities in a QSO line of sight, has been dubbed FLO

(From Lines to Overdensities).

The paper is organized as follows. Section 2 describes the ob-

served data sample used for our analysis and presents the statistical

measures obtained for the fitted Lyα lines; Section 3 introduces the

hydrogen density field as a statistical estimator, and describes the

construction algorithm; Section 4 presents the simulated spectra and

the test of reliability of the method with this data set; in Section 5

the new algorithm is applied to the observed data sample; finally,

we draw our conclusions in Section 6.

The cosmological model adopted throughout this paper corre-

sponds to a ‘fiducial’ 	CDM universe with parameters, at z = 0,

�m = 0.26, �	 = 0.74, �b = 0.0463, ns = 0.95, σ 8 = 0.85 and

H0 = 72 km s−1 Mpc−1 (the B2 set of parameters of Viel, Haehnelt

& Springel 2004).

2 O B S E RV E D DATA S A M P L E

Most of the observational data used in this work were obtained with

the UVES spectrograph (Dekker et al. 2000) at the Kueyen unit of the

ESO VLT (Cerro Paranal, Chile) in the framework of the ESO Large

Programme (LP): ‘The Cosmic Evolution of the IGM’ (Bergeron

et al. 2004). Spectra of 18 QSOs were obtained in service mode with

the aim of studying the physics of the IGM in the redshift range 1.7–

3.5. The spectra have a resolution R ∼ 45 000 and a typical signal-

to-noise ratio (S/N) of ∼35 and 70 per pixel at 3500 and 6000 Å,

respectively. Details of the data reduction can be found in Aracil

et al. (2004) and Chand et al. (2004).

We added to the main sample four more QSO spectra with com-

parable resolution and S/N.

(i) J2233−606 (Cristiani & D’Odorico 2000): Data for this QSO

were acquired during the commissioning of UVES in 1999 October.

(ii) HE1122−1648 (Kim et al. 2002): Data for this QSO were

acquired during the science verification of UVES in 2000 February.

The reduced and fitted spectrum was kindly provided to us by Tae-

Sun Kim.

(iii) HS1946+7658 (Kirkman & Tytler 1997): Data for this QSO

were acquired with Keck/HIRES in 1994 July.

(iv) B1422+231 (Rauch et al. 1996): Data for this QSO were

acquired with Keck/HIRES in 1996. The reduced and fitted spectrum

was kindly provided to us by Tae-Sun Kim.

Table 1 summarizes the main properties of our QSO sample. None

of our QSOs is a broad absorption-line object. Magnitudes are taken

from the GSC-II catalogue (McLean et al. 2000). Fig. 1 shows the

distribution in redshift of the Lyα forests for all the QSOs of the

sample. We considered for each QSO the redshift range between

1000 km s−1 redward of the Lyβ emission, in order to avoid con-

tamination by associated Lyβ lines, and 5000 km s−1 blueward of

the Lyα emission to exclude the region affected by the proximity

effect due to the ionizing flux of the QSO. The coverage is good

over the whole redshift range z � 1.7–3.5, with most of the signal

concentrated between z ∼ 2 and 2.5. In Fig. 2, we show a portion

of the Lyα forest of the QSO HE0001−2340 compared with the

same wavelength region in a mock spectrum extracted from the

considered simulation box at z = 2 (see Section 4).

2.1 Creation of the line lists

All the lines in the Lyα regions of the LP QSOs plus J2233−606

were fitted with the FITLYMAN tool (Fontana & Ballester 1995) of
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Table 1. Summary of the main characteristics of our QSO sample (see text).

QSO zem J magnitude Lyα �z

HE1341−1020 2.139 18.68 1.658–2.087

Q0122−380 2.203 17.34 1.711–2.150

PKS1448−232 2.220 17.09 1.725–2.166

PKS0237−23 2.233 16.61 1.737–2.179

J2233−606 2.250 16.97 1.753–2.196

HE0001−2340 2.267 16.74 1.765–2.213

HE1122−1648 2.400 16.61 1.878–2.344

Q0109−3518 2.407 16.72 1.884–2.350

HE2217−2818 2.415 16.47 1.891–2.358

Q0329−385 2.440 17.20 1.912–2.383

HE1158−1843 2.451 17.09 1.921–2.394

HE1347−2457 2.560 17.35 2.016–2.502

Q0453−423 2.662 17.69 2.100–2.602

PKS0329−255 2.698 17.88 2.125–2.636

HE0151−4326 2.761 17.48 2.186–2.699

Q0002−422 2.768 17.50 2.189–2.705

HE2347−4342 2.878 17.12 2.281–2.814

HS1946+7658 3.051 16.64 2.429–2.984

HE0940−1050 3.088 17.08 2.463–3.020

Q0420−388 3.122 17.44 2.489–3.053

PKS2126−158 3.275 17.54 2.620–3.204

B1422+231 3.620 16.22 2.911–3.543
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HE0001-2340
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Figure 1. Lyα forest redshift coverage of the QSOs in our sample.

