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We performed fluctuation analysis by means of the local scaling dimension for the strength function of the
isoscalar (IS) giant quadrupole resonance (GQR) in 208Pb where the strength function is obtained by the shell
model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation
of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is
contrasted with the results for the GQR in 40Ca, where at the intermediate energy scale of about 1.7 MeV, a
deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the
local scaling dimension is ascribed to the difference in the properties of the damping process.
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I. INTRODUCTION

Giant resonances, excited by various probes, show, at an
initial stage of the excitation process, a regular motion with
a definite vibrational frequency [1,2]. These regular motions
are then damped due to the coupling with a huge number of
background states, and finally the so-called compound states
are realized.

We now understand both ends of these processes: The
frequency of the giant resonance, for instance, can be well
evaluated by the random phase approximation (RPA). Com-
pound states, on the other hand, are also well described by the
random matrix theory with the Gaussian orthogonal ensemble
(GOE) [3,4], which characterizes a classical chaotic motion.

It is still not well understood, however, how the dynamics
changes from regular to chaotic [5]. To answer this question, it
is very useful to study the fluctuation properties of the strength
functions: The structure at the large energy scale of the strength
function corresponds to the behavior of the initial stage, while
the fluctuation properties at small energy scale correspond to
the long time behavior.

We proposed and have used a novel fluctuation analysis
based on the quantity we call the local scaling dimension
to study the fluctuation properties of the strength functions
[6]. This method is devised to quantitatively characterize
the fluctuation at each energy scale, and is suitable for the
investigation of the fine structure of the strength function.

The strength distribution of giant resonances and
its fluctuation have also been studied experimentally.
Recently, the fine structure of the strength distribution of the
giant quadrupole resonance (GQR) in 208Pb [7–9] or the

Gamow-Teller resonance (GTR) in 90Zr [10] were measured
and theoretical analysis has also been done.

In the previous paper [11], we investigated the GQR in
40Ca, where the strength function was calculated by means of
the second Tamm-Dancoff approximation (TDA), namely, the
1p1h and 2p2h model space is included. The results of the local
scaling dimension analysis were as follows: At small energy
scale, the behavior of the local scaling dimension is almost
the same as that of the GOE, which exhibits the complexity of
2p2h background states. On the other hand, a clear deviation
from the GOE was found at the intermediate energy scale,
and it was found that this energy corresponds to the spreading
width of 1p1h states. Hence, we can say that the spreading
width of 1p1h states is detected as a deviation from the GOE
limit in 40Ca.

For 40Ca, the fragmentation within 1p1h states is important
for the damping process of the giant resonance. Namely, the
strength is first fragmented over a wide range of 1p1h states,
and this fragmentation characterizes a global profile of the total
strength function. This fragmentation is often called Landau
damping, although the original concept of Landau damping
was considered for infinite systems. In this paper, we use the
term Landau damping for fragmentation within 1p1h states for
convenience.

However, as the mass of nuclei increases, the relative
importance of Landau damping may change. Accordingly,
2p2h states may also contribute to the global profile of the
strength function. Therefore, it is very important to investigate
how the difference between the damping process of light nuclei
and that of heavy nuclei does affect the properties of the
fluctuation of the strength function.
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In this paper, we study the isoscalar (IS) GQR of 208Pb,
where the strength function is calculated with the second TDA
in the same manner as in 40Ca, and we study the fluctuation of
the strength function by means of the local scaling dimension.
Comparing results with those for 40Ca, we would like to clarify
which properties of the damping process are reflected in the
fluctuation of the strength function and make clear the physical
origin of the difference.

II. GQR STRENGTH FUNCTION IN 208PB WITH
COMPLEX 2p2h STATES

A. Microscopic strength function

We calculate the strength function of the IS GQR in 208Pb
within the second TDA including the 1p1h and 2p2h exci-
tations. The adopted single-particle wave functions, single-
particle energies, and residual interaction are the same as those
in Ref. [11]. The effective mass parameter m∗/m is set to be
1 in this calculation. The model space was constructed in
terms of single-particle states within the four major shells, two
below and two above the Fermi surface. Then we included all
1p1h and 2p2h states whose unperturbed energies are less than
15 MeV. The resultant number of 1p1h and 2p2h states are
39 and 8032, respectively. We diagonalized the Hamiltonian
within this model space and obtained the strength function

S(E) =
∑

i

Siδ(E − Ei + E0), (1)

where Ei and E0 are energy eigenvalues, and Si is the isoscalar
quadrupole strength of state i.

