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Abstract

Lithium-ion batteries are frequently used in Hybrid electric vehicles (HEVs), which are

taking the place of gas-engine vehicles. An important but not measurable quantity in

HEVs is the amount of charge remaining in the battery in a drive cycle. The remaining

charge is normally identified by a variable called state of charge (SOC). A potential way

of estimating the SOC is relating this variable with the state of a dynamical system.

Afterwards, the SOC can be estimated through an observer design. As a precise model,

electrochemical equations are chosen in this research to estimate the SOC.

The first part of this thesis considers comparison studies of commonly-used finite-

dimensional estimation methods for different distributed parameter systems (DPSs). In

this part, the system is first approximated by a finite-dimensional representation; the

observer dynamics is a copy of the finite-dimensional representation and a filtering gain

obtained through observer design. The main outcome of these studies is comparing the

performance of different observers in the state estimation of different types of DPSs after

truncation. The studies are then expanded to investigate the effect of the truncated model

by increasing the order of finite-dimensional approximation of the system numerically.

The simulation results are also compared to the mathematical properties of the systems.

A modified sliding mode observer is improved next to take care of the system’s non-

linearity and compensate for the estimation error due to disturbances coming from an

external input. It is proved that the modified SMO provides an exponential convergence

of the estimation error in the existence of an external input. In most cases, the simula-

tions results of the comparison studies indicate the improved performance of the modified

SMO observer.

Approximation and well-posedness of two general classes of nonlinear DPSs are stud-

ied next. The main concern of these studies is to produce a low-order model which

converges to the original equation as the order of approximation increases. The available

results in the literature are limited to specified classes of systems. These classes do not

cover the lithium-ion cell model; however, the general forms presented here include the

electrochemical equations as a specific version.

In order to facilitate the electrochemical model for observer design, simplification of

the model is considered in the next step. The original electrochemical equations are com-

posed of both dynamical and constraint equations. They are simplified such that a fully

dynamical representation can be derived. The fully dynamical representation is benefi-

cial for real-time application since it does not require solving the constraint equation at
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every time iteration while solving the dynamical equations. Next, the electrochemical

equations can be transformed into the general state space form studied in this thesis.

Finally, an adaptive EKF observer is designed via the low-order model for SOC es-

timation. The electrochemical model employed here is a variable solid-state diffusivity

model. Compared to other models, the variable solid-state diffusivity model is more

accurate for cells with Lithium ion phosphate positive electrode, which are considered

here, than others. The adaptive observer is constructed based on considering an adaptive

model for the open circuit potential term in the electrochemical equations. The parame-

ters of this model are identified simultaneously with the state estimation. Compared to

the experimental data, simulation results show the efficiency of the designed observer in

the existence of modeling inaccuracy.

v



Acknowledgements

First, I would like to sincerely express my gratitude to my advisers Prof. Kirsten Mor-

ris and Prof. Amir Khajepour for their support in my PhD studies. This work would

not be accomplished without their support, patience, motivation, and immense knowl-

edge. Their continuous guidance helped me during my research and writing this thesis.

Furthermore I appreciate the love, patience, and support of my family and my parents.

I would also like to thank the Laboratoire De Réactivité Et Chimie Des Solides
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Chapter 1

Introduction

Batteries are the storage unit of electric vehicles and hybrid electric vehicles. They play

an important role in providing an efficient source of energy for vehicles. Therefore, the

proper choice of battery type and a management system are crucial. Among different

chemistries, lithium-ion chemistry is the most promising option for the batteries used for

mobile electrification including electric/hybrid electric vehicles. Compared to other cell

chemistries, the lithium-ion chemistry is characterised by its delivering high power and

energy density, lack of memory effect, low self discharge, and high life cycle [3, 4], and

[5]. The memory effect is a well known issue to the users of nickel-cadmium and nickel-

metal-hydride batteries. Frequently recharging these batteries after they are partially

discharged leads to a loss of usable capacity. Lithium-ion batteries are known to have no

memory effect.

Lithium ion phosphate, LiFePO4, (LFP) offers the advantage of better lithium inser-

tion over other conventional materials. Its numerous features have drawn a considerable

interest. Some of these features are listed in [6] as

• The LFP material is not only relatively inexpensive and available, but also less

toxic compared to other materials like cobalt, nickel, or manganese.

• The operating voltage of the LFP electrode is about 3.4 V with respect to a lithium

reference electrode; thus, it provides high energy while minimizing the electrolyte

decomposition side reactions.

• This material has a high theoretical specific energy of about 580 Wh/kg elevating

it as a proper choice for the cell’s positive electrode.
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Cells are elementary units of a battery pack. One or more battery packs with different

cell configurations may be utilized in electric/hybrid electric vehicles. Therefore, an

adequate management system is required to monitor, diagnose, and synchronize among

the battery cells. This unit is called a battery management system [5]. On the importance

of the battery management system, one can refer to its role in compensating for the costs

that come with the lithium-ion batteries. Safety and aging are two important issues that

must be overcome by the battery management system. For this reason, the battery

management system is required to monitor the state of the battery and perform an

organized charging and discharging strategy in the cells [3].

State of Charge (SOC) is the relative amount of the charge inside the cells to what is

available when the battery is fully charged. Tracking the SOC of each cell in a battery

pack is a key role of the battery management system. At every measurement step,

the cells’ SOC estimation is updated via measuring the terminal voltage, current, and

temperature. In practice, the SOC can be defined as an indication of the amount of

remaining charge inside the cell. A number between %0 to %100 is assigned to this

indication. Precise estimation of the SOC is important since [7]:

• In contrast to the gasoline tank, the batteries can be overcharged or undercharged

if there is no accurate SOC estimation.

• It lets the driver use the entire battery’s capacity.

• It provides reliability on the overall energy storage in the sense that the SOC can

be used to improve safety and consider aging effects.

• The battery pack can be used aggressively when an accurate SOC is given; thus,

lighter battery packs can be used.

• The maximum available charge is given by the SOC estimation. In this case, fewer

cycles of charging is required and the life cycle is improved.

• the SOCs of the cells in a battery pack are utilized by the battery management

system to balance the state of cells. They become unbalanced over time due to the

small differences in their dynamics. It may happen when one cell is at a high SOC

limit while some other cells are in a low SOC limit. In a drive cycle, balancing the

cells’ state is done by boosting the cells with the low SOCs and bucking the cells

with the high SOCs [7].
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The importance of accurate SOC estimation is even more crucial in the hybrid electric

vehicles compared to electric vehicles since their environment characteristics are more

demanding. While the absolute value of the current rates in the electric vehicles are not

more than 5C, the hybrid electric vehicles draw current rates up to ±20C. Moreover,

the profile of the current rate shows more dynamics in the hybrid vehicles since they

are designed to overcome sudden load transitions via a battery/motor couple [7] and [8].

This means that an efficient estimation method is required to accurately calculate the

SOC from available measurements.

Although direct and precise measurement of the SOC of a cell is not achievable by

existing sensors, other quantities like the battery’s terminal voltage and current can be

easily measured. The importance of accurate SOC evaluation in a safe operation ne-

cessitates an alternative method of estimation from the available measurements. The

different estimation methods proposed in literature are categorized as direct measure-

ments, indirect/book-keeping, and model based/adaptive methods [9].

An inaccurate but cheap method of SOC estimation is online measurement of current

and/or terminal voltage to approximate the value of the SOC. Examples can be found

in [4, 10], and [11]. This method highly depends on the temperature, charge/discharge

rate, and aging [9]. Open circuit potential (OCP) measurement ([12]) and Impedance

measurement ([13]) can be offered as alternative measurements whose assignment to the

SOC depends on fewer factors; however, they are not proper for real-time application

since they highly depends on environmental conditions.

The second category of SOC estimation methods relies on measuring and integrat-

ing the current. This technique is called coulomb counting. The coulomb counting in

which the battery effects like discharge efficiency, self discharge, and capacity loss are

compensated is called a book-keeping method [9]. The application of the coulomb count-

ing in the SOC estimation can be found in [14, 15, 16, 17, 12, 18, 19, 20, 21], and [22].

Some important factors reducing the estimation accuracy of the coulomb counting are

the temperature, charge and discharge efficiency, and cycle life [9]. More importantly,

the cumulative effect introduced by an integration approximation makes the estimation

sensitive to the measurement errors due to the noise, resolution, and rounding [14].

Model-based techniques are more accurate ways of SOC estimation. Among different

models, equivalent circuit models are mostly reported in the literature in this matter.

Simplicity and a relatively few number of parameters are the main characteristics of these

models [23]. One of the first and important efforts on SOC estimation is the comparative

analysis introduced in [24] via Kalman filter. A similar application of Kamlman and
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extended Kalman filter to the equivalent circuit models for the SOC estimation can be

found in [14, 25, 26], and [27]. Dealing with the model nonlinearity can be evaluated by

using sigma-point Kalman filtering. Utilizing this filter in observing the SOC from the

voltage measurement is improved in [28] and [29]. Some other examples of the equivalent

circuit model-based estimation methods use a sliding mode observer in [30, 31], and [32],

adaptive observer in [33], and Luenberger observer in [34, 35], and [5].

More accurate and physical models are electrochemical models since they closely rep-

resent the physical behavior inside the cell. Therefore, adding the effect of the tempera-

ture and modeling the aging phenomenon, the inherent features of Li-ion batteries, are

more feasible. Unfortunately, the electrochemical models are not applicable for real-time

observation because of their complexity. A review on most simplified electrochemical

models is given in [36]. Averaging over the entire electrode region is also used in [37, 38],

and [3] wherein the observation is evaluated by the extended Kalman filter (EKF) and

output injection-based observer combined with the mass conservation law respectively.

Employing the Laplace transformation to produce a reduced order model is used

in [39] and [40]. A more accurate observation method is given in [41, 42], and [43].

Employing a single particle model in observation is also suggested in some other works

including via the Kalman filtering [39, 40], and [44], the sliding mode observer [45],

the backstepping observation method [41, 42], and [43]. More recent studies using full

electrochemical equations can be found in [46] and [47].

In all of the aforementioned work, a simple model is adequate to represent the cell

behavior; however, the employed models will not provide a similar performance for cells

with the LFP positive electrode. In these cells, modeling the time variation of the active

material distribution in the solid phase is challenging. The battery cell works based

on the principle of lithium insertion/deinsertion where the electrons are consumed or

produced. This two-phase behavior plays an important role in the cell response and

must be considered in the modeling process.

A few models are improved in literature to conduct the two-phase behavior in LFP

cells. They consist of core-shell [6], phase field, resistive-reactant, and variable solid-state

diffusivity models. The efficiency of different models depends on their way of treating

the two-phase process of lithium insertion/deinsertion. More physical intuition brings

around a more adequate approximation. Since the variable solid-state diffusivity is a

trade off between simplicity and physical accuracy, it is used here as a reliable platform.

Details on this model can be found in [48, 2], and [49].

The main objective of this thesis is to design an observer for an LFP cell represented
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by a variable solid-state diffusivity model to predict the battery SOC during a drive cycle.

Although the electrochemical model-based estimation provides a higher accuracy, an

efficient approximation is required due to the model complexity. The simplified models,

however, might lose their application for chemical compositions like LFP at high current

rates and dynamics. More accurate approximation of the original equation that is simple

enough to be solved in real-time SOC estimation is required.

In the first step, comparison studies of commonly-used finite-dimensional estimation

methods for different distributed parameter systems (DPSs) is considered in Chapter 2.

The system is first approximated by a finite-dimensional representation; the observer

dynamics is then designed via the finite-dimensional representation. Comparing the

performance of different observers in the state estimation of different types of DPSs after

truncation is the main concern of these studies. In addition, the comparison is expanded

to the investigation of the effect of the truncated model by increasing the order of the

finite-dimensional approximation of the system numerically. The simulation results are

also compared with the mathematical properties of the systems.

The comparison studies are performed in both the existence and absence of an ex-

ternal unknown input modeling disturbances to the system. A modified sliding mode

observer is improved in the same chapter to take care of system’s nonlinearity and com-

pensate for the external input. It is proved that the modified sliding mode observer

provides exponential convergence of the estimation error in the existence of an external

input. Simulation results of the comparison studies indicate the improved performance

of this observer in most cases.

In Chapter 3, the well-posedness of two general classes of nonlinear DPSs is studied.

In addition, approximating the system with a finite-dimensional version is developed as

a part of proving the existence of a solution. The main concern of these studies is to

produce a low-order model which converges to the original equation in some sense as the

order of approximation increases. The results provided in the literature are limited to

specified classes of systems and are not applicable to a lithium-ion cell model; however,

the electrochemical equations can be represented as a specific version of the considered

general forms.

Before designing an observer for SOC estimation, the dynamical properties of the

electrochemical equations are explored in Chapter 4. One of these properties is hysteretic

behavior coming from the cell’s dynamical equations. Path dependency is observed in the

current-voltage response of the LFP cells. Two sources of hysteresis can be introduced;

hysteresis coming from the OCP term and the one caused by the system’s dynamics. In
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this chapter, it is shown that the system’s dynamics is in fact a source of hysteresis; this

result suggests that not every simplified model is proper for observer design.

Simplification of the model is considered in the next step, in Chapter 5; the simplified

model is constructed in a way that most of the system dynamics is preserved. The original

electrochemical equations are composed of both dynamical and constraint equations.

The equations are simplified to a fully dynamical representation. This fully dynamical

representation is beneficial for real-time application since it does not require solving the

constraint equation at every time iteration while solving the dynamical equations. The

electrochemical equations can next be transformed into a general form for which a low

order model is improved.

Finally, an EKF observer is designed via the low-order model for the SOC estima-

tion in Chapter 5. The electrochemical model employed here is the variable solid-state

diffusivity model. Compared to other models, this model provides more accuracy for

cells with an LFP positive electrode. However, simulation results show that the variable

solid-state diffusivity model with a few number of particle bins is not yet a precise match

to experimental data. Therefore, the observer is improved based upon considering an

adaptive model for the OCP term in the electrochemical equations. The parameters of

this model are identified simultaneously with the state estimation. Compared to the

experimental data, the simulation results show the efficiency of the designed observer in

the existence of modeling inaccuracy.
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Chapter 2

Comparing different observers for

different dynamical systems

The full state cannot be observed for distributed parameter systems. Although many

observation methods have been developed for lumped parameter systems, fewer results

are available for DPSs. In practice, a DPS model is approximated by a lumped model

and then a method designed for the estimation of lumped systems is used. The issue

of the effect of the neglected modes needs to be considered. Problems are even more

complex for nonlinear systems, for which almost no theoretical results are available.

In this chapter, a number of commonly used methods for the estimation of nonlin-

ear systems are compared: unscented Kalman filter (UKF), extended Kalman filtering

(EKF), as well as a modified version of the sliding mode observer (SMO). The proposed

modified SMO combines the efficiency of a nonlinear observer with the robustness of

the SMO; the resultant error convergence is proved here to converge to zero under nat-

ural assumptions. The three methods are compared for three different versions of the

heat equation, a linear, a quasi-linear, and a nonlinear heat equation. The methods

are also compared for two wave equations, one linear, and the other nonlinear. All the

comparisons are done with and without an external disturbance.

2.1 Introduction and literature review

A major issue in observer design for partial differential equations is that, in general, a

copy of the original partial differential equation cannot be kept in the observer dynamics.

The usual way of dealing with this problem is to approximate the system by a system

7



of ODEs via some approximation method, such as finite elements. The key requirement

for this approximation is the convergence of the finite-dimensional state estimate to the

true one as a result of increasing the order of approximation. This criterion is not easy

to prove for nonlinear partial differential equations.

Although observer design for linear ODEs is well studied (see [50] for a review), it

can be challenging for nonlinear ODEs. Some nonlinear systems can be transformed into

a linear form [51, 52, 53, 54, 55, 56], and [57]. Checking the necessary and sufficient

conditions for the existence of such a transformation is not easy; This transformation

might not exist in a general case.

A comparison of nonlinear observers for ODEs can be found in [58] and [59]. Among

different nonlinear observers, the extended Kalman filter, unscented Kalman filter, and

sliding mode observer are very popular estimation techniques. They require few condi-

tions on the system and do not involve complicated nonlinear transformations. Kalman

filtering is optimal for a linear system if there is Gaussian white noise in both the mea-

surement and system model. The EKF and UKF are extensions of the Kalman filter for

handling nonlinearities. An SMO is designed to handle arbitrary disturbances.

As described in [60, 61] and [62], a Luenberger observer is usually used with the SMO.

For a nonlinear system, the Luenberger observer must overcome the nonlinearities and

stabilize the error dynamics on the sliding surface. Generally, an linear matrix inequality

(LMI) problem is solved to obtain the Luenberger observer [61] and [62]. Solving the

LMI problem is not easy, however, and it might in fact have no solution.

In this chapter, a modified version of the SMO is first developed. This modified

SMO combines an exponentially stabilizing nonlinear observer with the sliding mode

observation to increase the estimation performance. The exponential convergence of the

estimation error to zero is proved.

In a subsequent section, the performance of the EKF, the UKF, and the modified

SMO is compared for a number of standard PDEs. Estimators are designed for three

different versions of the diffusion equation, a linear, a quasi-linear, and a nonlinear model,

as well as two versions of the wave equation, a linear and a nonlinear wave equation. Two

sources of uncertainties are introduced in the observer design: the disturbances coming

from the unknown input ξ(t) and the modeling uncertainty due to the order reduction

in the observer design. The sliding mode observer is designed to account for the former

uncertainties but not the latter. The performance of the different observation techniques

in existence of both sources is numerically examined for a variety of DPSs.
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2.2 A review of the observer design for ODE

Consider the following ordinary differential equation (ODE) model consisting of n differ-

ential equations:
dzorig
dt

= f(zorig) +Bu+ g(zorig)ξ(t)

y(t) = Czorig(t)
(2.1)

with the initial condition

zorig(0) = zorig,0,

where zorig ∈ Rn is the state variable, u ∈ R is the control, ξ ∈ R is the disturbance

input, and y ∈ R is the measured output. Here B ∈ Rn×1, C ∈ R1×n, f and g are

smooth vector fields on Rn . The vector field g(.) is called the distribution matrix and

indicates the spatial distribution of the disturbance. The disturbance is assumed to be

bounded, that is a positive number M exists such that ‖ξ‖ ≤M .

Assumption 2.2.1. The functions f(zorig) and g(zorig) are smooth vector fields up to

the nth order. In other words, they are continuously differentiable of the nth order with

respect to their arguments.

In this section, different popular observation techniques for nonlinear systems are

reviewed, and an extension for the estimation of the nonlinear systems with disturbances

is developed.

Extended Kalman filter

Kalman filtering is a technique for estimating the state vector of a linear system such

that the variance of the estimation error (the difference between the true state and the

observer state) is minimized. The main assumption is that the system and measurement

noise are zero-mean and also mutually independent processes (one process does not affect

the other one). With these assumptions, the Kalman filtering evaluates the conditional

probability distribution function of the state vector conditioned by the measurements.

The mean value of this distribution function is addressed as the state estimate [63]

and[64].

The EKF is an extension of the Kalman filter to nonlinear systems. In the EKF,

an approximation is obtained by linearizing the nonlinear system around the last state

estimation. After linearizing the system, the usual Kalman filtering is used to estimate

the state vector.
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Table 2.1: Extended Kalman filtering algorithm
Initialize at k = 0:

ẑ0 = E[z0],

P z0 = E[(z0 − ẑ0)(z0 − ẑ0)T ],

P ν = E[(ν − ν̄)(ν − ν̄)T ],

P ω = E[(ω − ω̄)(ω − ω̄)T ].

For k = 1, 2, · · · ,∞,
Prediction step:

F zk = ∂fd
∂z
|z=ẑk−1

,

ẑ−k = f d(ẑk−1) +Bduk,

P−zk = F zkP zk−1
F T
zk

+ P ν .

Correction step:

Hzk = ∂h
∂z
|z=ẑ−k

,

Kk = P−zkH
T
zk

(HzkP
−
zk
HT
zk

+ P ω)−1,

ẑk = ẑ−k +Kk(yk − h(ẑ−k )),

P zk = (I −KkHzk)P
−
zk
.

For simplicity of exposition, consider a discrete-time implementation

zk+1 = f d(zk) +Bduk + νk

yk = h(zk) + ωk
(2.2)

where zk, uk, and yk are respectively the state vector, input variable, and output at time

step t = tk, νk is the system noise, and ωk is the measurement noise.

The EKF algorithm is summarized in Table 2.1 where z0 is the state vector at time

t = t0 and s̄ = E(s) represents the mean value of the random vector s. This algorithm

is composed of two steps, a prediction and a correction step. In the first step, the

system’s model is used to predict both the state vector’s mean value and the covariance

matrix. Next, the output measurements are employed to correct the prediction results

in the correction step. More details on this estimation technique can be found in [65].

Exponential convergence, provided that certain conditions are satisfied, of the EKF is

shown to hold in [66] and [67]. These conditions are

1. There exists positive numbers c1, c2, p1, p2 ∈ R+ such that for every time step k,

‖F zk‖ ≤ c1, ‖Hzk‖ ≤ c2

p1 ≤ ‖P−zk‖ ≤ p2, p1 ≤ ‖P zk‖ ≤ p2.
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2. At all time steps, the linear operator Fzk is nonsingular.

3. Let ϕ(zk, ẑk) = f d(zk)− f d(ẑk)− F zk(z − ẑ) and ψ(zk, ẑ
−
k ) = h(zk)− h(ẑ−k )−

Hzk(zk − ẑ
−
k ). There exists positive real numbers εφ, εψ, kφ, kψ ∈ R+ such that for

every zk, ẑk, ẑ
−
k ∈ Rn preserving ‖zk − ẑk‖ ≤ εφ and ‖zk − ẑ−k ‖ ≤ εψ,

‖ϕ(zk, ẑk)‖ ≤ kφ‖zk − ẑk‖2

‖ψ(zk, ẑ
−
k )‖ ≤ kψ‖zk − ẑ−k ‖2.

A modified EKF is used in this paper, [66] and [67], wherein the covariance prediction

is improved by using the update at each step

P−zk = a2F zkP zk−1
F T
zk

+ P ν (2.3)

where a ∈ R+ defines the rate of exponential convergence.

Unscented Kalman filter

The UKF is an alternative to the EKF intended to obtain a more precise estimation.

In this approach, the probability distribution functions are specified by a minimal set

of sample points. For a random vector of dimension N , 2N + 1 sample points, which

are also called sigma points, are used [68]. The sigma points completely capture the

mean and covariance of Gaussian random variables. Furthermore, the posterior mean

and covariance of the Gaussian random variables are captured up to the third order when

they undergo a nonlinear transformation over time [68].

Details of the UKF estimation technique can be found in [68]. The UKF is a recursive

estimation technique in which the mean value and covariance matrix of the state vector

as well as the sample points are updated at every time step [68]. The sigma points and

their corresponding weights are defined as

zs,0 = z̄

zs,i = z̄ + (
√

(N + λ)P z)i i = 1, · · · , N
zs,i = z̄ − (

√
(N + λ)P z)i−N i = N + 1, · · · , 2N

Wm
0 =

λ

N + λ
, W c

0 =
λ

N + λ
+ (1− α2

0 + β)

Wm
i = W c

i =
1

2(N + λ)

(2.4)
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Table 2.2: Unscented Kalman filtering
Initialize at k = 0:

ẑ0 = E[z0],

P z0 = E[(z0 − ẑ0)(z0 − ẑ0)T ].

P ν = E[(ν − ν̄)(ν − ν̄)T ],

P ω = E[(ω − ω̄)(ω − ω̄)T ].

For k = 1, · · · ,∞,
Calculate Sigma points via equation (2.4), zs,i

Prediction step:

z−s,i = f d(zs,i) +Bdu, i = 0, . . . 2N,

ẑ−k =
∑2N

i=0W
m
i (Zs,i),

P−zk =
∑2N

i=0 W
c
i ((zs,i)− ẑ−k )((zs,i)− ẑ−k )T + P ν ,

ys,i = h(zs,i), i = 0, . . . 2N

ŷ−k =
∑2N

i=0 W
m
i (ys,i).

Correction step:

P yk =
∑2N

i=0 W
c
i (ys,i − ŷ−k )(ys,i − ŷ−k )T + P ω,

P zkyk =
∑2N

i=0(zs,i − ẑ−k )(ys,i − ŷ−k )T ,

Kk = P zkykP
−1
yk
,

ẑk = ẑ−k +Kk(yk − ŷ−k ),

P zk = P−zk −KkP ykK
T
k .

where zs,i for i = 0, · · · , 2N are sample points, Wm
i for i = 0, · · · , 2N are associated

weights for calculation of the means, W c
i for i = 0, · · · , 2N are associated weights for

covariance calculation, λ = α2
0(N + κ) − N is a scaling parameter, and α0 and κ are

tuning parameters. The algorithm is given in Table 2.2.

2.3 Sliding mode observer

The standard Kalman filter and the two variants discussed above depend on exactness

of the system model. It is also assumed that other than noise as described above,

there are no disturbances. However, disturbances are frequently present. Also, any

type of Kalman filter will have errors when the system model is incorrect. Modeling

errors are common for distributed parameters systems, which typically have complex

dynamics. Furthermore, for computation, the partial differential equations need to be

replaced by ordinary differential equations, that is called a lumped approximation. This

approximation also introduce errors. Nonlinearities, modelling errors, and approximation

errors can be viewed as additional disturbances to the nominal model.

A robust observer is intended to compensate for disturbances. A potential way of
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including robustness in the observer design is to improve the Riccati equation solved for

Kalman filtering. Examples can be found in [69, 70, 71], and [72]. However, this type

of observer is efficient in compensating for multiplicative disturbances and zero mean

bounded noises. A different approach is employing sliding mode techniques in which

the disturbances are modeled by some unknown inputs. In this case, no restriction is

tagged along the unknown input except for boundedness. They were first employed for

observation in the 1980’s [73], and incorporated in the design of a robust observation

method.

A good review of sliding mode observation methods for both linear and nonlinear

systems can be found in [60]. The basic idea is to use a discontinuous output feedback to

drive the estimated state vector towards some reference manifold. The main advantages

of the SMO are insensitivity to unknown inputs, robustness, and providing an equiv-

alent output error injection that can also be used as a source of information [74]. An

important challenge is the inclusion of the disturbances. In general, consideration of dis-

turbances induces either structural conditions or matching assumptions to ensure finite

time convergence [75]. Different designs handle disturbances and system nonlinearities

in different ways [76], [77, 78, 79], and [61]. A standard version of the SMO is briefly

described here; for more details see [79], and [80].

The first step in the SMO design is to transform the system representation (2.1) into

a standard form. This form is not necessarily a linearized one; rather, it provides the

proper distribution of an unknown input to the system dynamics. The transformation

divides the system into two parts; the part affected directly by the unknown input and

the part that is not.

Definition 2.3.1. [81] Let f 1(zorig) and f 2(zorig) be smooth vector fields up to the first

order. The Lie derivative Lf1(zorig)f 2(zorig) of f 2(zorig) with respect to f 1(zorig) is defined

as

Lf1(zorig)f 2(zorig) =
∂f 2(zorig)

∂zorig
f 1(zorig).