the ESO MIDAS data reduction package.1 In the case of complex

saturated lines we used the minimum number of components to

reach χ 2 � 1.5. Whenever possible, the other lines in the Lyman

series were used to constrain the fit. The spectra of HE1122−1648,

HS1946+7658, B1422+231 and all the simulated lines of sight

were fitted with the VPFIT
2 package. Both software tools model ab-

sorption features with a Voigt profile convolved with the instru-

ment line spread function. The minimum H I column density de-

tectable at 3σ , at the lowest S/N of the spectra in our sample, is

logN (H i) � 12 cm−2.

Metals in the forest were identified and the corresponding spec-

tral regions were masked to avoid effects of line blanketing. We

eliminated Lyα lines with Doppler parameters b � 10 km s−1, that

1 http://www.eso.org/midas.
2 http://www.ast.cam.ac.uk/∼rfc/vpfit.html.

Figure 2. Portion of the Lyα forest for an observed (lower panel) and a

simulated (upper panel) line of sight in our sample.

are likely unidentified metal absorptions. In a total amount of 8435

fitted Lyα lines, 368 (4.4 per cent) fall in the masked intervals, 1150

(13.6 per cent) are at less than 1000 km s−1 redward the Lyβ emis-

sion or at less than 5000 km s−1 blueward the Lyα emission, while

599 were eliminated because they have b � 10 (7.1 per cent). The

output of this analysis is a list of Lyα lines for each QSO with central

redshift, H I column density and Doppler parameter.

In the line-fitting approach to the study of the Lyα forest, each

line is considered as the signature of an absorber. As a consequence

statistical measures are computed with the population of absorption

lines, representative of the population of absorbers. Our sample of

fitted Lyα lines is the largest, homogeneous sample ever gathered

up to now. We will use it to compute the number density evolu-

tion with redshift and the two-point correlation function (TPCF) of

lines.

2.2 Line number density evolution

The line number density per unit of redshift is generally approx-

imated as dn/dz = (dn/dz)0(1 + z)β , where (dn/dz)0 is the local

comoving line number density of the forest and the exponent β

depends both on physical (redshift, column density interval) and in-

strumental (spectral resolution, decomposition of velocity profiles)

factors.

In Fig. 3 we plot the result for the QSOs in our sample for the

standard column density interval 13.64 < log N (H I) < 17 cm−2

in order to compare our statistics with the HST low-redshift mea-

surement3 (Weymann et al. 1998). The best fit to our data gives

dn/dz = (166 ± 4) [(1 + z)/3.5]2.8±0.2 (1σ errors). There is no sub-

stantial change in the trend with respect to previous results by Kim

and collaborators (2001, 2002) who used smaller samples of UVES

QSO spectra of the same quality. However, our points are system-

atically higher on the plot, with an increase in log dn/dz amounting

to ∼0.03 at z ∼ 2 up to ∼0.1 at z ∼ 3. The discrepancy arises from

the fact that we have taken into account the decrease in the available

3 The lower limit in column density is due to the fact that HST measurements

have been transformed from equivalent width into H I column densities as-

suming a typical Doppler parameter of 30 km s−1.
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 Lu et al. (1996)

Weymann et al. (1998)

Kim et al. (1997)

Hu et al. (1995)

Kirkmann & Tytler (1997)

This work

Figure 3. Number density evolution of the Lyα forest lines over the column

density range 13.64 < log N (H I) < 17 cm−2 for the 22 QSOs in our sample

(open triangles). The solid line traces the best linear fit obtained for those

data (see text). For comparison, we report also previous measurements at

high redshift and the result of the low-redshift HST campaign.

redshift interval due to the presence of metal lines ‘masking’ the Lyα

features. High-resolution spectra allow us to identify a larger num-

ber of metal lines: in our sample these metal masks correspond to

about 9 per cent of the total redshift interval covered by the observed

Lyα forests.

Fig. 4 shows the number density evolution for two different

H I column density ranges: 13 � logN (H I) � 14 and 14.5 �

Figure 4. Number density evolution of the Lyα forest lines over the two col-

umn density ranges 13 � logN (H I) � 14 (crosses) and 14.5 � logN (H I) <

17 cm−2 (open triangles) for the 22 QSOs in our sample. The lines are the

best linear fits for the two distributions (see text).

logN (H I) < 17 cm−2. The linear fit in these intervals gives slopes

of 1.9 ± 0.2 and 3.8 ± 0.4 for the weak and the strong lines se-

lection, respectively. This trend was already noticed by Kim et al.

(2002): stronger lines have a steeper number density evolution than

the weaker ones.

