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Abstract

Parameters for an electrochemistry-based Lithium-ion battery model are es-

timated using the homotopy optimization approach. A high-fidelity model of

the battery is presented based on chemical and electrical phenomena. Equa-

tions expressing the conservation of species and charge for the solid and elec-

trolyte phases are combined with the kinetics of the electrodes to obtain a

system of differential-algebraic equations (DAEs) governing the dynamic be-

havior of the battery. The presence of algebraic constraints in the governing

dynamic equations makes the optimization problem challenging: a simula-

tion is performed in each iteration of the optimization procedure to evaluate

the objective function, and the initial conditions must be updated to satisfy

the constraints as the parameter values change. The ε-embedding method is

employed to convert the original DAEs into a singularly perturbed system of

ordinary differential equations, which are then used to simulate the system

efficiently. The proposed numerical procedure demonstrates excellent perfor-
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mance in the estimation of parameters for the Lithium-ion battery model,

compared to direct methods that are either unstable or incapable of converg-

ing. The obtained results and estimated parameters demonstrate the efficacy

of the proposed simulation approach and homotopy optimization procedure.

Keywords: battery, homotopy, Li-ion, optimization, parameter estimation,

parameter identification

1. Introduction

Use of rechargeable batteries as electrochemical energy storage systems

has gained a great deal of attention in many industrial fields. The auto-

motive industry has benefitted substantially from battery technology, as it

has enabled the manufacture of low-emission electric, hybrid electric, and

plug-in hybrid electric vehicles [1, 2, 3]. Technologies for improving battery

efficiency in vehicles have been of practical interest since the first electric

cars were built in the mid-1800s. The optimization of automotive battery

performance is facilitated by a physics-based model that represents the dy-

namic behavior of the battery, and can be used to predict its interaction with

the vehicle and engine (e.g., in power management simulations). Additional

practical aspects such as power, weight, longevity, safety, and cost define a

broad research area in battery modeling and design.

Lithium-ion batteries are the most popular rechargeable battery units due

to their low weight, low self-discharge rate, and high specific energy [4]. Elec-

trochemical processes, together with thermal effects, are the key phenomena

governing the dynamic behavior of batteries. Developing an accurate model

of the Lithium-ion battery plays a pivotal role in control-oriented problems
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involving hybrid electric vehicles; however, high-fidelity models contain many

parameters that must be estimated. Ideally, the battery model should be as

detailed as possible while remaining capable of real-time performance, which

is essential in the control-oriented design of automotive systems. Although

more detailed models can be more accurate, the order and degree of nonlin-

earity of models based on fundamental physics can make them impractical for

control design purposes. Spatial and temporal dependence in the governing

equations of such models result in a system of partial differential equations

(PDEs) that are coupled, stiff, highly nonlinear, and time-consuming to sim-

ulate.

Different types of physics-based battery modeling, from electrochemical-

to circuit-based modeling schemes, have been studied in a comprehensive

survey by Seaman et al. [5]. However, circuit-based models are not accu-

rate enough in some control-oriented problems, which are essential in elec-

tric vehicles design. Estimating parameters of a detailed battery model can

be challenging due to (1) a lack of physical significance for some parameters,

especially in circuit-based models, and (2) difficulty in the experimental mea-

surement of the parameters that are physically measurable. As a result, the

practical design of battery models relies on parameter estimation, where un-

known parameters in the governing dynamic equations are determined from

experimental or simulated data. Although research on parameter estimation

of Lithium-ion batteries has been primarily focused on equivalent circuit-

based battery models [6, 7, 8, 9], some work has used phenomenological bat-

tery models based on electrochemistry processes [10, 11]. Forman et al. [10]

used a genetic algorithm and Ramadesigan et al. [11] applied Gauss–Newton
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method, a Jacobian-based scheme, for the process of nonlinear optimization

in their parameter estimation efforts, minimizing an objective function that

represents the difference between the model outputs and their experimen-

tally measured values. In general, finding a global minimum in the resulting

optimization problem is the primary concern when estimating parameters.

In this work, we use the homotopy optimization method [12, 13], which is

adept at finding global optima.

