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ABSTRACT 

 

The human brain is a dynamic organ which is molded throughout the lifespan 

by each individual’s life experiences. Learning to juggle, speaking two languages, and 

playing the piano all number among experiences that leave an impression on the mind 

and brain. Little research, however, has examined one of the most demanding 

processes in human cognition, simultaneous interpretation (SI). In SI an individual 

must comprehend a stream of auditory material in one language and with a few 

seconds delay produce the same content in another language. This process, which is 

both a specialized form of bilingualism and a learned skill, similar to playing the 

piano, likely leaves its own distinct fingerprint on the mind and brain. The present 

work examines the neurocognition of professional and trainee simultaneous 

interpreters to better understand the process of simultaneous interpretation and the 

lasting impression it leaves. 

Bilingualism has been previously associated with advantages in cognitive 

control in both linguistic and non-linguistic domains. These benefits are posited to be 

due to bilinguals’ extensive practice managing two languages. Simultaneous 

interpretation represents a process which requires a higher level of language 

management than most bilingual contexts. This increased experience may lead to 

quantitatively larger benefits in interpreters than in bilinguals. Additionally, 

interpreters may garner benefits which are unique to the interpreting experience, in 

particular the need to use two languages simultaneously. The first study addressed 

these possibilities in an examination of professional interpreters and matched 

multilinguals on three tasks of cognitive control. The two groups showed no 
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differences on the color-word Stroop and Attention Network Test, tasks which have 

previously revealed an advantage for bilinguals. Results from a non-linguistic task-

switching paradigm were mixed. Interpreters showed no additional advantage in 

switching costs, where bilingual benefits have previously been seen, but exhibited 

smaller mixing costs than the multilinguals. In comparison with previous literature, 

this benefit in mixing cost appears to be unique to simultaneous interpretation. 

Additionally, the interpreters had larger verbal and spatial memory spans than the 

multilinguals. The results suggest that professional interpreters do not have 

quantitatively larger bilingual benefits, but do possess benefits specific to experience 

with simultaneous interpretation 

As simultaneous interpretation is an acquired skill, these interpreter-specific 

advantages may have been gained through training in SI or represent innate 

differences that led individuals to the field. The second study examined students 

earning a Master in Conference Interpreting, and matched students in other 

disciplines, longitudinally to determine which cognitive abilities are innate and which 

are acquired through SI training. The results indicated improvements in verbal and 

spatial memory among the students of interpretation, but not among the students in 

other disciplines, suggesting that these abilities are acquired with training. An 

improvement in the mixing cost, however, was seen across the groups, leaving open 

the possibility of an influence of professional experience on this measure. 

Previous studies of skill acquisition have indicated that not only cognitive 

abilities, but also underlying brain structure is altered through the training period. To 

examine the effects of training in simultaneous interpretation on gray matter and 

white matter structure the above-mentioned groups additionally participated in 

neuroimaging sessions. Analysis of gray matter volume using voxel-based 
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morphometry (VBM) revealed group differences in regions previously linked to 

spoken word learning, suggesting greater efficiency in these areas among students of 

interpretation. Additionally, changes in gray matter volume related to training in SI 

were evident in bilateral putamen and left superior temporal cortex, among other 

regions. Previous functional MRI studies of speech shadowing have found activation 

in these same regions, suggesting the changes may be related to the simultaneity of 

input and output during simultaneous interpretation. Moreover, analyses of diffusion 

tensor imaging (DTI) data revealed greater white matter integrity among the students 

of interpretation in tracts in the left hemisphere that underlie language. A subset of 

these tracts was further strengthened through training in SI. 

Finally, the mechanisms supporting the simultaneous use of two languages 

were considered, specifically addressing the possibility that interpreters apply less 

inhibition to the unused language. Students at various stages in their simultaneous 

interpretation training were tested on a three language switching paradigm. This 

paradigm affords a measure of inhibition of abandoned task sets through n-2 

repetition costs. Though differences were found between the groups on n-2 repetition 

costs, these did not appear to be connected to SI training, but rather the predominant 

bilingual interactional context of the groups. 

Taken together these investigations begin to provide a picture of the effects 

that simultaneous interpretation has on cognitive abilities and brain structure. 

Specifically, interpreters appear to have a unique set of cognitive advantages that are 

related to the processes used during SI. Further, these advantages originate from a 

combination of innate and trained abilities. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 The Impressionable Brain 

 The human mind and brain are not static entities, but rather are sculpted by the 

numerous life experiences of each individual. Learning to juggle, playing a musical 

instrument, and playing computer games are all known to leave an impression on 

cognitive abilities and brain structure (e.g., Bialystok & Depape, 2009; Bialystok, 

2006; Draganski & May, 2008; Schellenberg, 2005). Perhaps the most well-known 

(among the public) life experience to sculpt the mind and brain is bilingualism.  

The past two decades have produced a wealth of studies on the cognitive 

effects of using two languages in daily life. These studies largely suggest that 

bilingualism is associated with cognitive enhancements beyond the language domain. 

In particular, bilinguals have shown advantages on tasks that require conflict 

resolution, attentional control, and shifting between mental sets (e.g., Bialystok, 

Craik, & Luk, 2008; Costa, Hernández, & Sebastián-Gallés, 2008; Prior & 

Macwhinney, 2010;  but see Paap & Greenberg, 2013). The rationale for these 

benefits beyond the language domain relies on the widely replicated finding that a 

bilingual’s two languages are activated in parallel (see Kroll, Dussias, Bice, & 

Perrotti, 2015 for a review). This parallel activation appears to be universal, having 

been noted in both receptive (e.g., Spivey & Marian, 1999; van Hell & Dijkstra, 2002; 

van Heuven, Schriefers, Dijkstra, & Hagoort, 2008) and productive language (see 

Kroll, Bobb, Misra, & Guo, 2008 for a review). To control interference between the 
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languages and produce the intended language, bilinguals are thought to use domain-

general cognitive control mechanisms (Bialystok et al., 2008; Green, 1998). Thus, 

given that humans use language during virtually all waking hours, bilinguals have 

accumulated immeasurable practice with these cognitive control mechanisms. 

 

1.2 What about Simultaneous Interpretation? 

Simultaneous interpretation (SI) is perhaps one of the most cognitively 

demanding tasks of human cognition. An interpreter must simultaneously 

(1) comprehend and store a continuous stream of auditory material in one language, 

(2) reformulate the content of a previous segment into another language, and 

(3) articulate a previously reformulated segment. Thus, simultaneous interpretation 

could be considered an extreme form of bilingualism. As for bilinguals, interpreters 

must manage two linguistic codes and the interference between these codes. 

Simultaneous interpretation may, however, demand a higher level of control as the 

interpreter must comprehend one language while producing and monitoring another 

language. Given this greater need for control, interpreters may accumulate more 

language management practice than bilinguals and accordingly show a greater 

advantage in cognitive control. Additionally, simultaneous interpretation involves a 

host of other processes, such as simultaneous input and output and memory, which 

may sculpt the mind and brain in areas unique to SI. Despite the potential that 

simultaneous interpretation has to mold cognition, relatively few studies, especially 

by neuroscientists, have examined the cognitive changes associated with this complex 

skill. 
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1.2.1 Previous Evidence 

Among the studies that have investigated cognition in interpreters, three main 

areas have been considered. First, memory has been tested using tasks of verbal short-

term and working memory. The overwhelming result is that professional interpreters 

have larger verbal working memory and verbal short-term memory spans than various 

control groups (Bajo, Padilla, & Padilla, 2000; Christoffels, de Groot, & Kroll, 2006; 

P. Padilla, Bajo, Cañas, & Padilla, 1995; Signorelli, Haarmann, & Obler, 2011; 

Stavrakaki, Megari, Kosmidis, Apostolidou, & Takou, 2012; Yudes, Macizo, & Bajo, 

2011, 2012; but see Köpke & Nespoulous, 2006). Related to memory, the second 

commonly studied area of cognition is articulatory suppression. This is the process of 

blocking rehearsal of information in the phonological loop of working memory by 

repetition of unrelated speech during a memorization task. The normal finding is that 

recall is hindered by articulatory suppression, however, interpreters have been found 

to be less affected by articulatory suppression (Bajo et al., 2000; F. Padilla, Bajo, & 

Macizo, 2005; P. Padilla et al., 1995; Yudes et al., 2012; but see Köpke & 

Nespoulous, 2006). Finally, a few studies have examined measures of lexical access 

among professional interpreters and found faster responses in picture naming, lexical 

decision, and lexical categorization (Bajo et al., 2000; De Groot & Christoffels, 

2006), as well as higher verbal fluency
1
 (Stavrakaki et al., 2012).  

These three areas, which show advantages specific to interpreters, are closely 

linked to the processes required by simultaneous interpretation. Verbal memory is 

recruited to store the input language and reformulated output. Articulatory 

                                                           
1
 It is interesting to note that lexical access is an area of cognition where bilinguals typically show 

worse performance than monolinguals (Michael & Gollan, 2005). Thus it would be interesting to 

compare the performance of interpreters and monolinguals on tasks of lexical access to determine if 

interpreters have merely recovered this deficit or improved even further.  
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suppression is a mirror of the SI process as content must be stored while other 

material is articulated. Finally, faster retrieval of lexical items should decrease the 

processing load during SI. Thus, the examination of these areas as well as the result of 

enhanced abilities among interpreters is unsurprising.  

Fewer studies, however, have examined in professional interpreters the 

executive control functions which typically show benefits in bilinguals. It is precisely 

these tasks, however, which will allow us to understand if simultaneous interpreters 

should be considered expert bilinguals. Of the three studies which examined conflict 

resolution and attentional control, none found an advantage for interpreters (Köpke & 

Nespoulous, 2006; Morales, Padilla, Gómez-Ariza, & Bajo, 2015; Yudes et al., 2011). 

1.2.2 The Effects of Training 

 Unlike bilingualism, simultaneous interpretation is a necessarily acquired skill. 

Thus we may ask whether the advantages seen in interpreters are a result of training in 

SI or rather are innate abilities that contributed to selection and success in the field. 

Only two studies have examined the longitudinal changes in cognition associated with 

learning the simultaneous interpretation skill. Bajo and colleagues found that training 

in simultaneous interpretation was associated with improvements in lexical access 

(Bajo et al., 2000). A study of students training in American Sign Language (ASL) 

interpretation, however, showed mixed results with improvements in task-switching, 

mental flexibility, and working memory tasks involving transformation, but not in 

working memory tasks involving storage and processing (Macnamara & Conway, 

2013). It should be noted, however, that this latter study did not include a control 

group, so it is unclear if the improvements are due to training or test-retest effects.  
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1.2.3 How is Simultaneous Interpretation Achieved? 

 As previously mentioned, SI requires the simultaneous use of two languages. 

Thus, the language control mechanisms employed in bilingual contexts, which rely on 

inhibition of the unintended language, may not be of use in simultaneous 

interpretation. Interpreters may instead maintain both languages active. Preliminary 

support for this hypothesis is provided by Ibáñez and colleagues (2010) who 

demonstrated greater cognate facilitation in translators (with at least two years of 

interpretation experience) than bilinguals.  

 To comprehend the full picture of simultaneous interpretation three studies 

have employed neuroimaging techniques (Aherns, Kalderon, Krick, & Reith, 2010; 

Hervais-Adelman, Moser-Mercer, Michel, & Golestani, 2014; Rinne et al., 2000). 

Common to all three studies were activations in left motor regions, left inferior frontal 

gyrus, left inferior temporal gyrus, and right cerebellum, suggesting a primary 

recruitment of language regions. While neuroimaging provides a unique look at the 

brain regions involved in simultaneous interpretation, it is not without difficulty. 

Neuroimaging requires participants to remain motionless during acquisition. Thus to 

accommodate simultaneous interpretation which requires speech, either the 

acquisition technique or process must be altered. 

 

1.3 Overview of the Project 

 The current project aims to extend our knowledge of the complex process of 

simultaneous interpretation by examining the imprint it leaves on the mind and brain. 

In the first study we add to the literature on the cognitive advantages of simultaneous 
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interpretation. In particular, we examine whether interpreters should be considered 

expert bilinguals, who show the benefits of bilingualism above and beyond those seen 

in matched multilinguals, or if they are unique bilinguals who have a specific set of 

advantages which are related to the simultaneous interpretation skill. In the second 

study we aim to determine whether the advantages seen in interpreters are due to 

innate differences that influenced their selection of interpretation as a career and their 

ultimate success, or rather are due to abilities that are specifically trained through 

acquisition of the simultaneous interpretation skill. In the third study we consider the 

structural correlates of simultaneous interpretation, specifically looking for regions 

that are changed by training and regions that are predictive of initial success. Finally, 

we address the role of inhibition in language control during simultaneous 

interpretation. Using a cross-sectional design we examine how inhibition is applied to 

language control in students with varying levels of interpretation experience. 
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CHAPTER 2 

ARE INTERPRETERS EXPERT BILINGUALS, UNIQUE BILINGUALS, OR 

BOTH? 

 

2.1 Introduction 

Bilinguals are expert language managers. They navigate the world in two 

languages, selecting at every moment the appropriate language to use while inhibiting 

the unintended language. Research over the past two decades has shown that this daily 

practice in language management leads to benefits in executive functioning beyond 

the language domain. In particular, advantages have been seen on tasks such as the 

Simon task, the flanker task, and the task-switching paradigm (e.g., Bialystok, Craik, 

& Luk, 2008; Costa, Hernández, & Sebastián-Gallés, 2008; Prior & Macwhinney, 

2010). Experience with two languages appears then to have conferred upon bilinguals 

expertise in directing attention, managing competition, and resolving conflict more 

broadly.  

At the extreme end of the bilingual language management spectrum lie 

simultaneous interpreters. In simultaneous interpretation (SI) an individual attends to 

a stream of oral material in one language and with a few seconds delay produces the 

same content in another language. Similar to other bilingual contexts, SI requires the 

management of two linguistic codes and control between the two languages. 

However, it uniquely involves the simultaneous comprehension of one language and 

production of another language. This addition of simultaneity of two language 

systems mandates an extraordinary level of control between the languages. 
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Experience with this higher level of control may endow interpreters with an 

enhancement in language management abilities beyond that due to bilingualism alone. 

As increased language management has been linked to enhanced non-linguistic 

executive functioning in bilinguals, the same cognitive benefits may then be seen in 

interpreters when compared to bilinguals.  

Language control during SI may not only be more demanding, but also 

qualitatively different than during other bilingual contexts. In most bilingual contexts 

both languages are available (Dijkstra, Grainger, & van Heuven, 1999; Kroll, Bobb, 

& Wodniecka, 2006; Marian, Spivey, & Hirsch, 2003; Rodriguez-Fornells et al., 

2005; van Heuven et al., 2008), but only one language is used at any given moment. 

To combat interference between the languages, bilinguals are thought to inhibit the 

unused language (Dijkstra & van Heuven, 1998; Green, 1998). Interpreters, however, 

must comprehend the input language while monitoring their output in the other 

language, effectively requiring simultaneous comprehension of both languages. It 

therefore may not be possible for them to rely solely on inhibition as a method of 

language management. Instead, interpreters may maintain both languages active. 

Support for this hypothesis comes from Ibáñez and colleagues (2010). In that study 

bilinguals and translators (with at least two years of interpretation experience) were 

asked to read and repeat sentences in Spanish and English which included cognate 

and matched control words. The translators showed faster processing of the cognate 

words than the control words in both languages, while the bilinguals showed no 

difference between cognate and control words. Faster processing of cognates is 

typically understood to indicate the simultaneous activation of two languages. Thus, 

the translators, but not the bilinguals, appear to have maintained both languages 

active. The different skills associated with this different type of language 
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management, in particular the maintenance of two language sets, may lead to 

enhancements in cognitive control that are unique to simultaneous interpreters.  

The present study investigated the cognitive control benefits associated with 

simultaneous interpretation, considering whether these are an extension of the 

previously-seen benefits of bilingualism or are specific to SI. To this end, we tested 

professional simultaneous interpreters and a group of well-matched multilinguals on a 

battery of tasks focused on executive functioning. We report results from three tasks, 

which were selected based on having reliably shown bilingual benefits in previous 

research and having the potential to explore benefits unique to SI.  

The Stroop task has been widely used to examine executive control and 

conflict resolution. In the classic color-word version, participants are asked to indicate 

the ink color of a written color word; the written word can be either congruent or 

incongruent with the ink color. The additional cost on incongruent trials, dubbed the 

Stroop effect, is taken as a gauge of conflict resolution (Stroop, 1935). Previous 

studies focused on bilingual differences have found a smaller Stroop effect for 

bilinguals compared to monolinguals (e.g., Bialystok et al., 2008; Hernández, Costa, 

Fuentes, Vivas, & Sebastián-Gallés, 2010). This advantage has been attributed to 

bilinguals’ practice resolving the conflict that occurs between competing lexical items 

from bilinguals’ two languages.  

In the non-linguistic domain, the flanker task has often been employed to 

explore executive control and conflict resolution. In this paradigm, participants are 

presented with five arrows and asked to indicate the direction of the central arrow; the 

flanking arrows point in either the same (congruent trials) or opposite direction 

(incongruent trials). Bilinguals have shown both a smaller difference between 



22 
 

congruent and incongruent trials and overall faster responses on this paradigm than 

monolinguals (e.g., Costa, Hernández, Costa-Faidella, & Sebastián-Gallés, 2009; 

Costa et al., 2008; Luk, De Sa, & Bialystok, 2011). A modified version of the 

traditional flanker task was included in this study, the Attention Network Test (ANT; 

Fan, McCandliss, Sommer, Raz, & Posner, 2002). This task allows the examination of 

the alerting and orienting networks in addition to the executive control network. 

Unlike the executive control network, bilingual advantages have not typically been 

seen in the orienting (e.g., Costa et al., 2009, 2008; Hernández et al., 2010) and 

alerting networks (e.g., Costa et al., 2009; Poarch & van Hell, 2012; but see Costa et 

al., 2008). These networks may, however, reveal advantages specific to SI. 

Interpreters often need to predict the coming input and therefore make use of several 

contextual cues while interpreting (e.g., Seeber & Kerzel, 2011). Additionally, they 

must maintain a high level of alertness. 

The final task considered was a non-linguistic task-switching paradigm. In this 

paradigm, participants must select a response on each trial based on one of two 

possible task sets (e.g., color or shape discrimination). They are asked to make 

judgments in single-task blocks in which the task is the same on every trial and in 

mixed-task blocks in which the task can be either of the two on any given trial. The 

mixed-task blocks lead to two types of trials, repetition trials in which the current task 

is the same as the task on the previous trial and switch trials in which the current task 

is different than the task on the previous trial. Completion of this paradigm involves 

the use of two dissociable control processes: transient (or local) control and sustained 

(or global) control (Braver, Reynolds, & Donaldson, 2003; Koch, Prinz, & Allport, 

2005; Kray & Lindenberger, 2000). Transient control is used on a trial-by-trial basis 

to switch between task sets on the switch trials in the mixed-task blocks. Its specific 
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component processes may include updating of goals, internally reconfiguring the task 

set, and connecting task cues to the correct stimulus-response mappings (Braver et al., 

2003). These are potentially the same processes required to switch between 

languages. Indeed, bilingual advantages in transient control have been noted 

previously (Garbin et al., 2010; Prior & Gollan, 2011; Prior & Macwhinney, 2010; 

but see Hernández, Martin, Barceló, & Costa, 2013; Paap & Greenberg, 2013). In 

addition to the transient control needed on individual trials, the mixed-task block also 

requires sustained control processes that include the active maintenance of multiple 

task sets and attentional monitoring for task changes (Braver et al., 2003). These 

processes are reminiscent of the increased demands of simultaneous interpretation, in 

particular, the need to maintain multiple task sets in parallel. Notably, differences in 

sustained control have not typically been found in bilinguals (Prior & Gollan, 2011; 

Prior & Macwhinney, 2010). 

The selected tasks allow for the examination of both increased bilingual 

benefits in interpreters and benefits specific to simultaneous interpretation. 

Differences between the professional interpreters and multilinguals in conflict 

resolution on the Stroop and ANT tasks and in transient control on the task-switching 

paradigm would suggest that interpreters’ more demanding practice endows them 

with greater benefits. While any differences between the groups on the ANT in the 

alerting and orienting networks or on the task-switching paradigm in sustained control 

would indicate that interpreters develop enhancements that are unique to their 

experience with SI. Benefits of both types may also be seen as they are not in 

principle mutually exclusive. 
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2.2 Methods 

2.2.1 Participants 

Twenty-three professional interpreters (18 females) and twenty-one 

multilinguals (17 females) participated in the study. All participants had normal or 

corrected-to-normal vision and reported no history of neurological or psychological 

problems. Additionally, participants were required to speak English since that was the 

language chosen for testing and consent. All but one participant reported normal color 

vision, which was confirmed with the Ishihara Color Test (Ishihara, 1972). One 

multilingual participant had a below normal score on the Ishihara Color Test, however 

his data were not excluded because he was not identified as an outlier from his group 

on any task. Additionally, his performances on the color and shape tasks in the task-

switching paradigm were comparable. All participants were living and working in the 

Brussels area at the time of testing. The professional interpreters’ group was formed 

of individuals working in simultaneous interpretation at the time of testing with at 

least one year of experience (mean = 13 years, range 1-42 years) and forty-five 

working days per year (mean = 149 days, range 45-234 days). The multilingual 

individuals used at least two languages on a daily basis and reported no experience 

with simultaneous interpretation. Importantly, the two groups were matched on a 

number of biographical factors to ensure that any differences seen were due to 

experience with interpretation and not to other underlying causes. These factors 

included age, years of education, intelligence (measured with Raven’s Advanced 

Progressive Matrices; Raven, Raven, & Court, 1998), and socioeconomic status 

(using the proxy of mother’s years of education, Gottfried, Gottfried, Bathurst, 

Guerin, & Parramore, 2003; Noble, McCandliss, & Farah, 2007; Stevens, Lauinger, & 

Neville, 2009; see Table 1).  
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The groups were additionally matched on factors relating to their language 

experience. These data were collected through a language history questionnaire. 

Participants provided information about all the languages they knew and/or studied. 

For each language they were asked to detail how and when they learned the language, 

including immersion experiences, as well as to provide a self-rating in the areas of 

reading, writing, speaking, and understanding on a 7-point Likert scale. Participants 

were also asked to evaluate how often they switched between languages within a 

conversation using a 7-point Likert scale. This was considered in periods throughout 

their lifetime at home, with friends, and at work (each situation evaluated separately), 

as well as within the year prior to testing for the following actions: thinking, 

dreaming, talking to oneself, and expressing anger and affection. Finally, they were 

asked to quantify using percentages how much they used each language in the above 

periods and situations and some additional situations evaluated in the year prior to 

testing. 

Based on these data, the two groups were matched on their number of native 

languages (defined as languages learned and used regularly in the first four years of 

life) and functional languages at the time of testing (defined as languages receiving an 

average self-rating across the four areas of at least 4). These factors were important to 

match as previous studies have shown advantages in executive functioning for early 

bilinguals compared to late bilinguals (e.g., Bialystok, Craik, & Luk, 2012; Luk et al., 

2011; Tao, Marzecová, Taft, Asanowicz, & Wodniecka, 2011) and because it is 

unclear whether languages beyond the second language contribute to greater benefits 

(e.g., Bialystok, Craik, Green, & Gollan, 2009; Kavé, Eyal, Shorek, & Cohen-

Mansfield, 2008). Additionally, the two groups were matched on their switching 

frequency in most situations. They differed on only three period-situation pairs: with 
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friends after age 25 (p = .031), with friends in the year prior to testing (p = .001), and 

marginally at work in the year prior to testing (p = .071). In all three cases, the 

multilingual group reported a higher rate of switching than the interpreters. Finally, 

there was no difference in English proficiency between the groups (p = .953), which 

was on average very high (mean = 6.1, range 4-7). 

Table 1: Biographical factors 

 Interpreters (N=23) Multilinguals (N=21) p-value 

Age (in years) 39.3 (13.1) 34.1 (10.3) p = .149 

Years of education 18.2 (1.4) 18.3 (2.6) p = .913 

Raven’s APM score 35.0 (4.9) 35.7 (5.6) p = .695 

Mother’s years of 

education 
14.2 (3.7) 14.4 (3.6) p = .884 

Number of native 

languages 
1.43 (0.66) 1.43 (0.75) p = .977 

Number of 

functional 

languages 

4.74 (1.57) 4.14 (1.06) p = .152 

Native languages 

Berber, Catalan, 

Croatian, Dutch, 

English, French, 

German, Italian, 

Polish, Portuguese, 

Romanian, Spanish 

Bulgarian, Czech, 

English, Filipino, 

French, Galician, 

German, Greek, 

Hiligaynon, Hungarian, 

Italian, Kinaray-a, 

Polish, Portuguese, 

Romanian, Slovak, 

Spanish, Valencian 

 

Note: Values reported are means with standard deviations in parentheses. 

 

All participants gave written informed consent and were offered compensation 

for their time. The study was approved by the the ethical committees of the Scuola 

Internazionale Superiore di Studi Avanzati (SISSA) and the Faculty of Psychological 

Sciences and Education at the Université Libre de Bruxelles. 
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2.2.2 Tasks and Procedure 

2.2.2.1 Color-word Stroop task. This task was a translated and shortened 

version of the task presented in Puccioni and Vallesi (2012). Stimuli consisted of four 

English color words (BLUE, RED, GREEN, YELLOW) presented individually in ink 

of one of the four colors (blue, red, green, yellow). English was chosen as the 

language for this task since it was a guaranteed common language among participants. 

Additionally, since the two groups did not differ in English proficiency, any potential 

group differences should not be due to a difference in proficiency. Participants were 

asked to ignore the word and identify the ink color by pressing the correspondingly 

colored button on a Cedrus RB-834 response pad (www.cedrus.com; the color-button 

mappings were counterbalanced across participants). The participants were asked to 

respond as quickly and accurately as possible. Each stimulus was categorized as 

congruent (e.g., BLUE presented in blue ink) or incongruent (e.g., BLUE presented in 

red ink). Roughly half of the trials were congruent and half incongruent. Only 

complete alternation sequences were employed, meaning that neither the ink nor the 

word color(s) used in trial n were used in either way (ink or word) in trial n+1, thus 

minimizing both positive and negative priming confounds (see Puccioni & Vallesi, 

2012 for details). 

The task included two blocks of 64 trials each with a short rest break between 

the blocks. Trials consisted of stimulus presentation in the center of the screen for 500 

ms, a 2000 ms blank response screen, and an additional blank screen beyond the 

response time limit which lasted randomly and continuously between 250 and 700 ms. 