2.3 Two-point correlation function of Lyα lines

To study the clustering properties of our sample of Lyα lines, we

adopt the standard TPCF defined as the excess, due to clustering,

of the probability dP of finding a Lyα absorber in a volume dV at a

distance r from another absorber: dP =�Lyα(z) dV [1 + ξ (r)], where

�(z) is the average space density of the absorbers as a function of z.

Operatively this quantity is estimated with the formula (Peebles

1980)

ξ (v) = Nobs(v)

Nexp(v)
− 1, (2)

where Nobs is the observed number of line pairs with velocity separa-

tions between v and v + dv, and Nexp is the number of pairs expected

in the same range of separations from a random distribution in red-

shift. Since in this context peculiar velocities are negligible (see

e.g. Rauch et al. 2005), we compute the correlation function in real

space, measuring separations in comoving Mpc. At the character-

istic redshift of our sample, z = 2.5, a velocity separation �v =
100 km s−1 corresponds to �r � 0.9 comoving Mpc, in our fiducial

cosmology. Nexp is obtained by averaging the results of 1000 numer-

ical simulations of the number of lines observed in each QSO spec-

trum. In particular, the set of line redshifts is randomly generated

in the same redshift interval as the data according to the observed

distribution ∝(1 + z)β , where we adopt the value β = 2.8 found in

the previous section. The same mock line lists are used to estimate

the error on the observed correlation function by determining the

1σ standard deviation of the correlation functions of the randomly

distributed lines. Lines closer than 0.3 comoving Mpc are merged

into a single line with redshift equal to the mean redshift, weighted

with the column densities and column density equal to the sum of

the column densities. The minimal separation is set by the intrinsic

blending due to the typical width of the lines (see Giallongo et al.

1996).

We compute the correlation function for the whole data set (Fig. 5)

and for two column density cuts (Fig. 6) to investigate the cluster-

ing properties of strong and weak lines. Previous results (Cristiani

et al. 1995; Lu et al. 1996; Cristiani et al. 1997) already showed a

significant clustering signal for strong absorptions, which is con-

firmed and strengthened by our data. Furthermore, we also see a

significant clustering for the weak lines, consistent with previous

results by Misawa et al. (2004). The amplitude is about one order of

magnitude lower than for the stronger lines but the clustering signal

in the first bin is significant at the 7σ level.

As already said in Section 1, the Jeans length (LJ) likely repre-

sents the typical size of IGM structures detected as Lyα absorptions.

This length (varying from ∼1.2 to 1.6 comoving Mpc for the max-

imum and minimum redshift of our sample, respectively) is also

comparable with the clustering scale of the Lyα lines as shown in

Fig. 5 (upper panel) and Fig. 6. In order to verify that the clustering

signal we are detecting is not only due to structures internal to the

absorbers, we perform the following test. Lines with separation less

than the local LJ are merged into a single line with column density

equal to the sum of the column densities of the component features

and redshift equal to the N (H I)-weighted mean of the component
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Figure 5. TPCF for the observed Lyα lines in the column density range

12 < logN (H I) < 17 cm−2. In the bottom panel lines closer than one Jeans

length have been merged into one line, see text. The dashed lines represent

the 1σ confidence levels from a random distribution of lines.

Figure 6. TPCF for the observed Lyα lines in two column density ranges

as reported in the panels.

redshifts and the TPCF is recomputed. The result, reported in the

lower panel of Fig. 5, shows that the clustering signal is preserved

substantially at the same level of the one computed with all the lines,

with a slightly decreased significance due to the smaller statistics.

This is an indication that Lyα absorbers cluster among themselves

and not only inside themselves.

Figure 7. TPCF for the observed Lyα lines in the column density range

13.8 < logN (H I) < 17 and in two redshift ranges reported in the panels.

The present data set is large enough to allow studying the evolu-

tion of the correlation function with redshift. We consider the column

density range for which the signal is stronger, 13.8 < logN (H I) <

17, and we divide our sample in two parts. The first subsample is

formed by objects with emission redshift zem � 2.5, for which the

average Lyα forest redshift is 〈zLyα〉 = 2.07, and the second sub-

sample has objects with zem > 2.5 and 〈zLyα〉 = 3.02. Results are

shown in Fig. 7: the high-redshift lines are less clustered than the

low-redshift lines. This apparent evolution with redshift is biased

by the fact that the relation δ − log N (H I) is also z dependent. In-

deed, the same column density range selects objects with a lower

density contrast at higher redshift (see equation 1) explaining the

lower clustering signal. To verify this effect, we selected lines on

the ground of a constant density contrast, δ � 3, which corresponds

to logN (H I) > 13.8 at the average redshift of the low-redshift sub-

sample, and to logN (H I) > 14.3 at the higher average redshift. The

correlation function for the latter subsample is shown in Fig. 8. Se-

lecting the same kind of structures, there is no longer evidence of a

significant evolution with redshift.

Table 2 shows a detailed budget of the number of lines used

to compute the TPCF in all the different selections described

above.

