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Abstract

Research has shown that mortgage default is closely related to house prices. When
house prices fall the borrower has an incentive to default. Since default incurs substantial
cost to the lender, the borrower and many other market participants, as well as the society,
house price is a risk in a mortgage contract. This was clearly demonstrated during the 2007-
09 financial crisis. In this thesis I discuss some (potential) measures to manage mortgage
default risk arising from low house prices.

Chapter 1 is on mortgage insurance. Mortgage insurance is commonly used by lenders
to transfer mortgage default risk to an insurer. After a brief introduction of the mortgage
and mortgage insurance markets in US and Canada, I specify a simple mortgage insurance
contract and a multiple state model for mortgage termination. The contract is then priced
under the model.

I explore the possibility of hedging house price risk in Chapter 2. If we assume a perfect
market where house price risk can be traded exists, and a mortgage contract is a contingent
claim on house prices, then the classic delta hedging is useful in hedging house price risk.

In chapter 3 I discuss an innovative type of mortgage contract – property index-linked
mortgage. The purpose of this contract design is to reduce the borrower’s propensity to
default when house price declines. In particular, when house price declines, the mortgage
balance and payment are reduced. I analyze this contract from the borrower’s perspective
and find that such contracts are effective in reducing default incentives and as a result, the
lender may also be better off due to lower deadweight default cost.

The last chapter focuses on house price basis risk. House price basis risk refers to the
situation where the value of an individual property appreciates differently from the index.
This may lead to problems such as suboptimal hedging, underpricing and lower efficiency
for financial products involving house price index. In this chapter I develop a basis risk
model that can be used to simulate reasonable individual house prices for a given index.
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Chapter 1

Mortgage Insurance

In this chapter, we introduce the basic concepts of mortgage and mortgage insurance. We
also introduce a model for mortgage termination that can be used to price a mortgage
insurance contracts. The concepts and model provide a platform for further development
of mortgage default risk management in later chapters. We start with strong assumptions
and simple models to demonstrate the basic principle behind mortgage insurance contract
evaluation. In practice more elaborate models would be required. Since we do not have
access to mortgage insurance data, we consider a representative contract and use parameter
values from the actuarial review to the mutual mortgage insurance fund operated by Federal
Housing Administration.

The first section introduces the US and Canadian mortgage and mortgage insurance
markets, including their sizes, typical types of contracts, regulations and recent perfor-
mance. A simple mortgage insurance contract is specified in section 2. In section 3 we
propose a continuous-time semi-Markov multiple state model for mortgage termination.
We derive transition probabilities and discuss relevant risk factors. Section 4 presents the
actuarial pricing formulas for a mortgage insurance contract written on a newly originated
loan. Numerical examples are given in section 5. Section 6 concludes.

1.1 Introduction

A residential property could be the largest single expense over one’s life. Most people
cannot afford it when they need one without external financial support. One of the most
common ways to finance a residential property is through a mortgage loan. In a typical
residential mortgage loan, the lender provides the borrower with the additional amount

1



of money needed to purchase a property after the borrower makes a down payment. The
property becomes the collateral that is subject to the lender’s acquisition if the borrower
fails to meet repayment commitments. After loan origination, the borrower repays the
loan according to a pre-agreed schedule until the outstanding balance reduces to zero.
The repayment schedule depends on factors including the mortgage contract rate and the
amortization term.

There are two risks the lender faces after loan origination. One is default risk and the
other is prepayment risk. During the repayment period the borrower may default on the
loan by stopping making payments or prepay the loan by repaying the full amount of the
outstanding balance before maturity. The reasons behind could be life events happening
to the borrower such as unemployment, or economic considerations such as low house price
and low interest rate.

Default and prepayment are risks to the lender because they cause losses if the borrower
defaults when the collateral, i.e. the house, is worth less than the outstanding loan balance,
or if the borrower prepays when the market interest rate is lower than the contract rate.
On the other side, the borrower is exposed to the risk of losing the property and the equity
invested in it if timely payments cannot be arranged. Despite these risks, mortgage loans
are widely used in many developed countries including the US, the UK, Canada, Australia,
France, Germany, Japan, etc. In this thesis we focus on the default risk caused by low
house prices, and how this risk can be managed.

1.1.1 Mortgage Markets in the US and Canada

Both the US and Canada have active housing and mortgage markets. By the end of 2014,
the total value of real estate owned by households in the US was 20.7 trillion, of which
9.4 trillion consisted of mortgage loans.1 More than 7000 institutions reported mortgage
lending activities in 2014 and about 6 million loans were originated.2 The Canadian market
is relatively small compared to the US market. The residential mortgage credit outstanding
was 1.2 trillion in May 2014, and 75% of them were held by chartered banks.3

The two markets are quite different in lending standards and mortgage contracts. In
the US, the long-term fixed-rate mortgage (FRM) is the most popular mortgage contract.4

Such a contract locks in an interest rate and amortizes the initial loan amount over 15

1Source: Federal Reserve Z.1 Financial Accounts of the United States Second Quarter 2015, Table
B.101 Balance Sheet of Households and Nonprofit Organizations(1).

2Source: Federal Reserve Bulletin, The 2014 Home Mortgage Disclosure Act Data.
3Source: Canadian Housing Observer 2014.
4See for example McDonald and Thornton[63] and deRitis[32].
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or 30 years so that the borrower makes equal monthly payments. Another major type
of mortgage contract in the US market is the adjustable-rate mortgage (ARM). In this
contract, the amortization rate varies periodically (from daily to annually) according to
some index, such as the one-year LIBOR. The ARM borrower tends to refinance the loan
into a FRM when mortgage rate falls in order to reduce payments and eliminate interest
rate adjustment. A hybrid ARM is a combination of FRM and ARM. It has an initial fixed-
rate period before converting to variable rates. These contracts were attractive before the
2007-09 financial crisis: 32% of mortgages originated between 1999 and 2006 were hybrid
mortgages, and they were used heavily by subprime borrowers.5

As highlighted in Allen[1], “The Canadian mortgage market is relatively simple and
conservative, particularly when compared with its U.S. counterpart.” The majority of
Canadian residential mortgages are rollover loans amortized over 25 years with a contract
term of 5 years. Interest rates are renegotiable every 5 years. The reasons Canadians
prefer a short contract term are discussed in Kiff[58]. Variable-rate mortgages are also
available in Canada. A 2014 survey showed that about 20% of borrowers chose variable-
rate mortgages.6

Canadian and US lenders take different approaches to manage default and prepayment
risks. Prepayment affects the lender’s cash flow and reduces the interest to be received if
the market rate at the time of prepayment is below the contract rate. Canadian lenders
set explicit prepayment penalties, which can be the higher of interest lost and three month
interest plus a fixed reinvestment fee.7 FRMs in the US typically do not carry explicit pre-
payment penalties. The cumulative prepayment rate by 2014 for FHA 30-year fixed-rate
mortgages originated in 2009 was 42%.8 The US ARMs may have prepayment penalties
of several months’ interest in the first 3 or 5 years. Although FRMs are free prepayable,
points charged at loan origination implicitly offset this advantage. Kiff[58] made a numer-
ical comparison of loan origination cost in the US and Canada, indicating that the extra
refinancing cost paid by the US borrowers may exceed the prepayment penalty paid by
Canadian borrowers.

The 2007-09 credit crisis has focused people’s attention on mortgage default risk. There
are many reasons for borrowers to walk away from the debt. For example, borrowers are
not able to make timely payments because of unexpected job loss/illness or ARM interest
rate resetting. Significant property value depreciation also motivates a borrower to stop
making payments since the property is worth less than what the borrower owes. Although

5Source: Barth et al.[9].
6Source: Canadian Housing Observer 2014.
7Kiff[58] and Lea[60].
8Source: Actuarial Review for FHA MMI Fund Forward Loans for FY2014 [50].
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collateralized by a property, lenders could lose 30-60% of the loan balance following a
foreclosure.

Lenders and mortgage investors are taking active measures to mitigate default risk.
Among those measures, setting high lending standards is effective in the loan origination
phase. The two commonly used indicators of default risk are initial LTV and credit score.
High LTV loans, also called high ratio loans, are risky because borrowers do not put much
equity in the property. A decline in property value easily leads to negative equity. In the
US, lenders usually require the borrower to purchase mortgage insurance (MI) if LTV is
above 80%, while in Canada this requirement is mandatory by law. As a result, over 50%
of the mortgages held by Canadian financial institutions are insured. MI will be discussed
in detail shortly.

FICO score is a commonly used credit score. In 2006, 45% of subprime borrowers
had scores below 620 and 93% of prime borrowers had scores above 620.9 In 2014, the
average credit score were 680 for FHA borrowers,10 and 731 for CMHC borrowers.11 This
indicated that the FHA loan portfolio faced greater credit risk. Besides LTV and credit
score, there are other risk indicators such as debt-to-income ratio, loan-to-income ratio,
type of mortgage contract, interest rate, loan purpose, source of down payment, etc.

Based on these indicators, the lender determines whether the borrower, or the corre-
sponding loan, is prime or subprime. A prime loan typically has a lower contract rate. In
the US, subprime lending constituted about 20% of total loan originations during 2004-2006
but only about 1% in mid 2008.12 A loan is delinquent if the borrower has missed a few
payments but not defaulted. In the first quarter of 2014, the average 90-day delinquency
rates for all mortgages in the US and Canada were 2.39% and 0.31%.13 Delinquency rates
differ substantially between prime and subprime loans in the US during the financial crisis.
They are 2.23% for prime loans and 17.85% for subprime loans in 2008.14 The Financial
Stability Board attributed the low delinquency rates experienced by Canadian lenders to
“conservative loan underwriting standards”.15 Lea[60] arrived at a similar conclusion that
“the lack of subprime lending and less use of limited or no documentation lending were
major factors” of low delinquencies. This is true in Canada as the subprime market is less

9Source: Barth et al.[9]. Each lender has its own definition for prime and subprime borrower. FICO
score is likely to be one criterion but may not be the only one.

10Source: Annual Report to Congress Regarding the Financial Status of the Mutual Mortgage Insurance
Fund Fiscal Year 2014.

11Source: CMHC Mortgage Loan Insurance Business Supplement 2014.
12Source: Barth et al.[9].
13Source: Canadian Housing Observer 2014.
14Source: Barth et al.[9].
15Canadian Housing Observer 2012.
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than 5% and Alt-A16 market is also small.

1.1.2 Mortgage Insurance Markets in the US and Canada

Mortgage Guaranty Insurance Model Act[68] defines mortgage insurance(MI) to be “The
insurance against financial loss by reason of nonpayment of principal, interest or other sums
agreed to be paid under the terms of any note or bond or other evidence of indebtedness
secured by a mortgage, ...”. An MI policy is a contract between the insurer and the
lender of a mortgage loan, specifying how the insurer compensates the lender should the
borrower default on the loan. The insurance premium is paid by the borrower and may
be capitalized into the mortgage loan. In North America, MI plays an important role in
stimulating and expanding mortgage markets. It lowers the down payment requirement
and the mortgage rate the lender charges, since default risk is partially transferred to
the insurer. As a result, borrowers with MI can afford the down payment and monthly
payments that otherwise cannot and lenders are more willing to make investment in real
estate markets. The regulations governing mortgage insurers in Canada and the US are
very different.

There is one public and two private mortgage insurers in Canada. The federal crown
corporation Canada Mortgage and Housing Corporation (CMHC) has a market share of
about 50%, and the other two (Genworth Canada and Canada Guaranty) share the rest.
All three insurers are regulated by Office of the Superintendent of Financial Institutions
(OSFI) and backed by the Canadian government. MI in Canada is mandatory for all
mortgages with LTV above 80%. The insurance premium is charged upfront and may vary
with initial LTV.

By the end of 2014, CMHC’s total insurance-in-force was 543 billion.17 For non-portfolio
loans, 38% had initial LTV higher than 80%, and the average borrower equity was 34%.18

The national average of borrower equity was 54%. This large difference was expected since
high ratio loans were required to be insured. However the average delinquency rate was
0.52% – only 0.21% higher than the national average.

There are a few public and private mortgage insurers in the US. The largest government-
backed insurer is Federal Housing Administration (FHA), founded in 1934 with the objec-
tive to stabilize the real estate market after the Great Depression. FHA’s market share

16Alt-A loans are for borrowers who cannot provide required income documentation but have a relative
good credit score. Such loans are riskier than prime but less risky than subprime loans.

17Source: CMHC 2014 annual report. The legislative limit for total insurance-in-force is 600 billion.
18Source: CMHC Mortgage Loan Insurance Business Supplement 2014.
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declined from 18% in 2009 to 10% in 2014.19 Private insurers’ expansion and contraction
could be a main reason behind these fluctuations. Particularly during the 2008 credit
crisis, two major private insurers (PMI and RMIC) were under orders of supervision and
prohibited from writing new business.

FHA insures the full loan amount as Canadian insurers do but charges upfront plus
annual premiums. The premium rates depend on LTV, loan term and loan amount. For
example, the annual premium for a 15-year FRM with loan amount less than or equal to
625,500 and LTV 95% is 0.70% of outstanding loan balance and is charged throughout the
entire loan term. The upfront premium is 1.75% of initial loan amount for all mortgages.20

The FHA total insurance-in-force by the end of 2014 was 1155 billion and the 2014 FHA
actuarial review[52] estimated the economic value of its insurance fund to be about 6
billion.21

The US private mortgage insurers suffered great losses during the 2007-09 crisis. Default
rate was as high as 15% in 2010 and gross claims paid was 12.9 billion, but they were
only 5% and 2.8 billion in 2007.22 The US private mortgage insurers, unlike FHA, only
guarantee the lender 20-30% of the outstanding loan balance. The Model Act[68] suggested
a maximum coverage limit of 25%, which was normally accepted by state regulators. The
insurer usually has two options after receiving a claim: 1) pay the lender full amount
of outstanding loan balance and acquire the mortgaged property; or 2) pay the covered
amount and let the lender retain the property. The insurer needs to consider the market
value of the property, the loan balance and other reasonable expenses before making a
decision.

1.2 A Simple Mortgage Insurance Contract

In this scetion, we specify a simple mortgage insurance (MI) contract. See [39, 80] for more
detailed information.

The contract is based on a fully amortized FRM loan secured by a property. The
insurer guarantees the lender the full amount of loss caused by default, in exchange for an
insurance premium paid by the borrower.

19Source: Annual Report to Congress Regarding the Financial Status of the Mutual Mortgage Insurance
Fund Fiscal Year 2014.

20Source: US Department of Housing and Urban Development, Mortgagee Letter 2015-01 and its ap-
pendix published on January 9, 2015

21Economic value is defined by available capital resource less expected present value of future cash flows.
22Source: Mortgage Insurance Companies of America 2012-2013 Fact Book and Member Directory.
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• Term of the insruance contract: the insurance contract expires as soon as the mort-
gage loan is terminated.

• Premium: (i) a single upfront premium; or (ii) upfront plus annual premiums.

• If the loan is repaid in full, all the insurer’s obligation is discharged and no premium
is rebated. If the loan has defaulted, the insurer pays the lender at the time of default the
amount specified below.

• Claim amount: outstanding loan balance less the sale price of the property, plus
related expenses.

We need the following assumption to make claim calculation feasible at the moment of
default.

Assumption 1.1 (immediate claim payment). At the time of default, the lender
acquires and sells the mortgaged property; files a claim to the insurer; the claim is processed
by the insurer and the claim amount is calculated and paid. In short, there is no delay
between default and claim payment.23

The amount of claim depends on many factors. Suppose a loan defaults t years after
origination. Denote the claim amount by Lt, the property value by Ht, the outstanding
loan balance by Ut all at the time of default, then

Lt = g(t,Ht, Ut, · · · ).

The function g(·) is complex in general but we can impose a simple form. For example,
if we assume the default expense is a proportion ξt of the property value, and the only
recovery the lender can obtain is the proceeds from the sale of the property, then

Lt = max[Ut − (1− ξt)Ht, 0].

Alternatively, if the net loss is assumed to be a proportion γt of the loan balance, then

Lt = γtUt.

1.3 Model for Mortgage Termination

Mortgage insurers need to estimate the incidence and severity of losses in order to set up
an appropriate reserve. In this section we model the incidence of default and prepayment.

23In practice, there are delays between default and property sale. The insurer is responsible for the
interest accrued during that period which could be as long as one year.
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Our model is very simple and ignores several institutional features.

Mortgage termination has been studied extensively. Kau, et al.[57] use a contingent
claim model which assumes that decisions made by rational borrowers only depend on
property value and market mortgage rate. Deng[30] and Calhoun and Deng[19] use a
competing risks model with proportional hazard rates for prepayment and default risks.
Taylor and Mulquiney[67] consider a discrete-time Markov process for loan status, while
Ji[53] proposed a semi-Markov multiple state model for reverse mortgage loan status. Our
multiple state model is adapted from the status transition model used in the 2011 and
later actuarial reviews of FHA mortgage insurance fund.

There are three sets of factors affecting loan termination: economic conditions, mort-
gage contracts and borrower characteristics. Important economic variables include mort-
gage rate, property value, unemployment rate, etc. The mortgage contract contains loan
level information such as LTV, contract rate, loan amount and amortization schedule.
Borrower characteristics include borrower specific information such as credit score and
debt-income ratio.

1.3.1 Transition between Loan Status

Compared to competing risks models, multiple state models are more intuitive and flexible.
A multiple state model is defined by states and transitions. The specification of states and
transitions is based on observation and experience rather than mathematical formulation,
and different perspectives or modelling purposes may lead to different designs.

From the lender’s perspective, the status of a mortgage loan is determined by the
payments from the borrower. Ideally it should also depend on other factors that affect the
probability of repayment and how the loan may be repaid. However some of those factors,
such as the borrower’s willingness and ability to repay, are not directly observable, and
some others, such as house price indices and mortgage rates, affect the performances of all
loans. Loan payments on the other hand can be directly observed for each loan without
cost, and they serve as a good instrument of the unobservable factors. For example, if
regular loan payments are made on a loan then the lender has no incentive to investigate
the borrower regarding making future payments. If one or two payments have been missed
on a loan, then the lender is aware that the loan is in trouble and may take action to
minimize loss. This is because for whatever reason the borrower misses a few payments,
he/she is likely to miss more payments in the future.

The model we propose is shown in Figure 1.1. There are four states, represented by
the four rectangles, and five possible transitions, represented by the five arrows. A loan
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is in one of the four states depending on its status and the loan status depends on the
payments received by the lender. It is in Active if regular payments are being made; in
Delinquency if some payments are missed; in Prepay if it has been prepaid; and in Default
if it has defaulted.

The two states Active and Delinquency divide current loan into to categories. They are
treated differently by the lender and have different characteristics. Active loans are healthy
and require little the lender’s attention because the regular payments indicate the borrower
is capable and willing to repay the debt. Delinquent loans typically require lender’s actions
such as sending notifications of payments being missed or a negotiation with the borrower.
The risk of default for delinquent loans are higher than for active loans, and are more likely
resulting in loss. Prepay and Default are the absorbing states indicating the termination
of the mortgage contract. Each loan starts at Active and is terminated through one of the
following three ways: (i) entering Prepay, (ii) entering Default, (iii) not entering Prepay or
Default before the end of loan term, i.e. repaying the loan in full as scheduled.

An active loan can be prepaid or be delinquent, but it cannot be defaulted without being
delinquent for some time. This is due to the common practice that a loan is treated as
default only when a certain number of payments have been missed. This is a more stringent
requirement than delinquency and make delinquency an early indicator of default. Since
the lender of a delinquent loan takes measures (e.g. loan modification) to mitigate losses,
it is possible that the borrower becomes capable of making payments again afterwards. If
this is the case then the loan is cured and returns to the Active state. It is also possible
that the borrower misses a few payments but be able to prepay the loan, for example, by
selling the house or refinancing.

Figure 1.1: The multiple state model for mortgage termination

9



The µij attached to each arrow represents the intensity of that transition, for example
µ12 is the transition intensity from Active to Delinquency. This type of intensity-based,
continuous-time modelling of transitions was introduced by Hoem[47, 48] and summarized
by Waters[84]. It has been widely used in actuarial science, see for example Dickson, et
al.[33] and Jones[55]. Intuitively, intensity is a measure of the propensity for a loan to
change its status. To study this model in detail, we first introduce some notation:

• St: loan status at time t, St ∈ {1, 2, 3, 4} t > 0. For example, “S(t) = 2” means the
loan is in Delinquency at t.

• Dt: the duration of the current stay in state St, i.e. the last transition was into St
and it occurred at t−Dt.