Prior to the experimental blocks participants completed a training block to ensure that 

all participants understood the task. This training block was composed of 16 items 

representing all possible word-ink combinations. Items were presented on screen until 
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a response was made. Feedback about accuracy and speed followed the response and 

lasted on screen for 1200 ms, followed by a 500 ms inter-trial interval. All 

participants reached the criterion (10 correct trials out of 16) to move onto the 

experimental trials in one run of the training block. 

The primary comparison to be drawn from this task is the difference in 

accuracy and response time to congruent and incongruent trials, termed the Stroop 

effect. This difference gives a measure of conflict resolution. 

2.2.2.2 ANT. This task was adapted from Costa and colleagues (2008). The 

target stimuli consisted of five arrows situated either above or below a central fixation 

cross. The four “outside” arrows pointed in a uniform direction, while the central 

arrow could point in either the same direction as the others (congruent) or the opposite 

direction (incongruent). The congruent condition comprised 75% of the trials and the 

incongruent condition 25%. Participants were asked to indicate the direction of the 

central arrow using the leftmost and rightmost buttons on a Cedrus RB-834 response 

pad. Prior to each target stimulus a cue appeared which belonged to one of four types: 

no cue, central cue, double cue, and spatial cue. In no cue trials the fixation cross 

remained throughout the cue period.  The central cue was an asterisk in the place of 

the fixation cross. The double cue was the fixation cross plus asterisks at both 

potential locations of the central arrow (above and below the fixation cross). The 

spatial cue was the fixation cross plus an asterisk at the location where the central 

arrow would occur (either above or below the fixation cross).  

The task included two blocks of 128 trials each with a short rest break between 

the blocks. Each trial began with a 400 ms fixation cross followed by the cue (no cue, 

central cue, double cue, or spatial cue), which appeared for 100 ms, followed by 
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fixation for another 400 ms. The target then appeared and remained on screen until 

the end of the trial which was marked by the participant’s response or the expiration 

of 1700 ms. Participants completed 8 practice trials prior to the experimental blocks. 

This task allows the examination of three attentional networks devoted to 

executive function, alerting, and orienting. The executive function network is 

measured with the conflict effect which is the difference in accuracy or response time 

between congruent and incongruent trials. The difference between trials with no cue 

and those with a double cue provides a measure of the alerting network. Finally, the 

orienting effect is calculated as the difference between trials with a spatial cue and 

trials with a central cue. 

2.2.2.3 Task-switching paradigm. The paradigm was a modified version of 

the paradigm used in Rubin and Meiran (2005). Stimuli were red and blue hearts and 

stars presented individually on a white background. On each trial participants were 

asked to respond to either the color or the shape of the stimulus. The task to be 

completed was indicated by a visual cue located above the stimulus. To limit the use 

of linguistic information graphic cues were used. The color task cue consisted of three 

colored rectangles (purple, orange, and yellow) arranged linearly. Similarly, the shape 

task cue consisted of three black shapes (triangle, circle, and square) arranged 

linearly. Participants were required to make a choice response to each trial using the 

leftmost and rightmost buttons on a Cedrus RB-834 response pad. The four possible 

response-to-button mappings (left: red/heart, right: blue/star; left: red/star, right: 

blue/heart; left: blue/heart, right: red/star; left: blue/star, right: red/heart) were 

counterbalanced across participants. 



30 
 

Trials began with a fixation cross presented for 1500 ms followed by cue 

presentation. Two cue-to-target intervals (CTI) were employed (100 or 1000 ms), 

which were distributed randomly and equally across trials. This choice allowed the 

examination of potential differences in endogenous and exogenous task 

reconfiguration (Meiran, 1996; Rogers & Monsell, 1995). Following the CTI, the 

stimulus was presented in the center of the screen, below the cue, which remained 

onscreen. The trial concluded when the participant gave a response. Incorrect 

responses were followed by a 100 ms beep.  

Participants completed five blocks of trials which formed a sandwich design. 

Blocks 1, 2, 4, and 5 were single-task blocks in which only one task (color or shape) 

was presented for the entire block. The same task was presented in blocks 1 and 5 and 

the other task in blocks 2 and 4; the specific assignment was counterbalanced across 

participants. The single-task blocks each consisted of 6 practice trials and 24 

experimental trials. Block 3 was a mixed-task block with half of the trials requiring a 

color judgment and the other half a shape judgment. This block included 10 practice 

trials followed by 192 experimental trials with a short rest break at the halfway point. 

Half of the trials were repetition trials in which the task to be completed was the same 

as on the previous trial and half were switch trials in which the task was different than 

on the previous trial. 

The three trial types (switch, repetition, and single-task) lead to two main 

comparisons. The comparison of the switch and repetition trials in the mixed-task 

block is informative about the transient control needed to switch tasks. The difference 

in response time (RT) or accuracy between these trial types is termed the switching 

cost.  Comparing the repetition trials in the mixed-task block and trials in the single-

task block provides a gauge of the sustained control needed in the mixed-task block. 
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This difference in RT or accuracy is referred to as the mixing cost. Previous studies 

have suggested that the mixing cost is due in part to the increased memory load of the 

mixed-task block (Meiran, 1996; Rogers & Monsell, 1995). Additionally, several 

studies have demonstrated that interpreters have larger verbal memory spans than 

non-interpreter bilinguals (Bajo et al., 2000; Christoffels et al., 2006; Köpke & 

Nespoulous, 2006; P. Padilla et al., 1995). To disentangle the effects of increased 

memory span from SI experience on potential group differences, we additionally 

considered tests of verbal and spatial memory.  

2.2.2.4 Memory tests. Short-term memory (STM) was assessed in the verbal 

and spatial domains using computerized versions of the letter span and matrix span 

tasks (Kane et al., 2004). These tasks were comparable in their format; participants 

viewed a sequence of items of variable length and were asked to recall the items in the 

order they were presented at the end of each sequence. Three sequences of each 

length were presented with the length selected randomly on each trial. Performance 

was measured by the number of recalled items in perfectly recalled sequences. The to-

be-recalled items in the letter span task were twelve consonants. Each item was 

presented for 1000 ms and the length of sequences ranged from three to eight items. 

In the matrix span task the items consisted of a 4x4 grid with one square colored red, 

the position of the red square was the to-be-recalled item. Each item was presented for 

650 ms and sequences contained two to seven items. 

Verbal and spatial working memory (WM) were assessed using the automated 

operation span task and the automated symmetry span task, respectively (Unsworth, 

Heitz, Schrock, & Engle, 2005). These tasks followed the same format. Similar to the 

STM tasks, participants were asked to recall sequences of items of varying length, 

however prior to each item of the sequence an intervening task was presented. 
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Participants were trained on each task component separately and together before 

completing the test sequences. In the operation span task the to-be-recalled items were 

the twelve consonants used in letter span task. The intervening task was an arithmetic 

operation (e.g., (2x6) - 4 = ?). Sequences consisted of three to seven operation-letter 

pairs. The to-be-recalled items in the symmetry span task were identical to those in 

the matrix span task. The intervening task required a symmetry judgment. Sequences 

contained two to five symmetry-square pairs. In both tasks three sequences of each 

length were presented with the length randomly selected on each trial. In addition to 

the number of items in perfectly recalled sequences, the number of errors on the 

intervening task was also recorded. This included incorrect responses and responses 

that required a much longer than average response time (calculated during intervening 

task training). 

 

2.3 Results 

2.3.1 Memory Tests 

The interpreters performed better on both the verbal and the spatial short-term 

memory tasks than the multilinguals (t(42) = 2.1, p = .041, d = .639; t(42) = 3.7, 

p < .001, d = 1.133, respectively; Figure 1). Additionally, the interpreters recalled 

more items on the verbal working memory task than the multilinguals (t(42) = 2.1, 

p = .039, d = .582; Figure 1), but the groups did not differ in the number of errors 

(p = .329). There were no differences between the groups on the task of spatial 

working memory (ps ≥ .299). 
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Figure 1: Performance on tests of memory by group. Error bars represent standard 

errors of the mean. The number of items, and therefore maximum score, for the 

memory tests were as follows: Letter Span – 99; Matrix Span – 81; Operation Span – 

75; Symmetry Span – 42. 

 

2.3.2 Color-Word Stroop Task 

Two participants (both male interpreters) were identified as extreme outliers 

within their group based on their accuracy rate (more than 3 interquartile ranges 

below the 1
st
 quartile); their data were excluded from all analyses. Their exclusion, 

however, did not change the matching of the two groups on the abovementioned 

biographical variables. For all analyses on accuracy the first trial in each block was 

not considered. Since the accuracy data were non-normally distributed, non-

parametric Mann-Whitney U tests were used for their analysis. For the analysis of 

response time (RT) data, the first trial in each block and error trials were excluded 

(2.3% of trials). Additionally, for each participant, trials with an RT more than 3 
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standard deviations (SD) from their individual mean were excluded (0.9% of trials). 

Finally, trials following an error were excluded to avoid post-error slowing confounds 

(Burns, 1965; 2.1% of trials). 

 Analyses on the accuracy data revealed that the groups did not differ on 

congruent (p = .693) or incongruent trials (p = .230). Further the groups showed no 

difference on the accuracy Stroop effect (p = .351). A two-way ANOVA on RTs with 

trial type (congruent, incongruent) and group as factors revealed a main effect of trial 

type (F(1,40) = 96.2, p < .001, ηp
2
 = .706). No differences were seen between the 

groups either overall (p = .345) or in the size of the Stroop effect (p = .570; Table 2). 

Table 2: Color-word Stroop: mean response times and accuracy by group 

 
Interpreters Multilinguals 

 
Response Time 

(ms) 

Accuracy   

(%) 

Response Time 

(ms) 

Accuracy   

(%) 

Congruent trials 626 (110) 97.8 (1.9) 654 (92) 97.9 (1.9) 

Incongruent trials 673 (120) 97.9 (2.4) 706 (92) 97.2 (2.3) 

Stroop effect 47 (29) -0.1 (2.7) 53 (36) 0.7 (2.5) 

Note: Standard deviations are presented in parentheses. 

 

2.3.3 ANT 

 One participant (a male interpreter) was identified as an extreme outlier based 

on his accuracy rate (more than 3 interquartile ranges below the 1
st
 quartile); his data 

were excluded from all analyses. His exclusion, however, did not change the 

matching of the two groups on the above-mentioned biographical variables. For all 

analyses on accuracy, the first trial in each block was not considered. Since the 

accuracy data were non-normally distributed, non-parametric tests were used for their 

analysis. Wilcoxon Signed Rank tests were used to compare conditions within each 

group and Mann-Whitney U tests were used to compare conditions between the two 
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groups. For the analysis of RT data, the first trial in each block and error trials were 

excluded (1.5% of trials). Additionally, for each participant, trials with an RT more 

than 3 SDs from their individual mean were excluded (1.4% of trials). Finally, trials 

following an error were excluded to avoid post-error slowing confounds (Burns, 1965; 

1.3% of trials).  

2.3.3.1 Conflict effect. The conflict effect analyzes the difference between 

congruent and incongruent ANT trials. The two groups did not differ in accuracy on 

either the congruent (p = .256) or incongruent trials (p = .834). Further, there was no 

difference between the groups on the accuracy conflict effect (p = .535), though both 

groups showed a reliable difference between congruent and incongruent trials 

(ps ≤ .002). A two-way ANOVA on RTs with trial type (congruent, incongruent) and 

group as factors revealed a main effect for trial type (F(1,41) = 276.0, p < .001, 

ηp
2
 = .871). The interpreters showed marginally faster RTs (F(1,41) = 3.2, p = .078, 

ηp
2
 = .074; Table 3), but did not differ from the multilinguals in the size of the conflict 

effect (p = .170).  

Table 3: ANT: mean response times and accuracy by group 

 
Interpreters Multilinguals 

 
Response Time 

(ms) 

Accuracy    

(%) 

Response Time 

(ms) 

Accuracy   

(%) 

Congruent trials 444 (55) 99.1 (1.3) 470 (55) 99.1 (0.9) 

Incongruent trials 520 (61) 96.4 (3.6) 559 (73) 96.7 (3.0) 

Conflict effect 75 (23) 2.8 (2.7) 89 (40) 2.4 (2.6) 

Alerting effect 15 (16) -0.4 (2.1) 11 (14) -1.1 (2.1) 

Orienting effect 4 (18) 0.9 (2.1) 10 (23) 1.0 (2.9) 

Note: Standard deviations are presented in parentheses. 

 

2.3.3.2 Alerting effect. The alerting effect was defined as the difference 

between ANT trials cued with the double cue and those with no cue. The two groups 

showed no difference in the accuracy alerting effect (p = .296). Additionally, there 
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was no difference between the groups in the RT alerting effect (p = .401), though a 

reliable difference between no cue and double cue trials was seen across the groups 

(t(42) = 5.5, p < .001, d = .847).  

2.3.3.3 Orienting effect. The orienting effect was defined as the difference 

between central cue trials and spatial cue trials in the ANT. The two groups showed 

no difference in the accuracy orienting effect (p = .902). Additionally, there was no 

difference between the groups in the RT alerting effect (p = .397), though a reliable 

difference between spatially and centrally cued trials was seen across the groups 

(t(42) = 2.2, p = .031, d = .341).  

2.3.4 Task-Switching Paradigm 

Two participants (one male interpreter and one female multilingual) were 

identified as extreme outliers within their group based on their accuracy rate (more 

than 3 interquartile ranges below the 1
st
 quartile); their data were excluded from all 

analyses. Their exclusion, however, did not change the matching of the two groups on 

the above-mentioned biographical variables. For all analyses on accuracy the first trial 

in each block and the first trial after the rest break in block 3 were not considered. 

Since the accuracy data were non-normally distributed, non-parametric tests were 

used for their analysis. Wilcoxon Signed Rank tests were used to compare conditions 

within each group and Mann-Whitney U tests were used to compare conditions 

between the two groups. For the analysis of response time data the first trial in each 

block, the first trial after the rest break in block 3, and error trials were excluded 

(3.2% of trials). Additionally, for each participant, trials with an RT more than 3 SDs 

from their block-type mean (single-task, mixed-task) were excluded (1.6% of trials). 

Finally, trials following an error were excluded to avoid post-error slowing confounds 
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(Burns, 1965) and since these trials are likely to be mis-categorized as switch or 

repetition trials (2.1% of trials). 

Before analyzing the switching and mixing costs, the color and shape tasks 

were compared. Accuracy rates were comparable for the two tasks within each group 

(ps > .122). A two-way ANOVA on RTs revealed no main effect of task (color, 

shape) and no interaction with group (ps > .220). Therefore the data for the two tasks 

were collapsed for all further analyses. 

2.3.4.1 Switching costs. Switching costs represent the difference in 

performance on switch trials and repetition trials in the mixed-task block. The two 

groups did not differ in accuracy on either the switch (p = .521) or the repetition trials 

(p = .940). Additionally, there was no difference between the groups on the accuracy 

switching cost (p = .345), though both groups showed a reliable cost (ps ≤ .028; 

Table 4). A three-way ANOVA on RTs with CTI length and trial type (switch, 

repetition) as within-subjects factors and group as a between-subjects factor showed 

main effects for all three factors. Responses were faster on long compared to short 

CTI trials (F(1,40) = 358.9, p < .001, ηp
2
 = .900) and on repetition compared to switch 

trials (F(1,40) = 75.9, p < .001, ηp
2
 = .655). Additionally, these factors interacted, 

revealing a smaller switching cost on long CTI trials than on short CTI trials 

(F(1,40) = 32.5, p < .001, ηp
2
 = .449).  Interpreters were overall faster than 

multilinguals (F(1,40) = 5.6, p = .022, ηp
2
 = .124). The group factor did not interact 

with either CTI length (p = .299) or trial type (p = .411) suggesting that interpreters 

and multilinguals did not differ in switching cost. The three-way interaction was also 

not significant (p = .526).  
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Table 4: Task-switching paradigm: mean response times and accuracy rates by group 

 
Interpreters Multilinguals 

 
Response Time 

(ms) 

Accuracy   

(%) 

Response Time 

(ms) 

Accuracy   

(%) 

Trial Type     

   Single-task 460 (77) 98.5 (2.2) 519 (58) 98.9 (1.3) 

   Repetition 789 (292) 97.0 (3.0) 989 (253) 96.7 (3.7) 

   Switch 981 (347) 95.2 (3.5) 1223 (349) 94.6 (3.3) 

Mixing Cost 328 (230) 1.5 (2.5) 471 (220) 2.2 (3.6) 

Switching Cost 192 (147) 1.8 (2.6) 234 (172) 2.1 (3.6) 

Note: Standard deviations are presented in parentheses.  

 

2.3.4.2 Mixing costs. Mixing costs represent the difference in performance on 

repetition trials in the mixed-task block and trials in the single-task blocks. The two 

groups did not differ in accuracy on either the repetition (p = .940) or single-task trials 

(p = .883). Additionally, there was no difference between the groups on the accuracy 

mixing cost (p = .960), though both groups showed a reliable cost (ps ≤ .041; 

Table 4). A three-way ANOVA on RTs with CTI length and trial type (repetition, 

single-task) as within-subjects factors and group as a between-subjects factor showed 

main effects for all three factors. Responses were faster on long compared to short 

CTI trials (F(1,40) = 272.2, p < .001, ηp
2
 = .872) and on single-task trials compared to 

repetition trials (F(1,40) = 132.1, p < .001, ηp
2
 = .768). These two factors interacted, 

showing a smaller mixing cost on trials with a long CTI than with a short CTI 

(F(1,40) = 172.7, p < .001, ηp
2
 = .812). The interpreters were overall faster than the 

multilinguals (F(1,40) = 6.5, p = .014, ηp
2
 = .141). Additionally, group interacted with 

trial type (F(1,40) = 4.2, p = .046, ηp
2
 = .096; Figure 2), indicating a smaller mixing 

cost for interpreters. To verify that the difference in mixing cost was not due to the 

difference in overall speed we computed a proportional mixing cost ([repetition – 

single-task] / [repetition + single-task]). The interpreter advantage was maintained 

when considering this proportional mixing cost (t(40) = 2.0, p = .045, d = .640). The 
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group factor also interacted with CTI length (F(1,40) = 4.2, p = .047, ηp
2
 = .095), 

showing that the difference between the groups was larger with a short CTI (144 ms 

vs. 111 ms). The three-way interaction was not significant (p = .270). 

 

 

Figure 2: Mixing and switching costs by group. Error bars represent standard errors of 

the mean. 

 

2.3.4.3 Regression analysis. To investigate the separate effects of memory 

and interpretation experience on the mixing cost, we completed a stepwise multiple 

regression analysis. Proportional mixing cost was selected as the dependent variable 

to mitigate differences in overall speed. Performance scores from the four tests of 

memory, group, and Raven’s APM score were entered as potential variables (age did 

not warrant inclusion because its correlation with proportional mixing cost was not 

significant). A model including only spatial working memory explained 17.0% of the 

variance in mixing cost (F(1,40) = 9.3, p = .004). A second model, which added group 

as a predictor, explained 24.9% of the variance, significantly more than the first 

model (R
2
 change = .095, F(1,39) = 5.1, p = .028; Table 5). No other variables 

significantly improved the model’s predictive power. The switching cost was not 
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correlated with any of the biographical or memory variables, thus we did not complete 

a regression analysis on these data.  

Table 5: Multiple regression results 

Variable B SE B Β p 

Spatial WM -.005 .002 -.435 .003 

Group .058 .025 .308 .028 

 

 

2.4 Discussion 

 This study examined the memory and cognitive control abilities of 

professional simultaneous interpreters compared to a well-matched group of 

multilinguals. Memory was investigated using tests of short-term and working 

memory in the verbal and spatial domains. On these tests, the interpreters showed 

larger verbal STM, spatial STM, and verbal WM spans than the multilinguals. The 

color-word Stroop, ANT, and task-switching paradigms were employed to explore 

differences in cognitive control between the two groups. No group differences were 

seen in conflict resolution measured with the Stroop and ANT tasks. However, on the 

task-switching paradigm the interpreter group showed greater sustained control (i.e., 

smaller mixing cost) than the multilingual group, though no difference was seen in 

transient control (i.e., switching cost). A regression analysis on the mixing cost 

revealed that both spatial working memory and interpretation experience contributed 

to the magnitude of the mixing cost.  

2.4.1 Are Interpreters Expert Bilinguals? 

 Previous studies have shown a bilingual advantage in transient control, 

measured as the switching cost, on a non-linguistic task-switching paradigm (Garbin 
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et al., 2010; Prior & Gollan, 2011; Prior & Macwhinney, 2010; but see Hernández et 

al., 2013; Paap & Greenberg, 2013). This advantage is thought to stem from the fact 

that switching between tasks and switching between languages rely on the same 

domain-general processes. Bilinguals, then, have additional practice with these 

processes due to their experience switching between languages. The connection 

between language switching and task switching is reinforced by the results of Prior 

and Gollan (2011). That study demonstrated that bilinguals who engage more often in 

language switching show a benefit in transient control over bilinguals who switch less 

often (when corrected for differences in socioeconomic status). Interpreters, whose 

profession requires the use of multiple languages under demanding circumstances, 

could also be expected to show a benefit in transient control over non-interpreter 

multilinguals. The present study, however, demonstrated that while both professional 

interpreters and multilinguals show reliable switching costs, there is no difference 

between the two groups.  

Bilingual advantages in conflict resolution have also been attributed to the 

need to manage multiple language sets, specifically the need to select between 

competing items. This advantage has typically been seen on Stroop tasks, the Simon 

task, and flanker paradigms (e.g., Bialystok, Martin, & Viswanathan, 2005; Costa et 

al., 2008; Hernández et al., 2010). As with transient control, a benefit in conflict 

resolution may be predicted for interpreters due to their management of languages in 

more demanding situations and greater need to produce target language output. For 

the most part, however, this prediction was not born out, as no group differences in 

the conflict effect were seen on the Stroop and ANT tasks in the current study. The 

interpreters, though, did show marginally faster overall response times, which have 

previously been linked to bilingual advantages (Bialystok, 2006; Costa et al., 2009). 
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Three previous studies examining conflict resolution in interpreters and multilinguals 

also found a general absence of differences between the groups. Yudes and colleagues 

(2011) examined monolinguals, bilinguals, and professional interpreters on the Simon 

task and found no differences between the groups (though that study also included a 

card sorting task which did show group differences). In a study examining the ANT, 

no differences in conflict resolution were seen between a group of professional 

intepreters and a group of bilinguals (though a interactive effect with the alerting and 

orienting networks was present; Morales, Padilla, Gómez-Ariza, & Bajo, 2015). In 

Köpke & Nespoulous (2006), professional interpreters, students of interpretation, and 

multilinguals were tested on color-word Stroop tasks in English and French. No 

differences between the groups were seen on the unilingual versions; though one of 

the bilingual versions did show an advantage for the students of interpretation. It 

should be noted that the paradigm used in that study did not allow for the calculation 

of the Stroop effect, where the bilingual advantage has generally been seen, but rather 

calculated the number of correct responses given in 45 seconds.   

The lack of an enhanced benefit in interpreters could arise from two sources. 

First, while interpreters must control their languages under more demanding 

conditions, they may not actually spend more time switching between languages than 

other multilinguals. Indeed, comparisons of self-reported switching frequency 

revealed that in most situations the groups did not differ and when they did it was the 

the multilinguals who switched more often. It appears then that increased demands 

during switching may not result in enhanced practice. The second possibility is that 

interpreters have exercised their switching processes to a greater extent, but that 

enhancements are not linearly related to exercise or have a ceiling. In this case the 

extra practice would not add significantly to the enhancement that the interpreters 
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already have due to their multilingual status. Regardless of the source, these results 

appear to indicate that interpreters do not continue to garner benefits in transient 

control and conflict resolution beyond that found in multilinguals. Thus, the data 

suggest that interpreters are not “expert bilinguals.”  

2.4.2 Are Interpreters Unique Bilinguals? 

 The professional interpreters did distinguish themselves from the multilinguals 

in areas where bilingual benefits have not typically been seen. In particular, the 

interpreters displayed enhanced sustained control during the mixed-task block of the 

task-switching paradigm. This task block resembles simultaneous interpretation in 

that both require the maintenance of two (or more) “task sets.” In the case of the task-

switching paradigm, these sets are the stimulus-response rules, whereas in 

simultaneous interpretation (SI) they are the input and output languages. Thus the 

interpreters’ enhancement may be due to the extensive practice they have in 

maintaining two task sets. This would further imply that interpreters recruit, at least in 

part, domain-general processes to keep both languages active. This account of the 

results, which appears to be supported by the inclusion of the group factor in the 

regression analysis, suggests that there is a direct effect of SI experience on the size of 

mixing costs. Alternatively, the difference in mixing cost between the groups could be 

due to the difference in their memory spans. Examination of the regression analysis 

revealed that spatial working memory and group membership were the only 

significant predictors of mixing cost. Interestingly, spatial WM is the only memory 

measure in which no interpreter advantage was seen. Thus, it may be that all four 

memory types influence the mixing cost, but that the other three are represented 

cumulatively with the group variable. This account would suggest that SI experience 



44 
 

has an indirect effect on the size of mixing costs. Regardless of the path that the 

influence takes, SI experience is uniquely associated with enhanced sustained control. 

2.4.3 Memory Effects 

The interpreters additionally showed a specific advantage in verbal short-term 

and working memory as well as spatial short-term memory. In the verbal domain, the 

superiority of the interpreters replicates the findings of previous studies (e.g., Bajo et 

al., 2000; Christoffels et al., 2006; Köpke & Nespoulous, 2006; P. Padilla et al., 

1995). Verbal memory is a critical component in simultaneous interpretation. Both 

short-term and working memory are burdened during SI to store content between 

input and output and rehearse pre-output translations. Further, as mentioned in the 

Introduction (section 2.1), SI requires simultaneous comprehension and production, 

and therefore may be considered a dual-task situation, similar to the working memory 

paradigm used in this study. Thus, the interpreter advantage in verbal memory is 

reasonable given the nature and demands of simultaneous interpretation. 