The remainder of this paper is organized as follows. In Section 2, we

introduce the electrochemistry-based Lithium-ion battery model developed

by Newman and Tiedemann [14] and Doyle et al. [15], which takes the form

of PDEs. We also discuss the reduction procedure used by Dao et al. [4]

to convert these PDEs into differential-algebraic equations (DAEs). The

ε-embedding method, an efficient math-based algorithm, is introduced in

Section 3 to solve the DAEs. Accordingly, we describe our procedure for

numerical simulation. In Section 4, we present the homotopy optimization

procedure, a global optimization scheme applied to parameter estimation in

dynamic systems by Vyasarayani et al. [13, 16]. The existence of algebraic

constraint equations makes the optimization process more complicated in this

application, since the initial conditions must be updated at each iteration in

response to the changing parameter values. We then examine the application

of homotopy optimization to estimating the parameters in the battery model

in Section 5. Conclusions are discussed in Section 6.
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2. Lithium-ion battery dynamic model

The electrochemical Lithium-ion battery model considered in this paper is

derived using two main physical concepts: porous-electrode theory and con-

centrated solution theory [14, 15]. As depicted in Fig. 1, the one-dimensional

battery model is composed of positive and negative composite electrodes,

the separator (an electrically non-conducting layer), and the electrolyte (a

solvent containing a dissolved lithium salt that acts as an ionic conductor).

Lithium ions travel parallel to the x axis between the positive and negative
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Figure 1: Schematic of a Lithium-ion battery cell.

electrodes (also called the cathode and anode) through the electrolyte by way
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of diffusion and migration. The transport of lithium ions causes electrons to

flow in the external circuit [17], thereby converting stored chemical energy

into electrical energy. A thorough description of the charging and discharg-

ing processes in Lithium-ion batteries has been presented by Marcicki [18]

and Dao et al. [4].

The focus of this work is the estimation of parameters in the equations

governing the dynamics of the battery. The physical nature of these equa-

tions is discussed briefly; we refer to full explanations of the physics-based

formulations in the literature. The battery equations are derived based on

five electrochemical phenomena, described below. An inventory of all the

battery parameters and their numerical values used in the simulation model

is provided in Table A.1.

2.1. Species conservation for solid phase

According to the theory of porous electrodes, the lithium in a battery

cell exists in two phases: the solid phase in the electrode material and the

liquid phase in the electrolyte. As lithium ions (Li+) intercalate into and

out of the electrodes in the pseudo-dimension r (the direction normal to the

surface of the electrodes, shown in Fig. 1), the diffusion equations for the

solid phase are expressed in both the x-direction and the pseudo-dimension

r [19]. Variations of lithium ion concentration in the solid phase can be

expressed using Fick’s laws of diffusion [15, 20], assuming cs,k = cs,k(x, r, t):

∂cs,k
∂t

=
Ds,k

r2

∂

∂r

(
r2 ∂cs,k

∂r

)
(1)

where cs,k and Ds,k are, respectively, the concentration of lithium ions and

the lithium ion diffusion constant coefficient associated with electrode k, as-
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suming k = p for the positive electrode and k = n for the negative electrode.

Associated with Eq. (1) are the following boundary conditions:

−Ds,k
∂cs,k
∂r

∣∣∣∣
r=0

= 0 and −Ds,k
∂cs,k
∂r

∣∣∣∣
r=Rs,k

= Jk(x, t) (2)

as well as the following initial condition:

cs,k
∣∣
t=0

= cs,k,0 (3)

where Rs,k and Jk(x, t) are, respectively, the constant radius of intercalation

and the pore-wall flux of lithium ions associated with electrode k.

Subramanian et al. [21] employed polynomial approximation and volume-

average integration to derive equations for surface and average lithium ion

concentrations. Introducing a three-variable polynomial function, together

with volume-average integration for the original PDE and its derivative, Dao

et al. [4] obtained two equivalent ordinary differential equations (ODEs) for

the average concentration of lithium ions and the corresponding flux:

˙̄cs,k(t) + 3
Jk(t)

Rs,k

= 0 (4a)

˙̄qs,k(t) + 30
Ds,k

R2
s,k

q̄s,k(t) +
45

2

Jk(t)

R2
s,k

= 0 (4b)

which are coupled with an algebraic constraint equation expressing the con-

centration of lithium ions on the electrode surface:

35
Ds,k

Rs,k

(
cs,k,surf(t)− c̄s,k(t)