3 I N T RO D U C I N G F L O

In Section 1 we have described, on one hand, what are the main

drawbacks of the two standard approaches (Voigt fitting and flux

statistics) adopted to analyse the Lyα forest and derive statistical

quantities describing the physical state of the IGM. On the other

hand, the recovered H density field is introduced as a new robust

estimator, whose statistical properties are in good agreement with

those of the original density field, and which allows an easy com-

parison between observation and simulation results. The relation

between the underlying H density field and the H I column densities
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Figure 8. TPCF for the observed Lyα lines in the high-redshift range. Here

the cut in column density is defined to correspond to a constant cut in density

contrast, δ � 3, corresponding to log N (H I) > 14.3 at z = 3.02, see text.

Table 2. Detailed budget of the number of lines used to compute TPCFs. The first column refers to the selection carried out, in terms of emission

redshift of the considered objects.

Selection NQSO Lyα lines

Na
tot Nb

mask Nc
b Nd

prox Ne
comb Nf

merg Ng
col Nh

fin

All QSOs 22 8435 368 644 1150 1955 380 4953 1147

13.8 < log N (H I) < 17

�r > 0.3 comoving Mpc

All QSOs 22 8435 368 644 1150 1955 380 1319 4781

12 < log N (H I) < 13.8

�r > 0.3 comoving Mpc

All QSOs 22 8435 368 644 1150 1955 380 170 5930

12 < log N (H I) < 17

�r > 0.3 comoving Mpc

zem � 2.5 11 3188 103 169 445 665 100 2042 381

13.8 < log N (H I) < 17

�r > 0.3 comoving Mpc

zem > 2.5 11 5247 265 475 705 1290 280 2911 766

13.8 < log N (H I) < 17

�r > 0.3 comoving Mpc

zem > 2.5 11 5247 265 475 705 1290 280 3345 332

14.3 < log N (H I) < 17

�r > 0.3 comoving Mpc

All QSOs 22 8435 368 644 1150 1955 2944 64 3472

12 < log N (H I) < 17

�r > 1LJ

aTotal number of fitted Lyα lines; bnumber of Lyα lines falling in the metal masks; cnumber of Lyα lines with b < 10 or b > 100; dnumber of

lines falling closer than 1000 km s−1 redwards the Lyβ emission or closer than 5000 km s−1 bluewards the Lyα emission; enumber of eliminated

lines because one of the three previous conditions occurs; f number of merged lines because their separation is less than the �r threshold

indicated in the selection; gnumber of merged lines not fulfilling the column density selection; hnumber of lines used to compute the TPCF.

measured for the observed absorption lines is summarized by equa-

tion (1).

Before describing the FLO technique in details, it is important to

recall the main hypotheses.

(1) Lyα absorbers have typical sizes of the order of the local LJ,

which can be approximated as (Zaroubi et al. 2006)

L J � 1.33

(
�mh2

0.135

)−1/2 (
T0

1.8 × 104

)1/2

×
(

1.6

α + 1

)1/2 (
1 + z

4

)−1/2

Mpc (3)

in comoving units, where h ≡ H0/100 km s−1 Mpc−1, and the other

parameters have been already defined.

(2) The IGM gas is in the linear or slightly non-linear regime

[log(δ + 1) ∼ 1, Hui & Gnedin 1997].

In order to apply equation (1) we have, first of all, to go through

the Voigt fitting process of the Lyα forest absorptions in a QSO

spectrum. Then, to transform the list of H I column densities of Lyα

lines into the matter density field which generated them, we have to

perform the following steps.

(1) Group Lyα lines into absorbers of size of 1 LJ with column

density equal to the sum of column densities and redshift equal to the

weighted average of redshifts, using column densities as weights.

The absorbers are created with a friend-of-friend algorithm:
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(i) the spatial separation between all the possible line pairs

is computed and the minimum separation is compared with LJ,

computed at the N (H I)-weighted redshift mean of the pair;

(ii) if the two lines of the pair are more distant than the local LJ,

they are classified as two different absorbers, stored and deleted

from the line list;

(iii) if the two lines are closer than the local LJ, they are re-

placed in the line list by one line with a redshift equal to the

N (H I)-weighted mean of the two redshifts and a column density

equal to the sum of the two column densities;

(iv) the procedure is iterated until all the lines are converted

into absorbers.

(2) Transform the list of column densities of absorbers into a list

of δ with equation 1.

(3) Bin the redshift range covered by the Lyα forest into steps

of 1LJ and distribute the absorbers on to this grid, proportionally to

the superposition between absorber size (which is again 1LJ) and

bin. Empty bins are filled with one absorber with hydrogen density

contrast corresponding to the minimum detectable column density

in our data, log N (H I) = 12 cm−2 at the redshift of the bin.