The difference in spatial short-term memory, however, is the first evidence 

that interpreters have improved memory beyond the verbal domain as no previous 

study has included measures of non-verbal memory. At first blush this advantage in 

the spatial domain is surprising given the verbal nature of SI. The advantage could 

arise from increased general memory ability, analogous to the benefits seen in 

bilinguals on non-linguistic tasks of executive function (e.g., Costa et al., 2009, 2008; 

Garbin et al., 2010; Luk et al., 2011; Prior & Gollan, 2011; Prior & Macwhinney, 

2010). However, the lack of an advantage on spatial working memory draws this 

explanation into question. Alternatively, the advantage may be rooted in the strategies 

used during SI. A distinction has been drawn between two interpreting strategies: a 
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transcoding (or word-based) strategy and a meaning-based strategy (e.g., Anderson, 

1994; Fabbro & Gran, 1994). In transcoding interpretation, the interpreter recodes 

individual words or multi-word units of the input into the target language. Recoding 

can occur at the phonological, morphological, syntactic, and semantic levels (Paradis, 

1994). In all cases, though, verbal short-term memory would be employed to retain 

the content between input and output. In meaning-based interpretation, the interpreter 

fully comprehends the input, retains it at a non-verbal conceptual level, and then 

recodes the meaning in the target language for production (Fabbro & Gran, 1994). 

When using this strategy the short-term memory store which is taxed may be non-

verbal. Thus, the benefit seen in spatial short-term memory could be directly related 

to the use of this meaning-based strategy. It is important to note that the two strategies 

are not mutually exclusive, so an individual interpreter may use both strategies and 

show associated benefits in both verbal and non-verbal short-term memory.  

While it is clear that interpretation is associated with increased memory, it 

should be noted that the direction of causation remains unclear. Practice with 

interpretation may lead to increased memory, or individuals with better memory may 

self-select into the profession or be more successful in the long-run. Longitudinal 

studies offer the best possibility of clarifying the direction of effects. We are aware of 

one such study; however results from that study do not offer conclusive evidence. 

Macnamara and Conway (2013) examined students of ASL interpretation during their 

first and fourth semesters of training.  Performance improved upon retesting on 

number-letter sequencing and backward digit span tasks, but no difference was seen 

on reading and operation span tasks. Future longitudinal studies may be of assistance 

in clarifying this point (see Chapter 3).  
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2.4.4 Working Memory and Mixing Costs 

Finally, the influence of spatial working memory span on the mixing cost in 

the task-switching paradigm is in and of itself notable. Previous authors have 

theorized that mixing costs arise in part due to the greater memory load of the mixed-

task blocks (Meiran, 1996; Rogers & Monsell, 1995). When directly explored by 

Rubin and Meiran (2005), however, this influence of memory load on the mixing cost 

was not confirmed. The present results approach this relation between working 

memory and mixing cost from the opposite side. That is, we show that individuals 

with larger working memory spans exhibit smaller mixing costs. These data support 

the notion that increased memory load contributes to mixing costs.  

 

2.5 Concluding Remarks 

The present study demonstrates that professional interpreters do not show 

bilingual benefits quantitatively beyond those seen in multilinguals. Instead, 

interpreters have a unique set of benefits that are related to the processes recruited 

during simultaneous interpretation.  These benefits include increased verbal and 

spatial memory and enhanced sustained control. This specificity of the interpreter 

advantage to processes required during simultaneous interpretation echoes the finding 

of a recent study on the attentional control networks (Morales et al., 2015). Future 

studies in this area will greatly add to our knowledge, not only of the cognitive effects 

of simultaneous interpretation, but also of the cognitive effects of skill learning in 

adulthood generally. 
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CHAPTER 3 

ARE INTERPRETERS BORN OR CREATED? 

 

3.1 Introduction 

 The previous chapter demonstrated that interpreters show specific advantages 

in cognitive control compared to matched multilinguals. These advantages were seen 

in verbal short-term and working memory, as well as spatial short-term memory, and 

in sustained control in a task-switching paradigm. These findings add to a growing 

body of literature that has found interpreter advantages in memory (e.g., Bajo et al., 

2000; Christoffels et al., 2006; Köpke & Nespoulous, 2006; P. Padilla et al., 1995) 

and articulatory suppression (e.g., Bajo et al, 2000, Kopke & Nespoulous, 2006; 

Padilla, Bajo, Macizo, 2012; Padilla et al., 1995; Yudes, Macizo, & Bajo, 2012), and 

more recently in some areas of executive control (Morales et al., 2015). Taken 

together these studies support the narrative that interpreters are not generally 

advantaged, but do exhibit enhancements in the areas of cognition recruited during 

simultaneous interpretation.  

The provenance of these advantages, however, remains unclear. It may be that 

these abilities are acquired through training and/or experience with simultaneous 

interpretation. This understanding is supported by studies which show that targeted 

training in working memory and inhibitory control leads to improvements specific to 

the process trained (Berkman, Kahn, & Merchant, 2014; Melby-Lervåg & Hulme, 

2013). Given that simultaneous interpretation places high demands on memory and 

other executive control processes, it may represent targeted training which could lead 
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to enhancements in the specific areas utilized. Alternatively, the interpreter 

advantages may be due to innate characteristics that enable success in the field. 

Simultaneous interpretation is a highly selective career path. Beyond proficiency in a 

minimum of two or three languages, individuals must complete and pass a series of 

qualification exams to enter both training programs and professional associations. 

Thus, the individuals who consider and ultimately succeed in becoming professional 

interpreters may be those who naturally have the required abilities. 

3.1.1 Previous Evidence 

To examine the influence of SI training and experience on cognitive control, 

several studies have compared groups with different levels of SI experience. Padilla 

and colleagues examined professional interpreters in comparison with two groups of 

interpretation students (before and after courses on simultaneous interpretation) and 

non-interpreter controls (P. Padilla et al., 1995). The interpreters showed better 

performance than the other three groups on two tests of verbal memory (digit span 

and reading span). Additionally, the interpreters were unhindered by articulatory 

suppression in a verbal recall task, while the remaining three groups all showed a 

decrement in performance. These results suggest that the memory and articulatory 

suppression advantages are not innate, but rather acquired through experience with 

simultaneous interpretation.  

This role of SI experience is partially upheld by another study which 

compared professional interpreters, students of interpretation, and monolinguals 

(Yudes et al., 2012). On a verbal recall task with articulatory suppression conditions 

of varying complexity the professional interpreters showed a decrease in recall only 

for pseudo-words in the high complexity condition. The students, on the other hand, 
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were hindered by the high complexity condition regardless of item type (words and 

pseudo-words) and the monolinguals showed decrements in word and pseudo-word 

recall in all articulatory suppression conditions (standard and high complexity). When 

compared on a reading span task, however, the professional interpreters and students 

of interpretation did not differ and both groups performed better than the 

monolinguals.  

A third study examining professional interpreters, students of interpretation, 

bilingual controls, and monolingual controls further complicates the pattern of effects 

(Köpke & Nespoulous, 2006). In this study no differences were seen across the four 

groups on tasks of verbal short-term memory (digit span and word span). On a verbal 

working memory task (listening span), though, the students of interpretation 

outperformed the two control groups, while the professional interpreters did not differ 

from any of the groups. A similar pattern of effects was evidenced in a verbal recall 

task under articulatory suppression. Finally, this study also examined the color-work 

Stroop task using English, French, and bilingual versions. The students of 

interpretation provided more correct responses in 45 seconds than the professional 

interpreters and bilinguals on one of the bilingual versions (words written in L2 

English, respond in L1 French); no differences were seen on the other three versions. 

A final study assessed students of interpretation at the close of their first and 

second years, as well as bilingual controls, on tasks of verbal memory (Tzou, Eslami, 

Chen, & Vaid, 2011). On a short-term memory task (digit span), the second year 

students performed better than the bilingual controls, while the first year students did 

not differ from either group. On a working memory task (reading span), however, 

both student groups outperformed the bilingual control group. 
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These four studies present a mixed view of the influence of SI training and 

experience on cognitive control. Three of the studies provide some support for an 

effect of SI training on memory and articulatory suppression effects (P. Padilla et al., 

1995; Tzou et al., 2011; Yudes et al., 2012). However, support is also available for 

innate differences (Tzou et al., 2011) and the influence of SI experience (Yudes et al., 

2012). Finally, one of the studies failed to find an interpreter advantage (Köpke & 

Nespoulous, 2006). These studies must be interpreted with caution, though, as they all 

employed a cross-sectional design. In this situation, when comparing professionals to 

students, there is an inherent age difference which may be contributing to the effects. 

In particular, the advantages for students seen in the study by Kӧpke and Nespoulous 

could be explained by age-related changes in cognition.  

Longitudinal studies of individuals learning to interpret offer a better method 

to explore the origin of the interpreter advantages. We are aware of one longitudinal 

study that investigates changes in cognitive control in students of interpretation. 

Macnamara and Conway (2013) examined students of ASL (American Sign 

Language) interpretation during their first and fourth semesters of training.  These 

students evidenced improvements on a task-switching paradigm, the Wisconsin Card 

Sorting Test, number-letter sequencing, and backward digit span tasks; however, no 

change was seen on reading and operation span tasks. While the authors of this study 

did use a longitudinal design, they did not include a control group. Thus, it is not clear 

if the improvements seen were due to training in interpretation or rather repetition of 

the task (e.g., learning effects). Additionally, ASL interpretation may be qualitatively 

different than interpretation between two spoken languages. As there is only one 

spoken language stream in ASL interpretation, the level of interference between the 

languages is likely lower. Indeed, evidence from studies of bimodal bilinguals (one 
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spoken language and one signed language) suggests that these individuals do not 

exhibit the same level of cognitive enhancements that unimodal bilinguals show (e.g., 

Emmorey, Luk, Pyers, & Bialystok, 2008).  

3.1.2 The Present Study 

To understand the changes in cognition associated with training in 

simultaneous interpretation we examined students earning a Master in Conference 

Interpreting at the beginning and end of their two-year program. Further, to address 

the confounds related to the passage of time and repetition of tasks, we compared this 

group of interest to two control populations. The first were students earning a Master 

in Translation. Similar to the students of interpretation, these students spoke multiple 

languages and were engaged in language improvement and high level language usage 

during the intervening two years. Critically, though, the students of translation did not 

learn the simultaneous interpretation skill. Thus, the comparison of these two groups 

specifically targets training in simultaneous interpretation. The second control group 

consisted of monolinguals studying non-language fields. The inclusion of this group 

allowed us to tease apart the potential effects of increased multilingualism from the 

general time and repetition effects. 

All three groups were tested longitudinally on the same battery of tasks used 

in Chapter 2 to examine professional interpreters and multilinguals. Based on the 

results of that study, we expected to see differences between the groups in verbal 

short-term and working memory, spatial short-term memory, and sustained control 

(measured with the mixing cost in the task-switching paradigm). How these 

differences evolved in relation to the training period would speak to the question of 

innate versus trained abilities. A role for innate abilities would be supported by better 
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performance in the students of interpretation compared to the other groups, across the 

training period. Alternatively, a role of training would be supported by an increase in 

performance in the students of interpretation, but not the two control groups. Finally, 

a lack of differences between the groups at either time point may suggest a role of SI 

experience beyond the two year training period. It should be noted that the abilities 

are not intrinsically linked, thus some abilities may be innate and others trained. 

 

3.2 Methods 

3.2.1 Participants 

 Three groups of participants were examined longitudinally in this study. The 

first group was composed of students earning a Master degree in Conference 

Interpreting at the University of Trieste (one student earned a Master in Conference 

Interpreting at another Italian university). These students were tested at the start of 

their Master’s program (within the first three months of courses for all but one 

participant who was tested four months before the program started) and again 

approximately two years later at the conclusion of the program (mean time between 

phases = 22.7 months, SD = 1.4, range 19.5-24.4). Twenty-two students completed 

the first phase of which seventeen (12 females) returned for the second phase. The 

second group consisted of students earning a Master degree in Translation at the 

University of Trieste. As with the first group, these students were tested at the start of 

their program and approximately two years later at the conclusion of the program 

(mean time between phases = 24.1 months, SD = 1.0, range 22.9-25.7). Twenty-one 

students completed the first phase and ten of these students (8 females) returned for 

the second phase. The third group of participants were monolingual controls who 
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were studying non-language subjects at the University of Trieste. These participants 

were tested twice with approximately two years between the phases (mean time 

between phases = 23.7 months, SD = 1.4, range 21.9-26.2). While the specific time of 

testing was not linked to their academic calendar, all participants were full-time 

students during the intervening two years. Nineteen monolinguals participated in the 

first phase and eleven (4 females) returned for the second phase. All participants were 

right-handed and had no known neurological or psychiatric problems. They all 

reported normal color vision, which was confirmed with the Ishihara Color Vision 

Test (Ishihara, 1972). Further, the three groups did not differ in age (p = .128) or 

socioeconomic status (measured as mother’s years of education; p = .865), however, 

the monolingual group did have approximately one more year of education 

(F(2,35) = 3.846, p = .031; Table 6). Finally, while the study attrition rates for the 

students of translation and the monolingual controls were higher than for the students 

of interpretation, this difference does not reflect attrition from the participants’ 

programs of study. Instead, at least for the students of translation, it was due to a 

difference in average thesis preparation time. This meant that the students of 

translation moved away from the Trieste area earlier than the students of 

interpretation, so fewer were available for re-testing at the specified time. Participants 

gave written informed consent and were compensated for their time. The study was 

approved by the ethical committee of the Scuola Internazionale Superiore di Studi 

Avanzati (SISSA).  

3.2.2 Tasks and Procedure 

Participants were tested individually in a sound-attenuated booth. During the 

first phase of testing participants completed a language history questionnaire, the 

Wechsler Adult Intelligence Scale (WAIS-R), four tests of memory, and  four tests of 
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executive functioning (two additional tasks were included but not analyzed here, a 

foreperiod task and the training for a novel inductive reasoning task, see Babcock & 

Vallesi, 2015). These tasks were split across two testing sessions. In the second phase, 

participants repeated the memory and executive functioning tasks and updated their 

language history information in a single session.  

3.2.2.1 Language history questionnaire. Participants were asked to provide 

information about all of the languages they knew and/or studied. For each language 

they were asked to detail how and when they learned the language, including 

immersion experiences, as well as to provide a self-rating in the areas of reading, 

writing, speaking, and understanding on a 5-point Likert scale. The participants also 

completed a questionnaire developed to identify functional fluency in non-native 

languages. Functional fluency was operationalized as a B2 level or above in the 

Common European Framework of Reference for Languages (CEF). The questionnaire 

asked participants to give their CEF level and respond to eight yes-or-no questions 

which targeted the B1-B2 border (see Appendix A for questionnaire items). The 

questionnaire contained two items for each of the four abilities (reading, writing, 

speaking, and oral comprehension), one item focused on academic usage and the other 

on personal usage. Participants were considered functionally fluent in languages for 

which they responded yes to seven or eight items. This questionnaire was used to 

screen the Monolingual controls at Phase 1. Interested participants who were deemed 

functionally fluent in a language other than Italian were not invited to participate. 

Additionally, all participants completed this questionnaire at Phase 2.  

To examine potential differences in language proficiency between the 

Interpretation and Translation students we compared their self-ratings at Phase 1 and 

Phase 2. However, given that participants were asked to report all languages they had 
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studied, even for brief periods, an average across all non-native languages would not 

have been an accurate representation of their abilities. Instead, the self-ratings were 

averaged across the two or three languages each participant was studying as part of 

their Master’s program. These comparisons identified an advantage for Interpretation 

students in speaking ability at Phase 1 (t(25) = 2.756, p = .011), but there were no 

other differences between the groups at either Phase 1 or Phase 2 (ps ≥ .222; Table 6). 

Additionally, we compared the number of functional languages at Phase 2 between 

these groups and found no difference (t(25) = 1.423, p = .167). 

Table 6: Biographical and language characteristics of the three participant groups 

 

Interpretation 

students 

(N=17) 

Translation 

students 

(N=10) 

Monolingual 

controls 

(N=11) 

Age at Phase 1 (in years) 22.5 (0.6) 24.2 (3.6) 23.5 (1.9) 

Years of education at Phase 1 16.2 (0.4) 16.5 (0.7) 17.4 (1.9) 

Verbal IQ 123 (8) 113 (10) 114 (13) 

Performance IQ 113 (15) 111 (9) 113 (11) 

Mother’s years of education 13.6 (4.0) 13.1 (3.2) 12.9 (2.6) 

Number of functional languages at 

Phase 2 
3.6 (0.7) 3.2 (0.6) 1.5 (0.5) 

Phase 1 averaged reading level* 4.3 (0.4) 4.2 (0.4)  

Phase 1 averaged writing level* 3.7 (0.3) 3.5 (0.5)  

Phase 1 averaged speaking level* 3.7 (0.5) 3.2 (0.5)  

Phase 1 averaged understanding level* 4.1 (0.4) 4.1 (0.5)  

Phase 2 averaged reading level* 4.5 (0.5) 4.5 (0.5)  

Phase 2 averaged writing level* 3.9 (0.5) 4.0 (0.4)  

Phase 2 averaged speaking level* 4.0 (0.6) 3.8 (0.4)  

Phase 2 averaged understanding level* 4.4 (0.4) 4.3 (0.4)  

Note: Values in parentheses are standard deviations. *These values were averaged across the 

two or three languages each participant studied as part of their Master’s program. 

 

3.2.2.2 Wechsler Adult Intelligence Scale (WAIS-R). The WAIS-R 

(Wechsler, 1981) was selected to measure intelligence because it has an Italian 

translation which has been normed on an Italian population (Orsini & Laicardi, 1997). 
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The test is composed of eleven subtests, which are divided into tests of verbal 

intelligence and tests of performance intelligence. Thus, the WAIS-R allows for the 

separate calculation of verbal IQ and performance IQ. The verbal tests included 

Information, Comprehension, Arithmetic, Digit Span, Similarities, and Vocabulary. 

The performance tests included Picture Arrangement, Picture Completion, Block 

Design, Object Assembly, and Digit Symbol. Comparing the verbal and performance 

IQs across the three groups revealed no difference in performance IQ (p = .936), 

however the Interpretation students had a higher verbal IQ than the other two groups 

(F(2,35) = 4.159, p = .024). 

3.2.2.3 Memory tests. Short-term and working memory were assessed in the 

verbal and spatial domains using the same tasks as employed in Chapter 2 (see 

Section 2.2.2.4). The letter span and matrix span tasks (Kane et al., 2004) were used 

to examine short-term memory in the verbal and spatial domains, respectively. The 

structure of these tasks was identical to that described in Chapter 2; however, the 

instructions and text throughout were translated into Italian. Additionally, a different 

set of twelve consonants was used in the letter span task. The original version 

included three consonants which are not used in the Italian language (J, K, and Y). To 

avoid confounds related to familiarity with these letters, they were replaced with 

Italian consonants (C, V, and Z). The selection of the replacements was completed so 

that the English letter frequency (Lewand, 2000) in the English version and the Italian 

letter frequency (Singh & Galli, 1999) in the Italian version were similar. To assess 

working memory in the verbal and spatial domains the automated operation span task 

and the automated symmetry span task were employed (Unsworth et al., 2005). These 

tasks were also translated versions of those used in Chapter 2 (Section 2.2.2.4). 
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Additionally, the same letter replacements used in the letter span task were completed 

in the operation span task.  

3.2.2.4 Tests of executive functioning. The four tasks of executive 

functioning examined in this study were the color-word Stroop task, a spatial Stroop 

task, the Attention Network Test (ANT), and a non-linguistic task-switching 

paradigm. 

 3.2.2.4.1 Color-word Stroop task. This task was a shortened version of the 

task presented in Puccioni and Vallesi (2012b). The task parameters were identical to 

those used in Chapter 2 (see Section 2.2.2.1). The only differences were the language 

of the task, which was Italian in the present study, and the response pad used, a 

Cedrus RB-730 in the present study.  

 3.2.2.4.2 Spatial Stroop task. This task was a shortened version of the task 

presented in Puccioni and Vallesi (2012a). Stimuli consisted of arrows pointing to the 

upper-left, upper-right, lower-left, and lower-right presented in one of the four 

quadrants of the screen. Participants were asked to ignore the position and indicate the 

direction of the arrow through a key press. Responses were made on a keyboard using 

the following keys: R for upper-left, O for upper-right, V for lower-left, and M for 

lower-right. Participants were asked to respond as quickly and accurately as possible. 

As in the color-word Stroop task, stimuli were categorized as congruent (e.g., upper-

right pointing arrow in the upper-right quadrant) or incongruent (e.g., upper-right 

pointing arrow in the lower-right quadrant). The details of the task and training 

procedures were identical to the ones used in the color-word Stroop task.  
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3.2.2.4.3 ANT. This task was a translated version of the ANT task used in 

Chapter 2 (see Section 2.2.2.2), which was adapted from Costa and colleagues (2008). 

Additionally, a Cedrus RB-730 response pad was used. 

 3.2.2.4.4 Task-switching paradigm. This task was a translated version of the 

task-switching paradigm used in Chapter 2 (see Section 2.2.2.3), which was modified 

from Rubin and Meiran (2005). As in the previous tasks, a Cedrus RB-730 response 

pad was used. 

 

3.3 Results 

 Below we present the results from the four tests of memory and four executive 

functioning tasks. Given the small number of participants in each of the three groups, 

we began all analyses by comparing the Interpretation students and the Translation 

students. We chose this comparison because it is the most informative about the 

effects of training in simultaneous interpretation, while controlling for potential 

confounds of high proficiency in multiple languages. In cases where changes over 

time were seen, but did not differ between these two groups we then combined these 

groups and compared them to the monolingual control group. These analyses allowed 

us to tease apart the effects of task repetition from improvements related specifically 

to multilingualism.  

3.3.1 Memory Tests 

 Mixed-effects ANOVAs with phase (first, second) as a within-subjects factor 

and group (Interpretation students, Translation students) as a between-subjects factor 
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were computed on the score of each of the four memory tasks and the number of 

errors on the two working memory tasks.  

The letter span task revealed a main effect of phase (F(1,25) = 7.837, p = .010, 

ηp
2
 = .239), as well as an interaction between phase and group (F(1,25) = 4.533, 

p = .043, ηp
2
 = .153; Figure 3). Post hoc t-tests (evaluated at α = .025 to correct for 

multiple comparisons) revealed a significant increase in letter span score at Phase 2 in 

the Interpretation students (t(16) = 3.655, p = .002), but no difference between the 

phases in the Translation students (p = .597). Further, the two groups showed no 

difference in letter span at Phase 1 (p = .527), but a significant difference at Phase 2 

(t(25) = 2.501, p = .019). 

 

 

Figure 3: Performance on tests of short-term memory by group and phase. Error bars 

represent standard errors of the mean. The number of items, and therefore maximum 

score, for the memory tests were as follows: Letter Span – 99; Matrix Span – 81. 
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The matrix span task revealed a main effect of group (F(1,25) = 6.383, 

p = .018, ηp
2
 = .203) and trends toward a main effect of phase and an interaction 

between phase and group (F(1,25) = 2.241, p = .147, ηp
2
 = .082 and F(1,25) = 2.508, 

p = .126, ηp
2
 = .091, respectively; Figure 3). A decomposition of this potential 

interaction reveals the same pattern as in the letter span task. The Interpretation 

students significantly increased their matrix span score (t(16) = 3.176, p = .006), 

while the Translations students did not (p = .967). Additionally, a difference between 

the groups was seen at Phase 2 (t(25) = 3.275, p = .003), but not at Phase 1 (p = .149). 

 Analyses on the score on the operation span task revealed a main effect of 

phase (F(1,25) = 7.278, p = .012, ηp
2
 = .225) and a trending interaction between phase 

and group (F(1,25) = 2.057, p = .164, ηp
2
 = .076; Figure 4). The Interpretation 

students showed an increase in operation span between the phases (t(16) = 3.724, 

p = .002), while the Translation students did not (p = .503). However the two groups 

did not differ at either time point (ps ≥ .483). Analyses on the number of errors in the 

operation span task revealed no significant main effects (ps ≥ .662), but there was an 

interaction of phase and group (F(1,25) = 6.702, p = .016, ηp
2
 = .211). Splitting the 

errors into incorrect responses on the intervening arithmetic operation and responses 

to the operation beyond the time limit determined by each participant’s performance 

in the training revealed that the effect was due to differences in the number of 

incorrect responses on the intervening operation task (F(1,25) = 5.543, p = .027; 

Figure 4). The Interpretation students showed a significant decrease in errors 

(t(16) = 2.710, p = .015), while the Translation students showed a non-significant 

increase (p = .369).  
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Figure 4: (a) items recalled and (b) errors on the intervening task on the operation 

span task by group and phase. Error bars represent standard errors of the mean. The 

number of items, and therefore maximum score, was 75.  

 

 

Figure 5: (a) items recalled and (b) errors on the intervening task on the symmetry 

span task by group and phase. Error bars represent standard errors of the mean. The 

number of items, and therefore maximum score, was 42.  
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 Analyses on the score on the symmetry span task revealed no significant main 

effects or interaction (ps ≥ .303; Figure 5). Analyses on the number of errors also 

revealed no main effects or interaction (ps ≥ .517).  Given the results concerning the 

number of incorrect responses to the intervening task in the operation span task, we 

conducted the same analysis on the symmetry span data. As in the operation span 

task, there was an interaction of phase and group (F(1,25) = 4.419, p = .046, 

ηp
2
 = .150; Figure 5). This effect was due to a non-significant decrease among the 

Interpretation students (t(16) = .836, p = .416) and a trending increase among the 

Translation students (t(9) = 2.143, p = .061).  

 As the effects seen in the number of incorrect responses on the operation span 

and symmetry span tasks were due to increases in Translation students, in addition to 

decreases in Interpretation students, we decided to examine these effects in the 

Monolingual controls as well. With these extra analyses we can understand whether 

learning to translate had a specific effect on the number of incorrect responses to the 

intervening task. Two mixed effects ANOVAs with phase (first, second) as a within-

subjects factor and group (Interpretation students, Monolingual controls) as a 

between-subjects factor were computed on the number of incorrect responses to the 

intervening task in the operation span and symmetry span tasks. The analysis on the 

operation span task yielded a significant interaction between phase and group 

(F(1,26) = 11.209, p = .002, ηp
2
 = .301), with the Monolingual controls showing a 

significant increase in incorrect responses on the intervening task (t(10) = 2.375, 

p = .039). The symmetry span analysis, however, showed no significant interaction 

(p = .245), though numerically the Monolingual controls increased their number of 

incorrect responses on the symmetry judgments. 
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3.3.2 Color-Word Stroop Task 

  One participant (a male Interpretation student) was identified as an extreme 

outlier based on his accuracy rate during Phase 1 (more than 3 interquartile ranges 

below the 1
st
 quartile) and therefore excluded from all analyses. The first trial in each 

block was not considered for all analyses on accuracy. Non-parametric tests were 

used to analyze the accuracy data given that these data were not normally distributed. 

