
Università di Pisa
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An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which
allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a
gap function are analysed and an upper estimates of its Clarke directional derivative is given. Monotonicity
assumptions on both the equilibrium and constraining bifunctions are a key tool to guarantee that all
the stationary points of a gap function actually solve QEP. A few classes of constraints satisfying such
assumptions are identified covering a wide range of situations. Relying on these results, a descent method
for solving QEP is devised and its convergence proved. Finally, error bounds are given in order to guarantee
the boundedness of the sequence generated by the algorithm.
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1. Introduction
Variational inequalities and Nash equilibrium problems (see, for instance, [26, 50]) are not well
suited to model noncooperative games in which players share resources or more generally the fea-
sible strategies of each player depend on the choices of the others (see, for instance, the seminal
prototype of an abstract competitive economy by Arrow and Debreu [1]). More general mathemat-
ical models such as quasi-variational inequalities (see [4, 5, 13]) and generalized Nash equilibrium
problems (see [23]) have to be considered.

In this paper we focus on the following (abstract) quasi-equilibrium problem

find x∗ ∈C(x∗) s.t. f(x∗, y)≥ 0 ∀y ∈C(x∗), (QEP )

where the bifunction f :Rn×Rn→R satisfies the equilibrium condition f(x,x) = 0 for any x∈Rn
and the constraints are given by a set-valued map C : Rn ⇒ Rn that describes how the feasible
region changes together with the considered point.

Clearly, QEPs are modelled upon quasi-variational inequalities (shortly QVIs), that is the case

f(x, y) = 〈F (x), y−x〉 (1)

for some F : Rn −→ Rn. Generalized Nash equilibrium problems (shortly GNEPs) can be refor-
mulated through (QEP ) as well. Indeed, consider the situation in which each player i aims at
maximizing an utility function fi(·, x−i) over a set of feasible strategies Ci(x−i) for some fi :
Rn1 × ...×Rn` −→ R and some set-valued map Ci : Rn1+...+n`−ni ⇒Rni , which both depend upon
the strategies x−i = (xj)j 6=i chosen by the other players. Finding a (generalized) Nash equilibrium
amounts to solving (QEP ) with the Nikaido-Isoda aggregate bifunction

f(x, y) =
∑̀
i=1

[fi(x)− fi(x−i, yi)]
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and C(x) =C1(x−1)× ...×C`(x−`). It is also worth noting that (QEP ) is a natural generalization of
the so-called abstract equilibrium problem (shortly EP), i.e., the case in which the set-valued map
C is constant. As EP subsumes optimization, multiobjective optimization, variational inequalities,
fixed point and complementarity problems, Nash equilibria in noncooperative games and inverse
optimization in a unique mathematical model (see, for instance, [10, 7]), further “quasi” type
models could be analysed through the QEP format beyond QVIs and GNEPs.

QVIs have been introduced in [4, 5] to study impulse control problems and subsequently exploited
to model several finite and infinite-dimensional equilibrium problems (see, for instance, [3, 13, 47]).
Different approaches have been considered to devise solution methods: characterizations based on
fixed points and projections [13, 51, 52], penalization of coupling constraints [55, 57, 22], KKT
systems [24], minimization of dual gap functions in the affine case [36]. Also Newton type methods,
which guarantee only local convergence, have been developed [53, 54]. A way to study GNEPs
is to formulate them as QVIs (see, for istance, [34]) and exploit the corresponding theories and
algorithms: projection methods are expolited in [60] while penalty techniques and barrier methods
in [46]. The simultaneous resolution of the KKT conditions of the optimization problems describing
a GNEP has been carried out through locally convergent Newton type techniques [21, 42] and
globally convergent interior-point type techniques [17]. Ad hoc algorithms for particular classes of
GNEPs and equilibria have been developed as well: normalized equilibria of jointly convex GNEPs
are computed through the reformulation as optimization problems [56, 37, 38] and (standard)
variational inequalities [20], restricted equilibria through penalization techniques [31], and equilibria
of potential GNEP through decomposition algorithms [27].

Unlikely QVI and GNEP, the QEP format did not receive much attention: existence results have
been given in [11, 16] and an extragradient type algorithm has been developed in [58]. To the best
of our knowledge, no other algorithm has been devised up to now. The goal of the paper is to
reformulate (QEP ) as an optimization problem through a suitable gap function and develop an
ad-hoc descent algorithm, supposing that the set-valued map C can be described by constraining
bifunctions (see Section 2.1).

Gap functions have been originally conceived for variational inequalities [15, 29] and later
extended to EPs [48, 49], QVIs [32, 19, 30, 59, 2, 33, 35], jointly convex GNEPs via the Nikaido-
Isoda binfunction [37, 38, 18, 56] and generic GNEPs via QVI reformulations [46]. Though descent
type methods based on gap functions have been extensively developed for EPs (see, for instance,
[49, 44, 12, 43, 45, 6, 8, 9] and Section 3.2 in the survey paper [7]), the analysis of gap functions
for QVIs is focused on smoothness properties [19, 30, 59, 18, 35] and error bounds [2, 33] while no
algorithm is developed. A descent method has been developed in [38] for jointly convex GNEPs;
anyway, the choice of restricting to the computation of normalized equilibria makes the problem
actually fall within the EP (and not the QEP) framework.

Indeed, the reformulation of (QEP ) as an optimization problem brings some difficult issues in
devising descent methods which are not met in the EP case: the gap function is not necessarily
differentiable even though the equilibrium and the constraining bifunctions are differentiable; the
feasible region is given by the fixed points of the set-valued constraining map C and is therefore more
difficult to handle; the so-called stationarity property (see, for instance, [6]), which guarantees all
the stationary points of the gap function to be actually global minimizers and therefore solutions of
(QEP ), requires monotonicity assumptions both on the equilibrium and constraining bifunctions.
These issues are dealt with in Section 2. After the gap function has been introduced and the
reformulation of (QEP ) as an optimization problem shown, Section 2.1 analyses the smoothness
properties of the gap function; in particular, an upper estimate of its Clarke directional derivative is
given, which provides a key tool in devising the descent method. Section 2.2 deals with stationarity
and descent directions; furthermore, classes of constraints which allow guaranteing the stationarity
property are identified. Section 3 describes the descent method and its convergence is proved under
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standard assumptions, while Section 4 provides error bounds, which guarantee that the sequence
generated by the algorithm is bounded. Finally, Section 5 addresses possible improvements of the
results and directions for further investigations.

2. Gap functions
Throughout the paper we suppose that f is continuously differentiable and f(x, ·) is convex for
all x ∈ Rn, while the values C(x) of the constraining set-valued map C : Rn ⇒ Rn are supposed
closed and convex (maybe empty) for any x ∈Rn. We also consider the sets C(x) to be explicitly
described by convex constraints, i.e.,

C(x) = { y ∈Rn : gi(x, y)≤ 0 i= 1, . . . ,m }

for some continuously differentiable functions gi : Rn×Rn→Rn such that gi(x, ·) is convex for all
x∈Rn. Let D denote the domain of the mapping C, i.e.,

D= {x∈Rn : C(x) 6= ∅}

and let DS denote the set of all the points x ∈ D such that C(x) satisfies the Slater condition,
i.e., x ∈DS if and only if there exists ŷ ∈Rn such that gi(x, ŷ)< 0 for any i= 1, . . . ,m. A simple
continuity argument shows that DS is an open set. Finally, let X denote the set of the fixed points
of C, i.e.,

X = {x∈Rn : x∈C(x)}= {x∈Rn : gi(x,x)≤ 0 i= 1, . . . ,m}.