Figure 1 shows the calculated strength function. The
average of the excitation energy weighted by the strength is
about 10.5 MeV, and the standard deviation around the average
is about 2.6 MeV, where all levels are considered. The peak
position lies at the same value as the average. These values are
consistent with the (p,p′) experimental data [7]. Moreover,
the agreement of the global shape with the experimental data
is also good. The dotted curve in Fig. 1 represents the smooth
strength function by means of the Strutinsky method [12] with
the smoothing width 0.2 MeV. The value of the full width

FIG. 1. Calculated strength function of the IS GQR in 208 Pb.
Dotted curve shows the smooth strength function by means of the
Strutinsky method with the smoothing width 0.2 MeV. A sum of
strengths is normalized to unity.

at half maximum (FWHM) of this smooth strength function
is 0.63 MeV. To quantitatively characterize the spreading of
the strength function around the largest peak, the FWHM is
more appropriate than the standard deviation [13]. Thus, we
use the FWHM as a measure of the total width � of the strength
function, which gives � = 0.63 MeV.

Hereafter, when we estimate the value of the FWHM, the
same procedure as above is adopted, namely, we calculate
the FWHM for the smooth strength function by means of
the Strutinsky method with the smoothing width 0.2 MeV.

B. Fluctuation at small scale

To show the statistical properties of the levels and the
strengths at small energy scales, we show here the nearest-
neighbor level spacing distribution (NND), the strength dis-
tribution, and �3 statistics. Here, the NND and strength
distribution are measures characterizing the fluctuation at the
small energy scale limit.

Figure 2(a) shows the NND. The NND follows the Wigner
distribution well. We present the strength distribution in
Fig. 2(b) where a histogram of the square root of normalized
strengths is plotted. We also find that the distribution follows
the Porter-Thomas one rather well. These two figures indicate
that the fluctuation of the strength as well as that of the energy

(a)

(c)

(b)

FIG. 2. (a) Nearest-neighbor level spacing distribution for 208Pb.
ξ in the horizontal axis represents the spacing of unfolded levels.
The solid curve represents the Wigner distribution. Level spacings
were unfolded by the Strutinsky method with a smoothing width
0.5 MeV. (b) Histogram of the square root of normalized strengths
S̄

1/2
i associated with IS GQR. The solid curve represents the Porter-

Thomas distribution which becomes a Gaussian when plotted as a
function of S̄

1/2
i . See Sec. II C for the normalization of the strengths.

(c) �3 statistics. The horizontal axis L shows the value of the energy
interval for the unfolded spectrum. The solid curve represents �3 for
the GOE level fluctuation. For each panel, 3321 levels between 9.9
and 13.1 MeV are considered.
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level spacing is governed by the GOE at least at small energy
scale limit.

Figure 2(c) shows the �3 statistics. We again find that at
small energy range, the �3 follows the GOE line, although at
intermediate energy scales, Lmax � 20, the �3 starts to deviate
from the GOE line to upward.

The GOE fluctuations at small energy scales are in
accordance with the case of 40Ca [11,14].

C. Local scaling dimension

Energy-scale dependence of the strength fluctuations can
be measured in terms of the local scaling dimension [6,11]. In
evaluating this quantity, we normalize the individual strength
as S̄i = Si/f (Ei), where f (E) ∝ S̃(E)/ρ̃(E) is a smooth
function of E, so that we remove effects of the global shape
of the strength function S̃(E) and the level density ρ̃(E). We
obtain S̃(E) by convoluting the original S(E) with a smoothing
function of the Strutinsky type, for which we adopt 0.5 MeV
as the value of the width parameter ω. The local scaling
dimension as a function of energy scale ε is given as

Dm(ε) ≡ 1

m − 1

∂ log χm(ε)

∂ log ε
, (2)

where χm(ε) ≡ ∑N
n=1 pm

n is the mth moment, called the
partition function, of the fluctuation in the binned strengths pn,
which are sums of the strength S̄i in energy bins with the energy
interval ε. For details, we refer the reader to Refs. [6,11].
We analyze 3321 2+ levels in the energy range from 9.9 to
13.1 MeV.