• p11(x, t): the conditional probability that the loan stays in Active in [x, x + t] given
it is active at time x, i.e. P [Sx+s = 1,∀s ∈ [0, t]|Sx = 1]

• p22(x, u, t): the conditional probability that the loan stays in Delinquency in [x, x+ t]
given it has been delinquent since time x−u, i.e. P [Sx+s = 2,∀s ∈ [0, t]|Sx = 2, Dx =
u], u ≤ x

• p1j(x, t): the conditional probability that the loan is in state j at time x+ t given it
is in Active at x, i.e. P [Sx+t = j|Sx = 1], j ∈ {1, 2, 3, 4}

• p2j(x, u, t): the conditional probability that the loan is in state j at time x+ t given
it has been in Delinquency since x − u, i.e. P [Sx+t = j|Sx = 2, Dx = u], u ≤ x,
j ∈ {1, 2, 3, 4}

By law of total probability,
∑

j p1j(x, t) =
∑

j p2j(x, u, t) = 1. These conditional probabil-
ities can be derived from transition intensities. We define transition intensities µij(j 6= i)
by

µ1j(x) = lim
∆t→0+

p1j(x,∆t)

∆t
, for j = 2, 3

and

µ2j(x, u) = lim
∆t→0+

p2j(x, u,∆t)

∆t
, u ≤ x, for j = 1, 3, 4.

Here are some remarks:

1. This is a semi-Markov model because µ2j depends on past information, i.e. the
duration of stay in state 2. It is possible that µ1j also depends on duration of stay, however
we do not model it because the dependency of µ2j on the duration of stay is more closely
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related to default, the event of our interest. As mentioned earlier, there is no general rule of
specifying a multiple state model, as long as the specification is reasonable. For example,
it might be more appropriate to specify the dependency of µ1j on the duration of stay if
an insurer wants to model time to delinquency.

2. Transition intensities are functions of current time, duration of stay and any other
factors that affect transition probabilities, such as property value, outstanding loan balance
and market mortgage rate. We only choose some significant and representative ones, which
will be discussed in detail later.

3. From the above definition, we have the following approximations for transition prob-
abilities

p1j(x,∆t) = µ1j(x) ·∆t+ o(∆t) j 6= 1

p2j(x, u,∆t) = µ2j(x, u) ·∆t+ o(∆t) j 6= 2,

where

lim
∆t→0+

o(∆t)

∆t
= 0.

That is, the probability of transition in a small time interval can be approximated by the
product of transition intensity and the length of that interval.

Assuming the probability of multiple transitions within [x, x + ∆t] is o(∆t) for any x.24

We have the following formulas for “stay” probabilities (see Waters[84]):

p11(x, t) = exp

[
−
∫ t

0

µ12(x+ s) + µ13(x+ s)ds

]
p22(x, u, t) = exp

[
−
∫ t

0

µ21(x+ s, u+ s) + µ23(x+ s, u+ s) + µ24(x+ s, u+ s)ds

]
.

By conditioning on the time of the first transition, we can derive integral expressions for
transition probabilities,

p11(x, t) =

∫ t

0

p11(x, s)µ12(x+ s)p21(x+ s, 0, t− s)ds+ p11(x, t) (1.1)

p21(x, u, t) =

∫ t

0

p22(x, u, s)µ21(x+ s, u+ s)p11(x+ s, t− s)ds. (1.2)

24This is a common assumption in a multiple state model framework, see for example Dickson et al.[33]
and Hoem[48].
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The initial conditions are p11(x, 0) = 1 and p21(x, 0, 0) = 0. Appendix A provides a
procedure to solve p11(x, t) and p21(x, 0, t) numerically, which will be used later. Transition
probabilities between other states can be derived similarly but are not shown here since
they will not be used. Integral expressions for transition probabilities are not unique. For
example, to compute p11(x, t), we may condition on the times of the last transition to state
2 and the last transition back to state 1:

p11(x, t) =

∫ t

0

∫ t−s

0

p11(x, s)µ12(x+ s)p22(x+ s, 0, w)µ21(x+ s+ w,w)

p11(x+ s+ w, t− (s+ w))dwds+ p11(x, t).

1.3.2 Intensity Estimation

The next step is to determine transition intensity functions µ1j(x) j ∈ {2, 3} and µ2j(x, u)
j ∈ {1, 3, 4} for all possible x, t, u. We estimate these functions using the results published
in the 2011 Actuarial Review of the Federal Housing Administration Mutual Mortgage
Insurance Fund Forward Loans [50].25 It contains in its appendix A a detailed list of risk
factors and their effects on transition probabilities, which provides us with a useful base
for estimating intensities.

The 2011 review adopts a multinomial logit model for quarterly conditional probabil-
ities. Let πij(t) denote the conditional probability of transition into state j and πii the
conditional probability of stay at state i, both at time t+ 1

4
, given the loan is in state i at

t. Then

π12(t) =
eα12+X12(t)β12

1 + eα12+X12(t)β12 + eα13+X13(t)β13

π13(t) =
eα13+X13(t)β13

1 + eα12+X12(t)β12 + eα13+X13(t)β13

π11(t) =
1

1 + eα12+X12(t)β12 + eα13+X13(t)β13
,

where αij and βij are to be estimated, and Xij(t) are vectors of risk factors. Transition
probabilities from state 2, π2j, j ∈ {1, 2, 3, 4}, are defined similarly. Note that using
our probability notations, π1j(t) = p1j(t,

1
4
). From remark 3 following the definitions of

25The review can be retrieved at http://portal.hud.gov/hudportal/HUD?src=/program_offices/

housing/rmra/oe/rpts/actr/actrmenu. I do not use results from later versions because this chapter was
written in 2012 and there was not sufficient time to revise the numbers before this thesis is submitted.
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transition intensities, we can estimate intensities by

µ1j(x) ≈ 4π1j(x) j 6= 1

µ2j(x, u) ≈ 4π2j(x, u) j 6= 2.

The review considers eighteen risk factors and a total of fifty (dummy) explanatory vari-
ables. One of the reasons they choose to use a large amount of categorical dummy variables
is “not satisfied with either the stability or interpretation” of the “application of contin-
uous versions of the dynamic explanatory factors”.26 For simplicity, we have selected six
important risk factors. Each unselected risk factor is assumed to be static and assigned a
value. This value is then added to the intercept. The six selected factors are:

• Initial loan-to-value (LTV): the ratio of loan size (U0) to the purchase price of mort-
gaged property(H0) at loan origination, denoted by R0.

• FICO score: a score assigned to each borrower representing his/her credit history.

• Default incentive: called probability of negative equity in the review. It indicates the
borrower’s propensity to default. We denote it by DI.

• Prepayment incentive: called mortgage premium in the review. It indicates the
borrower’s propensity to prepay. We denote it by PI.

• Mortgage age: this is the variable t, time since loan origination.

• Duration of delinquency: called default duration in the review. This is the variable
u, time since loan became delinquent.

We assume LTV and FICO score are fixed at loan origination and do not change throughout
the loan term. Mortgage age and duration of delinquency are essential to our semi-Markov
model as they are part of the definitions of transition intensities. DI and PI are two
stochastic variables connecting house prices and mortgage rates to default and prepayment.

We define DI by

DIt = Φ

(
logUt − log(H0 · It/I0)

σt

)
,

where I is the house price index, which represents the change in house prices, U is the
outstanding loan balance, σ is hour price volatility, and the subscript t denotes mortgage
age. The function Φ(·) is the standard normal distribution function. It is clear that a lower
index, i.e. house price, leads to a higher DI.

26See page A-12 of the review.
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We define PI to be the relative spread between the contract rate rc = rm(0) and the
current market mortgage rate(MR) rm(t):

PIt =
rc − rm(t)

rc
.

A positive PI indicates a lower market rate than the contract rate. In this case prepayment
through refinancing reduces future loan payments. We assume there is only one unique
mortgage rate available to the borrower.

It is clear from the definitions for DI and PI that their values depend on It and rm(t).
In a scenario analysis, each economic scenario is represented by a pair of deterministic It
and rm(t); while in a stochastic analysis both It and rm(t) are assumed to follow stochastic
processes. We can expand the Xij(t)βij terms by

X1j(t)β1j = β1
1jR0 + β2

1jFICO + β3
1jPNEt + β4

1jPIt + β5
1jt

X2j(t, u)β2j = β1
2jR0 + β2

2jFICO + β3
2jPNEt + β4

2jPIt + β5
2jt+ β6

2ju.

1.4 Contract Pricing

In this section we determine the actuarial fair premium(s) for a mortgage default insurance
policy specified in section 1.2. The termination of the underlying mortgage loan follows
the multiple state model from the previous section. By the actuarial equivalence principle,
the expected present value (EPV) of the premiums equals the EPV of claims. Since the
multiple state model assumes default can occur at any time, it is more convenient to
consider a fully continuous situation where

Assumption 1.2 (fully continuous). All payments, including loan repayment and an-
nual premiums (if any), are made continuously.

The following assumption simplifies our analysis by assuring that the lender receives a
constant flow of payments before loan termination disregard the status of the loan.

Assumption 1.3. When a loan is delinquent, loan repayment and annual premiums (if
any) are paid as scheduled as if it was active. Moreover, any loan that has not been prepaid
or defaulted before the end of loan term is treated as being repaid in full and the insurance
contract expires without claim.27

27Insurers may take actions such as payment reduction/suspension to prevent delinquent loans from
defaulting.
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This assumption is not consistent with the reality where the borrower may not make
or make reduced payments during delinquency. However if we assume no payment during
delinquency, then either loan term needs to be extended or loan payments need to be raised.
This complicates our analysis by making loan term, loan balance and/or loan payments
stochastic and contingent on the time and duration of the loan being delinquent.

First consider the case of a single upfront premium P . It can be calculated by

P =

∫ T

0

Ltvtλ14(t)dt, (1.3)

where T is the loan term, L is the claim amount, v is discount factor and λ14(t)dt approx-
imates the probability of loan default occurs in (t, t+ dt). More precisely, by conditioning
on the times of the last transition into state 2 and the transition into state 4,

λ14(t) =

∫ t

0

p11(0, s)µ12(s)p22(s, 0, t− s)µ24(t, t− s)ds. (1.4)

To see the intuition, rewrite λ14(t)dt in the following order

p11(0, s)µ12(s)ds · p22(s, 0, t− s)µ24(t, t− s)dt,

where the first term is the probability the last transition into state 2 occurs in (s, s+ds) and
the second term is the conditional “stay” probability at state 2 until t when the transition
into state 4 occurs, given a loan is at state 2 at s.

Another type of premium structure requires an upfront premium plus annual premium-
s.28 Define the upfront premium rate p0 to be the percentage of initial loan size charged
immediately at origination, and the annual premium rate pt to be the percentage of out-
standing loan balance charged per annum. Assume a constant annual premium rate, i.e.
pt ≡ p, and it is charged until the loan balance reaches a certain proportion of the original
property value, say αH0. For a mortgage amortized continuously over T years with initial
loan size U0 and contract rate rc, the outstanding balance at time t is

Ut = U0
ercT − erct

ercT − 1
.

28This was used by FHA, see page B-3 to B-8 of the 2011 review [50].
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The maximum premium period tm is such that Utm = αH0; thus we have

tm = T +
1

rc
log

(
1− α

R0

(
1− e−rcT

))
,

where R0 = U0/H0 is the initial LTV. The EPV of premium is given by the following
summation:

p0U0 +

∫ tm

0

(∫ t

0

pUsvsds

)[
λ14(t)+λ13(t)

]
dt+

(
1−
∫ tm

0

[
λ14(t)+λ13(t)

]
dt

)∫ tm

0

pUsvsds,

where

λ13(t) = p11(0, t)µ13(t) +

∫ t

0

p11(0, s)µ12(s)p22(s, 0, t− s)µ23(t, t− s)ds.

The first term p0U0 is the upfront premium; the second and third terms calculate the EPV
of annual premiums conditioning on the mode of loan termination. Equate this summation
to the EPV of claims which is given by the right hand side of Eq.(1.3), we have the following
explicit expression for p:

p =

∫ T
0
Ltvtλ14(t)dt− p0U0∫ tm

0

( ∫ t
0
Usvsds[λ14(t) + λ13(t)]

)
dt+

(
1−

∫ tm
0
λ14(t) + λ13(t)dt

) ∫ tm
0
Usvsds

. (1.5)

Our goal is to determine P in Eq.(1.3) and p in Eq.(1.5) for a given p0.

1.5 Numerical Examples

In this section, we consider two numerical examples. The first example consists of some
deterministic scenarios, each represented by a path of house prices and a path of mortgage
rates. The second example consists of stochastic house prices and mortgage rates. The
values for static parameters are shown in Table 1.1. Since the majority of loans insured by
FHA in 2011 was between 90%-97%, we set initial LTV to 95%. The average FICO score
for FHA borrowers in 2011 was about 700 and we assume the borrower in our examples has
a slightly higher score of 725. The combination of the 1% upfront premium rate and the
78% lower bound for annual premiums was used by FHA in 2011 for 15-year mortgages.

Discount factors vt at integer years are given on page B-12 of the 2011 review [50].
Values between integer years are approximated by linear interpolation. We assume the
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Parameter Value Description

H0 400,000 Initial property value
R0 95% Initial loan-to-value
U0 380,000 Initial loan size (= H0R0)
T 15 Loan term (in year)

FICO 725 Borrower’s credit score
p0 1% Upfront premium rate
α 78% Annual premiums stop when loan balance reaches

100α percent of initial property value

Table 1.1: Parameter specification

claim severity is
Lt = max[Ut − 0.7H0It/I0, 0].

To calculate DI we also need house price volatility. House price volatility refers to the
dispersion of house prices from the index. In the process of constructing repeat sales
index, it is found that the deviation of house price from the index grows with the duration
between the sales. To capture and remove the effect of time-varying variance, Calhoun[18]
suggests the variance be a quadratic function of duration. This approach has been adopted
by Federal Housing Finance Agency (FHFA) to construct the national house price index.
FHFA also publishes the fitted coefficients of duration and duration squared. According to
the 2011 results, the coefficients are 0.0061076 and -0.00006416, which implies the volatility
at time t is

σt =
√

0.0061076t− 0.00006416t2.

1.5.1 Scenario Analysis

We first consider the scenario shown in Figure 1.2. It mimics the base-case curves starting
from 2007 quarter 3 in Exhibit D-2 and D-3 of the review. The first four years are actual
experience and the rest are from Moody’s forecasts. The index will drop from 375 to 320
in 4 years and stay at that level for 2 years before moving up. The mortgage rates will
also decline in the first 3 years but then rise and remain at the initial level of 6.55%. Both
curves are piecewise linear.

DI and PI can be computed based on these information. Exhibit A-3.2 on page A-23 of
the review shows estimated values of coefficients (intercept and β’s) we need to estimate
transition intensities. All integrations involved in the calculation of transition probabilities
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Figure 1.2: Scenario 1: HPI & MR

and EPVs are approximated by composite trapezoidal rule with mesh size h = 1/120, see
Appendix A for detail.

An evaluation of Eq.(1.3)&(1.5) gives P = 11889 (3.13% of U0) and p = 0.74%. The
cumulative probability of default is shown in Figure 1.3. The probability rises sharply in
the first five years due to low house prices relative to loan balances, and then levels off
when the index increases and loan balance decreases.

The premium will be very different if we change our scenario. Now consider the one
shown in Figure 1.4. They are both based on Moody’s base-case forecasts for 2011 quarter
3 and after. The index increases and so does the mortgage rate. The single upfront
premium decreases substantially to P = 2766 (0.73% of U0). The annual premium rate is
not calculated since the upfront premium rate is below 1%.

We can also adjust static parameters to investigate their effects on premiums. For
example if we use the scenario 1 index and mortgage rate but assume a FICO score of 600
and an LTV of 97.5%, the loan becomes riskier and higher premiums should be charged:
P = 31921 (8.18% of U0) and p = 2.42%.

1.5.2 Stochastic Analysis

Now we assume the house price index and mortgage rate move stochastically and the EPV
of future claim payments, denoted by P , becomes a random variable. The distribution of
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Figure 1.3: Scenario 1: cumulative probability of default

Figure 1.4: Scenario 2: HPI & MR

P depends on the model for index and mortgage rate. We use simulation to estimate the
distribution and its statistics.

A few models for house price index and mortgage rates have been proposed. Kau et
al.[57] model house values by a geometric Brownian motion and interest rates by a mean
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reverting process:

dH

H
= (α− s)dt+ σHdzH

dr = γ(θ − r)dt+ σr
√
rdzt

dzH · dzt = ρdt

Chang et al.[27] complement the GBM by adding a Poisson process to capture the jump
risk.

Recognizing the significant serial correlation of house price returns, Capozza et al.[23]
propose the following reverting-to-fundamental model

∆Pkt =
[
α +

∑
i

αi(Ykit − Y ∗i )
]
∆Pk,t−1 +

[
β +

∑
i

βi(Ykit−Y ∗
i

)
](
P ∗k,t−1 − Pk,t−1

)
+ γ∆P ∗kt,

where Pkt is the logarithm of house value at time t in city k, ∆ denotes the value difference
with respect to time, Yi are independent variables, Y ∗i is the mean value of Yi, and P ∗kt
is the logarithm of fundamental house value. The authors in particular consider the ef-
fects of information costs, construction costs and backward-looking expectations on serial
correlation and fundamental reversion.

Hanewald and Sherris[44] compare a time series model(ARIMA(3,1,1)) with other re-
gression models for postcode level house price indices in Sydney. The regressors under
consideration include postcode, season, economic variables (GDP growth, interest rate,
inflation rate, etc.) and socio-demogrphic variables (income, unemployment rate, medi-
an age, household size, etc.). Li et al.[62] identify a ARMA(1,3)-EGARCH(1,1) model
for UK Nationwide House Price Index. The model successfully captures autocorrelation,
conditional heteroskedasticity and leverage effects in the index log return series.

The 2012 FHA actuarial review[51] used a joint autoregressive model for Treasury rate,
mortgage rate and house price index.29 The log return of the index follows

Yt = µ+ α1D1 + α2D2 + α3D3 + β1Yt−1 + β2Yt−2 + β3Yt−3 + β4r1,t

+ β5r1,t−1 + β6s10,t + β7s10,t−1 + β8sm,t + β9sm,t−1 + εh,t, (1.6)

where
D1, D2, D3 are dummy variables for seasons spring, summer, fall,
r1,t is the 1-year Treasury rate,
s10,t is the spread between 10-year and 1-year Treasury rate,

29See Appendix G.
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HPI coef. Estimate MR coef. Estimate
µ -0.001 α 0.005

α1, α2, α3 0.005 β1m -0.179
β1 0.613 β2m 0.169
β2 -0.153 β3m 0.053
β3 0.398 β4m 0.742
β4 -0.596 γ0m 2.35× 10−7

β5 0.600 γ1m 0.128
β6 -0.770 γ2m 0.795
β7 0.748
β8 -0.649
β9 0.581
γ0 1.2× 10−5

γ1 0.955

Table 1.2: Coefficients estimate of the HPI/MR model, copied from Exhibit G-9 & G-10
of the 2012 FHA actuarial review[51].

sm,t is the spread between MR and 10-year Treasury rate,
εh,t is a normal random variable with mean zero and variance

σ2
h,t = γ0 + γ1ε

2
h,t−1.

The mortgage rate spread follows

sm,t = α + β1mr1,t + β2mr1,t−1 + β3ms10,t + β4msm,t−1 + εm,t

and
σ2
m,t = γ0m + γ1mε

2
m,t−1 + γ2mσ

2
m,t−1

We use this model for our stochastic analysis. The parameters have been calibrated using
US historical data (see Table 1.230). All parameters are significant at 90% level.

We generate 1000 independent scenarios of house price index and mortgage rate and
Eq.(1.3) is evaluated for each scenario. The mean of the EPV of claim payments is 7154
(1.88% of initial loan size) and the standard deviation is 3463. The distribution is right
skewed with skewness of 1.04, indicating large claims in some scenarios. The 10% and 90%
quantiles are 3427 and 11685. If the premium is set to be mean value plus one standard

30It is copied from Exhibits G-9 & G-10 of the review.
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deviation, i.e. 10617 based on this set of simulation, then the probability of negative NPV
(loss) is 14.1%. The 90% value at risk(VaR) and conditional tail expectation(CTE) are
estimated to be 1068 and 4080, both in terms of loss.

It is generally believed that declining house prices accompanied by rising mortgage
rates raise delinquency and default rates. Figures 1.5 and 1.6 show two scenarios with low
and high EPVs of claims. Note that the index in Figure 1.6 is higher than that in Figure
1.5 at the end of year 15.