)
− 8Ds,k q̄s,k(t) = −Jk(t) (5)

where c̄s,k is the average concentration of lithium ions on electrode k, q̄s,k is

the volume-averaged concentration of lithium ion flux associated with elec-

trode k, and cs,k,surf is the concentration of lithium ions on the surface of

electrode k.
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2.2. Species conservation for electrolyte phase

The principle of material balance is applied to the electrolyte phase to

evaluate variations in the concentration of lithium ions in this salt phase,

presuming a superimposed continuum for solid and electrolyte phase inter-

actions. Accordingly, for the three distinct regions of the battery (i.e., the

separator and the two porous electrodes), we have the following relation:

εk
∂ce,k
∂t

=
∂

∂x

(
Deff,k

∂ce,k
∂x

)
+ ak(1− t+)Jk(x, t) (6)

where k = p for the positive electrode, k = s for the separator, and k = n

for the negative electrode. In Eq. (6), εk is the volume fraction of region k;

ce,k = ce,k(x, t) is the electrolyte concentration in region k; Deff,k is the effec-

tive diffusion coefficient, which is calculated from a reference coefficient using

the Bruggman relation Deff,k = Dε
bruggk
k that accounts for the tortuous path

that lithium ions follow through the porous media [4]; D is the electrolyte

diffusion coefficient; ak is the specific surface area of electrode k; bruggk is

the Bruggman power coefficient of region k; and t+ is the lithium ion trans-

ference number associated with the electrolyte. The boundary conditions are

imposed assuming zero flux—and, therefore, zero concentration gradient—at

the positive and negative current collectors:

−Deff,k
∂ce,p
∂x

∣∣∣∣
x=0

= 0 and −Deff,k
∂ce,n
∂x

∣∣∣∣
x=l

= 0 (7)
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along with continuity of the flux and concentration of the electrolyte at the

electrode–separator interface:
ce,p|x=δ−p

= ce,s|x=δ+p

−Deff,p
∂ce,p
∂x

∣∣∣∣
x=δ−p

= −Deff,s
∂ce,s
∂x

∣∣∣∣
x=δ+p

(8a)


ce,s|x=(δp+δs)−

= ce,n|x=(δp+δs)+

−Deff,s
∂ce,s
∂x

∣∣∣∣
x=(δp+δs)−

= −Deff,n
∂ce,n
∂x

∣∣∣∣
x=(δp+δs)+

(8b)

In Eq. (6), the specific surface area of the electrodes can be expressed in

terms of the porosity of the electrode [21]:

ak =
3

Rs,k

(1− εk − εf,k) (9)

where εf,k is the volume fraction of fillers in region k.

Galerkin’s approach, which can be categorized as a weighted-residual for-

mulation, uses the orthogonality of a set of basis functions (satisfying the

boundary conditions of the problem) to find an approximate solution to

PDEs. The Galerkin method was applied by Dao et al. [4] to discretize

the PDE that governs the lithium ion concentration gradient in the elec-

trolyte phase (Eq. (6)) to obtain a corresponding reduced-order system of

ODEs. This discretization scheme is applied using sinusoidal shape func-

tions to approximate the lithium ion concentration in the electrolyte phase

as follows:

ĉe,k(x, t) = ce,0 +
υ∑
j=1

cos

(
jπx

l

)
ηj(t) (10)

where ĉe,k(x, t) is the approximate solution for the electrolyte phase concen-

tration, ηj(t) is the jth generalized concentration corresponding to the jth
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basis function, and υ is the number of nodes, which must be chosen such

that the dynamics of the lithium ion concentration are represented to the

required degree of accuracy. The residual, which is obtained by substitut-

ing the assumed solution (Eq. (10)) into the original PDE (Eq. (6)), must

be orthogonal to the set of basis functions. The ODEs, extracted using the

assumed solution along with the orthogonality principle, can be formulated

as follows:

η̇ = −Aspη + Bsp (11)

where η = [η1(t), η2(t), · · · , ηυ(t)]T is the vector of unknown variables repre-

senting time-dependent concentration quantities, and Asp and Bsp are con-

stant square matrices of dimension υ obtained from the orthogonality condi-

tions [4].