Clearly, X ⊂D and it can be considered the feasible region of (QEP ) since any candidate solution
of the problem has to belong to X. For the sake of simplicity, just inequality constraints are
considered. Actually, linear equality constraints can be incorporated into the analysis as a pair of
inequalities at no cost. It is enough to restate the Slater condition in the standard way, that is
ŷ ∈Rn satisfies gi(x, ŷ)< 0 for the inequality constraints and gi(x, ŷ) = 0 for the (implicitly given)
linear equalities.

The minimum value of f(x, ·) over C(x) provides a measure of the quality of the candidate
solution x ∈X. Anyway, f(x, ·) may be unbounded below on C(x). Adding an auxiliary term to
f allows overcoming this drawback. In fact, consider any continuously differentiable bifunction
h :Rn×Rn→R such that
• h(x, y)≥ 0 for all x, y ∈Rn and h(z, z) = 0 for all z ∈Rn,
• h(x, ·) is strongly convex with modulus τ > 0 for all x∈Rn,
• ∇yh(z, z) = 0 for all z ∈Rn,
• 〈∇xh(x, y) +∇yh(x, y), y−x〉 ≥ 0 for all x, y ∈Rn.
The value function

ϕ(x) =−min{ f(x, y) +h(x, y) : y ∈C(x) } (2)

is finite at any x∈D since the inner optimization problem has a strongly convex objective function
f(x, ·) + h(x, ·) and the feasible region C(x) is closed and convex. Moreover, it admits a unique
minimizer y(x): this feature is useful to prove continuity and smoothness properties of ϕ (see
Section 2.1). The most straightforward choice for the auxiliary term is h(x, y) = ‖x− y‖2/2.

Just like in the particular case of QVIs (see, for instance, [30, 59]), ϕ is a gap function. Indeed,
it allows turning (QEP ) into an optimization problem through the following characterizations.

Theorem 1.
a) x∗ ∈X solves (QEP) if and only if y(x∗) = x∗.
b) ϕ(x)≥ 0 for all x∈X.
c) x∗ solves (QEP) if and only if x∗ ∈X and ϕ(x∗) = 0.
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Proof.
a) If x∗ ∈X solves (QEP ), then

f(x∗, y) +h(x∗, y)≥ f(x∗, y)≥ 0 = f(x∗, x∗) +h(x∗, x∗)

holds for any y ∈C(x∗). Since y(x∗) is the unique minimizer of f(x∗, ·) +h(x∗, ·) over C(x∗), then
clearly y(x∗) = x∗.

Vice versa suppose y(x∗) = x∗. Therefore, x∗ ∈C(x∗) and thus also x∗ ∈X holds. Moreover, the
optimality conditions for x∗ read

〈∇yf(x∗, x∗) +∇yh(x∗, x∗), y−x∗〉 ≥ 0, ∀ y ∈C(x∗).

Since ∇yh(x∗, x∗) = 0, the convexity of f(x∗, ·) implies

f(x∗, y)≥ f(x∗, x∗) + 〈∇yf(x∗, x∗), y−x∗〉 ≥ 0, ∀ y ∈C(x∗),

hence x∗ solves (QEP ).
b) Any x∈X satisfies x∈C(x), therefore

ϕ(x) =−min{ f(x, y) +h(x, y) : y ∈C(x) } ≥−f(x,x)−h(x,x) = 0.

c) If x∗ solves (QEP ), then x∗ ∈X and x∗ = y(x∗) by a) so that

ϕ(x∗) =−[f(x∗, x∗) +h(x∗, x∗)] = 0.

Vice versa, ϕ(x∗) = 0 reads

f(x∗, y) +h(x∗, y)≥ 0 = f(x∗, x∗) +h(x∗, x∗) ∀ y ∈C(x∗),

so that x∗ ∈X implies y(x∗) = x∗. Therefore, x∗ solves (QEP ) by a). �

The theorem shows that (QEP ) can be equivalently formulated as the global optimization prob-
lem

min { ϕ(x) : x∈X }. (3)

Anyway, (3) is generally a difficult problem: ϕ is neither convex nor differentiable and X may have
a complex structure. Nonsmoothness is handled in Section 2.1, while monotonicity conditions that
allow overcoming the lack of convexity are addressed in Section 2.2.

2.1. Continuity and differentiability
Once the continuity of the solution map y(x) of the inner optimization problem in (2) is guaranteed,
the continuity of the gap function ϕ is achieved as well since ϕ(x) =−f(x, y(x))−h(x, y(x)).

Theorem 2. The mapping x 7−→ y(x) is continuous at any x∈DS.

Proof. Since gi are continuous, the set valued map C is closed on D. Moreover, C is open at
any x∈DS since gi(x, ·) are continuous and convex and satisfy Slater condition (see [41, Theorem
12]). Thus, C is continuous at x. Since f is continuous and the mapping x 7−→ y(x) is single-valued,
it is uniformly compact near any x∈D by Corollary 9.1 in [41] and hence also continuous at x by
Corollary 8.1 in [41]. �
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Directional derivatives of ϕ can be computed or estimated through Danskin type formulas that
exploit Lagrange multipliers associated to y(x) in the inner optimization problem. To this aim, let
Λ(x) be the set of the vectors λ∈Rm+ such that the optimality conditions∇yf(x, y(x)) +∇yh(x, y(x)) +

m∑
i=1

λi∇ygi(x, y(x)) = 0,

λi gi(x, y(x)) = 0, i= 1, . . . ,m

(4)

for (2) hold at x∈DS. Notice that the Slater condition guarantees the compactness of Λ(x).

Theorem 3.
a) ϕ is directionally differentiable at any point x∈DS and any direction d∈Rn with

ϕ′(x;d) = min
λ∈Λ(x)

[
〈−∇xf(x, y(x))−∇xh(x, y(x))−

m∑
i=1

λi∇xgi(x, y(x)), d〉

]
.

b) ϕ is locally Lipschitz continuous near any x∈DS and the Clarke directional derivative satisfies
the inequality

ϕ◦(x;d)≤ max
λ∈Λ(x)

[
〈−∇xf(x, y(x))−∇xh(x, y(x))−

m∑
i=1

λi∇xgi(x, y(x)), d〉

]
(5)

at x in any direction d∈Rn.

Proof.
a) It follows immediately from Theorem 2 in [40].
b) Considering any fixed ū∈DS, the inner convex optimization problem in (2) can be written as

min { f(ū, y) +h(ū, y) : g(ū, y)≤ 0, y ∈Rn }.