Figure 1.5: A scenario with low EPV of claims: P = 1327

To find the main determinant of claims, we divide the 15-year period into three 5-year
periods and regress EPVs on the average MR and the average annual index returns within
each 5-year interval. Table 1.3 listed the five significant variables with their estimated
coefficients and t statistics. It is evident from the coefficients that the index and MR in
the first 5 years have the greatest effect on claims, and their signs are expected. Five years
after loan origination, the outstanding balance reduces to 70.63% of the initial house price.
Therefore the probability of default, as well as the loss given default, is low. Refinancing
also becomes less beneficial.

1.6 Conclusion

Mortgage insurance is used by mortgage lenders to transfer default risk to an insurer.
Both the US and Canada have mature mortgage insurance industry. In this chapter, we
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Figure 1.6: A scenario with high EPV of claims: P = 17211

Average of Coefficient(×103) t statistic p-value
HPI return year 0-5 -77.88 -27.52 < 0.001
HPI return year 6-10 6.31 3.29 0.001
HPI return year 11-15 -4.01 -2.40 0.017
MR year 0-5 72.77 6.34 < 0.001
MR year 6-10 -11.123 -2.38 0.018
Intercept 4.17 8.120 < 0.001

Table 1.3: Linear regression results. Dependent variable: EPV. Explanatory variables:
average index returns and mortgage rates within each 5-year period. R2 = 0.517

specify a simple mortgage insurance contract and price the insurance premium(s) based
on a multiple state model of loan termination. We assume the transition of loan status is
a continuous process and depend on various risk factors. We make strong assumptions on
the relation between house price and loan default, as well as on loss severity.

Our numerical examples are implemented using results from the 2011 and 2012 FHA
actuarial reviews. Results show that the insurance premium depends critically on the
scenario. The premium will be high if a distressing market is expected, and be low if
the market is promising. This is because low house prices increase the probability of
default, which increases the expected claim. The stochastic analysis shows that a major
determinant of claim is the house values in the beginning years of a mortgage loan.
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Besides mortgage insurance contracts, the multiple state model developed in this chap-
ter can be used to evaluate mortgage contracts, as well as securities with payoffs contingent
on mortgage terminations. In Chapter 4, we will use it to price a new type of mortgage –
property index-linked mortgage.
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Chapter 2

Hedging House Price Risk

In this chapter, we discuss the possibility of hedging house price risk in mortgage contracts.
Hedging is not considered as a main default risk mitigation strategy in the current mortgage
industry because real estate related financial instruments are either not closely correlated
with the prices of mortgaged properties or have illiquid markets and constrained trading.
In this chapter, we assume there exists an ideal market where house price risk can be
traded without friction through a suitable security. Such a market may be developed in
the future as there are increasing hedging and speculating needs.

We model the relation between house prices and mortgage defaults in a contingent claim
framework. We consider the classic delta hedging strategy and analyze its effectiveness to a
mortgage insurer. The intuition behind delta hedging is to trade an appropriate amount of
hedging security such that if the value of the insurer’s liability under the insurance contract
is linear in house price, then the insurer is immune to house price risk. The access to a
suitable hedging security would improve the operation of the insurer as the insurer would
be able to choose how much risk to retain.

The first section introduces some existing financial instruments that are related to house
prices. Section 2 presents the assumptions and models that are important to our hedging
strategy, which is constructed in section 3. We provide a numerical example in Section 4.
Section 5 concludes.

2.1 Financial Instruments on House Prices

Residential properties are not only for dwelling, but are also for investment. As a special
class of investment asset, real estate has some features that are different from financial
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assets such as securities and derivatives. First, real estate properties have heterogeneous
characteristics and an individual property may not be traded for decades. This means
the market prices of properties cannot be observed frequently. Second, the transaction
costs associated with purchase and sale is ranging from 5-8% of the transaction price.
They include agent commission, legal fees, sometimes restoration and insurance. Third,
it is difficult to invest in part of a property or short selling one. With these unfavorable
features, real estate is not attractive to investors, if the only way to engage is trading
properties directly.

To overcome these disadvantages, indices that represent the average change in property
values have been created. Consider the US S&P/Case-Shiller Home Price Indices as an
example.1 The indices are based on repeat sales prices of residential houses in 20 defined
areas. Different weights are attached to each area to construct the composite 10, composite
20 and national indices. The indices are calculated monthly and published with a two-
month lag. The base month is January 2000 and all indices are set to 100. Figure 2.1 shows
the composite 10 index from January 1987 to August 2015.2 The composite 10 index for
December 2014 was 187.59, implying that the average house prices in the 10 selected areas
increased by 87% in the period between 2000 and 2014. The index declined by one third
during the 2007-09 financial crisis.

Figure 2.1: S&P Case-Shiller Composite 10 index, January 1987 to August 2015.

Due to limited number of transactions within an area, a property index, or a house
price index, is not updated as frequently as a stock price index. Some property indices
are published with lags. We should also note that these indices only represent the average

1See [78] for a full technical detail.
2Source: S&P Dow Jones Indices http://ca.spindices.com/indices/real-estate/

sp-case-shiller-10-city-composite-home-price-index.

26

http://ca.spindices.com/indices/real-estate/sp-case-shiller-10-city-composite-home-price-index
http://ca.spindices.com/indices/real-estate/sp-case-shiller-10-city-composite-home-price-index


performance of the housing market, but not the value change of any individual property.
The changes in individual house prices may be very different from the change in index
value.3

Once an index is defined, we can construct various index-contingent derivatives to trade
house price risk. For example, index futures are one of the most actively traded property
derivatives compared to other standardized derivative contracts. Futures based on S&P
Case-Shiller house price indices have been traded on Chicago Mercantile Exchange since
2006. The futures are on composite 10 and regional indices, with maturities ranging from
18 to 60 months.4

Nevertheless this market is currently not practical for hedging. First, trading volumes
are low in general.5 Second, the prices of these futures contracts are not predictable and
they do not have a stable relation with the underlying index values.6 This could be a
consequence of market illiquidity and low trading volume. It could also be caused by
the mismatch between hedging and speculative demands. Despite these disadvantages,
property index futures is still a potential choice for hedging tool, as suggested by Case and
Shiller[25].

Other types of index based contracts are mostly traded over-the-counter. For example,
a total return swap is a series exchange of cash flows, where the party on the long position
pays a fixed percentage of a notional amount, and in return, the counter-party on the
short position pays the return of an index. The fixed percentage reflects the investor’s
expectation on index return. Suppose the market price for a one year swap on some index
is 1%, then the long side will make profits if the average return on that index is higher
than 1%. A property index note is a variable rate bond that pays coupons based on the
returns of a property index. It may have features such as a specific participation rate, or
a non-negative return guarantee. Similar to swaps, the long side is exposed to house price
risk. More details can be found in commercial brochures such as [38, 83].

Among non-index based instruments, a publicly traded real estate investment trust
(REIT) may be another potential choice of hedging tool. A REIT is an investment company
specialized in real estate and real estate mortgages. In most countries REITs enjoy different
tax rules from other companies, but a company has to satisfy certain conditions to be
qualified as a REIT. To investors who want to gain exposure on real estates but do not
wish to buy properties, publicly traded REITs are good choices since their stock prices
should to some extent reflect the performance of real estate and mortgage markets.

3See Chapter 4 for a discussion of house price basis risk.
4See [28] for contract specifications.
5See Shiller[74] for a discussion of reasons.
6See Jud and Winkler[56], Leventis[61] and Syz[82] for some analysis.
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Compared to index based derivatives, REIT stocks are more liquid and have less short
selling constraints. Investors can choose from a large number of combinations of REIT
stocks and their derivatives. However there are disadvantages. First, REITs typically
invest in commercial properties but not residential properties, and mortgaged properties are
usually owner-occupied. The commercial and residential real estate markets may differ in
the risk factors affecting the property values, hence the two markets may not have a strong
correlation. Second, the investment portfolios hold by REITs are usually not geographically
concentrated. Shorting their stocks may not effectively protect the downward movement of
house prices in a specific area. Third, REIT stocks are publicly traded and their prices are
influenced by the entire stock market but not only the real estate market. Fourth, there
may not be enough REIT shares available for short selling.7

2.2 Models and Assumptions

In this section, we make assumptions about default and the house price index. We consider
both continuous and discrete cases.

Assumption 2.1a (discrete). Suppose each time period is h year. The borrower repays
the mortgage loan at the end of each period, and only default at the times of payment
due.8

Let H0, U0 be the property value and loan amount at loan origination and rc be the
continuously compounded contract rate, then the amount of payment is

Md = U0
erch − 1

1− e−rcT
,

and the before-payment outstanding loan balance on payment days are

Ud
ih− = U0

erch − erc(ih−T )

1− e−rcT
i = 1, 2, . . . ,

T

h
.

It then follows that

Ud
t =

{
Ud
t− −Md t = h, 2h, . . . , T

h
h

Ud
b t
h
ch · e

rc(t−b t
h
ch) otherwise

.

7See Case et al.[26] for a detailed discussion.
8For example, h = 1

12 means monthly payments.
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Note that Ud
t is a right continuous function with jumps at payment days, Ud

T− = Md and
Ud
T = 0. Since borrowers default before making the payment due, we more precisely have

pt ≡ pt(Ht, U
d
t−) and Lt ≡ Lt(Ht, U

d
t−) for t = h, 2h, 3h, · · · .

Assumption 2.1b (continuous). The borrower repays the mortgage loan continuously
and may default at any time.9

Based on loan amortization the repayment rate is

M c = U0
rc

1− e−rcT
,

and

U c
t = U0

1− erc(t−T )

1− e−rcT
.

In the analysis followed, we will make it clear which one of the above assumptions is in
force. We keep assuming immediate claim payment (Assumption (1.1)).

2.2.1 Default Decision

The borrower’s propensity to default depends on many factors such as current property
value, outstanding loan balance, market/contract mortgage rate, financial status, income,
marital status, etc. To avoid complexity, we assume that.

Assumption 2.2. The borrower’s propensity to default depends on two factors only:
property value (Ht) and loan balance (Ut). The relationship between default propensity
and Ht and Ut is deterministic and known at loan origination.

The mathematical expressions for default propensity are different for continuous and dis-
crete cases. Let Td be the default time random variable and T be the loan term.

Assumption 2.3a (probability of default). Suppose the borrower makes discrete pay-
ments. On each payment day, his/her propensity to default is expressed as a conditional
probability pt defined by

pt = Prob(Td = t|Td ≥ t)

{
≥ 0 if t = h, 2h, 3h, · · · , T
= 0 otherwise

9This is similar to assumption 1.2.
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By Assumption 2.2, pt is a function of Ht and Ut, i.e. pt ≡ pt(Ht, Ut) and this is a
deterministic and known function. We further assume pt is at least twice differentiable
with respect to Ht.

It then follows that the probability for a loan to survive beyond time t, denoted by Y d
t ,

is a function of ps for s ≤ t:

Y d
t =

b t
h
c∏

i=1

[
1− pih(Hih, Uih)

]
, (2.1)

where bxc denotes the integer part of x. By convention Yt = 1 if the lower limit of
the product is strictly larger than the upper limit. Note that Yt is a right continuous,
non-increasing step function having jumps at h, 2h, 3h, · · · . The jump sizes depend on
ph, p2h, p3h, · · · , which in turn depend on (Hh, Uh), (H2h, U2h), (H3h, U3h), · · · .

Assumption 2.3b (intensity of default). Suppose the borrower repays continuously.
His/Her propensity to default at time t is expressed as an intensity µt defined by 10

µt = lim
∆t→0+

Prob(t ≤ Td < t+ ∆t|Td ≥ t)

∆t
.

Similarly by Assumption 2.2, µt ≡ µt(Ht, Ut) is a deterministic and known function. We
further assume µt is at least twice differentiable with respect to Ht.

In this case,

Y c
t = exp

[
−
∫ t

0

µs(Hs, Us)ds

]
. (2.2)

For both discrete and continuous cases, Ht is the single risk factor because Ut is known
and fixed. We will use pt, pt(Ht) and pt(Ht, Ut) interchangeably and the same for µt, µt(Ht)
and µt(Ht, Ut). These two functions should be non-increasing in Ht, because intuitively
default is negatively related to property value holding other factors the same.

For simplicity we assume there is no prepayment and basis risk. They will be considered
in chapters 3 and 4.

Assumption 2.4 (no prepayment). There is no loan prepayment.

10This definition is consistent with the definition of transition intensity in chapter 1 section 1.3.1. The
default process here can be viewed as a simplified multiple state model with only two states: Active and
Default, and one transition: Active to Default.
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Assumption 2.5 (pooling). An insurer issues a large number of homogeneous mortgage
default insurance policies. The prices of all mortgaged properties are perfectly correlated.
All borrowers have the same propensity to default but make default decisions independent-
ly.

Under Assumptions 2.3 & 2.5, the insurer can predict the exact11 number of defaults
in a pool of policies at all times, as long as the property values Ht are given. Assumptions
2.3 & 2.4 also suggest that there is no need to model mortgage interest as it has no impact
on default and prepayment is prohibited. From now on, we base our analysis on one policy
in a large portfolio of policies. It reflects the average performance of the portfolio.

In the discrete case, the expected claim amount per policy at payment date ih is

Xd
ih = Y d

(i−1)hpihLih i = 1, 2, 3, · · · , T
h
, (2.3)

and in the continuous case, the expected claim rate (dollar/year) at time t is

Xc
t = Y c

t µtLt t ≥ 0, (2.4)

where the claim size Lt ≡ Lt(Ht, Ut) is assumed to be a smooth function of Ht and Ut. In
both cases, the insurance policy can be treated as a contingent claim on Ht. For example
in the discrete case, claim payments are equivalent to a portfolio of T/h European type
path-dependent options with payoffs given by (2.3). Therefore European option pricing
and hedging theories can be applied.

2.2.2 House Prices

The market value of an individual property is not always observable. However, as pointed
out in the previous section 2.1 we can use a property index as a proxy for property values.
The next two assumptions connect financial instruments and property values to an index.

Assumption 2.6. There exists an index It that is perfectly correlated with the value of
all mortgaged properties. Without loss of generality, we assume It ≡ Ht.

Assumption 2.7. There exists a publicly traded security whose price St is perfectly cor-
related with the index It that satisfies Assumption 2.6. Without loss of generality, we
assume St ≡ It. We further assume this security can be traded without friction.12

11This excludes randomness in the number of defaults for a given Ht path.
12This implies no transaction costs.
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Under these two assumptions, Ht ≡ St and we will replace Ht by St to make it clear
that it is the security we are trading but not the property.

Assumption 2.8. The security prices follow the geometric Brownian motion

dSt
St

= µdt+ σdWt, (2.5)

where the constants µ and σ represent the expectation and volatility of the returns on the
security, and Wt is a standard Brownian motion.

Figure 2.2 shows a diagram elaborating Assumptions 2.6–2.8. To complete the market,
we assume there is a risk-free account where borrowing and lending are carried out at a
constant continuously compounded interest rate r.

Figure 2.2: The assumed relation among property value, index and hedging security.

2.3 Hedging

In this section, we construct our hedging strategy based on the assumptions we made in the
previous section. In the discrete case the insurance policy can be viewed as a portfolio of
path-dependent European put options, and in the continuous case the insurance policy is a
contingent claim with continuous payoff. We can use delta hedging as the hedging strategy
in both cases. Delta hedging is first articulated in Black and Scholes[15] and Merton[64].
They show that under certain conditions and assumptions (they are all satisfied here),
European options can be perfectly replicated by the underlying asset and the risk free
asset. Bergman[11] extends the results to path dependent options. We rely on Bergman’s
results to construct the hedging strategy specific to our insurance policy in the discrete
case.

2.3.1 Discrete Case

Treat the insurance policy as a portfolio of T/h contingent claims maturing at h, 2h, . . . , T
with payoffs Xih defined in (2.3) respectively. We first consider replicating the ith one.
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Under Assumptions 2.6 & 2.7, equations (2.3) & (2.1) can be rewritten as

Xd
ih(Sih, Y

d
(i−1)h) = Y d

(i−1)hpih(Sih)Lih(Sih), (2.6)

and

Y d
jh ≡ Y d

jh(Sjh;Sh, S2h, · · · , S(j−1)h) =

j∏
k=1

[
1− pkh(Skh)

]
0 < j < i. (2.7)

It is then clear that the claim payment depends on some historical values of St summarized
by Y d

(i−1)h, as well as the current value. Equation (2.7) only gives the expression for Y d
t

where it has jumps, but this is sufficient to characterize a right continuous step function.
It is evident that dY d

t = 0 when t 6= jh. Since pt is assumed to be twice differentiable with
respect to St,

dY d
t =

∂Y d
t

∂St
dSt +

1

2

∂2Y d
t

∂S2
t

(dSt)
2

= µYt dt+
∂Y d

t

∂St
σStdWt,

when t = jh, 0 < j < i. The drift µYt is irrelevant to our hedging portfolio. Hence for
0 ≤ t < ih we can more compactly write

dSt = µ0dt+ σ0dWt (2.8)

dY d
t = µ1dt+ σ1dWt, (2.9)

where
µ0 = µSt σ0 = σSt

µ1 =

{
µYt
0

σ1 =

 ∂Y d
t

∂St
σSt t = jh, 0 < j < i

0 otherwise
.

Apply the characterization theorem in Bergman[11], we obtain

∆i
t ≡ ∆i

t(St, Y
d
t ) =

∂V i
t

∂St
+
σ1

σ0

∂V i
t

∂Y d
t

0 ≤ t < ih, (2.10)
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where V i
t ≡ V i

t (St, Y
d
t ) is the no arbitrage value of the ith contingent claim satisfying the

following partial differential equation (PDE):

∂V i
t

∂t
+

1

2

(
σ02∂2V i

t

∂S2
t

+ σ12 ∂2V i
t

∂Y d
t

2 + 2σ0σ1 ∂2V i
t

∂St∂Y d
t

)
+ rSt

∂V i
t

∂St
+

(
µ1 − µ0 − rSt

σ0
σ1

)
∂V i

t

∂Y d
t

− rV i
t = 0 (2.11)

for 0 ≤ t < ih with terminal condition

V i
ih = Xd

ih(Sih, Y
d

(i−1)h). (2.12)

Therefore our delta hedging strategy is: hold ∆i
t shares of stock at time t and lend/borrow

the rest V i
t −∆i

tSt using the risk-free asset. Since ∆i
t is continuously changing, the strategy

requires continuous trading of the underlying stock, which is impractical. The numerical
example in the next section assumes discrete rebalancing and analyzes the errors. The PDE
(2.11) with boundary condition (2.12) may not have an explicit solution, but the solution
admits the Feynman-Kac representation (see for example Theorem 1.3.17 in Pham[71]):

V i
t (St, Y

d
t ) = EQ[e−r(ih−t)Xd

ih

∣∣St, Y d
t

]
, t < ih (2.13)

where Q is the probability measure under which W ∗
t is a standard Brownian motion and

dSt = rStdt+ σStdW
∗
t .

With this representation, V i
t can be estimated using simulation.

Since the insurance policy is a portfolio of contingent claims, the policy value is simply
the sum of the values of each contingent claim that has not matured, i.e.

V d
t =

T/h∑
i=b t

h
c+1

V i
t , (2.14)

and similarly the delta for the policy is the sum of the deltas

∆d
t =

T/h∑
i=b t

h
c+1

∆i
t =

∂V d
t

∂St
+
σ1

σ0

∂V d
t

∂Y d
t

. (2.15)
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2.3.2 Continuous Case

A continuous-payoff contingent claim with maturity T can be characterized by its payoff
rate Xc

t , which is defined by

Xc
t = lim

ε→0+

C[t, t+ ε)

ε
,

where C[a, b) denotes the total payoff amount in interval [a, b), or equivalently

C[t, t+ ε) = Xc
t ε+ o(ε).

Note that Xc
t may depend on any value of Su for u ≤ t.

Assumption 2.9. Xc
t is bounded and continuous.

This assumption guarantees that Xc
t is integrable. Let the pair (V c

t ,∆
c
t) denote a

self-financing continuously adjusted portfolio strategy that holds ∆c
t shares of stock and

lends/borrows V c
t − ∆c

tSt dollars using the risk-free asset at time t. It is straightforward
to show by no arbitrage arguments that if a contingent claim can be replicated by a self
financing portfolio strategy, then its value must be equal to the value of the replicating
portfolio at any time.