A single-input single-output (SISO) system of order n given by equation (2.1) has a

relative degree q at point zp ∈ Rn from the input ξ to the output y if for every k < q− 1,

Lg(zorig)L
k
f(zorig)Czorig = 0

and

Lg(zorig)L
q−1
f(zorig)Czorig 6= 0

in a neighborhood of zp.
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Definition 2.3.2. [81] A distribution is called involutive if it is closed under the Lie

bracket operator, [., .], defined as

[f 1(zorig),f 2(zorig)] = Lf1(zorig)f 2(zorig)− Lf2(zorig)f 1(zorig)

for every f 1(zorig),f 2(zorig) ∈ Cn(Rn).

The following assumption on the system is required.

Assumption 2.3.3. The relative degree of the system (2.1) from the input ξ to the

output y is independent of zp ∈ Rn.

For a system to have the relative degree of one that satisfies Assumption 2.3.3, it is

required that Cg(zp) 6= 0 for every zp ∈ Rn. This is not a hard condition to check.

Let the relative degree be q. Given Assumption 2.3.3, it can be concluded that q ≤ n

[81, Prop. 5.1.2] for every zp ∈ Rn. Set

φ1(zorig) = Czorig

φ2(zorig) = LfCzorig
...

φq(zorig) = Lq−1
f Czorig.

If q < n, n− q functions, φq+1(zorig), · · · , φn(zorig), can be found such that the Jacobian

matrix of the mapping

zc = φ(zorig) = col(φ1(zorig), · · · , φq(zorig), φq+1(zorig), · · · , φn(zorig)) (2.5)

is nonsingular at every zp ∈ Rn. Furthermore, since g(zorig) is a base of an involutive dis-

tribution (that is true because g constructs a 1-D vector space which is involutive by Defi-

nition 2.3.2), the Frobenius Theorem implies that the functions φq+1(zorig), · · · , φn(zorig)

can be chosen so that

Lgφi(zorig) = 0

for i = q + 1, · · · , n and all zp ∈ Rn [81].

Now, set the new state vector to be composed of

zd =


zd,1

zd,2
...

zd,q

 =


φ1(zorig)

φ2(zorig)
...

φq(zorig)

 (2.6)
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and

zr =


zr,1

zr,2
...

zr,n−q

 =


φq+1(zorig)

φq+2(zorig)
...

φn(zorig)

 . (2.7)

The transformation given by equations (2.6) and (2.7) decomposes the system into two

subsystems so that only zd is directly affected by disturbances.

In the new coordinates, define the state vector as zTc = [zTd , z
T
r ]; the system repre-

sentation is
dzc
dt

= f̄(zc) + ḡ(zc, u) + Γ(zc)ξ

y = zd,1

(2.8)

where

f̄(zc) =


zd,2

...

zd,q

ad(zd, zr)

ar(zd, zr)

 , ḡ(zc, u) =


b1(zd, zr, u)

...

bq−1(zd, zr, u)

bq(zd, zr, u)

br(zd, zr, u)

 , (2.9)

Γ(zc) =


0
...

0

c(zd, zr)

0(n−q)×1

 . (2.10)

The functions ad, c, and bk produced by transformation (2.5) are defined as

ad(zd, zr) = Lqf(zorig)Czorig |zorig=φ−1(zd,zr)

c(zd, zr) = Lg(zorig)L
q−1
f(zorig)Czorig |zorig=φ−1(zd,zr)

bk(zd, zr, u) = LBuL
k−1
f(zorig)Czorig |zorig=φ−1(zd,zr)

.

(2.11)

Assumption 2.3.4. The input terms in the transformed equations can be put into the
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form

b1(zd, zr, u) = b1(y, u)

b2(zd, zr, u) = b2(zd,2, y, u)

...

bq−1(zd, zr, u) = bq−1(zd,2, · · · , zd,q−1, y, u)

bq(zd, zr, u) = bq(zd, zr, u).

Definition 2.3.5. [82] Let χ(t− t0, z0, u[t0,t], ξ[t0,t]) be a solution to the system (2.1) with

a initial condition z0 at time t0. The input vector [u, ξ]T is called universal for the system

if for z1 6= z2, there exists tf > t0 such that

Cχ(tf − t0, z1, u[t0,tf ], ξ[t0,tf ]) 6= Cχ(tf − t0, z2, u[t0,tf ], ξ[t0,tf ]).

Definition 2.3.6. [82] A system is uniformly observable if every input vector is universal.

Definition 2.3.7. [82] A system satisfies a property of detectability if for every two

indistinguishable initial conditions z1 6= z2 by the input vector [u, ξ]T ,

‖χ(tf − t0, z1, u[t0,tf ], ξ[t0,tf ])−Cχ(tf − t0, z2, u[t0,tf ], ξ[t0,tf ])‖ → 0

as tf →∞.

Assumption 2.3.8. Both the original system and its transformed form preserve a de-

tectability property as defined in Definition 2.3.7.

Definition 2.3.9. [83] A system is bounded-input bounded-output (BIBO) stable if for

every bounded input vector, the output or response of the system is also bounded.

Assumption 2.3.10. The system with representation (2.1) and its corresponding trans-

formed form given by equations (2.6) and (2.7) are BIBO stable when the output operator

is the identity operator.

The SMO design involves forcing the states towards a surface followed by the conver-

gence of the error vector on the sliding surface. Several more assumptions are required

for the convergence proof. The Lipshitz continuity of the functions (2.11) is usually an

assumption in the literature as seen in [75] and [79]. This continuity follows from the

smoothness of the original system (2.1).
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Lemma 2.3.11. Let Assumption 2.2.1 be satisfied. There exist Ma,Mb,M1, · · · ,Mq ∈
R+ such that for every zTc = [zTd , z

T
r ] and ẑTc = [ẑTd , ẑ

T
r ] with ‖zc − ẑc‖ ≤ εL where

εL ∈ R+,

‖ad(zd, zr)− ad(ẑd, ẑr)‖ ≤Ma‖zc − ẑc‖,
‖c(zd, zr)− c(ẑd, ẑr)‖ ≤Mc‖zc − ẑc‖,

‖b1(zd, zr, u)− b1(ẑd, ẑr, u)‖ ≤M1‖zc − ẑc‖,
...

‖bq(zd, zr, u)− bq(ẑd, ẑr, u)‖ ≤Mq‖zc − ẑc‖.

(2.12)

Proof: The dynamics of the system in the two realizations (2.1) and (2.8), are related

through the coordinate transformation given by equations (2.6) and (2.7) as
zd,2 + b1(zd, zr, u)

...

zd,q + bq−1(zd, zr, u)

ad(zd, zr) + bq(zd, zr, u) + c(zd, zr)ξ

ar(zd, zr) + br(zd, zr, u)

 =
∂φ(zorig)

∂zorig
(f(zorig) +Bu+g(zorig)ξ) .

Assumption 2.2.1 implies that every function defined in equation (2.11) is continuously

differentiable with respect to the vector zorig. Since the transformation zc = [zTd , z
T
r ]T =

φ(zorig) given by equations (2.6) and (2.7) is a diffeomorphism, the vector zorig is also

continuously differentiable with respect to the vectors zd and zr. In conclusion, the

functions (2.11) are continuously differentiable with respect to the vectors zd and zr.

Finally, the Mean Value Theorem implies that the coefficients ad, c, and bk for k =

1, · · · , q are locally Lipschitz continuous on every closed and bounded set. The conclusion

(2.12) follows. �

For any signal v, calculate (v)eq by low pass filtering the signal v. This filtering

was introduced in [80] to avoid a peaking phenomenon. Define ē1 = e1 and ēk =

17



(λk−1 sign(ēk−1))eq for k = 2 · · · q [79]. For some λ1, · · · , λq ∈ R+ define the SMO

dẑd,1
dt

= ẑd,2 + b1(y, u) + λ1 sign(e1)

...

dẑd,q−1

dt
= ẑd,q + bq−1(ẑd,2, · · · , ẑd,q−1, y, u) + λq−1 sign(ēq−1)

dẑd,q
dt

= ad(ẑd, ẑr) + bq(ẑd, ẑr, u) + λq sign(ēq)

dẑr
dt

= ar(ẑd, ẑr) + br(ẑd, ẑr, u).

(2.13)

In this strategy, the sliding surfaces are reached one by one in a recursive fashion.

Theorem 2.3.12. [79] Given Assumptions 2.2.1-2.3.10, for sufficiently large λ1, · · · , λq ∈
R+ the state ẑd of the observer (2.13) converges to the disturbed state vector zd in finite

time.

Modified SMO

Theorem 2.3.12 shows that the SMO (2.13) provides an estimate ẑd of the disturbed

states zd. An estimate ẑr of the residual states ẑr needs to be obtained by some other

method. Typically, a Luenberger observer is used with the SMO to estimate the full state;

see [60, 61] and [62]. The Luenberger observer must overcome the nonlinearities and

stabilize the error dynamics on the sliding surface. Normally, a linear matrix inequality

(LMI) must be solved to obtain the proper gain for the Luenberger observer [61] and

[62]. However, solving the LMI problem is computationally expensive and sometimes the

inequality has no solution.

Another approach is to combine a method for estimating the undisturbed nonlinear

system with the SMO for the disturbed system. Define the state vector z̃Tc = [z̃Td , z̃
T
r ]; if

ξ ≡ 0, the transformed system (2.8) can be written as

dz̃c
dt

= f̄(z̃c) + ḡ(z̃c, u)

y = z̃d,1

(2.14)

The system in equation (2.14) is observable (Assumption 2.3.8)) and an observer gain

K can be designed for this system. Define ẽ = z̃c − ẑc = [ẽ1, · · · , ẽq, ẽq+1, · · · , ẽn]T and

ẽ1 = z̃d,1 − ẑd,1; let the observer dynamics be denoted by

dẑc
dt

= f̄(ẑc) + ḡ(ẑc, u) +K(ẑc, ẽ1) (2.15)
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where KT (ẑc, ẽ1) = [K1(ẑc, ẽ1), . . . , Kn(ẑc, ẽ1)] is designed such that

‖K(ẑc, ẽ1) ‖≤ k ‖ ẽ1 ‖ . (2.16)

The dynamics of the error ẽ are

dẽ

dt
= f̄(z̃c)− f̄(ẑc) + ḡ(z̃c, u)− ḡ(ẑc, u)−K(ẑc, ẽ1). (2.17)

The following assumption is made for the error dynamics (2.17).

Assumption 2.3.13. Let the observer dynamics and its corresponding error dynamics be

given by equation (2.15) and (2.17) respectively. There exists a continuously differentiable

Lyapunov function V : D → R such that

β1 ‖ ẽ ‖2≤ V (ẽ) ≤ β2 ‖ ẽ ‖2 (2.18)∥∥∥∥∂V (ẽ)

∂ẽ

∥∥∥∥ ≤ β4‖ẽ‖ (2.19)

for some β1, β2, β3, β4 ∈ R+ and along trajectories

V̇ (ẽ) ≤ −β3 ‖ ẽ ‖2 . (2.20)

It is evident that β4 depends on the observer design and is determined by the rate of

error convergence. To cope with a disturbance, that is ξ 6= 0, the observer is modified by

adding sliding mode terms. Combining the exponential convergent observer dynamics

satisfying Assumption 2.3.13 with the sliding mode term reduces the effect of chatter-

ing expected from the sliding mode observers. Furthermore, it also emerges employing

smaller gains for sliding mode term and thus less chattering. Defining e1 = zd,1 − ẑd,1
where ẑTc = [ẑTd , ẑ

T
r ] is the observer state vector, ē1 = e1 and ēk = (λk−1 sign(ēk−1))eq for

k = 2 · · · q. Thus,

dẑd,1
dt

= ẑd,2 + b1(y, u) +K1(ẑ, e1) + λ1 sign(e1)

...

dẑd,q−1

dt
= ẑd,q + bq−1(ẑd,2, · · · , ẑd,q−1, y, u) +K2(ẑ, e1) + λq−1 sign(ēq−1)

dẑd,q
dt

= ad(ẑd, ẑr) + bq(ẑd, ẑr, u) +Kq(ẑ, e1) + λq sign(ēq)

dẑr
dt

= ar(ẑd, ẑr) + br(ẑd, ẑr, u) +Kq+1:n(ẑc, e1).

(2.21)
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This observer can also be written

dẑc
dt

= f̄(ẑc) + ḡ(ẑc, u) +K(ẑc, e1) + ur (2.22)

where

ur = [λ1 sign(e1), . . . , λq sign(ēq), 01×(n−q)]
T .

Lemma 2.3.14. Let Assumptions 2.3.10 and 2.3.13 be satisfied. The estimation error

provided by the observer (2.21) is bounded.

Proof: Define the error vector e = zc − ẑc; the error dynamics can be obtained from

equations (2.8) and (2.22) as

de

dt
= f̄(zc)− f̄(ẑc) + ḡ(zc, u)− ḡ(ẑc, u)−K(ẑc, e1) + Γ(zc)ξ − ur . (2.23)

Consider a continuously differentiable Lyapunov function V that satisfies Assumption

2.3.13. Along trajectories,

dV (e)

dt
=
∂V (e)

∂e

(
f̄(zc)− f̄(ẑc) + ḡ(zc, u)− ḡ(ẑc, u)−K(ẑc, e1) + Γ(zc)ξ − ur

)
.

Substituting inequalities (2.20) and (2.19) leads to

dV (e)

dt
≤ −β3‖e‖2 + β4‖Γ(zc)ξ − ur‖‖e‖. (2.24)

From the definition of Γ(zc), equation (2.10), Lemma 2.3.11, Assumption 2.3.9, and

the boundedness of the vector ur and unknown input ξ, it can be concluded that for

some Md ∈ R+,

‖Γ(zc)ξ − ur‖ ≤Md.

Therefore,
dV (e)

dt
≤ −β3‖e‖2 + β4Md‖e‖. (2.25)

If

‖e‖ < β4Md

β3

the error vector is of course bounded and the proof is complete.

Now, suppose that

‖e‖ ≥ β4Md

β3

.
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From inequalities (2.18) and (2.25), this implies that

dV (e)

dt
≤ 0, and ‖e‖ ≤

√
V (e)

β1

≤

√
V (e(0))

β1

.

Therefore, in this case, the error vector is bounded by

max((β4Md)/β3,
√
V (e(0))/β1).

�

Theorem 2.3.15. Suppose that Assumptions 2.2.1-2.3.10 hold and also that the error

dynamics for the undisturbed system ( ξ ≡ 0) defined in equation (2.17) satisfy Assump-

tion 2.3.13 with

β3 > β4(1 +Ma +Mq).

Then, there exists λ1, · · · , λq ∈ R+ such that the modified sliding mode observer (2.21)

provides exponential convergence of the estimation vector ẑc to the state vector zc = φ(x).

Proof: If the disturbance input ξ is zero, the result follows trivially from the assump-

tions. Consider then a non-zero disturbance term ξ 6= 0. The proof involves several

steps.

Step one:

This step is along the lines of the proof of Theorem 2.3.12 in [79]. Let eT = [eTd , e
T
r ] =

zc− ẑc where eTd = [e1, . . . , eq], and eTq = [eq−1, . . . , en]. The error dynamics of the vector

ed is expanded as

de1

dt
= e2 −K1(ẑc, e1)− λ1 sign(e1) (2.26)

de2

dt
= e3 + b2(zd,2, y, u)− bq−1(ẑd,2, y, u)−K2(ẑc, e1)− λ2 sign(e2) (2.27)

...

deq−1

dt
= eq + bq−1(zd,2, . . . , zd,q−1, y, u)

− bq−1(ẑd,2, . . . , ẑd,q−1, y, u)−Kq−1(ẑc, e1)− λq−1 sign(ēq−1)
(2.28)

deq
dt

= ad(zd, zr)− ad(ẑd, ẑr) + bq(zd, zr, u)− bq(ẑd, ẑr, u)

−Kq(ẑc, e1) + c(zd, zr)ξ − λq sign(ēq).
(2.29)
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Consider the first dynamical equation of the error dynamics (2.26). Define a Lyapunov

function as

V1(e1) =
1

2
|e1|2.

The time differentiation of V1(e1) is

dV1(e1)

dt
= e1e2 − e1K1(ẑc, e1)− λ1|e1| (2.30)

From Lemma 2.3.14, the error vector e is bounded, so (|e2|+ k|e1|) has an upper bound,

and it is possible to choose λ1 > sup(|e2| + k|e1|). For such λ1, since the observer gain

satisfies inequality (2.16), for some β5 ∈ R+, equation (2.30) leads to

dV1(e1)

dt
≤ −β5|(e1)|.

Therefore, the system reaches the switching surface e1 = 0 after a finite time t1. After

this ideal sliding motion takes place, e1 = 0 and de1/dt = 0 for t > t1. The second

equation (2.27) becomes

de2

dt
= e3 + b2(zd,2, y, u)− bq−1(ẑd,2, y, u)−K2(ẑc, e1)− λ2 sign(e2).

Similarly, given inequalities (2.16) and (2.12) as well as the boundedness of e2, for λ2 >

sup(|e3|+M2|e2|+k|e1|), the system reaches the switching surface e2 = 0 after a finite time

t2 > t1. Following the same reasoning implies that after finite time T > tq > . . . > t2 > t1,

the system reaches the sliding surfaces e1 = 0, . . . , eq = 0 one by one.

Step two:

Once the motion is along the intersection of the sliding surfaces, e1 = 0, . . . , eq = 0,

the discontinuous vector ur in equation (2.22) can be replaced by its equivalent smooth

counterpart [84]

ueq = (ur)eq =



e2

...

eq

ad(zd, zr)− ad(zd, ẑr)+
bq(zd, zr, u)− bq(zd, ẑr, u) + c(zd, zr)ξ

0(n−q)×1


, (2.31)

where ueq forces the system’s motion stay along the intersection of some sliding surfaces;

then, the error dynamics of the system takes the form

de

dt
= f̄(zc)− f̄(ẑc) + ḡ(zc, u)− ḡ(ẑc, u)−K(ẑc, e1) + Γ(zc)ξ − ueq. (2.32)
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From equation (2.31) and the inequalities (2.12),

‖Γ(zc)ξ − ueq‖ ≤ (1 +Ma +Mq)‖e‖. (2.33)

Step three:

The observer K(ẑc, e1) was proved in Lemma 2.3.14 to provide a bounded error even

for a system with disturbances. In sliding mode, which occurs after a finite time, the

error dynamics is given by equation (2.32). Differentiating the Lyapunov function V that

satisfies Assumption 2.3.13 leads to

dV (e)

dt
= V0(e) +

∂V (e)

∂e
(Γ(zc)ξ − ueq). (2.34)

Inequalities (2.20), (2.19) and (2.33) imply that

dV (e)

dt
≤ −β3‖e‖2 + β4(1 +Ma +Mq)‖e‖2 . (2.35)

Since β3 > β4(1 +Ma +Mq), for some β5 = β3 − β4(1 +Ma +Mq) ∈ R+

dV (e)

dt
≤ −β5‖e‖2 (2.36)

and the estimation error e goes to zero exponentially. �

Theorem 2.3.15 shows that an exponentially convergent observer of the undisturbed

nonlinear system can be combined with a sliding mode observer. The result is an expo-

nentially convergent observer of the system in the presence of disturbances coming from

an unknown input.

There are two ways of considering the inverse transformation: finding the state space

representation of the observer in the original coordinates, and transforming the state

estimate back into the original coordinates. In this thesis, the second method is chosen

since the simulations will be applied in a sample-data framework. The observer state in

the original coordinates is obtained by

ẑorig = φ−1(ẑc).

A potential nonlinear observer with an exponential convergence rate is the modified

EKF introduced [66, 67]. This method is easier to apply than other nonlinear observers

and suggests a sub-optimal state estimation. In this chapter, this filtering is used to

replace the nonlinear observer of Theorem 2.3.15.
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2.4 Observer design for DPS

The dynamical systems considered in this paper have PDE form. Let the state space be

a separable Hilbert space H. In general, the system can be represented by

∂z

∂t
= F(z) + Bu(t) + Gξ(t)

y(t) = Cz
(2.37)

where z ∈ H , x ∈ Rm is the spatial variable, F : D(F) ⊂ H → H is a nonlinear

operator, B : R→ H is a bounded input operator, G : R→ H is a bounded disturbance

operator, u ∈ R is the input signal, ξ ∈ R is the disturbance input, y ∈ R is the output,

and C : H → R is a bounded output operator. The initial condition is

z(0,x) = z0 ∈ H. (2.38)

In order to proceed the observer design, a finite-dimensional approximation is intro-

duced. Since the Hilbert space is separable, a basis {vi}∞i=1 can be chosen for the Hilbert

space H. Now, define the Hilbert space

HM = span{vk, k = 1 . . .M}.

The orthogonal projection of the Hilbert space H onto HM is defined by

PMz =
M∑
i=1

zivi (2.39)

for z ∈ H and zi ∈ R. Let the state vector be decomposed into two parts:

z = zM + zcM (2.40)

with

zM = PMz, (2.41)

zcM = (I −PM)z (2.42)

where I is an identity operator.

Define a finite-dimensional nonlinear operator

FM(z) =
M∑
i=1

fi(z)vi
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where fi(.) are derived using Galerkin method and a weak form of 2.37,

F c
M(z) = F(z)−FM(z),

and

GM = PMG, Gc
M = (I −PM)G

BM = PMB, Bc
M = (I −PM)B.

The projection defined in equation (2.41) can be used to rewrite (2.37) as

∂zM
∂t

= FM(z) + BMu(t) + GMξ(t) (2.43)

∂zcM
∂t

= F c
M(z) + Bc

Mu(t) + Gc
Mξ(t) (2.44)

y(t) = CzM + CzcM .

Next, the system is approximated by the finite-dimensional version; The state vector

z is approximated by

z̄M =
M∑
i=1

z̄ivi,

The two state variables z̄M and zM are different since they satisfy two different equations.

The state zM is the solution to (2.43) and (2.44) and z̄M satisfies the finite-dimensional

system defined as
∂z̄M
∂t

= FM(z̄M) + BMu(t) + GMξ(t)

y(t) = Cz̄M .
(2.45)

An equivalent ODE representation to (2.45) can be obtained via multiplying both sides

of (2.45) by vi for i = 1 . . . N in the sense of H inner product denoted by (., .)H. Define

zorig,N =


z̄1

z̄2

...

z̄M

 , fM(zorig,N) =


f1(zorig,N)

f2(zorig,N)
...

fM(zorig,N)



BM =


B1

B2

...

BM

 , gM(zorig,N) =


g1(zorig,N)

g2(zorig,N)
...

gM(zorig,N)


CM = [Cv1,Cv2, . . . ,CvM ]
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where

FM(z̄M) =
M∑
i=1

fi(zorig,N)vi, BM =
M∑
i=1

Bi(zorig,N)vi, GM(z̄M) =
M∑
i=1

gi(zorig,N)vi.

The equivalent ODE representation is

dzorig,N
dt

= fM(zorig,N) +BMu(t) + gM(zorig,N)ξ(t)

y = CMzorig,N .
(2.46)

For every N > 0, (2.46) preserve the same properties as those of (2.1).

The observer dynamics is composed of a copy of the system’s approximate dynamics

(2.46) with N ≤ M and a filtering feedback operation. Note that when different base

functions are used to construct HN and HM for N < M , the bases of the Hilbert space

HM must be transformable into a new bases via a linear transformation such that it

includes the bases of HN . In this way, the first N component of the state vector of both

observer and system are comparable. This condition is satisfied for linear shape functions

used in finite element method. Define

zorig,N0 = [z̄1, z̄2, . . . , z̄N ]T , zcorig,N0
= [z̄N+1, z̄N+2, . . . , z̄N ]T

and

fN(.) =


f1(.)

f2(.)
...

fN(.)

 , f cN(.) =


fN+1(.)

fN+2(.)
...

fN(.)



gN(.) =


g1(.)

g2(.)
...

gN(.)

 , gcN(.) =


gN+1(.)

gN+2(.)
...

gN(.)



BN =


B1

B2

...

BN

 , Bc
N =


BN+1

BN+2

...

BN


CN = [Cv1,Cv2, . . . ,CvN ]

Cc
N = [CvN+1,CvN+2, . . . ,CvN ].
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The system (2.46) can be rewriten as

dzorig,N0

dt
= fN(zorig,N0) +BNu(t) + gN(zorig,N0)ξ(t) + hN(zorig,N0 , zorig,N)

dzcorig,N0

dt
= f cN(zorig,N) +Bc

Nu(t) + gcN(zorig,N)ξ(t)

y = CMzorig,N

(2.47)

where

hN(zorig,N0 , zorig,N) = fN(zorig,N)− fN(zorig,N0) + (gN(zorig,N)− gN(zorig,N0))ξ(t).

Next the following change of coordinate

zc,M =

[
zc,N

zcc,N

]
= TMw =

[
φN(zorig,N0)

zcorig,N0

]

is applied wherein φN(zorig,N0) is defined as in (2.5) with f and g respectively replaced

by fN and gN .

In new coordinates, the system takes the form

dzc,N
dt

= f̄N(zc,N) + ḡN(zc,N , u(t)) + ΓN(zc,N)ξ(t) + h̄N(zc,N , zc,M)

dzcorig,N0

dt
= f cN(zc,M) +Bc

Nu(t) + gcN(zc,M)ξ(t)

y = C̄Mzc,M

(2.48)

where

f̄N(zc,N) =
∂φN(zorig,N0)

∂zorig,N0

|zorig,N0
=zc,N fN(φ−1

N (zc,N)),

ḡN(zc,N , u(t)) =
∂φN(zorig,N0)

∂zorig,N0

|zorig,N0
=zc,N BNu(t),

ΓN(zc,N) =
∂φN(zorig,N0)

∂zorig,N0

|zorig,N0
=zc,N gN(φ−1

N (zc,N)),

h̄N(zc,N , zc,M) =
∂φN(zorig,N0)

∂zorig,N0

|zorig,N0
=zc,N hN(φ−1

N (zc,N),T−1
M (zc,M)),

C̄M = [1, 0, . . . , 0].

Note that f̄N , ḡN , and ΓN have the same structures as but different dimensions from

that of f̄ , ḡ, and Γ since the mappings φN and φ are constructed based on the same

logic.
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Define ẑc,N = [ẑc,1, ẑc,2, . . . , ẑc,N ]T . The general observer dynamics is

dẑc,N
dt

= f̄N(ẑc,N) + ḡN(ẑc,N , u(t)) +KN(ẑc,N , y − ẑc,1) + ur,N (2.49)

where KN and ur,N are defined in the same way as K and ur (2.22) for n = N . Define

eN = [eN,1, eN,2, . . . , eN,N ]T = zc,N − ẑc,N . The error dynamics is

deN
dt

= f̄N(zc,N)− f̄N(ẑc,N) + ḡN(zc,N , u(t))− ḡN(ẑc,N , u(t))

−KN(ẑc,N , eN,1) + ΓN(zc,N)ξ(t)− ur,N + h̄N(zc,N , zc,M)

dzcorig,N0

dt
= f cN(zc,M) +Bc

Nu(t) + gcN(zc,M)ξ(t).