2.3. Charge conservation for solid phase

The conservation of charge in the solid phase of the battery electrodes is

dominated by Ohm’s law:

σeff,k
∂2Φs,k(x, t)

∂x2
= ak F Jk(x, t) (12)

accompanied by the following boundary conditions at the collectors:
− σeff,p

∂Φs,p(x, t)

∂x

∣∣∣∣
x=0

= − σeff,n
∂Φs,n(x, t)

∂x

∣∣∣∣
x=l

= I

− σeff,p
∂Φs,p(x, t)

∂x

∣∣∣∣
x=δp

= − σeff,n
∂Φs,n(x, t)

∂x

∣∣∣∣
x=δp+δs

= 0

(13)

where F is the Faraday’s constant, I is applied current density, defined as

the applied current per unit surface area of the electrode, and σeff,k is the
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effective electrical conductivity for electrode k, represented in terms of the

porosity of the electrode:

σeff,k = σk (1− εk − εf,k) , k = p, n (14)

The differential equations for conservation of charge in the solid phase

can be solved analytically, assuming Jk(x, t) is constant. For the positive

electrode with Jp = I/ap F δp constant and using the boundary condition

x = 0, the closed-form solution is as follows:

Φs,p(x, t) = −1

2

apFJp
σeff,p

x2 +
I

σeff,p

x+ fp(t) (15)

In a similar process for the negative electrode using the boundary condition

x = l, we obtain the following charge conservation equation:

Φs,n(x, t) = −1

2

anFJn
σeff,n

x2 +
anFJn (δs + δp)

σeff,n

x+ fn(t) (16)

The algebraic equations expressing the conservation of charge for the

positive and negative electrodes can then be solved simultaneously with the

differential equations for the battery to evaluate the unknown functions fp

and fn.

2.4. Charge conservation for electrolyte phase

To derive the electrical potential conservation equations for the electrolyte

phase, Kirchhoff’s and Ohm’s laws are applied to represent the interaction

between the solid and electrolyte phases. The charge conservation equations

for the electrolyte phase can be written as follows:

−σeff,k
∂Φs,k(x, t)

∂x
− κeff,k

∂Φe,k(x, t)

∂x
+

2κeff,kRT

F
(1− t+)

∂ln ce,k
∂x

= I (17)
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where R is the universal gas constant and T is absolute temperature. We

also have the following boundary conditions, which reflect continuity of Φe,k:

− κeff,p
∂Φe,p

∂x

∣∣∣∣
x=0

= − κeff,n
∂Φe,n

∂x

∣∣∣∣
x=l

= 0

− κeff,p
∂Φe,p

∂x

∣∣∣∣
x=δ−p

= − κeff,s
∂Φe,s

∂x

∣∣∣∣
x=δ+p

− κeff,s
∂Φe,s

∂x

∣∣∣∣
x=(δp+δs)

−

= − κeff,n
∂Φe,n

∂x

∣∣∣∣
x=(δp+δs)

+

(18)

where κeff,k is the effective diffusion conductivity, which is a function of the

electrolyte concentration represented by the empirical Bruggman relation:

κeff,k = ε
bruggk
k fdc (ce,k) (19)

Doyle et al. [22] introduced a fourth-order polynomial function for fdc that

accurately fits the experimental conductivity data collected for various liq-

uid/salt/polymer systems. Parameters for a system consisting of a 2:1 volume

mixture of ethylene carbonate and dimethyl carbonate at 25◦C can be found

in the literature [21, 4].

In a similar fashion as in Section 2.2, Galerkin’s method is used to dis-

cretize the obtained PDE for the electrolyte phase potential. Given the

boundary conditions of the problem (Eq. (18)), the following finite series can

be used [4]:

Φ̂e,k(x, t) =
υ∑
j=1

cos

(
jπx

l

)
ρj(t) (20)

where Φ̂e,k(x, t) is the assumed solution that approximates the real solution

of the PDE, and ρj(t) is the jth generalized charge corresponding to the jth

basis function. The residual is defined as the expression obtained upon sub-

stituting the approximate solution into the original PDE; when considered
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together with the orthogonality condition, a reduced-order system of alge-

braic equations is obtained due to the absence of time-differentiation terms

in the PDE:

Aφ(t)ρ+ Bφ(t)η + Dφfφ(t) + Eφ = 0 (21)

where Aφ(t), Bφ(t), Dφ, and Eφ are coefficient matrices, ρ is the vector

of generalized charges, and fφ(t) , [fp(t), fp(t), . . . , fn(t)]T. Note that η

appears in the obtained equations due to term ln(ce,k) in the original PDE.

