

The Programming Historian
About · Lessons · Contribute · Project Team · Research · Blog · Español

2012-09-02

Getting Started with Topic Modeling and

MALLET

By Shawn Graham , Scott Weingart and Ian Milligan

Reviewed by John Fink, Alan MacEachern, and Adam Crymble

Recommended for Intermediate Users

Editor’s Note

This lesson requires you to use the command line. If you have no
previous experience using the command line you may find it helpful to
work through the Programming Historian Bash Command Line lesson.

Lesson Goals

In this lesson you will first learn what topic modeling is and why you
might want to employ it in your research. You will then learn how to
install and work with the MALLET natural language processing toolkit to
do so. MALLET involves modifying an environment variable (essentially,

http://programminghistorian.org/
http://programminghistorian.org/
http://programminghistorian.org/lessons
http://programminghistorian.org/contribute
http://programminghistorian.org/project-team
http://programminghistorian.org/research
http://programminghistorian.org/blog
http://programminghistorian.org/es
http://programminghistorian.org/lessons/intro-to-bash

setting up a short-cut so that your computer always knows where to find
the MALLET program) and working with the command line (ie, by typing
in commands manually, rather than clicking on icons or menus). We will
run the topic modeller on some example files, and look at the kinds of
outputs that MALLET installed. This will give us a good idea of how it can
be used on a corpus of texts to identify topics found in the documents
without reading them individually.

Please see the MALLET users’ discussion list for the full range of things
one can do with the software.

(We would like to thank Robert Nelson and Elijah Meeks for hints and
tips in getting MALLET to run for us the first time, and for their examples
of what can be done with this tool.)

What is Topic Modeling And For Whom is this Useful?

A topic modeling tool takes a single text (or corpus) and looks for
patterns in the use of words; it is an attempt to inject semantic meaning
into vocabulary. Before you begin with topic modeling, you should ask
yourself whether or not it is likely to be useful for your project. Matthew
Kirschenbaum’s Distant Reading (a talk given at the 2009 National
Science Foundation Symposium on the Next Generation of Data Mining
and Cyber-Enabled Discovery for Innovation) and Stephen Ramsay’s
Reading Machines are good places for beginning to understand in which
circumstances a technique such as this could be most effective. As with
all tools, just because you can use it, doesn’t necessarily mean that you
should. If you are working with a small number of documents (or even a
single document) it may well be that simple frequency counts are
sufficient, in which case something like Voyant Tools might be
appropriate. However, if you have hundreds of documents from an
archive and you wish to understand something of what the archive
contains without necessarily reading every document, then topic
modeling might be a good approach.

Topic models represent a family of computer programs that extract

http://mallet.cs.umass.edu/mailinglist.php
http://www.cs.umbc.edu/%7Ehillol/NGDM07/abstracts/talks/MKirschenbaum.pdf
http://www.worldcat.org/title/reading-machines-toward-an-algorithmic-criticism/oclc/708761605&referer=brief_results
http://voyant-tools.org/

topics from texts. A topic to the computer is a list of words that occur in
statistically meaningful ways. A text can be an email, a blog post, a
book chapter, a journal article, a diary entry – that is, any kind of
unstructured text. By unstructured we mean that there are no
computer-readable annotations that tell the computer the semantic
meaning of the words in the text.

Topic modeling programs do not know anything about the meaning of
the words in a text. Instead, they assume that any piece of text is
composed (by an author) by selecting words from possible baskets of
words where each basket corresponds to a topic. If that is true, then it
becomes possible to mathematically decompose a text into the probable
baskets from whence the words first came. The tool goes through this
process over and over again until it settles on the most likely
distribution of words into baskets, which we call topics.

There are many different topic modeling programs available; this tutorial
uses one called MALLET. If one used it on a series of political speeches
for example, the program would return a list of topics and the keywords
composing those topics. Each of these lists is a topic according to the
algorithm. Using the example of political speeches, the list might look
like:

1. Job Jobs Loss Unemployment Growth

2. Economy Sector Economics Stock Banks

3. Afghanistan War Troops Middle-East Taliban Terror

4. Election Opponent Upcoming President

5. et cetera

By examining the keywords we can discern that the politician who gave
the speeches was concerned with the economy, jobs, the Middle East,
the upcoming election, and so on.