Proposition 2.1. The time t value of the mortgage insurance policy with expiration T
and claim rate Xc

t given by (2.4)&(2.2) can be expressed as the following expectation

V c
t (St, Y

c
t ) = EQ

[ ∫ T

t

e−r(s−t)Xc
sds

∣∣∣∣St, Y c
t

]
t ∈ [0, T ]. (2.16)

The self-financing replicating portfolio strategy is (V c
t ,∆

c
t), where

∆c
t(St, Y

c
t ) =

∂V c
t (St, Y

c
t )

∂St
. (2.17)

Proof. 13 Based on the above arguments, if we can find a self-financing portfolio strategy
that pays Xc

t dollars per year at time t and has zero value at maturity T , then the policy
value must be equal to the value of the portfolio. Mathematically, if there exists a strategy
(V c

t ,∆
c
t) satisfying {

dV c
t = ∆c

tdSt + (V c
t −∆c

tSt)rdt−Xc
t dt

V c
T = 0

, (2.18)

13The logic behind this proof follows Björk[14]
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then the policy can be replicated by (V c
t ,∆

c
t) and its time t value equals V c

t . Our goal is
to find such a strategy. Let V c

t ≡ V c
t (St, Y

c
t ) be a process that is twice differentiable in St

and Y c
t , once differentiable in t, and solves the following PDE:

∂V c
t

∂t
+

1

2
σ2S2

t

∂2V c
t

∂S2
t

+ rSt
∂V c

t

∂St
− Y c

t µt
∂V c

t

∂Y c
t

− rV c
t +Xc

t = 0 0 ≤ t < T (2.19)

with terminal condition14

V c
T = 0. (2.20)

Define

∆c
t =

∂V c
t (St, Y

c
t )

∂St
.

We claim that (V c
t ,∆

c
t) defined above satisfies condition (2.18), hence is a replicating

portfolio strategy for our insurance policy.

To verify, we first apply Ito’s Lemma to V c
t (St, Y

c
t ):

dV c
t =

∂V c
t

∂t
dt+

∂V c
t

∂St
dSt +

∂V c
t

∂Y c
t

dY c
t +

1

2

∂2V c
t

∂S2
t

(dSt)
2 +

1

2

∂2V c
t

∂Y c
t

2 (dY c
t )2 +

∂2V c
t

∂St∂Y c
t

dStdY
c
t .

From (2.2), we have
dY c

t = −Y c
t µtdt.

Substitute in the differentials for St and Y c
t and combine stochastic and non-stochastic

terms, we obtain

dV c
t =

[
∂V c

t

∂t
dt+ µSt

∂V c
t

∂St
− Y c

t µt
∂V c

t

∂Y c
t

+
1

2
σ2S2

t

∂2V c
t

∂S2
t

]
dt+

[
σSt

∂V c
t

∂St

]
dWt.

By definition of ∆c
t and PDE (2.19)

dV c
t =

[
rV c

t + (µ− r)St∆c
t −Xc

t

]
dt+ σSt∆

c
tdWt

= ∆c
t

[
µStdt+ σStdWt

]
+ (V c

t −∆c
tSt)rdt−Xc

t dt

= ∆c
tdSt + (V c

t −∆c
tSt)rdt−Xc

t dt.

This is exactly the differential in condition (2.18). Another condition V c
T = 0 is guaranteed

by (2.20). Therefore, the V c
t that solves (2.19) & (2.20) is the value of our insurance policy.

14Boundary conditions for St = 0 and St = ∞ are not specified here as we assume they are always
satisfied by the solution.
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By Feynman-Kac representation,

V c
t (St, Y

c
t ) = EQ

[ ∫ T

t

e−r(s−t)Xc
sds

∣∣∣∣St, Y c
t

]
t ∈ [0, T ].

2.4 A Numerical Example

In this section we demonstrate the delta hedging strategy using a numerical example. The
example is based on discrete default and discrete rebalancing. We initially assume the
prices of the security, which equals the house prices, follow the geometric Brownian motion
we have defined and simulate the prices accordingly. Since we hedge in the model, the
result will be a verification of the delta hedging theory and should produce small hedging
error. We later consider an alternative model for security prices. We do not use real data
at this stage.

We first specify the conditional default probability function pt(St, U
d
t−), the loss sever-

ity function Lt(St, U
d
t−), and other parameter values. We then determine the numerical

methods for calculating V d
t (St, Y

d
t ) and ∆d

t (St, Y
d
t ). At last we present and analyze our

results.

2.4.1 Functions and Parameter Values

As suggested by Case and Shiller[25], the probability of default can be modelled as a
function of current loan-to-value (CLTV) ratio. We denote CLTV by R, i.e.

Rt =
Ut−

Ht

=
Ut−

St
,

and

pt(Rt) = pt

(
Ut−

St

)
= pt(St).

Note that Rt is left continuous. If we further assume the function is time invariant15, then

pt(St) = p(St).

15The review[50] reports that mortgage age is a significant risk factor of default probabilities after
accounting for the effect of current loan-to-value. Our time invariance assumption is only for simplification.
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Parameter Value Description

H0(S0) $400,000 initial house price (security price)
R0 95% initial loan-to-value
rc 6% contract rate
T 15 loan term (in year)
h 1/12 monthly payment

r 5% risk-free rate
µ 6.4% expected return on the security
σ 20% volatility of security price

Default probability parameters
α0 3

β0
-7.0 for R ≤ 1.2

intercept
-3.4 for R > 1.2

β1
3.0 for R ≤ 1.2

coefficient of current loan-to-value
0.0 for R > 1.2

Table 2.1: Benchmark parameter values

The review[50] uses a logistic model for default probability. In our simplified version, we
assume

p(Rt) =
eβ0+β1Rt

α0 + eβ0+β1Rt
.

We assume the loss is equal to the difference between outstanding loan balance and property
value (stock price), if positive; that is

Lt = max(Ut− −Ht, 0) = max(Ut− − St, 0)

To implement the delta hedging strategy numerically, we need a benchmark insurance
contract as well as plausible parameter values. The values for default probability related
parameters are adapted from 2011 FHA actuarial review. The benchmark parameter values
are summarized in Table 2.1. In this example, we use a relatively high volatility for the
security to study the effectiveness of discrete rebalancing in a volatile market.

Figures 2.3 shows a randomly generated scenario of security prices. We simultaneously
plot current LTV and loan survival probabilities. The house prices fall by more than 25%
in the first two years, causing the current LTV rises to above 1.3. The borrower becomes
underwater and the probability of default increases sharply, indicated by the fast decline
of survival probabilities. House prices increase later and then decline again but the effect
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Figure 2.3: A randomly generated scenario of security prices and the corresponding current
LTV and survival probabilities.

of this decline on default is less strong than the effect of the decline in the beginning years.
This is because by the time of the second house price decline the borrower has already
accumulated some equity in the house such that the current LTV is not as high as in
the beginning years. It is also expected that the current LTV and house prices move in
opposite directions. In the numerical example followed, we simulate 1000 scenarios for
security prices.

2.4.2 Calculating Policy Value and Delta

To construct the hedging portfolio we need to calculate V d and ∆d. If t is a rebalancing
time (not necessarily a payment time), then follow the previous analysis,

V d
t (St) =

T/h∑
i=b t

h
c+1

e−r(ih−t)EQ
[
Xd
ih

∣∣∣S0, Sh, . . . , Sb t
h
ch, St

]

= EQ

[
T/h∑

i=b t
h
c+1

e−r(ih−t)Xd
ih

∣∣∣∣S0, Sh, . . . , Sb t
h
ch, St

]
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where Xd
ih is defined in (2.3). We use the sequence S0, Sh, . . . , Sb t

h
ch instead of Y d

t to

emphasize the dependence of policy value on stock prices. The process Y d
t does not appear

explicitly in the numerical calculation. We use Monte Carlo simulation to estimate this
expectation. If we write

V d
t (St) = EQ[W ] and v = varQ(W ),

and n paths of stock price are simulated, then by central limit theorem, the estimated
policy value, V̂ d

t (St), asymptotically follows a normal distribution with mean V d
t (St) and

variance v/n. The formula for ∆d
t is given by Eq.(2.15). If we substitute in the values of σ0

and σ1, the right hand side of (2.15) can be treated as the total derivative of policy value
with respect to stock price. We approximate it by forward difference

∆d
t (St) =

∂V d
t (St)

∂St
≈ V̂ d

t (St + ε)− V̂ d
t (St)

ε
= ∆̂d

t (St). (2.21)

Both V̂ d
t (St + ε) and V̂ d

t (St) are calculated based on the same set of random paths. We
want to choose an ε to minimize the difference between actual and estimated ∆d

t . Follow
Glasserman[41],

ε∗ =

(
2v

[V d
t
′′
(St)]2n

) 1
3

minimizes the mean square error of ∆̂d
t (St). For simplicity, we set ε = (2v/n)1/3. Whenever

V d
t (St) < 0.01, both V d

t (St) and ∆d
t (St) are set to zero until T .16 We use 1000 simulations

to estimate policy values V d whenever needed.

2.4.3 Results and Analysis

As shown in section 2.3.1, the delta hedging strategy is perfect in a frictionless market
where securities can be traded continuously without transaction cost. This means with an
initial premium equal to the time-zero policy value being charged at loan origination and
the corresponding hedging portfolio being constructed and continuously rebalanced over
time, the insurer’s net position in the policy (i.e. the value of the hedging portfolio) is
precisely zero at the end of loan term after all claims have been paid.

16This usually happens between year 6 and 8. We assume in this case the policy value becomes zero
and no more hedging is needed. In addition, the calculation of ∆̂d

t (F
T
t ) is difficult and inaccurate when

V dt (St) is small.
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Frequency Mean(SE) Std Min 10% Median 90% Max
weekly 18(35) 1111 -3835 -1372 62 1381 4082
biweekly 80(47) 1499 -6760 -1833 141 1870 5919
monthly 108(63) 1989 -8569 -2358 174 2492 7798

Table 2.2: Statistics of HEs based on 1000 independent scenarios. U0 = 380, 000, V d
0 ≈

5551(1.46% of U0). SE stands for standard error.

However in practice, as well as in our implementation, continuous trading is not feasible
and policy values and deltas are approximated numerically. Consequently the value of the
hedging portfolio at the end of loan term deviates from zero. Discount this value to the time
of loan origination using risk-free rate and call it hedging error (HE). Since HE depends on
security prices, we can obtain the distribution and statistics of HE using the 1000 security
price paths we have simulated. We consider different rebalancing frequencies, modifications
of hedging strategies, alternative parameter values and security price models.

Rebalancing Frequency

The policy value at origination as a percentage of loan size U0 is 1.46%, with 95% confidence
interval of (1.4553%, 1.4660%).17 For each scenario of security prices, we consider monthly,
biweekly and weekly rebalancing. The statistics of HE are shown in Table 2.2.

The mean HEs are all positive but tend to zero as frequency increases. The results
are expected and confirm the validity of delta hedging theory. In the case of weekly
rebalancing, the p-value for the null hypothesis “mean HE is zero” is 0.62, indicating that
zero mean HE cannot be rejected. The large absolute values of minimum and maximum
imply ineffectiveness of discrete rebalancing in some scenarios.

To visualize how the hedging portfolio tracks policy value, we pick one scenario and
simultaneously plot portfolio and policy values in the first 8 years of the mortgage term.
Figure 2.4 shows that weekly rebalancing performs much better than biweekly and monthly
rebalancing and generates a small positive HE. It is also clearly demonstrated in this figure
that policy values move in opposite direction as security prices. Unless otherwise specified,
we use weekly rebalancing for the rest of this section.

17We do not use the same initial value and delta for all scenarios but estimate them independently. The
difference is caused by Monte Carlo error. This should not have a significant effect on the analysis of HR.
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Figure 2.4: A scenario where weekly rebalancing provides a good hedge.

Hedging Period and Proportion

We now consider some modifications of delta hedging, including hedging only in the first
3 years, hedging 50% of the policies, and no hedge. The results are shown in table 2.3.

We can make the following observations: 1) Full Hedge produces the mean HE closest
to zero, and HEs are about symmetric around zero. HEs from other strategies are more
skewed with mean deviated significantly from zero. 2) All modified delta hedging strategies
produce positive mean HE but have a heavy lower tail. This implies the insurers benefits
in most cases but faces greater risk of extreme loss. These strategies are vulnerable in a

Hedging strategy Mean(SE) Std 10% Median 90% Skewness
full hedge 18(35) 1111 -1372 62 1381 -0.09
first-3-year 330(113) 3564 -1636 378 3345 -2.54
50% of policies 795(138) 4367 -3923 2412 3278 -3.40
no hedge 1572(272) 8608 -7523 5100 5791 -3.48

Table 2.3: Statistics of HEs based on 1000 independent scenarios. U0 = 380, 000, V d
0 ≈

5551(1.46% of U0). SE stands for standard error.
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Figure 2.5: A scenario where modified hedging strategies fail.

distressing market where protection is most needed. Figure 2.5 shows such a scenario. 3)
HEs from no hedge are positive in 804 scenarios, 307 among which produce HEs equal to
the initial policy value, indicating zero claim. One may conclude that under this particular
model no hedge generates more profit than full hedge in most scenarios (806 out of 1000),
but this does not necessarily imply no hedge is a better strategy than full hedge from a
risk management perspective. Section 2.3.4.4 discusses this issue in more detail.

Test for Robustness

We consider alternative values for contract rate rc, initial LTV R0, volatility of security
price σ and sensitivity of default to current LTV β1 to test the robustness of delta hedging
under discrete rebalancing. One parameter is changed in each case. Table 2.4 indicates
that initial policy value is sensitive and increasing in all four parameters. None of the HE
means is significantly different from zero at a 95% level based on a student t test.

Full Hedge vs. No Hedge

The goal of hedging is to mitigate house price risk. The non-zero HE of full hedge is a
result of discrete trading; it can be affected by house price fluctuations but the dependency
is different from and weaker than the dependency of HE from no hedge on house prices.
In the benchmark, we have a bullish market where property value increases in most of the
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V d
0 (% of U0) HR Mean(SE)[% of V d

0 ] HR Std[% of V d
0 ]

Benchmark 5551 (1.46) 18(35)[0.32] 1111[20.00]
rc = 0.1 7204 (1.90) 40(39)[0.55] 1218[16.91]
R0 = 0.85 2528 (0.74) 6(23)[0.22] 725[28.69]
σ = 0.15 2060 (0.54) 16(18)[0.75] 581[28.19]
β1 = 3.5 7974 (2.10) -65(50)[-0.82] 1579[19.81]

Table 2.4: U0 = 380, 000, the last two columns are mean and standard deviation of HEs.
Benchmark: rc = 0.06, R0 = 0.95, σ = 0.20, β1 = 3.0

V d
0

Full hedge No hedge out of
Mean(SE) VaR CTE Mean(SE) VaR CTE 1000

Benchmark 5551 18(35) -1372 -2009 1572(272) -7523 -20197 194

µ = 0.03 5530 -18(37) -1416 -2165 -1965(429) -19062 -37131 310

µ = 0 5531 -33(41) -1558 -2436 -6625(540) -32441 -47623 458

σ = 0.30 16316 -4(63) -2549 -3657 2685(634) -25637 -46282 287

σ = 0.40 29849 -67(97) -3968 -5739 3779(957) -43258 -64209 340

RSLN 1 1624 -324(72) -3017 -5895 -900(220) -6088 -18158 232

RSLN 1877 -433(80) -3627 -6712 -1635(278) -9446 -23823 271

RSLN 2 2770 -487(97) -4788 -7401 -3395(402) -16420 -36193 386

Table 2.5: Both VaR and CTE are at 90% level. The last column is the number of scenarios
where full hedge has a larger HE than no hedge. Monthly rebalancing for RSLN model.
Benchmark: µ = 0.064, σ = 0.20.

world and no hedge tends to outperform full hedge. To compare the two strategies in less
optimistic markets, we change the model parameters µ and σ and calculate the mean, 90%
value at risk (VaR) and conditional tail expectation (CTE) of HEs, as well as the number
of scenarios where full hedge generates higher HE than no hedge.

The results are shown in the first five rows of Table 2.5. Full hedge becomes more
advantageous when µ is reduced or σ is increased, implied by the relative small absolute
values of VaR and CTE. For no hedge, an increase in volatility increases mean HE but also
magnifies tail risk. VaR and CTE from no hedge are ten times of those from full hedge.

In addition to geometric Brownian motion, we consider a regime switching lognor-
mal (RSLN) model for security prices. A two regime RSLN model consists of regime 1,
representing a thriving environment with higher drift and lower volatility and regime 2,
representing an opposite depressing environment. Prices follow geometric Brownian mo-
tion in each regime with its specific parameters. To simplify simulation, we assume the
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regime switching process is observable.

The market under a RSLN model is incomplete (see Hardy[45]) because the regime
switching process is not replicable. It follows that there does not exist a perfect hedging
strategy.18 For the purpose of demonstration, we keep using delta hedging. Policy value
is calculated by equations (2.14) & (2.13) and delta is approximated using (2.21). Due
to market incompleteness, there are many choices of risk neutral measures. We choose
a simple Q such that the drifts in both regimes equal risk-free rate. Note that Q is
used for policy pricing and delta calculation, and P is used for simulating scenarios of
security prices. Figure 2.6 shows our RSLN model with assumed parameter values. To
save computational cost, we assume monthly rebalancing and regimes can only be switched
at the end of a month. Transition probabilities at month ends are denoted by p12 and p21

and are independent of stock prices.

Figure 2.6: Two regime RSLN.

The last three rows of Table 2.5 show the statistics of HEs when security price follows
RSLN model starting from regime 1, the stationary distribution of regimes and regime 2.
Mean HE deviates significantly from zero, suggesting the imperfectness of delta hedging in
these cases. Although no hedge is more likely to generate a higher return than full hedge,
its average return is lower and it faces severer losses in extreme scenarios.

18There are hedging strategies dealing with incomplete market, for example mean variance hedging and
utility based hedging, but none of them can perfectly replicate the payoff.
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2.5 Conclusion

In this chapter, we examine the use of a traded security to hedge the default risk in a
mortgage insurance contract. In the framework of our simple theoretical model and very
strong assumptions, we show the ability of hedging in mitigating default risk arises from
house price fluctuation. Ignoring prepayment and basis risk, we find that hedging errors
are not significantly different from zero, and are mainly caused by discrete rebalancing and
numerical calculation.

There are several reasons why hedging is not considered as a risk mitigation in the
current mortgage and mortgage insurance industries. First, there is not a suitable hedging
instrument in the current market. The existing property index derivatives markets are not
liquid and the derivative prices are not predictable. Second, the relation between house
price and insurance claim is complex. The changes in individual house prices are different
from the changes in the index due to basis risk. Third, there are other risks other than
house price risk embedded in a mortgage or mortgage insurance contract. For example,
the prepayment risk which is closely related to interest rates rather than house prices.

The benefit of our study is to disentangle the factors that currently make hedging
impractical. To the extent that future innovations and development in the housing finance
market remove or reduce the role of these factors, hedging will become feasible.
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Chapter 3

Property Index-Linked Mortgage

In this chapter, we discuss a new design of mortgage contract – Property Index-Linked
Mortgage (PILM). A notable feature of PILM is that mortgage balances and payments
are linked to an appropriate property index so that the borrower repays less when the
value of the mortgaged property declines. The intuition behind is to reduce the borrower’s
propensity to default when he/she has a negative equity position in the mortgage loan. The
approach we take to analyze PILM is different from those taken by other researchers. We
take the borrower’s perspective and analyze how the borrower’s incentives change under a
PILM compared to a standard FRM. The borrower’s utility, as well as the lender’s cash
flow, then depends on the action the borrower takes regarding the mortgage. The borrower
may choose to continue to repay, default or refinance. Our multiperiod utility optimization
model is a simplified life cycle model. The results show that within a wide range of plausible
parameter values, the borrower and the lender of a PILM can both be better off than those
of a FRM.

Section 1 provides some background on PILM, including motivation, recent proposals
and a discussion of the existing studies. Section 2 specifies the three mortgage contracts
that we will study and compare in detail in later sections. They are one standard FRM
and two designs of PILM. In section 3, we setup the borrower’s problem mathematically
and provide a method to solve it. We present the baseline numerical results in section 4
and use alternative parameter values in section 5. Section 6 concludes.
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3.1 Motivation, Literature Review and Discussion

This section discusses the causes and cost of default. They are the motivation for PILM. We
expect PILM to be a more efficient design than FRM when negative equity is a triggering
event of default and default is costly to the lender and/or the borrower. We then review
three recent proposals of PILM and discuss the limitation of these studies.

3.1.1 Motivation

The effectiveness of PILM is based on two assumptions: 1) low (negative) equity leads
to default, and 2) default is costly. When both of the assumptions hold, reducing the
borrower’s obligation at adverse times should lead to a lower default propensity and hence
a lower default cost. The use of PILM is justified if the savings from default cost exceed
the reduction in mortgage payment. We start with a discussion of “default triggers”.