Figures 3(a) and 3(b) represent the partition function and
the local scaling dimension, respectively, of IS GQR in 208Pb.
The horizontal axes in both figures represent the bin width ε

of energy in unit of d, where d represents the average level
spacing over the energy range 9.9–13.1 MeV (d = 0.96 keV).
The partition function clearly deviates from the linear relation
in the log-log plot. This means that for the IS GQR strength
function, the self-similar property does not hold. We can also
see a more detailed structure in the figure of the local scaling
dimension. At the smallest energy scale ε � d, the value of
the local scaling dimension is small, D2 � 0.35, which means
that the fluctuation is very large at small energy scales. As

(a) (b)

FIG. 3. Partition function (a) and local scaling dimension (b) for
the IS GQR in 208Pb. Curves in each figure correspond to m = 2–
5 from upper to lower. Dotted curves in (b) represent D2(ε) for
the GOE.

the energy scale or the bin width increases, the values of
Dm(ε) monotonically increase. Finally, at about ε � 100d the
values of Dm(ε) converge to unity, which indicates that at
large energy scales, the strength function appears smooth. The
most important feature in Fig. 3(b) is that the local scaling
dimension for 208Pb almost follows the GOE line at almost all
the energy scales.

This should be contrasted with the case of 40Ca [11]: When
the energy scale is small, the local scaling dimension almost
follows the GOE line. As the energy scale increases, however,
we can find a dip and a deviation from the GOE line at about
1.7 MeV, which is approximately related to the value of the
spreading width of 1p1h states.

Note that if we look only at the small or large energy
scale limits, we cannot find the difference between 208Pb
and 40Ca. Studies of fluctuation at intermediate energy
scales lead to the finding of the difference. In the fol-
lowing we shall investigate the mechanism which brings
about the difference in fluctuations at intermediate energy
scales.

III. ANALYSIS OF DAMPING PROCESS

Let us now investigate origins of the difference between
the cases of 40Ca and 208Pb. In our previous study of the GQR
in 40Ca, we showed that the behavior of the local scaling
dimension can be interpreted in terms of the doorway damping
mechanism. We here employ the same picture in order to
clarify the damping mechanism of the GQR in 208Pb.

The doorway damping mechanism consists of a two-step
process which is illustrated in Fig. 4. The giant resonance is
spread over the 1p1h states due to Landau damping, the width
of which is denoted by �L. The average spacing of 1p1h states
is denoted by D1p1h. The 1p1h states are considered here as
the “doorway” states of the damping process. The 1p1h states
then couple to more complicated background states (2p2h
states) through the residual two-body interaction. The coupling
causes the spreading width of 1p1h states, which we denote
γ12. We define the “GQR TD” state as the Tamm-Dancoff
(TD) state with the largest quadrupole strength among all
TD states, where the “TD” states mean the states obtained
in the TDA, i.e., by the diagonalization within the model
space limited to the 1p1h configurations. The GQR TD state
also couples to 2p2h states, and hence it should have the
spreading width due to the coupling. This is similar to γ12,
but we introduce a separate symbol �2 since the GQR TD
state is a special state consisting of a coherent superposition

γ
12

D
1p1h

ΓL

d
2p2h

γ
22

Γ2,

FIG. 4. Schematic drawing of the doorway damping mechanism
of the giant resonance, and related quantities.
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of many unperturbed 1p1h excitations. d2p2h is the average
spacing of background 2p2h states. The residual interaction
also acts among the 2p2h states, and the mixing among the
2p2h states causes a spreading width of the 2p2h states, which
we denote γ22.

In the following we shall evaluate all these quantities in
order to clarify the damping mechanism of the GQR in 208Pb
(Secs. III A and III B). We also study whether there are specific
states among 2p2h states which strongly couple with the GQR
mode (Sec. III C) and then discuss the difference of the nature
associated with the fluctuation of the strength function between
40Ca and 208Pb (Sec. III D).

A. Mechanism producing the total width

1. Landau damping

For 40Ca, Landau damping is important, so the strengths
are already fragmented in the 1p1h levels. Therefore we first
would like to investigate in 208Pb how the strength is distributed
in the TDA where only the 1p1h states are included.