(2.50)

Lemma 2.4.1. Let the system (2.47) satisfy Assumption 2.3.10. For zcorig,N0
≡ 0, ur,N ≡

0, and ξ(t) ≡ 0, let the error dynamics (2.50) satisfy Assumption 2.3.13 with n = N .

Furthermore, suppose that h̄N(zc,N , zc,M) is bounded for every N . In other words,

‖h̄N(zc,N , zc,M)‖ ≤Mh

for some Mh ∈ R+. The state estimation provided by the observer (2.49) is bounded.

Proof: Consider a continuously differentiable Lyapunov function V similar to what is

chosen in Lemma 2.3.14 that satisfies Assumption 2.3.13. Followed by the same procedure

as in Lemma 2.3.14, along the trajectories given by (2.50),

dV (eN)

dt
≤ −β3‖eN‖2 + β4‖ΓN(zc,N)ξ − ur,N + h̄N(zc,N , zc,M)‖‖eN‖. (2.51)

From the definition of ΓN(zc,N); equation (2.10); Lemma 2.3.11; Assumption 2.3.9;

and the boundedness of the vector ur,N , unknown input ξ, and h̄N(zc,N , zc,M), it can be

concluded that for some Md ∈ R+,

‖ΓN(zc,N)ξ − ur,N + h̄N(zc,N , zc,M)‖ ≤Md +Mh.

Therefore,

dV (eN)

dt
≤ −β3‖eN‖2 + β4(Md +Mh)‖eN‖,

and

‖eN‖ ≤
β4(Md +Mh)

β3

.

Since the error vector and the system state are bounded so does the observer state, and

the proof is complete. �

The boundedness of the estimation error is given by the following theorem.
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Theorem 2.4.2. Suppose that Assumptions 2.2.1-2.3.8 hold for f = fN , g = gN ,

n = N , and q = 1, and the system (2.47) satisfies Assumption 2.3.10. For zcorig,N0
≡ 0,

ur,N ≡ 0, and ξ(t) ≡ 0, let the error dynamics (2.50) satisfy Assumption 2.3.13 with

n = N and

β3 > β4(1 +Ma +Mq).

Furthermore, suppose that h̄N(zc,N , zc,M) is bounded for every N as defined in Lemma

2.4.1. Then, there exists λ1, · · · , λq ∈ R+ such that the approximate observer (2.49)

provides a bounded estimation error compared to the higher order approximated system

(2.48).

Proof: If the disturbance input ξ is zero, the result follows trivially from the assump-

tions. Consider a non-zero disturbance term ξ 6= 0. The proof is similar to that of

Theorem 2.3.15. Followed by the same procedure as in the step one, for q = 1, there

exists λ1 > 0 such that the observer reaches the sliding surface in a finite time; the

equivalent signal is

ueq,N = (ur,N)eq =


C̄N(f̄N(zc,N)− f̄N(ẑc,N))+

C̄N(ḡN(zc,N , u(t))− ḡN(ẑc,N , u(t)))+

C̄NΓN(zc,N)ξ(t)+

C̄N h̄N(zc,N , zc,M)

0(n−1)×1

 , (2.52)

where C̄N = [1, 0, . . . , 0] is a row matrix of dimension N . From equation (2.52) and the

inequalities (2.12),

‖ΓN(zc,N)ξ − ueq,N‖ ≤ (1 +Ma +Mq)‖eN‖+Mh. (2.53)

In the sliding mode, which occurs after a finite time, the differentiation of a Lyapunov

function V that satisfies Assumption 2.3.13 leads to

dV (eN)

dt
= V0(eN) +

∂V (eN)

∂eN
(ΓN(zc,N)ξ − ueq,N + h̄N(zc,N , zc,M)). (2.54)

Inequalities (2.20), (2.19) and (2.53) imply that

dV (eN)

dt
≤ −β3‖eN‖2 + β4(1 +Ma +Mq)‖eN‖2 + 2Mh‖eN‖. (2.55)

Since β3 > β4(1 +Ma +Mq), for some β5 = β3 − β4(1 +Ma +Mq) ∈ R+

dV (eN)

dt
≤ −β5‖eN‖2 + 2Mh‖eN‖ (2.56)
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and the estimation error e is bounded by

‖e‖ ≤ ‖eN‖+ ‖zcorig,N0
‖ ≤ 2Mh

β5

+ ‖zcorig,N0
‖. (2.57)

�

The nonlinear observer can be substituted by the modified EKF which stability con-

ditions are defined in Section 2. When the effect of the sliding mode is ignored, ur,N is

set to zero, and the estimation error bound is given by Lemma 2.4.1.

Note that all the constants employed in Lemma 2.4.1 and Theorem 2.4.2 depend on

the functions fN , gN , and hN and thus on N . In addition, the observer dynamics (2.49)

depends on the nonlinear filtering gain KN . In other words, proving that the solution

to the approximate observer converges to the true state as the order of approximation

increases requires adding conditions on the upper bounds of these constants as well as

some conditions necessary to show the convergence of engaged functions. Finding these

conditions and the convergence proof are not easily achieved in general nonlinear PDEs

because of involved unbounded operators. The convergence result cannot be proved for

the UKF even in the case of ODEs since it is purely based on stochastic analysis.

In this thesis, the order of approximation for the original system is chosen to be

large enough such that the approximate solution is close to the exact solution of the

system (2.37). With this setting, two sources of uncertainties are introduced in the

observer design: the disturbances coming from the unknown input ξ(t) and the modeling

uncertainty due to the order reduction in the observer design. The sliding mode observer

introduced in the previous section is designed to take care of former uncertainties but

not the latter one. The performance of the different introduced observation techniques

in the existence of both sources are examined for a variety of DPSs.

2.5 Simulations

In this section, different estimation methods are compared using variations of several

standard equations, the heat and wave equations. Linear, quasi-linear, and fully nonlin-

ear versions are considered, as well as versions with and without disturbances. Heat and

wave equations are fundamentally different in that for the heat equation, the energy in

each mode decreases rapidly to zero, while the energy in the wave equation is distributed

over all modes. This has consequences for estimation. In the following simulations, the

EKF and the modified SMO are designed for the transformed coordinates defined by

equations (2.6) and (2.7). The UKF is designed with the original coordinates.
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In the continuous-time EKF, a differential Riccati equation must be solved simul-

taneously with the system’s dynamical equations. It is faster to use the discrete-time

version of the EKF. In order to use the discrete-time EKF, the time span of interest is

divided into small sub-intervals of the same sizes ∆t. The time step should be chosen to

be faster than the observer’s dynamics such that the effect of time discretization can be

neglected. The value ∆t = 0.01 was found to be adequate for all the simulations.

On every sub-interval, the observer’s dynamical equations given by (2.49) are solved

with KN set to zero. Next, the discrete-time EKF [66] is used to provide the state

estimate at every time step; the observer term KN acts as a correction to the state

prediction. The systems equations are solved off line and its output is recalled at every

time step. Note that MATLAB ODE15s is used to solve the ODEs on every time sub-

intervals. The linearized dynamics of the system around the state prediction as described

in the EKF algorithm must be defined. The solution at time step k + 1 is

zk+1 = χ(∆t, zk, u[tk,tk+1], ξ[tk,tk+1]) (2.58)

where χ is an evolution operator describing the state at different time steps. The connec-

tion between the linearization in continuous-time and sampled-time systems around the

estimation vector is demonstrated through Theorem A.0.1 (please see Appendix A). In

the rest of this section, Theorem A.0.1 is employed to find the linearization of χ around

the state estimate ẑ as the linear operator Bzk in Table 2.1.

The observer gains including the EKF, UKF, and modified SMO parameters are

chosen by trial such that they achieve their best performance. The objective is that

every observer achieves its best performance before being compared to others. In other

words, for every order of approximation and each observer technique, different observer

gains are tried and compared in order to reach an optimal point of performance. This

tuning is done separately for every observer before being compared to others.

Comparing the results of the EKF and UKF in the following section shows that they

both perform the same in the absence of disturbances. Note that the EKF employed here

is a robust version of the EKF; it provides control over the rate of convergence via the

parameter a. Selecting the right value for a is done through increasing this value such

that the covarience matrix remains bounded and until no further improvement of the

performance can be observed. The same approach is used to find the SMO gain. Finally,

in the standard SMO, which added for the sake of comparison, the EKF is tuned using

just the linear part of the system.
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Heat equations

Now, different estimation methods are used for various versions of the heat equation,

linear, quasi-linear, nonlinear heat equation, with and without unknown disturbances.

Two sets of simulations are run; first, the disturbance ξ is zero and is not included in

the system’s dynamics. In the second set of simulations, the disturbance ξ is non-zero

and unknown by the estimator. The parameters used are in Table 2.3. In both sets, as

a non-persistent source of disturbances, a fraction of initial condition ωz(0, x) is added

to the system state. This type of disturbance is added to keep the system modes excited

in time. For linear and quasi-linear heat equations, ω = 0.1, and for nonlinear equation,

ω = 0.3.

Finite element method (FEM) with piece-wise linear functions is used to approxi-

mate all three versions of the partial differential equation. The order of approximation is

defined as the number of employed elements. The “true” system was simulated in COM-

SOL with seventeen linear elements to imitate true measurements and states. Increasing

the number of the elements more than seventeen showed small changes in the system’s

solution.

The observer designs are shown for different orders of approximation. In the modified

SMO, the EKF, was combined with a sliding mode observer. In all of the plots, the

estimation error

eest =

√∫ L

x=0

e2dx

where e = zM − ẑN . The system’s initial condition is

z(0, x) = 0.5 sin(πx) sech(3(x− 0.5))

and the observer’s initial condition is ẑ(0, x) = 0. The shared observer’s parameters are

chosen as, for the EKF,

P ν = 0.1In×n, P ω = 0.1, P z0 = 0n×n;

for the UKF,

P ν = 0.1In×n, P ω = 0.1, α = 0.05, κ = 0, β = 2, P z0 = 1e− 6In×n;

and for the modified SMO,

P ν = 0.1In×n, P ω = 0.1, P z0 = 0n×n.
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Table 2.3: Heat and wave equation parameters.

parameters L α1 α2 η1 η2 θ1 θ2 ε L0 H cd

values 1 6 4 0.2 π2 6 0.02 5 5 1 0.005

The linear heat equation was

∂z

∂t
=

∂

∂x
(α1

∂z

∂x
) + b(x)u(t) + g(x)ξ(t) (2.59)

with boundary conditions
∂z

∂x
(0, t) = 0, z(L, t) = 0, (2.60)

and localized observation

y =
1

δ

∫ L
2

+δ

L
2
−δ

z(x)dx. (2.61)

where α1 is the diffusivity coefficient, z ∈ L2(0, L) is the state variable, u(t) is the control

input, ξ(t) is an unknown input attributed to the disturbances, g(x) ∈ C([0, L]) is the

spatial distribution of the disturbance function, b(x) ∈ C([0, L]) is the spatial distribution

of the control. In the simulations,

g(x) = sin(πx), ξ(t) = 20 sin(t),

b(x) = sin(2πx), u(t) = 10 sin(t),

and δ = 1e− 4. Other observer parameters are

a = 20, λ1 = 50.

Results of the simulations are shown in Figures 2.1, 2.2, and 2.3. These figures show

that for all methods, the estimation error not surprisingly decreases by increasing the

order of approximation. In the absence of a disturbance, both EKF and UKF show

the same performance. Furthermore, the modified SMO performs similarly to the EKF.

When a disturbance is added, that is, ξ 6= 0, the EKF offers slightly better estimation

error than the UKF.

In the presence of a disturbance, the modified SMO provides an even smaller esti-

mation error; compared to other estimation methods, this method shows a considerable

decrease in error for higher orders of approximation. The error for different observation

techniques with a fixed approximation order is shown in Figure 2.4 and Table 2.4.
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Figure 2.1: Estimation error of the EKF against time when applied to the linear heat

equation with different orders of approximation N . The top plot shows the results in

the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is very small even for N = 5. When

a disturbance is present, the error is significant.
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Figure 2.2: Estimation error of the UKF against time when applied to the linear heat

equation with different orders of approximation N . The top plot shows the results in

the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is very small even for N = 5. When

a disturbance is present, the error is significant.
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Figure 2.3: Estimation error of the modified SMO against time when applied to the

linear heat equation with different orders of approximation N . The top plot shows the

results in the absence of a disturbance and the bottom plot the results when there is

an unknown disturbance. In the absence of disturbance, the error is very small even for

N = 5. When a disturbance is present, the error is still small.
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Figure 2.4: Comparison of the different estimation methods, the EKF, UKF, and

modified SMO, in estimating the state vector of the linear heat equation for the order

of approximation N = 5. The top plot shows the results in the absence of a disturbance

and the bottom plot the results when there is an unknown disturbance.
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The next model considered was a reaction-diffusion system, the quasi-linear heat

equation
∂z

∂t
=

∂

∂x
(α2

∂z

∂x
) +R(z) + b(x)u(t) + g(x)ξ(t). (2.62)

The values of α2, η1, and η2 are given in Table 2.3 and

R(z) = η1z(η2 − z).

The boundary conditions are again (2.60), and the observation is defined by equation

(2.61). In the simulations,

g(x) = sin(πx), ξ(t) = −18(2 + 1.5 sin(t)),

b(x) = sin(2πx), u(t) = 10 sin(t).

Other observer parameters are

a = 2, λ1 = 40

for the EKF and the modified SMO and a = 2, λ1 = 60 for the standard SMO.
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Figure 2.5: Estimation error of the EKF against time when applied to the quasi-linear

heat equation with different orders of approximation N . The top plot shows the results

in the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is very small even for N = 5. When

a disturbance is present, the error grows larger.

Simulation results are shown in Figures 2.5, 2.6, and 2.7. Again, estimation error

decreases as the order of approximation decreases in the absence of disturbances. Figures
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Figure 2.6: Estimation error of the UKF against time when applied to the quasi-linear

heat equation with different orders of approximation N . The top plot shows the results

in the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is very small even for N = 5. When

a disturbance is present, the error is significant.
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Figure 2.7: Estimation error of the modified SMO against time when applied to the

quasi-linear heat equation with different orders of approximation N . The top plot shows

the results in the absence of a disturbance and the bottom plot the results when there

is an unknown disturbance. In the absence of disturbance, the error is very small even

for N = 5. When a disturbance is present, the error is still small.
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Figure 2.8: Comparison of the different estimation methods, the EKF, UKF, and mod-

ified SMO in estimating the state vector of the quasi-linear heat equation for the order

of approximation N = 5. The top plot shows the results in the absence of a disturbance

and the bottom plot the results when there is an unknown disturbance.

2.5 and 2.6 indicate that in the absence of disturbances, the estimation error provided

by both EKF and UKF is nearly the same. Moreover, adding the sliding term to the

EKF does not change its performance in the absence of disturbances.

However, estimation error of the UKF in the existence of the disturbances is more

than two times larger than that of the EKF. According to Figure 2.7, the modified SMO

reduces the estimation error by four times compared to the EKF. This improvement can

be seen from Figure 2.8 and Table 2.4 where different observation techniques, all with

approximation order N = 5, are compared. It is also observed that the modified SMO

produces an error around three time less than the standard SMO.

The last heat equation considered was a nonlinear heat equation. The system is sim-

ilar to the linear equation (2.59) except that the diffusivity is not constant but becomes

a function of the state

α3(z) = θ1(1 + θ2z
2),

where θ1 and θ2 are defined in Table 2.3. Thus, the governing equation is

∂z

∂t
=

∂

∂x
(α3(z)

∂z

∂x
) + b(x)u(t) + g(x)ξ(t) (2.63)

The same boundary conditions (2.60) hold, and the observation is again defined by (2.61).

In the simulations,

g(x) = sin(πx), ξ(t) = 5.45(−2 + 1.5 sin(t)),
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b(x) = sin(2πx), u(t) = 10 sin(t).

Other observer parameters are

a = 20, λ1 = 10

for the EKF and the modified SMO and a = 20, λ1 = 30 for the standard SMO.
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Figure 2.9: Estimation error of the EKF against time when applied to the nonlinear heat

equation with different orders of approximation N . The top plot shows the results in

the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is very small even for N = 5. When

a disturbance is present, the error grows larger.

The simulation results are shown in Figures 2.9, 2.10, and 2.11. The same pattern

of the error decreasing when the order of approximation increases can be seen in the

absence of disturbances. The estimation errors of both EKF and UKF are almost the

same in the absence of disturbances (Figures 2.9 and 2.10). However, the estimation

error associated with the UKF is larger than EKF when disturbances are present. Like

the previous two examples of the heat equation, the modified SMO performs similarly to

the EKF when there is a disturbance. On the other hand, the error with the existence

of disturbances is reduced by the modified SMO up to four times compared to the EKF

(Figure 2.11). This is illustrated by Figure 2.12 and Table 2.4 where all the observation

methods are compared with the order of approximation N = 5. It is also observed that

the modified SMO produces an error around four time less than the standard SMO.
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Figure 2.10: Estimation error of the UKF against time when applied to the nonlinear

heat equation with different orders of approximation N . The top plot shows the results

in the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is very small even for N = 5. When

a disturbance is present, the error is significant.
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Figure 2.11: Estimation error of the modified SMO against time when applied to the

nonlinear heat equation with different orders of approximation N . The top plot shows

the results in the absence of a disturbance and the bottom plot the results when there

is an unknown disturbance. In the absence of disturbance, the error is very small even

for N = 5. When a disturbance is present, the error is still small.
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Figure 2.12: Comparison of the different estimation methods, the EKF, UKF, and mod-

ified SMO in estimating the state vector of the nonlinear heat equation for the order of

approximation N = 5. The top plot shows the results in the absence of a disturbance

and the bottom plot the results when there is an unknown disturbance.

Wave equations

The second category of infinite-dimensional systems considered is the wave equation.

Unlike the linear heat equation, where the eigenvalues are all negative and real, the

eigenvalues of even a damped wave equation lie in a vertical strip in the complex plane.

The energy associated with different modes in the wave equation does decay to zero

quickly similar to the case of the heat equation. Three different observation methods

were applied to two different versions of a wave equation. Similar to the previous case,

two sets of simulations, one with disturbance and one without disturbance, are run.

For the approximation of all the wave partial differential equations by a system of

ODEs, and the resulting observer, a Galerkin method with trigonometric sin(.) base

functions satisfying boundary conditions was used. The simulation results are exhibited

for different orders of approximation. The “true” system was assumed to be obtained as

the solution to the approximating ODEs with twenty five modes. This number of modes

are enough to show the effect of model truncation in the observer design. Increasing the

number of modes more than twenty five modes will only change the system solution. In

all plots, the estimation error is

eest =

√∫ L

x=0

e2dx
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where e = zM − ẑN .

The linear wave equation was

∂2z

∂t2
+ ε〈∂z

∂t
, d〉d(x) =

∂2z

∂x2
+ b(x)u(t) + g(x)ξ(t)

where ε is given in Table 2.3 [85]. Some damping is introduced so that the system is

stable. However, with this damping, the eigenvalues asymptote to the imaginary axis

and so the system is not exponentially detectable [86]. In the simulations,

d(x) = (x− 0.5)2, b(x) = 200x(x− 1) exp(−10(x− 0.5)2),

g(x) =

100 if 0 ≤ x < 0.1

0 if x ≥ 0.1
,

u(t) = exp(−(t− [t/10])2), ξ(t) = sin(t) + cos(t),

with boundary conditions
∂z

∂x
(0, t) =

∂z

∂x
(L, 0) = 0,

and the localized observation

y =
1

δ

∫ L

x=L−δ
z(x) dx

where δ = 1e− 2. The system’s initial condition is

z(0, x) = 5(x− 1)(x− 1/3) exp(−20(x− 2/3)2),
∂z(0, x)

∂t
= 0

and the observer’s initial condition is ẑ(0, x) = 0. Note that with these choices of initial

condition and spatial distributions b(x), d(x), all the modes are affected by the external

inputs and the initial condition.

Other observers’ parameters are chosen as, for the EKF,

P ν = 0.01In×n, P ω = 0.1, a = 1, P z0 = 0n×n;

for the UKF,

P ν = 0.1In×n, P ω = 0.1, α = 0.05, κ = 0, β = 2, P z0 = 1e− 6In×n;

and for the modified SMO,

P ν = 0.01In×n, P ω = 0.1, a = 1, P z0 = 0n×n, λ1 = 30.
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Figure 2.13: Estimation error of the EKF against time when applied to the linear wave

equation with different orders of approximation N . The top plot shows the results in

the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error drops asymptotically to a small

value even for N = 5. When a disturbance is present, the error is significant especially

for the larger N .
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Figure 2.14: Estimation error of the UKF against time when applied to the linear wave

equation with different orders of approximation N . The top plot shows the results in

the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error exponentially goes to a small value

even for N = 5. When a disturbance is present, the error is significant.

43



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

er
ro

r 
no

rm
 o

f p
os

iti
on

 

 

0 10 20 30 40 50
0

2

4

6

8

time(s)

er
ro

r 
no

rm
 o

f p
os

iti
on

N=20
N=10
N=5
N=3

Figure 2.15: Estimation error of the modified SMO against time when applied to the

linear wave equation with different orders of approximation N . The top plot shows the

results in the absence of a disturbance and the bottom plot the results when there is an

unknown disturbance. In the absence of disturbance, the error grows compared with the

results of the EKF. When a disturbance is present, the error is large but less than what

is provided by the EKF.
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Figure 2.16: Comparison of the different estimation methods, the EKF, UKF, and mod-

ified SMO in estimating the state vector of the linear wave equation for the order of

approximation N = 5. The top plot shows the results in the absence of a disturbance

and the bottom plot the results when there is an unknown disturbance.
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The simulation results are shown in Figures 2.13, 2.14, and 2.15. The pattern of

increasing error by decreasing the order of approximation is observed. According to

Figures 2.13 and 2.14, the UKF generally shows better performance over the EKF in the

absence of a disturbance.

By adding disturbances, the EKF offers better performance over the UKF for higher

modes, N ≥ 5. Unlike the heat equations, the linear wave equation experiences a slight

drop in the performance when the sliding mode is added to the EKF and the system

is undisturbed. However, Figure 2.15 indicates that when a disturbance is present, the

modified SMO has less estimation error than either the EKF or the UKF. This is also

illustrated by Figure 2.16 and Table 2.4 where the errors with different observers is shown

for the approximation order N = 5.

A nonlinear wave equation, which models the behavior of the one-layer shallow water

waves in a channel of length L0 is

∂η

∂t
= −H ∂v

∂x
− η ∂v

∂x
− v ∂η

∂x
0 < x < L0, t ≥ 0

∂v

∂t
= −g ∂η

∂x
− v ∂v

∂x
− cdv + g(x)ξ(t)

(2.64)

where v is the velocity and η is the height of the water with respect to the steady level

H [87]. Parameters H and L0 are given in Table 2.3. The boundary conditions are

v(0, t) = v(L0, t) = 0.

The linearization of the nonlinear wave equation about the zero equilibrium point is

∂η

∂t
= −H ∂v

∂x
0 < x < L0, t ≥ 0

∂v

∂t
= −g ∂η

∂x
− cdv + g(x)ξ(t).

(2.65)

The eigenvalues of this linear system are

γk = −cd ±
1

2
i

√
4

4k2π2g2H2

L2
0

− c2
d.

The eigenvalues have a fixed negative real part, and since the spectrum determined

growth assumption holds for this system, it is exponentially stable [86].

In the simulations, the initial condition is

v(x, 0) = sech(0.5L0(x− 0.5L0)), η(x, 0) = 0,
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and the observer’s initial conditions are both zero. The observations are

yv =

∫ L0

x=0

sech(15(x− 0.4L0))v(t, x) dx,

yη =

∫ L0

x=0

sech(15(x− 0.4L0))η(t, x) dx.

Furthermore, the disturbance term is chosen such that the physical constraints are sat-

isfied as

g(x) = sech(15(x− 0.4L0)), ξ(t) = sin(10t).

Before approximating the PDEs by ODEs, the variables of equation (2.64) are scaled as

η̄ =
η

H
, v̄ =

v√
gH

, x̄ =
x

L0

.

The new governing partial differential equations are then transformed into the ODEs

using a Galerkin method with sin(kπx/L0) basis functions for v and cos(kπx/L0) for η.

The observer initial condition is ẑ(0, z) = 0. Other observers’ parameters are chosen as,

for the EKF,

P ν = 0.001In×n, P ω = 10,

a = 1.5, P z0 = 0n×n,

for the UKF,

P ν = 0.01In×n, P ω = 0.01,

α = 0.001, κ = 0, β = 2, P z0 = 1e− 6In×n

and, for the modified SMO,

P ν = 0.001In×n, P ω = 10,

a = 1.5, P z0 = 0n×n, λ1 = 1.

In the estimation of the nonlinear wave equation, the error dynamics were unstable

with both versions of Kalman filtering. To overcome this problem, for the EKF, the

modes whose amplitudes are greater than one were set to zero at every sampling time

step. In addition, the covariance matrix was set to a value that makes the linear part of

ODEs stable. For the UKF, first, the profile of the water’s height and velocity is derived;

if the maximum value of a profile is greater than one, it is scaled down by the maximum

value; however, the estimation error is calculated based on the original estimation in

both cases.
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Figure 2.17: Estimation error of the EKF against time when applied to the nonlinear

wave equation with different orders of approximation N . The top plot shows the results

in the absence of a disturbance and the bottom plot the results when there is an unknown

disturbance. In the absence of disturbance, the error is the same for all the N . When a

disturbance is present, the error grows over time.
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Figure 2.18: Estimation error of the UKF against time when applied to the nonlinear

wave equation with different orders of approximation N . The top plot shows the re-

sults in the absence of a disturbance and the bottom plot the results when there is an

unknown disturbance. In the absence of disturbance, the error is large and the same

for all the N ; however, more oscillation in the error profile is observed for smaller N .