Since the Slater condition holds, the set of multipliers Λ(ū) is nonempty and (y(ū), λ(ū)) is a saddle
point of the Lagrangian function

L(ū, y, λ) := f(ū, y) +h(ū, y) + 〈λ, g(ū, y)〉,

for any λ(ū)∈Λ(ū), i.e., the inequalities

L(ū, y(ū), λ)≤L(ū, y(ū), λ(ū))≤L(ū, y, λ(ū))

hold for any y ∈ Rn and any λ ∈ Rm+ . Thanks to the complementary slackness conditions,
L(ū, y(ū), λ(ū)) = f(ū, y(ū)) + h(ū, y(ū)) =−ϕ(ū) holds and the above inequalities can be equiva-
lently turned into

−L(ū, y, λ(ū))≤ϕ(ū)≤−L(ū, y(ū), λ).

Given any u, v ∈DS, the right inequality with ū= u and λ= λ(v) and the left inequality with ū= v
and λ= λ(v) provide

ϕ(u)−ϕ(v) ≤ L(v, y(u), λ(v))−L(u, y(u), λ(v))

= f(v, y(u)) +h(v, y(u))− [f(u, y(u)) +h(u, y(u))]

+〈λ(v), g(v, y(u))− g(u, y(u))〉

≤ f(v, y(u)) +h(v, y(u))− [f(u, y(u)) +h(u, y(u))]

+‖λ(v)‖‖g(v, y(u))− g(u, y(u))‖.
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Furthermore, the mean value theorem guarantees that

f(v, y(u)) +h(v, y(u))− [f(u, y(u)) +h(u, y(u))]

= 〈∇xf(v′, y(u)) +∇xh(v′, y(u)), v−u〉

holds for some v′ in the line segment between u and v. Given any x̄∈DS, then there exist L1 > 0
and δ1 > 0 such that B(x̄, δ1)⊆DS and

f(v, y(u)) +h(v, y(u))− [f(u, y(u)) +h(u, y(u))]≤L1 ‖v−u‖

holds for all u, v ∈B(x̄, δ1) since the mappings ∇xf , and ∇xh are continuous on Rn and x 7−→ y(x)
is continuous at x̄. On the other hand, the functions gi(·, y(u)) are continuously differentiable so
that there exist L2 > 0 and δ2 > 0 such that

‖g(v, y(u))− g(u, y(u))‖ ≤L2 ‖v−u‖

holds for all u, v ∈ B(x̄, δ2). Moreover, Lemma 2 in [40] guarantees the existence of L3 > 0 and
δ3 > 0 such that ‖λ(v)‖ ≤L3 holds for all v ∈B(x̄, δ3) and all λ(v)∈Λ(v). Therefore, the last three
inequalities imply that

ϕα(u)−ϕα(v)≤ (L1 +L2L3)‖v−u‖

holds for all u, v ∈B(x̄, δ), where δ= min{δ1, δ2, δ3}. Therefore ϕ is locally Lipschitz near x̄.
In order to prove (5) consider a fixed x ∈DS and a fixed direction d ∈ Rn. Setting zt := z + t d

for any z ∈B(x, δ′) with δ′ > 0 and t > 0, then both z ∈DS and zt ∈DS hold if δ′ and t are small
enough. Therefore, considering any λ(zt)∈Λ(zt), the inequality

ϕ(zt)−ϕ(z) ≤ f(z, y(zt)) +h(z, y(zt))− [f(zt, y(zt)) +h(zt, y(zt))]

+〈λ(z), g(z, y(zt))− g(zt, y(zt))〉

can be proved arguing as in the first part of the proof. The mean value theorem guarantees that

f(z, y(zt)) +h(z, y(zt))− [f(zt, y(zt)) +h(zt, y(zt))]

= 〈∇xf(z̃(z, t), y(zt)) +∇xh(z̃(z, t), y(zt)), z− zt〉

= t 〈−∇xf(z̃(z, t), y(zt))−∇xh(z̃(z, t), y(zt)), d〉

and
gi(z, y(zt))− gi(zt, y(zt)) = 〈∇xgi(z̃′i(z, t), y(zt)), z− zt〉

= −t 〈∇xgi(z̃′i(z, t), y(zt)), d〉

hold for some z̃(z, t) in the line segment between z and zt and some z̃′i(z, t) in the line segment
between z and zt.

Let zk→ x and tk ↓ 0 be two sequences such that ϕ◦(x;d) = limk→∞ t
−1
k

[
ϕ(zktk)−ϕ(zk)

]
. The last

three formulas above with z = zk and t= tk (and therefore zt = zktk) lead to

[ϕ(zktk)−ϕ(zk)]/tk ≤ 〈−∇xf(z̃(zk, tk), y(zktk))−∇xh(z̃(zk, tk), y(zktk)), d〉

−〈λ(zk),w(x, zktk , tk)〉,
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where w(x, zktk , tk)∈R
m is the vector of components 〈∇xgi(z̃′i(zk, tk), y(ztk)), d〉 (i= 1, . . . ,m). Since

zk→ x and tk ↓ 0, then zktk→ x, z̃(zk, tk)→ x, and y(zktk)→ y(x) by Theorem 2. Hence, the limit

lim
k→∞
〈−∇xf(z̃(zk, tk), y(zktk))−∇xh(z̃(zk, tk), y(zktk)), d〉

=−〈∇xf(x, y(x)) +∇xh(x, y(x)), d〉

holds since ∇xf and ∇xh are continuous. Furthermore, Lemma 2 in [40] guarantees that Λ(z)
is uniformly bounded on a neighborhood of x and closed at x. Hence, taking a subsequence if
necessary, there exists λ̂ ∈ Λ(x) such that λ(zk)→ λ̂. Moreover, z̃′i(z

k, tk)→ xi and the continuity
of ∇xg imply

lim
k→∞
−〈λ(zk),w(x, zktk , tk)〉 =−〈λ̂,∇xg(x, y(x))d〉.

As a consequence, the inequality

ϕ◦(x;d)≤ 〈−∇xf(x, y(x))−∇xh(x, y(x))−
m∑
i=1

λ̂i∇xgi(x, y(x)), d〉

holds, yielding (5). �

When (QEP ) takes the shape of a quasi-variational inequality, that is f is given by (1), Theorem
2.3 a) coincides with the results given for polyhedral constraints in [30] and for general convex
constraints in [59].

If Λ(x) is a singleton, then ϕ′(x; ·) is actually linear and therefore the gap function ϕ is dif-
ferentiable at x. This happen, for instance, in the case y(x) ∈ intC(x) since the complementarity
slackness conditions in (4) imply Λ(x) = {0}.

Differentiability may hold also when the sets C(x) have particular structures. For instance, ϕ
is continuously differentiable if the set-valued mapping C describes a (generalized) moving set.
Indeed, suppose

C(x) =Q(x)K + t(x) (6)

holds at each x ∈ Rn for some closed convex K ⊆ Rp with p ≤ n, Q(x) =
(
Qij(x)

)
∈ Rn×p with

Qij :Rn→R and t :Rn→Rn being continuously differentiable.
As a consequence, ϕ can be equivalently written as

ϕ(x) =−min{ f(x,Q(x)z+ t(x)) +h(x,Q(x)z+ t(x)) : z ∈K }.

If Q(x) has full column rank, then the inner optimization problem above has a unique solution z(x)
and moreover y(x) = Q(x)z(x) + t(x). Since K does not depend upon x, the classical Danskin’s
theorem can be exploited and provides the following result.