Figure 5(a) shows the TDA strength function, which is
obtained by means of the TDA, namely, by neglecting 2p2h
states, of the IS quadrupole operator. Different from the
case of 40Ca, strengths in the GQR region are considerably
concentrated on the single peak located at about 10.7 MeV.
Because of this, the TDA strength function is very different
from the full strength function in Fig. 1. At the same time, we
also see only a small effect of Landau damping. In fact, the
strength concentration on the single peak at E = 10.7 MeV
is 59% of the strengths in the energy interval 9–13 MeV. The
Landau damping width �L may be evaluated in terms of a
smoothed profile of the strength function plotted with the
dotted curve in Fig. 5(a). Its FWHM reads 0.21 MeV. On
the other hand, if we closely look at Fig. 5(a), we find that
there is the second largest peak just below the largest one and
that these two levels dominate the whole structure. The level
spacing between these two levels can be considered as a typical
spreading of strength and may be a more direct quantitative
measure of the Landau damping width �L: The level spacing
0.18 MeV gives �L = 0.18 MeV.

(a) (b)

FIG. 5. (a) TDA strength function for the IS quadrupole operator
in 208Pb. (b) Strength function by neglecting all TD states except the
GQR TD state. A total of 3342 2p2h states lying in 9–13 MeV are
considered. See Fig. 1 for the dotted curve.

2. Damping due to 2p2h states

The Landau damping width �L = 0.18 MeV is not enough
to explain the total width � = 0.63 MeV of Sec. II. Then, we
would like to study a role of 2p2h states in the damping process,
namely, the fragmentation of the GQR TD state located at E =
10.7 MeV in Fig. 5(a) over 2p2h states. We shall investigate
the damping width �2 caused by the coupling to 2p2h states.
To estimate this width, we perform a calculation where we
include only the GQR TD state and 2p2h states, where the
coupling between the GQR TD state and 2p2h states as well
as the interaction among 2p2h states is taken into account.

Figure 5(b) shows the resulting strength function. The
estimated FWHM is 0.41 MeV, i.e., �2 = 0.41 MeV.

If the Landau damping and the 2p2h damping are inde-
pendent of each other, and neighboring TD states around the
GQR TD states also have the same spreading width as �2, the
following approximate relation holds:

� � �L + �2. (3)

The values, �L = 0.18 MeV and �2 = 0.41 MeV, estimated
above, indeed satisfy this relation. Consequently, the total
width � = 0.63 MeV is approximately explained as a sum
of the Landau damping width �L and the 2p2h damping
width �2.

B. Spreading width of 1p1h states and 2p2h states

Let us evaluate the spreading width γ12 of the 1p1h states
due to the coupling with 2p2h states. We shall also evaluate
the spreading width γ22 of 2p2h states, which is caused by the
residual coupling among 2p2h states.

We evaluate γ12 by using the strength functions of TD states
as in Ref. [11]. Namely, we calculate the strength function of
each TD state. Averaging the strength functions over whole
TD states, we obtain Fig. 6(a). The FWHM of this averaged
strength function gives an evaluation of the spreading width
γ12. We read γ12 = 0.38 MeV. (Note that we define γ12 as the
spreading width of TD states instead of that of unperturbed
1p1h states.) The value of spreading width of 2p2h states γ22

is also evaluated in the same manner. From Fig. 6(b), we also
obtain γ22 = 0.75 MeV as the estimate of the spreading width
of 2p2h states. These results will be used in Sec. III D.

For the sake of comparison, let us estimate the
spreading width by assuming the Fermi golden
rule. The root mean square of matrix elements
between 1p1h states and 2p2h states is calculated as

(a) (b)

FIG. 6. Averaged strength function of (a) TD states and (b) 2p2h
states. Average was performed over levels lying in 9–13 MeV. The
number of levels is 12 and 3342 for TD states and 2p2h states,
respectively.
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(〈1p1h|V12|2p2h〉2)1/2 = 9.3 × 10−3 MeV. Similarly, we
calculate (〈2p2h|V22|2p′2h′〉2)1/2 = 1.0 × 10−2 MeV. Since
the level spacing of 2p2h states is d2p2h = 1.2 keV, the
spreading widths γ12 and γ22 are approximately estimated in
the Fermi golden rule as γ FG

12 = 2π〈1p1h|V12|2p2h〉2/d2p2h =
0.46 MeV and γ FG

22 = 2π〈2p2h|V22|2p′2h′〉2/d2p2h =
0.53 MeV, respectively, which are in approximate agreement
with the direct evaluation within 30%.

C. Search for strongly coupled states in 2p2h states

In Fig. 4, 2p2h states are assumed to play a role as the
chaotic background and provide the GOE fluctuation to the
strength function. However, if the GQR TD state couples with
not all 2p2h states equally but specific states in 2p2h states
strongly, there is a possibility for this hierarchical structure in
2p2h states to give rise to a deviation from the GOE fluctuation.
We, here, would like to investigate whether whole 2p2h states
are rather equally coupled with the GQR TD state or whether
there are specific states in 2p2h states which strongly couple
with that state.