(4) Normalize the resulting δ field in order to have 〈δ + 1〉 =
1.0 for the whole considered sample. This operation is necessary to

recover the correct asymptotic behaviour of the correlation function.

With the introduction of this new statistical estimator, the draw-

backs of the standard Voigt fitting approach are significantly re-

duced. On one hand, the statistical weight of weak lines is reduced,

since their contribution to the δ field is low. On the other hand, we

verify that, in the process of Voigt fitting complex absorption fea-

tures, the total H I column density is a much more robust quantity

than the number of components. To this purpose, we compare the

results of the line lists of a subsample of 12 QSOs adopted in the

present work with the corresponding lists obtained with the VPFIT

package, kindly provided to us by Tae-Sun Kim. The total num-

ber of lines in each line of sight is not conserved, in particular,

significant differences are observed for the complex absorption sys-

tems where, in general, VPFIT fits more lines than FITLYMAN. Most

of these discrepancies are due to the identification of low column

density lines. However, the total column density in these complex

absorbers appears to be much more stable between the two fitting

methods.

In Fig. 9, we plot the comparison between FITLYMAN and VPFIT for

one QSO of the sample, Q0109−3518 (zem = 2.407). We divide the

line of sight into redshift bins of width �z = 0.01; we sum both the

number and the column densities of the lines in each bin, and plot

them against redshift. It is evident that while the number of lines

is different, the two column density distributions trace each other

more faithfully.

VPFIT has been used to fit the lines of three QSOs in our sample (see

Section 2) and also to analyse the output spectra from the simulation

(see next section). We verify the stability of FLO against different

fitting tools by applying it to the line lists obtained with VPFIT and

with FITLYMAN for the 12 common QSOs. In Fig 10, we show the

comparison between the two recovered fields by means of a contour

scatter plot. The correlation is tight for all values of δ, the scatter

increases slightly for δ � 0.

4 S I M U L AT E D DATA S A M P L E

We use simulations run with the parallel hydrodynamical (TreeSPH)

code GADGET-2 based on the conservative ‘entropy formulation’ of

SPH (Springel 2005). They consist of a cosmological volume with

Figure 9. Comparison between the fitting results by FITLYMAN (solid line)

and VPFIT (dotted line) for the QSO Q0109−3518. The lower panel shows

the total number of lines, while the upper one shows the sum of the column

densities of all the lines in redshift bins of width �z = 0.01.The two redshift

intervals where the column density measured with FITLYMAN goes to zero

correspond to masked metal lines falling at those redshifts.

Figure 10. Contour scatter plot of the FITLYMAN versus VPFIT reconstructed

density fields. The contours show the number density of pixels which in-

creases by a factor of 10 at each level.

periodic boundary conditions filled with an equal number of dark

matter and gas particles. Radiative cooling and heating processes are

followed for a primordial mix of hydrogen and helium. We assume

a mean ultraviolet background produced by QSOs and galaxies as

given by Haardt & Madau (1996) with helium heating rates multi-

plied by a factor of 3.3 in order to better fit observational constraints

on the temperature evolution of the IGM. This background gives

naturally a � ∼ 10−12 (H ionization rate) at the redshifts of interest

here (Bolton et al. 2005). The star formation criterion is a very sim-

ple one that converts in collisionless stars all the gas particles whose

temperature falls below 105 K and whose density contrast is larger

than 1000 (it has been shown that the star formation criterion has
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a negligible impact on flux statistics). More details can be found in

Viel et al. (2004).

We use 2 × 4003 dark matter and gas particles in a 120 h−1 co-

moving Mpc box (although for some cross-checks we analyse some

smaller boxes of 60 h−1 comoving Mpc). The gravitational softening

is set to 5 h−1 kpc in comoving units for all particles.

We stress that the parameters chosen here, including the thermal

history of the IGM, are in reasonably good agreement with obser-

vational constraints including recent results on the CMB and other

results obtained by the Lyα forest community (e.g. Viel, Haehnelt

& Lewis 2006).

The 120 Mpc simulation box at z = 2 is pierced to create a set of

364 mock lines of sight covering a redshift range �z � 0.11. For

each of these lines of sight, we know the density contrast, the tem-

perature and the peculiar velocity pixel by pixel. Peculiar velocities

are small, typically less than 100 km s−1, and randomly oriented, so

their contribution, e.g. to the correlation function, is in general neg-

ligible. However, since we want to compare the result of simulations

and observations, we modify the redshifts of the density field (zold)

with the peculiar velocity field to obtain the density field in red-

shift space (znew) using the formula vpec(zold) = c (znew − zold)/[1 +
(znew + zold)/2]. We added to the simulated spectra a Gaussian noise

S/N = 50, in order to reproduce the observed average S/N per pixel.

The simulated lines of sight have been fitted with Voigt profiles

using an automated version of VPFIT.