When a disturbance is present, the error grows in average over time and shows even more

oscillation.
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Figure 2.19: Estimation error of the modified SMO against time when applied to the

nonlinear wave equation with different orders of approximation N . The top plot shows

the results in the absence of a disturbance and the bottom plot the results when there is

an unknown disturbance. In the absence of disturbance, the error is the same for all the

N . When a disturbance is present, the error grows over time. The same performance as

the EKF can be detected.
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Figure 2.20: Comparison of the different estimation methods, the EKF, UKF, and mod-

ified SMO in estimating the state vector of the nonlinear wave equation for the order of

approximation N = 10. The top plot shows the results in the absence of a disturbance

and the bottom plot the results when there is an unknown disturbance.
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Table 2.4: Estimation error for different observation methods after transient period.
Undisturbed Disturbed

L
in

ea
r

h
ea

t

Method Run time Error max Error min Run time Error max Error min

EKF 77.6289 0.0022 1.6570e-05 135.4456 0.3227 0.0295

UKF 114.9613 0.0075 5.7367e-05 184.2440 0.3975 0.0505

SMO 82.0645 0.0053 2.8478e-05 193.6996 0.0480 2.3187e-04

Q
u

as
i-

li
n

ea
r

h
ea

t

EKF 200.6813 0.0053 8.5963e-06 207.3505 0.0886 0.0093

UKF 246.0649 0.0086 6.2819e-05 255.1652 0.3562 0.0590

SMO-EKF 102.7612 0.0060 1.1006e-04 117.8632 0.0190 0.0019

SMO 69.4914 0.0090 6.2597e-05 73.3460 0.0491 0.0031

N
on

li
n

ea
r

h
ea

t

EKF 168.2633 0.0019 1.1318e-05 177.9907 0.0566 0.0025

UKF 209.0683 0.0060 3.9765e-05 215.6899 0.1797 0.0111

SMO-EKF 178.3828 0.0036 2.2721e-05 186.0943 0.0138 7.7844e-05

SMO 167.7243 0.0053 6.2597e-05 177.4914 0.0532 9.1899e-04

L
in

ea
r

w
av

e

EKF 255.9711 0.3171 0.0110 259.0665 1.2860 0.2801

UKF 672.1987 0.2615 0.0054 649.3558 6.5160 0.7668

SMO 809.1518 0.3257 0.0188 475.2380 0.3255 0.0187

N
on

li
n

ea
r

w
av

e

EKF 8340.0319 0.4111 0.1239 8558.0329 0.9015 0.1939

UKF 11109.3265 3.6790 3.0270 11329.8198 3.9110 3.0270

SMO-EKF 9229.8942 0.4339 0.1266 8391.4789 0.9309 0.2099

SMO 8307.7356 0.5349 0.2260 7553.0863 1.0310 0.3354

The simulation results are shown in Figures 2.17, 2.18 and 2.19. A comparison of the

different observation techniques applied to the nonlinear wave equation can be found in

Figure 2.20 and Table 2.4 for the order of approximation N = 10. For the UKF, the

error does not seem to be converging to zero as the approximation order decreases. For

the EKF and modified SMO, the error decreases slightly as the order of approximation

increases. Other simulations with a linearized version of of the shallow wave equations

(2.64) showed the estimation error converging to zero with increasing approximation

order. Therefore, the errors in each method are likely due to the effect of the nonlinearity

on estimation. Finally, according to Figure 2.20, the modified SMO does not improve

the estimation error over that of the EKF, even when disturbances are present.
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2.6 Conclusions

The theoretical contribution of this chapter is a modified SMO. Unlike the standard

versions of the SMO, the modified version can take care of both nonlinearities and dis-

turbances coming from an unknown input. This modified SMO provided the possibility

of combining an exponential stabilizing nonlinear observer with sliding mode observation

to increase the estimation performance. The exponential convergence of the estimation

error to zero is shown in Theorem 2.3.15. Simulation results indicated a better perfor-

mance of this method over other filtering methods and, in particular, the standard SMO

in the case of the heat equation.

The fluctuation observed in error profiles is partly coming from the fact that the

designed observers are based on a prediction-correction algorithm; thus, discontinuity or

even chattering is quite usual. In fact, the modified SMO provides the possibility of using

smaller sliding gains, which leads to less chattering. On the other hand, as mentioned

before, unlike sliding mode control, chattering is not an issue in observer design as long

as it does not increase the computation time. Table 2.4 shows that this time does not

increase significantly.

A major focus of this chapter was to compare different estimation methods for a

variety of distributed parameter systems. The state estimation of three different diffusion

equations and two wave equations was considered: a linear, a quasi-linear, and a nonlinear

diffusion equation as well as a linear and a nonlinear wave equation. In all the examples,

measurement was localized around a single point. Different methods, the EKF, UKF and

a modified version of the SMO, were implemented to estimate the states. The simulations

were run for each model and estimator without any external input and for situations

with an unknown external disturbance. In the simulations, the order of approximation

used to design the observer was smaller than the order used in the simulation of the

“true” system in order to simulate the effect of the neglected modes. Therefore, the

error was expected to be only bounded since a part of the system model was omitted in

the observer dynamics. In the absence of any unknown input, the pattern of increasing

error by decreasing the order of approximation is observed. The reason for this can be

observed from the proof of Theorem 2.4.2. Increasing the order of approximation results

in a closer approximation to the true system and thus less estimation error.

The estimation error tends to be less and converges to zero faster for the various

versions of the heat equation than for the wave equation. This is a consequence of

the qualitative difference between the two types of partial differential equations. The
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eigenvalues of the linear heat equation are negative real, converging to minus infinity

along the negative real axis. Also, most of the energy of the solution is concentrated

in the first few modes. The influence of modes beyond the first few is negligible so the

error induced by a lumped approximation is quite small. On the other hand, the real

part of the eigenvalues of the wave equation do not converge to minus infinity and the

energy is spread over all modes. Error due to neglecting the higher modes is much more

significant for the wave equation.

For the undisturbed heat equation, the EKF and the UKF showed almost the same

performance. In the case of the wave equation, the UKF provided a better performance

over the other two methods for the linear case and worse for the nonlinear equation. When

a disturbance is present, the EKF performed better than the UKF, and the modified

SMO performed better than both UKF and EKF in the case of the heat equations. The

modeling error can be regarded as a disturbance, and the success of the nonlinear SMO

suggests that it will be preferable for handling errors due to modelling and truncation

of higher order modes. Adding the sliding mode term did not change the observer’s

performance when there was a disturbance. Future work will consider this issue further.

The UKF was satisfactory for the heat and linear wave equations. However, the UKF

did not converge for the undisturbed nonlinear wave equations. The UKF is based on

searching for new sample points in a neighbourhood of the available estimate vector; the

geometry of this neighbourhood is defined by the covariance matrix eigenvalues. The

samples calculated by the UKF might fail to lie in the region of attraction when applied

to the nonlinear wave equations.

Disturbances worsen the effect of neglecting higher modes (or equivalently, using a

lumped model). Since the modeling error due to approximating the equation is very small

for the heat equation, it is not surprising that the modified SMO performs as well for the

heat equation examples as it does for lumped systems. The error improvement provided

by SMO is less for the wave equation. There are several possible reasons for this. This

may be because the nonlinear part of the nonlinear wave equation is unbounded so an

assumption of Theorem 2.3.15 is not satisfied. Also, as noted above, the energy in the

neglected modes may be significant.

A general observation can be made that for systems without disturbances, the EKF

was generally better, and even for the examples where UKF was superior, EKF perfor-

mance was adequate. For systems with disturbances, the modified SMO (with EKF)

exhibited the smallest error in most of the cases. A useful conclusion of the comparison

was that UKF cannot be applied to the nonlinear wave equation even for high orders
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of approximation. Furthermore, it was shown that the importance of disturbance is

greater in the case of the wave equation than heat equation; A more expensive observer

is required which will be considered in future works.

As mentioned previously, the modeling error is an extra source of disturbance that

can be compensated by an exponential convergent observer. Unlike the robust observers,

the modified SMO provides exponential convergence which leads to reducing the error

coming from model approximation error. In addition, the employed EKF is a modified

version with the increased rate of convergence as required.

In the next chapter, the convergence result given by Lemma 2.4.1 and Theorem 2.4.2

is extended to a class of nonlinear DPSs for the EKF. It will be proved that under some

conditions they are still satisfied when M,N →∞. In other words, the EKF observer’s

well-posedness along with its convergence results will be proved.
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Chapter 3

Well-posedness of two classes of

nonlinear systems

In the previous chapter, comparison studies between different estimation techniques were

conducted. The EKF presented efficient results even in existence of external disturbances.

Furthermore, it was shown that the estimation error decreases as the order of approxi-

mation increases. These results motivate the idea that the EKF can be designed for the

DPSs. In this chapter, the well-posedness and finite-dimensional approximation of two

general classes of infinite-dimensional systems are investigated. These forms will be used

later to introduce a low-order model for electrochemical equations via which an adaptive

EKF will be improved.

3.1 Introduction and literature review

Observer design for linear DPSs has been well studied; see for instance [88, 89, 90, 91, 92,

93, 94, 95], and [86]. However, it has not been well explored for nonlinear DPSs. Observer

design for a general form of DPSs can be categorized into early lumping and late lumping

techniques. In the early lumping observer design, the system is first approximated by

some finite-dimensional representation; next, an observer is designed for the resultant

finite-dimensional approximate system. Some examples are the robust fuzzy technique

and robust adaptive observer proposed for quasi-linear DPSs respectively in [96] and [97].

Other examples can be found in [98] and [99].

Unlike early lumping, in the late lumping techniques, the finite-dimensional approxi-

mation is applied after the observer is designed. In some work, the output measurement
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is assumed to be available or can be constructed as a spatially distributed function of the

space variable. For instance, in [100], a second order sliding mode observer is employed

to provide stability with the assumption that the measurement is available everywhere.

In [101], the observer dynamic is corrected by a linear output error injection term via

a constructed spatially distributed measurement. Distributed linear output injection is

also proposed in [102] for a one-dimensional nonlinear Burgers equation. In fact, the

measurement is not often available in sufficient detail. In most applications, not only is

the system nonlinear, but also the measurements are only available as a vector of finite

dimension.

As an abstract form of late lumping nonlinear observer design, in [103], augmenting

a copy of the system’s dynamics with a nonlinear feedback term is studied on a reflexive

Banach space. Extending the maximum likelihood technique to a general class of non-

linear DPSs is used in [104]. This maximization is operated via dynamic programming

and leads to a distributed-parameter Hamilton-Jacobi equation. Similarly, in [105], the

distributed Hamilton-Jacobi equation is derived by minimizing a cost function and is

approximated by some simpler form. Observer design based on optimization is also used

in [106] to construct a PDE for filtering gain for a specific form of DPSs.

More examples include [107] and [108] wherein a backstepping observer is designed

for the linearized system around some set points. Nonlinear observer design for a specific

class of hyperbolic systems is considered in [109], where an operator-based linear matrix

inequality problem must be solved. A similar approach is proposed in [110] for a class

of quasi-linear parabolic systems. Another example not based on feedback design can be

found in [111].

In this research, observer design via early lumping technique is considered. In other

words, the system’s representation needs to be approximated by a finite-dimensional

version first. In this chapter, the well-posedness of two classes of nonlinear DPSs is

studied. More importantly, the finite-dimensional approximation of these two forms

of systems as well as the convergence of the approximate system are developed. The

objective of these studies is to introduce a low-order model for observer design.

3.2 Quasi-linear systems

In this section, a class of nonlinear infinite-dimensional systems is introduced for which

an EKF is to be designed. The system is assumed to be disturbed by some external

unknown input. Under some conditions on the external input, the well-posedness of the
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introduced system is investigated. Furthermore, the approximation of the system by an

infinite-dimensional form is studied. To begin with, some basic definitions required to

identify the system and its properties are introduced.

Definition 3.2.1. (Locally Lipschitz Continuous Function)

Let B1 and B2 be normed linear spaces. An operator J (.) : B1 → B2 is called locally

Lipschitz continuous if for every w ∈ B1, there exists a neighborhood N and LJ ∈ R+

so that

‖J (w1)−J (w2)‖B2 ≤ LJ ‖w1 −w2‖B1

for all w1,w2 ∈ N .

Definition 3.2.2. (Globally Lipschitz Continuous Function)

Let B1 and B2 be normed spaces. An operator J (.) : B1 → B2 is called globally Lipschitz

continuous if there exists LJ ∈ R+ so that

‖J (w1)−J (w2)‖B2 ≤ LJ ‖w1 −w2‖B1

for w1,w2 ∈ B1.

Definition 3.2.3. (Fréchet Differentiability, [112, Defenition 9.4.1])

Let B1 and B2 be normed linear spaces. An operator J : D(J ) ⊂ B1 → B2 is Fréchet

differentiable at w ∈ B1 if there exists a bounded linear operator DJ (w) : B1 → B2 such

that

lim
‖h‖B1

→0

‖J (w + h)−J (w)−DJ (w)h‖B2

‖h‖B1

= 0

for every h ∈ B1. It is Fréchet differentiable if it is Fréchet differentiable for every

w ∈ D(J ).

Definition 3.2.4. [113] Let B1 and B2 be normed linear spaces. An operator J : D(J ) ⊂
B1 → B2 is monotonic if for every w1,w2 ∈ D(J ) and α0 ∈ R+,

‖w2 −w1 + α0J (w2 −w1)‖H ≥ ‖w2 −w1‖H.

The operator is m-monotonic if D((I + α0J )−1) = B1.

The dynamical system considered in these studies is a semi-linear parabolic PDE. Let

the state space be a separable Hilbert space H. Suppose the state vector be denoted by

z ∈ H. The system is

∂z

∂t
+ Az = R(z) + Fu(t) + Gξ(t)

y(t) = Cz = (c, z)H

(3.1)
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where x ∈ Rm is the spatial variable, A : D(A) ⊂ H → H is a linear operator,

R : H → H is a Fréchet differentiable nonlinear operator which satisfies R(0) = 0,

F : R → H is the input operator and linear bounded, G : R → H is the disturbance

operator and linear bounded, u ∈ R is the input signal, ξ ∈ R is the disturbance input,

y ∈ R is the output, c ∈ H, and C : H → R is the output operator and linear bounded.

The initial condition is

z(0,x) = z0 ∈ H. (3.2)

The following assumptions are made for the system (3.1).

Assumption 3.2.5. The control input u(t) and the unknown input ξ(t) are continuous

in time and of bounded variation. In addition, there exist some Mξ ∈ R+ and Mu ∈ R+

such that |ξ(t)| ≤Mξ and |u(t)| ≤Mu.

Assumption 3.2.6. The operator A is assumed to be a self-adjoint closed operator with

a compact inverse A−1. It has also dense domain in Hilbert space D(A) = H and is

assumed to be positive such that (Aw,w)H ≥ κ‖w‖2 for every w ∈ D(A) and some

κ > 0.

Assumption 3.2.7. The nonlinear operator R(.) is Lipschitz continuous on the Hilbert

space H. In other words, for every w1,w2 ∈ H, there exist a positive constant LR ∈ R+

such that

‖R(w1)−R(w2)‖H ≤ LR‖w1 −w2‖H.

The linear operator A can also be used to define a new Hilbert space with more

smoothness properties. Before the normed space of interest can be defined, the concept

of evolution triple and duality pairing are introduced first. This definition will be used

in next section to prove the well-posedness of the observer equations.

Definition 3.2.8. (Duality Pairing, [114, Definition 3.4.3])

Let V ⊆ H be a linear space whose dual space is denoted by V ′. The triple (V ,H,V ′) is

called an evolution triple if it satisfies the following conditions:

• the linear space V is a separable and reflexive Banach space.

• the linear space H is a separable Hilbert space.

• For V ⊆ H ⊆ V ′, V is dense and continuously embedded in H.
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The duality pairing between V and V ′ is denoted by 〈., .〉V ′,V and defined as a continuous

extension of the inner product on the Hilbert space H, denoted by (., .)H.

From Assumption 3.2.6, it is evident that A is positive definite. Moreover, since the

operator A is self-adjoint, also A1/2 is well-defined positive definite operator; thus it is

possible to define a Hilbert space V = D(A1/2) with norm ‖A1/2.‖H. With this setting,

V is dense in the Hilbert space H and A1/2 defines an isomorphism between V and H
since it is a bounded linear operator from V to H with bounded linear inverse from H
to V . Therefore, (V ,H,V ′) is a evolution triple and a duality pairing can be defined as

in Definition 3.2.8.

Furthermore, for every w ∈ V ,

(A1/2., w)H : V → C

is a linear functional with domain V dense in H; thus, it can be extended uniquely to the

Hilbert space H by Hahn-Banach theorem. This extension is the dual pairing between V
and V ′. Respectively, from the definition of duality pairing, Definition 3.2.8, for w1 ∈ H
and w2,w3 ∈ V ,

(w1,w2)H = 〈w1,w2〉V ′,V ,
(A1/2w2,A1/2w3)H = 〈Aw2,w3〉V ′,V .

(3.3)

Next, the well-posedness of the system (3.1) is studied. The system (3.1) is a specific

form of
∂z

∂t
+ Az = E(t, z),

z(0) = z0

(3.4)

where E : [0, T ]×H → H with 0 < T <∞ is a nonlinear operator that depends on both

time t and the state vector z.

Definition 3.2.9. (Well-posedness)

The system (3.4) is well-posed on a bounded time interval [0, T ] if for initial condition

z0 ∈ D(A), it has a unique solution z : [0, T ]→ D(A) such that z is strongly continuous

in t, Az is weakly continuous in t, and z satisfies (3.4) on [0, T ].

Theorem 3.2.10. [115, Theorem 1]

In (3.4), let A be m-monotonic from its domain to the Hilbert space H (Definition

3.2.4). Given a bounded time interval [0, T ], suppose that for every w1,w2 ∈ H and

t1, t2 ∈ [0, T ], E(.) satisfies

‖E(t1,w1)− E(t2,w2)‖H ≤ ‖O(t1)−O(t2)‖H + L0‖w1 −w2‖
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where O(.) : [0, T ]→ H is continuous and of bounded variation on [0, T ], and L0 ∈ R+.

Then, the system (3.4) is well-posed on the bounded time interval [0, T ] in the sense of

Definition 3.2.9.

Corollary 3.2.11. Let Assumption 3.2.5-3.2.7 be satisfied. For every initial condition

z0 ∈ H, the system (3.1) and (3.2) is well-posed on every bounded time interval [0, T ] in

the sense of Definition 3.2.9.

Proof. First, define

E(t, z) = R(z) + Fu(t) + Gξ(t).

From Assumptions 3.2.5 and 3.2.7 and the boundedness of F and G, it can be concluded

that E(t, z) satisfies the conditions of Theorem 3.2.10. Since A is positive definite by

Assumption 3.2.6,

‖w2 −w1 + α0A(w2 −w1)‖H
= (‖w2 −w1‖2

H + 2(w2 −w1, α0A(w2 −w1))H + ‖α0A(w2 −w1)‖2
H)1/2

≥ ‖w2 −w1‖H.

Furthermore, from Assumption 3.2.6, D((I+α0A)−1) = H for α0 > 0 as A has compact

inverse. This result along with Assumption 3.2.6 implies that A and E(t, z) satisfy the

conditions of Theorem 3.2.10. Therefore, the system (3.1) with initial condition (3.2)

admits a unique solution on a bounded time interval [0, tf ] in the sense of Definition

3.2.9.

Corollary 3.2.12. Let Assumption 3.2.5-3.2.7 be satisfied. For every initial condition

z0 ∈ H, the solution to (3.1), z, is bounded on every bounded time interval [0, T ]. In

other words, for every z0 ∈ H and bounded time interval, there exist Mz ∈ R+ such that

‖z‖H ≤Mz.

Proof. The boundedness of the solution is the direct result of Corollary 3.2.11 according

to which the solution z is continuous in time. As a result, it is bounded on any bounded

and closed time interval [0, T ].

Now, a new representation for the system (3.1) is introduced. It is of particular

interest since it can be used to approximate the system with a finite-dimensional one.

In this representation, the system dynamics is decomposed into two parts. Since the
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Hilbert space is separable, a basis {vi}∞i=1 can be chosen for the Hilbert space H. Now,

define the Hilbert space

HN = span{vk, k = 1 . . . N}.

For z ∈ H, the orthogonal projection of the Hilbert space H onto HN is defined by

PNz =
N∑
i=1

zivi (3.5)

where zi ∈ R. Let the state vector be decomposed into two parts:

z = zN + zcN (3.6)

with

zN = PNz, (3.7)

zcN = (I −PN)z. (3.8)

Define

ANz = PNAz, Ac
Nz = (I −PN)Az

RN(z) = PNR(z), Rc
N(z) = (I −PN)R(z)

GN = PNG, Gc
N = (I −PN)G

FN = PNF , F c
N = (I −PN)F .

The projection defined in equation (3.5) can be used to decompose (3.1) as

∂zN
∂t

+ ANz = RN(z) + FNu(t) + GNξ(t) (3.9)

∂zcN
∂t

+ Ac
Nz = Rc

N(z) + F c
Nu(t) + Gc

Nξ(t) (3.10)

y(t) = CzN + CzcN .

Given assumption 3.2.6, the eigenfunctions of the linear operator A provides an

orthogonal basis for the Hilbert space H [116, theorem VIII.6]. Since the operator −A
is negative definite, its eigenvalues λk can be arranged as

. . . ≤ λk ≤ . . . ≤ λ2 ≤ λ1 < 0
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where λk → −∞ as k →∞. Also

(−Aw,w)H ≤ λ1(w,w)H (3.11)

for every w ∈ D(A).

In order to find a finite-dimensional approximation for the system, the basis vk for

k = 1, . . . ,∞ are chosen to be the eigenfunctions of A. Employing these eigenfunctions

implies that

ANz = ANzN , Ac
Nz = Ac

Nz
c
N .

Let the state vector z be approximated by z̄N . While the zN is the solution to (3.9), z̄N

satisfies the finite-dimensional system defined as

∂z̄N
∂t

+ AN z̄N = RN(z̄N) + FNu(t) + GNξ(t)

y(t) = Cz̄N .
(3.12)

The convergence of the solution to the approximate system to the true one in L2-

norm can be found in [117]; the uniform convergence of z̄N to z as N →∞ is shown in

the following theorem.

Theorem 3.2.13. Let Assumption 3.2.5-3.2.7 be satisfied. For any finite time inter-

val [0, T ], the dynamical equation (3.12) admits a unique solution z̄N converging to the

solution of (3.1), z, in L∞([0, T ],H) as N →∞.

Proof. First, following the same reasoning as in the proof of Corollary 3.2.11 shows that

the system (3.12) satisfies the conditions of Theorem 3.2.10; therefore, it is well-posed

on every bounded time interval [0, T ]. Moreover, the system (3.1) also admits a unique

solution z ∈  L∞([0, T ];H) according to Corollary 3.2.11 and 3.2.12.

The error dynamics between the approximate systems (3.12) and the original system

(3.9) and (3.10) is

∂(zN − z̄N)

∂t
+ AN(zN − z̄N) = RN(zN + zcN)−RN(z̄N) (3.13)

∂zcN
∂t

+ Ac
Nz

c
N = Rc

N(zN + zcN) + F c
Nu(t) + Gc

Nξ(t) (3.14)

Define ēN = zN − z̄N . The error between the approximate state z̄N and the original

state z is

z − z̄N = ēN + zcN .
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Next, both sides of the equation (3.13) are multiplied by ēN in the sense of H inner

product; (
∂ēN
∂t

, ēN

)
H

+ (AN ēN , ēN)H =

+ (RN(zN + zcN)−RN(z̄N), ēN)H.

(3.15)

Similarly,

(ēN ,
∂ēN
∂t

)H + (ēN ,AN ēN)H =

+ (ēN ,RN(zN + zcN)−RN(z̄N))H.
(3.16)

Adding (3.15) and (3.16) results in

d(ēN , ēN)H
dt

+ 2(ēN ,AN ēN)H =

+ 2Re(ēN ,RN(zN + zcN)−RN(z̄N)).

(3.17)

From the fact that A is positive definite, inequality (3.11), Lipschitz continuity of RN(.)

(Assumption 3.2.7), and Young’s inequality, equation (3.17) becomes

d‖ēN(t)‖2
H

dt
≤ 2ρ1‖ēN(t)‖2

H + ‖zcN(t)‖2
H (3.18)

where

ρ1 = λ1 + LR +
LR
2
.

Integrating (3.18) leads to

‖ēN(t)‖2
H ≤ ‖ēN(0)‖2

H exp(2ρ1t) + LR exp(2ρ1t)

∫ t

0

exp(−2ρ1τ)‖zcN(τ)‖2
Hdτ. (3.19)

Furthermore,

z̄N(0) = PNz(0), and ēN(0) = 0;

thus, (3.19) turns into

‖ēN(t)‖2
H ≤ LR exp(2ρ1t) max

τ∈[0,tf ]

∫ tf

0

‖zcN(τ)‖2
Hdτ. (3.20)

Since the vector z is bounded on [0, T ] by Corollary 3.2.12, and

PN → I strongly in L(H) (3.21)

as N →∞ due to choice of basis, by Dominant Convergence Theorem,

zcN(t)→ 0 strongly in L2([0, T ];H); (3.22)
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it is obtained from inequality (3.20) and (3.22) that

ēN(t)→ 0 strongly in L∞([0, T ];H) (3.23)

as N →∞.

As a result of (3.23) and (3.22),

z̄N(t)→ z(t) strongly in L∞([0, T ];H)

as N →∞, and the proof is completed.

3.3 A more general form

In general, the electrochemical equations cannot be transformed to the form introduced

in the previous section. In this section a more general form of DPSs which covers the

battery equations is studied. Consider

∂z

∂t
= AN (z) + R(z, t) + Fu(t) (3.24)

where R(.) : H → H is a Fréchet differentiable nonlinear operator with respect to z and

strongly continuous with respect to t that satisfies R(0, t) = 0 and N : H → H is a

Fréchet differentiable nonlinear operator that satisfies N (0). The operator F is defined

as in the previous section.

Definition 3.3.1. (Strong solution, [117])

The strong solution z to (3.24) is called a strong solution if

• it is strongly continuous and differentiable in time for almost every t ∈ [0, tf ] with

respect to H-norm topology,

• it satisfies z(0) = z0 for the initial condition z0 ∈ H,

• and it satisfies equation (3.24) for almost every t ∈ [0, tf ].

Assumption 3.3.2. The nonlinear operator N (.) is Fréchet differentiable and satisfies

ε1 ≤‖DN (w2)‖ ≤ ε2

ε1‖w1‖2
H ≤(w1, DN (w2)w1)H = (DN (w2)w1,w1)H ≤ ε2‖w1‖2

H

for every w1,w2 ∈ H and some ε1, ε2 > 0.
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Assumption 3.3.3. The linear operator A and the nonlinear operator N (.) satisfy

(w,AN (w))H = (AN (w),w)H ≥ ε3‖w‖2

for every w ∈ D(A1/2) such tat N (w) ∈ D(A) and some ε3 > 0.

As before, the eigenfunctions vi of the linear operator A and the Galerkin method

are used to decompose the system representation (3.24) into two parts. The orthonormal

projection onto HN is

PNz =
N∑
i=1

zivi.

Let the system’s state be approximated by zN = PNz. The reduced order system is

defined as
∂zN
∂t

= ANN(zN) + RN(zN , t) + FNu(t) (3.25)

where

NN(.) = PNN (.)

AN = PNA
RN(.) = PNR(.)

FN = PNF .

The following Lemma shows the boundedness of the solution to (3.25).

Lemma 3.3.4. Let the system (3.24) satisfy Assumption 3.2.5-3.2.7, 3.3.2, and 3.3.3.