As Scott Weingart warns, there are many dangers that face those who
use topic modeling without fully understanding it. For instance, we
might be interested in word use as a proxy for placement along a
political spectrum. Topic modeling could certainly help with that, but we

http://www.scottbot.net/HIAL/?p=16713

have to remember that the proxy is not in itself the thing we seek to
understand – as Andrew Gelman demonstrates in his mock study of
zombies using Google Trends. Ted Underwood and Lisa Rhody (see
Further Reading) argue that we as historians would be better to think of
these categories as discourses; however for our purposes here we will
continue to use the word: topic.

Note: You will sometimes come across the term “LDA” when looking into
the bibliography of topic modeling. LDA and Topic Model are often used
synonymously, but the LDA technique is actually a special case of topic
modeling created by David Blei and friends in 2002. It was not the first
technique now considered topic modeling, but it is by far the most
popular. The myriad variations of topic modeling have resulted in an
alphabet soup of techniques and programs to implement them that
might be confusing or overwhelming to the uninitiated; ignore them for
now. They all work in much the same way. MALLET uses LDA.

Examples of topic models employed by historians:

Rob Nelson, Mining the Dispatch

Cameron Blevins, “Topic Modeling Martha Ballard’s Diary”
Historying, April 1, 2010.

David J Newman and Sharon Block, “Probabilistic topic
decomposition of an eighteenth century American newspaper,”
Journal of the American Society for Information Science and
Technology vol. 57, no. 6 (April 1, 2006): 753-767.

Installing MALLET

There are many tools one could use to create topic models, but at the
time of this writing (summer 2012) the simplest tool to run your text
through is called MALLET. MALLET uses an implementation of Gibbs
sampling, a statistical technique meant to quickly construct a sample
distribution, to create its topic models. MALLET requires using the

http://arxiv.org/abs/1003.6087/
http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
http://dsl.richmond.edu/dispatch/
http://historying.org/2010/04/01/topic-modeling-martha-ballards-diary/
http://mallet.cs.umass.edu/index.php
http://en.wikipedia.org/wiki/Gibbs_sampling
http://en.wikipedia.org/wiki/Gibbs_sampling

command line – we’ll talk about that more in a moment, although you
typically use the same few commands over and over.

While there is currently a preview release of MALLET 2.0.8
available, this lesson uses the official release of MALLET 2.0.7. If
you are following along with our instructions, please be sure to
download the correct version.

The installation instructions are different for Windows and Mac. Follow
the instructions appropriate for you below:

Windows Instructions

1.	 Go to the MALLET project page, and download MALLET . (As of this
writing, remember, we are working with version 2.0.7.)

2.	 You will also need the Java developer’s kit – that is, not the regular
Java that’s on every computer, but the one that lets you program
things. Install this on your computer.

3.	 Unzip MALLET into your C: directory . This is important: it cannot
be anywhere else. You will then have a directory called C:\mallet­

2.0.7	 or similar. For simplicity’s sake, rename this directory just
mallet .

4.	 MALLET uses an environment variable to tell the computer where to
find all the various components of its processes when it is running.
It’s rather like a shortcut for the program. A programmer cannot
know exactly where every user will install a program, so the
programmer creates a variable in the code that will always stand in
for that location. We tell the computer, once, where that location is

http://programminghistorian.org/images/topic-modeling-and-mallet/windows-150x150.png
http://mallet.cs.umass.edu/index.php
http://mallet.cs.umass.edu/dist/mallet-2.0.7.tar.gz
http://www.oracle.com/technetwork/java/javase/downloads/index.html

by setting the environment variable. If you moved the program to a
new location, you’d have to change the variable.

To create an environment variable in Windows 7, click on your Start

Menu -> Control Panel -> System -> Advanced System Settings (Figures 1,2,3).
Click new and type MALLET_HOME in the variable name box. It must be like
this – all caps, with an underscore – since that is the shortcut that the
programmer built into the program and all of its subroutines. Then type
the exact path (location) of where you unzipped MALLET in the variable
value, e.g., c:\mallet .

To see if you have been successful, please read on to the next section.

Figure 1: Advanced System Settings on Windows

http://programminghistorian.org/images/topic-modeling-and-mallet/fig1-advanced-system-settings.png

System Properties

Computer Name

You must be logged on as an .A.dministrator to ma'ke most of these changes.

Performance

VisLJa'I effects. processor scheduling. memory usage. and virtual memory

Settings...

User Profiles

Desktop settings related to your logon

S�ings...