4.1 Reconstruction of the δ field

The Lyα lines in each simulated line of sight are selected to have, as

in the case of observations, b � 10 km s−1. We introduce a further

constraint, b � 100 km s−1, which is required by the fact that simu-

lated spectra are not continuum fitted. Shallow and broad oscillations

in simulated spectra are fitted as absorption lines with Doppler pa-

rameters of the order of thousands of km s−1. In the real spectra these

kind of oscillations are instead fitted with the continuum and b pa-

rameters that large are not measured. The selected lines are grouped

into absorbers and transformed into the corresponding density field

following the procedure described in Section 3. In equation (1) the

values T0 = 1.8 × 104 K and α = 0.6 are adopted, which are con-

sistent with an early re-ionization epoch and are the ones inferred

from the simulations.

The reconstructed field is compared with the original density field

(i.e. the output of the simulation), which is also binned into 1 LJ steps.

An upper threshold is adopted both for the true and the recovered δ

field, δthr = 50, since 99.95 per cent of pixels in the simulated lines

of sight have values δ � δthr and the algorithm to recover the δ field

(equation 1) is valid for values of δ � few × 10. The upper cut is

applied before the normalization process.

The average values of the δ field considering all the 364 simulated

spectra are 〈δ + 1〉 � 0.9 and 1.3 for the true and recovered field,

respectively. The fields are normalized using these values.

Fig. 11 shows the contour scatter plot of the original versus recon-

structed density field. As can be seen from the figure, FLO recon-

structs fairly well the original field above the mean density, while

underdensities are underestimated, or not recovered, if they are be-

low our lower threshold. Indeed, the lower horizontal tail observed

in the scatter plot is due to the treatment of the empty bins during the

absorber-field transformation. The upper horizontal tail is instead

due to the cut applied to overdensities larger than the threshold, δthr.

Fig. 12 shows the distribution of δ values in the true and recovered

field. The peak at log (δ + 1) � −0.83 contains �53 per cent of

all the points and it is due to the procedure that assigns to empty

Figure 11. Contour scatter plot of the true versus reconstructed δ field from

simulations. The contours show the number density of pixels which increases

by a factor of 10 at each level.

Figure 12. Distribution of δ values in the true (solid line) and recovered

(dashed line) field normalized to the total number of points.

bins the value of δ corresponding to the redshift of the bin and

to the minimum observed column density, log N (H I) = 12 cm−2.

On the other hand, the small bump at log(δ + 1) � 1.57 is due to

the upper cut applied to the recovered density field and it includes

∼0.4 per cent of the total number of points.

The transformation starts to recover more than half of the correct

values of δ at log(δ + 1) � −0.15 and recovers all the δ within 30

per cent in the range −0.08 � log(δ + 1) � 1.45. Clearly, we are

not dealing correctly with the underdense regions, even if they are

above our observational detection limit. This is likely due to the fact

that our primary hypothesis, the local hydrostatic equilibrium, is not

valid for those regions. This was also discussed by Schaye (2001)

and here we have the evidence that under the mean density the gas

is still expanding.
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In the next section, it will be shown that the inaccuracies in the

underdensity regime do not significantly affect statistical measures

like the correlation function.

4.2 Two-point statistics of the δ field

We computed the correlation function for the original and recovered

δ field, with the formula

ξδ(r ) = 〈δ(r + dr )δ(r )〉, (4)

where r is the physical separation of two points in comoving Mpc.

ξ δ(r) quantifies the clustering properties of the considered field,

showing a signal significantly different from zero at separations

where the field presents structures (overdensities or underdensities).

The bin size is the largest value of LJ for our sample, �1.532

comoving Mpc, corresponding to the minimum redshift.

Fig. 13 plots the results of the correlation function for the true and

recovered δ field. The value in each bin is the median value of 50

sample of 88 lines of sight obtained with a bootstrap technique from

the 364 lines of sight of the total sample. This procedure is required

in order to compare this result with the analogous one for the ob-

served data (see Section 5.1). We have 22 observed spectra but each

one covers a redshift range corresponding to about four simulated

spectra. Error bars are 1σ , computed with the percentiles of the dis-

tribution of values in each bin. The recovered correlation function

is in very good agreement with the true one at every separation.

We also estimate the 1D power spectrum of the hydrogen den-

sity contrast field, which is defined by the Fourier transform of the

correlation function

ξ (r ) = V

2π

∫
|δk |2e−ikr dk

P1D
δ (k) ≡ 〈|δk |2

〉
.

(5)

The power spectrum is computed adopting the fast Fourier transform

(FFT) technique which requires that the field to be transformed is

evenly sampled. To this purpose, we have rebinned the observed

Figure 13. Correlation function of δ from simulations. Crosses represent

the correlation function obtained from the original data, triangles the one

obtained from the reconstructed field.