The Mann-Whitney U test was used to compare the two groups and the Wilcoxon 

signed-ranked test was used to compare the within-subjects factors. Response 

time (RT) data were analyzed using a mixed effects three-way ANOVA with phase 

(first, second) and trial type (congruent, incongruent) as within-subjects factors and 

group (Interpretation students, Translation students) as a between-subjects factor. For 

these data the first trial in each block and error trials were excluded. Additionally, for 

each participant, trials with an RT more than 3 standard deviations (SD) from their 

individual mean were excluded. Finally, trials following an error were excluded to 

avoid post-error slowing confounds (Burns, 1965). 

 Analyses on the accuracy data revealed that the groups did not differ in 

accuracy at either Phase 1 (p = .660) or Phase 2 (p = .262). Additionally, there were 

no differences between the groups on congruent or incongruent trials in either phase 

(ps ≥ .150). Across the groups there was a significant decrease in accuracy from 

Phase 1 to Phase 2 (Wilcoxon T = 56.5, Z = 2.682, p = .007). The analysis on the RT 

data revealed a main effect of phase (F(1,24) = 20.070, p < .001, ηp
2
 = .455; Table 7), 

with faster responses at Phase 2 than at Phase 1. Additionally, there was a main effect 

of trial type (F(1,24) = 40.834, p < .001, ηp
2
 = .630) due to faster responses to 

congruent trials. No other effects or interactions were significant (ps ≥ .187).  
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Table 7: Color-word Stroop: mean response times and accuracy by group and phase 

 
Interpretation students Translation students Monolingual controls 

 
Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Phase 1       

   Congruent  609 (93) 98.2 (1.4) 613 (69) 96.9 (4.5) 653 (148) 97.5 (2.8) 

   Incongruent  654 (114) 96.8 (3.7) 698 (133) 96.5 (2.8) 724 (147) 96.6 (4.3) 

   Stroop effect 45 (47) 1.4 (3.8) 85 (84) 0.4 (3.2) 71 (69) 0.9 (4.9) 

Phase 2       

   Congruent  561 (86) 96.9 (3.2) 585 (81) 95.0 (6.6) 581 (89) 96.5 (2.6) 

   Incongruent  617 (84) 94.9 (4.9) 656 (117) 92.4 (5.6) 658 (109) 93.9 (4.4) 

   Stroop effect 56 (30) 1.9 (4.5) 70 (62) 2.6 (3.4) 77 (55) 2.6 (4.8) 

Note: Values in parentheses are standard deviations. 

 

To determine if the faster response times at Phase 2 as compared to Phase 1 

were due to language factors or repetition of the task, the same analyses were 

completed comparing the Interpretation and Translation students together to the 

Monolingual controls. The decrease in both accuracy (Wilcoxon T = 83.5, Z = 3.539, 

p < .001) and response time (F(1,35) = 30.870, p < .001, ηp
2
 = .469) between Phase 1 

and Phase 2 was repeated in this analysis. Additionally, there was a trending 

interaction between phase and group (F(1,35) = 2.286, p = .139, ηp
2
 = .061), due to a 

larger difference between the phases in the Monolingual controls. No other effects or 

interactions were significant (ps ≥ .361). 

3.3.3 Spatial Stroop Task 

 Two participants (one female Interpretation student and one female 

Translation student) were identified as extreme outliers based on their accuracy rates 

during Phase 1 (more than 3 interquartile ranges below the 1
st
 quartile) and therefore 

excluded from all analyses. The first trial in each block was not considered for all 

analyses on accuracy. Non-parametric tests were used to analyze the accuracy data 

given that these data were not normally distributed. The Mann-Whitney U test was 
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used to compare the two groups and the Wilcoxon signed-ranked test was used to 

compare the within-subjects factors. Response time data were analyzed using a mixed 

effects three-way ANOVA with phase (first, second) and trial type (congruent, 

incongruent) as within-subjects factors and group (Interpretation students, Translation 

students) as a between-subjects factor. For these data the first trial in each block and 

error trials were excluded. Additionally, for each participant, trials with an RT more 

than 3 standard deviations (SD) from their individual mean were excluded. Finally, 

trials following an error were excluded to avoid post-error slowing confounds 

(Burns, 1965). 

 Analyses on the accuracy data revealed that the groups did not differ in 

accuracy at either Phase 1 (p = .846) or Phase 2 (p = .803). Additionally, there were 

no differences between the groups on congruent or incongruent trials in either phase 

(ps ≥ .301). Finally, across the groups there was no difference in accuracy between 

Phase 1 and Phase 2 (p = .693).  

The analysis on the RT data revealed main effects of phase (F(1,23) = 21.383, 

p < .001, ηp
2
 = .482) and trial type (F(1,23) = 175.222, p < .001, ηp

2
 = .884). These 

effects were due to faster responses in Phase 2 and to congruent trials. Additionally, 

these factors interacted (F(1,23) = 6.876, p = .015, ηp
2
 = .230), indicating a larger 

decrease in RT on incongruent than congruent trials across the phases. There was no 

main effect of group (p = .978) and this factor did not interact with phase (p = .851). 

However, the trial type by group interaction was trending (F(1,23) = 2.268, p = .146, 

ηp
2
 = .090), as was the phase by trial type by group interaction (F(1,23) = 2.917, 

p = .101, ηp
2
 = .113, Table 8). Post hoc t-tests (evaluated at α = .025 to correct for 

multiple comparisons) revealed a significant decrease in the Stroop effect (the 

difference between congruent and incongruent trials) at Phase 2 in the Interpretation 
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students (t(15) = 3.138, p = .007), but no difference between the phases in the 

Translation students (p = .303). However, the groups did not differ in Stroop effect 

size at Phase 2 (p = .494), and the Interpretation group showed a numerically larger 

Stroop effect at Phase 1 (t(23) = 1.779, p = .089).  

Table 8: Spatial Stroop: mean response times and accuracy by group and phase 

 
Interpretation students Translation students Monolingual controls 

 
Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Phase 1       

   Congruent 514 (99) 99.3 (1.0) 525 (83) 99.1 (2.1) 523 (102) 99.6 (0.7) 

   Incongruent 622 (134) 94.2 (5.4) 603 (106) 95.4 (3.2) 639 (164) 93.9 (6.7) 

   Stroop effect 108 (46) 5.1 (5.1) 78 (32) 3.8 (2.8) 115 (86) 5.6 (6.3) 

Phase 2       

   Congruent 464 (66) 98.6 (1.3) 469 (50) 98.7 (2.3) 452 (81) 99.3 (1.1) 

   Incongruent 542 (79) 95.4 (3.4) 540 (54) 95.7 (4.5) 547 (124) 91.1 (6.6) 

   Stroop effect 79 (26) 3.2 (3.5) 71 (25) 3.1 (5.7) 94 (71) 8.1 (6.1) 

Note: Values in parentheses are standard deviations. 

 

To determine if the faster responses and smaller Stroop effect at Phase 2 as 

compared to Phase 1 were due to language factors or repetition of the task, the same 

analyses were completed comparing the Interpretation and Translation students 

together to the Monolingual controls. The results of the RT analysis replicated the 

previous findings, showing main effects of phase (F(1,34) = 41.257, p < .001, 

ηp
2
 = .548) and trial type (F(1,34) = 114.818, p < .001, ηp

2
 = .772), as well as an 

interaction between these two factors (F(1,34) = 11.343, p = .002, ηp
2
 = .250). 

However, there was no main effect of group, nor any significant interactions with the 

group factor (ps ≥ .315).  

3.3.4 ANT 

 Two participants (one male and one female Translation student) were 

identified as extreme outliers based on their accuracy rate (more than 3 interquartile 
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ranges below the 1
st
 quartile) and therefore excluded from all analyses. For all 

analyses on accuracy, the first trial in each block was not considered. Since the 

accuracy data were non-normally distributed, non-parametric tests were used for their 

analysis. Wilcoxon Signed Rank tests were used to compare conditions within each 

group and Mann-Whitney U tests were used to compare conditions between the two 

groups. For the analysis of response time data the first trial in each block and error 

trials were excluded. Additionally, for each participant, trials with an RT more than 3 

SDs from their individual mean were excluded. Finally, trials following an error were 

excluded to avoid post-error slowing confounds (Burns, 1965). 

3.3.4.1 Conflict effect. The conflict effect analyzes the difference between 

congruent and incongruent trials. To examine this effect, RT data were analyzed using 

a mixed effects three-way ANOVA with phase (first, second) and trial type 

(congruent, incongruent) as within-subjects factors and group (Interpretation students, 

Translation students) as a between-subjects factor. 

Analyses on the accuracy data revealed that the groups did not differ in 

accuracy at Phase 1 (p = .549), however the Translation students had higher accuracy 

at Phase 2 (Mann-Whitney U = 101.5, z = 1.966, p = .049). Further, the Interpretation 

students showed a significant decrease in accuracy from Phase 1 to Phase 2 

(Wilcoxon T = 12, Z = 2.906, p = .004), while the Translation students showed no 

change (p = .608). The analysis on the RT data revealed a main effect of phase 

(F(1,23) = 16.071, p = .001, ηp
2
 = .411; Table 9), with faster responses at Phase 2 than 

at Phase 1. They also revealed a main effect of trial type (F(1,23) = 360.814, p < .001, 

ηp
2
 = .940) due to faster responses to congruent trials. No other effects or interactions 

were significant (ps ≥ .209). 
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To determine if the faster response times at Phase 2 were due to language 

factors or repetition of the task, the same analyses were completed comparing the 

Interpretation and Translation students together to the Monolingual controls. As with 

the previous RT analysis, there were main effects of phase (F(1,34) = 21.454, 

p < .001, ηp
2
 = .387) and trial type (F(1,34) = 616.265, p < .001, ηp

2
 = .948). 

Additionally, there was an interaction between trial type and group (F(1,34) = 6.738, 

p = .014, ηp
2
 = .165), due to a larger conflict effect for the Monolingual controls. All 

other effects were non-significant (ps ≥ .478). 

3.3.4.2 Alerting effect. The alerting effect was defined as the difference 

between trials cued with the double cue and those with no cue. This effect was 

analyzed using a mixed effects two-way ANOVA with phase (first, second) as a 

within-subjects factor and group (Interpretation students, Translation students) as a 

between-subjects factor. This analysis revealed no main effects of phase or group 

(p = .872 and p = .860, respectively), however there was a significant interaction 

between phase and group (F(1,23) = 6.866, p = .015, ηp
2
 = .230). This interaction was 

due to a significant increase in the alerting effect among the Interpretation students 

(t(16) = 2.522, p = .023) and a non-significant decrease among the Translation 

students (p = .200). 

3.3.4.3 Orienting effect. The orienting effect was defined as the difference 

between central cue trials and spatial cue trials. This effect was examined using a 

mixed effects two-way ANOVA with phase (first, second) as a within-subjects factor 

and group (Interpretation students, Translation students) as a between-subjects factor. 

The analysis revealed no significant effects (ps ≥ .255) though a reliable difference 

between spatially and centrally cued trials was seen across the groups and phases 

(F(1,24) = 9.742, p = .005, ηp
2
 = .298). 
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Table 9: ANT: mean response times and accuracy by group and phase 

 
Interpretation students Translation students Monolingual controls 

 
Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Phase 1       

   Congruent  444 (85) 99.0 (1.1) 485 (86) 99.3 (0.7) 428 (42) 98.9 (1.3) 

   Incongruent  507 (86) 96.8 (2.7) 513 (82) 96.7 (4.9) 503 (42) 94.0 (5.4) 

   Conflict effect 63 (19) 2.2 (2.6)  65 (20) 2.6 (4.7) 75 (18) 4.8 (5.2) 

   Alerting effect 6 (13) 0.9 (1.6) 16 (20) 0.2 (1.8) 5 (14) 0.4 (4.4) 

   Orienting effect 12 (18) 1.6 (2.3) 1 (26) 0.2 (2.3) 13 (11) -0.1 (2.4) 

Phase 2       

   Congruent  387 (39) 98.6 (1.4) 394 (45) 99.0 (1.0) 385 (49) 98.2 (1.7) 

   Incongruent  445 (43) 92.1 (7.0) 456 (46) 97.1 (4.4) 457 (46) 88.6 (10.9) 

   Conflict effect 58 (16) 6.5 (6.3) 62 (17) 1.9 (3.8) 72 (21) 9.5 (10.3) 

   Alerting effect 16 (16) -0.5 (2.7) 8 (11) -0.2 (2.6) 2 (14) 0.1 (3.3) 

   Orienting effect 9 (13) 0.4 (3.1) 7 (14) -0.8 (1.7) 5 (12) 0.9 (4.0) 

Note: Values in parentheses are standard deviations. 

 

3.3.5 Task-Switching Paradigm 

For all analyses on accuracy the first trial in each block and the first trial after 

the rest break in block 3 were not considered. Since the accuracy data were non-

normally distributed, non-parametric tests were used for their analysis. Wilcoxon 

Signed Rank tests were used to compare conditions across the groups and Mann-

Whitney U tests were used to compare conditions between the two groups. For the 

analysis of response time data the first trial in each block, the first trial after the rest 

break in block 3, and error trials were excluded. Additionally, for each participant, 

trials with an RT more than 3 SDs from their block-type mean (single-task, mixed-

task) were excluded. Finally, trials following an error were excluded to avoid post-

error slowing confounds (Burns, 1965) and since these trials are likely to be mis-

categorized as switch or repetition trials. 

3.3.5.1 Switching costs. Switching costs represent the difference in 

performance on switch trials and repetition trials in the mixed-task block. The 
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Interpretation students showed marginally more accurate responses to switch trials at 

Phase 2 than the Translation students (Mann-Whitney U = 49.5, z = 1.785, p = .074). 

No other group differences in accuracy were  significant (ps ≥ .414). Across the 

groups, accuracy was higher to repetition trials than to switch trials at both Phase 1 

and Phase 2 (ps ≤ .001). A three-way ANOVA on RTs with phase (first, second) and 

trial type (repetition, switch) as within-subjects factors and group (Interpretation 

students, Translation students) as a between-subjects factor was computed. Main 

effects of phase (F(1,25) = 39.842, p < .001, ηp
2
 = .614) and trial type 

(F(1,25) = 60.541, p < .001, ηp
2
 = .708) were evident due to faster responses at 

Phase 2 and to repetition trials. Additionally, these factors showed a marginal 

interaction (F(1,25) = 3.094, p = .091, ηp
2
 = .110; Table 10), revealing that switching 

costs also decreased between Phase 1 and Phase 2. No effects with group were 

significant (ps ≥ .652). 

To determine if the faster response times and decrease in switching cost were 

due to language factors or repetition of the task, the same analyses were completed 

comparing the Interpretation and Translation students together to the Monolingual 

controls. As with the previous RT analysis, there were main effects of phase 

(F(1,36) = 31.612, p < .001, ηp
2
 = .468) and trial type (F(1,36) = 82.007, p < .001, 

ηp
2
 = .695) and an interaction between these factors (F(1,36) = 8.763, p = .005, 

ηp
2
 = .196). All other effects were non-significant (ps ≥ .260). 

3.3.5.2 Mixing costs. Mixing costs represent the difference in performance on 

repetition trials in the mixed-task block and trials in the single-task blocks. The two 

groups did not differ in accuracy on either trial type at either phase (ps ≥ .414). Across 

the groups, accuracy was higher to single-task trials than to repetition trials in Phase 1 

(Wilcoxon T = 201, Z = 2.420, p = .016), but there was no difference in Phase 2 
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(p = .123). A three-way ANOVA on RTs with phase (first, second) and trial type 

(single, repetition) as within-subjects factors and group (Interpretation students, 

Translation students) as a between-subjects factor was computed. Main effects of 

phase (F(1,25) = 39.302, p < .001, ηp
2
 = .611) and trial type (F(1,25) = 103.076, 

p < .001, ηp
2
 = .805) were revealed. These were due to faster responses at Phase 2 and 

to single-task trials. These two factors also interacted (F(1,25) = 43.403, p < .001, 

ηp
2
 = .635; Figure 6), revealing a decrease in mixing cost between Phase 1 and 

Phase 2. No effects with group were significant (ps ≥ .652).  

Table 10: Task-switching paradigm: mean response times and accuracy by group and 

phase 

 
Interpretation students Translation students Monolingual controls 

 
Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Response 

Time (ms) 

Accuracy 

(%) 

Phase 1       

   Single task   465 (113) 98.8 (1.7) 493 (92) 99.2 (1.2) 475 (60) 98.6 (1.5) 

   Repetition  779 (222) 97.7 (2.1) 811 (222) 98.0 (2.3) 733 (93) 97.7 (2.5) 

   Switch  955 (310) 95.5 (3.7) 990 (270) 95.1 (3.8) 893 (128) 95.0 (4.0) 

   Mixing cost 314 (132 1.1 (2.6) 318 (155) 1.2 (1.5) 258 (116) 0.9 (2.5) 

   Switching cost 177 (125) 2.2 (3.4) 179 (95) 2.9 (2.6) 160 (70) 2.7 (3.2) 

Phase 2       

   Single task  409 (83) 97.7 (3.0) 440 (71) 97.9 (2.6) 419 (63) 97.6 (2.2) 

   Repetition  626 (199) 97.1 (2.4) 640 (196) 96.4 (4.7) 626 (130) 97.0 (2.3) 

   Switch  783 (295) 94.5 (4.1) 787 (253) 89.4 (7.7) 731 (154) 93.3 (5.2) 

   Mixing cost 217 (128) 0.6 (3.0) 200 (136) 1.5 (2.6) 206 (86) 0.6 (1.6) 

   Switching cost 158 (117) 2.6 (3.0) 147 (98) 7.0 (5.9) 106 (49) 3.8 (4.6) 

Note: Values in parentheses are standard deviations. 

 

To determine if the faster response times and decrease in mixing cost were due 

to language factors or repetition of the task, the same analyses were completed 

comparing the Interpretation and Translation students together to the Monolingual 

controls. As with the previous RT analysis, there were main effects of phase 

(F(1,36) = 37.243, p < .001, ηp
2
 = .408) and trial type (F(1,36) = 148.832, p < .001, 

ηp
2
 = .805) and an interaction between these factors (F(1,36) = 16.582, p < .001, 
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ηp
2
 = .315). However, the three-way interaction was not significant (p = .175). All 

other effects were non-significant (ps ≥ .420). 

 

 

Figure 6: Mixing cost by group and phase. Error bars represent standard errors of the 

mean. 

 

3.4 Discussion 

3.4.1 Summary of the Main Results 

 This study investigated the effects of training in simultaneous interpretation on 

memory and executive functioning through a longitudinal design. The students of 

interpretation showed increases in verbal short-term and working memory, as well as 

spatial short-term memory, between Phase 1 and Phase 2. These changes appear to be 

specific to the students of interpretation. Additionally, these students showed an 

enhanced alerting effect in the ANT that was not visible in the two control groups. 
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Across the executive functioning tasks, a general speed-up in all groups was evident. 

In the color-word Stroop task, the speed-up was accompanied by a decrease in 

accuracy across the groups suggesting a change in priority between the phases. 

Further, all three groups showed diminished switching and mixing costs in the task-

switching paradigm at Phase 2.  

3.4.2 Evidence of Innate Abilities 

 Overall, the data suggest that there are not innate differences between 

interpreters and non-interpreters on the memory and executive functioning processes 

assessed here. Across the tasks, a main effect of group was apparent only on the 

conflict effect in the ANT. This difference in groups, however, was seen on the 

follow-up analysis comparing the two multilingual student groups to the monolingual 

controls. Thus, it represents an advantage for multilinguals in conflict resolution, 

replicating previous results in the bilingualism literature (e.g., Costa, Hernández, 

Costa-Faidella, & Sebastián-Gallés, 2009; Costa et al., 2008; Luk, De Sa, & 

Bialystok, 2011).  

Looking beyond the memory and executive functioning tasks, the students of 

interpretation did distinguish themselves in terms of verbal intelligence, scoring 

higher than both the students of translation and the monolingual controls. While the 

difference between the interpretation students and monolingual controls is 

unsurprising given the formers’ education in languages, the difference between the 

interpretation and translation students is telling. The degree required to enter the 

Master’s programs in both Translation and Conference Interpreting is a Triennale 

(equivalent to a Bachelor’s degree) in Languages. Thus, the two groups of students 

received the same education up to the point of entering a Master’s program. It appears 



74 
 

then that high verbal intelligence may be a necessary characteristic for simultaneous 

interpretation, or at least acceptance into a training program. To our knowledge this is 

the first report of higher verbal intelligence among interpreters. This is not, however, 

due to a lack of differences in previous studies, but rather the absence of verbal 

intelligence assessments. Future studies may consider including measures of verbal 

intelligence to examine this effect further. 

 It is important to note that this difference in verbal IQ represents a potentially 

confounding factor in studies of interpreters. In the present results, however, it 

appears not to have influenced other measures. No other differences across the phases 

were apparent. Further, it is unlikely that a difference in verbal IQ that was already 

present at Phase 1 would cause an improvement over time on other measures of 

cognition when the two groups began at equal levels. 

3.4.3 Evidence of Trained Abilities 

 The present findings suggest that specific abilities are enhanced through 

training in simultaneous interpretation. In particular, the students of interpretation 

showed increases in verbal and spatial short-term memory and verbal working 

memory which were not as evident in the students of translation. Notably, these 

enhancements mirror the advantages in memory seen in the professional interpreters 

discussed in the previous chapter. It appears that these differences in memory 

processes are due to training in simultaneous interpretation, rather than due to innate 

characteristics. As mentioned in the previous chapter, verbal short-term and working 

memory are likely employed during SI to store content and rehearse pre-output 

translations. Thus, simultaneous interpretation may constitute targeted memory 

training which leaves the individual with increased memory span. The influence of SI 
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on spatial short-term memory is less transparent. As put forth in the previous chapter, 

improved spatial short-term memory may be connected to the use of a meaning-based 

strategy in which interpreters retain the input at a non-verbal conceptual level (Fabbro 

& Gran, 1994). These two studies represent the first examination of spatial memory in 

interpreters; therefore replication of these findings is necessary. Additionally, the 

current study is only the second study to investigate verbal memory longitudinally. 

However, the present results are in discord with the previous longitudinal study 

(Macnamara & Conway, 2013). That study found no improvement in reading span 

and operation span in students of ASL interpretation. As mentioned above, though, 

this may be due to differences between unimodal and bimodal simultaneous 

interpretation. Interestingly, that study did not include measures of non-verbal 

memory, which may be relied upon more in ASL interpretation. 

 In addition to an increase in memory span, the Interpretation students also 

improved their performance on the intervening task in the tests of working memory, 

while the performance of the two control groups declined. This difference could 

represent a change in strategy, shifting more focus to the intervening task than the 

items to be recalled among the Interpretation students. However, in that case, a 

concomitant decrement in memory would be expected which is not present in the 

data. Alternatively, the improvement on both task components could arise from the 

increase in memory such that ceiling performance is reached on the item recall 

component, freeing up resources for the intervening task. This explanation could also 

accommodate the absence of an interpreter advantage on the intervening task in the 

previous chapter. Supposing that age effects and SI training effects are additive, the 

students would profit from both to reach ceiling performance, while the older 

professional interpreters only from SI training. However, this account ultimately fails 



76 
 

on two points. First, the pattern of improvement on the intervening task was seen 

across the domains, while the improvement in item recall was only present in the 

verbal domain. Second, this explanation supposes that ceiling performance had been 

reached on item recall, which was not the case for either test of working memory. A 

final account of this finding relies on viewing the tests of working memory as dual 

task situations. Simultaneous interpretation may also be considered a dual task 

situation; thus the improvement on the intervening task may be due to training in 

managing two simultaneous tasks. This explanation gains support from a study 

showing an interpreter advantage over monolinguals in a verbal recall-tracking dual 

task paradigm (F. Padilla, Bajo, & Macizo, 2005). Further, given the interpreter 

advantage in mixing cost on a non-linguistic task-switching paradigm, it is likely that 

language management in SI relies, at least partially, on domain-general mechanisms, 

which could explain the cross domain improvement. Additional studies using dual 

task paradigms are needed to confirm this explanation. 

 A final effect of training in simultaneous interpretation was evident in the 

alerting effect of the ANT. The Interpretation students increased their alerting effect 

between Phase 1 and Phase 2, indicating that they made more use of cues which 

signaled the immediate appearance of the stimulus at Phase 2. This change could be 

due to the need to use and respond to cues during simultaneous interpretation. 

However, the change in alerting effect was small. Additionally, this advantage in the 

alerting network was not apparent among the professional interpreters examined in 

the previous chapter or a recent study (Morales et al., 2015). Thus, before accepting 

increased alertness as a signature of interpretation, more studies should confirm the 

result. 
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3.4.4 Evidence of Abilities Enhanced by SI Experience 

 A general increase in performance across the three groups was seen in 

response time on all tasks and in the switching and mixing costs in the task-switching 

paradigm. Among these, the mixing cost is of particular interest as professional 

interpreters distinguished themselves from multilinguals on this measure. The lack of 

an advantage for the students of interpretation in mixing cost may indicate that the 

mechanisms underlying sustained control are enhanced through experience with 

interpretation rather than the two-year training period. Alternatively, a case may be 

made that all three student groups are at peak performance and therefore any group 

differences are obscured. A second look at the data reveals that the Interpretation and 

Translation students had slightly higher mixing costs at Phase 1 than the Monolingual 

controls. At Phase 2, however, all three groups show roughly equivalent mixing costs 

around 200 ms, indicating that the decrease in mixing cost was smaller for the 

Monolingual controls. The 200 ms value may represent the maximum performance 

possible using our specific task conditions, and therefore the Monolingual controls 

could not improve beyond this point. These two accounts of the collective data could 

be disentangled by employing a task-switching paradigm that increases demands 

during the mixed-task block, potentially by increasing the number of task components 

(Steinhauser & Hübner, 2005). 

3.4.5 Comparisons to Professional Interpreters 

 Attentive readers may have noticed that the students in the current study 

consistently showed better performance than the professional interpreters in the 

previous chapter, even at Phase 1. As mentioned above, the participants in the 

previous chapter were older than the students in the present study. Thus, the lower 
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performance is likely due to age-related declines, which have been previously shown 

for both mixing costs (Kray & Lindenberger, 2000) and memory (Salthouse, 1994).  

3.4.6 Limitations and Future Directions 

 The present study represents an initial effort to understand the evolution of 

cognitive processes in individuals learning to perform simultaneous interpretation. 

This study, however, does have some limitations which should be addressed in future 

projects. Primary among these limitations is the small sample size. With such a 

reduced size, it is possible that the results of a few individuals have swayed the 

general outcomes. A small sample size, though, may be inherent to studying this 

population, as a limited number of students enter training programs each year. Thus, 

future projects would benefit from recruiting participants from multiple training 

programs or multiple entry years in a single program. Further, collaborations with 

training programs would assist in guaranteeing the necessary number of students. 