Theorem 4. If (6) holds at each x ∈ Rn, all the functions Qij and t are continuously differ-
entiable on Rn, Q(x) has full column rank for all x ∈ Rn and K is closed and convex, then ϕ is
continuously differentiable on Rn and

∇ϕ(x) = − [∇xf(x, y(x)) +∇xh(x, y(x))+(
∇t(x) +

p∑
i=1

zi(x)∇Qi(x)

)
(∇yf(x, y(x)) +∇yh(x, y(x)))

]
,

(7)

where ∇Qi(x) denotes the matrix whose j-row is ∇Qij(x).

Notice that (7) turns into the simpler form

∇ϕ(x) =− [∇xf(x, y(x)) +∇xh(x, y(x)) +∇t(x)(∇yf(x, y(x)) +∇yh(x, y(x)))]

whenever p= n and Q= I. If furthermore t≡ 0, then C(x) is always K and (QEP ) reduces to the
classical EP format while Theorem 4 collapses into Theorem 2.1 of [49].
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2.2. Stationary points
The reformulation of (QEP ) as the minimization problem (3) allows exploiting optimality condi-
tions: the stationarity condition for x∈DS reads

ϕ′(x;d)≥ 0 ∀ d∈ T (X,x), (8)

where T (X,x) denotes the Bouligand tangent cone of X at x. Anyway, global minima are seeked:
stationary points may be not even local minima since ϕ and X are not necessarily convex. Adding
suitable monotonicity conditions is a way to overcome this issue. When EPs are considered, i.e.,
C(x) =C for some convex set C and any x, the sets of stationary points and global minima coincide
provided that f is strictly ∇-monotone on C, i.e., f satisfies

〈∇xf(x, y) +∇yf(x, y), y−x〉> 0

for any x, y ∈C (see, for instance, [6, 49]). In the general case some assumptions on the constraints
are required as well. Since only active constraints are involved in the directional derivative, it is
reasonable to restrict monotonicity assumptions accordingly: the constraining function gi is said
to satisfy the active ∇-monotonicity condition at x∈D if any y ∈C(x) satisfies

〈∇xgi(x, y) +∇ygi(x, y), y−x〉 ≥ 0 if gi(x, y) = 0. (9)

The equivalence between stationarity and global optimality holds under these monotonicity
assumptions provided that the solution y(x) of the inner optimization problem (2) lies inside the
first order approximation x+T (X,x) of X around x.

Theorem 5. Let x ∈ X ∩DS such that y(x) ∈ x+ T (X,x) be given. Suppose f is strictly ∇-
monotone on C(x) and the constraint functions gi satisfy the active ∇-monotonicity condition at
x. Then, the following statements are equivalent:

a) x solves (QEP);
b) ϕ′(x;d)≥ 0 for any d∈ T (X,x);
c) ϕ◦(x;d)≥ 0 for any d∈ T (X,x).

Proof. The necessary optimality conditions for (3) guarantee that a) implies b), while b) implies
c) since ϕ◦(x;d)≥ϕ′(x;d) holds for any d∈Rn. Hence, it is enough to prove that c) implies a).

By contradiction, suppose x does not solve (QEP ). Hence, y(x) 6= x and the following chain of
equalities and inequalities hold

ϕ◦(x;y(x)−x) ≤ 〈−∇xf(x, y(x))−∇xh(x, y(x))−
m∑
i=1

λi∇xgi(x, y(x)), y(x)−x〉

≤ 〈−∇xf(x, y(x)) +∇yh(x, y(x))−
m∑
i=1

λi∇xgi(x, y(x)), y(x)−x〉

= 〈−∇xf(x, y(x))−∇yf(x, y(x)), y(x)−x〉+

−
m∑
i=1

λi〈∇xgi(x, y(x)) +∇ygi(x, y(x)), y(x)−x〉

≤ 〈−∇xf(x, y(x))−∇yf(x, y(x)), y(x)−x〉

< 0,

where λ ∈ Λ(x) provides an upper bound on the value of the directional derivative according to
Theorem 3 b). The other inequalities are due to the ∇-monotonicity of h, f and gi paired with the



Giancarlo Bigi and Mauro Passacantando - gap functions for quasi-equilibria 9

complementarity slackness conditions in (4), while the equality is due to the multiplier rule in (4).
Therefore, c) does not hold since y(x)−x∈ T (X,x). �

The following descent property is achieved as a by-product of the above proof, and it provides
the basic tool to design the solution algorithm of Section 3.

Corollary 1. Let x ∈X ∩DS such that y(x) ∈ x+ T (X,x) be given. Suppose f is strictly ∇-
monotone on C(x) and the constraint functions gi satisfy the active ∇-monotonicity condition at x.
If x is not a solution of (QEP), then y(x)−x is a descent direction for ϕ at x, i.e., ϕ◦(x;y(x)−x)<
0.

In [59] the equivalence between a) and b) of Theorem 5 is proved for QVIs under a slightly
stronger assumption than (9), which involves only the gradients ∇xgi(x, y). Furthermore, the same
equivalence has been exploited in [46] in a very particular framework: the QVI reformulation of a
generalized Nash equilibrium problem with only linear equality shared constraints. Indeed, linear
equality shared constraints satisfy both the active ∇-monotonicity condition (9) and the additional
assumption on y(x) (see the last paragraph of this section).

In the case of EPs Theorem 5 and Corollary 1 collapse to well-known results (see, for instance,
[6, 49]). Notice that active∇-monotonicity and the additional requirement on y(x) are not explicitly
given in [6, 49] since they are always met. Indeed, if gi(x, y) = ci(y) for suitable continuously
differentiable convex functions ci for all i’s, that is C(x) = C = {y : ci(y) ≤ 0} for any x, then
X = C and hence y(x) ∈X always holds true. As a consequence, the convexity of X guarantees
y(x)∈ x+T (X,x). Moreover, the convexity of the constraning functions ci’s guarantees the active
∇-monotonicity condition:

〈∇xgi(x, y(x)) +∇ygi(x, y(x)), y(x)−x〉= 〈∇ci(y(x)), y(x)−x〉
≥ ci(y(x))− ci(x)
=−ci(x)
≥ 0.

Actually, the active ∇-monotonicity condition is satisfied by a few classes of constraints, which
cover a wide range of situations, as summarized below.

Proposition 1. Let ci be convex and (twice) continuously differentiable, Fi :Rn→Rn be mono-
tone and differentiable, Pi,Ri ∈ Rn×n be such that Ri and Pi +Ri are positive semidefinite, Qi ∈
Rn×p, a, ri ∈Rn and βi ∈R, α,αi ≤ 1, vi ≤ 0. Then, any of the following bifunctions

a) gi(x, y) = ci(y)− ci(x)
b) gi(x, y) = ci(Qi [y− (αx+ a)])
c) gi(x, y) = ci(x) + 〈∇ci(x), y−x〉
d) gi(x, y) = 〈Fi(x), y−x〉+ vi
e) gi(x, y) = 〈Pi x+Ri y+ ri, y−x〉+ vi
f) gi(x, y) = yi−αixi−βi
g) gi(x, y) = αixi +βi− yi

satisfies the active ∇-monotonicity condition (9) at any x∈X.