Figure 14. 1D power spectrum of the hydrogen density contrast field. The

solid and the dashed lines represent the results for the reconstructed and the

original δ field, respectively.

lines of sight to a constant step equal to the minimum Jeans length for

the considered Lyα forest (corresponding to the maximum redshift).

Then, the following steps have been applied.

(1) A grid of wavenumbers is built in the Fourier space, starting

from kmin = 2π/�r, where �r is the length of a line of sight in

comoving Mpc, and formed by npix/2 evenly spaced elements, where

npix is the number of pixels of the original δ field.

(2) The Fourier transform of the δ field is computed.

(3) The products δkδk′ are averaged in each bin.

(4) The P1D
δ (k) is normalized by multiplying it for the line of sight

length, �r.

(5) The obtained P1D
δ (k) is smoothed on larger bins to reduce the

noise.

(6) The result is averaged over all the lines of sight.

Error bars are computed using a jackknife estimator (Bradley 1982)

on the whole sample of simulated lines of sight.

Fig. 14 shows the results of the computation of the corresponding

�2(k) = kP1D
δ (k)/2π for the true and recovered simulated δ fields.

The two power spectra are consistent at the 3σ level on scales 20 �
r � 60 comoving Mpc.

5 F L O A P P L I E D TO T H E O B S E RV E D
DATA S A M P L E

In Section 2.1, we have described how the line lists are compiled

for the 22 high-resolution QSO spectra forming our sample. The

procedure explained in Section 3 is then applied to obtain the cor-

responding density contrast field for each line of sight. In the case

of observations, we have to take into account the presence of the

masked intervals covering regions occupied by metal absorption

systems. We eliminate all the bins that are covered by more than

30 per cent by masked intervals. Before the normalization step, we

apply an upper threshold as in the case of simulations (δthr = 50)

since we want to compare our result with the one obtained in Sec-

tion 4.2. The pixels above the threshold correspond to ∼0.9 per cent

of the total number of pixels. Figs 10 and 11 show the uncertainties

associated with the use of a different fitting tool (in particular, VPFIT

and FITLYMAN) and the ones intrinsic to FLO, respectively. Since

the intrinsic errors turn out to be larger than those induced by the
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Figure 15. Distribution with redshift of the average reconstructed δ values

for four subsamples of QSOs selected by their emission redshift as displayed

in the plot (formed by six, six, five and five objects as redshift increases).

Horizontal lines represent the redshift coverage of each QSO sample, while

vertical lines are the spread in average δ values for the single QSOs in the

samples.

fitting technique, we can safely compare the results obtained from

the simulations and those obtained from the data sample, presented

in this section.

Fig. 15 shows the average values of the recovered δ fields for

four subsamples built from the 22 observed lines of sight selected

on the ground of the QSO emission redshifts. The spread of average

δ values for the single QSOs forming the samples is also shown.

There is no significant trend with redshift, as it is expected if the

density field follows on average the evolution of the cosmic mean

value.

5.1 Two-point statistics of the δ field

The correlation function for the observed δ field is computed with

the formula given in equation (4) as for simulations.

The result is shown in Fig. 16. Here the value in each bin is

obtained averaging all the sample, while the error bars are computed

creating 50 samples of 22 lines of sight drawn out of our sample with

a bootstrap technique and taking the percentiles of the distribution

corresponding to 1σ errors. The bin size is �1.6 comoving Mpc

which is the LJ at the lowest redshift of the sample. The clustering

signal is significant at more than the 3σ level in the first two bins

(r � 4.5 comoving Mpc). We have superimposed to the data points

the TPCF obtained from the recovered δ field of simulations. The

two correlation functions are in very good agreement, confirming the

validity of the cosmological parameters adopted in the simulation.

Since P1D
δ (k) is very sensitive to cosmological parameters, it is

very important to check if the prediction of such a function are in

agreement with the observed values.

In the case of the observed spectra, the masked metal lines make

the starting grid of pixels unevenly spaced, thus not fitted for the

application of the FFT. To overcome this problem, as a first-order

approximation, the masked bins have been put to the average den-

Figure 16. Correlation function of the δ field reconstructed from our 22

observed QSO spectra. Points refer to the data, the line instead represent the

prediction from the simulation.

Figure 17. Power spectrum of the δ field reconstructed from our 22 observed

QSO spectra. The dashed line represents the prediction from the simulation.

sity. This procedure is based on the observation that the Lyα forest

gas traces on average the average density and on the analogous

method adopted in the computation of the power spectrum of the

transmitted flux (Viel et al. 2004). Fig. 17 shows the result of this

computation: the power spectrum obtained from our data is in ex-

cellent agreement with the one obtained from the density fields

reconstructed with FLO from the simulated spectra based on a con-

cordance cosmological model. Error bars are computed using a jack-

knife estimator on the whole sample of observed QSOs. The quantity

which is generally compared with the model predictions is the 3D

power spectrum, which is obtained from the 1D by differentiation,

P3D
δ (k) = −(2π/k)dP1D

δ (k)/dk. A comparison of the rough esti-

mates of P3D
δ (k) from our observed and simulated data gives good

agreement. However, we postpone a careful study of this quantity
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obtaining constraints on the cosmlogical parameters to a forthcom-

ing paper.