 Such collaborations could be additionally beneficial to both sides. Researchers 

would gain much from understanding the training and selection procedures, as well as 

the specific nature of simultaneous interpretation. This knowledge would inevitably 

lead to better task selection. In the present study we examined areas of cognition that 

have previously been linked to enhancements in either interpreters or multilinguals 

generally. With a more intimate understanding of SI, though, additional areas of 

cognition benefitted by interpretation may be identified and investigated. Training 

programs, on the other hand, may benefit from collaborations through the 

modification and improvement of their selection and training procedures. By 

understanding which cognitive profiles and training methods create successful 

interpreters, their procedures may be refined. 
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 Collaborations with training programs may address another shortcoming of the 

present study. We tested participants in the first three months of their Master’s 

program, rather than before courses began, thus our participants may have already 

experienced some changes before our baseline testing. Completing the first test 

session before courses begin would potentially lead to a greater difference between 

test sessions.  

An additional limitation of the present study is that we considered only the 

two-year training period and not later experience in the profession. Professional 

experience may lead to both quantitative and qualitative changes. In fact, the 

incongruous results in mixing cost between the present study and the study in the 

previous chapter may be related to professional experience. Future studies following 

professional interpreters at the start of their careers would greatly add to our 

understanding of the separate roles of SI training and SI experience. 

A final comment pertains to the use of a monolingual control group. While 

this group added useful information about the effects of task repetition, they may not 

provide a fair comparison for differences in innate characteristics. Within any 

population individual differences are seen across cognitive abilities, some of which 

may be useful to the practice of simultaneous interpretation. Thus, multilinguals who 

excel in those abilities may be drawn to simultaneous interpretation; it is this effect 

that creates the differences seen between the students of interpretation and those of 

translation. The same spectrum of individual differences is present in monolinguals; 

however, due to their lack of proficiency in other languages, individuals who excel in 

“simultaneous interpretation abilities” will not pursue interpretation as a career path. 

Thus, innate differences between interpreters and some monolinguals may be more 
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difficult to detect because language ability, not cognitive ability, provided the barrier 

to the monolinguals. 

 

3.5 Concluding Remarks 

The present study suggests that success in simultaneous interpretation is due to 

a mixture of innate and trained abilities. Verbal intelligence emerges as an ability 

which allows entrance into the field of simultaneous interpretation. Memory, on the 

other hand, which constitutes a commonly found interpreter advantage, is developed 

through training in simultaneous interpretation. Understanding which components of 

simultaneous interpretation are trainable and which are innate will allow for better 

selection and training programs moving forward. Future studies which examine 

students of interpretation will further contribute to the betterment of these programs. 
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CHAPTER 4 

DOES SIMULTANEOUS INTERPRETATION TRAINING LEAD TO MORE 

BRAIN OR BETTER BRAIN? 

  

4.1 Introduction 

Santiago Ramón y Cajal once wrote “any man could, if he were so inclined, be 

the sculptor of his own brain” (Ramón y Cajal, 1999, p. xv). While Ramón y Cajal 

may not have intended this in a biological sense, research in the past two decades has 

shown that particular experiences do sculpt our brains at a biological level. Skills such 

as juggling, driving a taxi, playing the piano, and learning a language all leave an 

impression on the structure of the brain (e.g., Draganski et al., 2004; Imfeld, Oechslin, 

Meyer, Loenneker, & Jancke, 2009; Maguire et al., 2000; Mårtensson et al., 2012). 

Thus, it stands to reason that simultaneous interpretation, which is a complex and 

demanding skill, should also sculpt the brain.  

To the best of our knowledge only two studies to date have examined the 

structural differences between professional simultaneous interpreters and non-

interpreter multilinguals. A study focused on differences in white matter found that 

interpreters had smaller fractional anisotropy values (FA; a measure of the 

directedness of diffusion which reflects white matter integrity in the brain) in the left 

anterior insula, right inferior parietal lobe, right dorsal caudate, and areas of the 

corpus callosum (Elmer, Hänggi, Meyer, & Jäncke, 2011). In another study, Elmer 

and colleagues investigated the differences in gray matter structure between these 

same groups (Elmer, Hänggi, & Jäncke, 2014). The interpreters showed smaller gray 
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matter volumes than the multilinguals in several regions which support language 

control including left supramarginal gyrus and bilateral inferior frontal gyrus. 

Additionally, that study revealed negative correlations between the number of hours 

of interpretation experience and the gray matter volume in a subset of these regions 

(after controlling for age differences). The authors speculated that the smaller gray 

matter volume may be due to cortical pruning that improves functional specialization 

and efficiency.  

As noted in the previous chapter, and by Perani (2005) in specific relation to 

biological differences, it is difficult to understand if group differences are due to 

innate characteristics or rather are the consequence of training. Elmer and colleagues 

partially addressed this issue through the correlational analyses with hours of 

interpretation experience (Elmer et al., 2014). They posited that the differences in 

areas which showed a correlation with SI experience were training-related, while the 

areas that showed group differences but not a correlation were persistent group 

differences. This dissociation, however, did not consider the separate role that initial 

training in simultaneous interpretation may have on brain structure. A discrete role of 

training is supported by the training-related changes in memory seen in the previous 

chapter. Thus, the regions where differences were attributed to persistent differences 

may, in fact, have been changed by initial training in SI. To comprehend the full 

picture of SI influence on the brain, changes occurring during the training period need 

to be examined.  

While no published studies have examined the structural changes associated 

with training in simultaneous interpretation, several studies have investigated changes 

related to language learning. The dominant trend among these studies is an increase in 

gray matter density and white matter integrity with increased language proficiency 
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(see Li, Legault, & Litcofsky, 2014 for a review). This pattern suggests that increased 

language proficiency is associated with greater amassment of brain volume, in 

contrast to the greater efficiency seen in professional interpreters. As training in 

simultaneous interpretation involves aspects of language learning as well as the 

acquisition of the skill set used by professional interpreters, it appears to sit at the 

crossroad between greater amassment and greater efficiency. 

 To examine the influence that training in simultaneous interpretation has on 

brain structure, we acquired neuroimaging data from students earning a Master in 

Conference Interpreting at the beginning and end of their two-year program. 

Additionally, to isolate the specific effect of training in SI, as opposed to natural 

changes over time or changes due to language practice, we also collected longitudinal 

data from students earning a Master in Translation. These students represent the ideal 

comparison to isolate the effects of training in SI as they also speak multiple 

languages and were engaged in language training during the intervening two years. 

Critically, though, the students of translation had no experience with simultaneous 

interpretation. Similar to the previous chapter, the use of these two groups 

longitudinally allowed us to disentangle innate differences between the groups from 

differences specifically due to SI training. 

 The two groups completed neuroimaging sessions at the start and finish of 

their Master’s degrees. Gray matter was assessed using T1-weighted anatomical 

imaging and voxel-based morphometry (VBM) analyses. White matter was examined 

with diffusion tensor imaging (DTI) and virtual in vivo dissections after whole brain 

tractography. Based on the studies presented above by Elmer and colleagues, we may 

expect smaller gray matter volumes and less white matter integrity among the students 

of interpretation than the students of translation. The appearance of such a difference 
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across the phases would suggest an innate difference between the groups. If the 

difference appears only after training, however, it may be specifically related to SI 

training. Alternatively, we may expect increases in gray matter volume and white 

matter integrity similar to those seen in language learning. 

 

4.2 Methods 

4.2.1 Participants 

 The participants in the current study were a subset of those examined in the 

previous chapter. Fifteen students of interpretation (11 females) and eight students of 

translation (6 females) completed the neuroimaging session at both time points. As in 

the previous chapter the students were tested at the start of their Master’s program and 

again approximately two years later at the conclusion of the program. All participants 

were right-handed and had no known neurological or psychiatric problems. 

Participants gave written informed consent and were compensated for their time. The 

study was approved by the ethical committee of “Istituto IRCCS E. Medea – La 

Nostra Famiglia.” 

4.2.2 T1 and DTI Acquisition 

All images were acquired on a 3-Tesla Philips Achieva whole-body scanner at 

the Santa Maria della Misericordia Hospital in Udine, Italy. T1-weighted images were 

acquired using an 8-channel head coil and a 3D ultrafast gradient echo sequence (190 

axial slices, TR = 8.2 ms, TE = 3.7 ms, 1 x 1 x 1 mm voxel resolution, acquisition 

matrix = 240 x 240). DTI acquisition proceeded using 57 contiguous axial slices 

(1.875 x 1.875 x 2.1 mm voxel resolution). For each slice, 64 diffusion-weighted 

images (b = 1000 s/mm
2
) and one non-weighted image were acquired.  
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4.2.3 VBM Processing and Statistical Analyses 

 Voxel-based morphometry (VBM) analyses were conducted using the VBM8 

toolbox (http://dbm.neuro.uni-jena.de/) in SPM8 (Statistical Parameter Mapping; 

Wellcome Department of Cognitive Neurology, UCL, London, UK). Preprocessing 

began by manually setting the coordinate origin of each image to the anterior 

commissure and adjusting for large rotations of the head. The images were then 

segmented, spatially normalized, and modulated in a single step. Segmentation used 

SPM8’s “new segmentation approach.” Spatial normalization was completed using 

the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) 

technique. Modulation used non-linear terms. The resulting gray matter images were 

spatially smoothed with an 8 mm full-width-at-half-maximum Gaussian filter. 

 Group differences were analyzed using a 2-sample t-test on the smoothed 

images across the time points. Contrasts with Interpretation students vs. Translation 

students and vice versa were extracted. To analyze the effects of phase and the 

interaction of phase and group a “flexible factorial” design was used with the factors 

participant, phase, and group. The main effect of phase was examined using two 

contrasts (Phase 1 vs. Phase 2 and Phase 2 vs. Phase 1). Additionally, to explore the 

interaction between phase and group two contrasts were extracted. The first assessed 

increases in volume between Phase 1 and Phase 2 that were greater in the 

Interpretation students than Translation students (Interpretation students Phase 1: -1; 

Interpretation students Phase 2: +1; Translation students Phase 1: +1; Translation 

students Phase 2: -1). This contrast can alternatively be viewed as decreases that were 

greater in the Translation students than Interpretation students (examination of the 

volume estimates will elucidate this issue). The second contrast evaluated increases in 

volume that were greater for the Translation students (alternatively, decreases that 
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were greater for the Interpretation students; Interpretation students Phase 1: +1; 

Interpretation students Phase 2: -1; Translation students Phase 1: -1; Translation 

students Phase 2: +1). For all contrasts threshold masking was employed with an 

absolute threshold of 0.1. Data were generated at p < .001 uncorrected and then 

clusters were selected using cluster-wise p < 0.05, corrected for multiple comparisons 

using a Family-wise Error (FWE) correction. The Brodmann and automated 

anatomical labeling (AAL) templates in MRIcroN 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/) were used to find the likely 

Brodmann area (BA) and anatomical region for each cluster.  

4.2.4 DTI Processing, Tract Dissection, and Statistical Analyses 

 The DTI data were processed using ExploreDTI (http://www.exploredti.com). 

Subject motion and geometric distortions induced by eddy currents were corrected in 

a single step through rotation of the b-matrix. A b-spline interpolated streamline 

algorithm was then used to perform whole brain tractography (stepsize: 1 mm; FA 

threshold: 0.2; angle threshold: 35°). Using software written by Natbrainlab (Thiebaut 

de Schotten et al., 2011), the results of the tractography were imported to TrackVis 

(http://www.trackvis.org), where virtual in vivo dissections were performed.  

Five tracts of interest were selected for dissection based on their known 

connection to language (Figure 7). The importance of the arcuate fasciculus for 

language functions has been recognized over a century (Geschwind, 1967). 

Originally, this pathway was conceived of as a direct connection between Broca’s 

area and Wernicke’s area. More recently, however, an indirect pathway mediated 

through the inferior parietal lobule has been additionally identified in both post 

mortem and virtual in vivo dissections (Catani, Jones, & ffytche, 2005). Thus, it is 
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now accepted that the arcuate fasciculus is composed of three segments. The classic 

connection between Broca’s area and Wernicke’s area is termed the long segment. 

The connection between Broca’s area and the inferior parietal lobule is the anterior 

segment, while the tract connecting Wernicke’s area to the inferior parietal lobule is 

the posterior segment. All three segments of the arcuate fasciculus were dissected in 

the present study. Additionally, the frontal aslant tract, which has been recently 

identified and connects the inferior frontal gyrus and the superior frontal gyrus, was 

included  (Catani et al., 2012). This tract has been linked to verbal fluency and thus 

may be particularly involved in simultaneous interpretation (Catani et al., 2013). The 

final tract selected was the uncinate fasciculus which connects the anterior temporal 

lobe and the orbitofrontal region (Catani, Howard, Pajevic, & Jones, 2002). This tract 

was included due to its connection with lexical retrieval and semantic associations 

(Catani & Mesulam, 2008; Lu et al., 2002).  
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Figure 7. The five white matter tracts dissected for each participant. Shown here in the 

left hemisphere for one participant overlaid on the FA map. Anterior segment of the 

arcuate fasciculus – green; posterior segment of the arcuate fasciculus – yellow; long 

segment of the arcuate fasciculus – red; frontal aslant tract – purple; uncinate 

fasciculus – blue. 

 

These five tracts of interest were dissected bilaterally in the two hemispheres. 

Dissection of each tract proceeded by manually defining two regions of interest on the 

fractional anisotropy images in the three planes and using these as seed regions for 

tracking. The demarcation of the regions of interest followed previous studies of 

tractography. The three segments of the arcuate fasciculus were dissected using three 

regions of interest (Catani, Jones, & ffytche, 2005; Catani & Mesulam, 2008). The 

first region was Broca’s territory, encompassing the inferior frontal gyrus, middle 

frontal gyrus, and precentral gyrus. The second region was Wernicke’s territory 

including the middle and superior temporal gyri. The third region was Geschwind’s 
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territory composed of the supramarginal and angular gyri. The anterior segment was 

tracked using Broca’s and Geschwind’s territories, the posterior segment using 

Wernicke’s and Geschwind’s, and the long segment using Broca’s and Wernicke’s. 

The frontal aslant tract was dissected using regions of interest in the inferior frontal 

gyrus and superior frontal gyrus (Catani et al., 2012). Finally, the regions of interest 

used to track the uncinate fasciculus were the white matter of the anterior temporal 

lobe and the white matter of the anterior floor of the extreme capsule (Catani & 

Thiebaut de Schotten, 2008).  

For each tract, three measures of interest were extracted. The first measure 

was the total volume of the tract. Second, the fractional anisotropy (FA) was 

extracted. FA values range between 0 and 1 and indicate the degree of anisotropy in a 

diffusion process. Values near 0 represent isotropic diffusion, while a value of 1 

indicates diffusion along only one axis. In diffusion imaging, FA is taken to reflect 

fiber density, axonal diameter, and myelination of the white matter. The final measure 

considered was the radial diffusivity (RD). This measures the diffusivity in the 

directions orthogonal to the eigenvector of the diffusion tensor. Small values of RD 

may indicate greater myelination, larger axonal diameter, or greater fiber density. 

These three measures were analyzed using mixed effects two-way ANOVAs with 

phase (first, second) as a within-subjects factor and group (Interpretation students, 

Translation students) as a between-subjects factor. Analyses were computed 

separately for each tract of interest in each hemisphere. 
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4.3 Results 

4.3.1 VBM  

 The comparisons examining the main effect of phase revealed areas of 

volumetric changes in both directions. Across the groups a decrease in volume was 

seen in large areas including bilateral subcortical regions, bilateral parietal regions, 

right cingulum, and left cerebellum (Table 11). The opposite comparison revealed 

volumetric increases in different areas of the left cerebellum (Table 11). 

Table 11: Areas showing changes in volume between the phases 

Anatomical Localization BA 

MNI Coordinates 
Cluster 

p-corr. 

Peak 

Z-

value 

Voxels 

per 

cluster x y z 

Phase 1 vs. Phase 2        

L. putamen 25 -14 9 -6 < .0001 6.49 28293 

    R. insula* 48 38 -6 -8  5.64  

    R. insula 48 39 4 -3  5.43  

R. middle cingulum  10 -21 34 < .0001 5.39 3318 

    R. middle cingulum  10 -36 42  4.57  

    R. middle cingulum  10 -10 48  3.95  

L. cerebellum 8  -9 -67 -30 .033 5.21 587 

    L. cerebellum 6  -16 -64 -29  4.55  

    L. cerebellum 8*  -32 -52 -38  3.54  

R. precuneus 7* 12 -57 40 .026 4.63 620 

    R. precuneus 23* 14 -57 28  4.33  

    L. precuneus 7* 2 -67 31  3.35  

L. precuneus   -14 -45 40 .003 4.35 958 

    L. middle cingulum*  -16 -33 36  4.03  

    L. precuneus 23* -12 -54 36  3.75  

L. postcentral gyrus 4 -48 -18 43 .005 4.26 902 

    L. rolandic operculum* 48 -46 -19 25  3.57  

    L. supramarginal gyrus 2 -58 -28 40  6.26  

  

   

   

Phase 2 vs. Phase 1  

   

   

L. cerebellar crus2*  -2 -81 -41 < .0001 4.44 3224 

    L. cerebellar crus1  -48 -76 -36  3.86  

    L. cerebellar crus2  -24 -82 -38  3.57  

L. cerebellum 8  -27 -37 -53 0.014 5.02 716 

    L. cerebellum 8*  -24 -48 -62  4.31  

    L. cerebellum 10   -20 -33 -45  3.98  

*Localization or BA based on the closest labeled voxel within 8 mm. 



91 
 

Comparisons between the groups across the phases showed no regions of 

larger volume in the Interpretation students than the Translation students. The 

opposite comparison, however, signaled greater volume in the Translation students in 

several regions of the left temporal lobe and bilateral hippocampal regions (Figure 8 

and Table 12). 

 

Figure 8: Areas showing larger volume in Translation students than Interpretation 

students. 
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Table 12: Areas showing larger volume in Translation students than Interpretation 

students 

Anatomical Localization BA 

MNI Coordinates 
Cluster 

p-corr. 

Peak Z-

value 

Voxels 

per 

cluster x y z 

L. superior temporal gyrus 42 -62 -40 22 0.033 5.14 728 

    L. middle temporal gyrus 22 -56 -37 9  4.05  

    L. superior temporal gyrus* 22* -68 -48 22  3.81  

L. inferior temporal gyrus  20 -54 -42 -20 0.009 5.12 1005 

    L. inferior temporal gyrus 37 -50 -55 -21  4.91  

    L. inferior temporal gyrus* 20 -64 -46 -23  4.40  

L. middle temporal gyrus 39 -50 -64 18 0.006 4.76 1105 

    L. angular gyrus* 39* -56 -72 28  4.68  

    L. angular gyrus* 39* -54 -67 40  3.98  

L. precuneus* 27 -21 -43 7 < .0001 4.66 1814 

    L. lingual gyrus 19 -26 -54 -2  4.45  

    L. precuneus* 29* -3 -43 13  4.23  

R. hippocampus 20 32 -27 9 0.044 3.83 669 

    R. hippocampus* 37 28 -28 -2  3.66  

    R. lingual gyrus*  37* 30 -45 0  3.64  

*Localization or BA based on the closest labeled voxel within 8 mm. 

 

Two final planned comparisons investigated the interaction of phase and group 

in changes in gray matter volume. The examination of larger decreases in volume in 

the Interpretation students than the Translation students yielded no areas of significant 

difference. The reverse comparison, which considered larger decreases among the 

Translation students than the Interpretation students, however, resulted in several 

areas of difference (examination of the volume estimates indicated that the interaction 

was due to larger decreases among the Translation students; Figure 9 and Table 13). 

These included a large region in the left hemisphere which had peaks in the putamen 

and hippocampus and extended to the amygdala, fusiform gyrus, and middle temporal 

pole. Similarly, in the right hemisphere a cluster was seen in the putamen which 

extended to the amygdala. Additional clusters were seen in the left superior temporal 

lobe, left cuneus/superior occipital lobe, right thalamus, and right calcarine region. 
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Figure 9: Areas showing smaller decreases in Interpretation students than Translation 

students. 
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Table 13: Areas showing a smaller decrease in Interpretation students than 

Translation students 

Anatomical Localization BA 

MNI Coordinates 
Cluster 

p-corr. 

Peak 

Z-

value 

Voxels 

per 

cluster x y z 

L. putamen 25 -12 8 -8 < .0001 5.38 4430 

    L. hippocampus 28 -15 -3 -21  5.17  

    L. hippocampus 20 -30 -9 -20  5.07  

R. calcarine sulcus 17 10 -84 13 0.001 5.29 1150 

    R. calcarine sulcus 17 8 -73 16  5.18  

    R. calcarine sulcus 18 12 -70 7  4.24  

R. thalamus 27* 18 -25 1 0.006 4.80 849 

    R. thalamus*  14 -28 18  4.41  

    R. caudate* 48* 21 -18 24  4.34  

L. cuneus 19 -9 -82 24 < .0001 4.34 855 

    L. superior occipital lobe 19 -24 -76 24  4.08  

    L. superior occipital lobe 18 -16 -87 24  3.71  

L. superior temporal lobe 48 -52 -21 4 < .0001 4.25 1400 

    L. superior temporal lobe 48 -58 -13 7  4.16  

    L. supramarginal gyrus 48 -54 -24 15  3.72  

R. amygdala 34 28 -3 -15 0.004 4.19 938 

    R. putamen 48* 28 0 6  4.04  

    R. insula* 48 38 -6 -8  3.93  

*Localization or BA based on the closest labeled voxel within 8 mm. 

 

4.3.2 DTI 

4.3.2.1 Left hemisphere. 

 4.3.2.1.1 Anterior segment of the arcuate fasciculus. The analysis on volume 

revealed a larger left anterior segment in the Interpretation students than the 

Translation students (F(1,21) = 5.963, p = .024, ηp
2
 = .221). This group effect was not 

modulated by phase (p = .759), nor did phase have an effect across the groups 

(p = .198). The analysis on FA, however, did reveal a main effect of phase 

(F(1,21) = 4.580, p = .044, ηp
2
 = .179), with FA decreasing between Phase 1 and 

Phase 2. While there was no main effect of group (p = .126), there was a marginal 

interaction between phase and group (F(1,21) = 3.903, p = .061, ηp
2
 = .157). This 
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interaction was due to a marginally larger decrease in FA between the phases among 

the Translation students than the Interpretation students (t(21) = 1.976, p = .061). An 

interaction between phase and group was also evident in the analysis on RD 

(F(1,21) = 7.558, p = .012, ηp
2
 = .265). In this case the Interpretation students showed 

a decrease in RD across the phases (t(14) = 2.688, p = .018), while the Translation 

students showed a numerical increase (p = .205). There were no main effects of phase 

and group in the RD analysis (ps ≥ .355). 

 4.3.2.1.2 Posterior segment of the arcuate fasciculus. The Interpretation 

students had a larger posterior segment in the left hemisphere than the Translation 

students (F(1,21) = 9.088, p = .007, ηp
2
 = .302). No other effects in the analysis on 

volume were significant (ps ≥ .378). Both phase and group showed main effects in the 

analysis on FA (F(1,21) = 9.523, p = .006, ηp
2
 = .312 and F(1,21) = 5.056, p = .035, 

ηp
2
 = .194, respectively). FA decreased between Phase 1 and Phase 2 and the 

Interpretation students had higher values than the Translation students. The 

interaction between these factors was not significant (p = .935). A main effect of 

group was also evident in the analysis on RD (F(1,21) = 4.334, p = .050, ηp
2
 = .171), 

the Interpretation students showed smaller values than the Translation students. No 

other effects in the RD analysis were significant (ps ≥ .754). 

 4.3.2.1.3 Long segment of the arcuate fasciculus. The long segment in the 

left hemisphere could not be tracked for one male Translation student at Phase 1 and 

two female Interpretation students at Phase 2; the data from these three participants 

were excluded from the present analyses. A main effect of group was seen in the 

analyses on volume (F(1,18) = 8.613, p = .009, ηp
2
 = .324), FA (F(1,18) = 12.249, 

p = .003, ηp
2
 = .405), and RD (F(1,18) = 4.907, p = .040, ηp

2
 = .214). The 

Interpretation students showed larger volume and FA values, and a smaller RD value 
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than the Translation students. Further, there was a marginal interaction of phase and 

group in the RD analysis (F(1,18) = 3.402, p = .082, ηp
2
 = .159), due to a decrease in 

RD among the Interpretation students (t(12) = 3.740, p = .003). No other effects were 

significant (ps ≥ .143). 

 4.3.2.1.4 Frontal aslant tract. The frontal aslant tract in the left hemisphere 

could not be tracked for one male and one female Translation student at Phase 1, one 

female Translation student at either phase, and one female Interpretation student at 

Phase 2; the data from these four participants were excluded from the present 

analyses. No significant effects on any of the measures were revealed (ps ≥ .194). 

 4.3.2.1.5 Uncinate fasciculus. Main effects of group were seen in the volume 

(F(1,21) = 4.442, p = .047, ηp
2
 = .175) and RD analyses (F(1,21) = 4.550, p = .045, 

ηp
2
 = .178). These effects indicated a larger volume and smaller RD value among the 

Interpretation students than the Translation students. No other effects were significant 

(ps ≥ .213). 

4.3.2.2 Right hemisphere. 

4.3.2.2.1 Anterior segment of the arcuate fasciculus. The anterior segment in 

the right hemisphere could not be tracked at Phase 1 for one female Translation 

student; the data from this participant were excluded from the present analyses. The 

analysis on volume in the right hemisphere revealed a larger anterior segment for the 

Interpretation students (F(1,20) = 10.285, p = .004, ηp
2
 = .340). Additionally, an 

interaction between phase and group was evident (F(1,20) = 7.050, p = .015, 

ηp
2
 = .261), due to a significant decrease among the Interpretation students 

(t(14) = 3.637, p = .003) and a non-significant increase among the Translation 

students (p = .514). Further, in the FA analysis, main effects of phase, as a trend, 
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(F(1,20) = 4.280, p = .052, ηp
2
 = .176) and group (F(1,20) = 13.366, p = .002, 

ηp
2
 = .401) were present. FA decreased between Phase 1 and Phase 2 and was larger 

in Interpretation students than Translation students. There was no interaction between 

these factors (p = .962). There were no significant effects in the analysis on RD 

(ps ≥ .134) 

4.3.2.2.2 Posterior segment of the arcuate fasciculus. There were no 

significant effects on any of the three measures in the right hemisphere (ps ≥ .175). 