Proof. Given any x∈D, let y ∈C(x) satisfy gi(x, y) = 0.
a) The convexity of ci implies that ∇ci is monotone and therefore

〈∇xgi(x, y) +∇ygi(x, y), y−x〉= 〈∇ci(y)−∇ci(x), y−x〉 ≥ 0.
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b) The assumptions guarantee the convexity of gi(x, ·) that can be exploited to obtain (9) in the
following way

〈∇xgi(x, y) +∇ygi(x, y), y−x〉 = (1−α) 〈Qi∇ci(Qi [y− (αx+ a))], y−x〉
= (1−α) 〈∇ygi(x, y), y−x〉
≥ (1−α) [gi(x, y)− gi(x,x)]
= −(1−α)gi(x,x)
≥ 0,

where the last inequality holds since x∈X requires gi(x,x)≤ 0.
c) The convexity of ci implies that ∇2ci(x) is positive semidefinite and therefore

〈∇xgi(x, y) +∇ygi(x, y), y−x〉 = 〈y−x,∇2ci(x)[y−x]〉+ 〈∇ci(x), y−x〉
≥ 〈∇ci(x), y−x〉
= −ci(x)
≥ 0,

where the last inequality holds since x∈X implies ci(x) = gi(x,x)≤ 0.
d) The monotonicity of Fi implies that ∇Fi(x) is positive semidefinite and therefore

〈∇xgi(x, y) +∇ygi(x, y), y−x〉= 〈y−x,∇Fi(x)(y−x)〉 ≥ 0.

e) The positive semidefiniteness of Pi +Ri guarantees

〈∇xgi(x, y) +∇ygi(x, y), y−x〉= 〈y−x, (Pi +Ri)(y−x)〉 ≥ 0.

f) The assumptions gi(x, y) = 0 and x∈X read xi ≤ αixi +βi = yi.Therefore, αi ≤ 1 guarantees

〈∇xgi(x, y) +∇ygi(x, y), y−x〉= (1−αi)(yi−xi)≥ 0.

g) Analogous to f). �

If all the constraints gi fall within the kinds a), d) and e) of the above proposition, then D =
X =Rn. This is no longer true if some of them are of the kinds b), c), f) or g).

Suppose all the constraints are of the kind b): it turns out that C(x) =K + t(x) is the moving
set provided by the convex set K =

⋂
i{y ∈ Rn : ci(Qiy)≤ 0} and t(x) = αx+ a. If K 6= ∅, then

D=Rn and

X =


(K + a)/(1−α) if α< 1,

∅ if α= 1 and −a /∈K,
Rn if α= 1 and −a∈K.

(10)

In this framework C(x) ⊆X and therefore also y(x) ∈X hold for any x ∈X whenever X is not
empty. Indeed, if α< 1, then

(1−α)C(x) = (1−α)K +α(1−α)x+ (1−α)a
⊆ (1−α)K +α(K + a) + (1−α)a
=K + a.

Suppose all the constraints are of the kind c): it turns out that X =
⋂
i{x∈Rn : ci(x)≤ 0}. If X

satisfies the Slater condition, then C(x)⊆ x+ T (X,x) (see, for instance, [8, Theorem 3]) and the
requirement of Theorem 5 is fulfilled. Anyway, y(x) ∈X does not necessarily hold: the convexity
of the ci’s guarantees just X ⊆C(x) and not the opposite inclusion. Penalization techniques might
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be exploited in algorithmic frameworks as done in [8] while linearizing the constraints in descent
type methods for EPs.

If all the variables yi’s are bounded by above through box constraints of the kind f) with αi < 1
and there are no other constraints, then X =

∏
i(−∞, βi/(1−αi)] is a box unbounded by below.

Similarly, X is a box unbounded by above if only the constraints of the kind g) exist while it is a
bounded box if both kinds of constraints describe the feasible region. In all these situations x∈X
guarantees also y(x)∈X if moreover αi > 0.

Beyond box constraints, more general linear constraints with variable right-hand side, i.e.,
gi(x, y) = 〈d, y〉− ci(x), satisfy the active ∇-monotonicity condition at any x∈X provided that ci
is a convex function such that C(x) includes the sublevel set constraint ci(y)≤ ci(x) as well:

〈∇xgi(x, y) +∇ygi(x, y), y−x〉 = 〈d−∇ci(x), y−x〉
= −〈∇ci(x), y−x〉+ (ci(x)−〈d,x〉)
≥ −〈∇ci(x), y−x〉
≥ ci(x)− ci(y)
≥ 0.

Shared constraints are a frequent feature in noncooperative games. A linear equality shared
constraint is given by

〈a1, x1〉+ · · · · · ·+ 〈a`, x`〉= b (11)

for some ai ∈Rni , b∈R. In the reformulation as (QEP ) through the Nikaido-Isoda bifunction it is
described by the 2` bifunctions

gi(x, y) = 〈ai, yi〉+
∑
j 6=i

〈aj, xj〉− b, i= 1, . . . `,

and −gi(x, y). All the above constraints satisfy the active ∇-monotonicity condition (9) at any
x∈X. In fact, x∈X guarantees that (11) holds and therefore any y ∈C(x) satisfies

〈ai, yi〉− 〈ai, xi〉= b−
∑
j 6=i

〈aj, xj〉− 〈ai, xi〉= b−
∑̀
j=i

〈ai, xi〉= 0.

Therefore,

〈∇xgi(x, y) +∇ygi(x, y), y−x〉=
∑̀
j=1

(〈aj, yj〉− 〈aj, xj〉) = 0

holds for any y ∈C(x) as gi(x, y) = 0 for all i’s. Moreover, the condition y(x)∈X is guaranteed as
well if there are no other constraints since any y ∈C(x) satisfies

∑̀
j=1

〈aj, yj〉=
∑̀
j=1

〈aj, xj〉= b.

Remark 1. In [24] some classes of constraints are explicitly covered within KKT type methods
for QVIs: moving set, box constraints, linear constraints with variable right-hand side, binary and
bilinear constraints. The first three are covered in the framework of this paper too but the last two
are not. On the other side, Proposition 1 provides additional classes of constraints that have not
been considered in [24].
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3. Descent algorithm
Theorem 5 and Corollary 1 provide the basic tools to design a solution method in the footsteps of
descent algorithms for EPs (see, for instance, [49, 12, 9]): if the current iterate xk is not a stationary
point of the gap function ϕ, a step along the descent direction y(xk)−xk is taken exploiting some
inexact line search.

Algorithm
(0) Choose β,γ ∈ (0,1), x0 ∈X and set k= 0.
(1) Compute y(xk) = arg min{f(xk, y) +h(xk, y) : y ∈C(xk)}.
(2) If dk := y(xk)−xk = 0, then STOP.
(3) Compute the smallest non-negative integer s such that

ϕ(xk + γs dk)−ϕ(xk)≤−β γ2s ‖dk‖.

4) Set tk = γs, xk+1 = xk + tk d
k, k= k+ 1 and goto Step 1.

Anyway, some meaningful differences hold with the EP case. Beyond the nonsmoothness of the
gap function which can be anyhow handled well as shown in Section 2, the sequence {xk} may be
unfeasible: xk+1 /∈X may occur even if xk ∈X, unlikely the case of EPs. In fact, y(xk) ∈ C(xk)
does not necessarily yield y(xk)∈X and the convexity of X is not guaranteed unless the mappings
x 7−→ gi(x,x) are quasiconvex. If both conditions are met, which clearly happens if X = Rn, then
the algorithm generates a feasible sequence and convergence is achieved.