Suppose that N (z(x, 0)) ∈ V. The solutions to (3.25) on every bounded time interval

[0, tf ] are bounded;

‖zN(t)‖H ≤Mc,0 (3.26)

‖A1/2NN(zN(t))‖H ≤Mc,1 (3.27)∫ tf

0

‖ANN(zN(t))‖2
Hdt ≤Mc,2 (3.28)

(3.29)

for Mc,0,Mc,1,Mc,2 ∈ R+ independent of N .
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Proof: First, from Assumption 3.3.2 and Mean value theorem [118][Theorem 7.6-1], it

is concluded that N (.) is Lipschitz continuous. In other words, for every w1,w2 ∈ H
and some LN > 0,

‖N (w2)−N (w1)‖H ≤LN‖w2 −w1‖H (3.30)

Note that

R(0, t) = 0, N (0) = 0. (3.31)

Furthermore, by Assumption 3.3.3,

(zN ,ANN(zN))H = (zN ,AN (zN))H ≥ 0. (3.32)

Let both sides of (3.25) be multiplied by w ∈ H;

(w,
∂zN
∂t

)H + (w,ANN(zN))H = (w,RN(zN , t) + FNu(t))H. (3.33)

Similarly,(
∂zN
∂t

,w

)
H

+ (ANN(zN),w)H = (RN(zN , t) + FNu(t),w)H. (3.34)

Next, replacing w by zN in (3.33) and (3.34) and adding the resulting equations yield

d‖zN‖2
H

dt
+ 2(ANN(zN), zN)H = 2Re(RN(zN , t) + FNu(t), zN)H. (3.35)

Employing (3.32) and the Lipschitz continuity (3.30), and (3.31) as well as using Cauchy

Schwarz and Young’s inequality in (3.35) leads to

d‖zN(t)‖2
H

dt
≤ L1‖zN(t)‖2

H + L2
2 (3.36)

where

L1 = 2LR + 1, L2 = ‖F‖Mu

and Mu is the upper bound of u(t). Integrating inequality (3.36) results in

‖zN(t)‖2
H ≤ ‖zN(0)‖2

H exp(L1t) +
L2(exp(L1t)− 1)

L1

≤Mc,0 (3.37)

for some Mc,0 > 0.
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Now, let both sides of (3.25) be first operated by DNN(zN), the Fréchet derivative of

NN(.), and then multiplied by ANN(zN) in the sense of the inner product; it is derived

from following the same procedure as before that

(ANN(zN), DNN(zN)
∂zN
∂t

)H + (DNN(zN)
∂zN
∂t

,ANN(zN))H =

− 2(ANN(zN), DNN(zN)ANN(zN))H+

2Re(ANN(zN), DNN(zN)(RN(zN , t) + FNu(t)))H.

(3.38)

Note that from Fréchet differentiability of N (.), for h ∈ H,

‖PN(N (zN + h)−N (zN)−DN (zN)h)‖H
‖h‖H

→ 0

when ‖h‖H → 0; therefore,

DNN(zN) = PNDN (zN). (3.39)

From (3.39) and the fact that ANN(zN) ∈ HN , it is concluded that

(ANN(zN), DNN(zN)ANN(zN))H = (ANN(zN), DN (zN)ANN(zN))H,

and, from Assumption 3.3.2

−(ANN(zN), DNN(zN)ANN(zN))H ≤ −ε1‖ANN(zN)‖2
H. (3.40)

Similarly,

−(DNN(zN)ANN(zN),ANN(zN))H ≤ −ε1‖ANN(zN)‖2
H. (3.41)

Substituting (3.40) and (3.41) into (3.38) and employing Cauchy Schwarz inequality;

Young’s inequality; and Assumption 3.2.5, 3.2.7, and 3.3.2 in (3.38) lead to

d‖A1/2NN(zN(t))‖2
H

dt
≤ −L3‖ANN(zN(t))‖2

H + L4
(3.42)

where

L3 = 2ε1 − β5, L4 =
1

β5

(β3LRMc,0 + ‖F‖Mu)
2

and β5, which comes from Young’s inequality, is set such that L3 > 0. Since

−L3‖ANN(zN)‖2
H < 0,
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by integrating (3.42) and employing (3.37) on the bounded time interval [0, tf ] the second

boundedness result is achieved as

‖A1/2NN(zN(t))‖2
H ≤ ‖A1/2NN(zN(0))‖2

H + L4tf ≤Mc,1 (3.43)

for Mc,1 ∈ R+.

Integrating (3.42) and considering the boundedness given by (3.43) leads to∫ tf

0

L3‖ANN(zN(t))‖2
Hdt ≤ L4tf+(‖A1/2NN(zN(0))‖2

H−‖A1/2NN(zN(tf ))‖2
H) ≤Mc,2

(3.44)

for some Mc,2 ∈ R+. �

Theorem 3.3.5. Let the assumptions of Theorem 3.3.4 be satisfied. The system (3.24)

has at least one strong solution z ∈ L2([0, tf ];V) ∩ L∞([0, tf ];H). Furthermore, the

approximation error eN = z−zN is bounded and it has a subsequence converging to zero

in L2([0, tf ];H) as N goes to infinity.

Proof: It can be concluded from Lemma 3.3.4 that the sequence zN stays in bounded

set in L∞([0, tf ];V) and thus in L2([0, tf ];V) ∩ L∞([0, tf ];H). It is also concluded that

NN(zN) stays in a bounded set in L2([0, tf ];V). By BanachAlaoglu theorem [119], there

exists a subsequence zM and NM(zM) such that

zM(t)→ z∗(t) weakly in L2([0, tf ];V)

zM(t)→ z∗(t) in weak-star topology of L∞([0, tf ];H),
(3.45)

and

NM(zM(t))→ w∗(t) weakly in L2([0, tf ];V) (3.46)

for z∗(t) ∈ L2([0, tf ];V) ∩ L∞([0, tf ];H) and w∗(t) ∈ L2([0, tf ];V) since L2([0, tf ];V)

and L2([0, tf ];H) are complete with respect to weak topology. From (3.25), Lipschitz

continuity (3.30), boundedness of u(t), and Lemma 3.3.4, it is concluded that the se-

quence dzM(t)/dt stays in a bounded set in L2([0, tf ];H). Therefore, by the compactness

Theorem B.0.2,

zM(t)→ z∗(t) strongly in L2([0, tf ];H). (3.47)

Note that from (3.46), it can be concluded that for w(t) ∈ L2([0, tf ];D(A)),∫ tf

0

(A
1
2NM(zM(t)),A

1
2w(t))Hdt→

∫ tf

0

(A
1
2w∗(t),A

1
2w(t))Hdt;
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thus, ∫ tf

0

(NM(zM(t)),Aw(t))Hdt→
∫ tf

0

(w∗(t),Aw(t))Hdt. (3.48)

In addition, by (3.47) and (3.21),∫ tf

0

(NM(zM(t)),Aw(t))Hdt→
∫ tf

0

(N (z∗(t)),Aw(t))Hdt. (3.49)

Since A has a bounded linear inverse by Assumption 3.2.6, it is onto H. There-

fore, the convergence results (3.48) and (3.49) are satisfied for every w̄(t) = Aw(t) ∈
L∞([0, tf ];H). Therefore, by uniqueness of the limit in weak topology, w∗(t) = N (z∗(t)),

and

NM(zM(t))→N (z∗(t)) weakly in L2([0, tf ];V). (3.50)

Now, multiplying both sides of (3.34) by a smooth function φ(t) with φ(tf ) = 0,

employing (3.3), and integrating the resulting equation with respect to time yield

−
∫ tf

0

((zM(t),w)H
dφ(t)

dt
+ (A

1
2NM(zM(t)),A

1
2w)Hφ(t))dt

=

∫ tf

0

(RM(zM(t), t) + FMu(t),w)Hφ(t)dt+ (zM(0),w)Hφ(0).

(3.51)

For w ∈ D(A1/2), passing the limits (3.21), (3.45), (3.47), (3.50), and the limit

zM(0)→ z(0) strongly in H

to (3.51) and using Assumption 3.2.7 lead to

−
∫ tf

0

((z∗(t),w)H
dφ(t)

dt
+ (A

1
2N (z∗(t)),A

1
2w)Hφ(t))dt

=

∫ tf

0

(R(z∗(t), t) + Fu(t),w)Hφ(t)dt+ (z(0),w)Hφ(0).

(3.52)

Finally, integrating (3.52) by parts results in∫ tf

0

d

dt
(z∗(t),w)Hφ(t)dt =−

∫ tf

0

(A
1
2N (z∗(t)),A

1
2w)Hφ(t)dt

+

∫ tf

0

(R(z∗(t), t) + Fu(t),w)Hφ(t)dt.

(3.53)

Using (3.3) in (3.53) yields to

d

dt
〈z∗,w〉V ′,V = 〈−AN (z∗) + R(z∗, t) + Fu(t),w〉V ′,V (3.54)
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which is valid in distribution sense on [0, tf ]. Since

z∗(t) ∈ L2([0, tf ];H),

−AN (z∗(t)) + R(z∗(t), t) + Fu(t) ∈ L2([0, tf ];H),

by [117, Lemma II.3.1] and from (3.54)

∂z∗(t)

∂t
∈ L2([0, tf ];H)

and z∗(t) satisfies (3.24) almost every where. Furthermore, by [117, Lemma II.3.1], z∗

equals almost every where to a continuous function from [0, tf ] to H; thus, it is a strong

solution to (3.24) by Definition 3.3.1. �
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Chapter 4

Mathematical modeling of the

lithium-ion cell

Among different estimation methods, model-based estimation is considered to evaluate

the value of the SOC from voltage measurements; subsequently, an electrochemical model

is offered to represent a battery cell’s behavior. In this research, lithium-ion cells whose

positive electrodes are made of LFP material are chosen as the chemistry of interest. Most

of the theories in electrochemical modeling have been developed for battery chemistries

like lead acid and nickel-metal hydride. The mathematical modeling of lithium-ion cells

was first developed by Doyle et al. [1]. Their recent formulation presented in [120]

constructs the majority of the equations used here.

4.1 Electrochemical model

A battery is composed of three major parts, the positive electrode, negative electrode

and electrolyte. In a Li-ion cell, the negative electrode (n) is made of carbon and the

positive electrode (p) is a metal oxide. The cell is sketched in Figure 4.1. In practice,

the electrodes are composed of a slurry of active material, conductive filler, and binder

coated onto a foil current collector. Therefore, a porous structure is provided where

the electrochemical reactions are distributed over the surface of particles [121]. In order

to derive the governing equations, two important theorems are used: porous electrode

theory and concentration solution theory.

In porous electrode theory, considering the exact position and shape of the pores

and particles in the electrode structure is substituted by utilizing average properties
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Figure 4.1: A Li-ion battery cell

over a small volume. The scale of the finite volume is small compared to the electrode

width and large compared to particle size. Accordingly, the electrodes are treated as

the superposition of the active material particles, filler, and electrolyte coexisting at the

same point. Moreover, the particles of active material are assumed to have spherical

shape. The coupling of the electrode phase to the electrolyte phase is made via mass

balances and reaction rates [121].

Before setting the modeling process, some parameters should be defined. The super-

position assumption of the electrode and electrolyte phase introduces two parameters:

the interfacial area between two phases per unit volume, a, and the volume fraction

of each phase, ε. These parameters can be defined by assuming an even distribution

for the active material spherical particles along the electrodes. These parameters are

respectively defined as follow:

a = NP (4πR2) (4.1)

εs = NP (
4

3
πR3) (4.2)

where R is the radius of spherical particles, εs is the volume fraction of the electrode

phase, and NP is the number of particles per unit volume. By substituting equation 4.2

into equation 4.1, the specific interfacial area can be written in the form of

a =
3εs
R
. (4.3)

The volume fraction coefficient of each phase is also used to define some properties of

the battery cell. The solid-phase conductivity, electrolyte diffusivity, and electrolyte con-

ductivity are the properties affected by the electrode porosity. The porosity leading the

definition of volume fraction causes a reduction in these parameters. This phenomenon
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can be explained in the electrolyte phase by a longer path that the ions must take around

the particles instead of a straight line. The Bruggeman relation is used to address the

porosity effect. In this case, the effective conductivity in solid and electrolyte phases are

defined as

σeff = σεPs (4.4)

κeff = κεPe . (4.5)

Similarly, the effective diffusivity in the electrolyte is defined as

Deff
e = Deε

P
e (4.6)

where P is the Bruggeman exponent. This value is a function of the shape and distribu-

tion of the active material’s particles, and this is usually set at 1.5 for Li-ion cells.

In this research, the representative variables are assumed to change only along the

cell. Therefore, 1-D electrochemical modeling of the cell is considered in this chapter.

Four variables are used to represent the cell behavior. These variables are concentra-

tion of the lithium in the solid phase cs(r, x, t), the lithium ions in the electrolyte phase

ce(r, x, t), the electric potential of the solid phase ϕs(x, t), and the potential of the elec-

trolyte phase ϕe(x, t). Next, the electrochemical equations are initiated for three regions,

positive electrode, negative electrode, and separator. Although the positive and nega-

tive electrode regions are composed of both electrode and electrolyte, there exists only

electrolyte in the separator which allows no electrochemical reactions.

Transport in solid phase

Modeling the time variation of active material distribution in solid phase is challeng-

ing in cells with LFP positive electrode. The battery cell works based on the principle

of lithium insertion/deinsertion where electrons are consumed or produced. The inser-

tion/deinsertion mechanism in the LFP electrode is a two phase process taking place

between the lithium poor phase, LiεFePO4, and the lithium rich phase, LI1−εFePO4.

This two-phase behavior plays an important role in the cell response and must be con-

sidered in the modeling process.

A few models in the literature improves the model of the two-phase behavior in LFP

cells. They consist of core-shell [6], phase field, resistive-reactant, and variable solid-

state diffusivity models. Since the variable solid-state diffusivity is simple and provides
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a physical accuracy, it is used here as a reliable platform. The details on this model can

be found in [48, 2], and [49].

Given the assumption that the composite electrodes are the superposition of spherical

particles and electrolyte, the conservation law in every particle is used to find the time

variation of lithium concentration. The modeling accuracy is elevated by solving for

more than one particle at every position in the electrode. Furthermore, negligible volume

change and high conductivity is assumed for the solid phase in the process of the lithium

insertion/deinsertion. The solid phase’s mass balance of the lithium in a single particle

is described by the Fick’s second law in the form of a diffusion equation as

∂cs,k(x, rk, t)

∂t
=

1

r2
k

∂

∂rk
(Ds,k(cs,k)

1

r2
k

∂

∂rk
cs,k(x, rk, t)) (4.7)

where the sub-index k = 1 · K corresponds to the index of the particle group (since

there exists more than one particle size) and Ds,k(.) is the diffusion coefficient of the kth

spherical particle group. The diffusion coefficient is a function of lithium concentration

and is defined by

Ds,k(.) = αk(.)Ds

where Ds is the solid state binary diffusion coefficient and

αk(yk) = − F

RT
yk(1− yk)

∂Uk(yk)

∂yk
, yk =

cs,k
cmax

.

In this expression, Uk(.) is the OCP of the kth particle and cmax is the maximum solid

state concentration.

The OCP is normally defined for every particle group of each electrode as a function

of the solid concentration on the particle surface cs,k |rk=Rk and with respect to a hypo-

thetical lithium reference electrode. It indicates the potential of the electrode material at

different solid concentration levels. The reference electrode is assumed to be immersed in

the electrolyte in a neighborhood of solid/electrolyte interface. The formulations for the

OCP is identified through a set of experimental data obtained by a half cell experiment.

In the experiment level of OCP identification, both solid concentration at the particle

surface and the half cell open circuit voltage must be measured. Open circuit voltage

can be easily measured after a long rest time since the current is turned off; however,

measuring the solid concentration is not directly achievable. Given the assumption that

the solid concentration reaches a uniform distribution after a long rest time, it is suggested

that this be determined by the coulomb counting method. The number of electrons that
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leave or enter into the electrode divided by the solid phase volume specifies the change

in the solid concentration.

In order to collect the required data, the half cell is discharged (charged) from a

fully charged (discharged) state in successive charging (discharging) periods. In every

period, the cell is charged (discharged) by a fixed value with a constant current rate; thus,

error augmentation would not be an issue in the integral calculation of the current. The

experimental results display different values for the OCP in the charging and discharging

cycles at a specific SOC. In fact, the value of OCP depends on the history of the system’s

state. In other words, the SOC-OCP graph includes hysteresis [122, 123], and [124].

However, in electrochemical equations this term is approximated by two single-valued

functions for the charging and discharging process.

Finally, the diffusion equation is completed via the initial and boundary conditions

given by

∂cs,k
∂rk

|rk=0= 0

Ds,k
∂cs,k
∂rk

|rk=Rk=
in,k
F

cs,k |t=0= c0
s,k

where Rk is the radius of the kth particle group, in,k is the reaction current at the

surface of the kth particle group, and F is the Faraday’s constant. The total number of

K diffusion equations of the form 4.7 must be solved in both electrode regions but not

in the separator.

Transport in electrolyte phase

The next variable to be modeled is lithium ion concentration in the electrolyte phase.

The lithium ions are the positive ions of a typical Li-ion cell. In the charging process,

they are produced at the positive electrode solid/electrolyte interface, travel through the

electrolyte, and are consumed at the negative electrode. Therefore, the concentration

distribution of these ions over the cell plays an important role in the electrochemical

reactions. The gradient in the concentration distribution drives the diffusion process.

The diffusion process and electrochemical reactions then initiate the time variation of

this distribution.

The main assumptions in this step are ignoring convection in the electrolyte, side

reactions in the electrolyte, the volume change of the solid phase due to the lithium
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insertion/deinsertion process and the binary electrolyte assumption (a binary electrolyte

includes only two groups of ions). The lithium ion concentration in the electrolyte is

defined by

εe
∂ce(x, t)

∂t
=

∂

∂x
(Deff

e

∂ce(x, t)

∂x
) +

1− t0+
F

∑
akin,k (4.8)

where Deff
e is the electrolyte effective diffusion coefficient and t0+ is the transference

number of the lithium ion with respect to the solvent velocity.

Since electrolyte exists in every spot of the cell, equation 4.8 must be solved in all

three regions, the negative electrode, positive electrode, and separator. On the right hand

side of equation 4.8, the first term corresponds to the diffusion process of the lithium ions

in the electrolyte and the second term adds the effect of the electrochemical reactions.

The term representing the effect of the reactions vanishes in the separator region due to

the absence of the solid phase. The boundary conditions are defined by zero flux at the

current collectors as

∂ce
∂x
|x=0=

∂ce
∂x
|x=L= 0

where L is the length of the cell. A more general form of equation 4.9 can be found in

[121].

Potential in electrolyte phase

As discussed before, the electrolyte is assumed to be a binary electrolyte which is a stan-

dard choice for most of the lithium-ion batteries. The potential in the binary electrolyte

is measured by a reference electrode having a reversible half-cell reaction. The gradient

of the potential is measured as the potential of such a reference electrode with respect

to the same kind of reference electrode at a fixed position. When employing the lithium

metal as the reference electrode and 1:1 binary electrolyte, this gradient is defined by

[121]
∂ϕe(x, t)

∂x
=
−ie
keff

+
2RT (1− t0+)

F
(1 +

d ln f±
d ln ce

)
∂ ln ce(x, t)

∂x
(4.9)

where R is the gas constant, ie is the current assigned to the electrolyte phase, and f±

is the mean molar activity coefficient in the electrolyte. The first and second term on

the right hand side of this equation respectively accounts for a potential drop in the

electrolyte and concentration overpotential arising from concentration variation of the

lithium ions.
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Using the electroneutrality of the electrolyte phase, a current balance gives the rela-

tion between the current divergence and the net pore-wall reaction flux as

∂ie(x, t)

∂x
=
∑

akin,k. (4.10)

Now, by substituting equation 4.10 into equation 4.9, the potential satisfies the expression

∂

∂x
(keff

∂ϕe(x, t)

∂x
+ keffD

∂ ln ce(x, t)

∂x
) =

∑
akin,k (4.11)

where keffD = keff
2RT (1−t0+)

F
(1 + d ln f±

d ln ce
). The boundary conditions are defined by

∂ϕe
∂x
|x=0=

∂ϕe
∂x
|x=L= 0

These boundary conditions do not completely define the problem, and extra conditions

are required, which are defined in the next section.

Potential in solid phase

The potential in the solid phase of the porous electrode is derived from Ohm’s Law as

σeff
ϕs(x, t)

∂x
= ie(x, t)− I(t) (4.12)

where I(t) is the current, and is(x, t) = I(t) − ie(x, t) is the current in the solid phase.

By substituting equation 4.10 into equation 4.12, the solid potential must satisfy the

following equation.
∂

∂x
(σeff

ϕs(x, t)

∂x
) =

∑
akin,k (4.13)

The boundary conditions are given by the fact that the electrolyte current density is

zero at the current collectors/electrodes interface and equals the total current, I(t) at

the electrodes/separator interface. Moreover, the solid potential is set to zero at one of

the current collectors as the reference value. In general, the boundary conditions are

∂ϕs
∂x
|x=δn= 0

ϕs |x=0= 0

σeff
∂ϕs
∂x
|x=L= I(t)

where δn is the length of the negative electrode.
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Solving the electrochemical governing equations with the defined boundary conditions

gives the potential in the solid phase such that the total amount of reaction along the

electrode equals the applied current [121]. The output of the system is set as the terminal

voltage. The open circuit voltage is obtained from the difference between the solid

potential at two current collectors. By including the effect of the external load, the

terminal voltage has the form of

V (t) = ϕs(L, t)− ϕs(0, t)−RlI(t)

where Rl is the load resistance.

In the evaluated mathematical equations, the local electrochemical reaction rate, in,k,

is an essential term. It can be determined as a function of the concentration and potential.

The Butler-Volmer rate equation is usually used for this purpose, and for every particle

group, is defined by

in,k = i0,k{exp(
αaFηk
RT

)− exp(−αcFηk
RT

)}

where i0,k is the exchange current density, αa and αc are anodic and cathodic transfer

coefficients,

ηk = ϕs − ϕe − Uk(yk,s)

wherein

yk,s =
cs,k |rk=Rk

cmax

is the surface overpotential, and cmax is the maximum solid concentration. Furthermore,

i0,k = κ(ce)
αa(cmax − cs,k |rk=Rk)

αc(cs,k |rk=Rk)
αa

where κ is a kinetic rate constant. The surface overpotenial expresses the deviation from

the difference between the thermodynamic potential of the solid and solution phases at

the current surface concentrations.

As mentioned before, another important term in the electrochemical model is the

OCP term. The OCP profile has an important effect on the simulation result and must

be identified carefully. This effect is even more critical when comparing the simulation

results for a full cell sandwich with the experimental data. Therefore, accurate data

on the measurement of this quantity with respect to a lithium reference electrode must

be collected. Moreover, an adequate physical or empirical model must be chosen to

determine the shape of OCP profile.
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Table 4.1: Lithium-ion cell parameters [1].
parameter definition value

(negative electrode, separator, and positive electrode)

lcat thickness of the negative electrode, m 160e− 6

lsep thickness of the separator, m 52e− 6

L thickness of the cell, m 386e6

Rs radius of the spherical solid particle, m 12.50e− 6, −, 8.50e− 6

R gas constant, Jmol−1K−1 8.3145

F Faraday’s constant, Cmol−1 96485

t0+ transference number 0.363, 0.363, 0.363

εe volume fraction of the electrolyte phase 0.357, 0.724, 0.444

keff effective conductivity in the electrolyte phase, Sm−1 0.028, 0.027, 0.056

keffD

keff2RT (1−t0+)

F

σeff effective conductivity in the solid phase, Sm−1 35.038, −, 0.855

Deff
e effective diffusivity in the electrolyte phase, m2s−1 7.768e− 12, 7.500e− 11, 1.633e− 11

Ds Diffusion coefficient of the spherical particle, m2s−1 3.9e− 14, −, 1e− 13

cs,max maximum solid state concentration, molm−3 26.390e3, −, 22.860e3

i0 exchange current density, Am−2 1.140e− 5, 0, 8.29e− 6

4.2 Hysteresis from the cell dynamics

An important difficulty in estimating lithium-ion cell’s state of charge is that the voltage

of the cell’s terminal depends on the charging and discharging history. This existence

of hysteresis in the OCP graph is described in [122, 123], and [124] in great detail. To

identify the OCP profile, a half cell is discharged (or charged) from the fully charged (or

discharged) state in successive charging (or discharging) periods. Experimental results

display different values for OCP in charging and discharging cycles at a specific SOC

[122, 123], and [124]. In other words, the variation of OCP with respect to the solid

surface concentration is hysteretic. Furthermore, this hysteresis has also been observed

to be rate dependent. In many studies, the effect of the hysteresis associated with the

OCP is added to the model [125, 33, 126, 10, 15, 12], and [16].

However, the OCP might not be the only source, or the most fundamental source of

hysteresis; intrinsic dynamics can also induce hysteretic behavior. The system dynamics

might lead to the hysteretic behavior; see for instance [127] for an example of this in the

Landau-Lifshitz equations which is used to model magnetization. Therefore, the battery

governing equations should be studied for the hysteresis in the system variables. A way

of investigating this possibility is to study the dynamical equations with no hysteresis in

the OCP. Here, the existence of hysteresis from the second source is studied by setting

the OCP term as a single value continuous function.
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In this section, a version of the lithium-ion cell whose positive electrode is made of the

LFP material and has only one particle bin is considered. Furthermore, the solid-state

diffusion is assumed to be constant. Define

X1 = {z ∈ L2([L1, L]× [0, Rs]) : r2z ∈ L2([L1, L]× [0, Rs])}
X = L2(0, L)×X1

Y = L2(0, L)× L2(L1, L)

where L1 = lsep, L = lsep + lcat. Let c = [c1, c2]T = [ce, cs]
T ⊆ X and ϕ = [ϕ1, ϕ2]T =

[ϕe, ϕs]
T ⊆ Y . Furthermore, in, the Butler-Volmer reaction current at the surface of solid

particles, is defined by

in(c,ϕ) = i0{exp(
Fη

2RT
)− exp(− Fη

2RT
)} (4.14)

where

η = ϕ2 − ϕ1 − U(ys) (4.15)

where

ys =
c2 | r = Rs

cmax

is the overpotential term where R0 is the particle radius, and U(.) indicates the OCP

defined by

U(ys) = −0.16 + 1.32 exp(−3ys) + 10 exp(−2000ys) (4.16)

at negative electrode, and

U(ys) = 4.20 + 0.06 tanh(−14.55ys + 8.61)− 0.03

(1− ys)0.49 − 1.90

− 0.16 exp(−0.05y8
s) + 0.81 exp(−40(ys − 0.13))

(4.17)

at positive electrode.

As explained before, the OCP is derived based on static performance and cannot be

measured during battery operation. Instead, empirically derived relations are used. The

experimental results of the OCP vs. the SOC at the particle surface are used to find an

empirical model via some curve fitting. The process of finding these experimental results

is done before employing the battery in a drive cycle. For the example considered in

this section, the results and empirical model are given in [1]. In general, these relations

are multi-valued. However, in order to investigate the role of dynamics in hysteresis, a

78



single-valued function is used here. The OCP profile is obtained through curve fitting.