2.5. Kinetics of electrodes

Considering a charge-transfer resistance, the kinetics of the electrodes

can be expressed using the Butler–Volmer equation [23], which relates the

molar pore-wall flux to the composition of the intercalating species (i.e., the

concentration of lithium ions in the electrodes and the electrolyte) and the

intercalation over-potential (µs,k(x, t)):

Jk(x, t) = Kk (cs,k,max − cs,k,surf)
0.5 (cs,k,surf)

0.5 c0.5
e,k(x, t)

×
[
exp

(
0.5F

RT
µs,k(x, t)

)
− exp

(
−0.5F

RT
µs,k(x, t)

)]
(22)

where Kk is the intercalation/deintercalation reaction-rate constant of elec-

trode k. The over-potential depends on the difference between the potentials

in the solid and solution phases as well as the open-circuit potential of the

intercalation electrode Uk:

µs,k(x, t) =
(
Φs,k(x, t)− Φe,k(x, t)

)
− Uk

(
θk(x, t)

)
, k = p, n (23)
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Open-circuit potentials for positive (LiCoO2) and negative (LiC6) electrodes

can be expressed as follows [4]:

Up(t) =
0.531θ5

p − 1.507θ3
p + 5.839θp − 4.875

θp − 1.005
(24a)

Un(t) = −0.1θn + 0.15 + 0.00778θ−1
n (24b)

where θk(x, t) = cs,k,surf(x, t)/cs,k,max. Equations (24) are reduced-order ver-

sions of the relations derived from experimental data by Doyle et al. [15].

In summary, Eqs. (4a), (4b), (5), (11), (21), (22) and (24) form a sys-

tem of differential-algebraic equations that must be solved simultaneously.

Note that Φs,p(x, t) (Eq. (15)) and Φs,n(x, t) (Eq. (16)) are substituted into

Eq. (17); hence, fp(t) and fn(t) appear in the final equations.

3. Numerical simulation procedure

The dynamic equations for the physics-based battery model are semi-

explicit systems of differential-algebraic equations (DAEs):

∑
:

ẋ = f(x(t),w(t))

0 = g(x(t),w(t))
(25)

where f and g are nonlinear vector functions, and state vectors x : R→ R4+υ

and w : R→ R6+υ
are defined as follows:

x =
[
c̄s,p(t), c̄s,n(t), q̄s,p(t), q̄s,n(t),η

]T
(26a)

w =
[
fp(t), fn(t), Up(t), Un(t), cs,p,surf(t), cs,n,surf(t),ρ

]T
(26b)

The obtained equations are highly stiff due to substantially different time

scales for the concentration and electrochemical polarization dynamics in-

volved in the model.
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The most challenging aspect of solving DAEs in the form of Eq. (25) is

satisfying the algebraic constraint equations: the solution to the problem

must satisfy all constraints within the specified tolerance. A solution tech-

nique that prevents the accumulation of significant constraint violations is

essential in this work, as errors in the solution will affect the optimization

process and, ultimately, the estimated parameters. There are several strate-

gies for transforming high-index DAEs into ODEs. When using Baumgarte

stabilization [24], for example, the constraint equations are replaced with a

linear combination of the constraints and their first and second time deriva-

tives, but it can be difficult to select the stabilization parameters. In this

work, we employ a reduction method called the ε-embedding method [25, 26],

which performs well in our application. In this math-based transformation

procedure, a singularly perturbed system of ODEs is acquired by introducing

an artificial parameter ε > 0 into the original DAEs, Eq. (25):

∑
:

ẋ = f(x(t),w(t))

εẇ = g(x(t),w(t))
(27)

An approximate solution is obtained for the original DAE system, with de-

creasing error as ε→ 0.