6 C O N C L U S I O N S

We have presented results from the analysis of the largest sample

of fitted Lyα lines obtained from 22 high-resolution QSO spectra

covering the redshift range between ∼1.7 and 3.5.

In particular, we have computed the following.

(1.i) The line number density evolution with redshift for which

we find dn/dz � (166 ± 4)[(1 + z)/3.5]2.8±0.2. While the redshift

evolution is consistent with previous results, the normalization is

higher by a factor ranging from ∼0.03 in log(dn/dz) at z ∼ 2 to

0.1 at z ∼ 3. This difference is due to the improved treatment of

the contamination by metal lines (amounting to ∼9 per cent of

the redshift interval covered by the Lyα forests), which is made

possible by the high resolution and S/N of our spectra. Consistently

with Kim et al. (2002), we also find a steeper evolution for the

stronger lines [14.5 � logN (H I) < 17] compared to the weak ones

[13 � logN (H I) < 14].

(1.ii) The TPCF which shows a significant clustering signal up to

∼2 comoving Mpc for strong lines [13.8 � logN (H I) < 17], and

also for weak lines [12 � logN (H I) < 13.8] although on smaller

scales, �1.5 Mpc. We then calculated the TPCF by grouping all the

lines closer than the local Jeans length (the assumed typical size for

the hydrogen absorbers in the IGM). The signal is still significant

in the first bin (r � 2.5 Mpc).

(1.iii) The TPCF evolution with redshift for strong lines: we di-

vided our sample in two subsamples; the first one, formed by ob-

jects with zem � 2.5, for which the average Lyα forest redshift is

〈zLyα〉 = 2.07, and the second one, formed by objects with zem >

2.5, with 〈zLyα〉 = 3.02. The TPCF computed for lines with 13.8 <

logN (H I) < 17 in these two samples, show a trend of increasing

clustering with decreasing redshift; this is an apparent evolution, due

to the fact that the relation δ − log(N (H I)) is z dependent. Indeed a

selection of lines tracing the same kind of structures (characterized

by δ > 3) shows no evidence of a significant evolution with redshift

of the TPCF.

In the second part of the paper, we have described FLO, a new

algorithm to transform the measured H I column densities of the

Lyα lines detected along a line of sight, into the underlying total H

density field (and in particular, the density contrast, δ ≡ nH/〈nH〉 −
1, field). The method is based on the assumption that Lyα absorbers

are in local hydrostatic equilibrium and, as a consequence, the Jeans

length corresponds to their characteristic size. The aim of this study

is to find a robust statistical estimator which allows a direct link to

the physical properties of the gas and an easy comparison with the

results of simulations. To test the effects of the transformation, we

have used a set of 364 lines of sight obtained from a large N-body

hydrodynamical simulation run in a box of 120 h−1 comoving Mpc.

For every line of sight we have both the density and velocity field

pixel per pixel and the list of Voigt fitted Lyα lines with central

redshift, column density and Doppler parameter. Our results can be

summarized as follows.

(2.i) FLO recovers extremely well (within 30 per cent) the over-

densities up to δ ∼ 30 while it is not reproducing correctly the

underdensities (more than 50 per cent of δ values are not recovered)

even in the range above our resolution limit. This result suggests that

the hypothesis of hydrostatic equilibrium is not valid for the under-

dense regions that are likely still expanding. On the other hand, for

the goal of our study, that is the computation of statistical properties

of the IGM, the resulting δ field gives satisfactory results when the

TPCF and the 1D power spectrum are considered. The compari-

son of the results obtained with the true δ field of the simulation

and with the one reconstructed from line column densities with our

algorithm, are in very good agreement.

When applied to the observed data sample, the FLO technique

gives the following results.

(2.ii) The redshift distribution of the average hydrogen density is

consistent with the evolution of the cosmic mean hydrogen density

in the redshift range covered by our QSO sample, supporting the

fact that the Lyα forest arises from fluctuations of the IGM close to

the mean density.

(2.iii) The correlation function of the density field obtained from

the observed spectra shows a significant clustering signal up to ∼4

comoving Mpc and is consistent with the analogous result obtained

for the recovered density field in a simulation based on the concor-

dance cosmological model.

(2.iv) The 1D power spectrum of the δ field obtained from the

observed spectra is in very good agreement with the same result

obtained from the recovered density field from the simulation based

on the concordance cosmological model on scalelengths between

∼2.5 and 63 comoving Mpc.

The algorithm presented in this work is particularly useful to

extract information from observations in terms of overdensities,

making it possible a more direct and handy comparison with

simulations.
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