The Causes of Default

Researchers have been trying to identify the causes of default since 1990s. Studies1 em-
ploying different frameworks, statistical methods and data sets draw different conclusions,
but the majority of them focus on two factors: negative equity and financial illiquidity.
Negative equity refers to the situation where a borrower owes more than the mortgaged
property is worth. It is usually caused by a significant decline in property value. Financial
illiquidity directly affects a borrower’s ability to repay the loan. This could be a result
of adverse life events such as loss of job or illness. These events may exhaust not only a
borrower’s income and savings, but also the ability to refinance. It is beyond the scope of
this thesis to study in detail which of the two factors is more influential in causing mort-
gage default, but summarizing some existing results is necessary since if negative equity is
irrelevant to default, reducing loan balance could be useless in preventing defaults.

Kau et al.[57] and Ambrose and Buttimer[2] establish a contingent claim framework
based on option pricing theory, assuming the borrower treats default as a financial option
with property value and mortgage rate being two underlyings. For a given mortgage rate,
the borrower defaults as soon as the property value is below some boundary.

Deng[30] incorporates the option view into a competing risk model and estimates the
explanatory power of some important factors such as option values and unemployment

1Gerardi et al.[40] list a series of studies that are related to the causes of defaults.
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rate. The results show that the value of the put option, which increases when property
value declines, is statistically significant in explaining the probability of default. Order[69]
summarizes some studies using different data sets and models, showing that both equity
and FICO score (indicator of adverse events) were strong indicators of default propensity.
By using credit card utilization and combined loan-to-value, Elul et al.[35] conclude that
both negative equity and illiquidity are significantly associated with default and the two
factors interact with each other.

The 2011 FHA actuarial review[50] follows the approach of Deng et al.[31] and finds
that negative equity is a significant factor in determining loan status transition. Factors
measuring a borrower’s liquidity, such as unemployment rate and debt-to-income ratio, are
not statistically significant until 2012. In addition to raising default propensity, negative
equity also hinders voluntary cure of delinquent loans, as Goodman[42] argues “..., becom-
ing delinquent can trigger a re-evaluation of financial circumstances. At that point, curing
becomes an economic decision...”.

Despite the traditional view that negative equity is a necessary but not sufficient con-
dition for default,2 the notion of strategic default starts attracting people’s attention.3

Strategic default refers to default at the time when the borrower has the ability to make
payments but does not choose to. Bhutta et al.[12] conclude that borrowers do not vol-
untarily walk away until their properties were deeply underwater, say, the loan balance is
150% of the value of the property. Guiso et al.[43] analyze strategic default using survey
data. They find that 26.4% (35.1%) of defaults were strategic in 2009 (2010), and suggest
that “strategic defaults represent an important fraction of defaults when home equity is
negative”. They also find that the borrower’s propensity to default strategically increases
with the size of equity shortfall and there is a risk of social contagion that knowing someone
had defaulted strategically increases the homeowner’s willingness to default strategically
by 51%. This means when borrowers are increasingly aware of strategic default, controlling
the extent of negative equity becomes important in reducing defaults.

Cost of Default

There are both monetary and nonmonetary costs associated with default. To a borrower,
monetary cost includes 1) a worse credit leading to higher financing cost in the future,
2) recourse in states with deficiency statutes, 3) moving, relocation and searching for
new housing, and 4) giving up the potential of property value increase in the future.

2See for example Foote et al.[37].
3Also known as “ruthless default”, or “walk-away default”. The term “strategic default” was first

searched on Google in 2009.
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Nevertheless the borrower enjoys the benefit of free rent during foreclosure period, which
may last for 6-12 months. Nonmonetary cost, such as sentimental attachments to homes,
the bad feeling of doing something immoral and social stigma, is difficult to quantify and
varies among borrowers.

Lenders would consider the use of PILM only when they face a high cost of default
or foreclosure. Brueggeman and Fisher [17] list various costs associated with default, and
Ambrose and Capone[5] conclude that foreclosure is the most expensive default alternative
the lender. Explicit cost incurred during the foreclosure process includes 1) property taxes
and hazard insurance, 2) property management, 3) interest accrued on loan balance, 4)
legal and administrative fees and 5) sales cost. Furthermore, the process of foreclosure
can take more than one year. Ambrose et al.[4] show that a long delay of foreclosure
provides the borrower incentives to default and live rent free. Foreclosure alternatives may
reduce the total cost, but lenders could be exposed to moral hazard because of revealed
information; and if the negotiation of an alternative fails the total cost just increases.

There are different methods to sell the foreclosed property and the lender always has
the opportunity to purchase it. Public auction is a widely used method. If the lender
wins the auction,4 the property then becomes a real estate owned (REO) property.5 It
is well known that a foreclosed property or REO is likely to be sold at discount. This is
a substantial cost of foreclosure faced by the lender. Pennington-Cross[70] finds that on
average foreclosed properties appreciate 22% less than other properties, and Campbell et
al.[22] estimate a price discount of 27% in the presence of foreclosure. One explanation
of this discount is the property’s physical depreciation during foreclosure period, caused
by lack of maintenance or vandalism. Also the lender has the incentive to sell an REO
as quickly as possible, since REO is a nonperforming asset that requires constant input
(maintenance) while generating no output (interest or rent). As a result, the lender has to
accept a discount in the illiquid housing market. All costs combined, the lender could lose
30% to 60% of the outstanding loan balance in a foreclosure.

Researchers have also been concerned about the negative externalities of foreclosure.
Besides the social contagion of strategic default mentioned in the previously, foreclosure
tends to lower the prices of nearby houses. Campbell et al.[22] estimate that a typical
foreclosure in 2008 reduces the total prices of neighboring houses by $477,000. Anenberg
and Kung[8] use listing data to show that properties located close to a foreclosed property

4The data used in Campbell et al.[22] indicate that lenders acquire properties in 82% of the cases.
5Stark[79] describes typical foreclosure processes in jurisdictions that either require a judicial sale

or permit a non-judicial sale. Johnson[54] provides a hypothetical example illustrating the detail of a
foreclosure process and explains the reason behind certain phenomenon, for example, why the lender bids
at loan balance, and why in many cases no one bids higher even the property is worth more.
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sell at a 1.6% discount on average. Using foreclosure law as an instrument, Mian and
Sufi[65] calculate that “house prices declined by 1.0 percentage points for every 1 percent
of home owners going into foreclosure between 2007 and 2009”. What is worse is that lower
house prices lead to more defaults since borrowers in the same neighborhood are deeper
underwater. This vicious cycle creates a downward spiral of house prices.

Overall, the cost of foreclosure is considerable. To prevent default, the lender should
try to keep the borrower motivated in making payment. This could be done by reducing
the borrower’s loan balance and payment when house prices decline. The house price risk is
then shared between the borrower and the lender, as the lender receives less payment when
house prices fall. Since individual house prices are not readily observable without expensive
ongoing appraisals, the borrower’s payments are linked to a suitable property index rather
than the exact value of the mortgaged property. This type of mortgage contract is called
a property index linked mortgage (PILM). Next we review some recently proposed designs
of PILM.

3.1.2 Recent Proposals

The three proposals to be reviewed are adjustable balance mortgage (ABM) by Ambrose
and Buttimer[3], continuous workout mortgage (CWM) by Shiller et al.[77] and shared-
responsibility mortgage (SRM) by Mian and Sufi[65].

Adjustable Balance Mortgage

According to Ambrose and Buttimer[3], an ABM is fully amortized at origination using a
fixed contract rate and term. The mortgage balance is adjusted according to the return
of a local property index capped by the originally scheduled balance. Let H0 denote the
initial property value and

Ht =
It
I0

H0

be the property value at time t calculated based on the index It. Let Ut be the originally
scheduled balance at time t. Then at a predetermined adjustment date, the balance is
adjusted to

U∗t = min[Ht, Ut]

and loan payments are revised by re-amortizing U∗t over the remaining term. By design
U∗t is capped by Ut, hence the revised loan payment is never higher than the initial level
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but has the potential to be lower. This suggests that the ABM be sold with a premium
over the corresponding FRM that has the same contract rate and term as the ABM.

Ambrose and Buttimer price this premium by assuming the ABM either has a higher
contract rate or a higher initial points. They model the value of a mortgage loan as a
contingent claim on mortgage rate and property value (Ht). The value of the mortgage
is then solved backwards. Their results show that for a 95% LTV mortgage, quarterly
balance adjustment reduces the value of default option to zero while only raises contract
rate by 42 basis points, or equivalently, raises the initial points by 71 basis points. They
also find that when lenders face high default cost, they would even be willing to offer the
contract rate lower than the corresponding FRM.

The authors qualitatively analyze the pros and cons of using a local property index
as an approximation to the property value. Using an index eliminates the costly and
time-consuming independent appraisals, as well as the risk of moral hazard. If instead the
individual property value is used, borrowers may have the incentive to intentionally reduce
the property value or alter the appraisal result in order to reduce loan payment.

One major drawback of using an index is basis risk. In the case where the return of
the index is lower than that of the property, the mortgage balance may be over adjusted
and the lender bears all the risk. The authors argue that this risk could be mitigated
through portfolio effects and hedging, if the index well captures the average movement
of house prices and the lender has a portfolio of ABMs that reflect this average. In the
opposite case where the return of property is lower, the balance may be adjusted higher
than the actual property value and the borrower does not get full benefit from the ABM.
Nevertheless the borrower is no worse off than under a standard FRM and still has the
option to default.

Continuous Workout Mortgage

The basic idea of CWM proposed in Shiller et al.[77] is similar to ABM – sharing house
price risk between the lender and the borrower. Rather than linking mortgage balance to
an index, CWM directly links payments to the index. The balance is then revised to be
the expected present value of future cash flows under some probability measure.

This approach simplifies calculation in some circumstances and admits closed form
pricing formulas. It is also more flexible in facilitating additional features. For example,
under continuous repayment assumption, the mortgage repayment rate of a CWM with
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partial protection and protective threshold is given by

M c
t (Ht) = ρmin

{
1, 1− κ

(
1− Ht

K

)}
,

where M c
t is the continuous repayment rate, ρ is the cap of repayment that could be equal

to or above the originally scheduled level, κ is the proportion protected and K is the
threshold below which the adjustment kicks in. CWM can be priced by finding a set of
contractual parameters (contract rate, cap of repayment rate, etc.) that equates the time
zero value of cash flows and the original loan amount.

The authors have also mentioned prepayments due to non-financial reasons and its rate
is modelled by a constant intensity which is independent of housing market and balance
adjustment. Prepayment in this sense is a risk to long term investors because it induces
mismatch of asset and liability. The risk is also borne by standard FRM contracts and can
be mitigated by imposing a prepayment penalty. However, it seems prepayment risk could
be more serious in a PILM when mortgage balance or payment is adjusted downwards.
This is discussed shortly.

Shared-Responsibility Mortgage

The SRM proposed by Mian and Sufi[65] is similar to CWM that mortgage payment is
linked to property index. The difference is that when property value declines, both mort-
gage payment and loan balance are adjusted downwards proportionally from the originally
amortized values. To charge for this downward protection, the authors suggest that the
lender takes a small share, say 5%, of the capital gain from the property when it is sold or
refinanced if the appraised value is higher than its initial price.

The authors set their discussion of SRM in a broad economy. First, it prevents foreclo-
sure. The current LTV is never lower than the initial LTV by design so borrowers would
rather sell the property than being evicted. Less foreclosures mitigates the vicious cycle
of house price decline. Second, it maintains household consumption. Households tend to
cut down consumption when their net worth reduces. By impeding house price decline
and shifting a significant portion of equity loss from borrowers to lenders who have a low
marginal propensity to consume, SRM helps borrowers keep their consumption. Third, it
prevents job loss by retaining household consumption. The saved jobs further contribute
to consumption and more job saving. Last but not least, SRM may even help prevent the
housing bubble. Since SRM lenders share more housing risk, they would be more wary
about the housing market. If they believe the prices are going to fall they may raise mort-
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gage rate to compensate for the risk, which results in less loan origination and reduction
in housing demand.

3.1.3 Discussion

Although the three designs of PILM are proposed, some issues are untouched or need more
extensive analysis. This subsection discusses qualitatively prepayment risk, basis risk, and
modelling.

Prepayment Risk

Borrowers prepay mortgages for various reasons: some are non-financial, such as job re-
location, and some are financial, such as taking advantage of a lower rate. To lenders,
prepayment may cause mismatch between asset and liability, and a reduction in expected
return when market interest rate falls, hence is treated as a risk. This risk is borne in both
FRM and PILM contracts, but PILM could suffer more. The prepayment risk we discuss
here is referred to those borne exclusively by PILM – risks that borrowers prepay because
of (over) adjustment of loan balance/payment. This type of prepayment is “strategic”, for
it is financially motivated and takes advantage of balance adjustment.

In contrast to principal write-down, PILM mortgage adjustment is not permanent –
payment reverts to the original level when index rises. Consider the scenario in Figure
3.1 where Ut is the originally amortized balance and Ht is the property value estimated
from the index. Let t1, t2 and t3 be three adjustment dates. According to the balance
adjustment scheme of ABM, balances are adjusted to U∗t1 = Ht1 , U

∗
t2

= Ht2 and U∗t3 = Ut3
at t1, t2, t3. The lender’s cost is then the reduction of payments between t1 and t3, which
is typically smaller than either Ut1 − U∗t1 or Ut2 − U∗t2 . However a prepayment at t2 could
turn the temporary adjustment to a permanent one and increases the cost to Ut2 − U∗t2 .
Such strategic behavior reduces the efficiency of PILM because it substantially increases
the lender’s cost. The risk of strategic prepayment can be exacerbated by the presence of
basis risk.

We therefore conjecture that the effect of balance adjustment is two folded. The bor-
rower’s propensity to default is reduced, and the propensity to prepay is increased. The
increase in propensity to prepay is also pointed out in Shiller[75]: “people might strategi-
cally prepay their mortgages at a time when home prices start rising strongly”. Low default
propensity is desirable but the high prepayment propensity is a negative side effect. It is
difficult to estimate how strong this side effect could be, for PILM has not been put into
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Figure 3.1: Basis risk of PILM: actual property value (H∗t ) is higher than index estimated
value (Ht). The original balance is Ut and the adjusted balance is the minimum of Ut and
Ht.

practice yet. It is suggested by Shiller et al.[77] that the lender can impose a prepayment
penalty to mitigate this potential risk.

Basis Risk

Basis risk is discussed in Ambrose and Buttimer[3], but I think it is worth a more extensive
analysis. In the context of PILM, basis risk refers to the risk arising from the situation that
the value of a property is not perfectly correlated with the property index. This is the case
in reality because the value of a property depends on many individual specific factors such
as property type, household utilization, maintenance, etc., hence is different from one to
another. We can further assume that borrowers as property occupiers have more detailed
information about their properties than lenders, so the actual values of the properties are
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known to them but not to lenders.6 Basis risk is not a problem to FRM lenders but may
become one to PILM lenders, as it can lead to borrower strategic behavior.

We use the following example to demonstrate the effect of basis risk on PILM. Assume
the contract is an ABM and the property and the index start with the same initial value
H0. Suppose at an adjustment date t, Ht < Ut and the loan balance is adjusted to Ht.
The existence of basis risk implies that rather than the property and the index having the
same time-t value of Ht, they have different values. We assume the actual property value
is H∗t and it is only known to the borrower. As a result, if H∗t < Ht the borrower may
opt for strategic default because he/she is still underwater; if H∗t > Ht the borrower may
choose to prepay to realize an extra gain of H∗t − Ht. These behaviors are at the cost of
the lender and may reduce the efficiency of PILM.7

When considering mitigating basis risk, a lender should not worry much about the
situation of H∗t < Ht, as long as the difference is not too large. Although the borrower
has negative equity after adjustment, they at least get partial benefit from PILM and
their propensity to strategic default is reduced. The efficiency loss in this situation is
the reduction in benefits due to under-adjustment. If the borrower defaults, the lender’s
position is not worse than the corresponding FRM lender, because in most cases the lender’s
claim on the collateral (equals loan balance plus default cost) is more than what can be
recovered.

A lender should be more concerned about the situation of H∗t > Ht. In this case loan
balance is over adjusted. The loss to the lender is limited as long as the loan stays current,
since the adjustment is only temporary. However the borrower may behave strategically
against the lender. Consider again the scenario in Figure 3.1 where the index depreciates
faster than the property. If an ABM borrower does not prepay or default between t1 and t3,
the loss to the lender is the extra reduction in repayment between t1 and t3, which depends
on H∗t1 −Ht1 and H∗t2 −Ht2 but is smaller than both. If the borrower defaults, the extra
loss due to basis risk is positive when the net recovery from foreclosure is higher than Ht.
This does not happen unless the property value is deviated substantially from the index
and the foreclosure cost is mild. The worst scenario to the lender is that the borrower
prepays at some time between t1 or t3. The lender incurs an instant extra loss of H∗t −Ht

due to over-adjustment. In addition, refinancing becomes easier to the borrower as his/her

6Borrowers can have their properties appraised but lenders may not be able to appraise all properties
in their mortgage portfolios.

7Similar risk also exists in loan modification. Foote et al.[36] define “Type I error” as a lender fails
to modify a loan and the borrower defaults, and “Type II error” as a lender modifies a loan but the
borrower would not have defaulted without the modification. Both errors induce losses. Type I and II
errors correspond to the situations of H∗t < Ht and H∗t > Ht respectively.
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equity position reverses from negative to positive. Consequently, basis risk exacerbates
prepayment risk.

To summarize, basis risk reduces the efficiency of PILM and over-adjustment is espe-
cially unfavorable to the lender. There is not much can be done by the lender to mitigate
this risk but the analysis above shows that the loss may not be large, and prepayment
penalty may be helpful in preventing strategic prepayment due to over-adjustment. Basis
risk is discussed in more detail in Chapter 4.

Modelling

Contingent claim models have been used in mortgage literature for decades. It is appealing
because its mathematical formulation is relatively simple, usually in the form of stochastic
partial differential equations. The solution sometimes admits closed form expression. There
are also well developed numerical methods for solving differential equations.

However these models have drawbacks. First, they typically require a complete market
where all risks are tradable. The two important risks are house price risk and interest
rate risk. Unfortunately there is no financial instrument currently available for effective
house price hedging. The derivative market is not liquid and REIT stocks are not closely
correlated with house price indices.

Second, these models cannot account for borrower heterogeneity. Borrowers with d-
ifferent risk aversions, patience in consumption, willingness to repay may default under
different market conditions. But the decision rule derived from contingent claim models
are identical for all borrowers.

Third, it is not easy to incorporate non-strategic default into a contingent claim model.
For example, financial illiquidity is usually caused by an accidental event that is beyond
the control of the borrower. This means that default may occur when economic boundary
conditions are not satisfied.

Alternatively, a multiple state model, such as the one introduced in chapter 1, describes
a borrower’s behavior more flexibly. For any given levels of property value and mortgage
rate, there are positive probabilities for the borrower to default, prepay and stay curren-
t. Using probabilities instead of boundaries captures the heterogeneous behavior among
borrowers. The model has no requirement on financial market and the probabilities have
accounted for default and prepayment due to non-financial reasons.

Another choice of model is utility optimization model. We can assume the borrower
maximizes his/her expected utility of life time consumption by choosing among the mort-
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gage related actions (default, prepay, etc.). Such model is also flexible enough to analyze
the effect of different borrower characteristics on default.

3.2 Contract Specification

FRM contract has long been the dominant type of contract in the US mortgage market.
The payment under a FRM is fixed at loan origination and independent of the value of
the mortgaged property. The PILM contracts we will specify have the feature that their
payments and balances are contingent on the property value – it is reduced when property
value declines (significantly).

In this section we first give a general discussion about some designing issues of PILM
contract. We then specify, with mathematical terms, one FRM contract and two different
designs of PILM contracts that we will study in the rest of this chapter. At last we provide
a comparison between the two PILMs using a numerical example.

3.2.1 PILM Design

As suggested in the existing proposals, there are two choices of what to adjust: balance
and payment. For balance adjustment, lenders may reset the balance such that the CLTV
never exceeds a predetermined target level. In ABM, the level is 100%. A higher target
level could be a better choice since empirical studies have found that borrowers do not
default until the loans are deep underwater, and in addition it may reduce prepayment
risk as discussed in the previous section.8 For payment adjustment, it can be adjusted in
proportion to the change in property value. The lender can set a cap on adjustment to
allow the borrower to accumulate equity when housing market recovers. The originally
amortized balance or payment can serve as this cap. The amount of adjustment should be
a function of property value, which is estimated from an index. We assume there is no lag
in index updating.