4.3.2.2.3 Long segment of the arcuate fasciculus. This segment was trackable 

at both time points in only seven Interpretation students (6 females) and three 

Translation students (2 females). Previous research has shown that about 60% of 

individuals lack a long segment in the right hemisphere (Catani et al., 2007); thus, the 

percentage seen here is in line with the general population.
2
 Given the small number 

of participants with this tract, non-parametric tests were used. No differences were 

apparent between the phases or groups (ps ≥ .142). 

4.3.2.2.4 Frontal aslant tract. The frontal aslant tract in the right hemisphere 

could not be tracked for one female Interpretation student at either phase; the data 

from this participant were excluded from the present analyses. A main effect of phase 

was revealed in the volume analysis (F(1,20) = 4.423, p = .048, ηp
2
 = .181), indicating 

an increase in volume from Phase 1 to Phase 2. Additionally, there was an interaction 

of phase and group in the FA analysis (F(1,20) = 4.346, p = .050, ηp
2
 = .179), due to a 

non-significant decrease in the Interpretation students (p = .065) and a non-significant 

                                                           
2
 The coherence between the groups tested here and the general population is potentially surprising. 

Previous research has shown a connection between greater bilaterality of the long segment and verbal 

memory (Catani et al., 2007). Additionally, the same study showed that about 70% of females do have 

a long segment in the right hemisphere. Thus, our participant groups may have been expected to show a 

higher rate of individuals with a right long segment given their focus on language and high number of 

female participants. 
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increase in the Translation students (p = .315). No other effects were significant 

(ps ≥ .123).  

4.3.2.2.5 Uncinate fasciculus. The uncinate fasciculus could not be tracked 

for one female Translation student at Phase 1; the data from this participant were 

excluded from the present analyses. There were no significant effects on any of the 

three measures (ps ≥ .119). 

4.3.2.3 Summary of DTI results. Figure 10 provides a graphical summary of 

these results.  

 4.3.2.3.1 Main effects of phase. Fractional anisotropy values decreased 

between Phase 1 and Phase 2 in the anterior segment of the arcuate fasciculus 

bilaterally, as well as in the left posterior segment of the arcuate fasciculus. 

Additionally, the volume of the right frontal aslant tract increased between Phase 1 

and Phase 2. 

 4.3.2.3.2 Main effects of group. The Interpretation students had a stronger 

arcuate fasciculus in the left hemisphere than the Translation students. In the anterior 

segment this was seen as greater volume, and in both the posterior and long segments 

as greater volume, higher fractional anisotropy, and lower radial diffusivity. 

Additionally, the Interpretation students showed greater volume and higher fractional 

anisotropy in the anterior segment of the arcuate fasciculus in the right hemisphere. 

Finally, the Interpretation students had greater volume and lower radial diffusivity in 

the left uncinate fasciculus. 
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Figure 10: White matter tracts showing differences between (a) phases, (b) groups, or 

(c) an interaction between phase and group. See text for the specific measures 

showing differences. 

 

4.3.2.3.3 Interactions of phase and group. Two interactive effects were seen 

in the anterior segment of the left arcuate fasciculus. The Translation students showed 

a larger decrease in fractional anisotropy than the Interpretation students. 

Main effects of phase 

Main effects of group 

Phase*group interactive effects 

 

a 

b 

c 
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Additionally, the Interpretation students showed a decrease in radial diffusivity, while 

the Translation students showed an increase. Further, in the long segment of the left 

arcuate fasciculus, the Interpretation students showed a decrease in radial diffusivity, 

while the Translation students showed no change. In the right hemisphere, the 

Interpretation students showed a decrease in volume of the anterior segment of the 

arcuate fasciculus, and the Translation students showed an increase. Finally, in 

fractional anisotropy of the right frontal aslant tract, the Interpretation students 

decreased and the Translation students increased.  

 

4.4 Discussion 

4.4.1 Summary of the Main Results 

 The present study investigated the changes in gray and white matter associated 

with learning to perform simultaneous interpretation using a longitudinal design. 

Changes between Phase 1 and Phase 2 in both gray and white matter were seen across 

the groups, with a general trend of decreased gray matter volume and specific 

decreases in white matter integrity. Across the phases, the students of interpretation 

showed less gray matter volume in left temporal and bilateral hippocampal regions 

and greater white matter integrity in the language connections, primarily in the left 

hemisphere. Effects related to training were also evident in both gray and white 

matter. The students of interpretation showed a smaller volumetric decrease in gray 

matter in bilateral subcortical structures, as well as in the left temporal lobe. Similarly, 

in the language tracts of the left hemisphere, the students of interpretation displayed 

less susceptibility to decreased white matter integrity. 
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4.4.2 General Longitudinal Effects 

 In both the gray matter and white matter analyses differences between Phase 1 

and Phase 2 were seen across the groups. Large areas in bilateral subcortical and 

parietal regions, as well as a smaller region in the left cerebellum, showed a decrease 

in volume over time. This general decrease is in line with previous studies showing 

age-related declines in gray matter volume that are observable even in the early 

twenties (e.g., Ge et al., 2002; Walhovd et al., 2005). As these declines are generally 

seen across the cortex, the preservation of the frontal areas as well as the increase of 

volume in left cerebellar regions may be related to language learning effects on brain 

structure. Indeed, increased gray matter volume in the middle and inferior frontal gyri 

have been seen in connection with language learning (Mårtensson et al., 2012; Stein 

et al., 2012). 

 General age-related declines may also explain the decrease in fractional 

anisotropy seen in the arcuate fasciculus, specifically, in the anterior segment 

bilaterally and the left posterior segment. The change in the anterior segments is 

particularly supported by a study which found a negative correlation between age and 

FA for the tracts adjacent to the middle frontal gyrus bilaterally (Grieve, Williams, 

Paul, Clark, & Gordon, 2007). In addition to this decrease in FA, an increased volume 

was seen in the right frontal aslant tract. A previous study examining this tract 

exclusively in the left hemisphere found a correlation between verbal fluency and 

tract integrity (Catani et al., 2013). The present results may suggest a role in 

mediating verbal fluency for the frontal aslant tract in the right hemisphere as well. As 

verbal fluency may be particularly important in both interpretation and translation, 

growth in regions supporting this function may be expected with intense training. The 

right-lateralized nature of this effect is at first incongruous with the general left-
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lateralization of language, however, it may signal a shift towards bilateral language 

processing in these highly trained individuals. Such bilateral processing has been 

previously suggested in interpreters and highly proficient bilinguals (e.g., Darò, 1989; 

Gran & Fabbro, 1988).  

4.4.3 Group Differences in Brain Structure 

 The Interpretation students had smaller gray matter volumes than the 

Translation students in left posterior temporal regions and bilateral hippocampus. 

These results could be viewed as evidence of either greater amassment among the 

Translation students or greater efficiency among the Interpretation students. 

Considering that these regions have been previously implicated in the systems used to 

learn and represent spoken words (Breitenstein et al., 2005; Davis & Gaskell, 2009), 

an advantage in efficiency among the Interpretation students seems probable. Spoken 

language is a cornerstone of simultaneous interpretation; additionally, the 

Interpretation students had higher verbal IQs and self-ratings in speaking at Phase 1 

than the Translation students (see sections 3.2.2.1 and 3.2.2.2). These findings suggest 

that the Interpretation students had improved their efficiency in spoken language prior 

to beginning the Master’s program. In fact, this ability may have contributed to their 

interest and/or acceptance into the program. It is interesting to note that while the 

professional interpreters in the study by Elmer and colleagues also showed decreased 

gray matter volume, these differences were not seen in the regions discussed here 

(Elmer et al., 2014). Both that study and the present study examined a small number 

of participants, thus, replication of both findings is needed to determine the 

consistency of this difference. If the results hold, however, the lack of differences 

between professional interpreters and multilinguals in these regions may be due to the 

eventual pruning of the areas used in spoken word learning among the multilinguals. 
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The students of interpretation additionally showed greater white matter 

integrity than the students of translation in all three segments of the left arcuate 

fasciculus, as well as in the right anterior segment and the left uncinate fasciculus. 

The left arcuate fasciculus has a well-known connection with language production 

and the uncinate fasciculus is thought to be involved in lexical retrieval and semantic 

associations (Catani & Mesulam, 2008; Lu et al., 2002). Thus, the higher integrity in 

these tracts may be related to the higher verbal IQ seen among the students of 

interpretation. Additionally, the higher integrity in the anterior segment of the right 

arcuate fasciculus may indicate greater bilaterality of language processes among the 

Interpretation students as has been previously suggested (e.g., Darò, 1989; Gran & 

Fabbro, 1988). These group differences may suggest that greater white matter 

integrity in language related tracts allows for success in simultaneous interpretation.  

These results, however, are in discord with the smaller FA values seen in 

professional interpreters (Elmer et al., 2011). While that study revealed differences 

primarily in the corpus callosum, the left insula, left frontal pole, and right inferior 

parietal lobule were also indicated. The left insula and frontal pole regions could 

belong to the uncinate fasciculus, while the inferior parietal lobule is an endpoint for 

both the anterior and posterior segments of the arcuate fasciculus. It is critical to note 

that the present study and the study by Elmer and colleagues used different 

methodologies. The present study made use of whole brain tractography and virtual 

dissections to consider individual tracts in their entirety. Thus, the measures examined 

applied to each tract specifically and wholly. The study by Elmer and colleagues, on 

the other hand, employed voxel-based analyses. While this method allows for 

specificity in the voxel location, it is ambiguous about the particular tracts causing the 

differences. In areas where multiple tracts converge, such as the insula-adjacent 
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extreme capsule, it is impossible to separate the effects of individual tracts. Given 

these differences in methodology, speculation about the differing effects seen in the 

two studies is premature. 

4.4.4 Effects of Training on Gray Matter Volume 

 Training in simultaneous interpretation appears to have a specific effect on 

regions which support the simultaneity of input and output. In a recent fMRI study 

examining the brain areas recruited during simultaneous interpretation, bilateral 

putamen and bilateral superior temporal gyrus were signaled as particularly involved 

in the simultaneity of speaking and listening during SI (Hervais-Adelman et al., 

2014). This was evidenced as a modulation of activity with the duration of overlap of 

input and output in the simultaneous interpretation condition. Additionally, increased 

activity during speech shadowing compared to passive listening was seen, but no 

difference between the SI and shadowing conditions. Hervais-Adelman and 

colleagues posited that the putamen acts to suppress the speech production of the 

input language, in contrast to the caudate which functions to monitor and control 

language selection. Thus, the greater amassing of gray matter volume in bilateral 

putamen during training in SI in the present study may reflect the particular need 

during SI to inhibit the production of an input language. Indeed, the simultaneity of 

speech streams is a unique characteristic of simultaneous interpretation and therefore 

likely requires the development of new skills and structure supporting those skills.  

 As the superior temporal lobe is the locus of auditory cortex, the recruitment 

of these regions likely reflects the greater demands on auditory processing and 

attention during simultaneous interpretation. Activation was seen bilaterally in 

superior temporal lobe structures in the abovementioned study as well as in another 
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fMRI study of simultaneous interpretation (Aherns et al., 2010). In the present study, 

however, the volumetric changes were left-lateralized. This difference may be due to 

the techniques used. FMRI studies reveal transient activation, whereas VBM analyses 

show areas of volumetric difference. Therefore, while activation may occur 

bilaterally, significant volumetric change may only occur in the language dominant 

left hemisphere. This seeming lateralization of auditory language processing may be 

reconciled with the previous suggestion of greater bilaterality of language by 

considering two points. First, the bilaterality may not apply equally to all aspects of 

language processing. Thus, while lexical retrieval and speech production may come to 

rely additionally on the right hemisphere, this may not pertain to auditory processing. 

Second, increased use of the right hemisphere in language, does not necessarily 

indicate equal use between the hemispheres, thus, lateralization may still be evident. 

In fact, changes in the right superior temporal lobe were present, but did not survive 

correction for multiple comparisons. 

 The present study evidenced additional changes in gray matter volume in the 

right thalamus and right calcarine sulcus. While these areas did not show a 

modulation of activity based on the degree of input-output overlap during SI in the 

study by Hervais-Adelman and colleagues, they did show greater activity during 

speech shadowing compared to passive listening in that same study. Thus, the 

volumetric changes seen in these regions may also be related to the simultaneity of 

speaking and listening. Alternatively, the right thalamus may be recruited when 

adjusting to multiple speakers compared to a single speaker. In an fMRI study of 

speech shadowing, a network including the right thalamus and temporal lobe regions 

was activated in conditions in which the input speech included multiple speakers 

(consecutively, not simultaneously), as opposed to a single speaker (Peschke, Ziegler, 
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Kappes, & Baumgaertner, 2009). The authors theorized that these regions reflect a 

speaker normalization process. As the input in simultaneous interpretation comes 

from multiple speakers with varying accents, we could speculate that this region used 

for speaker normalization may have seen volumetric increases during SI training. 

 Another region showing a specific effect of training was the left temporal 

pole/fusiform gyrus area, which was an extension of the left putamen cluster. This 

region has previously been implicated in picture naming and verbal fluency (e.g., 

Abutalebi et al., 2014; Mion et al., 2010). Moreover, it is connected to the frontal pole 

through the uncinate fasciculus, which has been  associated with lexical retrieval 

(Catani & Mesulam, 2008; Lu et al., 2002) and showed greater white matter integrity 

among the Interpretation students in the present study.  Thus, the effect of training in 

the left temporal pole may be associated with greater demands on semantic processing 

and lexical retrieval in simultaneous interpretation. 

A differential change between the Interpretation students and Translation 

students was also revealed in left superior occipital cortex. This region has not 

previously been implicated in simultaneous interpretation or its component processes; 

however, it has been connected to literacy and letter analysis (Carreiras et al., 2009; 

Fulbright, Manson, Skudlarski, Lacadie, & Gore, 2003). Thus, this training difference 

may be due to a pruning of the area among the students of translation. Similar to the 

smaller volumes among the students of interpretation in the spoken word learning 

regions, the students of translation may show improved efficiency specifically in brain 

areas which process written language. 
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 Finally, the changes seen bilaterally in the putamen extended inferiorly to 

bilateral amygdala. The role of these areas in simultaneous interpretation is unclear. 

Additional studies are needed to replicate this result. 

 Overall, the changes in gray matter seen in connection with training in 

simultaneous interpretation suggest the growth of areas which support simultaneous 

language input and output. These results are in contrast to the smaller gray matter 

volumes in areas which support language control previously seen in professional 

interpreters compared to multilinguals (Elmer et al., 2014). These seemingly contrary 

results may be reconciled by assigning different roles to training and experience in 

simultaneous interpretation. As Elmer and colleagues suggested, professional 

experience with SI may lead to specialization and cortical pruning in the language 

control regions. Initial training in SI, on the other hand, may be defined by growth of 

brain regions that support previously untrained processes such as simultaneous input 

and output. Future longitudinal studies which follow interpreters through training and 

professional experience may help to clarify the roles of greater amassment and greater 

efficiency. It should be noted, however, that increased gray matter volume has 

typically been seen in connection with training as well as in professionals compared 

to amateurs across domains (e.g., Draganski et al., 2004; Gaser & Schlaug, 2003; Li et 

al., 2014). Thus, the finding of decreased volume among professional interpreters 

should be viewed with caution and replicated. 

As a final note, the increased volume in regions supporting simultaneity of 

input and output language suggests that speech shadowing or other conditions which 

involve the simultaneity of input and output may not represent the optimal baseline 

for comparison to SI in functional neuroimaging studies of simultaneous 

interpretation. The use of these baselines is intended to isolate the SI process. 
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However, the fact that regions involved in simultaneity of speaking and listening, but 

not those involved in language control, are specifically affected by training in SI 

suggests the critical importance that managing input-output simultaneity has in SI. 

4.4.5 Effects of Training on White Matter Integrity 

 Training in simultaneous interpretation was accompanied by a strengthening 

of the anterior and long segments of the left arcuate fasciculus. Both of these tracts 

provide a pathway between the left inferior frontal gyrus (IFG) and more posterior 

areas. It is notable that across the three studies which examined the brain areas 

activated during simultaneous interpretation, activation in the left IFG was 

consistently found (Aherns et al., 2010; Hervais-Adelman et al., 2014; Rinne et al., 

2000). Though this area is known to be involved in language processes, the activation 

was seen in comparison to a shadowing or free speech condition suggesting a 

particular importance of left IFG during simultaneous interpretation. The increased 

integrity of the anterior and long segments in the left hemisphere may reflect an 

increased need for connectivity between left IFG and other areas during simultaneous 

interpretation. Interestingly, no change in gray matter volume was seen in the left 

IFG.  

 The strengthening of these left arcuate fasciculus segments in the students of 

interpretation was in addition to an already present advantage. In the right 

hemisphere, however, the advantage among the students of interpretation in the 

volume of the anterior segment of the arcuate fasciculus tapered during training with 

both groups moving toward the mean. The increase seen among the Translation 

students may be related to greater bilaterality of language processing, however, the 

cause for the decrease among the Interpretation students remains unclear. 
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 Finally, a similar move toward the mean was seen in the fractional anisotropy 

of the right frontal aslant tract, though the initial difference was not significant. This 

tract also evidenced increased volume between Phase 1 and Phase 2 across the groups. 

Thus, the differences in FA values may relate to the specific nature of the volumetric 

increase. 

4.4.6 Limitations and Future Directions 

 The present study represents the first examination of the structural changes 

associated with training in simultaneous interpretation. While it adds to the literature 

on neuroplasticity in relation to skill learning, it does have some limitations which 

should be addressed in future studies. Similar to the study presented in the previous 

chapter, the sample size was small. Additionally, the number of participants in each 

group was unbalanced. Both of these issues could be addressed by collaborating with 

training programs as suggested in the previous chapter. Further, participants were 

scanned in the first three months of training, rather than prior to any training. As 

mentioned in the previous chapter, this could potentially lead to the obscuring of 

differences due to training, but it is unlikely that it would cause spurious differences 

to appear. Future studies, however, should aim to acquire a more accurate baseline.  

 The results of the present study together with those of previous studies on 

professional interpreters suggest divergent roles for initial SI training and professional 

SI experience on brain structure. Thus, future studies may wish to examine aspiring 

interpreters through training and into professional experience to better understand the 

role each experience plays in sculpting the brain. 

 The choice of students of translation as the comparison group in the present 

study controlled for the potentially confounding factors of language proficiency and 
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intense language training. These students, however, were involved in their own 

training program which may lead to specific, but different changes in brain structure. 

The addition of another control group composed of either multilinguals or 

monolinguals may aid in differentiating the effects of training in interpretation versus 

training in translation. 

 Finally, in the present study we examined five white matter tracts previously 

associated with spoken language. However, given the complex nature of simultaneous 

interpretation, changes may be seen in other tracts. In particular, examination of the 

corpus callosum may reveal interesting differences as it was indicated in the study on 

professional interpreters (Elmer et al., 2011) and may speak to questions of symmetric 

versus asymmetric language processing. Additionally, our understanding of the 

circuits used in simultaneous interpretation would be furthered by the assessing 

functional connectivity in addition to structural connectivity. 

 

4.5 Concluding Remarks 

The present study indicates that initial training in simultaneous interpretation 

is associated with physical changes in brain regions which support the component 

processes of this skill. In particular, gray matter areas thought to support simultaneous 

language input and output saw growth and white matter pathways in the left 

hemisphere which underlie language were strengthened. Further, an efficient spoken 

word learning network and strong language pathways may be linked to an initial 

aptitude for simultaneous interpretation. Examinations of the structural changes which 

accompany training in simultaneous interpretation are highly informative, not only 
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about the specific processes used when interpreting, but also about skill learning more 

broadly. 
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CHAPTER 5 

TO INHIBIT OR NOT TO INHIBIT? 

 

5.1 Introduction 

The nature of language management is of critical importance in the 

bilingualism field as the constant management of two languages is typically credited 

as the source of the cognitive benefits seen in bilinguals. An early theory, which is 

still commonly cited today, suggested that language control relies on the inhibition of 

the unintended language through the selection of language task schemas (Green, 

1998). An alternative model posited that bottom-up activation and mutual inhibition 

underlies language control (Dijkstra & van Heuven, 1998). More recently, however, 

Green and Abutalebi (2013) proposed that language control processes are not uniform 

across bilinguals, but rather are adaptive to the common interactional contexts used by 

each bilingual. In detailing three such interactional contexts, single-language, dual-

language, and dense code-switching, they noted that the languages are in competition 

in the first two situations, while in dense code-switching the languages exist 

cooperatively. 

To further decompose the language control processes, Green and Abutalebi 

(2013) identified eight processes which may be more or less engaged based on the 

interactional context. Among these processes is interference control, which is 

supported largely by inhibitory processes. Large demands are placed on interference 

control in contexts in which the two languages are in competition, however, the 
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demands are neutral when the languages exist cooperatively. Thus, cooperative 

language usage may be marked by less inhibition of the languages.  

Though the simultaneous interpretation context was not detailed by Green and 

Abutalebi (2013), we may conjecture that a cooperative relationship between the 

languages exists in this context as well. A similar explanation of language 

management in simultaneous interpretation was offered by Ibáñez and colleagues 

(2010). These authors suggested that the languages of an interpreter are not in 

competition, but instead that both are maintained active. This supposition is further 

supported by the enhanced sustained control of professional interpreters demonstrated 

in Chapter 2 (Section 2.3.4.2). As reduced inhibition may signal a cooperative 

language context, directly assessing the inhibition applied to recently abandoned 

languages in interpreters may provide further support for a cooperative, rather than 

competitive, language context. 

Inhibition is typically thought of as a singular construct; however, multiple 

types of inhibition have been noted (Nigg, 2000) and dissociated. Friedman and 

Miyake (2004) examined three types of inhibition: prepotent response inhibition, 

resistance to distractor interference, and resistance to proactive interference. The first 

two types of inhibition are associated with the ANT and Stroop tasks, while resistance 

to proactive interference is more closely associated with inhibiting an abandoned task 

set (or language). Friedman and Miyake (2004) found that resistance to proactive 

interference was statistically separable from prepotent response inhibition and 

resistance to distractor interference, which were represented by a single latent 

variable. Thus, the lack of differences in inhibitory control between interpreters and 

multilinguals seen in Chapter 2 and before and after training in Chapter 3 (tested with 

ANT and Stroop tasks) does not directly speak to the current supposition. 
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 To examine the inhibition used when abandoning a language we employed the 

n-2 repetition cost. This measure was first introduced by Mayr and Keele (2000) in an 

investigation of the inhibition applied to previous task sets during intentional shifts. 

The premise of the measure is that returning to a recently inhibited task should be 

more difficult and therefore cause a decrement in performance. To quantify this 

decrement the authors classified trials in a three task switching paradigm based on the 

task presented two trials previously (the n-2 trial). Thus, on “n-2 repetition” trials 

participants performed the same task on trial n and trial n-2 (e.g., Task 1 – Task 2 – 

Task 1), while on “n-2 non-repetition” trials the tasks used on trials n and n-2 differed 

(e.g., Task 3 – Task 2 – Task 1). The finding that responses on n-2 repetition trials are 

slower and more error prone has been widely replicated (e.g., Arbuthnott & Frank, 

2000; Arbuthnott, 2008; Gade & Koch, 2012; Houghton, Pritchard, & Grange, 2009; 

Philipp & Koch, 2006; Schuch & Koch, 2003). Further, the n-2 repetition cost (the 

difference in performance between n-2 repetition and non-repetition trials) has been 

recognized as the empirical signature of inhibitory processes in task switching 

paradigms (Kiesel et al., 2010; Koch, Gade, Schuch, & Philipp, 2010).  

Despite the strength of the n-2 repetition cost in pinpointing inhibitory control 

processes, which are thought to be enhanced by bilingualism, only one study has 

examined the influence of bilingualism on n-2 repetition costs in the non-linguistic 

domain. Prior (2012) found larger n-2 repetition costs for bilinguals than for 

monolinguals and suggested that bilinguals apply more inhibition to recently 

abandoned tasks. These results, in conjunction with previous studies showing a 

bilingual advantage in inhibitory control (e.g., Bialystok et al., 2008; Costa et al., 

2008), further underscore the dissociation of types of inhibition. 



116 
 

 In the language domain, four studies have examined n-2 repetition costs using 

language switching paradigms; naturally comparisons to monolinguals are not 

feasible in these cases. The work by Philipp, Gade, and Koch (2007) was the first of 

these studies and confirmed the validity of the n-2 repetition cost measure in the 

language domain. The authors were additionally interested in the effect of language 

dominance on the size of the n-2 repetition cost, in the vein of findings of larger 

switching costs for dominant languages (e.g., Meuter & Allport, 1999). The results 

demonstrated a reliable n-2 repetition cost when switching among languages, 

confirming the use of inhibitory mechanisms in language switching. The effects of 

language dominance on n-2 repetition cost, however, were ambiguous. The cost was 

largest in L1, however, L3 showed a larger cost than L2. The influence of language 

dominance on n-2 repetition costs is further complicated by the findings of Guo, Liu, 

Chen, and Li (2013). Across three experimental manipulations these authors 

consistently found a larger cost in L2 than in L3. Additionally, Philipp and Koch 

(2009) found no interaction between language and trial type in two experiments, 

though both experiments included additional manipulations which may have obscured 

these interactions in the statistical analyses. Visual inspection of the data in the 

conditions most similar to those used in the current study suggests smaller n-2 

repetition costs in L1. Finally, Branzi (2014) compared language and non-language 

switching tasks within a multilingual sample and found no correlation of n-2 

repetition cost across the two task versions. That study, however, did not examine the 

effects of language within the language switching task. Given the diversity of results 

regarding n-2 repetition cost size, it appears that language dominance is not related to 

the cost in a straightforward manner. Instead, the size of the n-2 repetition cost may 

be affected by other language characteristics. 
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 One potential influence on n-2 repetition costs is the lexical robustness of each 

of the languages. Lexical robustness refers to the familiarity with lexical 

representations and their frequency of access which leads to greater automaticity of 

retrieval (Costa, Santesteban, & Ivanova, 2006). In a study addressing trilingual 

speech production, Schwieter and Sunderman (2011) found relationships between 

lexical robustness and response times and switching costs in a language switching 

paradigm. In particular, larger L2 lexical robustness was associated with faster 

responses across languages, while larger L3 lexical robustness was associated with 

faster responses and larger switching costs in the L3. Though that study used a 

trilingual language switching paradigm, the authors did not consider n-2 repetition 

costs.  