Theorem 6. Suppose X ⊆DS, X is convex and C(x)⊆X holds for any x∈X. If f is strictly
∇-monotone on X and the constraining functions gi satisfy the active ∇-monotonicity condition
(9) on X, then either Algorithm stops at a solution of (QEP) after a finite number of iterations or
produces a sequence {xk} such that any of its cluster points solves (QEP).

Proof. The line search procedure is finite. Otherwise, some iteration k satisfies

ϕ(xk + γs dk)−ϕ(xk)>−β γ2s ‖dk‖

for all s∈N. Therefore, taking the maximum limit as s→+∞ leads to

ϕ◦(xk;dk)≥ limsup
s→∞

γ−s
[
ϕ(xk + γs dk)−ϕ(xk)

]
≥ 0,

in contradiction with Theorem 5 b) since xk does not satisfy the stopping criterion of Step 2 and
therefore does not solve (QEP ). Indeed, the algorithm stops at xk after a finite number of iterations
at Step 2 if and only if xk solves (QEP ) thanks to Theorem 1.

Suppose the algorithm generates an infinite sequence {xk} and let x∗ be any cluster point of the
sequence. Since the map C is closed, then X is a closed set and thus x∗ ∈X. Moreover, x̂`→ x∗ for
some subsequence {x̂`}, i.e., x̂` = xk` for some k` ↑+∞ as ` ↑+∞. Moreover, Theorem 2 guarantees
d̂` = y(x̂`)− x̂`→ d∗ = y(x∗)−x∗. Therefore, d∗ = 0 guarantees that x∗ solves (EP ) by Theorem 1.
Ab absurdo, suppose d∗ 6= 0. Since the sequence {ϕ(xk)} is monotone decreasing and bounded by
below, it has a limit and thus

lim
`→∞

[
ϕ(x̂`)−ϕ(x̂`+1)

]
= 0

holds as well. Moreover, the stepsize rule guarantees

ϕ(x̂`)−ϕ(x̂`+1)≥ϕ(xk`)−ϕ(xk`+1)≥ β t̂2` ‖d̂`‖> 0

for t̂` = tk` , Therefore, t̂`→ 0 as `→+∞ since d∗ 6= 0. Moreover, the inequality

ϕ
(
x̂` + t̂` γ

−1 d̂`
)
−ϕ(x̂`)>−β (t̂` γ

−1)2 ‖d̂`‖
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holds for all ` ∈N by the line search procedure, while the mean value theorem (see [14, Theorem
2.3.7]) guarantees the existence of some θ` ∈ (0,1) and some generalized gradient ξ̂` of ϕ at x̂` +
θ` t̂` γ

−1 d̂` such that

ϕ
(
x̂` + t̂` γ

−1 d̂`
)
−ϕ(x̂`) = 〈ξ`, t̂` γ−1 d̂`〉.

Hence, the two inequalities together provide

〈ξ`, d̂`〉>−β t̂` γ−1 ‖d̂`‖.

and thus

ϕ◦
(
x̂` + θ` t̂` γ

−1 d̂`; d̂`
)
>−β t̂` γ−1 ‖d̂`‖

follows immediately from the definition of the generalized gradient. The upper semicontinuity of
ϕ◦ as a function of (x,d) (see [14, Proposition 2.1.1]) guarantees

ϕ◦(x∗;d∗)≥ limsup
`→∞

ϕ◦
(
x̂` + θ` t̂` γ

−1 d̂`; d̂`
)
≥ 0

since x̂`→ x∗, d̂`→ d∗, and t̂`→ 0 imply x̂`+θ` t̂` γ
−1 d̂`→ x∗. Therefore, x∗ solves (QEP ), otherwise

it should be ϕ◦(x∗;d∗)< 0 by Theorem 5. �

Notice that the existence of cluster points is not guaranteed by the assumption of the above
theorem. Obviously, they do exist whenever X is compact, which may hold true, for instance, in
the case of a compact moving set (see (10) for α< 1). Anyway, X may be unbounded or even the
whole space Rn in meaningful cases as the examples of Section 2 show. Therefore, the existence of
cluster points is a relevant issue that the error bound given in the next section helps addressing.

4. Error bounds
Error bounds can be developed to estimate the distance of a given point from some solution of
(QEP). In this section an error bound is given relying on the value of the gap function ϕ at the
considered point. Since the algorithm of Section 3 is a descent method for the minimization of ϕ,
this error bound provides conditions that guarantee the boundedness of the sequence generated by
the algorithm.

Clearly, the error bound requires the existence of a solution of (QEP) (see, for instance, [11, 16]
for existence results). Also, beyond suitable monotonicity and continuity conditions on the data,
the result relies on the possibility to control the optimal solution

y(x, z) := arg min{f(x, y) +h(x, y) : y ∈C(z)} (12)

of the inner optimization problem in the gap function subject to some perturbation C(z) of the
feasible region C(x).

Theorem 7. Let x∗ ∈X be a solution of (QEP). Suppose there exist µ,L1,L2,L3 > 0 such that
a) f(x,x∗) + f(x∗, x)≤−µ‖x−x∗‖2,
b) ‖∇yf(x, z)‖ ≤L1,
c) ‖∇yf(x, z)−∇yf(x∗, z)‖ ≤L2 ‖x−x∗‖,
d) ‖y(x,x)− y(x,x∗)‖ ≤L3 ‖x−x∗‖

hold for any x∈X and z ∈C(x). Then, any x∈X satisfies the inequality

‖x−x∗‖ ≤ (L2

√
ϕ(x) +

√
τ(L1 +L1L3))/µ

√
τ . (13)
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Proof. Given any x∈X, the optimality conditions for y(x) = y(x,x) imply

〈∇yf(x, y(x)), x− y(x)〉 ≥ 〈∇yh(x, y(x)), y(x)−x〉

while the strong convexity of h(x, ·) guarantees

0 = h(x,x)≥ h(x, y(x)) + 〈∇yh(x, y(x)), x− y(x)〉+ τ ‖y(x)−x‖2.

Therefore, the inequalities

〈∇yf(x, y(x)), x− y(x)〉 ≥ h(x, y(x)) + τ ‖y(x)−x‖2 ≥ 0 (14)

follow taking into account that h is non-negative.
Setting y∗(x) := y(x,x∗), then the following inequalities hold

0 ≤ 〈∇yf(x, y(x)), x− y(x)〉= 〈∇yf(x, y(x))−∇yf(x∗, y(x)) +∇yf(x∗, y(x)), x− y(x)〉

≤ ‖∇yf(x, y(x))−∇yf(x∗, y(x))‖‖x− y(x)‖+ f(x∗, x)− f(x∗, y(x))

≤ L2 ‖x−x∗‖‖x− y(x)‖+ f(x∗, x) + f(x∗, y∗(x))− f(x∗, y(x))

≤ L2 ‖x−x∗‖‖x− y(x)‖− f(x,x∗)−µ‖x−x∗‖2 + 〈∇yf(x∗, y∗(x)), y∗(x)− y(x)〉

≤ L2 ‖x−x∗‖‖x− y(x)‖− f(x,x∗)−µ‖x−x∗‖2 + ‖∇yf(x∗, y∗(x))‖‖y∗(x)− y(x)‖

≤ L2 ‖x−x∗‖‖x− y(x)‖+ 〈∇yf(x,x), x−x∗〉−µ‖x−x∗‖2 +L1L3 ‖x−x∗‖

≤ L2 ‖x−x∗‖‖x− y(x)‖+L1 ‖x−x∗‖−µ‖x−x∗‖2 +L1L3 ‖x−x∗‖.