Startup and Recovery

System startup. system failure. and debugging information

�-O_K_�] [Cancel] [&:lply

Figure 2: Environment Variables Location

http://programminghistorian.org/images/topic-modeling-and-mallet/fig2-environment-variables-location.png

Environment Variables

l,!ser variables for Shalflln Graham

.....Variable Value

MALLET _HOME c: \Mallet\
PATH C:\program Files (x86)\[vlendeley Deskt... B
TEMP '%USERPROFILE'%\/>,ppDatalocal\Temp

.....TMP 'o/.USERPROFILE'%\/>,ppDatalocal\Temp

[::!ew...] [!;,dit...] [Qelete

�ystem variables

....Variable Value

AGSDESKTOP JAVA C:\program Files (x86)V,.rcGI5'\pesktop.. . D

ARMEDIAYLUG... C:\program Files (x86)\/>,RPIL1gin 2.1 (PL .. .
asl.log Destination =file

.....ATISTREAMSDK... C:\program Files (x86)V,.11 Stream\

Ne�...] [Ed[t...] [De[ete

OK Cancel

Figure 3: Environment Variable

Running MALLET using the Command Line
MALLET is run from the command line, also known as Command Prompt
(Figure 4). If you remember MS-DOS, or have ever played with a Unix
computer Terminal, this will be familiar. The command line is where you
can type commands directly, rather than clicking on icons and menus.

http://programminghistorian.org/images/topic-modeling-and-mallet/fig3-environment-variable.png

Figure 4: Command Prompt on Windows

1.	 Click on your Start Menu -> All Programs -> Accessories -> Command

Prompt .\ You’ll get the command prompt window, which will have a
cursor at c:\user\user> (or similar; see Figure 4).

2.	 Type cd .. (That is: cd-space-period-period) to change directory.
Keep doing this until you’re at the C:\ . (as in Figure 5)

http://programminghistorian.org/images/topic-modeling-and-mallet/fig-4-command-prompt-window.png
http://programminghistorian.org/images/topic-modeling-and-mallet/fig-5-command-prompt-window-getting-to-c.png

Figure 5: Navigating to the C:\ Directory in Command Prompt

1. 	Then type cd mallet and you are in the MALLETdirectory. Anything
you type in the command prompt window is a command. There are
commands like cd (change directory) and dir (list directory
contents) that the computer understands. You have to tell the
computer explicitly that ‘this is a MALLET command’ when you want
to use MALLET. You do this by telling the computer to grab its
instructions from the MALLET bin, a subfolder in MALLET that
contains the core operating routines.

2. 	Type bin\mallet as in Figure 6. If all has gone well, you should be
presented with a list of MALLET commands – congratulations! If you
get an error message, check your typing. Did you use the wrong
slash? Did you set up the environment variable correctly? Is MALLET
located at C:\mallet ?

Figure 6: Command Prompt MALLET Installed

http://programminghistorian.org/images/topic-modeling-and-mallet/fig-6command-prompt-mallet-installed.png

You are now ready to skip ahead to the next section.

Mac Instructions

Many of the instructions for OS X installation are similar to Windows,
with a few differences. In fact, it is a bit easier.

1.	 Download and install MALLET 2.0.7 (mallet-2.0.7.tar.gaz as of

Summer 2012).

2.	 Download the Java Development Kit.

Unzip MALLET into a directory on your system (for ease of following
along with this tutorial, your /user/ directory works but anywhere is
okay). Once it is unzipped, open up your Terminal window (in the
Applications directory in your Finder. Navigate to the directory where

you unzipped MALLET using the Terminal (it will be mallet-2.0.7 . If you
unzipped it into your /user/ directory as was suggested in this lesson,
you can navigate to the correct directory by typing cd mallet-2.0.7). cd
is short for “change directory” when working in the Terminal.

The same command will suffice to run commands from this directory,
except you need to append ./ (period-slash) before each command.
This needs to be done before all MALLET commands when working on a
Mac.

Going forward, the commands for MALLET on a Mac will be nearly
identical to those on Windows, except for the direction of slashes (there
are a few other minor differences that will be noted when they arise). If

http://programminghistorian.org/images/topic-modeling-and-mallet/apple-150x150.png
http://mallet.cs.umass.edu/dist/mallet-2.0.7.tar.gz
http://mallet.cs.umass.edu/dist/mallet-2.0.7.tar.gz
http://mallet.cs.umass.edu/dist/mallet-2.0.7.tar.gz
http://mallet.cs.umass.edu/dist/mallet-2.0.7.tar.gz
http://www.oracle.com/technetwork/java/javase/downloads/index.html

on Windows a command would be \bin\mallet , on a Mac you would
instead type:

./bin/mallet

A list of commands should appear. If it does, congratulations – you’ve
installed it correctly!