As a candidate of such specific states, we can con-
sider the low-energy surface vibration plus 1p1h states.
In Refs. [13,15–18], the importance of the coupling to the
surface vibration in the wide range of damping phenomena
including the damping of a single-particle motion as well
as that of giant resonances was discussed. As for the giant
resonance, which is composed of a coherent superposition
of 1p1h states, this means that the damping occurs via the
coupling with the specific 2p2h states, namely, the surface
vibration plus 1p1h (s.v. + 1p1h) states.

Since our model does not assume the particle-vibration
coupling a priori, it is not trivial whether our model also
has a mechanism that enhances the coupling with the low-
energy surface vibration. Therefore, we would like to study
whether the s.v. + 1p1h states are particularly strongly coupled
with the GQR TD state within our model. To do so, we
calculate the FWHM of the following approximate strength
function:

S(E) = − 1

π
Im

(
E − Ec −

∑
α

V 2
cα

E − ωα + iγ22/2

)−1

, (4)

where, Ec and ωα denote the energy of the GQR TD state
and the energy of the αth s.v. + 1p1h state, respectively. Vcα

represents the coupling matrix element between the GQR TD
state and the s.v.+1p1h state α.

Only Jπ = 2+, 3− modes are included as surface vibra-
tions. We took only the lowest TD state as the Jπ = 2+ surface
vibrational mode. On the other hand, we must pay attention
to the collectivity of the octupole mode. The TDA strength
function for the IS octupole operator shows that the energy
of the lowest state is too high, and strengths are fragmented
over several states compared with the experimental data [19].
Thus, we took into account the lowest nine states for the
octupole mode. Note that s.v. + 1p1h states thus defined are not
orthogonal. In this sense, Eq. (4) is an approximation which
neglects the nonorthogonality.

TABLE I. Averaged value of squared coupling matrix elements
V 2

cα between the GQR TD state and surface vibration plus 1p1h states
or the whole 2p2h states (third column), the associated spreading
width �FG

2 of the GQR TD state evaluated by the Fermi golden rule
(fourth column), and the spreading width �2 estimated by the FWHM
of the strength function based on Eq. (4) (fifth column). Second
column shows the number of states considered. The first row shows
the results obtained by including only the s.v. + 1p1h states while the
second row shows those for the case of the whole 2p2h states.

No. V 2
cα (MeV2) �FG

2 (MeV) �2 (MeV)

s.v. + 1p1h 909 0.65 × 10−4 0.092 0.074
2p2h 3342 0.72 × 10−4 0.38 0.41

We calculated the strength function based on Eq. (4) (γ22 =
0.75 MeV was used). Then, the width �

(s.v.)
2 estimated by the

FWHM was 0.074 MeV. This value is significantly smaller
than the width �2 = 0.41 MeV of the GQR TD state caused
by the coupling to the whole 2p2h states.

From the estimate by the Fermi golden rule, we can give
more detailed comparison between the width for the case of
s.v. + 1p1h states and that for the whole 2p2h states. It is
noted in Table I that the spreading width �

(s.v.)
2 = 0.074 MeV

and �2 = 0.41 MeV are well accounted for by the estimate.
In the Fermi golden rule, the spreading width is governed by
two factors: (1) the average value of squared coupling matrix
elements V 2

cα between the GQR TD state and the states that
couple to it, and (2) the level density of the coupling states.
From Table I, we see that the large difference between the
two widths simply reflects the difference between the number
of s.v. + 1p1h states (909) and 2p2h states (3342), whereas
the coupling strength of s.v. + 1p1h states V 2

cα = 0.65 ×
10−4 MeV2 is comparable to the coupling strength V 2

cα =
0.72 × 10−4 MeV2 for the whole 2p2h states.

Table I and the strength function based on Eq. (4) suggest
that our model does not contain the enhancement of the
coupling with the surface vibrations in the damping of the
GQR. Therefore we consider in the following the 2p2h states
as background states which do not have specific structures.

D. Physical origin of the difference between 40Ca and 208Pb

In the above sections, we evaluated the physical quantities
such as the various spreading widths, with which we discussed
the damping process, especially the mechanism of producing
the total width of the strength function. Here, using these
quantities we would like to discuss the physical origin of the
difference between the fluctuation of the strength fluctuation
of 40Ca and that of 208Pb. Table II summarizes the values of

TABLE II. Values of physical quantities related to the damping
of the GQR for 40Ca and 208Pb. Unit of energy is keV for all cases.