In the previous section we discussed mitigating the risk of strategic prepayment. One
way is to stipulate a prepayment penalty so that borrowers cannot lock in the reduced
balance through prepayment after a downward loan adjustment. If possible, the penalty

8For a borrower facing both illiquidity and negative equity, balance reduction may not be enough to
prevent the mortgage from default. The lender should also consider granting loan forbearance to help the
borrowers get through financial hardship. Combined with principal reduction, loan forbearance could be
more effective.
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could be prepayment-type dependent. For example, prepayment through refinancing from
the same lender with a similar PILM is exempt from penalty, and prepayment through
property sale or FRM refinancing does incur a penalty.

Since a PILM lender shares with the borrower house price risk, PILM may be sold at
a higher price than the corresponding FRM. The higher price can be in the form of

• A higher initial point. This amount is fixed at loan origination and independent of
future housing market.

• A higher contract rate. This increases payments and balances at all times. If the
adjustment cap is the originally scheduled balance, it is also increased.

• Shared appreciation. This means the lender has a claim on the property if its value
rises above its initial level at the time of loan termination. For example if the property
is sold at a higher price than the purchase price, the lender can receive a proportion
of the difference between these two prices. If there is not a sale, the lender can have
the property appraised.9

• A higher cap for balance adjustment. Under this form, a PILM borrower may face
a higher payment than a FRM borrower when the property index rises above the
initial level.10

• A higher prepayment penalty. The borrower can avoid the penalty by not prepaying
but this is desired by the lender in most cases.

In what follows, we use Ht, Mt and Bt to denote the time-t values of the mortgaged
property, the mortgage payment and the outstanding loan balance, respectively. The
formulas for Mt and Bt presented below are derived under the assumption that the borrower
does not prepay prior to time T , the term of the mortgage.

9One disadvantage is that it suffers from prepayment: a lender may never get the share if the borrower
prepays before house price rises. The problem is that shared appreciation is not front-loaded and a
borrower can avoid paying the surcharge by terminating the contract at any time. Using the evidence
from life insurance, Hendel and Lizzeri[46] finds that front-loading of premiums is efficient in a long-term
unilateral commitment contract. The situation is similar in a mortgage loan. Shared appreciation may
further induce adverse selection when there is basis risk. Borrowers having high-valued properties are
more likely to prepay, leaving the lender a pool of mortgages with low collateral values. On the other
side, shared appreciation makes borrowers reluctant to refinance at good times in order to avoid losing the
share, hence prevents equity withdraw when property value is high.

10A drawback of a higher adjustment cap is that it takes longer for a borrower to move into a positive
equity position after experiencing a depressing market.
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3.2.2 Fixed Rate Mortgage (FRM)

In a FRM contract, the loan is fully amortized at origination such that the borrower repays
the same amount at each time point. The mortgage payment due at time t is given by

Mt = αH0
ER0

1− (1 + ER0)−T
, t = 1, . . . , T,

where α is the initial loan-to-value (LTV) ratio and ER0 is the mortgage contract rate for
a FRM contract originated at t = 0. Note that for a FRM contract, the value of Mt is
determined at origination and does not change over time. The amount of the outstanding
balance declines to zero over the term of the loan from the initial amount of αH0. It is
a deterministic function of time and thus does not depend on the current property value.
There is no prepayment penalty.

3.2.3 Property Index Linked Mortgage: Version One (PILM1)

In a PILM1 contract the outstanding balance on the mortgage is adjusted to reflect house
price changes as measured by an appropriate property index. Immediately after the mort-
gage payment at time t, the unpaid principal balance is adjusted so that the current LTV
(calculated using the house price implied by the property index) does not exceed the tar-
get LTV. If the price decline is severe enough the loan balance is adjusted downwards.
The mortgage payment then drops as it is based on the revised loan balance. In this
way the borrower’s payment goes down when there is a severe house price decline. On
the other hand if house prices rise, the loan balance may be adjusted upwards, but the
post-adjustment balance is capped by an amount calculated at loan origination.11

We first specify the reference balance and payment. The reference balance is the balance
the borrower faces when the loan is not adjusted, and it also represents the upper bound of
post-adjustment loan balance if an adjustment is triggered. The reference payment serves a
similar purpose. Let Ut be the time-t reference balance and M̄ be the (constant) reference
payment. The values of Ut and M̄ are determined at loan origination by amortizing the
initial loan amount over the loan term with contract rate ER0 + RS1, where RS1 is the
rate spread of PILM1 over the corresponding FRM; that is,

Ut =

{
αH0, t = 0
Ut−1(1 + ER0 + RS1)− M̄, t = 1, . . . , T

,

11The advantages of capping the post-adjustment loan balance is discussed by Ambrose and Buttimer
[3].
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and

M̄ = αH0
ER0 + RS1

1− (1 + ER0 + RS1)−T
.

During the term of the loan, the actual loan balance Bt may deviate from Ut due to
adjustments that ensure the target LTV, 0 < ᾱ < 1, is maintained. Mathematically, the
post-adjustment loan balance of the PILM1 at time t can be expressed as

Bt = min

(
ᾱH0

It
I0

, Ut

)
, t = 1, . . . , T.

For simplicity, we assume that there is no basis risk, so that the actual property value
is always identical to the property value implied by the index throughout the term of the
mortgage; that is,

Ht =
It
I0

H0, 0 ≤ t ≤ T.

Under this assumption, the formula for calculating the post-adjustment loan balance can
be simplified to

Bt = min(ᾱHt, Ut), t = 1, . . . , T.

We refer readers to Ambrose and Buttimer [3] for a qualitative discussion on basis risk
and to Chapter 4 for a possible method to quantify the effect of basis risk on lenders’ cash
flows.

The payment due at the end of the next period is then calculated by amortizing Bt

over the remaining term of the loan:

Mt+1 = Bt
ER0 + RS1

1− (1 + ER0 + RS1)t−T
, t = 1, . . . , T − 1.

Note that M1 = M̄ because by design a loan adjustment at t = 0 is impossible. Also
note that the current mortgage payment depends on the property value at the end of the
previous period, so it takes one period for loan adjustment to take effect.

Should the borrower choose to prepay at time t, he/she would be subject to a pre-
payment penalty PPt that equals a fraction of the difference between Ut and Bt; that
is,

PPt = PRE1(Ut −Bt), t = 1, . . . , T − 1,

where 0 ≤ PRE1 ≤ 1 is a constant parameter.12 Upon prepayment the sum of the post-

12The purpose of the penalty is to avoid strategic prepayments. A prepayment at the time of a deep
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adjustment balance Bt and the prepayment penalty PPt becomes the initial amount of the
new loan. Note that if an adjustment is not triggered at time t, then Bt = Ut and hence
the prepayment penalty is zero.

3.2.4 Property Index Linked Mortgage: Version Two (PILM2)

Under a PILM2 contract the mortgage payment is reduced if there is a decline in the
house price relative to its value at loan origination. The mechanism used in this case is
different from that used in PILM1 contracts. In a PILM1 the loan balance is adjusted to
reflect house price declines and this induces a reduction in the mortgage payments, but in
a PILM2 contract the mortgage payment is adjusted first and the outstanding loan balance
is computed based on the revised mortgage payment. As with PILM1 contracts, the loan
adjustments under PILM2 contracts are capped and are linked to a suitable property index.
We also assume here that there is no basis risk.

Let us consider a PILM2 with a rate spread of RS2 over the corresponding FRM and
thus a contract rate of ER0 + RS2. Its reference payment and time-t reference balance are
respectively given by

M̄ = αH0
ER0 + RS2

1− (1 + ER0 + RS2)−T

and

Ut =

{
αH0, t = 0
Ut−1(1 + ER0 + RS2)− M̄, t = 1, . . . , T

.

The mortgage payment would be reduced by a fraction of a percentage point per a per-
centage point reduction in the house price (relative to the house price at loan origination).
The actual amount Mt due at time t is determined by the value of the associated property
index at time t− 1; that is, for t = 0, 1, . . . , T − 1,

Mt+1 = min

{
M̄, M̄

[
1− κ

(
1− It

I0

)]}
= min

{
M̄, M̄

[
1− κ

(
1− Ht

H0

)]}
,

where 0 ≤ κ ≤ 1 is the ‘workout proportion’, which indicates how many percentage
points the mortgage payment would reduce per a percentage point decrease in the property

adjustment would allow the borrower to lock in the low balance, thereby causing a substantial loss to the
lender. It should be emphasized that a loan adjustment is not equivalent to a principal write down; for
the former, the balance would revert to the reference balance when the real estate market rebounds; for
the latter, the reduction in principal is permanent.
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index.13 The second equality in the equation above is due to our assumption that there is
no basis risk. Note that we also have M1 = M̄ for the PILM2.

The post-adjustment loan balance14 at time t is defined to be the present value of all
future payments, assuming they all equal Mt+1; that is,

Bt = Mt+1
1− (1 + ER0 + RS2)t−T

ER0 + RS2
, t = 1, . . . , T − 1.

The specification of the prepayment penalty is the same as that for PILM1 contracts,
except that PRE1 is replaced with another parameter PRE2 that lies between 0 and 1.

3.2.5 Comparison of PILM1 and PILM2

The two PILM designs have the same main objective: to reduce the homeowners’ mort-
gage payments in a depressed housing market. However, the adjustment mechanisms are
different when there is a drop in house prices. Under a PILM1 the first step is to reduce
the outstanding balance and the payment is adjusted in the next step. Under a PLIM2
the initial step is to reduce the mortgage payment and the loan balance is revised in the
subsequent step on the basis of the reduced payment. This section compares these two
mortgage designs and uses a numerical example to illustrate the main differences.

By definition, the balance adjustment for PILM1 depends on both the current property
value Ht and the reference balance Ut. Towards the end of the mortgage term, Ut becomes
small so it is more difficult to trigger an adjustment and even if an adjustment is triggered
it tends to be mild. In sharp contrast, for PILM2, an adjustment is triggered as long as
the current property value Ht is lower than the initial value H0. Because the reference
payment M̄ is constant over time, the chance for triggering remains even throughout the
loan term.

We use a simple numerical example to demonstrate the aforementioned differences.
Assume that the property value is H0 = 400 initially, falls to 300 before the first payment
is due, and remains constant thereafter. Assume further that T = 30, α = 0.95, ᾱ = 1,
κ = 0.5 and the contract rate for all mortgages is 0.05.

13The adjustment scheme and the term ‘workout proportion’ are taken from Shiller et al. [77].
14Determining the loan balance for a PILM2 contract is operationally difficult, but we need a definite

formula for Bt in order to compute prepayment penalties. Shiller et al. [77] define the loan balance of a
continuous workout mortgage as the expected present value of all future payments under a certain risk-
neutral measure, whereas Mian and Sufi [65] define the loan balance for a shared-responsibility mortgage
as the balance specified in the amortization schedule established at loan origination.
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Figure 3.2: A comparison of the loan balances (the left panel) and mortgage payments
(the right panel) among the three contracts under consideration. The values are based
on the hypothetical situation that the property value is H0 = 400 initially, falls to 300
before the first payment is due, and remains constant thereafter. It is assumed that the
amortization term is 30 years, the contract rate for all three contracts is 0.05, the initial
LTV is α = 0.95, the target LTV is ᾱ = 1 and the workout proportion is κ = 0.5.

Figure 3.2 displays the loan balances and mortgage payments for all three contracts over
time. Note that all contracts have the same first payment, because it takes one period for
any PILM adjustment to realize and a loan adjustment at t = 0 is impossible. For the FRM
contract, the mortgage payment is constant over the entire mortgage term. For the PILM1
contract, there is a sharp reduction in payment at t = 2, but the payment then increases
gradually until it reaches its original level at t = 12. The reason behind the increasing
trend in payment is that at each time point from t = 1 to t = 10 the PILM1 balance
is adjusted to 300 and the loan is re-amortized over the remaining term. As t increases,
the re-amortization period shortens, causing the payment to increase. The increase ends
at t = 12, because starting at t = 11 the values of Ut are lower than 300 and hence no
adjustment is triggered. For the PILM2 contract, the payment does not change after t = 2
because the adjustment depends solely on the property value, which is assumed to remain
constant after dropping to 300.15 This example demonstrates that given a one-time drop
in house price in early mortgage years, the payment adjustment under a PILM1 contract
is intense initially but weakens as the loan ages, while the payment adjustment under a

15Under a PILM1 contract, the payment reduction (as a proportion of the reference payment) at t = 2
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PILM2 contract (with κ < 1) is less intense initially but tends to last longer.16

3.3 The Borrower’s Problem and Its Solution

We compare the three contracts from the borrower’s perspective. The differences in mort-
gage balances and payments under these contracts leads to different borrower incentives,
therefore we analyze PILM through borrower behavior. Our approach is similar to that
of Campbell and Cocco [20, 21]. We assume a representative borrower maximizes his/her
expected lifetime utility of consumption by taking mortgage-related actions. Consumption
depends on the choice of actions and the housing market. The borrower needs to determine
the optimal actions under all possible conditions he/she may face. We then simulate dif-
ferent economic scenarios and compute the utility and cash flow realized by the borrower
and the lender, assuming the borrower behaves optimally. To study PILM we compare the
borrower’s optimal action and utility, as well as the lender’s cash flow under a PILM with
those under a FRM. In what follows we define, describe and solve the borrower’s problem
step by step. We start with premises and assumptions.

3.3.1 Premises and Assumptions

To capture the effect of PILM on borrower’s behavior, it is necessary to constrain our
discussion within a simple world. The following premises is the start point of our discussion:

is the same as the loan balance reduction as a proportion of the reference balance at t = 1:

αH0(1 + ER0 + RS1)− M̄ − fH0

αH0(1 + ER0 + RS1)− M̄
,

which approximately equals to α−f
α when T is large, where f is the current to initial house price ratio

that is small enough to trigger an adjustment. In our hypothetical scenario, f = 0.75 and the payment
reduction at t = 2 (calculated using the approximation) is 21%. Under a PILM2 contract, the payment
reduction at t = 2 is exactly κ(1 − f), which equals 12.5% in our hypothetical scenario. If α = 1, the
PILM2 payment reduction would be smaller than the PILM1 payment reduction by a fraction of κ.

16Given the same contract rate, a PILM2 with a full workout (κ = 1) dominates a PILM1 with a target
LTV ᾱ no smaller than the initial LTV α. Consider the situation when the payment adjustments of both
PILMs are triggered. On the basis of the adjustment formulas, the balance of the PILM1 would be adjusted
to ᾱHt, while the balance of the PILM2 with κ = 1 would be adjusted to Ut

Ht

H0
. Since Ut ≤ αH0 ≤ ᾱH0,

the balance of the PILM2 never exceeds that of the PILM1. For a meaningful comparison between the
two contract types, we do not consider PILM2s with a full workout.
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1. The borrower has decided to purchase a property and take out a mortgage loan. We
do not consider the choice between buying and renting. However the borrower may
enter the rental market if he/she defaults on the loan.

2. The main purpose of purchasing a property is to enjoy the utility of living in it.
There exists a rental market providing the same living utility.

3. The borrower is forward looking. A decision is made based on the current condition
and the expectation of the future, but not on the past.

4. The borrower makes decision at each time point, or equivalently the end of each
period.

5. The borrower is rational when making decisions, and all decisions are made based on
economic reasoning.

The following are some simplifying assumptions.

Assumption 3.1 (no basis risk). The property index is updated timely and it is perfectly
correlated with the value of the mortgaged property.

Assumption 3.1 has been stated in the previous section when we specify PILM contracts.
We state it here again for clarity. This assumption ensures that the PILM lender never
over- or under- adjusts the loan.

Assumption 3.2. The borrower has no risky investment opportunities except the mort-
gaged property.

Assumption 3.3. The borrower receives a constant and non-storable endowment L at
each time point.

Assumptions 3.2 & 3.3 are not inappropriate because we are not interested in comparing
investment in real estate and other risky assets, nor do we consider income risk.17 Our focus
is on the effect of PILM on default prevention. Assuming riskless and perishable income
avoids many real world complexities. For example, both FRM and PILM borrowers would
face risks from non real estate markets and negative life events if they were considered. Now
we formalize the optimization problem by first defining the borrower’s objective function.

17Income risk can be analyzed within our framework.
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3.3.2 The Borrower’s Objective

Mathematically, the borrower’s problem at loan origination can be expressed as

max
{A1,...,AT }

U(C0) + E0

[
T∑
t=1

βtU(Ct(At)) + βTV (HT , AT )

]
, (3.1)

where

• The maximization is taken over actions at all time points. Action is the only variable
controlled by the borrower.

• T is the mortgage contract term. A mortgage can be terminated by the borrower
before T (e.g. through default or refinancing).

• Et[·] is the expectation with respect to all information available up to time t.

• Ct is the consumption at time t. It depends on the borrower’s action and the housing
market.

• β is the utility discount factor representing the borrower’s time preference of con-
sumption. β ∈ [0, 1].

• U(·) is the time independent utility function with relative risk aversion γ 6= 1

U(x) =
x1−γ

1− γ
.

• V (·, ·) is the bequest function. It represents the time-T value of the total utility of
all consumptions beyond T .

The solution to this problem is a decision rule and its associated maximized utility. The
rule specifies at any possible state of the world the action the borrower should take in order
to maximize his/her expected utility. The maximized utility is an indicator of borrower
welfare. Each mortgage contract has its own optimal decision rule. To solve the problem,
we first define all variables and their transitions, and then describe how they are related
to the borrower’s utility.

67



3.3.3 Variables and Bequest

There are two sets of variables. One set is controlled by the borrower. In our case it
has only one variable action At. The other set of variables describes the conditions the
borrower faces, such as house price, market mortgage rate, etc. Based on these conditions,
the borrower makes decision by choosing an action. The rule of choosing the action that
maximizes the expected utility is the borrower’s optimal decision rule. Hence the rule is a
function mapping a state of the world to an action.

We first define our control variable. At each time point after the borrower receives the
endowment L, he/she takes action At. In particular, the borrower can choose one of the
following three actions before the mortgage loan is terminated:

• Continue to repay (At = P )

The borrower may choose to pay the amount due Mt and receive the ownership
benefit sHt, where s denotes the constant benefit rate.18 The consumption from the
ownership benefit is in addition to the consumption from the income.

• Refinance (At = R)

The borrower may choose to refinance the existing loan into another loan with an
initial balance that equals the post-adjustment balance Bt of the original loan plus
the prepayment penalty PPt and a contract rate that equals the current market
mortgage rate MRt. We permit the borrower to refinance at any time and as many
times as he/she wishes.19 For simplicity, we assume that the new loan is always a
FRM and that there is only one prevailing market rate which applies to all FRM
loans, regardless of the loan term. If this action is chosen, the borrower would pay
the amount due Mt, pay the refinancing cost RC and receives the ownership benefit
sHt.

• Default (At = D)

The borrower may choose to default, so that the mortgage contract is terminated
and the property is foreclosed. If this action is chosen, the borrower would not pay
the amount due, but incur a default cost DC and receive no ownership benefit.20 For

18The ownership benefit can be interpreted as the extra utility arising from owning the property, in
addition to the benefit of living in the property. This benefit could be pecuniary and/or psychological and
increases with the value of the mortgaged property.

19This means that there is no requirement on the property value at the time of refinancing.
20In our set-up, both DC and RC are not retained by the lender. We assume that the lender has no

recourse on the borrower’s income.
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the remaining of his/her life, the borrower would have to seek housing in the rental
market. The rental property is assumed to provide the same living utility as the
foreclosed property, but give no ownership benefit.

If the borrower defaults, then he/she has to rent a property and pay the rent Yt. The
action of renting a property is denoted by At = N . Given the aforementioned assumptions,
we see that after defaulting, the borrower would no longer need to make decisions as N is
the only possible action. Moreover, in a feasible sequence of actions {At, t = 1, 2, . . . , T}
there can be at most one D, and if At = D then At+1 = At+2 = . . . = AT = N .

Since the endowment is assumed to be non-storable and the assumed utility function is
strictly increasing, it is optimal for the borrower to consume all income left after his/her
housing expenditure. It follows that for t = 1, 2, · · · , T ,

Ct(At) =


L−Mt + sHt if At = P
L−Mt + sHt − RC if At = R
L−DC if At = D
L− Yt if At = N

.

The rent Yt is assumed to be an increasing function of property value at the previous
time point:

Yt = min(Ȳ , cHt−1),

where 0 < c < 1 is a constant and 0 < Ȳ < L is the cap of the rent.21 The cap is imposed
to ensure that default is always ‘affordable’. The time-0 consumption is given by

C0 = L− (1− α)H0 − IP · αH0,

where IP denotes the upfront costs to the borrower as a percentage of the loan size.