The cell governing equations can be represented as

0 =

[
∂
∂x

(keff ∂
∂x

(ϕ1) + keffD
∂
∂x

(ln c1))− in(c,ϕ)

∂
∂x

(σeff ∂
∂x

(ϕ2))− in(c,ϕ)

]
, (4.18)

∂

∂t

c1

c2

 =

 1
εe

∂
∂x

(Deff
e

∂c1
∂x

) +
1−t0+
εeF

in(c,ϕ)

1
r2

∂
∂r

(Dsr
2 ∂c2
∂r

)

 . (4.19)

The boundary conditions are

∂ϕ1

∂x
|x=0=

∂ϕ1

∂x
|x=L = 0, (4.20)

ϕ2 |x=0 = 0, (4.21)

∂ϕ2

∂x
|x=δn=

∂ϕ2

∂x
|x=δsp = 0, (4.22)

∂c1

∂x
|x=0=

∂c1

∂x
|x=L = 0, (4.23)

∂c2

∂r
|r=0 = 0. (4.24)

Also,

Ds
∂c2

∂r
|r=Rs=

in(c,ϕ)

F
(4.25)

and the control occurs through the current I(t) applied on the boundary,

σeff
∂ϕ2

∂x
|x=L= I(t) . (4.26)

Let Rl indicate the load resistance; the voltage measurement can be represented by

V (t) = ϕ2(L, t)− ϕ2(0, t)−RlI(t). (4.27)

Substituting equation (4.15) into (4.27) results in

V (t) = U(L, t)− U(0, t)+

η(L, t)− η(0, t) + ϕ1(L, t)− ϕ1(0, t)−RlI(t).
(4.28)

From (4.28), it can be seen that the terminal voltage involves not only the OCP but

also the overpotential η(L, t)− η(0, t) and electrolyte potential ϕ1(L, t)−ϕ1(0, t). Thus,

even if the OCP is a single-valued function, the system dynamics can cause hysteretic

behavior in the current-voltage relationship.
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Roughly speaking, the response of a system is said to exhibit hysteresis if the input-

output graph has a looping behavior; see for example [128]. There are a verity of defini-

tions in the literature [128]. A common property that is shared among systems exhibiting

hysteresis is multiple stable equilibrium points. This property along with other conditions

can be used to construct a general definition.

Definition 4.2.1. [128]

A system is said to include hysteresis if it has

1. multiple stable equilibrium points,

2. faster dynamics than the time scale at which the input is changing.

In Definition 4.2.1, the second condition implies that the transient response of the

system when moving towards equilibrium points is not visible

The equilibrium points of the lithium-ion cell can be found by setting the time deriva-

tives to zero. From equation (4.19) and ∂c2
∂t

= 0, Dsr
2 ∂c2
∂r

depends only on x, and so

r2∂c2

∂r
= En,1

where En,1 does not depend on r. This is consistent with the boundary condition (4.24)

at r = 0 and furthermore, implies that En,1 ≡ 0. Thus,

Ds
∂c2

∂r
|r=R= −in

F
= 0.

Therefore, in = 0 and also ∂c2/∂r ≡ 0. Thus, the equilibrium solid concentration is

c2 = En,2(x) (4.29)

where En,2 does not depend on r. A similar calcuation can be followed for the positive

electrode.

Now consider ∂c1
∂t

= 0 in equation (4.19). Since in = 0, (4.19) leads to

Deff
e ∂c1/∂x = Cn,1

where Cn,1 is constant. The boundary condition at x = 0 (4.23) implies that Cn,1 = 0

and so ∂c1/∂x ≡ 0. Thus, equilibrium electrolyte concentration is

c1 = Cn,2 (4.30)
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where Cn,2 is some constant. Similarly, it is constant at the positive electrode and in the

separator. Continuity yields that these values are equal.

Now consider the constraint equations (4.18). Since in = 0, equation (4.18) yields

σeffn

∂ϕ2

∂x
= Bn,1

where Bn,1 is a constant. The boundary condition (4.22) at x = δn implies that Bn,1 = 0

and so ∂ϕ2/∂x ≡ 0. The boundary condition at x = 0 (4.21) then implies that for the

negative electrode,

ϕ2 = 0. (4.31)

From (4.26), and the other boundary conditions for φ2, it follows that there is an equi-

librium solution when I(t) is not only constant but also equals 0. In this case, the

equilibrium is φ2 = 0 at the negative electrode and a constant at the positive electrode.

In a similar manner, (4.18), and the equilibrium value of c1 being a constant, implies

that

keff∂ϕ1/∂x = An,1

where A1 is a constant. The boundary conditions (4.20) imply that An,1 = 0 and so

∂ϕ1/∂x ≡ 0. Therefore, for the negative electrode

ϕ1 = An,2 (4.32)

where An,2 is a constant. Similarly, it is constant at the positive electrode and in the

separator. Continuity yields that these values are equal.

The equilibrium value in = 0 leads to a further characterization of the equililbrium

points. Since for the negative electrode, i0 6= 0,

η = ϕ2 − ϕ1 − U(ys) = 0. (4.33)

where

ys =
En,2(x)

cs,max
.

Since ϕ1 and ϕ2 are constant at the equilibrium point from equations (4.31) and (4.32),

taking the partial differentiation with respect to x from both sides of equation (4.33)

shows that

0− 0− ∂En,2(x)

∂x

∂U(ys)

∂ys
= 0. (4.34)
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It can be shown from the equations given for U in 4.16 and 4.17 that

∂U(ys)

∂ys
6= 0;

thus,
∂En,2(x)

∂x
= 0,

and En,2 is constant. A similar result is obtained for the positive electrode. For the

negative electrode, substituting (4.31) into (4.33) leads to

ϕ1 = U(ys) (4.35)

and so

An,2 = U(ys).

For the positive electrode, equation (4.33) introduces a constraint.

Thus, the electrochemical model (4.18) and (4.19) has more than one equilibrium

point. The equilbrium solutions can be arbitrarily many constant ones. It is difficult to

determine the stability of this set of coupled nonlinear partial differential and algebraic

equations, and the time constant is even more challenging to determine. The presence

of multiple equilbria does suggest that, as for the Landau-Lifshitz equation [127], the

dynamics are hysteretic.

An empirical definition of hysteresis can be used to further investigate the existence

of hysteresis via simulations.

Definition 4.2.2. [129] A system exhibits hysteresis if a nontrivial closed curve in the

input-output map persists for a periodic input as the frequency component of the input

signal approaches zero.

Proving the existence of a persistent closed loop is not generally possible. However,

simulations can be used to show whether the system response shows a closed loop that

persists at low frequencies. The idea is to excite the system with different periodic

inputs with decreasing frequencies and constant amplitude. Next, the second definition

of hysteresis, Definition 4.2.2, is employed to check the existence of a persistent closed

loop as the frequency goes to zero.

Now, simulation results are used to show the existence of a persistent non-trivial

closed loop in the current-voltage graph. The battery equations (4.18) and (4.19) were

solved using the parameters in Table 4.1. The inputs are chosen to be sinusoidal functions

82



with constant amplitude and different frequencies. COMSOL software with linear basis

functions was used to approximately solve the governing equations.

The input to the equations is the current I(t) and the output is given by equation

(4.28). The inputs were first chosen to be (in A/m2)

I(t) = 0.875 sin(ω t),

where ω = 1, 0.001, 0.00001. The results are shown in Figures 4.2, 4.3 and 4.4. From

these simulation results, it can be seen that a closed loop occurs that becomes wider as

the input frequency ω decreases. A closed loop appears when the input frequency goes

to zero. Other modeling parameters are given in Table 4.1.

-1 -0.5 0 0.5 1
3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

Current (A/m2)

T
er

m
in

al
 v

ol
ta

ge
 (

V
)

Figure 4.2: Current-voltage mapping for I(t) = 0.875sin(t)(A/m2). At this input fre-

quency, no closed curve is observed. The frequency is too fast at this amplitude for the

system to reach equilbrium during the cycle.

In the second set of simulations, the amplitude of the input current is increased to

push the battery further away from its equilibrium state. Since the amount of active

material must always be larger than zero, the frequency of the periodic input cannot be

chosen to be too small; otherwise, the cell will finally reach the point where no active

material will remain in battery cell. The input magnitude was increased so the input

signals were (in A/m2)

I(t) = 87.5 sin(ω t),

where ω = 10, 1, 10. The results are shown in Figures 4.5, 4.6 and 4.7. According to these

figures, the closed loop starts at lower frequencies than previously. The area enclosed by

the curve again increases as the frequency is decreased.
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Figure 4.3: Current-voltage mapping for I(t) = 0.875sin(1e − 3t)(A/m2). The closed

curve appears at this frequency.

The purpose of this section was to investigate the role of system dynamics in the

hysteresis observed in the current-voltage relationship for lithium-ion batteries. Two

possible sources of hysteretic behavior were introduced: the OCP term, U , and the dy-

namics of the system. It is known that the OCP term may contain hysteresis. It was also

proved that the battery governing equations have more than one equilibrium solution;

the equilibria concentrations are a continuum of constant functions. The presence of mul-

tiple equilibria indicates that hysteresis can arise from the internal dynamics (Definiton

4.2.1 ).

Two sets of simulations were then used to investigate hysteresis further using Def-

inition 4.2.2. In both sets of simulation results, the system’s current-voltage response

included a persistent nontrivial closed curve at low frequencies. Increasing the input

amplitude led to the appearance of a closed loop at lower frequencies. That is, the sys-

tem has more of a tendency to exhibit hysteresis specially with high current amplitudes.

These results indicate that not every dynamical model is appropriate for SOC estimation.

Even simplified lithium-ion models should be qualitiatively similar to the electrochemical

equations so that this internal hysteresis is reproduced.
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Figure 4.4: Current-voltage mapping for I(t) = 0.875sin(1e−5t)(A/m2). A closed curve

occurs. Decreasing the input frequency increases the area enclosed by the curve.

Figure 4.5: Current-voltage mapping for I(t) = 87.5sin(10t)(A/m2). At this frequency,

no closed curve is observed.
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Figure 4.6: Current-voltage mapping for I(t) = 87.5sin(1t)(A/m2). At his amplitude of

input, a closed curve appears. No loop was seen with an input at the same frequency

and lower frequency (Figure 4.2

Figure 4.7: Current-voltage mapping for I(t) = 87.5sin(1e − 2t)(A/m2). The closed

curve persists and the enclosed area increases as the input frequency decreases.
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Chapter 5

Electrochemical model based state

of charge estimation of an LFP cell

In this chapter, the SOC estimation of an LFP cell is considered. As a precise model,

electrochemical equations are chosen to estimate the SOC. For this purpose, first, these

equations are approximated by reduced order ones keeping the accuracy of the original

equations. Next, an adaptive observer is designed to estimate the SOC while capturing

the system’s dynamics.

The experimental data used in this chapter was generated in Laboratoire De Réactivité

Et Chimie Des Solides (LRCS) in Amiens, France. In this experiment, the LFP electrode

was recovered from a commercial graphite/LFP cell, LiFeBatt X2E (15 Ah, 40166, cell

A) which is employed for hybrid electric applications [49]. The cell underwent discharge

to 2 V at C/10 followed by a decrease of the current below C/50 while the potential was

held to 2 V . Next, it was disassembled. Finally, the electrode whose area is 1.202 cm2

was punched with a lithium metal foil for the counter electrode and a Whattman GF/D

borosilicate glass fiber sheet for the separator to assemble a coin cell. For more details,

please refer to [49].

The simulations were run in MATLAB R2015b on a PC with Intel(R) Xeon(R) CPU

E31270 @ 3.40GHz processor and 32.0 GB RAM. The simulation time was 124 minutes,

considerably less than the experimental time of over 1100 minutes.
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5.1 Introduction and literature review

Cells are elementary units of a battery pack; tracking the SOC, the amount of deliverable

energy, of each cell in a battery pack is a key role of every battery management system.

At every measurement step, the cells’ SOC estimate must be updated via measuring the

terminal voltage, current, and temperatures. In practice, the SOC can be defined as an

indication of the amount of remaining charge inside the cell. A number between 0% to

100% is assigned to this indication.

Among different chemical compositions, lithium-ion chemistry is one of the most

promising options for the batteries used in hybrid electric vehicles. Compared to other

cell chemistries, the Lithium-Ion chemistry boasts high power and energy density, a

lack of memory effect, low self discharge, and a high life cycle. [3, 4, 5]. Lithium ion

phosphate offers the advantage of better lithium insertion over other alternatives. Its

numerous features have drawn considerable interest. Some of these features are listed in

[6].

An inaccurate but numerically fast method of SOC estimation is voltage measure-

ment wherein every voltage measurement is assigned with an approximate value of SOC.

This method highly depends on temperature, charge/discharge rate, and aging [9]. In

practice, the voltage measurement can not be trusted as the only estimation method and

needs to be complemented with a more precise technique. Measurement of the OCP,

introduced in Chapter 4, can be offered as an alternative measurement which assignment

to SOC depends on fewer factors. In this case, a long resting time must be passed before

measuring the value of the OCP. Once the OCP reaches a steady condition, the SOC

can be calculated as the inverse image of the SOC-OCP map.

However, the OCP measurement is not applicable for real-time application due to

the required long relaxation time. In other words, the OCP is unavailable while the

battery is in use. This value also highly depends on environmental conditions especially,

the current rate and hysteresis effect [12]. In addition, in most of the cases, finding the

inverse SOC-OCP mapping is not feasible. The difficulty arises when further charge or

discharge produces a two-phase behavior which constitutes the major part of the SOC-

OCP plot. In the range of two-phase behavior, the SOC is assigned with almost invariant

OCP values, and this phenomenon invalidates the inverse mapping [6].

Impedance measurement is a method of SOC estimation. It is defined as the ratio of

voltage and current signals. This ratio is a complex quantity as the transfer function from

current to voltage. The impedance carries information about dynamics of the battery cell
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and can be obtained over a wide range of AC frequencies. In particular, a proper rational

transfer function is set for impedance representation and the modeling parameters are

found via least square optimization. The identified parameters of the transfer function

differs from the SOC; therefore, impedance can be used to infer the SOC. A good review

on SOC estimation by EIS can be found in [13]. This method is not useful for real-time

applications [12] and [130].

Employing the battery impulse response as the measurement and a look-up table as

the empirical model is suggested in [4]. On mapping a voltage measurement to the SOC,

a utility-based technique and an impedance-based cell monitoring introduced respectively

in [10] and [131] can be remarked. A neural network [11] or fuzzy logic [132] can also be

used to map a measurement to the SOC prediction.

The second category of SOC estimation methods relies on measuring and integrating

the current. Integrating the current over a drive cycle is mostly a part of real-time

applications. This technique is called coulomb counting. Coulomb counting can be used

in an open loop system to predict the SOC. When being compensated for the battery

effects like discharge efficiency, self discharge, and capacity loss, the coulomb counting

is referred to as a book-keeping system [9]. This method might be efficient for electric

vehicles but not for hybrid electric vehicles in which no full charge/discharge state is

achieved in a driving cycle [14]. Estimation using coulomb counting can also be done in

a closed loop. The feedback might be calculated either empirically [15], [16], and [17]

or by a mathematically optimized method [12] and [18]. Some examples of the coulomb

counting method can be found in [19], [20], [21], and [22].

Some important factors reducing the estimation accuracy of coulomb counting are

temperature, charge and discharge efficiencies, and cycle life [9]. Furthermore, the cu-

mulative effect introduced by integration approximation makes the estimation sensitive

to measurement errors due to noise, resolution, and rounding [14].

The model-based SOC estimation is the third class of SOC estimation techniques.

The estimation via equivalent circuit models are mostly reported in literature. Simplicity

and a relatively low number of parameters are the main characteristics of these models

[23]. An equivalent circuit model is composed of basic elements, resistors, capacitors,

and voltage source, in the form of a circuit network. Normally, the circuit includes a

large capacitor or a voltage source to represent the OCP effect, and the rest of the circuit

defines the cell’s internal resistance and the effect of cell’s dynamics [27]. Different groups

of equivalent circuit models are introduced in [12] and [23].

Kalman filtering is the most cited technique; compensating for measurement noise
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is the main property of this filter. One of the first and important efforts on the SOC

estimation by the Kalman filter is the comparative studies introduced in [24] and applied

in [133]. The descriptive model might be simplified before the filtering process is applied

at the cost of lowered accuracy. Such a simplification is employed in [14] to predict

the value of the OCP. Having the same elements but different configuration, the model

introduced in [25] is observed with the EKF without any simplification assumption.

Similarly, the EKF coupled with error least square optimization is established in [26]

to estimate the OCP and update the modeling parameters. Robust extended Kalman

filtering is the suggested method in [27] to cover the modeling uncertainty and reduce

the strong dependency on the model accuracy.

Dealing with the model’s nonlinearity can be evaluated by using sigma-point Kalman

filtering. This type of filtering extends the idea of Kalman filter by using a set of points

and weights to approximate the mean and covariance of the state vector at every time

step. The application of the sigma-point Kalman filtering in observing the SOC from the

voltage measurement is used in [28] and [29]. In this work, the modeling parameters are

also allowed to have small variation in time; then, two variations of an adaptive approach,

called joint and dual sigma-point filtering are improved to update the parameters at every

time step. No proof of the convergence of the parameters and SOC is provided.

Some other examples of equivalent circuit model-based estimation methods are briefly

listed here. A sliding mode observer is offered in [30], [31], and [32]; it is robust to

uncertainties and simple at the same time. An adaptive observer is suggested based

on a linear model in [126] and a nonlinear model in [33] to account for the parameters

variation in time. A Luenberger observer which is an error rejection observation method

is designed to predict the OCP via a nonlinear model in [34] and to predict the SOC via

a linear parameter varying model in [35] and [5].

Electrochemical models are also employed for model-based SOC estimation since

they closely represent the physical behavior inside the cell. Therefore, adding the effect

of temperature and modeling the aging phenomenon, the inherent features of Li-ion

batteries, to the model are more feasible. Unfortunately, electrochemical models are not

applicable for real-time observation because of their complexity.

The cell’s representative equations are a set of partial differential algebraic equations

and are often transformed to a set of differential algebraic or ordinary differential equa-

tions. Two ways of transformation are addressed in the literature on electrochemical

model-based SOC observation. The first way of constructing differential algebraic or or-

dinary differential equations from the original equations requires the discretization of the
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system or their integration over space combined with simplifying assumptions. Another

method of finite-dimensional approximation of the model is modifying the equations and

taking Laplace transform of them with respect to time; then, the resulting equations are

solved for an impedance transfer function. Finally, the ordinary differential equations of

interest are derived from this transfer function [134].

Simplified versions of electrochemical models tackle the problem of complexity while

keeping accuracy. A review on most simplified electrochemical models can be found in

[36]. Single particle models are common models introduced to handle the unwanted com-

plexities. These models are made under the assumptions that the electrodes are made of

a single spherical particle, there is no change in the concentration and potential of the

electrolyte, and the parameters are constant. Coupled with averaging the concentration

of the active material, they are used in [135] to construct a finite-dimensional represen-

tation and estimate the SOC by the EKF. Averaging over the entire electrode region is

also used in [37], [38], and [3] wherein the observation is evaluated by respectively the

EKF and output injection-based observer combined with the mass conservation law.

Implementing Laplace transform with respect to time is used in [39] and [40] to

transform a single particle model to a set of ordinary differential equations. Afterwards,

the Kalman filter is used to estimate the SOC. A more accurate observation method is

employed in [41, 42, 43]. In this work, the system is transformed to ordinary differential

equations via the Laplace transform as a way of identifying the system’s parameters

using the impedance technique. An output injection observer is applied in both system

dynamics and boundary conditions in a single particle model, and the backstepping

approach is employed to design the gains.

Employing a single particle model in the observation is also suggested in some other

works including via the Kalman filtering in [44], the sliding mode observer in [45], the

backstepping observation method in [41, 42, 43]. More recent studies using full electro-

chemical equations can be found in [46, 47].

As mentioned in Chapter 1, In all of the aforementioned work, a simple model is

adequate to represent the cell behavior; however, these simple models will not provide a

similar performance for cells with LFP positive electrode because of a two-phase behavior.

A few models have been improved in literature to conduct the two-phase behavior in LFP

cells. The efficiency of the different models depends on their performance in treating the

two-phase behavior of the lithium insertion/deinsertion. A more physical intuition brings

around a more adequate approximation. Variable solid-state diffusivity model is used

here as a reliable platform since it is a trade of between simplicity and physical accuracy.
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Details on this model can be found in [48], [2], and [49].

In general, these electrochemical equations are nonlinear coupled partial differential

equations. They consist of two parts: dynamical equations representing the variation

of the active material concentration and constraint equations mapping the concentra-

tions to the potential variables. An important part of an approximation is solving the

constraint equations. In most simplified models, the constraint equations are simplified

by ignoring the dependence of the exchange current density on the modeling variables

[136, 137, 138, 139, 140], and [140]. Linearizing the exchange current density term around

some operating points is another way of solving the constraint equations without numer-

ical complications ([141] and [142]). However, in many applications of LFP cells, these

approximations are not accurate.

The simplified electrochemical equations can be further reduced by approximation of

the partial differential equations by ordinary differential equations. Laplace transforms

and Padé approximation are potential ways of constructing a low-order model [143, 144,

140], and [142]. Low-order models can also be achieved via projection based techniques

including proper orthogonal decomposition [145] and employing eigenfunctions of the

solid diffusion equation [146] and [147]. These low-order models are introduced for a

class of simplified models where the solid diffusion coefficient is often assumed to be

constant.

The main objective of this chapter is to design an observer for an LFP cell represented

by a variable solid-state diffusivity model to predict the battery SOC during a drive cycle.

Although electrochemical model-based estimations provide higher accuracy, an efficient

approximation is required due to their complexity. So far employed simplified models

loose their utility for chemical compositions like LFP at high current rates and dynamics.

A more accurate approximation of the original equation which is simple enough to be

solved in the real-time SOC estimation is required.

As the first step of observer design, a numerically more efficient model is introduced

in this chapter; for this purpose, physical continuity of modeling variables is used. Next,

a reduced order model is developed via some base functions derived from the system

dynamics. It is shown that as the dimension of the reduced order model increases a

subsequence of the solutions converging to the solution of the cell original equations can

be found.

In addition, due to the simplifying assumptions, the model has some uncertainties.

In order to compensate for the uncertainties, an adaptive observer providing enough

accuracy and robustness to the modeling uncertainties is developed. This observer is an
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Table 5.1: Lithium-ion cell parameters [2].

parameter definition value

(separator, and LFP electrode)

lcat thickness of the negative electrode 72e− 6

lsep thickness of the separator 675e− 6

Rs radius of the spherical solid particles −, ( 1.44e− 7, 2.70e− 7, 5.42e− 7)

R gas constant 8.3145

F Faraday’s constant 96485

t0+ transference number 0.363, 0.363

εe volume fraction of the electrolyte phase 0.6, 0.5

keff effective conductivity in the electrolyte phase 0.6042, 0.4596

keffD

keff2RT (1−t0+)

F

σeff effective conductivity in the solid phase −, 0.855

Deff
e effective diffusivity in the electrolyte phase 7.500e− 11, 1.633e− 11

Ds Diffusion coefficient of the spherical particle −, 1e− 13

cs,max maximum solid state concentration −, 22.860e3

i0 exchange current density 0, 3.25e− 2

adaptive EKF wherein the parameters of the OCP term, which is an important part of

modeling, is allowed to change over time. In this way, the effect of hysteresis can be

included even when the OCP has a single-value empirical representation. Compared to

the experimental data, the simulation results confirm the performance of the proposed

observer.

5.2 Mathematical model

As mentioned previously, in this section, a lithium-ion cell whose positive electrode is

made of LFP material is considered. In LFP electrodes, the lithium insertion/deinsertion

mechanism is a two phase process taking place between the lithium poor phase, LiεFePO4,

and the lithium rich phase, LI1−εFePO4. The negative electrode is assumed to be a

lithium foil. The details of the electrochemical model can be found in Chapter 4. Here,

the number of particle sizes are set K = 3 and the solid-state diffusion coefficient is state

dependent. This model is different from what is used to investigate the hysteresis coming

from the system’s dynamics; it has different parameters and number of particle sizes.

The battery cell’s equations considered in this section are denoted in a state space
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representation as follows. Define

X1 = {z ∈ L2([L1, L]× [0, R1]) : r2
1z ∈ L2([L1, L]× [0, R1])}

X2 = {z ∈ L2([L1, L]× [0, R2]) : r2
2z ∈ L2([L1, L]× [0, R1])}

X3 = {z ∈ L2([L1, L]× [0, R3]) : r2
3z ∈ L2([L1, L]× [0, R1])}

X = L2(0, L)×X1 ×X2 ×X3

Y = L2(0, L)× L2(L1, L)

where L1 = lsep, L = lsep + lcat. Let c = [c1, c2, c3, c4]T = [ce, cs,1, cs,2, cs,3]T ⊆ X be the

state vector and ϕ = [ϕ1, ϕ2]T = [ϕe, ϕs]
T ⊆ Y be the constraint vector; from a physical

point of view, ce represents the electrolyte concentration, cs,k are the solid concentration

in every particle bin k = 1, . . . , 3, and ϕe and ϕs represent respectively the electrolyte

and solid potential.

Define

yk = saty(
ck+1 |rk=Rk

cmax

) (5.1)

where

saty(s) =
1

1 + exp(−a0s)

for a0, a1 ∈ R+ (see Table 5.2), and αk(.), the Fréchet differentiable functions,

αk(ck+1) = 6 exp(−25yk) + 15 exp(−35(1− yk)) + 0.3/(1 + (yk − 0.5)2).

Note that

δ1 ≤ |αk(ck+1)| ≤ δ2 (5.2)

for k = 1, . . . , 3 and δ1, δ2 ∈ R+. The electrochemical reaction rate is defined as

ik(c,ϕ) =

{
2i0 sinh( Fηk

2RT
) if x ∈ [0, L1]

0 if x ∈ [L1, L]
(5.3)

where

ηk = ϕ2 − ϕ1 − U(yk)

and U(.) is the OCP term;

U(yk) = 3.4510− 0.009yk

+ 0.6687 exp(−30yk)− 0.5 exp(−200(1− x))
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for the charging cycle, and

U(yk) = 3.4077− 0.020269yk

+ 0.5 exp(−200yk)− 0.9 exp(−30(1− x))

for the discharging cycle. The OCP profile has an important effect on the simulations and

must be identified carefully. The OCP identification is based on the static performance

and cannot be measured during the battery operation. Instead, empirically derived

relations are used. It is obtained through a curve fitting.