 The present study investigated the link between the simultaneous use of two 

languages needed for simultaneous interpretation and inhibition of abandoned task 

sets and languages. To this end we examined students earning a Master in Conference 

Interpreting using a cross-sectional design with the aim of understanding how training 

in simultaneous interpretation affects inhibitory control. In the main experiment we 

targeted the training period by examining students at the beginning and end of a 

Master in Conference Interpreting, using the same time points tested in the 

longitudinal study presented in Chapter 3. This design, as opposed to comparing to 

age and education matched multilinguals, controls for the potential confounds related 

to selection into a training program in interpretation. For example, in Chapter 3 

(Section 3.2.2.2), we showed that students selected for a training program in 

simultaneous interpretation have greater verbal intelligence. While this known 

difference could be taken into consideration during participant selection, additional 

untested differences may exist. The current sample selection limits the effects of these 
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innate differences as all participants chose to study interpretation and were admitted 

to a training program. In the follow-up experiment students completing the 

coursework for the Master’s program or a Triennale (equivalent to a Bachelor’s 

degree) in Languages were added to the sample.  

The study included a trilingual language switching paradigm and a three task 

switching paradigm. The use of language and non-language versions allowed us to 

examine differences in inhibitory control in the language domain as well as look for 

domain-general changes. These changes may be expected given the advantage 

interpreters displayed in mixing cost and overall response time on a non-linguistic 

task-switching paradigm (see Section 2.3.4.2). The two tasks were designed to be as 

comparable as possible and to maximize the sensitivity of the n-2 repetition cost 

measure. Additionally, to assess the influence of lexical robustness on the n-2 

repetition cost, a verbal fluency task was included. As mentioned in the General 

Introduction (Section 1.2.1), professional interpreters have been previously shown to 

have an advantage in lexical robustness (Stavrakaki et al., 2012). Thus, the inclusion 

of the verbal fluency task had the further benefit of allowing the examination of the 

source of these differences, that is, whether they are innate or due to training.  

We theorized that if interpreters maintain two languages by using less 

inhibition, and that this capacity is developed through  SI training, then the students 

who had completed a Master in Conference Interpreting would exhibit a smaller n-2 

repetition cost in the language switching paradigm with respect to a control group of 

students who were about to start this training. Further, if this modulation of inhibitory 

control acts domain-generally, the same effect would be expected on the non-

language switching paradigm. 
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5.2 Main Experiment: Methods 

5.2.1 Participants 

The participants were students who were either starting or finishing a two-year 

Master’s program in Conference Interpreting at the University of Trieste. Twenty-one 

students at the beginning of the Master’s program participated (19 females). At the 

time of testing these students had attended one to two months of courses in the 

program. Twenty-two students finishing the Master’s program were also recruited (14 

females). These students had finished the coursework required for the program and 

most were working on their theses at the time of testing. All participants had no 

known neurological or psychiatric problems and reported normal color vision, which 

was confirmed with the Ishihara Color Vision Test (Ishihara, 1972). As biographical 

factors can influence measures of cognitive control, the two groups were matched on 

intelligence (measured with Raven’s Advanced Progressive Matrices Series I; Raven, 

Raven, & Court, 1998) and socioeconomic status (measured with mother’s years of 

education, Gottfried, Gottfried, Bathurst, Guerin, & Parramore, 2003; Noble, 

McCandliss, & Farah, 2007; Prior & Gollan, 2011; Stevens, Lauinger, & Neville, 

2009; Table 14). Given the cross-sectional design of the study, it was not possible to 

match the groups on age and years of education. All participants gave written 

informed consent and were compensated for their time. The study was approved by 

the ethical committee of the Scuola Internazionale Superiore di Studi Avanzati 

(SISSA). 

5.2.2 Tasks and Procedure 

Participants were tested individually in a sound-attenuated booth during a 

single session. During the session participants completed a language history 
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questionnaire, Series I of Raven’s Advanced Progressive Matrices, a verbal fluency 

task, and the two switching tasks (language and non-language versions presented in a 

counterbalanced order). The verbal fluency and language switching tasks required the 

selection of an L1, L2, and L3 for each participant.  Italian was always assigned as L1 

and was a native language for all but one participant. The L2 was the language that 

each participant felt most confident in after Italian and the L3 the most comfortable 

language after that (languages used: Dutch, English, French, German, Russian, and 

Spanish). In cases where a participant was equally comfortable in two non-native 

languages, selections were made to avoid phonologically similar languages (i.e., 

Italian/Spanish and Dutch/German) and based on the participant’s most recent exam 

scores. 

5.2.2.1 Language history questionnaire. Participants were asked to provide 

information about all of the languages they knew and/or studied. For each language 

they were asked to detail how and when they learned the language, including 

immersion experiences, as well as to provide a self-rating in the areas of reading, 

writing, speaking, and understanding on a 5-point Likert scale. Additionally, the 

participants completed a questionnaire developed to identify functional fluency for all 

their non-native languages. Functional fluency was operationalized as a B2 level or 

above in the Common European Framework of Reference for Languages (CEF). The 

questionnaire asked participants to give their CEF level and respond to eight yes-or-

no questions which targeted the B1-B2 border (see Appendix A for questionnaire 

items). The questionnaire contained two items for each of the four abilities (reading, 

writing, speaking, and oral comprehension), one item focused on academic usage and 

the other on personal usage. Participants were considered functionally fluent in 

languages for which they responded yes to seven or eight items. Finally, participants 
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were also asked to evaluate how often they switched between languages within a 

conversation in the two years prior to testing using a 5-point Likert scale. This 

question was posed for the following seven situations: at home, with friends, at 

school/work, thinking, dreaming, talking to oneself, and expressing anger and 

affection.  

Table 14: Biographical and language characteristics of participants in Main 

Experiment 

 
Beginning Master’s 

(N=21) 

Writing Thesis 

(N=22) 
p-value 

Age (in years) 22.7 (1.8) 24.6 (1.1) p < .001 

Years of education 16.3 (0.6) 18.3 (0.7) p < .001 

Raven’s APM score 10.7 (1.5) 11.0 (1.4) p = .462 

Mother’s years of 

education 
13.7 (2.8) 13.5 (3.4) p = .825 

Number of functional 

languages 
3.5 (0.5) 3.7 (0.7) p = .334  

L2 reading 4.3 (0.5) 4.8 (0.4) p = .002 

L2 writing 3.9 (0.4) 4.2 (0.6) p = .054 

L2 speaking 4.2 (0.5) 4.4 (0.7) p = .216 

L2 understanding 4.3 (0.4) 4.7 (0.5) p = .002 

L3 reading 4.1 (0.7) 4.4 (0.6) p = .105 

L3 writing 3.5 (0.7) 3.9 (0.8) p = .102 

L3 speaking 3.5 (0.7) 3.8 (0.7) p = .270 

L3 understanding 3.9 (0.5) 4.4 (0.6) p = .009 

Note: Values reported are means with standard deviations in parentheses. For one participant 

no language data was available and for another participant L2 self-ratings were missing. 

 

As expected given the additional two years of language instruction, the Thesis 

group reported higher self-ratings than the Beginning Master’s group for many of the 

areas in both L2 and L3 (see Table 14). However, the two groups did not differ on 

their self-ratings in either L2 or L3 in the area of speaking, which was the area most 

strongly utilized in the completed tasks. Further, across the groups L2 self-ratings 
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were higher than L3 ratings for all four areas (ps < .001).  Additionally, the two 

groups did not differ in their number of functional languages. Finally, the groups did 

not differ in code-switching frequency in all situations (ps ≥ .259) except thinking, 

where the Beginning Master’s students code-switched more frequently (p = .015). 

5.2.2.2 Raven’s Advanced Progressive Matrices. Non-verbal intelligence 

was measured using Series I of Raven’s Advanced Progressive Matrices (Raven et al., 

1998). In this task, participants view patterns in a 3x3 matrix, each of which is 

missing a piece, and must choose the piece that completes the pattern from eight 

options. Series I contains 12 items and participants completed the task untimed, 

though most took 5-10 minutes. In an effort to limit the total time of the testing 

session, we opted to only use Series I, which has been previously used to provide a 

quick measure of intelligence (e.g., Costa, Hernández, Costa-Faidella, & Sebastián-

Gallés, 2009; Paap & Greenberg, 2013).  

5.2.2.3 Verbal fluency task. Verbal fluency was measured in the L1, L2, and 

L3 for each participant. Each language was tested in a separate block and the order of 

the languages was randomly selected. Three semantic categories and three letter 

categories were presented for each language. The nine semantic categories used 

throughout the task were grouped into three sets of three categories (adapted from 

Schwieter & Sunderman, 2011; see Appendix B for all categories used). The same 

was true of the nine letter categories. For each participant a set of semantic categories 

and a set of letter categories were randomly assigned to each language, with no 

repetition of categories across languages. Each block began by announcing the 

language to use in the following categories (language names were written in Italian). 

Each category began with fixation cross for 500 ms, followed by a 100 ms beep 

(400 Hz) and then the category name written in the language to be used in the block. 
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Participants were given 60 s to name as many items belonging to the category as 

possible. The conclusion of the 60 s was signaled with another 100 ms beep. A blank 

screen appeared for 3000 ms before the next category. The six categories presented in 

each block appeared in a random order. A break occurred at the end of each block and 

participants could initiate the next block through a button press. Participants were 

instructed that they would see two types of categories (semantic and letter) and have 

60 seconds to name as many items as they could in the category. They were also told 

that repetitions, words with the same root, and proper names would not be counted. 

Before completing the experimental categories, participants completed two practice 

categories (P and kitchen items-cose nella cucina) in Italian with an experimenter 

present to clarify any difficulties.  

The entire task was recorded using a digital recorder for offline transcription 

and coding. Transcription and coding were completed by a native speaker of each 

language. All responses initiated within the 60 second time limit for each category 

were transcribed and marked as either countable items or items to be excluded. For 

both category types responses were excluded that were: not a word in the language, 

not part of the category, repetitions of a previous response in the same category, and 

proper names. Further for semantic categories repetitions of a concept (e.g., eggplant 

and aubergine) and superordinates when subordinates were also named (e.g., bird, 

pigeon, bluejay) were excluded. Finally, for letter categories, only one word with a 

given root was counted (e.g., fast, faster, fastest). 

5.2.2.4 Language switching task. Participants viewed a series of stimuli 

composed of the letter X, the # sign, and a digit between 2 and 9 (the digit 1 was 

excluded due to high phonological similarity across the languages used). The X and # 

were not informative, but rather were included to match the visual complexity of the 
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stimuli between the language and non-language tasks. The stimuli components were 

black and were presented with equal probability in each of the six possible orders 

(e.g., X#2, 2#X). Participants were asked to name aloud the digit in their L1, L2, or 

L3 according to the cue presented. Cues were black frames surrounding the stimulus 

in the shape of a diamond, a hexagon, and a triangle (see Figure 11 for example item). 

Graphic cues were chosen because they have been previously associated with larger 

n-2 repetition costs (Guo et al., 2013; Houghton et al., 2009). The cue-language 

pairings were counterbalanced across participants. A visual reminder of these pairings 

was visible throughout the experiment. Each stimulus was categorized as either an n-2 

repetition or non-repetition trial; the difference between these trial types quantifies 

inhibition. On n-2 repetition trials, the language used on the current trial was the same 

as that used on the n-2 trial (e.g., English – Italian – English). Thus participants were 

returning to a recently inhibited language on these trials. Conversely, on n-2 non-

repetition trials, the current language differed from that used on the n-2 trial (e.g., 

French – Italian – English). Immediate language repetitions were excluded from the 

task design since their presence has been associated with a decrease in n-2 repetition 

cost (Philipp & Koch, 2006). Consequently, n-2 non-repetition trials made use of all 

three languages and n-2 repetition trials of two languages. 

Each trial began with a 500 ms blank screen followed by cue presentation. The 

target stimulus appeared inside the cue 100 ms later. A short cue-to-stimulus interval 

was employed to enhance n-2 repetition costs (Guo et al., 2013; Philipp et al., 2007). 

The stimulus and cue remained onscreen until 200 ms after the participants started 

their vocal response, at which point the trial ended. The onset of vocal responses was 

recorded with a voice key. Before the task instructions were given a microphone 

sensitivity test was completed in which the participant pronounced the numbers 2 to 9 
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in each of their three languages. The microphone was adjusted and the test repeated 

until all possible responses successfully triggered the voice key. The experiment 

began with a practice session consisting of 30 trials, which could be repeated until the 

participant felt comfortable with the task paradigm (two participants, one from each 

group, repeated the practice once). The experimental session consisted of six blocks, 

each with 120 trials. After every block there was a break and participants could 

initiate the next block with a button press. The sequence of trials was 

pseudorandomized for each participant according to the following restrictions. There 

were an equal number of n-2 repetition and non-repetition trials, as well as an equal 

number of trials for each language, divided approximately evenly between n-2 

repetition and non-repetition trials. Further, in each block of 120 trials, each digit was 

presented 15 times, 5 times in each language. Immediate language repetitions and 

immediate digit repetitions were excluded. Finally, a digit could not appear with the 

current language if it had been used on the most recent trial using that language.  

Participant responses were recorded using a digital recorder. The recording 

was used offline to code the accuracy of responses. To aid in the alignment of 

responses and trial number during offline coding, a 100 ms beep during cue 

presentation, unheard by participants, was fed directly to the digital recorder. 

Responses were coded for the accuracy of the response (i.e., the correct number 

produced in the correct language) and for false starts, when a sound other than a 

response triggered the voice key (e.g., a cough, a speech filler, a corrected response 

from the previous trial).  
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Figure 11: Example items for (a) the language switching task and (b) the non-

language switching task. 

 

5.2.2.5 Non-language switching task. The stimuli in this task were composed 

of a black letter (A-H), a black digit (2 to 9), and a colored # sign (black-nero, gray-

grigio, blue-blu, green-verde, red-rosso, yellow-giallo, pink-rosa, brown-marrone). 

To allow for comparability in the stimulus set size between this and the language 

switching task, eight composite stimuli were created for each participant. The 

composite stimuli grouped a letter, a number, and a color which appeared together 

throughout the experiment with equal probability in each of the six possible orders 

(e.g., letter-number-#, number-#-letter). Participants were asked to name aloud in 

Italian the letter, the digit, or the color of the # sign according to the cue presented. 

Cues were black frames surrounding the stimulus in the shape of a square, a circle, 

and a pentagon (see Figure 11 for example item). The cue-task pairings were 

counterbalanced across participants. A visual reminder of these pairings was visible 

throughout the experiment. As in the language switching task, each stimulus was 
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classified as either an n-2 repetition trial (e.g., number – color – number) or an n-2 

non-repetition trial (e.g., letter – color – number). The details of the task presentation, 

pseudorandomization, and offline coding were identical to those used in the language 

switching task. During the microphone sensitivity test, participants named the eight 

letters, digits, and colors presented in the task. This test was additionally used to 

check that the participants correctly named the colors. As with the language switching 

task, participants could repeat the practice session until they felt confident in the task 

(two Beginning Master’s participants repeated the practice once). 

 

5.3 Main Experiment: Results 

5.3.1 Verbal Fluency 

Data from five participants were excluded from analyses on this task. Four 

participants (one Beginning Master’s student and three Thesis students) had grown up 

speaking two languages and one participant (Beginning Master’s student) was not a 

native Italian speaker. These participants were excluded because the following 

analyses make distinctions between L1, L2, and L3 and these classifications do not 

match the language experiences and representations of these participants. 

 To analyze differences in verbal fluency a mixed effects three-way ANOVA 

with category type (semantic, letter) and language (L1, L2, L3) as within-subjects 

factors and group (Beginning Master’s students, Thesis students) as a between-

subjects factor was used. Reported results reflect a Greenhouse-Geisser correction. 

 Participants produced more words in response to semantic categories than 

letter categories (F(1,36) = 19.560, p < .001, ηp
2
 = .352; Figure 12). The number of 
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responses was also affected by language (F(1.867,67.202) = 126.838, p < .001, 

ηp
2
 = .779) with the most responses produced in L1 followed by L2 and then L3 

(ps < .001 from post hoc t-tests evaluated at α = .017 to correct for multiple 

comparisons). There was no overall difference between the groups (p = .987). Though 

the language and group factors showed a marginal interaction 

(F(1.867,67.202) = 3.110, p = .054, ηp
2
 = .080), post hoc t-tests revealed no 

significant group differences (ps ≥ .199). No other interactions were significant 

(ps ≥ .172). 

 

 
Figure 12: Verbal fluency results for language and category type by group in the Main 

Experiment. Error bars represent the standard errors of the mean. 
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5.3.2 Language Switching Task 

 Data from six participants were excluded from all analyses on this task. The 

five participants (two Beginning Master’s students and three Thesis students) who 

spoke languages other than Italian (or Italian dialects) from birth were excluded 

because the following analyses also make distinctions between L1, L2, and L3. A 

final participant (Thesis student) was excluded due to a disruption during the task. 

The exclusion of these participants did not change the results of the comparisons 

between the two groups on the biographical and language characteristics mentioned 

above. 

Non-parametric tests were used to analyze the accuracy data given that these 

data were not normally distributed. The Mann-Whitney U test was used to compare 

the two groups and the Wilcoxon signed-ranked test was used to compare conditions. 

Response time (RT) data were analyzed using a mixed effects three-way ANOVA 

with trial type (n-2 repetition, n-2 non-repetition) and language of the current trial 

(L1, L2, L3) as within-subjects factors and group (Beginning Master’s students, 

Thesis students) as a between-subjects factor. For these analyses error trials and the 

two trials following an error, to ensure the correct trial type assignment, were 

excluded. Trials with a false start were also excluded since RT was not an accurate 

reflection of performance in these trials. Additionally, for each participant, trials with 

an RT more than 3 standard deviations from their individual mean were excluded. 

Finally, responses that were faster than 200 ms and slower than 3500 ms were 

excluded. This trimming procedure resulted in the exclusion of 12.6% of all trials. 

Reported results reflect a Greenhouse-Geisser correction. 
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Analyses on accuracy revealed no overall difference between the groups 

(p = .298). Further, there were no differences between the groups when considering 

each language and trial type separately (ps ≥ .271). Across the two groups, accuracy 

was higher on n-2 non-repetition trials compared to n-2 repetition trials (Wilcoxon 

T = 417.5, Z = 2.055, p = .040). Additionally, accuracy was higher when responding 

in L1 than in L2 and L3 (p < .001 and p = .003, respectively), with no difference 

between L2 and L3 (p = .976). 

 The RT analysis showed a main effect of trial type (F(1,35) = 45.117, 

p < .001, ηp
2
 = .563, Figure 13) with faster responses to n-2 non-repetition trials than 

n-2 repetition trials. The main effect of language was also significant 

(F(1.819,63.656) = 14.053, p < .001, ηp
2
 = .286, Figure 13). Post hoc t-tests 

(evaluated at α = .017 to correct for multiple comparisons) revealed that responses in 

L1 were faster than in L2 and L3 (t(36) = 3.827, p < .001 and t(36) = 5.540, p < .001, 

respectively), with no difference between L2 and L3 (p = .589). These two variables, 

trial type and language, also showed a significant interaction 

(F(1.990,69.649) = 4.075, p = .021, ηp
2
 = .104). There was no main effect of group 

(p = .920) or significant interactions between group and either the trial type or 

language variables (p = .777 and p = .621, respectively). However, the 3-way 

interaction of trial type, language, and group was significant 

(F(1.990,69.649) = 5.701, p = .005, ηp
2
 = .140, see Figure 14).   
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Figure 13: Response times for each language by trial type on the language switching 

task in the Main Experiment. Error bars represent the standard errors of the mean. 

 

Post hoc t-tests (evaluated at α = .0083 to correct for multiple comparisons) 

comparing the n-2 repetition cost between languages within each group were used to 

decompose the 3-way interaction. These comparisons revealed that within the 

Beginning Master’s group the n-2 repetition cost in L1 was smaller than in L2 and L3 

(t(18) = 3.312, p = .004 and t(18) = 3.530, p = .002, respectively), which did not differ 

from one another (p = .761). Within the Thesis group, however, there were no 

differences in n-2 repetition cost between the languages (ps ≥ .060). When post hoc t-

tests are considered as comparisons of the n-2 repetition cost between the groups 

within each language (evaluated at α = .017 to correct for multiple comparisons), no 

difference was seen in L2 and L3 (p = .129 and p = .918, respectively), however a 

trend for a smaller n-2 repetition cost for Beginning Master’s students was seen in the 
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Figure 14: n-2 repetition costs for each language by group on the language switching 

task in the Main Experiment. Error bars represent the standard errors of the mean. 

 

 To investigate the role of language characteristics on n-2 repetition costs 

correlational analyses were conducted. The n-2 repetition cost in L1, L2, and L3 were 
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early bilingualism may affect n-2 repetition costs (Prior, 2012). One additional 

participant (Beginning Master’s student) was excluded due to difficulties coding her 

data offline. A final participant (Beginning Master’s student) was identified as an 

extreme outlier within her group based on her accuracy rate (more than 3 interquartile 

ranges below the 1
st
 quartile) and therefore excluded. The exclusion of these 

participants did not change the results of the comparisons between the two groups on 

the biographical and language characteristics mentioned above. 

Non-parametric tests were used to analyze the accuracy data given that these 

data were not normally distributed. The Mann-Whitney U test was used to compare 

the two groups and the Wilcoxon signed-ranked test was used to compare conditions. 

Response time data were analyzed using a mixed effects three-way ANOVA with trial 

type (n-2 repetition, n-2 non-repetition) and task of the current trial (color, letter, 

number) as within-subjects factors and group (Beginning Master’s students, Thesis 

students) as a between-subjects factor. For these analyses error trials and the two trials 

following an error, to ensure the correct trial type assignment, were excluded. Trials 

with a false start were also excluded since RT was not an accurate reflection of 

performance in these trials. Additionally, for each participant, trials with an RT more 

than 3 standard deviations from their individual mean were excluded. Finally, 

responses that were faster than 200 ms and slower than 3500 ms were excluded. This 

trimming procedure resulted in the exclusion of 10.3% of all trials. Reported results 

reflect a Greenhouse-Geisser correction. 

Analyses on accuracy revealed no overall difference between the groups 

(p = .146). Further, the groups did not differ on n-2 repetition trials, n-2 non-repetition 

trials, letter trials, or number trials (ps ≥ .121). However, the Beginning Master’s 

group were more accurate on color trials (Mann-Whitney U = 241.5, z = 2.546, 
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p = .010). Across the two groups, accuracy was higher on n-2 non-repetition trials 

compared to n-2 repetition trials (Wilcoxon T = 404, Z = 2.628, p = .009). There were 

no differences in accuracy between the three tasks (ps ≥ .220). 

 The RT analysis showed a main effect of trial type (F(1,34) = 224.283, 

p < .001, ηp
2
 = .868, Figure 15) with faster responses to n-2 non-repetition trials than 

n-2 repetition trials. No other effects or interactions were significant (ps ≥ .157). 

 

 

Figure 15: Response times for each task by trial type on the non-language switching 

task in the Main Experiment. Error bars represent the standard errors of the mean. 
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language domains using a cross-sectional design. Students at the beginning and the 

end of a Master in Conference Interpreting were compared. Lexical robustness, 

measured with a verbal fluency task, did not differ between the two groups and was 

shown to be largest in the L1 and smallest in the L3. Inhibitory control was measured 

using the n-2 repetition cost in a trilingual language switching paradigm and a three 

task switching paradigm. In the language task the amount of inhibitory control 

employed was affected by the combination of group and language used. The students 

at the beginning of the Master’s showed smaller n-2 repetition costs in L1 than L2 and 

L3, while the students at the end of the Master’s showed no differences between the 

languages. The two groups did not differ on the non-language task. 

5.4.2 Lexical Robustness 

 As mentioned in the General Introduction (Section 1.2.1) and Introduction of 

the current chapter, an advantage for professional interpreters in verbal fluency has 

been previously noted (Stavrakaki et al., 2012). The origin of this advantage, 

however, remains unclear; it may be an innate characteristic that allowed success or a 

characteristic that was acquired through training. The results of the current 

experiment, which showed no difference in verbal fluency between students 

beginning a Master of Conference Interpreting and those finishing the same Master’s 

program, suggest that verbal fluency is not enhanced through training in simultaneous 

interpretation. This ability, instead, may fall into the category of innate characteristics 

that allow success. 

5.4.3 Inhibitory Control 

 The present results replicated the finding of a reliable n-2 repetition cost in 

language switching, confirming the use of inhibitory control mechanisms when 
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switching between languages. The results further indicated that the two groups 

differed in the amount of inhibition used depending on the language. The Beginning 

Master’s students inhibited the L1 less than the Thesis students did, while the opposite 

pattern was observed (though not significant) in the L2. The differences in n-2 

repetition cost were not explained by either lexical robustness in the three languages 

or self-rated ability in the L2 and L3. 

A smaller n-2 repetition cost for the untrained group, as seen in the L1, runs 

contrary to the hypothesis that simultaneous use of two languages is managed through 

less inhibition. However, it is noteworthy that the Beginning Master’s group had a 

very small n-2 repetition cost in L1 (11 ms) when compared with the values reported 

by previous studies in comparable conditions (106 ms in Philipp et al., 2007 and 

89 ms in Guo et al., 2013). Therefore, it is unclear whether the Beginning Master’s 

students represent a true baseline from which the Thesis students have shifted. Indeed, 

the Beginning Master’s students had attended one to two months of courses at the 

time of testing, including courses on simultaneous interpretation. In contrast, the 

Thesis students were focused on their theses at the time of testing, and not necessarily 

actively practicing simultaneous interpretation. In light of these facts, the reduced n-2 

repetition cost may be related to recent practice with SI. 

 Two accounts of the present data are available. In the first, the Thesis group 

has changed their level of inhibition after training with SI, leading to a larger 

inhibition of the L1, contrary to the original prediction. The higher level of inhibition 

specifically in the L1 may reflect a particular need to suppress the dominant L1 when 

interpreting into a non-dominant language. The second account suggests that training 

with SI does lead to a decrease in inhibition, at least in the L1, but the effect is related 

to recent practice and dissipates during periods without SI practice. To disentangle 
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these two possible accounts we completed a follow-up experiment in which we 

expanded the sample. Specifically, we recruited an SI-trained group that did have 

recent practice (students at the end of their coursework for a Master in Conference 

Interpreting) and an untrained group with no recent practice (students finishing a 

Triennale in Languages). The four groups considered in the follow-up experiment 

represent a full crossing of the SI training and recent SI practice factors.  