State variables characterizes the state of the world the borrower faces. We let ERt

be the effective rate at which the current FRM mortgage payment Mt is calculated. The
value of ERt depends on the borrower’s action. If the borrower chooses to refinance at
time t, then the subsequent mortgage payments would be (re-)calculated on the basis of

21We acknowledge that the actual relationship between house prices and rents is more complicated.
The historical values of the S&P/Case-Shiller 10-City Composite Home Price Index and the Owners’ E-
quivalent Rent of Primary Residence Index indicate that rents increased with house prices from 1992 to
2005, but after the burst of the real estate bubble in 2006 home prices fell by about 1/3 while rents kep-
t rising. The values of the home price and rent indexes can be retrieved at http://ca.spindices.

com/indices/real-estate/sp-case-shiller-10-city-composite-home-price-index and http://

research.stlouisfed.org/fred2/series/CUUR0000SEHC01, respectively.
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the prevailing market mortgage rate MRt. If the borrower chooses to continue repaying
the current loan, then ERt would simply be the same as ERt−1. If the borrower chooses to
default or has already defaulted, then ERt becomes irrelevant to the borrower’s problem
and we set it to 0 for convenience. Hence, we have

ERt+1(At) =


ERt if At = P
MRt if At = R
0 if At = D,N

for t = 1, 2, · · · , T − 1 and ER1 = ER0.

Depending on the contract type, the mortgage payment responds to the borrower’s
action differently. For FRMs,

Mt+1(At) =


Mt if At = P

Mt
1− (1 + ERt)

t−T

ERt

MRt

1− (1 + MRt)t−T
if At = R

0 if At = D,N

;

for PILM1s,

Mt+1(At) =


Bt

ER0 + RS1

1− (1 + ER0 + RS1)t−T
if At = P

(Bt + PPt)
MRt

1− (1 + MRt)t−T
if At = R

0 if At = D,N

;

and for PILM2s,

Mt+1(At) =


min

{
M̄, M̄

[
1− κ

(
1− Ht

H0

)]}
if At = P

(Bt + PPt)
MRt

1− (1 + MRt)t−T
if At = R

0 if At = D,N

,

where t = 1, 2, · · · , T − 1. Note that M1 = αH0
ER0

1−(1+ER0)−T for FRMs and M1 = M̄ for
PILMs.

The housing market is characterized by two variables: the property value Ht and the
market mortgage rate MRt. We assume that these variables follows the Markovian pro-
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cesses below:  logHt+1 = logHt +
(
µH − 1

2
σ2
H

)
+ σHZH

log MRt+1 = log MRt +
(
µMR − 1

2
σ2

MR

)
+ σMRZMR

, (3.2)

where µH and µMR are the rates of appreciation, σH and σMR are the volatilities, and
(ZH , ZMR) follows a standard bivariate normal distribution with a correlation coefficient ρ.
Non-Markovian processes may more realistically capture the dynamics of house prices and
market mortgage rates, but will substantially increase the number of state variables and
hence computational burden.22 In principle, there could be two sets of parameters. One
could reflect the market perceived by the borrower, while the other the real market. If the
two sets of parameters coincide, then the borrower behaves optimally; otherwise he/she
does not.

Based on the above specifications, the state variables for FRMs are t,Ht,MRt,ERt,Mt,
and for PILMs are t,Ht,MRt,Mt. The variables t,Ht,MRt do not depend on the borrower’s
decisions, but ERt and Mt do. We do not need to include ERt as a state variable when
modeling a PILM. This is because if the borrower continues to repay at time t then ERt is
identical to ER0, and if not then the PILM contract is terminated. However, we still need
to include Mt when modeling a PILM because it is related to Ht−1.

Finally, we specify the bequest function V (HT , AT ), which represents the total utility,
discounted to t = T , of the consumption after (but not including) T . Assuming that the
property value remains constant after time T and that the borrower has a non-random
lifespan of TL measured from loan origination, we have

V (HT , AT ) =


TL−T∑
t=1

βtU(L+ sHT ) if AT = P,R

TL−T∑
t=1

βtU
(
L− YT+1

)
if AT = D,N

.

In this expression, condition ‘AT = D,N ’ implies that At = D for some 1 ≤ t ≤ T and
thus the borrower no longer owns the property at time T ; condition ‘AT = P,R’ implies
that default has never occurred over the term of the mortgage and therefore the borrower
owns the property at time T .

22Campbell and Cocco [21] also use a geometric Brownian motion for modeling property values but a
first order autoregression for modeling interest rates. More sophisticated approaches to modeling house
prices and market mortgage rates are considered by Kau et al. [57], Hanewald and Sherris [44], Li et al.
[62] and the FHA actuarial review [52].
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It is clear that owning the property always derives a higher bequest and that how much
home ownership affects bequest depends on the end-of-term property value. From the
expressions for V (HT , AT ) and Ct(At) we can infer that each mortgage decision depends
critically on bequest, ownership benefit and rent. According to our set-up, when the
property value declines, the expected bequest decreases, the current ownership benefit
drops and renting a property becomes more attractive. The linkage of mortgage decisions to
these three quantities allows us to capture the potential relationship between the property
value and the propensity to default.

Here are a few remarks and implications followed from the above formulation:

1. The borrower faces house price risk before T whether the loan is defaulted or not.
Ownership benefit, bequest and rent all depend on property value.

2. Given default occurs, a borrower’s post-default utility increases when property value
falls because rent falls with property value. As a result, the borrower may prefer
defaulting on the mortgage when property value is extremely low to keeping a high
valued property with debt. This could be the case in reality because when property
value is low and is expected to remain so in the future, a borrower may choose to
default on the current loan and purchase a similar property later.

3. Since there is no decision to make after default, the post-default utility can be directly
computed by taking the expectation without optimization.

4. People may make mortgage decisions based on two considerations: the equity position
and consumption. The former depends on the value of the property and the loan
balance, and the later depends on loan payment. In our model the borrower’s utility
of consumption is related to both.

3.3.4 Solving the Optimization Problem

We solve the borrower’s problem by dynamic programming (similar to the method used in
Campbell and Cocco [20, 21] and Cocco et al. [29]). Define the time-t value of a mortgage
contract as the optimized expected discounted utilities of future consumption starting at
time t; that is,

max
{At,At+1,··· ,AT }

U(Ct) + Et

[
T∑

i=t+1

βi−tU(Ci(Ai)) + βT−tV (HT , AT )

]
.
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We use Jkt , where k ∈ {FRM,PILM1,PILM2} and t = 1, . . . , T , to represent the time-t
value of mortgage contract k. The value of Jkt depends on all state variables that are
applicable to the specific contract type. We further define the value of an action as the
optimal utility derived from taking the action; that is,

Ikt (At) =

{
U(Ct(At)) + βEt[J

k
t+1] if At = P,D,N

U(Ct(At)) + βEt[J
FRM
t+1 ] if At = R

,

for t = 1, 2, · · · , T − 1, and

IkT (AT ) = U(CT (AT )) + V (HT , AT ).

The expectations in the above expression are taken with respect to (Ht+1,MRt+1). It
follows that the contract value is the maximum over all feasible actions:

Jkt =

{
max

{
Ikt (P ), Ikt (R), Ikt (D)

}
if Mt > 0

Ikt (N) if Mt = 0
,

for t = 1, 2, · · · , T . Note that in the above expression, condition ‘Mt = 0’ is equivalent to
the condition that default occurs prior to time t.

Since refinancing at time T is never optimal,23 the terminal contract value can be
simplified to

JkT =

{
max

{
IkT (P ), IkT (D)

}
if MT > 0

IkT (N) if MT = 0

=

{
max

{
U(L−MT + sHT ) + V (HT , P ), U(L−DC) + V (HT , D)

}
if MT > 0

U(L− YT ) + V (HT , N) if MT = 0

,

which can be computed for all possible states. Therefore, we can compute the values of
Jkt for t = 1, . . . , T − 1 and the associated optimal actions by a backward recursion which
starts at t = T . As we reach the end of the backward recursion, we obtain the contract
value at loan origination:

Jk0 = U(C0) + βE0[Jk1 ].

This optimization problem is solved numerically and some detail of the implemention can
be found in Appendix B.

Recall the assumption that a PILM can only be refinanced into a FRM. Because the
value of a PILM refinancing depends on the corresponding FRM’s contract value, we need

23After making a payment of MT , the loan balance becomes zero. Refinancing at time T therefore brings
no benefit but incurs a cost of RC.
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to perform the recursion for a FRM first before that for the corresponding PILMs. One
should also note that the utility realized by a borrower by following the optimal decision
rule may not equal the contract value, since the realized utility also depends on the housing
market which is beyond the borrower’s control. This implies that for a particular scenario
the optimal decision rule does not guarantee an optimal realization of utility.

3.4 Baseline Results and Analysis

This section implements the model we developed in the last section and discusses the
results. We start with a description of the parameter values used in our baseline calculation
and discuss the rationale for the values selected. Then we analyze the borrower’s optimal
behaviour under different economic conditions. In particular we examine how the incentives
to default, maintain the current mortgage and refinance depend on mortgage rates and
property values across the three contracts. We are especially interested in the differences
between the two PILM designs. Our analysis includes the borrower’s behaviour at a fixed
time point as well as over time. Finally we compare both the borrower’s and the lender’s
welfare under the three contracts by simulation.

3.4.1 The Baseline Parameter Values

The baseline parameter values used in the analysis are displayed in Table 4.2. We now
discuss these choices and explain our justification.

Parameters related to the mortgage contracts

We consider 30-year mortgages with an initial LTV of α = 0.95 for a property valued
H0 = 400 at time 0. Each time period corresponds to 1 year. The assumed upfront
cost (as a percentage of the loan amount) is IP = 2%, which includes the initial
points charged by the lender (approximately 0.7% over the period of 2009 to 201324),
commissions, legal fees and appraisal fees. The initial FRM contract rate ER0 is
set to the market mortgage rate MR0 at time 0. In the baseline calculations, we
assume that PILM lenders do not demand a rate spread (i.e., RS1 = RS2 = 0). The
chosen values of ᾱ, κ, and PRE1, PRE2 are arbitrary, but will be sensitivity tested
in Section 3.5.

24Source: Freddie Mac Primary Mortgage Market Survey for Conventional Conforming 30-year FRM.
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Parameter Description Value
Contract

T Mortgage term (years) 30
α Initial LTV 0.95
IP Upfront cost (as a fraction of the loan amount) 0.02

ER0 Initial FRM contract rate 0.05
ᾱ Target LTV for PILM1 1

RS1 Rate spread for PILM1 0
PRE1 Prepayment penalty parameter for PILM1 1
κ Workout proportion for PILM2 0.5

RS2 Rate spread for PILM2 0
PRE2 Prepayment penalty parameter for PILM2 1

Housing market (resale and rental)
H0 Initial property value 400

MR0 Initial market mortgage rate 0.05
µH Rate of appreciation of property values 0
σH Volatility of property values 0.1
µMR Rate of appreciation of mortgage rates 0
σMR Volatility of mortgage rates 0.1
ρ Correlation between the log-returns on Ht and MRt 0

DC Default cost 10
RC Refinancing cost 6
s Ownership benefit (as a fraction of the property value) 0.02
Ȳ Upper bound of rents 25
c Rent-to-price ratio 0.05

Borrower’s characteristics
L Annual income 70
β Intertemporal utility discount 0.96
γ Coefficient of relative risk aversion 3
TL Lifespan measured from loan origination (years) 60

Table 3.1: The baseline parameter values used in analyzing borrowers’ behaviour.

Parameters related to the housing market (resale and rental)

We set MR0 to 5%, because the average Federal Housing Administration (FHA) 30-
year FRM mortgage rate was 5.23% in 2010 and has been reducing since then.25 We

25Source: FHA Mortgage Insurance Single-Family 30-Year Fixed Interest Rates, available at http:
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assume a refinancing cost of 6, which is lower than the upfront cost of the original
loan (400 × 0.95 × 0.02 = 7.6), on the grounds that the loan balance at the time
of refinancing is lower than that at time 0. We assume a default cost of 10 and
an ownership benefit of 2% of the property value. These two values vary among
borrowers, depending on various nonpecuniary factors including credit degradation,
social stigma and the desire for homeownership.

In the baseline calculations, we assume that the borrower’s subjective view on the
housing market coincides with the actual market (i.e., only one set of µH , σH , µMR,
σMR and ρ is used). We also assume that property values and market mortgage
rates are volatile (σH = σMR = 0.1) but possess no trend (µH = µMR = 0). What
we are interested is a period of turmoil where default rates of the traditional FRM
contract rise. The experience of the housing and mortgage markets in the past decade
provides us with a good example. Based on the S&P/Case-Shiller 10-city composite
home price index from March 2004 to February 2014, the estimated house price
appreciation rate is almost 0 and the estimated volatility is 0.11. These estimates
are close to our choices of baseline values. In Section 3.5 we will examine how the
results change if the parameters in the processes for Ht and MRt are calibrated to
longer history.

Over the period of October 1992 to February 2014, the sample correlation between
the annual log-returns on the S&P/Case-Shiller 10-city composite home price index
and the annual log-returns on the average FHA 30-year FRM rate is negative, but
the sample correlation becomes positive if the conventional conforming 30-year FRM
rate is considered instead. Because the sample correlation takes no definite sign, we
set ρ to zero in our baseline calculations.

The time-t rent is a fraction c = 0.05 of the house price at time t − 1, subject to a
maximum of Ȳ = 25. Campbell and Cocco [21] permit the fraction to vary with the
prevailing interest rate, but for simplicity we assume that it is the same as the initial
mortgage rate MR0 and remains constant throughout the term of the mortgage.

Parameters related to the borrower’s characteristics

Given the assumed values of α, H0 and MR0, the annual mortgage payment for a
30-year FRM is 24.72. The assumed borrower’s income L = 70 implies that the ratio
of mortgage payment to income is 35.31%. This ratio is in between FHA’s limit on
the housing-related expense to income ratio, which is about 31%, and FHA’s limit on

//portal.hud.gov/hudportal/HUD?src=/program_offices/housing/rmra/oe/rpts/rates/irmenu.
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the total recurrent expense to income ratio, which is about 43%.26 We assume that
the borrower will live TL = 60 years after the inception of the mortgage.27 Following
Cocco et al. [29], we set the utility discount β to 0.96. Following Campbell and
Cocco [20] and Kung [59], we assume that the coefficient of relative risk aversion γ
is 3.

3.4.2 Optimal Borrower Choices at Time One

We now examine how the borrower’s choice depends on different housing market environ-
ments at t = 1. To do so we assume a borrower takes out a mortgage loan at t = 0 and
examine the borrower’s optimal decision one year after loan origination under a range of
house prices and market mortgage rates. This enables us to better understand how the
borrower’s decision is impacted by the prevailing market conditions. We carry out the
analysis for our three mortgage contracts. For the FRM contract the results are consistent
with the historical experience. If interest rates fall it is optimal to refinance the loan at
a lower rate, if house prices have dropped it is optimal to default, and if neither happens
it is optimal to continue with the current loan. For the PILM contracts we find the same
broad patterns but the results are more nuanced. For example, we find that under some
conditions a PILM borrower will optimally continue where a FRM borrower would either
default or refinance.

In Figure 3.3 we show, for each contract, the optimal actions at t = 1 under different
combinations of log property value and log mortgage rate. We use ‘o’ to indicate that
continuing to repay is the optimal action, ‘+’ to indicate refinancing is optimal and ‘x’ to
indicate default is optimal. The black dot represents the time-0 log property value (5.99)
and log mortgage rate (−3.00), so it is easy to read from the figure that how a deviation
of time one market condition from time zero condition impacts the borrower’s decision.

The optimal actions for the three contracts are roughly the same when the property
value and mortgage rate are extremely high and/or low: (1) when both the property
value and mortgage rate are very high, continuing to repay is optimal because both the
refinancing and default options are deep out-of-the-money; (2) when the mortgage rate
is very low but the property value is very high, refinancing is optimal as it reduces loan
payment and a PILM adjustment is not likely to be triggered; (3) when the property value
is very low, default becomes optimal. However, the three contracts are quite different

26Source: http://portalapps.hud.gov/FHAFAQ/controllerServlet?method=showPopup&faqId=1-6KT-
1040.

27According to the Human Mortality Database (www.mortality.org), the life expectancy of a 22-year-old
U.S. female in 2010 is approximately 60 years.
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in terms of the default boundary, which refers to the highest property value at which
the borrower finds it optimal to default. It is clear that the PILMs have lower default
boundaries, because they provide payment reductions at times when the property value is
low.28 To obtain a better understanding of the differences between the three contracts, in
what follows we study Figure 3.3 in greater depth.

We first compare the FRM with the two PILMs. For the FRM, default and refinancing
compete with each other in the low-property-value-low-mortgage-rate region. The com-
petition arises because the borrower’s propensity to default increases when the value of
his/her home equity drops but the amount of mortgage payment also decreases when the
loan is refinanced at a lower rate. In this region, the borrower defaults if the effect of a low
property value is stronger than that of a low mortgage rate, and refinances otherwise. For
the PILMs, continuing to repay also plays a role in the competition due to the possibility of
a loan adjustment. When the property value declines, default is less attractive to a PILM
borrower than to a FRM borrower, because PILMs offer a partial compensation through a
reduction in mortgage payments. For this reason, the PILMs have lower default boundaries
in comparison to the FRM. Due to the assumption that a PILM can only be refinanced
into a FRM, the PILM borrowers lose the opportunity for loan adjustments as soon as
they refinance. Because the benefit from the current and/or future loan adjustment(s)
may outweigh that from refinancing, refinancing also becomes less attractive even when
the market interest rate is low. Overall, the continuation region is larger in the diagrams
for the PILMs than in the diagram for the FRM.

Next, we compare the two PILMs. We can account for the differences between the two
PILMs by considering the following factors which determine their values:

1. the current loan adjustment (realized at t = 2);

2. the opportunity to receive future loan adjustments;

3. the option to refinance;

4. the option to default.

From Figure 3.3 we observe that the most striking distinction between the two PILMs
is that it is more likely for the PILM1 borrower to continue when both property value and
mortgage rate are low. This outcome is a consequence of the two contracts’ adjustment

28This implies that the PILM borrower maintains the incentive to default, though it is significantly lower
than the FRM borrower’s. Our results are different from Ambrose and Buttimer’s [3] due to the different
models we use.
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(a) FRM (b) PILM1

(c) PILM2

Figure 3.3: The optimal actions at t = 1 under different combinations of log(H1) and
log(MR1). We use ‘o’, ‘+’ and ‘x’ to represent continuing, refinancing and default, respec-
tively. We use a black dot to indicate the time-0 log property value (5.99) and log mortgage
rate (−3.00).

schemes, which we have illustrated in Section 3.2.5. When the property value plummets
in early mortgage years, the loan adjustment provided by a PILM1 tends to be stronger at
the outset but fades away over time. In a low interest rate environment, a PILM1 borrower
can maximize benefit by continuing to repay for some time and then refinancing to lock
in a low mortgage rate when the loan adjustment is no longer significant. In this way, the
PILM1 borrower can enjoy the benefits from both the current loan adjustment and the
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option to refinance. By contrast, in the identical situation, the loan adjustment provided
by a (partial workout) PILM2 tends to be milder but lasts longer. If a PILM2 borrower
chooses to refinance, then a substantial amount of future loan adjustments would be lost;
but if he/she chooses to repay, then the benefit of locking in a low mortgage rate would
be forfeited. Thus, the PILM2 borrower can only benefit from loan adjustments or a low
mortgage rate lock-in, but not both. It follows that in the first several years after mortgage
origination, for some combinations of property value and mortgage rate under which the
PILM1 borrower chooses to continue, the PILM2 borrower chooses not to.

In Figure 3.4 we compare the contract values of the two PILMs under different com-
binations of property value and mortgage rate. We use ‘�’ to indicate that PILM1 has a
higher contract value, ‘O’ to indicate that PILM2 has a higher value and ‘♦’ to indicate
that the two PILMs have the same value. The black dot represents the time-0 log property
value (5.99) and log mortgage rate (−3.00). Note that upon default or refinancing, the two
PILM borrowers have the same future consumption as they pay the same rents or make
the same mortgage payments.29 It immediately follows that

IPILM1
t (D) = IPILM2

t (D) and IPILM1
t (R) = IPILM2

t (R),

for t = 1, 2, · · · , T . Hence, the difference between the contract values of the two PILMs
must arise when the two PILM borrowers have different optimal choices or when both
PILM borrowers continue to repay. With this fact in mind, the pattern of the diagram in
Figure 3.4 can be explained readily as follows:

Low mortgage rates and high property values; both borrowers refinance

When the market mortgage rate is very low, refinancing becomes the optimal action
for both borrowers, which means the contract value is simply the value of refinancing.
Because IPILM1

1 (R) = IPILM2
1 (R), both PILMs have the same contract value.