The cell governing equations are

∂

∂t


c1

c2

c3

c4

 =


∂
∂x

(De
∂c1
∂x

) +
1−t0+
Fε

∑
akik(c,ϕ)

1
r2
1

∂
∂r1

(r2
1α1(c2)D ∂c2

∂r1
)

1
r2
2

∂
∂r2

(r2
2α2(c3)D ∂c3

∂r2
)

1
r2
3

∂
∂r3

(r2
3α3(c4)D ∂c4

∂r3
)

 (5.4)

0 =

[
∂
∂x

(keff
∂ϕ1

∂x
) + keff

∂
∂x

(
2RT (1−t0+)

Fc1

∂c1
∂x

) +
∑
akik(c,ϕ)

∂
∂x

(σeff ∂ϕ2

∂x
)−

∑
akik(c,ϕ)

]
(5.5)

The boundary conditions are

∂c1

∂x
|x=L = 0 (5.6)

∂ck+1

∂rk
|rk=0 = 0, k = 1 . . . 3 (5.7)

ϕ1 |x=0 = 0 (5.8)

∂ϕ1

∂x
|x=L = 0 (5.9)

∂ϕ2

∂x
|x=L1 = 0. (5.10)

(5.11)

The controlled input is current I(t),

εsepDeff,sep
∂c1

∂x
|x=0 = −

(1− t0+)I(t)

F
(5.12)

−σeff ∂ϕ2

∂x
|x=L = I(t). (5.13)

(5.14)

Also

αk(ck+1)D∂ck+1

∂rk
|rk=Rk=

ik
F

(c,ϕ), k = 1 . . . 3. (5.15)
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5.3 State space representation

The battery governing equations include both differential and algebraic equations re-

spectively represented by (5.4) and (5.5). For infinite-dimensional systems, these types

of equations are called partial differential algebraic equations. Finding the solution to

these equations requires solving a set of algebraic equations simultaneously with the

differential equations. The governing equations will be replaced by fully differential

equations, which are numerically easier to handle.

Some approximations are now introduced to the model to facilitate computation.

First, the reaction rate is approximated. For this purpose, the variable yk,s defined in

(5.1) is substituted by an average value. Define

c̄k+1 =

∫ Rk

0

δ(x−Rk)ck+1drk

and

ȳk = saty(
c̄k+1

cmax

)

where

δ(x− x0) =

{
1
ε0

if x ∈ [x0− ε0, x0]

0 if x ∈ [0, x0− ε0]
(5.16)

for some small ε0 > 0 (see Table 5.2). For parameters b0, a0 (see Table 5.2), define

sat(s) =
2b0

1 + exp(−a0s)
− b0

and also define

η̄k = ϕ2 − ϕ1 − U(ȳk).

The exchange current density is approximated by

īk(c,ϕ) =

{
2i0 sinh(sat( Fη̄k

2RT
)) if x ∈ [0, L1]

0 if x ∈ [L1, L]
(5.17)

The argument of sinh(.) is saturated in (5.17) to keep the electrochemical solution

bounded. This constraint aligns with the physics of the system.

A second approximation is used to ensure that the constraint equation (5.5) has a

unique solution ϕ for every given state vector c and to facilitate its computation. The
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constraint equations are approximated by replacing c1 with its initial value cini in the

denominator. This yields

0 =

[
∂
∂x

(keff
∂ϕ1

∂x
) + keff

∂
∂x

(
2RT (1−t0+)

Fcini

∂c1
∂x

) +
∑
ak īk(c,ϕ)

∂
∂x

(σeff ∂ϕ2

∂x
)−

∑
ak īk(c,ϕ)

]
(5.18)

The potential vector ϕ is a function of the state vector c as given by the following

theorem.

Theorem 5.3.1. Let the constraint equations (5.5) be approximated by (5.18). Define

the operator DO(.) : X × Y × R3 → Y3×3 as

DO(c,ϕ, I(t), c1(0), ϕ2(L1)) =
keff +

∑3
k=1 ak

∫ x
0

∫ y
0
∂īk(c,ϕ)
∂ϕ1

∑3
k=1 ak

∫ x
0

∫ y
0
∂īk(c,ϕ)
∂ϕ2

0

−x
∫ L

0

∑3
k=1 ak

∂īk(c,ϕ)
∂ϕ1

−x
∫ L

0

∑3
k=1 ak

∂īk(c,ϕ)
∂ϕ2

−
∑3

k=1 ak
∫ x

0

∫ y
0
∂īk(c,ϕ)
∂ϕ1

σeff −
∑3

k=1 ak
∫ x

0

∫ y
0
∂īk(c,ϕ)
∂ϕ2

σeff∫ L
0

∑3
k=1 ak

∂īk(c,ϕ)
∂ϕ1

∫ L
0

∑3
k=1 ak

∂īk(c,ϕ)
∂ϕ2

0.


(5.19)

If DO(.) is nonsingular at [c∗,ϕ∗, I∗, c∗0, ϕ
∗
0]T ∈ X × Y × R3, the potential vector ϕ can

be written as a Fréchet differentiable function of the state vector c and the input I(t) in

a neighborhood of this point. In other words, in some neighborhood of [c∗,ϕ∗, I∗, c∗0, ϕ
∗
0],

ϕ = Rϕ(c, c1(0), I(t)) (5.20)

where Rϕ(.) : X × R2 → Y is some Fréchet differentiable function.

Proof: In this proof, it is shown that ϕ is defined implicitly through the solution to

a function O(.) It is proved that this function is Fréchet differentiable with derivative

(5.19). The result is a consequence of the Implicit Function Theorem [148, Theorem

1.1.23].

In the first step, define

O1(.),O2(.),O3(.) : X × Y × R3 → Y
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as

O1(c,ϕ, I(t), c1(0), ϕ2(L1))

=
x

keff

∫ L

0

3∑
k=1

ak īk(c,ϕ)−
2RT (1− t0+)

Fcini
(c1 − c1(0))

− 1

keff

∫ x

0

∫ y

0

3∑
k=1

ak īk(c,ϕ),

O2(c,ϕ, I(t), c1(0), ϕ2(L1))

= ϕ2(L1) +
1

σeff

∫ x

0

∫ y

0

3∑
k=1

ak īk(c,ϕ),

O3(c,ϕ, I(t), c1(0), ϕ2(L1))

= I(t) +

∫ L

0

3∑
k=1

ak īk(c,ϕ).

combined with boundary conditions in (5.6), (5.8), (5.9), (5.10), (5.12), and (5.13), the

algebraic equation (5.5) can be rewritten as

ϕ1 = O1(c,ϕ, I(t), c1(0), ϕ2(L1))

ϕ2 = O2(c,ϕ, I(t), c1(0), ϕ2(L1))

0 = O3(c,ϕ, I(t), c1(0), ϕ2(L1))

(5.21)

Note that the functions īk(.) for k = 1, . . . , 3 are Fréchet differentiable with respect

to their arguments. This is due to the fact that sat(.), saty(.), and the empirical function

chosen for OCP U(.), as well as the function sinh(.) are Fréchet differentiable with respect

to their arguments. Therefore, from the definition of īk(.) given by (5.3) and the chain

rule, it can be concluded that īk(.) are Fréchet differentiable functions.

Since integration is a linear operation, the fact that the functions īk(.) are Fréchet

differentiable leads to the Fréchet differentiability of the functions O1(.), O2(.), and O3(.)

with respect to [c2, . . . , c4]T and ϕ; these functions are linear and thus differentiable with

respect to (c1 − c1(0)), ϕ2(L1), and I(t). Define

O(c,ϕ, I(t), c1(0), ϕ2(L1)) =keff (ϕ1 −O1(c,ϕ, I(t), c1(0), ϕ2(L1)))

σeff (ϕ2 −O2(c,ϕ, I(t), c1(0), ϕ2(L1)))

O3(c,ϕ, I(t), c1(0), ϕ2(L1))

 . (5.22)
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The Fréchet derivative of the nonlinear operator O(.) (5.22) with respect to the vector

[ϕ, ϕ2(L1)]T is (5.19). In addition, (5.21) can be written as

O(c,ϕ, I(t), c1(0), ϕ2(L1)) = 0.

Now, by the Implicit Function Theorem and the assumption of DO(.) being nonsingular

in some neighborhood of [c∗,ϕ∗, I∗, c∗0, ϕ
∗
0]T , (5.20) follows. �

At this point, for the sake of simplicity and future use, Rϕ(.) in (5.20) is approximated

by

ϕ = R̄ϕ(c, I(t)) = Rϕ(c,

∫ L

0

δ(x)c1, I(t)) (5.23)

where

δ(x) =

{
1
ε0

if x ∈ [0, ε0]

0 if x ∈ [ε0, L]
(5.24)

for some small ε0 ∈ R+ given in Table 5.2. This approximation is feasible due to the

continuity of the electrolyte concentration.

Next, a new form of the constraint equations is achieved by taking the time differen-

tiation of both sides of (5.23). Along with (5.4), differentiating (5.23) results in

∂ϕ

∂t
= DR̄ϕ(c, I(t))(

∂c

∂t
) +

∂R̄ϕ(c, I(t))

∂I

dI(t)

dt
. (5.25)

The battery equations are solved by replacing the constraint equation (5.5) with

its equivalent differential equations (5.25). With this setting, any standard technique

of solving differential equations can be used without dealing with algebraic equations

directly.

A difficulty involved in solving (5.4) and (5.25) is finding the time derivative of the

input I(t). This problem can be resolved by employing the saturated high-speed observer

introduced in [81],
dx̂

dt
= M x̂+LI(t) (5.26)

where x̂T = [Î , ˆdI/dt], and

M =

[
−ga1 1

−g2a0 0

]
, L =

[
−ga1

−g2a0

]

in which g, a0, a1 ∈ R+ are tuning parameters.
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A third approximation of the cell’s equations is made. Let both sides of (5.4) followed

by approximation (5.17) be multiplied by w = [w1, . . . , w4]T ∈ X in the sense of the X -

inner product as follows:∫ L

0

w1
∂c1

∂t
dx =

∫ L

0

w1(
∂

∂x
(Deff

∂c1

∂x
)

+
1− t0+
Fε

∑
ak īk(c,ϕ))dx∫ L

L1

∫ Rk

0

r2
kwk+1

∂ck+1

∂t
drkdx =

∫ L

L1

∫ Rk

0

r2
kwk+1

1

r2
k

∂

∂rk
(r2
kαk(ck+1)D∂ck+1

∂rk
)drkdx

(5.27)

for k = 1, . . . , 3. Now, applying integration by parts to (5.27) and employing boundary

conditions (5.6), (5.7), (5.12), and (5.15) followed by approximation (5.17) lead to∫ L

0

w1
∂c1

∂t
dx =

∫ L

0

(−∂w1

∂x
(Deff

∂c1

∂x
) + w1

1− t0+
Fε

∑
ak īk(c,ϕ))dx

+
1− t0+
εF

w1(0)I(t)∫ L

L1

∫ Rk

0

r2
kwk+1

∂ck+1

∂t
drkdx = −

∫ L

L1

∫ Rk

0

∂wk+1

∂rk
(r2
kαk(ck+1)D∂ck+1

∂rk
)drkdx

+
R2
k

F

∫ L

0

wk+1(Rk )̄ik(c,ϕ))dx.

(5.28)

Next, (5.28) is approximated by∫ L

0

w1
∂c1

∂t
dx =

∫ L

0

(−∂w1

∂x
(Deff

∂c1

∂x
) + w1

1− t0+
Fε

∑
ak īk(c̄,ϕ))dx+

1− t0+
εF

∫ L

0

δ(x− L)w1I(t)dx∫ L

L1

∫ Rk

0

r2
kwk+1

∂ck+1

∂t
drkdx = −

∫ L

L1

∫ Rk

0

∂wk+1

∂rk
(r2
kαk(ck+1)D∂ck+1

∂rk
)drkdx

+
R2
k

F

∫ L

0

∫ Rk

0

r2
k

δ(rk −Rk)

r2
k

wk+1īk(c̄,ϕ))drkdx.

(5.29)

Using integration by parts in (5.29), the battery equations can be transformed into

∂c

∂t
+ AN (c) = R(c, t) + Fu(t) (5.30)

where A : X → X is a linear operator, R(.),N (.) : X → X are nonlinear Fréchet

differentiable functions, F : Rq → X is a bounded linear input operator, and u(t) is the

100



input vector defined as

A = +λI (5.31)

−


∂
∂x

(De
∂
∂x

) 0 0 0

0 D
r2
1

∂
∂r1

(r2
1
∂
∂r1

) 0 0

0 0 D
r2
2

∂
∂r2

(r2
2
∂
∂r2

) 0

0 0 0 D
r2
3

∂
∂r3

(r2
3
∂
∂r3

)

 (5.32)

where λ > 0 is set such that A is positive definite as in Assumption 3.2.6, and

D(A) = {c ∈ X , [∂c1

∂x
,
∂c2

∂r
, . . . ,

∂c4

∂r
]T ∈ X ,

[
∂2c1

∂x2
,
∂2c2

∂r2
, . . . ,

∂2c4

∂r2
]T ∈ X

∂c1

∂x
(0) =

∂c1

∂x
(L) = 0, and

∂ck
∂r

(0) =
∂ck
∂r

(0)(Rk) = 0 for k = 2 . . . 4}.

(5.33)

N (c) =


c1∫ r1

0
α1(c2(s, t))∂c2

∂r1
(s, t)ds∫ r2

0
α2(c3(s, t))∂c3

∂r2
(s, t)ds∫ r3

0
α3(c4(s, t))∂c4

∂r3
(s, t)ds

 (5.34)

E(c,ϕ) =


1−t0+
Fε

∑
ak īk(c,ϕ)

R2
1

F
δ(r1−R1)

r2
1

ī1(c,ϕ)
R2

2

F
δ(r2−R2)

r2
2

ī2(c,ϕ)
R2

3

F
δ(r3−R3)

r2
3

ī3(c,ϕ)

+ λN (c) (5.35)

B =


1−t0+
εF

δ(x− L)

0

0

0

 (5.36)

Rc(c,ϕ) = E(c,ϕ)− E(0,ϕ) (5.37)

R(c, t) = Rc(c, R̄ϕ(c, I(t))), (5.38)

F = [B,I], u(t) = [I(t),E(0, t)T ]T . (5.39)
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Finally, a fully dynamical representation equivalent to (5.30) has been introduced as

∂c

∂t
+ Ac = Rc(c,ϕ) + Fu(t)

∂ϕ

∂t
= DcR̄ϕ(c, I(t))

∂c

∂t
+
∂R̄ϕ(c, I(t))

∂I

dI(t)

dt

(5.40)

where Dc represents the Fréchet derivative with respect to c.

It can be shown that the state space representation (5.30) satisfies the conditions of

Theorem 3.3.5. First, it is shown that the linear operator A is self-adjoint.

Lemma 5.3.2. The linear operator A : D(A) ∈ X → X is self-adjoint.

Proof: For w ∈ D(A) and v ∈ X , employing integration by parts and substituting the

boundary conditions given by (5.33) result in

(Aw,v)X = −Deff (w1(L)
∂w1

∂x
(L)− w1(0)

∂w1

∂x
(0))

−
∑∫ L

0

R2
kwk+1(Rk)

∂vk+1

∂rk
(Rk)dx+ (w,Av)X .

(5.41)

Now, by setting v ∈ D(A), one can conclude that

D(A) = D(A∗), A = A∗

and the operator A is self-adjoint. �

Corollary 5.3.3. Let the input signal u and the initial condition respectively satisfy

Assumption 3.2.5 and N (c(0)) ∈ D(A1/2). The system (5.30) has a unique solution

c. Furthermore, for the state vector z = c, the system can be approximated by finite-

dimensional equations (3.25) with solutions cN admitting a convergent subsequence in

L2([0, tf ];X ) where [0, tf ] is a finite time interval.

Proof: First, by Lemma 5.3.2, A is self-adjoint. Furthermore, it can be easily checked

that the inverse of the linear operator A can be represented as a Hilbert Schmidt integral;

thus, it is a compact operator [149]. This property along with the self-adjointness leads

to the fact that the linear operator A satisfies Assumption 3.2.6 and has eigenfunctions

which are an orthogonal basis for the Hilbert space X [116, theorem VIII.6].

Next, it is proved that the nonlinear operators N (.) and R(.) satisfy Assumptions

3.3.2, 3.3.3, and 3.2.7. First, it can be concluded from the definition of N (.) and chain
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rule theorem [150][Theorem 3.2.1] that

DN (c) =


I 0 0 0

0 α1(c2) 0 0

0 0 α2(c3) 0

0 0 0 α3(c4)

 . (5.42)

Define

δ3 = min(1, δ1), δ4 = max(1, δ2).

From (5.42) and the boundedness given by (5.2), it is observed that

δ3 ≤‖DN (w2)‖ ≤ δ4

δ3‖w1‖2
X ≤(w1, DN (w2)w1)X ≤ δ4‖w1‖2

X
(5.43)

for every w1,w2 ∈ X , and thus Assumption 3.3.2 is satisfied. Furthermore, from defini-

tion of A and N (.),

(w,AN (w))X ≥ λ‖w‖2
X (5.44)

for w ∈ D(A1/2) such that N (w) ∈ D(A); thus, Assumption 3.3.3 is satisfied.

Finally, the nonlinear operator R(., t) is a composition of smooth functions of the

potential vector ϕ and the vector [saty(c2), . . . , saty(c4)]T. Furthermore, ϕ is a Fréchet

differentible function of [c1, c2, . . . , c4]T . It is also observed that ϕ and c stay bounded

due to the implication of the saturation functions sat(.) and saty(.) in (5.30); thus,

R(., t) is Lipschitz continuous with respect to c; in other words, the nonlinearity of the

system satisfies Assumption 3.2.7. Finally, the input vector u(t) is assumed to satisfy

Assumption 3.2.5. The proof is then completed by Theorem 3.3.5. �

5.4 Finite-dimensional approximation

Before an observer can be designed, a low-order finite-dimensional model must be intro-

duced. A potential way of approximating the system with a finite-dimensional low-order

one is to employ FEM approximation with a few number of elements; however, this type

of low-order model might not be an efficient choice.

The low-order model can be produced by starting from a high-order finite-dimensional

approximation obtained possibly by FEM and employing an order reduction method.

The order reduction techniques truncate the state vector with minimum effect on the

system response; they are built upon different aspects of the system. Balanced order
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reduction and proper orthogonal decomposition (POD) are frequently used in literature

[151]; however, for a general nonlinear system, implementing these techniques is chal-

lenging.

Employing eigenfunctions of the linear operator A is another way of producing the

low-order model. Unlike balanced and POD order reduction, using eigenfunctions can

be complemented by the possibility of proving the existence of an error bound due to

the dynamics truncation. This technique was introduced in Chapter 3 for two general

classes of systems. In this section, two forms of electrochemical equations are studied,

with constant diffusion and variable diffusion; Both forms are included in the categories

introduced in Chapter 3.

From Corollary 5.3.3, eigenfunctions of A can be used to approximate the state vector

such that a subsequence of the approximate solutions converges to a solution of (5.30).

For the sake of simplicity, since the electrolyte concentration does not experience much

change along the cell in time, it is set to be constant as in [49] to find the eigenfunc-

tions. For the solid concentration, c2-c4, the eigenfunctions are derived from the following

eigenvalue problems: for k = 1, . . . , 3,

1

r2
k

∂

∂rk
(r2
k

∂zk+1

∂rk
) = λkvk+1 (5.45)

in which the linear operator’s domain is defined in (5.33). Solving (5.45) leads to finding

the eigenfunctions as

vk+1 =

 1 if j = 0
sin(

αj
Rk

rk)

rk
otherwise

(5.46)

where αj satisfies

αj = tan(αj).

Note that, in the original electrochemical equations the derivatives of the solid con-

centrations (c2, c3, c4) with respect to the spatial variable x are not involved in the equa-

tions. For this reason and in order to add more accuracy to the system solution, in this

research, the profile of the electrolyte concentration, c1, is approximated by a piece-wise

linear function instead of a constant.

The constraint equation (5.5) is approximated by a finite-dimensional one. Linear

spline functions are appropriate choices for approximating the potential vector ϕ since

(5.5) includes second order differentiation. The Galerkin method is then used to find

finite-dimensional nonlinear approximate of both equations of 5.40.

104



In general, for the finite-dimensional approximation of the solid and electrolyte con-

centration dynamical equations, the first part of (5.40), the base functions are respectively

chosen to be the eigenfunctions (5.46) and linear shape functions. The finite-dimensional

approximation of the constraint equations is achieved using finite element method (FEM)

with linear shape functions; this approximation leads to a set of finite-dimensional al-

gebraic equations. The finite-dimensional approximate equations are next transformed

into a dynamical form by applying time differentiation to the both sides of them. In this

way, the finite-dimensional approximation of the operator (5.3.1) is also automatically

achieved as a part of the finite-dimensional dynamical form.

Now, let the state vector be approximated by cN and the potential vector by ϕM .

The fully dynamical form (5.40) is then approximated by

dcN
dt

+ANcN = Rc,N(cN ,ϕM) + FNu(t),

dϕM
dt

=
∂R̄ϕ,M(cN , I(t))

∂cN

dcN
dt

+
∂R̄ϕ,M(cN , I(t))

∂I

dI(t)

dt

(5.47)

where the linear matrix AN , the nonlinear functions NN(.), Rc,N(.), R̄ϕ,M(.), and the

linear operator FN are found through the Galerkin method with the chosen bases for

every variable as explained before.

In the rest of this chapter, the number of elements for the separator region is denoted

by N1 and for the electrode region by N2. Depending on the method of approximation,

N3 represents the number of elements along or the number of eigenfunctions chosen for

every particle. The distribution δ(x−x0) is set to the delta distribution. The parameters

of the saturation functions sat(.) and saty(.) are defined in Table 5.2. Other modeling

parameters are given in Table 5.1. These equations are solved in time using MATLAB

ODE15s function.

Simulations via the FEM and linear base functions are compared to experimental

data in Figure 5.1 and 5.2 for charging and discharging cycles with different current

rates. Linear elements are used; the number of elements are chosen to be N1 = 5 in the

separator domain, N2 = 5 along the positive electrode, and N3 = 9 along every particle.

The parameters of the saturation functions sat(.) and saty(.) are defined in Table 5.2.

The simulation results show an adequate but not exact match to experimental data for

charging and discharging cycles with different rates of discharge up to 1c; the mismatch

between experimental data and model will be improved in the observer design.

Simulation results of solving the system equations (5.30) and (5.25) using eigenfunc-

tions for different charging and discharging current rates are respectively shown in Figure
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Table 5.2: Filtering and Saturation functions parameters

g c0 c1 a0 b0 ε

1 2 3 1 2.0251 .0001
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Figure 5.1: Comparison of the simulation results of the fully dynamical representation

with the experimental data for different charging rates; The simulation is exercised by

the FEM method with N1 = 5 in the separator domain, N2 = 5 along the positive

electrode, and N3 = 9 along every particle. A agreement with the experimental data is

observed. In these plots, ”sim” and ”exp” respectively represent the simulation result

and experimental data.

5.3 and 5.4 for N1 = 4, N2 = 4, and N3 = 5, the number of the eigenfunctions for every

particle size. Similarly, it is obvious from these figures that finding a set of parameters

which matches all the current rates is not an easy task. In the next step, this problem is

overcome by an adaptive filtering.
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Figure 5.2: Comparison of the simulation results of the fully dynamical representation

with the experimental data for different discharging rates; The simulation uses linear

finite elements with N1 = 5 in the separator domain, N2 = 5 along the positive elec-

trode, and N3 = 9 along every particle. A agreement with the experimental data is

observed. In these plots, ”sim” and ”exp” respectively represent the simulation result

and experimental data.

5.5 Observer design with constant diffusion

First, the lithium-ion SOC estimation is considered for a constant diffusion coefficient

N (.) = I. The fully dynamical form (5.40) can be rewritten as

∂c

∂t
+ Ac = Rc(c,ϕ) + Fu(t)

∂ϕ

∂t
= DcR̄ϕ(c, I(t))

∂c

∂t
+
∂R̄ϕ(c, I(t))

∂I

dI(t)

dt

− Γ(ϕ− R̄ϕ(c,θ, I(t)))

(5.48)

where Dc represents the Fréchet derivative with respect to c and Γ is a matrix gain added

to compensate for the numerical error of solving the constraint equations

ϕ− R̄ϕ(c, I(t)) = 0

via transformation into dynamical form. Note that (5.48) is equivalent to (5.30) for

N (.) = I and is proved to satisfy Assumption 3.2.5-3.2.7.
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Figure 5.3: Comparison of the simulation results of the fully dynamical representation

with the experimental data for different charging rates; The simulation is exercised by

eigenfunctions (5.46) with N1 = 4 in the separator domain, N2 = 4 along the positive

electrode, and N3 = 5 for every particle. A good agreement with the experimental data

is observed. In these plots, ”sim” and ”exp” respectively represent the simulation result

and experimental data.

The actual operator is nonlinear. It represents the cell terminal voltage. In order to

define this voltage, both positive and negative electrodes’ solid potentials are required.

The positive electrode’s potential is achieved by solving the electrochemical equations on

this electrode. The solid potential in the negative electrode ϕf satisfies

I(t) = if (
ce
cini

)(exp(
(1− βf )Fϕf

RT
)− exp(

βfFϕf
RT

))

where cini is the initial value of the state variable c1. The voltage measurement is defined

by the output operator

C0(ϕ, I(t)) =

∫ L

L1

δ(x− L)ϕ1dx− ϕf −RfI(t)

where Rf is the load resistance. In the measurement model, ϕ1 and ϕ2 are nonlinear

functions of the state vector c.

Also, in order to improve the observer’s performance, the information from the current

integration in time is used as an extra measurement. An improved output operator is
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Figure 5.4: Comparison of the simulation results of the fully dynamical representation

with the experimental data for different discharging rates; The simulation is exercised

by eigenfunctions (5.46) with N1 = 4 in the separator domain, N2 = 4 along the positive

electrode, and N3 = 5 for every particle. A good agreement with the experimental data

is observed. In these plots, ”sim” and ”exp” respectively represent the simulation result

and experimental data.

built upon the fact that by conservation of charge, [37]

3
3∑

k=1

εk
R3
k

∫ Rk

0

r2
k

ck+1

Cmax
drk =

1

F (L− L1)Cmax

∫ t

0

I(t)dt.

The output is defined as

y = C(c,ϕ, I(t)) =

[
C0(ϕ, I(t))

3
∑3

k=1
εk
R3
k

∫ Rk
0

r2
k
ck+1

cmax
drk.

]
(5.49)

The second component is only used in estimation when the voltage estimation error is

larger than a threshold.

In the simulations, the system is approximated via both the finite element method

and using eigenfunctions (5.46) as explained in Section 5.4. Let the estimate potential

vector and observer state be denoted by ϕ̂M and ĉN respectively. The observer dynamics
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is approximated by

dĉN
dt

+AN ĉN = Rc,N(ĉN , ϕ̂M) + FNu(t) +KN(t)(y −CN(ϕ̂M , I(t))),

dϕ̂M
dt

=
∂R̄ϕ,M(ĉN , I(t))

∂ĉN

dĉN
dt

+
∂R̄ϕ,M(ĉN , I(t))

∂I

dI(t)

dt

− ΓN (ϕ̂M − R̄ϕ,M(ĉN , I(t)))

(5.50)

where the linear matrix AN , the nonlinear functions Rc,N(.), R̄ϕ,M(.), and the linear

operator FN are found through the Galerkin approximation of the system, KN(t) is the

filtering gain, and CN(.) is the finite-dimensional approximation of the output operator.

Define

DRc,N(ĉN) =

(
∂Rc,N(cN ,ϕM)

∂cN
+
∂Rc,N(cN ,ϕM)

∂ϕM

∂ϕM(cN , I(t))

∂cN
) |ĉN ,

and

DCN(ĉN) =
∂CN(ϕN , I(t))

∂ϕN

∂ϕN(cN , I(t))

∂cN
|ĉN .