 

5.5 Follow-up Experiment: Methods 

5.5.1 Participants 

Two additional groups of participants were recruited for the follow-up 

experiment. Nineteen students who had recently finished the coursework for a 

Triennale degree (equivalent to a Bachelor’s degree) in Languages from the 

University of Trieste formed the first group (12 females). The second group consisted 

of sixteen students who had recently finished the coursework for the Master’s 

program in Conference Interpreting at the University of Trieste (14 females; one 

participant had attended the Master’s program in Conference Interpreting at another 

university in Italy). All participants were native Italian speakers with no known 

neurological or psychiatric problems. They all reported normal color vision, which 

was confirmed with the Ishihara Color Vision Test (Ishihara, 1972). In contrast to the 

main experiment, participants who spoke a language other than Italian (or Italian 

dialects) from birth were not included in the experiment. Additionally, the five 

participants not meeting this criterion from the main experiment were not considered 

in any analyses. A review of the biographical characteristics of the four groups 

(including the two from the main experiment) showed no difference between the 
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groups in intelligence (measured with Raven’s Advanced Progressive Matrices 

Series I) or socioeconomic status (measured with mother’s years of education; 

Table 15). Differences in age and years of education were unavoidable given the 

cross-sectional design of the study. All participants gave written informed consent and 

were compensated for their time. The study was approved by the ethical committee of 

the Scuola Internazionale Superiore di Studi Avanzati (SISSA). 

Table 15: Biographical and language characteristics of participants in the Follow-up 

Experiment 

 
Finishing 

Triennale 

(N=16) 

Beginning 

Master’s 

(N=19) 

Finishing 

Master’s 

(N=16) 

Writing 

Thesis 

(N=19) 

p-value 

Age (in years) 22.4 (1.7) 22.8 (1.8) 24.0 (1.3) 24.5 (1.0) p < .001 

Years of education 16.1 (0.7) 16.2 (0.4) 18.2 (0.5) 18.3 (0.7) p < .001 

Raven’s APM 

score 
10.4 (1.7) 10.7 (1.6) 10.6 (1.8) 11.3 (0.9) p = .334 

Mother’s years of 

education 
12.1 (3.3) 13.3 (2.6) 14.3 (4.2) 13.3 (3.6) p = .423 

Number of 

functional 

languages 

3.6 (0.6) 3.4 (0.5) 3.6 (0.7) 3.6 (0.8) p = .782 

L2 reading 4.3 (0.4) 4.3 (0.5) 4.4 (0.5) 4.7 (0.5) p = .014 

L2 writing 3.8 (0.5) 3.9 (0.5) 4.1 (0.3) 4.3 (0.6) p = .025 

L2 speaking 3.9 (0.5) 4.1 (0.3) 4.2 (0.4) 4.4 (0.6) p = .009 

L2 understanding 4.2 (0.4) 4.2 (0.4) 4.3 (0.4) 4.7 (0.5) p = .003 

L3 reading 3.9 (0.3) 3.9 (0.6) 4.2 (0.4) 4.5 (0.6) p = .003 

L3 writing 3.4 (0.6) 3.4 (0.6) 3.5 (0.6) 3.7 (0.8) p = .496 

L3 speaking 3.2 (0.8) 3.4 (0.7) 3.4 (0.5) 3.6 (0.7) p = .367 

L3 understanding 4.1 (0.6) 3.8 (0.5) 4.0 (0.4) 4.3 (0.6) p = .088 

Note: Values reported are means with standard deviations in parentheses. For one participant 

no language data was available and for another participant L2 self-ratings were missing. 
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5.5.2 Tasks and Procedure 

The test session was identical to that used in the main experiment. However, 

the assignment of L1, L2, and L3 differed (L2 and L3 languages used: Croatian, 

Dutch, English, French, German, Russian, and Spanish). As in the main experiment, 

Italian was always assigned to L1. For the Finishing Triennale students, their 1
st
 

language of study in their Triennale program was assigned to L2 and their 2
nd

 

language of study to L3. For the Finishing Master’s students, the assignment was 

based on the B/C classification of their languages of study. B languages in 

interpretation are non-native languages which the interpreter uses both actively 

(interprets from their native language into this language) and passively (interprets 

from this language into their native language). C languages are non-native languages 

which are used only passively in interpretation. For students with one B language and 

one C language, the B language was always assigned to L2 and the C language to L3. 

For students who had multiple B or C languages, the assignment was identical to the 

main experiment, that is, according to the participant’s confidence in these languages. 

Given this difference in assignment between the experiments, the languages were later 

re-coded for each participant based on the average of their self-ratings across the four 

areas. This led to the switching of L2 and L3 for five participants from the main 

experiment and four participants from the follow-up experiment. Additionally, 

participants were asked to report how many hours they had practiced simultaneous 

interpretation in the two months prior to testing. Three participants in the Finishing 

Triennale group reported recent practice with simultaneous interpretation and were 

therefore excluded from all analyses. 

The four groups did not differ in terms of their number of functionally fluent 

languages and self-ratings for L3 writing and speaking (see Table 15 for values). 
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However, group differences were seen in the self-ratings across the L2 abilities and in 

L3 reading (ps ≤ .025; Table 15; L3 understanding showed a marginal difference). 

Post hoc Bonferroni-corrected tests revealed that the Thesis group gave higher self-

ratings than the Finishing Triennale group on all L2 abilities and L3 reading 

(ps ≤ .028). Additionally, the self-ratings for the Thesis group were higher than those 

of the Beginning Master’s group on L2 reading and understanding and L3 reading 

(ps ≤ .035). No other group differences in self-ratings were significant (ps ≥ .070). 

Finally, the groups did not differ in their frequency of code-switching in all situations 

(ps ≥ .115) except thinking (p = .002). Post hoc Bonferroni-corrected tests revealed 

that the Beginning Master’s students code-switched more frequently when thinking 

than the Finishing Master’s and Thesis students (p = .002 and p = .029, respectively).  

 

5.6 Follow-up Experiment: Results 

5.6.1 Verbal Fluency 

 To analyze differences in verbal fluency, a mixed effects three-way ANOVA 

with category type (semantic, letter) and language (L1, L2, L3) as within-subjects 

factors and group (Finishing Triennale, Beginning Master’s, Finishing Master’s, 

Thesis) as a between-subjects factor was used. Reported results reflect a Greenhouse-

Geisser correction. 

 As in the main experiment, more responses were given for semantic categories 

than for letter categories (F(1,66) = 53.135, p < .001, ηp
2
 = .446; Figure 16) and 

language affected the number of responses (F(1.873,123.596) = 221.661, p < .001, 

ηp
2
 = .771). The greatest number of responses was produced in L1 followed by L2 and 
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then L3 (ps < .001 from post hoc t-tests). Unlike the main experiment, there was a 

main effect of group (F(3,66) = 2.930, p = .040). Post hoc t-tests revealed that the 

Finishing Triennale group produced marginally fewer responses than all of the other 

groups (ps ≤ .026), with no differences between these groups (ps ≥ .934). 

Additionally, category type and language interacted (F(1.992,131.480) = 6.698, 

p = .002, ηp
2
 = .092). No other interactions were significant (ps ≥ .201). 

 

 

Figure 16: Verbal fluency results for language and category type by group in the 

Follow-up Experiment. Error bars represent the standard errors of the mean. 

 

5.6.2 Language Switching Task 

Data from one participant (Thesis student) was excluded due to a disruption 

during the task. Non-parametric tests were used to analyze the accuracy data given 

that these data were not normally distributed. The Kruskal-Wallis test was used to 
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compare between the four groups and the Wilcoxon signed-ranked test was used to 

compare conditions. The data trimming procedures (12.1% of all trials removed) and 

analyses performed on the RT data were identical to those in the main experiment. 

Analyses on accuracy revealed no overall difference between the groups 

(p = .197). Further, there were no differences between the groups when considering 

each language and trial type separately (ps ≥ .089). Across the two groups, accuracy 

was higher on n-2 non-repetition trials than on n-2 repetition trials (Wilcoxon 

T = 1227, Z = 2.025, p = .043). Additionally, accuracy was higher when responding in 

L1 than in L2 and L3 (Wilcoxon T = 566, Z = 3.836, p < .001 and Wilcoxon T = 654, 

Z = 3.309, p = .001, respectively), with no difference between L2 and L3 (p = .650). 

 The RT analysis showed a main effect of trial type (F(1,65) = 91.794, 

p < .001, ηp
2
 = .585) with faster responses to n-2 non-repetition trials than n-2 

repetition trials. The main effect of language was also significant 

(F(1.831,119.044) = 33.125, p < .001, ηp
2
 = .338). Post hoc t-tests (evaluated at 

α = .017 to correct for multiple comparisons) revealed that responses to L1 were faster 

than to L2 and L3 (t(68) = 6.179, p < .001 and t(68) = 7.879, p < .001, respectively), 

with no difference between L2 and L3 (p = .813). Trial type and language also 

showed a significant interaction (F(1.964,127.675) = 8.878, p < .001, ηp
2
 = .120). 

Through post hoc t-tests (evaluated at α = .017 to correct for multiple comparisons), 

the n-2 repetition cost in L1 was shown to be smaller than in L2 and L3 

(t(68) = 3.045, p = .003 and t(68) = 3.645, p = .001, respectively), which did not differ 

(p = .720). There was no main effect of group (p = .533) or significant interactions 

between group and either the trial type or language variables (p = .889 and p = .966, 

respectively). However, the 3-way interaction of trial type, language, and group was 

significant (F(5.839,127.675) = 3.172, p = .007, ηp
2
 = .128; Figure 17). To decompose 
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the 3-way interaction, post hoc one-way ANOVAs (evaluated at α = .017 to correct 

for multiple comparisons) were computed within each language comparing the n-2 

repetition cost across the four groups. However, no significant group differences were 

seen (ps ≥ .092). 

 

 

Figure 17: n-2 repetition costs for each language by group on the language switching 

task in the Follow-up Experiment. Error bars represent the standard errors of the 

mean. 

 

5.6.2.1 Correlations with language characteristics. As in the main 

experiment, n-2 repetition costs in L1, L2, and L3 were tested for correlations with 

the semantic and letter fluency scores in L1, L2, and L3 and self-ratings in L2 and L3. 

There were no significant correlations between the n-2 repetition costs and any of the 

verbal fluency measures (ps ≥ .232). However, the n-2 repetition cost in the L2 was 

negatively correlated with self-rated speaking and understanding in L2 (r = -.237, 
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p = .053 and r = -.316, p = .009, respectively), while the n-2 repetition cost in L3 

showed a marginal positive correlation with self-rated reading in L3 (r = .216, 

p = .076). All other correlations were non-significant (ps ≥ .107). The values reported 

above were not corrected for multiple comparisons as the analyses were of an 

exploratory nature. Given this fact, these findings should be viewed with caution. 

5.6.2.2 Correlations with SI practice. To examine the hypothesis that the 

different patterns of n-2 repetition costs across the languages seen in the main 

experiment were due to recent practice of SI, the n-2 repetition costs in L1, L2, and 

L3 were correlated with the amount of practice values supplied by the Finishing 

Master’s students. Marginal positive correlations between SI practice and the n-2 

repetition costs in L2 and L3 were seen (r = .464, p = .070 and r = .453, p = .078, 

respectively). 

5.6.3 Non-Language Switching Task 

 Data from three participants were excluded from all analyses of this task. Two 

participants (a Beginning Master’s student and a Finishing Master’s student) were 

identified as extreme outliers within their groups based on their accuracy rate (more 

than 3 interquartile ranges below the 1
st
 quartile). An additional participant 

(Beginning Master’s student) was excluded due to difficulties coding her data offline. 

The exclusion of these participants did not change the results of the comparisons 

between the two groups on the biographical and language characteristics mentioned 

above. 

Non-parametric tests were used to analyze the accuracy data given that these 

data were not normally distributed. The Kruskal-Wallis test was used to compare 

between the four groups and the Wilcoxon signed-ranked test was used to compare 
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conditions. The data trimming procedures (10.4% of all trials removed) and analyses 

performed on the RT data were identical to those in the main experiment.  

Analyses on accuracy revealed no overall difference between the groups 

(p = .389). Further, there were no differences between the groups when considering 

each task and trial type separately (ps ≥ .112). Across the two groups, accuracy was 

higher on n-2 non-repetition trials compared to n-2 repetition trials (Wilcoxon 

T = 1407, Z = 3.029, p = .002). There were no differences in accuracy between the 

three tasks (ps ≥ .612). The RT analysis showed a main effect of trial type 

(F(1,63) = 419.777, p < .001, ηp
2
 = .870) with faster responses to n-2 non-repetition 

trials than n-2 repetition trials. No other effects or interactions were significant 

(ps ≥ .269). 

 

5.7 Follow-up Experiment: Discussion 

5.7.1 Summary of Results 

 This experiment further explored the role of simultaneous interpretation 

experience on lexical robustness and inhibitory control. Multilingual students with 

varying levels of SI experience were compared. Lexical robustness differed between 

the four groups; students with no SI experience had lower verbal fluency scores than 

the other three groups. Inhibitory control in the language domain also differed across 

the four groups, though it was the group with greatest amount of training that 

displayed an altered pattern in this case. Inhibitory control in the non-language 

domain, however, was unaffected by SI experience. 
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5.7.2 Lexical Robustness 

 While lexical robustness is likely related to successful simultaneous 

interpretation, this characteristic does not appear to be influenced by either training in 

SI or recent SI practice. Instead, a division was seen between students who had been 

accepted to and enrolled in a Master in Conference Interpreting program and those 

who had not. Thus, it appears that high lexical robustness is a prerequisite for 

simultaneous interpretation, or at least acceptance into a training program. This, 

however, does not exclude verbal fluency from being a trained ability; in fact, a hint 

of training does exist in the data. The Finishing Triennale students will become the 

next pool of Master’s program applicants, and presumably those admitted will have 

higher verbal fluencies, on par with the three other groups, than those not admitted. If 

verbal fluency was not trained between our study and the admissions exam this would 

be seen as greater variability of individual scores in the Finishing Triennale group 

than in the other three groups. This difference in variability is not seen in the present 

data. Further, it is highly likely that applicants to SI training programs work to 

improve their languages in the months before the admissions exam. Indeed, common 

advice to aspiring interpreters is to improve their native language. Though 

interestingly, the present data show larger differences in L2 verbal fluency, not L1.  

While it appears that verbal fluency could be a useful tool in selecting between 

Master’s program applicants, more research should be completed to flesh out the role 

it plays. In particular, studies comparing verbal fluency with outcomes on currently 

used admissions exams and later test scores and progress would be highly 

informative. It should also be noted that the verbal fluency task is a measure of both 

vocabulary size and access to items. Arguably, the latter of these two components is 

more directly connected to successful simultaneous interpretation. Future research 
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may wish to examine the independent contributions of these two components to SI 

performance. 

5.7.3 Inhibitory Control 

 The follow-up experiment was intended to differentiate between two possible 

explanations of the language switching data from the main experiment. The first 

explanation posited that training in SI leads to an increase in inhibition applied to the 

L1. Support for this account is not present in the current data as the trained Finishing 

Master’s students evidenced the same pattern of results as the untrained Finishing 

Triennale and Beginning Master’s students. The second explanation put forward 

suggested that recent SI practice, not training, leads to a decrease in inhibition applied 

to the L1. Support for this account is also lacking. The Finishing Triennale students 

who were untrained and had no practice with SI patterned with the Beginning 

Master’s and Finishing Master’s groups, both of which had recent SI practice.  

Though the results of the follow-up experiment do not appear to support either 

previously proposed account, the data do reveal two patterns of n-2 repetition costs 

across the languages. The Thesis group showed one pattern in which similar levels of 

inhibition were applied to L1 and L3, with potentially less inhibition applied to L2. 

While the other three groups showed a pattern of smaller n-2 repetition costs in the L1 

than in the L2 and L3, which did not differ. As the Thesis group is not unique among 

the four groups in either SI training or practice, the cause of this difference likely lies 

in other language or experience characteristics.  

 Reviewing the self-rated proficiency levels of the four groups, the Thesis 

group emerges as the most highly proficient in the L2. Thus, the different pattern seen 

among the Thesis students may be related to this increased proficiency. An effect of 



148 
 

L2 proficiency was seen in the L2 n-2 repetition cost, where higher oral proficiency 

was associated with less inhibition (though this result should be viewed with caution). 

However, no such association was present in the L1 where group differences in n-2 

repetition cost were also apparent.  

 In addition to L2 proficiency, the Thesis students may differ from the other 

groups in their prevalent language context. The three non-Thesis groups were all 

actively engaged in courses and school-life at the time of testing. The Thesis students, 

on the other hand, were engaged in the solitary task of thesis writing. Notably, the 

frequency of code-switching across the groups was highest for the “at school” 

situation. Thus, if the Thesis students are spending considerably less time in the “at 

school” situation, their balance between code-switching exchanges and single- or 

dual-language exchanges may have shifted toward the latter. As languages in the 

single- and dual-language contexts are thought to be in competition, this shift in 

context may have caused greater inhibition among the Thesis students. This 

explanation can account for the greater L1 inhibition seen the Thesis students, though 

similar changes in L2 inhibition were not present. Thus, a combination of L2 

proficiency and language context may have contributed to the differential patterns 

seen across the groups. 

 This interaction of factors may also explain the variety of patterns seen in the 

previous studies of the n-2 repetition cost in language switching. Comparing the 

present patterns with those studies, a similarity is evident between the three non-

Thesis groups and the visually noted smaller cost in L1 in Philipp and Koch (2009). 

Additionally, the smaller cost in L2 seen in the Thesis students is mirrored by the 

participants in Philipp and colleagues (2007). The previous studies, however, do not 
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provide sufficient information about language context and proficiency to judge the 

comparability of these groups.  

 Future examinations of the n-2 repetition cost in language switching would 

increase our knowledge of the specific role that inhibitory control plays in language 

management. Unlike switching costs, which may reflect both inhibition and activation 

(Koch & Philipp, 2005), the n-2 repetition cost is a pure measure of inhibition (Kiesel 

et al., 2010; Koch et al., 2010). Thus, this measure provides a tool to examine 

inhibitory control in varying types of multilinguals.  

Finally, inhibitory control in the non-language domain appears to be 

unaffected by these language use factors. However, given that no overall difference in 

inhibitory control was seen on the language task, but rather the differences were 

specific to the language classification, it is not surprising that differences did not exist 

on the non-language task.  

5.7.4 Limitations and Future Directions 

The present study set out to understand the use of inhibitory control in 

simultaneous interpretation and instead provided initial information about inhibitory 

control use in multilinguals more generally. As the study was not designed for this 

latter question, some pertinent information may be missing, such as more specific 

estimates of code-switching usage and common language contexts. Future studies 

may address this by creating a more specialized language questionnaire. 

Regarding the initial aim of the study, the use of students proved to complicate 

the results, as the primary language context of students appears to be driven not by 

experience with simultaneous interpretation, but rather the educational environment. 
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Future studies may better target the role of inhibition in simultaneous interpretation by 

examining professional interpreters using the n-2 repetition cost measure. These 

studies should also employ broad language questionnaires to consider all possible 

influences. 

Finally, the current paradigm made use of a productive language switching 

paradigm, however, the simultaneity of languages in SI may apply specifically to 

receptive language (see Grosjean, 1997 for a model). Thus, an investigation using a 

receptive language switching paradigm may furnish different results. 

  

5.8 Concluding Remarks 

 The present study demonstrated that the level of inhibitory control used in 

language management is dependent on various language and language use 

characteristics of the individual bilingual. Further, it promoted the use of the n-2 

repetition cost measure in studying inhibitory control among multilinguals. Finally, 

enhanced verbal fluency appears to be related to acceptance to a simultaneous 

interpretation training program.  
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CHAPTER 6 

THE FINAL INTERPRETATION 

 

 The present project set out to examine the fingerprint that simultaneous 

interpretation leaves on the mind and brain. By investigating the neurocognitive 

profile of professional interpreters and students of interpretation, we hope to provide 

further insight into the complex processes that make up the simultaneous 

interpretation skill. The data presented here support the narrative that interpreters are 

not expert bilinguals, but rather possess enhancements that are specific to the needs of 

simultaneous interpretation. This finding, which is in line with a recent study 

(Morales et al., 2015), suggests that simultaneous interpretation is not merely an 

extreme form of bilingualism, but a skill that builds upon bilingualism. The data 

further suggest that the enhancements seen in interpreters are due to a combination of 

innate abilities and trained abilities.  

The abilities which appeared to be the precursors to successful acquisition of 

the simultaneous interpretation skill clustered around language-related functions. 

These functions included verbal intelligence, verbal fluency, strength of the language 

white matter connections, and efficiency of the spoken word learning network. Thus, 

it appears that strong verbal abilities may be a prerequisite for acceptance into an SI 

training program. Indeed, anecdotal evidence suggests that this is true; aspiring 

interpreters are often given the advice to strengthen their native language, which may 

particularly affect verbal fluency. This advice also highlights the fact that “innate” is 

likely a misnomer for these abilities. A more accurate label may be “acquired before 
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training.” This cluster of abilities further underwrites the importance of high verbal 

aptitude in simultaneous interpretation.  

In contrast to the “innate” abilities, SI training evidenced growth in several 

cognitive control abilities, in particular, verbal and spatial short-term memory, verbal 

working memory, and brain regions involved in the simultaneity of input and output. 

These changes may be taken as evidence of the processes that are particularly 

recruited during simultaneous interpretation and therefore received targeted training. 

The use of verbal memory is line with the need to store source language input and 

pre-output target language utterances. The enhancement in spatial short-term memory 

further suggests that simultaneous interpretation may additionally rely on some types 

of non-verbal memory. Finally, the growth in brain regions which support the 

simultaneity of speaking and listening pinpoints this aspect of simultaneous 

interpretation as particularly difficult and unique to SI. 

Notably, training or practice with simultaneous interpretation did not appear to 

influence the use of inhibitory control as a language management mechanism. 

Evidence for this lack of change comes primarily from the examination of n-2 

repetition costs; however, it is corroborated by the absence of changes in gray matter 

volume in regions supporting language control. These data suggest that simultaneous 

interpretation makes use of the same options for language control as those available to 

non-interpreter multilinguals.  

The findings described in the presented studies may be of particular use to 

simultaneous interpretation training programs. These data may assist in creating 

admissions procedures and training materials which target the skills required for SI. It 

is important to note, however, that the division of “innate” and trained abilities 
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detailed above may be the result of already present admissions and training 

procedures. Specifically, admissions tests may assess verbal abilities, but not general 

cognitive abilities. This has two implications. First, admissions procedures could 

potentially be improved through the assessment of additional abilities. Second, the 

labeling of verbal abilities as a prerequisite may be premature, as the differences seen 

may be a reflection of the current selection procedures. Future studies should examine 

a broader set of applicants to adjudicate these issues. 

The studies presented in this dissertation represent an initial examination of 

the effect that the complex task of simultaneous interpretation has on the mind and 

brain. The findings have direct significance for simultaneous interpretation trainers 

and researchers, as well as for understanding language processing more generally. 

Additionally, the results speak to the extraordinary plasticity of the brain during skill 

learning even in adulthood. Future research on simultaneous interpretation will further 

our understanding of the intricacies and immense capacity of the human brain. 
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Appendix A: Functionally Fluent Questionnaire 

English version 

Please list all the foreign languages you have studied or know. For each language 

please answer the following questions with that language in mind. 

1. Do you know the A1, A2, B1 etc. system of classifying language levels? If 

yes, what is your level in this language? 

2. Could you discuss a topic in which you are not an expert, such as politics, in 

this language? 

3. Can you understand news programs in this language? 

4. Could you read a novel or short story for pleasure in this language? 

5. Could you tell a story about events in the past, present, and future to a group 

of people in this language? 

6. Could you write a letter in this language to a friend about an important event 

in your life and how it affected you? 

7. Would you be able to understand an announcement about a cancelled train in 

this language and follow the directions given about where to refund or change 

your ticket? 

8. Could you write an essay in this language on a work of literature? 

9. Could you understand a textbook passage on your field of study in this 

language? 
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Italian version 

Per favore elenca le lingue straniere che hai studiato o che conosci. Per ogni lingua, 

per favore rispondi alle seguenti domande riferendoti a quella lingua. 

1. Conosci il sistema di classificazione A1, A2, B2, ecc. che indica il livello di 

conoscenza di una lingua? Se si, quale e’ il tuo livello in questa lingua? 

2. Potresti parlare di un tema del quale non sei esperto, come la politica, in 

questa lingua? 

3. Potresti comprendere un telegiornale in questa lingua? 

4. Potresti leggere un romanzo o un breve racconto per passatempo in questa 

lingua? 

5. Potresti raccontare una storia su un evento del passato, uno del presente e uno 

del futuro a un gruppo di persone in questa lingua? 

6. Potresti scrivere una lettera in questa lingua ad un amico riguardo un evento 

importante della tua vita e di come ti ha influenzato? 

7. Saresti capace di comprendere un annuncio riguardo un treno cancellato in 

questa lingua e seguire le istruzioni date su dove farti rimborsare o cambiare il 

biglietto? 

8. Potresti scrivere un saggio in questa lingua su un brano di letteratura? 

9. Potresti comprendere un passaggio di un libro di testo nel tuo campo di 

interesse in questa lingua? 
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Appendix B: Verbal Fluency Categories in Each Language 

Set English Italian Croatian Dutch French German Russian Spanish 

Semantic 

set 1 

body parts parti del corpo dijelovi tijela lichaamsdelen parties du 

corps 

Körperteile части тела partes del 

cuerpo 

occupations professioni zanimanja beroepen métiers Berufe профессии profesiones 

musical 

instruments 

strumenti 

musicali 

glazbeni 

instrumenti 

muziekinstrumenten instruments 

de musique 

Musikinstrumente музыкальные 

инструменты 

instrumentos 

musicales 

Semantic 

set 2 

animals animali životinje dieren animaux Tiere животные animales 

vegetables legumi biljke groente légumes Gemüse овощи legumbres 

clothing items abbigliamento odjeća kledingstukken vêtements Kleidungsstücke виды одежды ropa 

Semantic 

set 3 

methods of 

transportation 

mezzi di 

trasporto 

prijevozna 

sredstva 

vervoermiddelen transports Verkehrsmittel виды 

транспорта 

medios de 

transporte 

sports sport sportovi sporttaken sport Sportarten виды спорта deportes 

fruits frutta voće fruit fruits Obst фрукты fruta 

Letter  

set 1 

A A A A A A A A 

M M M M M M M M 

F F F F F F Ф F 

Letter  

set 2 

E E E E E E E E 

T T T T T T T T 

G G G G G G Г G 

Letter  

set 3 

O O O O O O O O 

D D D D D D Д D 

L L L L L L Л L 
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