The second inequality follows from the convexity of f(x∗, ·) coupled with the Schwarz inequality, the
third from assumption c) and x∗ solving (QEP ), the forth from assumption a) and the convexity
of f(x∗, ·), the fifth again from the Schwarz inequality while the last two from the convexity of
f(x, ·) and assumptions b) and d). Therefore, the inequality

‖x−x∗‖ ≤ (L2 ‖x− y(x)‖+L1 +L1L3)/µ

holds as well. The error bound (13) follows since ‖x− y(x)‖ ≤
√
ϕ(x)/τ . Indeed, the gap function

ϕ satisfies
ϕ(x) = −f(x, y(x))−h(x, y(x))

≥ 〈∇yf(x, y(x)), x− y(x)〉−h(x, y(x))

≥ τ ‖y(x)−x‖2,
where the first inequality is due to the convexity of f(x, ·) and the second is actually the left
inequality in (14). �

Condition a) amounts to the strong monotonicity of f somehow restricted to the solution x∗.
It is worth stressing that strong monotonicity does not guarantee the uniqueness of the solution
differently from EPs.
Example 1. Consider (QEP) with n= 1, the strongly monotone bifunction f(x, y) = x(y− x)

and the moving set C(x) = [x− 1, x] = [−1,0] +x. It turns ou that X =R while the solution set is
S = (−∞,0].

Condition d) addressed the Lipschitz behaviour of the optimal solution (12) with respect to
perturbations of the feasible region. Since the objective function f(x, ·)+h(x, ·) is strongly convex,
a classical sensitivity result (see, for instance, [28, Theorem 5.2]) leads to the following sufficient
conditions for d) to hold.
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Proposition 2. Let x∗ ∈X be any solution of (QEP ). If the vectors ∇ygi(x∗, y(x∗)) for all i’s
such that gi(x

∗, y(x∗)) = 0 are linearly independent, then there exists δ > 0 such that condition d)
of Theorem 7 holds at any x∈D∩B(x∗, δ).

Notice that the above result holds true just in a neighborhood of a solution x∗ of (QEP ). As a
consequence, it yields the error bound as well as the convergence of the sequence generated by the
algorithm locally.

A global result for condition d) can be proved if the constraining mapping C describes either a
moving set

C(x) =K + t(x) (15)

for some translation function t :Rn→Rn, or a so-called “expanding set”

C(x) = s(x)K, (16)

where s :Rn→R++ provides the magnitude of the expansion at each point.

Proposition 3. Let x∗ ∈X be any solution of (QEP ). Suppose the set K ⊆Rn is convex, closed
and bounded, the functions t, s and ∇yf(x, ·) +∇yh(x, ·) are Lipschitz continuous for any x∈Rn.
If the constraining multifunction C is given by (15) or it is given by (16), then condition d) of
Theorem 7 holds at any x∈D.

Proof. Given any x ∈ D, consider p(z) = f(x, z) + h(x, z), y = y(x) and denote the unique
minimum point y(x,x∗) of p over C(x∗) by y∗. Therefore, the optimality conditions for y and y∗

read
〈∇p(y), z− y〉 ≥ 0 ∀ z ∈C(x),

〈∇p(y∗), z− y∗〉 ≥ 0 ∀ z ∈C(x∗).

If C is given by (15), then y∗− t(x∗) + t(x)∈C(x) and y− t(x) + t(x∗)∈C(x∗) so that summing
the optimality conditions with these choices of z gives

〈∇p(y)−∇p(y∗), y∗− t(x∗) + t(x)− y〉 ≥ 0.

As h(x, ·) is strongly convex with modulus τ , then also p is strongly monotone and therefore
its gradient ∇p = ∇yf(x, ·) + ∇yh(x, ·) is strongly monotone with the same modulus (see, for
instance, [39, Chap IV - Theorem 4.1.4]). Hence, the above inequality implies

〈∇p(y)−∇p(y∗), t(x)− t(x∗)〉 ≥ 〈∇p(y)−∇p(y∗), y− y∗〉 ≥ τ‖y− y∗‖2.

Since t and ∇p are Lipschitz, the inequalities

〈∇p(y)−∇p(y∗), t(x)− t(x∗)〉 ≤ ‖∇p(y)−∇p(y∗)‖‖t(x)− t(y)‖

≤ L‖y− y∗‖‖x−x∗‖

hold for some L> 0. As a consequence, ‖y− y∗‖ ≤ τ−1L‖x− x∗‖, i.e., condition d) of Theorem 7
holds with L4 = τ−1L.

If C is given by (16), then s(x)y∗/s(x∗) ∈ C(x) and s(x∗)y/s(x) ∈ C(x∗) so that summing the
optimality conditions for y and y∗ with these choices of z after being multiplied respectively by
s(x∗) and s(x) gives

〈∇p(y)−∇p(y∗), s(x)y∗− s(x∗)y〉 ≥ 0.

Therefore, the strong monotonicity of ∇p implies

[s(x)− s(x∗)]〈∇p(y)−∇p(y∗), y∗〉 ≥ s(x∗)〈∇p(y)−∇p(y∗), y− y∗〉 ≥ τs(x∗)‖y− y∗‖2.
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Since s and ∇p are Lipschitz, y∗/s(x∗)∈K and K is bounded, the inequalities

[s(x)− s(x∗)]〈∇p(y)−∇p(y∗), y∗〉 ≤ |s(x)− s(x∗)|‖∇p(y)−∇p(y∗)‖‖y∗‖

≤ L‖x−x∗‖‖y− y∗‖‖y∗‖

≤ LMs(x∗)‖x−x∗‖‖y− y∗‖

hold for some L,M > 0. As a consequence, ‖y− y∗‖ ≤ τ−1LM ‖x−x∗‖, i.e., condition d) of Theo-
rem 7 holds with L4 = τ−1LM . �

Remark 2. If C is given by (16) and 0 ∈ int K, then x ∈X if and only if s(x)≥ γK(x), where
γK(x) := inf{λ> 0 : x∈ λK} denotes the gauge of K.
Remark 3. The result of Proposition 3 holds also if the multifunction C is given by C(x) =

s(x)K + t(x) (just put together the tricks of both proofs). Furthermore, notice that this is the
particular case of the moving set (6) with p= n and Q(x) = s(x)I.

A further error bound can be achieved when the squared distance is chosen as h in the footsteps
of a known result for quasi-variational inequalities [2].

Theorem 8. Let x∗ be a solution of (QEP). Suppose
a) there exists µ> 0 such that f(x, y) + f(y,x)≤−µ‖x− y‖2 holds for any x, y ∈X
b) x∗ ∈C(x) for any x∈C(x∗),
c) h(x, y) = α‖y−x‖2 for some α∈ (0, µ).