To evaluate the accuracy of the ε-embedding method applied to the

Lithium-ion battery model, we simulate the original system (Eq. (25)) in

MapleSim [27] and compare the results to those obtained when using the

same model parameters in the approximate system (Eq. (27)). We use the

variable-step, implicit Rosenbrock third–fourth-order Runge–Kutta integra-

tor in MapleSim to solve the original DAE system, and a stiff multi-step

integrator, ode15s, in Matlab to solve the approximate system of ODEs. Ab-
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solute and relative tolerances for the solver in MapleSim were 10−7 and for

the Matlab integrator were 10−3. To validate the performance of the pro-

posed solution scheme, we compare the results obtained for the battery cell

voltage, which is one of the key outputs of the battery model:

Vcell = Φs,p(0, t)− Φs,n(l, t) (28)

Results obtained using a discharge rate of 25 A for a battery consisting

of 70 cells are shown in Fig. 2. Clearly, we obtain an excellent agreement
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Figure 2: Comparison of discharge battery voltage obtained from the original DAE system

and the approximate ODE system.

between the two models, considering a very small value of ε = 10−15. Also

note that the violations of the algebraic constraints remain small throughout

the duration of the simulation, as shown in Fig. 3, again demonstrating the

efficacy of the proposed solution scheme.
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4. Homotopy optimization method

To improve the predictions of the battery model, the model parameters

should be estimated from experimental data or a more accurate model. In

this paper, we estimate model parameters using simulations of the detailed

full-order model. Deterministic optimization methods are straightforward to

implement for solving parameter estimation problems, but they often con-

verge to local minima. The homotopy optimization method [12] addresses

this limitation, and has been shown to be an effective technique for solving

parameter estimation problems in dynamic systems [13, 16].

Consider the following system of ODEs:

~̇ξ = G(~ξ,Γ , t) (29)

where ~ξ is the vector of state variables, G is a vector of nonlinear functions,
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and Γ is the vector of parameters to be estimated. In the homotopy op-

timization method, we couple a vector of experimental data (~ξexp) to the

original system of equations using a high-gain observer [13]:

~̇ξ = G(~ξ,Γ , t) + λKi(~ξexp − ~ξ) (30)

The homotopy parameter λ is decreased from 1 to 0 during the optimization

process, gradually reducing the effect of the homotopy coupling term. The

gain Ki is incorporated to ensure the simulation trajectory tracks the exper-

imental data when λ = 1. We then minimize the following objective function

over the simulation time Ts:

Υ(Γ ) =
1

2

n∑
j=1

{∫ Ts

0

(
ξjexp − ξj(Γ , t)

)2
dt

}
(31)

where ξj and ξjexp are the jth components of ~ξ and ~ξexp, respectively. The

minimization procedure is performed using an iterative method such as the

Gauss–Newton algorithm, which has a quadratic rate of convergence. The

parameter vector is updated based on the following recurrence relation:

Γ (r+1) = Γ (r) − δH−1(Γ (r)) gT(Γ (r)) (32)

where δ denotes the step size, g is the gradient vector, and H is the Hes-

sian of the objective function. The gradient and Hessian are computed as

follows [13]:

g(Γ ) =
∂Υ

∂Γ
= −

n∑
j=1

{∫ Ts

0

(
ξjexp − ξj(Γ , t)

) ∂ξj
∂Γ

dt

}
(33a)

H(Γ ) =
∂2Υ

∂Γ 2
≈ −

n∑
j=1

{∫ Ts

0

∂ξj

∂Γ

T
∂ξj

∂Γ
dt

}
(33b)
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We begin by setting λ = 1 and selecting a value for gain Ki that is

sufficiently large such that the simulated response matches the experimental

data regardless of the values of the parameters Γ . We then select an initial

guess for Γ , find parameters that minimize the objective function (Eq. (31)),

decrease λ by a specified amount, and iterate, using the optimized parameters

from the previous iteration as the new initial guess. This process is continued

until λ = 0, whereupon the optimized parameters correspond to the original

system of equations (Eq. (29)). The homotopy transformation introduced in

Eq. (30) smooths the objective function, enabling a simple gradient descent

algorithm to find the global minimum at each value of λ [28].

5. Parameter estimation of the battery model

We wish to determine the parameters for the electrochemistry-based Lithium-

ion battery model that are most difficult to measure. The volume fraction

of the separator regions (εs), the Li+ transference number in the electrolyte

(t+), the electrical conductivity of the solid phase of electrode n (σn), and

the initial electrolyte concentration in regions s, n, and p (ce0) are estimated

given results for the battery voltage obtained using a high-fidelity model.