Typing in MALLET Commands

Now that you have MALLET installed, it is time to learn what commands
are available to use with the program. There are nine MALLET
commands you can use (see Figure 6 above). Sometimes you can
combine multiple instructions. At the Command Prompt or Terminal
(depending on your operating system), try typing:

import-dir --help

You are presented with the error message that import-dir is not
recognized as an internal or external command, operable program, or
batch file. This is because we forgot to tell the computer to look in the
MALLET bin for it. Try again, with

bin\mallet import-dir --help

Remember, the direction of the slash matters (See Figure 7, which
provides an entire transcript of what we have done so far in the
tutorial). We checked to see that we had installed MALLET by typing in
bin\mallet . We then made the mistake with import-dir a few lines

further down. After that, we successfully called up the help file, which
told us what import-dir does, and it listed all of the potential
parameters you can set for this tool.

C:L • • ,: I • • 11g_x_

C:,Mallet)hin,mallet
Mallet 2.0 commands:

import-dir load the contents of a directory into mallet instances (one
per file)

import-£ ile load a single file into mallet instances (one per line)
train-classifier train a classifier from Mallet data files
t rain-topics train a topic model from Mallet data files
infer-topics use a trained topic model to infer topics for new documents
estimate-topics estimate the probability of new documents given a trained mo

del
hlda train a topic model using Hierarchical LDA
prune remove features based on frequency or information gain
split divide data into testing. training. and validation portions

Include --help with any option for more information

c:,Mallet>import-dir --help

'import-dir' is not recognized as an internal or external command.

operable program or hatch file.

C:,Mallet)hin,mallet import-dir --help

A tool for creating instance lists of FeatureUectors or FeatureSequences from te

xt documents.

--help TRUE:FALSE
Print this command line option usage information. Give argument of TRUE for 1

onger documentation
Default is false

--prefix-code 'JAUA CODE'
Java code you want run before any other interpreted code. Hote that the text

is interpreted without modification. so unlike some other Java code options. you
need to include any necessary 'new's when creating objects.

Default is null
--config FILE

Read command option values from a file
Default is null

--input DIR ...
The directories containing text files to he classified. one directory per clas

s
Default is (null)

--output FILE
Write the instance list to this file; Using - indicates stdout.
Default is text.vectors

--use-pipe-from FILE
Use the pipe and alphabets from a previously created vectors file. Allows the

creation. for example. of a test set of vectors that are compatible with a previ
ously created set of training vectors

Default is text.vectors
--preserve-case [TRUE:FALSE]

If true. do not force all strings to lowercase.
Default is false

--remove-stopwords [TRUE:FALSE]
If true. 1•emove a default list of common English "stop tw1•ds" f1•om the text.
Default is false

--stoplist-file FILE
Read "stop twrds" from a file. one per line. I mp lies --remove-stoptwrds
Default is null

--extra-stopwords FILE

Figure 7: The Help Menu in MALLET

Note: there is a difference in MALLET commands between a single
hyphen and a double hyphen. A single hyphen is simply part of the
name; it replaces a space (e.g., import-dir rather than import dir),
since spaces offset multiple commands or parameters. These
parameters let us tweak the file that is created when we import our

http://programminghistorian.org/images/topic-modeling-and-mallet/fig-7-command-prompt-typing-help.png

texts into MALLET. A double hyphen (as with –help above) modifies,
adds a sub-command, or specifies some sort of parameter to the
command.

For Windows users, if you got the error ‘exception in thread “main”
java.lang.NoClassDefFoundError:’ it might be because you installed
MALLET somewhere other than in the C:\ directory. For instance,
installing MALLET at C:\Program Files\mallet will produce this error
message. The second thing to check is that your environment variable is
set correctly. In either of these cases, check the Windows installation
instructions and double check that you followed them properly.

Working with data

MALLET comes pre-packaged with sample .txt files with which you can
practice. Type dir at the C:\mallet> prompt , and you are given the
listing of the MALLET directory contents. One of those directories is
called sample-data . You know it is a directory because it has the word
<dir> beside it.