� �L �2 γ12 D1p1h γ22 d2p2h

40Ca 4100 2100 1500 1500 500 5200 11
208Pb 630 180 410 380 230 750 1.2
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the above physical quantities related to the initial stage of the
damping process for both 40Ca and 208Pb.

Here, we would like to mention the relation between � and
γ22. One may wonder how the spreading width γ22 affects the
total width � since the value of γ22 is larger than that of � for
both nuclei. The relation can be understood from Eq. (4). From
Eq. (4) we find that the spreading width γ22 does not affect
the total width � but has a smoothing effect for the strength
function.

We have shown in our previous study [6] that the damping
process through the doorway states causes large fluctuations
which have characteristic energy scales, and that the fluctua-
tions emerge in the local scaling dimension. For instance, the
energy scale of the spreading width γ12 of the doorway states
is the quantity which shows up prior to the other quantities. It
is noted, however, that the size of the fluctuations depends on
the mutual relations among the quantities mentioned above.

Studying more quantitatively with the use of the doorway
damping model of Ref. [6], we found the condition to detect
the effect of the spreading width γ12 as

(i) γ12 � 4D1p1h.

Furthermore, we need the second condition

(ii) γ12 < �L.

This simply means that the spreading width γ12 of the doorway
states (1p1h states) need to be smaller than the total width �.
Since � � �L + �2 and γ12 � �2, the requirement γ12 < �

can be written as (ii). In addition to (i) and (ii), we need the
third condition

(iii) D1p1h < �L.

This is because we need more than one doorway state within
the the energy interval �L in order to have fluctuating behavior
in the strength function.

Let us first look at the case of 40Ca. From Table II, the
relation γ12 = 3.0D1p1h is derived, and this relation fulfills
condition (i). On the other hand, relations γ12 = 0.71�L and
D1p1h = 0.24�L are also derived from Table II, and these
relations satisfy both conditions (ii) and (iii). As a result, for
40Ca, we can see a deviation from the GOE fluctuation in the
local scaling dimension, and indeed the energy scale where
the deviation is seen is related to the value of γ12.

For 208Pb, on the other hand, we find in Table II that
γ12 = 1.7D1p1h, while �L is smaller than γ12 and D1p1h, i.e.,
γ12 = 2.1�L and D1p1h = 1.3�L. The first relation satisfies
condition (i). The latter two relations, however, break con-
ditions (ii) and (iii). Accordingly, for 208Pb, the deviation

from the GOE due to the effect of γ12 cannot be seen. The
essential physica l origin of this difference is that for 208Pb
the Landau damping width is small compared to that for 40Ca.
The smallness or largeness of the value of the Landau damping
width affects the fluctuation property of the strength function.

IV. CONCLUSION

We studied the fluctuation properties of the strength
function of IS GQR for 208Pb by means of the local scaling
dimension, and compared the results with those of 40Ca.
The strength function was obtained by the second TDA
including 2p2h states as well as 1p1h states. For 40Ca, we
find a fluctuation different from GOE around the energy scale
which is approximately related to the spreading width of
the 1p1h states. On the other hand, for 208Pb we cannot find
the fluctuation different from the GOE at almost all the energy
scales.

The different behavior of the fluctuation detected by the
local scaling dimension analysis is due to the difference of the
ratio of the Landau damping width �L to the spreading width
of the 1p1h states γ12.

Recently, the analysis of the strength function of the IS GQR
in 208Pb obtained by a (p,p′) inelastic scattering experiment
was performed by means of the wavelet transform [7]. The
authors suggest from the positions of the local maxima in
the wavelet power that there exist three energy scales in the
fluctuation of the strength function: I. 120 keV, II. 440 and
850 keV, and III. 1500 keV. Existence of the higher two energy
scales is not inconsistent with our results, since our analysis
says nothing about the fluctuation at about energy scale II,
which may correspond to the total width � in our model, or
higher energy scales. However, the existence of the smallest
energy scale ∼120 keV may conflict with our results. If there is
such an energy scale in our strength function, our analysis must
detect it as a deviation from the GOE fluctuation. Therefore,
it is very important to study the origin of this discrepancy.
In particular, it is interesting to clarify the relation between
the two methods, namely, the local scaling dimension and the
wavelet power. Studies in this direction are now in progress.
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