The Riccati equation is defined as

dPN

dt
= (−AN +DRc,N(ĉN))PN + PN(−AN +DRc,N(ĉN))∗

− β(t)PNDC
∗
N(ĉN)R−1DCN(ĉN)PN +WN(t)

(5.51)

where β(t) : R → R+ is a continuous function and WN(t) is a positive matrix. The

observer gain is

KN(t) = β(t)PNDC
∗
N(ĉN)R−1. (5.52)

The number of elements are chosen to be N1 = 4 in the separator domain and N2 = 4

along the positive electrode. In the case where the FEM is used to approximate the

system, the solid concentration in every particle bin is approximated by linear splines.

The number of elements are N3 = 5 along every particle. The same number of eigen-

functions are used when the eigenfunctions are used to approximate the equations. The

parameters of the saturation functions sat(.) and saty(.) are defined in Table 5.2. The

simulation parameters are

PN(0) = 0, WN(t) = 0.2 ∗ I,
β(t) = 1, R−1 = diag(20, 0.5).
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Other model parameters are given in Table 5.1. Note that the augmented output (5.49)

is only active when the voltage estimation error is larger than 0.05(V ).

An approximate steady state SOC is used to initialize the observer. This initial SOC

approximation is obtained using conservation of charge:∫ lsep+lcat

lsep

∑
akik(c,ϕ) = I(t). (5.53)

In order to find the approximate SOC, ϕ2 = 0 as well as ϕ1 and yk are considered to be

constant over the particle bins and along the electrode. In order to initialize the observer,

for a short period after the charging/discharging cycle starts, the measurement value of

the second component of the output (5.49) is calculated from the algebraic equation

(5.53). In the simulation results of this section, this period is set to be 50(s).

The SOC estimation is compared to the exact measurement. The exact measurement

is obtained by precisely integrating the current in time as an indication of the consumed

charge also called the coulomb counting measurement. Two types of SOC are considered

in the simulations. The bulk SOC is defined as

SOC =
θb − θ0

θ100 − θ0

where

θb =
3
∑

k εk
∫ Rk

0
r2
kck+1(rk, x, t)drk

cs,max
∑

k εsR
3
k

and θ0 and θ100 respectively represent the value of θb corresponding to the minimum and

maximum capacity of the cell. The surface SOC is defined as

SOC =
θs − θ0

θ100 − θ0

where

θs =
2
∑

k εk
∫ Rk

0
rkck+1(rk, x, t)drk

cs,max
∑

k εsR
2
k

.

The bulk SOC indicates the amount of total charge remained in the cell and is comparable

with the coulomb counting; the surface SOC represents the available charge on the the

surface of the particle bins, which are involved in the electrochemical reactions.

The simulation results for a time-varying current for the system being approximated

by the FEM (Figure 5.5) are shown in Figure 5.6 and 5.7 for the output estimation and in

Figure 5.8 and 5.9 for the SOC estimation. These figures represents the charging process

of the cell followed by discharging process. According to these figures, the observer
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Figure 5.5: Input current to the cell in a charge/discharge course

output follows the measurements with good precision. It is observed that the observer

recovers the initial SOC, and the bulk SOC estimation error is less than 6%.

Given the same observer parameters, the simulation results when the solid concen-

tration is approximated using eigenfunctions (5.46) for a course of charging/discharging

(Figure 5.5) are shown in Figures 5.10-5.13. These figures represents the charging process

of the cell followed by discharging process. These figures indicate the same performance

as before; the observer output follows the measurements with good precision. It is ob-

served that the observer recovers the initial SOC, and the bulk SOC estimation error is

less than 6%.

The simulation results show that the system approximation via both FEM and eigen-

function based approaches lead to similar results. However, in Theorem 3.2.13, employ-

ing eigenfunctions is proved to lead to a convergent sequence of the approximate solu-

tions. The well-posedness of the electrochemical equations (5.30) for a constant diffusion

N (.) = I is given by Corollary 3.2.11. Similarly, the existence of a solution to (5.30)

and a convergence subsequence of the approximate solutions for a nonlinear diffusion are

shown by Corollary 5.3.3. Therefore, in the next section, the eigenfunctions are used to

approximate the system.

5.6 Observer design for non-constant diffusion

In this section, the observer design for the approximation of (5.30) with a non-constant

diffusion coefficient is considered. The observer dynamics has the same structure as the
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Figure 5.6: Comparison between the observation output and the measurements in a

charging/discharging cycle for a constant diffusion model. The system is approximated

via the FEM with N1 = 4, N2 = 4, and N3 = 5. It is observed that the output estimate

tracks the measurements.

previous section;

dĉN
dt

+ANNN(ĉN) = Rc,N(ĉN , ϕ̂M) + FNu(t) +KN(t)(y −CN(ϕ̂M , I(t))),

dϕ̂M
dt

=
∂R̄ϕ,M(ĉN , I(t))

∂ĉN

dĉN
dt

+
∂R̄ϕ,M(ĉN , I(t))

∂I

dI(t)

dt

− ΓN (ϕ̂M − R̄ϕ,M(ĉN , I(t)))

(5.54)

where NN(.) is the approximation of N (.) through the Galerkin method when eigen-

functions (5.46) are used for approximating solid concentration. Define

DNN(ĉN) =
∂NN(c̃N)

∂c̃N
|(ĉN ) . (5.55)

The Riccati equation takes the form

dPN

dt
= (−ANDNN(ĉN) +DRc,N(ĉN))PN + PN(−ANDNN(ĉN) +DRc,N(ĉN))∗

− β(t)PNDC
∗
N(ĉN)R−1DCN(ĉN)PN +WN(t),

(5.56)

and the filtering gain is defined by (5.52).

The observer parameters are chosen to be the same as those used for the constant

diffusion model. The simulation results of the observer (5.54) are shown in Figures 5.14-

5.17. These figures represents the charging process of the cell followed by discharging

process. It is observed that the SOC estimation error is less than 6%. Moreover, the
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Figure 5.7: Cell voltage estimation error in a charging/discharging cycle for a constant

diffusion model. The system is approximated via the FEM with N1 = 4, N2 = 4, and

N3 = 5. It is observed that the estimation error is small.

output estimation error is small, but the output does not exactly match the experimental

data. Although the diffusion coefficient is now nonlinear, the observer has the same

performance as the one with constant diffusion.

The mismatch between model output and experimental data is partly due to the

dependency of the system output on the OCP term and this term being hysteretic and

rate dependent. The hysteresis of the OCP term can not be efficiently identified by

a mathematical equation since it depends on many enviornmental conditions including

current rate.

A potential way of dealing with the model uncertainties is to include them in the

output voltage model as disturbances coming from an unknown input. Next, the modified

SMO as introduced in Chapter 2 is suggested for the observer’s dynamics. However, the

system does not satisfy the required conditions, Assumption 2.3.8 and 2.3.13, and the

simulation results were not satisfactory.

An alternative way of including the effect of the hysteresis in the OCP term is to use

a parametric representation for the OCP as a function of the solid concentration. For

every set of parameters, a different curve emerges passing through a point assigned to the

current state of the system. At every time step, these parameters need to be identified

such that the electrochemical model’s output matches the experimental data.

An adaptive extended Kalman filter is designed to both identify the OCP parameters

and estimate the state vector. The observer dynamics allows the OCP term’s represen-

tation to vary in a range to produce a proper fit to the measurements. Let the OCP
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Figure 5.8: Comparison between the coulomb counting as the measurement and the

SOC estimated values in a charging/discharging cycle for a constant diffusion model.

The system is approximated via the FEM with N1 = 4, N2 = 4, and N3 = 5. The

estimation error is observed to be less than 6%. The initial SOC is 0.1 for charging

process and 0.9 for discharging process.

term take the parametric form U(c,θ), and (5.23) be written as

ϕ = R̄ϕ(c,θ, I(t)) (5.57)

where θ is the parameter vector involved in the OCP representation.

The fully dynamical form (5.30) can be rewritten as

∂c

∂t
+ AN (c) = Rc(c,ϕ,θ) + Fu(t)

∂ϕ

∂t
= DcR̄ϕ(c,θ, I(t))

∂c

∂t
+
∂R̄ϕ(c,θ, I(t))

∂I

dI(t)

dt

− Γ(ϕ− R̄ϕ(c,θ, I(t))) +
∂R̄ϕ(c,θ, I(t))

∂θ
ω(t)

dθ

dt
= ω(t)

(5.58)

where ω(t) is a zero-mean noise. The last equation of (5.58) represents the fact that the

dynamics of the parameter variation is much smaller than the system’s dynamics but

not zero. This setting is frequently used when adaptation is involved [24].
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Figure 5.9: Error between the coulomb counting as the measurement and the SOC

estimated values in a charging/discharging cycle for a constant diffusion model. The

system is approximated via the FEM with N1 = 4, N2 = 4, and N3 = 5. The estimation

error is observed to be less than 6%. The estimation error is observed to be less than

6%. The initial SOC is 0.1 for charging process and 0.9 for discharging process.

The finite-dimensional approximation of the system is

dcN
dt

+ANNN(cN) = Rc,N(cN ,ϕM ,θ) + FNu(t) (5.59)

dϕM
dt

=
∂R̄ϕ,M(cN ,θ, I(t))

∂cN

dcN
dt

+
∂R̄ϕ,M(cN ,θ, I(t))

∂I

dI(t)

dt

− ΓN (ϕM − R̄ϕ,M(cN ,θ, I(t))) +
∂R̄ϕ,M(cN ,θ, I(t))

∂θ
ω(t) (5.60)

dθ

dt
= ω(t) (5.61)

where the nonlinear functionsNN(.),Rc,N(.) and R̄ϕ,M(.) are found through the Galerkin

approximation of (5.58).

In the next step, the representation (5.59)-(5.61) are employed to design an adaptive

observer. The observer dynamics is given as

dĉN
dt

+ANNN(ĉN) = Rc,N(ĉN , ϕ̂M , θ̂) + FNI(t) +Kc(y −CN(ĉN)) (5.62)

dϕ̂M
dt

= DcR̄ϕ,M(ĉN , θ̂, I(t))
∂ĉN
dt

+
∂R̄ϕ,M(ĉN , θ̂, I(t))

∂I

dI(t)

dt

− ΓN (ϕ̂M − R̄ϕ,M(ĉN , θ̂, I(t))) (5.63)

dθ̂

dt
= Kθ(y −CN(ĉN)). (5.64)
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Figure 5.10: Comparison between the observation output and the measurements in a

charging/discharging cycle for a constant diffusion model. The system is approximated

using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5. It is observed that the output

estimate tracks the measurements.

Define

DRN(ĉN , θ̂) = (
∂Rc,N(c̃N , ϕ̃M ,θ)

∂(c̃N ,θ)
+
∂Rc,N(c̃N , ϕ̃M ,θ)

∂ϕ̃M

∂R̄ϕ,M(c̃N ,θ, I(t))

∂(c̃N ,θ)
) |(ĉN ,θ̂),

(5.65)

and

DCN(ĉN , θ̂)) =
∂CN(ϕ̃N , I(t))

∂ϕ̃N

∂R̄ϕ,M(c̃N ,θ, I(t))

∂(c̃N ,θ)
|(ĉN ,θ̂) . (5.66)

Define β(t) > µ1 > 0 a continuous function, Q0 a positive definite matrix and WN a

positive matrix. Let PN satisfy the Riccati equation

dPN

dt
= (−ANDNN(ĉN) +DRN(ĉN))PN + PN(−ANDNN(ĉN) +DRN(ĉN))∗

− β(t)PNDC
∗
N(ĉN)Q0DCN(ĉN)PN +WN .

(5.67)

The observer gain is defined by

K = [KT
c ,Kθ]

T = β(t)PNC
∗
N(ĉN)Q0. (5.68)

For the observer design, the OCP term is set to be time-dependent. In other words,

the OCP term is assumed to have the parametric form

U(yk,s) = θ1 + θ2yk,s + θ3 exp(−30yk,s) + θ exp(−200(1− yk,s))
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Figure 5.11: Cell voltage estimation error in a charging/discharging cycle for a constant

diffusion model. The system is approximated using eigenfunctions with N1 = 4, N2 = 4,

and N3 = 5. It is observed that the estimation error is small.

for charging cycle, and

U(yk,s) = θ1 + θ2yk,s + θ3 exp(−210yk,s) + θ4 exp(−35(1− yk,s))

for discharging cycle, where θ = [θ1, θ2, θ3, θ4]T is the parameter vector. The filtering

matrices are set to

β(t) = 1, Q0 = diag(50, 0.5), WN = diag(0.2I6×6, 0.1I45×45, 2I4×4)

with the initial conditions

PN(0) = 0,

and

θ(0) =

{
[3.4510,−9e− 3, 0.6678,−0.5]T in charge

[3.4077,−2.0269e− 2, 0.5,−0.9]T in discharge
.

Other observation parameters are given in Table 5.2. Note that the augmented output

(5.49) is only active when the voltage estimation error is larger than 0.05(V ).

Initialization of the observer is similar to what was introduced in the previous sec-

tion. The simulation results for the charging/discharging course are shown in Figure

5.18-5.21. These figures represents the charging process of the cell followed by discharg-

ing process. According to these figures, the observer output follows the measurements

precisely. Furthermore, It is observed that the observer recovers the initial SOC, and
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Figure 5.12: Comparison between the coulomb counting as the measurement and the

SOC estimated values in a charging/discharging cycle for a constant diffusion model.

The system is approximated using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5.

The estimation error is observed to be less than 6%. The estimation error is observed

to be less than 6%. The initial SOC is 0.1 for charging process and 0.9 for discharging

process.

the bulk SOC estimation error is less than 4%. Compared to the results of the observer

(5.54), Figures 5.14-5.17, both SOC estimation error and specially the output estimation

error are decreased.
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Figure 5.13: Error between coulomb counting as the measurement and the SOC estimated

values in a charging/discharging cycle for a constant diffusion model. The system is

approximated using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5. The estimation

error is observed to be less than 6%. The estimation error is observed to be less than

6%. The initial SOC is 0.1 for charging process and 0.9 for discharging process.
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Figure 5.14: Comparison between the observation output and the measurements in a

charging/discharging cycle for a nonlinear diffusion model. The system is approximated

using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5. It is observed that the output

estimate tracks the measurements.
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Figure 5.15: Cell voltage estimation error in a charging/discharging cycle for a nonlinear

diffusion model. The system is approximated using eigenfunctions with N1 = 4, N2 = 4,

and N3 = 5. It is observed that the estimation error is small.
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Figure 5.16: Comparison between the coulomb counting as the measurement and the

SOC estimated values in a charging/discharging cycle for a nonlinear diffusion model.

The system is approximated using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5.

The estimation error is observed to be less than 6%. The initial SOC is 0.1 for charging

process and 0.9 for discharging process.
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Figure 5.17: Error between the coulomb counting as the measurement and the SOC

estimated values in a charging/discharging cycle for a nonlinear diffusion model. The

system is approximated using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5. The

estimation error is observed to be less than 6%. The initial SOC is 0.1 for charging

process and 0.9 for discharging process.
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Figure 5.18: Comparison between the adaptive observation output and the measure-

ments in a charging/discharging cycle for a nonlinear diffusion model. The system is

approximated using eigenfunctions with N1 = 4, N2 = 4, and N3 = 5. It is observed

that the output estimate precisely tracks the measurements.
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Figure 5.19: Cell voltage estimation error from the adaptive observer in a charg-

ing/discharging cycle for a nonlinear diffusion model. The system is approximated using

eigenfunctions with N1 = 4, N2 = 4, and N3 = 5. It is observed that the estimation

error is very small.
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Figure 5.20: Comparison between the coulomb counting as the measurement and the SOC

estimated values via the adaptive observer in a charging/discharging cycle for a nonlinear

diffusion model. The system is approximated using eigenfunctions with N1 = 4, N2 = 4,

and N3 = 5. The estimation error is observed to be less than 4%. The initial SOC is 0.1

for charging process and 0.9 for discharging process.
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Figure 5.21: Error between coulomb counting as the measurement and the SOC estimated

values via the adaptive observer in a charging/discharging cycle for a nonlinear diffusion

model. The system is approximated using eigenfunctions with N1 = 4, N2 = 4, and

N3 = 5. The estimation error is observed to be less than 4%. The initial SOC is 0.1 for

charging process and 0.9 for discharging process.
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Chapter 6

Conclusion and future work

The main objective of this thesis was to design a robust observer for SOC estimation of

a lithium-ion cell via electrochemical equations. The thesis was divided into four major

parts.

Comparing different finite-dimensional observation techniques for different types of

distributed parameter systems was conducted first. According to the comparison studies,

the EKF presents efficient results even in the existence of external disturbances. It was

observed from simulation results that the estimation error decreases as the order of

approximation increases for diffusion equations. These results motivated the next part

of this research.

It was shown in Chapter 3 that for the system approximation with a finite-dimensional

version, the convergence of the approximate equations can be proved. Two general classes

of the systems were considered. It was proved that employing the eigenfunctions of a

linear operator involved in the system’s representation leads to convergent approximate

solutions. The linear operator was assumed to satisfy Assumption 3.2.6.

As future work, the result of Chapter 3 could be extended to wider classes of systems.

One extension is to the systems of the form

∂2z

∂t2
+ Az + Rd(

∂z

∂t
, t) =

R(t, z) + Fu(t)

(6.1)

where z ∈ H; the linear operator A : D(A) ∈ H → H, F : Rq → H, the nonlinear

operator R(., t) : H → H, and the input signal u ∈ Rq are defined as in Chapter 3. The

nonlinear operator Rd(., t) : V → H represents damping.

Similar to Chapter 3, the eigenfunctions vi of A can be used to approximate the
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system. Let the state z be approximated by zN . The orthonormal projection is defined

by

zN = PNz =
N∑
i=1

zivi.

The system is approximated by

∂2zN
∂t2

+ ANzN + Rd,N(
∂zN
∂t

, t) =

RN(t, zN) + FNu(t)

where

AN = PNA,
RN(.) = PNR(.),

FN = PNF ,

Rd,N(
∂zN
∂t

, t) = PNRd(
∂z

∂t
, t).

Defining the required assumptions on the system’s dynamics such that the approximate

solutions satisfy a convergence in some sense is a part of future work.

The observer dynamics considered in this thesis was a copy of a finite-dimensional ap-

proximation of the system and a filtering gain. It was proved that the finite-dimensional

approximation of the system converges to the original system. An important question

that needs to be answered is whether the approximate observer dynamics converges.

A more accurate way of observer design for infinite-dimensional systems is to allow

the observer dynamics be a copy of the system’s original representation and a filtering

gain. Let the observer state be denoted by ẑ. The observer dynamics for the form (3.1)

is introduced by
∂ẑ

∂t
+ Aẑ = R(ẑ) + Fu(t) + K(t)C(z − ẑ) (6.2)

where K(t) is a filtering gain. The initial condition is

ẑ(0) = ẑ0.

A potential way of defining an observer gain K(t) is employing optimal filtering design.

For a finite-dimensional system, EKF is suggested as a suboptimal way of constructing

the filtering gain. The idea is extended here to a class of infinite-dimensional systems.

Define DR(.) : H → L(H) by

DR(ẑ) =
∂R(z)

∂z
|z=ẑ . (6.3)
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Let T (t) be the C0-semigroup generated by −A + αI. The parameter α > 0 is added

to provide a prescribed estimation error convergence rate.

Given a positive bounded linear operator P 0, a nonnegative uniformly bounded linear

operator W (t), a positive uniformly bounded linear operator R(t) such that

(R(t)w,w)H ≥ µ0‖w‖2
X

for µ0 > 0, and a continuous function β(t) ≥ µ1 > 0, P (t) : H → X is the solution to

the following coupled equations

P (t)w = Up(t, 0)P 0U∗p(t, 0)w +

∫ t

0

Up(t, s)(W (s)

+ β(s)P (s)C∗R(t)−1CP (s))U∗p(t, s)wds,
(6.4)

Up(t, s) = U(t, s)

−
∫ t

s

U(t, r)β(r)P (r)C∗R(t)−1CUp(r, s)dr,
(6.5)

U(t, s) = T (t− s) +

∫ t

s

T (t− r)DR(ẑ(r))U(r, s)dr. (6.6)

The observer gain is defined as

K(t) = β(t)P (t)C∗R(t)−1. (6.7)

The equation (6.4) is a generalized Riccati equation as the linear operator DR(ẑ) is a

possibly nonlinear function of the observer state ẑ.

For general linear systems, the well-posedness of the Riccati equation is studied in

literature [152]; however, the results are not valid for nonlinear systems. Proving the

well-posedness and local exponential convergence of the developed Riccati equation (6.4)

interconnected with the observer dynamics (6.2) are some open problems. Furthermore,

developing the same observer for a system of the form (6.1) is also be considered as the

future plan.

A future project is to prove that the observer dynamics (6.2) coupled with the Riccati

equation (6.4) and the linear integral equations (6.6) and (6.5) are well-posed for a specific

range of β(t) ≥ µ1 > 0. Similarly, the well-posednesss and convergence of the observer

for the system of the form (6.1) needs to be shown.

In the third part, the electrochemical equations governing the cell dynamics were

introduced. It was shown that the system’s dynamics contribute in an important phe-
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nomenon in the output voltage called hysteresis. The existence of hysteresis, path depen-

dency of the system’s response, indicates that not every simplified model is appropriate

for the observer design.

Finally, after simplifications, the battery equations were transformed into a state

space representation studied in Chapter 3; next, an adaptive EKF observer was con-

structed for a low-order model. At the first step, the system’s representation was re-

placed by a fully dynamic representation; then, a reduced order model was developed via

the eigenfunctions of a linear operator involved in the system’s representation. It was

proved that as the dimension of the reduced order model increases, a subsequence of the

approximate solutions converges to the solution of the cell’s original equations.

The simulation time of solving the low-order fully dynamical model for different

charging and discharging rates was much smaller than the real experiment duration.

However, the numerical algorithm used to solve the equations needs to be improved such

that it can be used by the battery management system in a real-time application.

The adaptive observer was developed to provide enough accuracy and robustness to

the modeling uncertainties. In the observer’s dynamics, the parameters of the OCP

term, which is an important part of the model, was allowed to change in time. In

this way, the effect of the hysteresis can be included even when the OCP has a single-

value empirical representation. Compared to experimental data, the simulation results

confirmed the performance of the proposed observer. The simulation results also show

that the adaptive EKF developed in this research works better than the standard one.

The designed observer offers some advantages over the methods introduced in the

literature. First, it is designed via electrochemical equations involving a minimum ap-

proximation; thus more accuracy can be provided. Furthermore, the observer can tune

the parameters of the OCP such that the model output matches the experimental data.

In other words, the observer is robust to the uncertainties involved in the OCP modeling

including the effect of hysteresis. Finally, including environmental effects in the employed

physic-based electrochemical equations can be achieved easily.

Last but not least, adding the environmental effects including the temperature and

aging will be facilitated by the fact that the electrochemical model is physical-based

in contrast to equivalent circuit models. Furthermore, the observer was designed for a

half-cell; the observer design for a full cell will be studied in future.
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Appendix A

Additional theorem

Theorem A.0.1. Assume that the nonlinear function f(z) given in equation (2.1) is

second-order differentiable and generates the evolution operator (2.58) which is also

second-order differentiable with respect to the vector zk. Let the linearization of f(z)

be defined by

Az̄ =
∂f

∂z
|z̄

for some z̄ ∈ Rn. Furthermore, let the linearization of sampled-time model be defined as

F z̄(∆t, z̄, u[tk,tk+1]) =
∂χ

∂z
|(∆t,z̄,u[tk,tk+1],0) .

The operator F z̄k is the evolution operator assigned to the linear operator Az̄ when the

disturbance term is set to zero. In addition,

∂F z̄
∂u[tk,tk+1]

= 0.

Proof: Let z(t) be a solution to the system dynamical equation (2.1); the time differ-

entiation of this signal at time t can be defined as

dz

dt
= lim

∆t→0

z(t+ ∆t)− z(t)

∆t
. (A.1)

Now, by substituting equation (2.58) and (2.1) into (A.1) and setting ξ(t) = 0, it is

obtained that

f(z(t)) +Bu = lim
∆t→0

χ(∆t, z(t), u[t,t+∆t], 0)− z(t)

∆t
. (A.2)

The expansion of the nonlinear function f(z) around the arbitrary vector z̄ reads as

f(z(t)) =f(z̄(t)) +Az̄(z(t)− z̄(t))+∑
i,j

∂

∂zi

∂f

∂zj
|ž1 (zi(t)− z̄i(t))(zj(t)− z̄j(t))

(A.3)
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ž1(t) ∈ [z̄(t), z(t)] for every t. Furthermore, the evolution operator can also be expanded

around the arbitrary vector z̄ as

χ(∆t, z(t), u[t,t+∆t], 0) =

χ(∆t, z̄(t), u[t,t+∆t], 0)+

F z̄(t)(∆t, z̄(t), u[t,t+∆t])(z(t)− z̄(t))+∑
i,j

∂

∂zi

∂χ

∂zj
|(∆t,ž2,u[t,t+∆t],0) (zi(t)− z̄i(t))(zj(t)− z̄j(t))

(A.4)

where ž2(t) ∈ [z̄(t), z(t)] for every t.

Substituting equations (A.3) and (A.4) into (A.2) and employing equation (A.2) for

z = z̄ result in

Az̄(z(t)− z̄(t))+∑
i,j

∂

∂zi

∂f

∂zj
|ž1 (zi(t)− z̄i(t))(zj(t)− z̄j(t)) =

lim
∆t→0

F z̄(t)(∆t, z̄(t), u[t,t+∆t])(z(t)− z̄(t))− (z(t)− z̄(t))

∆t
+

lim
∆t→0

∑
i,j

∂
∂zi

∂χ
∂zj
|(∆t,ž2,u[t,t+∆t],0) (zi(t)− z̄i(t))(zj(t)− z̄j(t))

∆t
.

(A.5)

Since equation (A.5) is satisfied for all z, z̄ ∈ C1([0, T ],Rn), it can be concluded that

Az̄(z(t)− z̄(t)) =

lim
∆t→0

F z̄(t)(∆t, z̄(t))(z(t)− z̄(t))− (z(t)− z̄(t))

∆t

which simply indicate that Az̄(z(t)− z̄(t)) generates F z̄(t)(∆t, z̄(t))(z(t)− z̄(t)) and is

independent of the input vector u(t). �
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Appendix B

Compactness theorem

Theorem B.0.2. [153, Theorem III.2.1]

Let H1 and H2 be two Banach spaces such that

H2 ⊂ H1, the injection being compact.

Let J be a set of functions in L1(R,H2) ∩ Lp(R,H1) for p > 1 satisfying

J is bounded inL1(R,H2) andLp(R,H1)∫ ∞
−∞
‖J(s+ t)− J(s)ds‖2

H1
→ 0 as t→ 0

uniformly for J ∈ J . Furthermore, suppose that the support of functions J ∈ J is in a

fixed compact set of R. Then, the set J is relatively compact in Lp(R;H1).
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