Type cd sample-data . Type dir again. Using what you know, navigate to
first the web then the en directories. You can look inside these .txt

files by typing the full name of the file (with extension).

Note that you cannot now run any MALLET commands from this
directory. Try it:

bin\mallet import-dir --help

You get the error message. You will have to navigate back to the main
MALLET folder to run the commands. This is because of the way MALLET
and its components are structured.

Importing data

In the sample data directory, there are a number of .txt files. Each one
of these files is a single document, the text of a number of different web
pages. The entire folder can be considered to be a corpus of data. To
work with this corpus and find out what the topics are that compose
these individual documents, we need to transform them from several
individual text files into a single MALLET format file. MALLET can import
more than one file at a time. We can import the entire directory of text
files using the import command. The commands below import the
directory, turn it into a MALLET file, keep the original texts in the order
in which they were listed, and strip out the stop words (words such as
and, the, but, and if that occur in such frequencies that they obstruct
analysis) using the default English stop-words dictionary. Try the
following, which will use sample data.

bin\mallet import-dir --input sample-data\web\en --output tutorial.mallet

--keep-sequence --remove-stopwords

If you type dir now (or ls for Mac), you will find a file called
tutorial.mallet . (If you get an error message, you can hit the cursor up

key on your keyboard to recall the last command you typed, and look
carefully for typos). This file now contains all of your data, in a format
that MALLET can work with.

Try running it again now with different data. For example, let’s imagine
we wanted to use the German sample data instead. We would use:

bin\mallet import-dir --input sample-data\web\de --output tutorial.mallet

--keep-sequence --remove-stopwords

And then finally, you could use your own data. Change sample­

data\web\de to a directory that contains your own research files. Good
luck!

If you are unsure how directories work, we suggest the Programming
Historian lesson “Introduction to the Bash Command Line”.

http://programminghistorian.org/lessons/intro-to-bash

For Mac

Mac instructions are similar to those above for Windows, but keep in
mind that Unix file paths (which are used by Mac) are different: for
example, if the directory was in one’s home directory, one would type

./bin/mallet import-dir --input /users/username/database/ --output

tutorial.mallet --keep-sequence --remove-stopwords

Issues with Big Data

If you’re working with extremely large file collections – or indeed, very
large files – you may run into issues with your heap space, your
computer’s working memory. This issue will initially arise during the
import sequence, if it is relevant. By default, MALLET allows for 1GB of
memory to be used. If you run into the following error message, you’ve
run into your limit:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

If your system has more memory, you can try increasing the memory
allocated to your Java virtual machine. To do so, you need to edit the
code in the mallet file found in the bin subdirectory of your MALLET
folder. Using Komodo Edit, (See Mac, Windows, Linux for installation
instructions), open the Mallet.bat file (C:\Mallet\bin\mallet.bat) if you
are using Windows, or the mallet file (~/Mallet/bin/mallet) if you are
using Linux or OS X.

Find the following line:

MEMORY=1g

You can then change the 1g value upwards – to 2g, 4g, or even higher
depending on your system’s RAM, which you can find out by looking up
the machine’s system information.

http://programminghistorian.org/lessons/mac-installation
http://programminghistorian.org/lessons/windows-installation
http://programminghistorian.org/lessons/linux-installation

Save your changes. You should now be able to avoid the error. If not,
increase the value again.

Your first topic model

At the command prompt in the MALLET directory, type:

bin\mallet train-topics --input tutorial.mallet

This command opens your tutorial.mallet file, and runs the topic model
routine on it using only the default settings. As it iterates through the
routine, trying to find the best division of words into topics, your
command prompt window will fill with output from each run. When it is
done, you can scroll up to see what it was outputting (as in Figure 8).

Figure 8: Basic Topic Model Output

The computer is printing out the key words, the words that help define a
statistically significant topic, per the routine. In Figure 8, the first topic it
prints out might look like this (your key words might look a bit

http://programminghistorian.org/images/topic-modeling-and-mallet/fig-8-basic-topic-model-output.png

different):

0 5 test cricket Australian hill acting England northern leading

ended innings record runs scored run team batsman played society English

If you are a fan of cricket, you will recognize that all of these words
could be used to describe a cricket match. What we are dealing with
here is a topic related to Australian cricket. If you go to C:\mallet\sample­

data\web\en\hill.txt , you will see that this file is a brief biography of the
noted Australian cricketer Clem Hill. The 0 and the 5 we will talk about
later in the lesson. Note that MALLET includes an element of
randomness, so the keyword lists will look different every time the
program is run, even if on the same set of data.