Note that the battery voltage is easily measured experimentally, so the mod-

eling and estimation methodologies proposed in this work can be directly

validated and put to practical use in future work.

The key issue in this parameter estimation application is the presence

of algebraic constraints in the dynamic equations (Eq. (25)). The initial

conditions play a significant role in determining the response of this highly

nonlinear dynamic system, and they must be updated at each step of the
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optimization process as the parameter estimates change. We study the ef-

fect of the parameter space dimension on the performance of the homotopy

optimization scheme by estimating two parameters (t+ and ce0) and four pa-

rameters (εs, t+, σn, and ce0). We use a relation for the state of charge of

the battery, since this variable is of particular practical interest [4]:

SOC = Vbatt(t)− ncell [fp(t)− fn(t)] (34)

where Vbatt is the battery voltage and ncell is the number of cells in the battery

pack.

The experimental and simulated battery voltages for the two-parameter

estimation scenario are shown in Fig. 4. Clearly, the estimated parameters
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Figure 4: Time history of the battery voltage obtained experimentally and simulated with

estimates for t+ and ce0. The battery has 51 cells, the initial state of charge is 0.9, and

the discharge rate is 28.5 A.

result in a simulation that closely matches the experimental data. The ho-

motopy morphing parameter and the objective function value during the
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Figure 5: Homotopy morphing parameter and the corresponding objective function dur-

ing the optimization process when t+ and ce0 are estimated. The homotopy parameter

decrement is 0.1.
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Figure 6: The value of objective function over the space of the parameters designated in

the two-parameter estimation scenario.

optimization process are shown in Fig. 5; the initial guesses and final esti-

mated parameters are provided in Table 1. To obtained more efficient results
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during the optimization process, the number of iterations varies for different

values of the homotopy parameter λ, especially for λ = 0 at which the origi-

nal differential equations are retrieved. The final objective function value is

0.32V 2. The value of the objective function over the space of the designated

parameters exhibits several local minima, as shown in Fig. 6, demonstrating

the effectiveness of the homotopy optimization approach at solving challeng-

ing minimization problems. The experimental and simulated battery volt-

ages for the four-parameter estimation scenario are shown in Fig. 7. Even
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Figure 7: Time history of the battery voltage obtained experimentally and simulated with

estimates for εs, t+, σn, and ce0. The battery has 51 cells, the initial state of charge is

0.9, and the discharge rate is 28.5 A.

Parameter Description Reference value Initial guess Estimated value

t+ Li+ transference number in the electrolyte 0.363 0.1 0.352

ce0 Initial electrolyte concentration in regions s, n, and p (mol m−3) 1000 250 941.52

Table 1: Reference values, initial guesses, and estimated parameters for the Lithium-ion

battery model in the two-parameter estimation scenario.
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in this more challenging parameter estimation scenario, the estimated pa-

rameters result in a simulation that closely matches the experimental data.

The homotopy morphing parameter and the objective function value during

the optimization process are shown in Fig. 8; the initial guesses and final

estimated parameters are provided in Table 2. In this case, the final objec-
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Figure 8: Homotopy morphing parameter and the corresponding objective function during

the optimization process when εs, t+, σn, and ce0 are estimated. The homotopy parameter

decrement is 0.1.

Parameter Description Reference value Initial guess Estimated value

εs Volume fraction of separator region 0.724 0.5 0.59

t+ Li+ transference number in the electrolyte 0.363 0.25 0.27

σn Electronic conductivity of solid phase of electrode n (Sm−1) 100 75 86.73

ce0 Initial electrolyte concentration in regions s, n, and p (mol m−3) 1000 500 989.32

Table 2: Reference values, initial guesses, and estimated parameters for the Lithium-ion

battery model in the four-parameter estimation scenario.

tive function value is 0.51V 2, indicating the negative effect of increasing the
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number of estimated parameters. However, the reasonably small value for

the objective function still ensures the efficacy of the optimization scheme

during the parameter estimation process. It is important to note that the

value of the objective function at λ = 0, for which the original differential

equations are retrieved, is relatively greater than its value at nonzero values

of λ.