Then any x∈C(x∗) satisfies
‖x−x∗‖ ≤

√
ϕ(x)/(µ−α). (17)

Proof. Given any x∈C(x∗), the following inequalities hold

ϕ(x) ≥ −f(x,x∗)−α‖x−x∗‖2

≥ f(x∗, x) +µ‖x−x∗‖2−α‖x−x∗‖2

≥ (µ−α)‖x−x∗‖2,

where the first follows from the definition of ϕ coupled with assumption c) as assumption b)
guarantees x∗ ∈C(x), the second from assumption a) while the last from x∗ solving (QEP ). �

Notice that the assumptions of Theorem 8 are simpler than those of Theorem 7. However, the
error bound (17) holds just locally, that is within C(x∗), while the error bound (13) given by
Theorem 7 is global.

5. Conclusions
The paper analyses gap functions for QEPs and provides a first basic descent algorithm for quasi-
equilibria together with some error bounds. Further work can be carried out trying to improve the
results in a few directions.

First, the algorithm of this paper converges under monotonicity assumptions that guarantee
the equivalence between stationary points of the gap function and quasi-equilibria. It would be
worthwhile to develop solution methods under assumptions not implying such an equivalence (see,
for instance, [6, 8] for the case of EPs).

Next, the algorithm relies on the condition y(x)∈X to guarantee the feasibility of the generated
sequence. Though this assumption is satisfied in a number of cases, it appears a bit restrictive.
Hence, new solution algorithms not requiring it are worth to be investigated. These algorithms
could be devised either by combining descent and penalization techniques or exploiting D-gap
functions to avoid feasibility issues.
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Finally, a new class of gap functions based on the linearization of the constraining functions
gi’s could be developed in order to simplify the computation of the gap function at a given point.
Penalization techniques properly applied to this kind of gap function could drive to further solution
algorithms (see [8] for the case of EPs).
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C. R. Acad. Sci. Paris Sér A 276 (1973), 1189-1192.

[6] G. Bigi, M. Castellani, M. Pappalardo, A new solution method for equilibrium problems, Optim. Meth-
ods Softw. 24 (2009), 895-911.

[7] G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Existence and solution methods for equilibria,
European J. Oper. Res. 227 (2013), 1-11.

[8] G. Bigi, M. Passacantando, Gap functions and penalization for solving equilibrium problems with non-
linear constraints, Comput. Optim. Appl. 53 (2012), 323-346.

[9] G. Bigi, M. Passacantando, Descent and penalization techniques for equilibrium problems with nonlinear
constraints, J. Optim. Theory Appl. 164 (2015), 804-818.

[10] E. Blum, W. Oettli, From optimitazion and variational inequalities to equilibrium problems, Math.
Student 63 (1994), 123-145.

[11] M. Castellani, M. Giuli, An existence result for quasiequilibrium problems in separable Banach spaces,
J. Math. Anal. Appl. 425 (2015), 85-95.

[12] O. Chadli, I.V. Konnov, J.C. Yao, Descent methods for equilibrium problems in a Banach space, Comput.
Math. Appl. 48 (2004), 609-616.

[13] D. Chan, J.-S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982),
211-222.

[14] F.H. Clarke, Optimization and nonsmooth analysis, John Wiley and Sons, New York, 1983.

[15] G. Cohen, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory Appl. 59
(1988), 325-333.

[16] P. Cubiotti, Existence of solutions for lower semicontinuous quasi-equilibrium problems, Comput. Math.
Appl. 30 (1995), 11-22.

[17] A. Dreves, F. Facchinei, C. Kanzow, S. Sagratella, On the solution of the KKT conditions of generalized
Nash equilibrium problems, SIAM J. Optim. 21(2011), 1082-1108.

[18] A. Dreves, C. Kanzow, Nonsmooth optimization reformulations characterizing all solutions of jointly
convex generalized Nash equilibrium problems, Comput. Optim. Appl. 50 (2011), 23-48.



18 Giancarlo Bigi and Mauro Passacantando - gap functions for quasi-equilibria

[19] H. Dietrich, Optimal control problems for certain quasivariational inequalities, Optimization 49 (2001),
67-93.

[20] F. Facchinei, A. Fischer, V. Piccialli, On generalized Nash games and variational inequalities, Oper.
Res. Lett. 35 (2007), 159-164.

[21] F. Facchinei, A. Fischer, V. Piccialli, Generalized Nash equilibrium problems and Newton methods,
Math. Program. 117 (2009), 163-194.

[22] F. Facchinei, C. Kanzow, Penalty methods for the solution of generalized Nash equilibrium problems,
SIAM J. Optim. 20 (2010), 2228-2253.

[23] F. Facchinei, C. Kanzow, Generalized Nash equilibrium problems, Ann. Oper. Res. 175 (2010), 177-211.

[24] F. Facchinei, C. Kanzow, S. Sagratella, Solving quasi-variational inequalities via their KKT conditions,
Math. Program. 144 (2014), 369-412.

[25] F. Facchinei, C. Kanzow, S. Sagratella, QVILIB: A library of quasi-variational inequality test problems,
Pac. J. Optim. 9 (2013), 225-250.

[26] F. Facchinei, J.S. Pang, Finite-dimensional variational inequalities and complementarity problems,
Springer, New York, 2003.

[27] F. Facchinei, V. Piccialli, M. Sciandrone, Decomposition algorithms for generalized potential games,
Comput. Optim. Appl. 50 (2011), 237-262.

[28] A.V. Fiacco, Y. Ishizuka, Sensitivity and stability analysis fornonlinear programming, Ann. Oper. Res.
27 (1990), 215-236.

[29] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric
variational inequality problems, Math. Program. 53 (1992), 99-110.

[30] M. Fukushima, A class of gap functions for quasi-variational inequality problems, J. Ind. Manag. Optim.
3 (2007), 165-171.

[31] M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Comput.
Manag. Sci. 8 (2011), 201-218.

[32] F. Giannessi, Separation of sets and gap functions for quasi-variational inequalities, Variational inequal-
ities and network equilibrium problems (F. Giannessi and A. Maugeri, ed.s), Plenum:, New York, 2005,
pp. 101-121.

[33] R. Gupta, A. Mehra, Gap functions and error bounds for quasivariational inequalities. J. Glob. Optim.
53 (2012), 737-748.

[34] P.T. Harker, Generalized Nash games and quasi-variational inequalities, European J. Oper. Res. 54
(1991), 81-94.

[35] N. Harms, C. Kanzow, O. Stein, Smoothness properties of a regularized gap function for quasi-variational
inequalities, Optim. Methods Softw. 29 (2014), 720-750.

[36] N. Harms, T. Hoheisel, C. Kanzow, On a smooth dual gap function for a class of quasi-variational
inequalities, J. Optim. Theory Appl. 163 (2014), 413-438.

[37] A. von Heusinger, C. Kanzow, Optimization reformulations of the generalized Nash equilibrium problem
using Nikaido-Isoda-type functions, Comput. Optim. Appl. 43 (2009), 353-377.

[38] A. von Heusinger, C. Kanzow, Relaxation methods for generalized Nash equilibrium problems with
inexact line search, J. Optim. Theory Appl. 143 (2009), 159-183.
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