Go back to the main MALLET directory, and type dir . You will see that
there is no output file. While we successfully created a topic model, we
did not save the output! At the command prompt, type

bin\mallet train-topics --input tutorial.mallet --num-topics 20 -­

output-state topic-state.gz --output-topic-keys tutorial_keys.txt -­

output-doc-topics tutorial_compostion.txt

Here, we have told MALLET to create a topic model (train-topics) and
everything with a double hyphen afterwards sets different parameters

This command

opens your tutorial.mallet file

trains MALLET to find 20 topics

outputs every word in your corpus of materials and the topic it
belongs to into a compressed file (.gz ; see www.gzip.org on how to
unzip this)

outputs a text document showing you what the top key words are
for each topic (tutorial_keys.txt)

and outputs a text file indicating the breakdown, by percentage, of
each topic within each original text file you imported

http:www.gzip.org

(tutorial_composition.txt). (To see the full range of possible
parameters that you may wish to tweak, type bin\mallet train-topics

–help at the prompt.)

Type dir . Your outputted files will be at the bottom of the list of files
and directories in C:\Mallet . Open tutorial_keys.txt in a word processor
(Figure 9). You are presented with a series of paragraphs. The first
paragraph is topic 0; the second paragraph is topic 1; the third
paragraph is topic 2; etc. (The output begins counting at 0 rather than
1; so if you ask it to determine 20 topics, your list will run from 0 to
19). The second number in each paragraph is the Dirichlet parameter for
the topic. This is related to an option which we did not run, and so its
default value was used (this is why every topic in this file has the
number 2.5).

Figure 9: Keywords Shown in a Word Processor

If when you ran the topic model routine you had included

http://programminghistorian.org/images/topic-modeling-and-mallet/fig-9-tutorial-key-words-in-Word.png

--optimize-interval 20

as below

bin\mallet train-topics --input tutorial.mallet --num-topics 20 -­

optimize-interval 20 --output-state topic-state.gz --output-topic-keys

tutorial_keys.txt --output-doc-topics tutorial_composition.txt

the output might look like this:

0 0.02995 xi ness regular asia online cinema established alvida acclaim

veenr commercial

That is, the first number is the topic (topic 0), and the second number
gives an indication of the weight of that topic. In general, including –

optimize-interval leads to better topics.

The composition of your documents

What topics compose your documents? The answer is in the
tutorial_composition.txt file. To stay organized, import the
tutorial_composition.txt file into a spreadsheet (Excel, Open Office, etc).

You will have a spreadsheet with a #doc, source, topic, proportion
columns. All subsequent columns run topic, proportion, topic,
proportion, etc., as in figure 10.

Figure 10: Topic Composition

You can see that doc# 0 (ie, the first document loaded into MALLET),
elizabeth_needham.txt has topic 2 as its principal topic, at about 15%;

topic 8 at 11%, and topic 1 at 8%. As we read along that first column of
topics, we see that zinta.txt also has topic 2 as its largest topic, at
23%. The topic model suggests a connection between these two
documents that you might not at first have suspected.

If you have a corpus of text files that are arranged in chronological order
(e.g., 1.txt is earlier than 2.txt), then you can graph this output in
your spreadsheet program, and begin to see changes over time, as
Robert Nelson has done in Mining the Dispatch.

How do you know the number of topics to search for? Is there a natural
number of topics? What we have found is that one has to run the train-
topics with varying numbers of topics to see how the composition file
breaks down. If we end up with the majority of our original texts all in a
very limited number of topics, then we take that as a signal that we

http://programminghistorian.org/images/topic-modeling-and-mallet/fig-10-topic-composition.png
http://dsl.richmond.edu/dispatch/

need to increase the number of topics; the settings were too coarse.
There are computational ways of searching for this, including using
MALLETs hlda command , but for the reader of this tutorial, it is probably
just quicker to cycle through a number of iterations (but for more see
Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics.
Proceedings of the National Academy of Science, 101, 5228-5235).