6. Conclusions

Parameters were estimated for an electrochemistry-based Lithium-ion

battery model. The model was constructed based on porous-electrode and

concentrated-solution theory, according to which the equations for the kinet-

ics of the electrodes as well as species and charge conservations for solid and

electrolyte phases were derived. The obtained governing equations for the

battery consist of highly nonlinear DAEs, which are challenging to integrate

due to the vastly different time scales of the physical phenomena involved in

the model. We used a heuristic numerical solution scheme, the ε-embedding

procedure, in which a singularly perturbed ODE system is obtained from the

original DAEs. The transformed system was evaluated for its accuracy in sat-

isfying the constraint violations as well as its performance in the parameter

estimation algorithm.

The homotopy optimization scheme was selected for the parameter esti-

mation process due to its reported success when applied to dynamic systems.

Experimental data were coupled to the original battery model equations by

a homotopy morphing parameter and a gain term, ultimately splitting the

original optimization problem into a sequence of more tractable problems, as
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we showed. The performance of the numerical procedure and the efficacy of

the optimization scheme were examined by studying two- and four-parameter

estimation scenarios. We estimated parameters that are difficult to measure

experimentally or difficult to approximate theoretically. As we demonstrated,

increasing the number of estimated parameters resulted in a higher final ob-

jective function value. Determining strategies for estimating large numbers

of parameters using homotopy optimization is a topic for future work.
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Appendix A. Parameters for the battery simulation model
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Table A.1: Nomenclature, including model parameters and numerical values.

Symbol Description Numerical value (unit)

ak Specific surface area of electrode k, k = p, n 1.0 (m2 m−3)

bruggk Bruggman power coefficient of region k, k = p, n 1.5

ĉe,k Approximate solution for the electrolyte phase concentration (mol m−3)

ce,k Electrolyte concentration in region k, k = p, n, s (mol m−3)

ce,k,0 Initial electrolyte concentration in region k, k = p, n, s (mol m−3)

cs,k Concentration of lithium ions associated with electrode k, k = p, n (mol m−3)

cs,k,0 Initial concentration of lithium ions associated with electrode k, k = p, n (mol m−3)

c̄s,k Average concentration of lithium ions on electrode k, k = p, n (mol m−3)

cs,k,surf Concentration of lithium ions on the surface of electrode k, k = p, n (mol m−3)

D Electrolyte diffusion coefficient 7.5× 10−11(m2 s)

Ds,k Lithium ion diffusion coefficient associated with electrode k, k = p, n 1.0× 10−14, 3.9× 10−14 (m2 s)

F Faraday’s constant 96487 (C mol−1)

I Applied current density (A mol−2)

Jk(x, t) Pore-wall flux of lithium ions associated with electrode k, k = p, n (mol m−2 s)

Kk Intercalation/deintercalation reaction-rate constant of electrode k, k = p, n 2.33× 10−11, 5.03× 10−11(mol (mol m−3)−1.5)

l Total thickness of cathode-separator-anode (m)

n Negative electrode

p Positive electrode

q̄s,k Volume-averaged concentration of lithium ion flux associated with electrode k, k = p, n (mol m−3 s−1)

r Radial coordinate (m)

R Universal gas constant 8.314

Rs,k Radius of intercalation of lithium ions associated with electrode k, k = p, n 1/500000 (m)

s Separator

t+ Lithium ion transference number associated with the electrolyte 0.363

T Absolute temperature 298.15 (K)

Uk Open-circuit potential of electrode k, k = p, n (V)

x Spatial coordinate (m)

δk Thickness of region k, k = p, n, s 1/12500, 11/125000, 1/40000 (m)

εk Volume fraction of region k, k = p, n, s 0.385, 0.485, 0.724

εf,k Volume fraction of fillers in region k = p, n 0.25× 10−1, 0.326× 10−1

ηj(t) jth generalized concentration corresponding to the jth basis function (mol m−3)

θk(x, t) Dimensionless concentration of lithium ions in the intercalation particle of electrode k, k = p, n

υ Number of nodes for Galerkin’s approximation

σeff,k Effective electrical conductivity for electrode k, k = p, n 100 (S m−1)

ρj(t) jth generalized charge corresponding to the jth basis function (A)

Φe,k Electrolyte-phase potential in region k, k = p, n (V)

Φ̂e,k Assumed solution for electrolyte-phase potential (V)

Φs,k Solid-phase potential of electrode k, k = p, n (V)
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