Getting your own texts into MALLET

The sample data folder in MALLET is your guide to how you should
arrange your texts. You want to put everything you wish to topic model
into a single folder within c:\mallet , ie c:\mallet\mydata . Your texts
should be in .txt format (that is, you create them with Notepad, or in
Word choose Save As -> MS Dos text). You have to make some decisions.
Do you want to explore topics at a paragraph by paragraph level? Then
each txt file should contain one paragraph. Things like page numbers
or other identifiers can be indicated in the name you give the file, e.g.,
pg32_paragraph1.txt . If you are working with a diary, each text file might

be a single entry, e.g., april_25_1887.txt . (Note that when naming
folders or files, do not leave spaces in the name. Instead use
underscores to represent spaces). If the texts that you are interested in
are on the web, you might be able to automate this process.

Further Reading about Topic Modeling

To see a fully worked out example of topic modeling with a body of
materials culled from webpages, see Mining the Open Web with Looted
Heritage Draft.

You can grab the data for yourself at Figshare.com, which includes a
number of .txt files. Each individual .txt file is a single news report.

For extensive background and bibliography on topic modeling you
may wish to begin with Scott Weingart’s Guided Tour to Topic
Modeling

http://electricarchaeology.ca/2012/07/09/mining-a-day-of-archaeology/
http://electricarchaeology.ca/2012/06/08/mining-the-open-web-with-looted-heritage-draft/
http://electricarchaeology.ca/2012/06/08/mining-the-open-web-with-looted-heritage-draft/
http://figshare.com/articles/looted_heritage_reports_txt.zip/91828
http://www.scottbot.net/HIAL/?p=19113
http://www.scottbot.net/HIAL/?p=19113

Ted Underwood’s ‘Topic modeling made just simple enough’ is an
important discussion on interpreting the meaning of topics.

Lisa Rhody’s post on interpreting topics is also illuminating. ‘Some
Assembly Required’ Lisa @ Work August 22, 2012.

Clay Templeton, ‘Topic Modeling in the Humanities: An Overview |
Maryland Institute for Technology in the Humanities’, n.d.

David Blei, Andrew Ng, and Michael Jordan, ‘Latent dirichlet
allocation,’ The Journal of Machine Learning Research 3 (2003).

Finally, also consult David Mimno’s bibliography of topic modeling
articles. They’re tagged by topic to make finding the right one for a
particular application that much easier. Also take a look at his
recent article on Computational Historiography from ACM
Transactions on Computational Logic which goes through a hundred
years of Classics journals to learn something about the field. While
the article should be read as a good example of topic modeling, his
‘Methods’ section is especially important, in that it discusses
preparing text for this sort of analysis.

About the authors

Shawn Graham is associate professor of digital
humanities and history at Carleton University. Scott
Weingart is a historian of science and doctoral
candidate at Indiana University. Ian Milligan is an
assistant professor of history at the University of
Waterloo.

Suggested Citation

Shawn Graham , Scott Weingart and Ian Milligan ,
"Getting Started with Topic Modeling and MALLET,"
Programming Historian, (2012-09-02),
http://programminghistorian.org/lessons/topic­
modeling-and-mallet

http://tedunderwood.wordpress.com/2012/04/07/topic-modeling-made-just-simple-enough/
http://www.lisarhody.com/some-assembly-required/
http://www.lisarhody.com/some-assembly-required/
http://mith.umd.edu/topic-modeling-in-the-humanities-an-overview/
http://mith.umd.edu/topic-modeling-in-the-humanities-an-overview/
http://dl.acm.org/citation.cfm?id=944937
http://dl.acm.org/citation.cfm?id=944937
http://mimno.infosci.cornell.edu/topics.html
http://mimno.infosci.cornell.edu/topics.html
http://www.perseus.tufts.edu/publications/02-jocch-mimno.pdf
http://programminghistorian.org/lessons/topic

About · Lessons · Contribute · Project Team · Research · Blog · Español

The Programming Historian ISSN 2397-2068, is released under the CC-BY
license.

The project is published by the Editorial Board of the Programming Historian, and
first appeared in July 2012. It was last updated on 25 April 2017.

Hosted on GitHub Previous Versions · Give

Feedback

http://programminghistorian.org/
http://programminghistorian.org/lessons
http://programminghistorian.org/contribute
http://programminghistorian.org/project-team
http://programminghistorian.org/research
http://programminghistorian.org/blog
http://programminghistorian.org/es
http://creativecommons.org/licenses/by/2.0/
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll/commits/gh-pages/lessons/topic-modeling-and-mallet.md
http://programminghistorian.org/feedback
http://programminghistorian.org/feedback

	programminghistorian.org
	Getting Started with Topic Modeling and MALLET | Programming Historian