High mortgage rates and high property values; both borrowers continue

When the mortgage rate and property value are both high, both borrowers continue
to repay even though there is currently no loan adjustment. At a high current
property value, the chance of a future PILM2 adjustment is higher than that of a
future PILM1 adjustment. This is because a PILM2 adjustment will be triggered
once the property value becomes lower than the initial property value H0, which is
a fixed constant, whereas a PILM1 adjustment will be triggered only if the property

29We assume that if a PILM is refinanced, it must be refinanced into a FRM. Also, because we assume
that PRE1 = PRE2 and RS1 = RS2 = 0, the balance upon refinancing must be Ut, whose value is the
same for both PILMs.

80



Figure 3.4: A comparison of the contract values of the two PILMs at t = 1. We use ‘�’ for
the situation when the PILM1 has a higher value, ‘O’ for the situation when the PILM1
has a lower value, and ‘♦’ for the situation when the two PILMs have the same value.
We use a black dot to indicate the time-0 log property value (5.99) and log mortgage rate
(−3.00).

value is lower than the reference balance Ut, which gradually diminishes to 0 over
time. Therefore, the value of the opportunity to receive future loan adjustments for
the PILM2 is higher, leading to IPILM1

1 (P ) < IPILM2
1 (P ) and hence JPILM1

1 < JPILM2
1 .

Low property values; both borrowers default

When the property value is very low, default becomes the optimal action for both
borrowers, which means the contract value is simply the value of default. Because
IPILM1

1 (D) = IPILM2
1 (D), both PILMs have the same contract value.

Low property values; the borrowers behave differently

Note that the default boundary for the PILM1 is lower than or the same as that for
the PILM2. When the time-1 property value is in between the default boundaries
of the two PILMs, the PILM1 borrower continues to repay but the PILM2 borrower
defaults. In such a situation, PILM1 has a higher contract value, because

JPILM1
1 = IPILM1

1 (P ) > IPILM1
1 (D) = IPILM2

1 (D) = JPILM2
1 .

Using a similar argument, we can explain why the PILM1 has a higher contract
value in situations when the PILM1 borrower chooses to continue while the PILM2
borrower chooses to refinance.
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Low property values; both borrowers continue

When the property value is low but still higher than the default boundaries of the
PILMs, both borrowers continue to repay provided that the market interest rate
does not justify refinancing. In this situation, as the property value approaches the
default boundaries, the PILM1 has a higher contract value. This phenomenon may
be explained by the fact that if the drop in the property price is very significant and
occurs during early mortgage years, then the loan adjustment provided by a PILM1
is more pronounced than that provided by a PILM2.

3.4.3 Optimal Borrower Choices Over Time

In this sub-section we study how the borrower’s behaviour vary with time. The borrow-
er’s propensity to default and refinance can be examined through default and refinancing
boundaries. A low default boundary means the borrower defaults only when property value
is low, implying a low propensity to default. Similarly a low refinancing boundary indicates
a low propensity to refinance as the borrower only refinances when the market mortgage
rate is low. These boundaries change over time and are different under different mortgage
contracts.

Let us first focus on the trends in the default boundaries. In Figure 3.5 we show
the default boundaries, calculated at a fixed market mortgage rate of 5%, over the entire
mortgage term for the three mortgage contracts.

First, the default boundaries for the two PILMs are lower than or the same as that for
the FRM, indicating that overall the PILM borrowers have a lower propensity to default.
This result is expected, because the PILM borrowers are partially compensated by a loan
adjustment in the event of a substantial drop in house price.

Second, the default boundary for the PILM2 is higher than that for the PILM1 during
the first four years, and reduces steadily over time. The former outcome can be explained
by the fact that in early mortgage years a PILM1 loan adjustment tends to be more
pronounced. The latter outcome can be attributed to the fact that towards the end of
the mortgage term, the number of outstanding payments is small but the likelihood of a
PILM2 loan adjustment does not diminish (as it comes into effect whenever the property
value is lower than H0).

Third, the default boundary for the PILM1 increases with time in the first 12 years
and subsequently converges to the FRM’s default boundary. The variation in the PILM1’s
default boundary over time arises from the following two forces that are acting in opposite
directions: (1) as the borrower builds equity in the property, he/she is less likely to default;
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Figure 3.5: The default boundaries of the three mortgage contracts over time, calculated
under the assumptions that MRt = MR0 = 0.05, ERt = ER0 = 0.05 and Mt = 24.72 for
all t > 0.

(2) the default option becomes more attractive than the other two options as the loan
balance reduces, because the opportunity to receive loan adjustments becomes smaller (a
PILM1 loan adjustment is triggered only when Ht is less than Ut, which decreases over
time) and the option to refinance is less valuable. In this example, the effect of (2) is greater
than that of (1) over the first 12 mortgage years, leading to a rise in the PILM1’s default
boundary. Approaching the end of the mortgage term, a PILM1 adjustment becomes more
difficult to be triggered and even if it is triggered the extent tends to be small. For this
reason, as t→ T , the PILM1 becomes literally identical to the FRM and thus has a default
boundary that is close to the FRM’s.

In a similar manner, we can also study a mortgage contract’s refinancing boundary, the
highest mortgage rate at which the borrower finds it optimal to refinance. The refinancing
boundary for a PILM depends on the current and potential future loan adjustments. The
higher the adjustments are, the lower market mortgage rate is required to make refinanc-
ing sufficiently attractive, thereby resulting in a lower refinancing boundary. In Figure
3.6 we show the refinancing boundaries, calculated at a fixed house price of 300, for the
three mortgage contracts over time. It can be seen that the refinancing boundaries have
similar patterns as the default boundaries. The explanations to the patterns of the default
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Figure 3.6: The refinancing boundaries of the three mortgage contracts over time, calcu-
lated under the assumptions that Ht = 300, ERt = ER0 = 0.05 and Mt = 24.72 for all
t > 0.

boundaries also apply to the patterns of the refinancing boundaries.

3.4.4 Lender’s Valuation

Thus far we have just considered the borrower’s perspective. We have seen that the PILM
contracts lead to lower mortgage payments when house prices fall and hence a lower default
propensity relative to the standard FRM. Indeed this is the justification for the PILMs
in the first place. However for the PILM contracts to be viable they need to be offered
in the market place. Hence we need to value these contracts from a lender’s perspective.
To do so we project the cash flows assuming optimal borrower behaviour and include the
deadweight costs suffered by the lender upon default. These costs are described in detail
by Brueggeman and Fisher [17] and Qi and Yang [73]. We obtain the lender’s valuation of
the loan by taking the expected net present value of its cash flows under a given mortgage
contract at an appropriate discount rate. We use Monte Carlo simulation to estimate these
expected values.

We rank the different contracts from the viewpoint of each party. In the case of the
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FRM PILM1 PILM2
Cumdef (%) 15.76 12.87 4.38
EC 56.84 57.16 57.48

WGB (%) − 0.57 1.12
APV 380 379.88 382.13

WGL (%) − −0.03 0.56

Table 3.2: Summary of results of default incidence, mortgage valuation and welfare gains.
‘Cumdef’ represents the cumulative probability of default at the end of the loan term, ‘EC’
represents the equivalent constant consumption, ‘WGB’ represents the borrower’s welfare
gain, ‘APV’ represents the average present value of the lender’s cash flows, and ‘WGL’
represents the lender’s welfare gain.

borrower we compute the expected utility under each contract and convert it to a level
stream of consumption. The borrower will prefer a higher consumption stream to a lower
one. In the case of the lender we calculate the discounted value of its expected cash flows
under the mortgage. We find that for a range of plausible parameters both parties prefer
the PILM contract so the contract design is Pareto improving in these circumstances.

We also show that the cumulative defaults are significantly lower under the PILM
mortgages than under the traditional FRM mortgage. Mortgage defaults have spillover
effects (Mian et al. [66], Bradley et al. [16]), impose social costs (Andritzky [7]), and thus
to the extent that these new designs reduce defaults this is another advantage.

We generate 10,000 economic scenarios, each of which contains one path of property
values and one path of market mortgage rates. For each simulated scenario, we derive the
borrower’s optimal actions, compute the borrower’s utility and calculate the borrower’s
consumption and the lender’s cash flows at different time points. The results are reported
in Table 3.2.

Consistent with our earlier results, we find that a payment adjustment feature can
significantly reduce the cumulative probability of default at the end of the loan term
(Cumdef). We refer a PILM default to as a ‘direct’ default if refinancing has never occurred
before and an ‘indirect’ default if it happens after the mortgage is refinanced into a FRM.
In our simulation, about 38% of the PILM1 defaults and 40% of the PILM2 defaults
are indirect. The default probabilities reported in Table 3.2 incorporate both direct and
indirect defaults.

We define the equivalent consumption (EC) for contract k as the constant level of
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consumption Ck that yields a time-0 utility that equals Jk0 ; that is,

TL∑
t=0

βtU(Ck) = Jk0 , k ∈ {FRM,PILM1,PILM2}.

From the simulations, we can estimate Jk0 and hence Ck. We interpret the percentage
difference between the ECs of a PILM and the corresponding FRM as the borrower’s
welfare gain (WGB) should he/she choose the PILM instead of the FRM. The values of
WGB are positive for both PILM contracts. This result is expected, because it is assumed
that the loan adjustment feature is provided to the PILM borrowers at no cost (RS1 =
RS2 = 0).

We calculate the average present value (APV) of the lender’s cash flows, using a varying
discount rate that equals the prevailing market mortgage rate less 0.88%. The spread of
0.88% is chosen in such a way that the average present value of the FRM lender’s cash flows
equals the initial loan amount. It is assumed in the calculations that the lender recovers
a net amount of RR = 50% of the (reference) loan balance upon default.30 We interpret
the percentage difference between the APVs of a PILM and the corresponding FRM as
the lender’s welfare gain (WGL) should he/she write the PILM rather than the FRM. The
value of WGL for the PILM1 is close to zero, while that for the PILM2 is positive. This
result indicates that the saving arising from the reduction in default and hence foreclosure
costs is (more than) enough to cover the cost arising from the potential loan adjustments.

3.5 Robustness Checks to Input Parameters

In this section we examine the sensitivity of the results to different input parameters. This
exercise provides deeper insight into the model and enables us to assess the importance
of different parameters. It proves convenient to categorize the baseline parameters into
four groups. These groups correspond to the borrower’s characteristics, mortgage and
rental markets, mortgage contract characteristics and housing and interest rate dynamics.
We compute the various items of interest in Table 3.2 under a range of different input
parameters by varying the baseline assumptions one at a time. For each of our three
mortgage contracts we compute the cumulative default probability, the equivalent level
consumption and the lender’s valuation. This information enables us to rank the contracts

30The recovery rates of FHA loans are in between 40% and 60%. Source: Exhibit E-2 of the FHA
Actuarial Review [52].
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from both the borrower’s and lender’s perspectives and also provides a comparison with
the baseline results.

Table 3.3 reports, for each mortgage contract, the values of Cumdef, EC and APV
that are calculated on the basis of alternative parameter values. This table also shows the
welfare gains to the borrower and lender when a PILM is used instead of a FRM. To ensure
comparability against the baseline results, here we also discount the lender’s cash flows at
the prevailing market mortgage rate less 0.88%.

When interpreting the results, readers should keep in mind that EC and APV are
only measures of the overall behaviour and welfare. That being said, even if the values of
EC and APV under an alternative assumption are very close to their baseline values, the
patterns of the borrower’s behaviour, the borrower’s consumption and/or the lender’s cash
flows could still be very different.
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3.5.1 Sensitivity to the Borrower’s Characteristics

We begin with the borrower’s time preference of consumption, represented by the utility
discount parameter (β). A smaller β implies that the borrower is less patient as future
consumption is discounted more heavily. When β decreases from 0.96 to 0.92, the default
probabilities for all contracts are more than twice their corresponding baseline estimates.
We can explain the change in default propensity by considering the benefit and cost of
default. Since a necessary condition for default is that the prevailing market rent is cheaper
than the current loan payment, default increases the borrower’s current consumption as it
substitutes the current loan payment with a relatively cheaper rent. On the other hand,
default decreases the borrower’s future consumption, because after default the borrower
has to pay rent until he/she dies. At the baseline default boundary, the benefit and cost
arising from default exactly offset each other. However, when β becomes smaller than
its baseline value, the benefit outweighs the cost, because the borrower weights his/her
current consumption more than his/her future consumption. In other words, a borrower
with a smaller β should prefer to default at the baseline default boundary, implying that
the default boundary for him/her is higher than that for the baseline borrower. Hence,
regardless of the contract type, a less patient borrower has a higher propensity to default.

As the primary objective of the loan adjustment feature in a PILM is to reduce the
borrower’s incentive to default, it is reasonable to conjecture that from the lender’s per-
spective the advantage of PILMs over the corresponding FRM is more profound when the
borrower (in the absence of any loan adjustment feature) has a higher propensity to default.
This conjecture is confirmed in the sensitivity analysis. When β reduces from 0.96 to 0.92,
the FRM borrower has a significantly higher propensity to default (Cumdef increases from
15.76% to 35.23%). At the same time, the values of WGL for both PILM1 and PILM2
increase significantly, indicating that the advantage of the loan adjustment feature to the
lender becomes more prominent.

When γ increases from 3 to 4, the values of Cumdef for all contracts increase, suggesting
that a higher risk aversion means a higher propensity to default. This outcome can be
understood by comparing the levels of risk that borrowers and renters face. According
to our set-up, the only risk that a renter faces is the uncertainty associated with rent.
This uncertainty is related exclusively to house price risk and is in principle limited due
to the cap Ȳ imposed. By contrast, all borrowers bear the risk associated with ownership
benefit plus the uncertainty arising from potential default and refinancing in the future.
Also, a PILM borrower is subject to the added uncertainty arising from potential loan
adjustments. Hence, compared to a renter, a borrower is subject to more sources of risk.
Consequently, as risk aversion increases, one would be more likely to default and rent than
to repay or refinance. We also observe that the increase in Cumdef (due to the increase in
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γ) comes with an increase in WGL. This observation is again in line with the conjecture
that the benefit of loan adjustments to the lender is more prominent when the borrower
has a higher propensity to default.

For all three mortgage contracts, an increase in income (L) raises the borrower’s con-
sumption at every future date by a fixed amount, thereby providing the borrower with a
higher level of expected utility irrespective of whether he/she chooses to default or not.
This fact is the major reason for the increase in the equivalent consumption (EC) of all
borrowers as L increases from 70 to 85. We also observe that when L increases, the default
probabilities for all three contracts decrease. This observation indicates that an increase
in L benefits those who choose not to default more than those who choose to. It also
agrees with our intuition that a person with a higher income is less likely to default. Fur-
thermore, WGL becomes lower as the default propensity reduces, in line again with the
previously mentioned relationship between default propensity and the advantage of the
loan adjustment feature to the lender.

When the borrower’s remaining lifespan (TL) increases from 60 to 70, his/her default
propensity reduces. This outcome can be explained as follows. A larger TL increases
the number of periods (beyond time T ) over which an individual can consume, thereby
increasing the bequests for both homeowners and renters. However, because homeowners
always enjoy higher consumption than renters after time T , the increase in the bequest for
homeowners are higher than that for renters. As a result, homeownership becomes more
attractive and the incentive to default reduces.

3.5.2 Sensitivity to the Mortgage and Rental Market Parameters

We next examine the sensitivity of the results to the mortgage and rental market parame-
ters. When the ownership benefit rate (s) increases from 2% to 3%, the total defaults for
all contracts are significantly reduced. We obtain this result because an increase in s raises
homeowners’ consumption in all states of the world but not the renters’, thereby making
default (i.e., forfeiting homeownership) less attractive. When s is increased to 3%, the
FRM borrower’s default propensity becomes so low that the provision of loan adjustments
is no longer advantageous to lenders (the values of WGL for both PILMs are significantly
below zero). This result means that when the ownership benefit rate is high, the reduction
in foreclosure costs due to lower default rates may not be sufficient to cover the cost of loan
adjustments. In this case, the PILM lender may consider using a less extensive adjustment
scheme or charging a spread over the corresponding FRM.31

31The impact of charging a positive spread is detailed in Section 3.5.3.
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PILM1 PILM2
Direct Indirect Total Direct Indirect Total

RC = 6 799 488 1287 264 174 438

RC = 12 1118 265 1383 291 53 344

Table 3.4: The number of direct defaults, the number of indirect defaults and the total
number of defaults (out of the 10,000 simulated scenarios) for each of the PILM contracts.
The values are calculated at a refinancing cost of 6 (the baseline assumption) and 12 (the
alternative assumption).

When the default cost (DC) increases from 10 to 20, the default probabilities for all
contracts decrease. This result can be attributed to the fact that a higher DC reduces the
consumption when default takes place. The increase in DC also comes with a decrease
in WGL, because, as we explained earlier, the benefit of loan adjustments to the lender
should be less substantial when the borrower has a smaller propensity to default.

The effect of a change in the refinancing cost (RC) depends on the contract design.
For a FRM contract, a higher RC decreases the values of refinancing and the option to
refinance, but has no direct effect on the value of default. Consequently, default becomes
more attractive and thus the borrower’s propensity to default increases. This relationship
is confirmed in our results, which show that when RC increases from 6 to 12, the value of
Cumdef for the FRM increases from 15.76% to 18.33%. For a PILM contract, an increase in
RC has two opposing effects on the borrower’s propensity to default. On one hand, it makes
direct default more attractive. On the other hand, it reduces the borrower’s propensity to
refinance into a FRM, which has a higher default boundary compared to a PILM, thereby
leading to a reduction in indirect defaults. The relative strengths of these two offsetting
effects determine the change in the overall default probability. In this analysis, the former
effect is stronger for the PILM1 but weaker for the PILM2 (see Table 3.4). As a result,
the value of Cumdef for the PILM1 increases but that for the PILM2 decreases.

It is interesting to note that the when RC increases, the values of APV for all contracts
increase noticeably, even though the default probabilities for the FRM and PILM1 con-
tracts are higher. This interesting outcome may be attributed to the reduced propensity
to refinance. From Table 3.5 we observe that when RC increases from 6 to 12, the bor-
rowers refinance in fewer scenarios and the total number of refinancing for each contract
is substantially reduced. Because a necessary condition for refinancing is lower mortgage
payments, the less often the borrowers refinance, the larger amount of payments would be
received by the lenders. If the effect of a reduced propensity to refinance outweighs the
(opposite) effect of a larger propensity to default, then the cash flows to the lender and
hence the value of APV would increase. From this example, we can tell that for a given
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FRM PILM1 PILM2
# of scenarios Total # # of scenarios Total # # of scenarios Total #

RC = 6 7249 14312 7286 14245 5183 9561
RC = 12 5107 6604 5299 6657 3198 3858

Table 3.5: “# of scenarios” shows the number of scenarios (out of the 10,000 simulated
scenarios) in which the borrower refinances at least once and “Total #” shows the total
number of refinancing in all simulated scenarios for each of the three contracts. The values
are calculated at a refinancing cost of 6 (the baseline assumption) and 12 (the alternative
assumption).

contract, a higher default probability does not necessarily imply a lower APV.

When the rent cap (Ȳ ) increases from 25 to 65, the default probabilities for all three
contracts decrease slightly. The decrease in default probabilities is expected, because a
higher Ȳ means that renters are subject to more risk and hence default becomes relatively
less attractive. The decrease in default probabilities is quite small, because the property
values at the default boundary are much lower than the property values that would result
in a rent of Ȳ .

Next we consider the situation when the initial market mortgage rate (MR0), the initial
effective rate (ER0) and the rent-to-price ratio (c) are all reduced by 1%. The reduction in
these parameters has two opposite effects on the borrower’s propensity to default. First, a
lower effective rate reduces the borrower’s mortgage payments and hence makes continuing
to repay more attractive. Second, a lower rent-to-price ratio reduces rents hence increases
the attractiveness of default. The results indicate that the latter effect is stronger, as the
values of Cumdef for all three contracts become higher. Because the reduction in MR0,
ER0 and c increases consumption regardless of homeownership, the values of EC for all
three contracts are higher.

Finally, when the recovery rate (RR) increases from 50% to 70%, the default costs are
reduced and hence the average present value of the cash flows to the lender increases. The
increase is the most significant to the FRM lender, because it faces the highest default
probability. As RR increases, the benefit arising from the loan adjustment feature that
aims to reduce default propensity becomes less significant. When RR = 70%, the values of
WGL for both PILMs become negative, indicating that with this recovery rate the benefit
cannot cover the cost of loan adjustments. Note that a change in the recovery rate has no
impact on the borrower’s behaviour or utility.
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3.5.3 Sensitivity to the Mortgage Contract Parameters

This subsection examines the sensitivity of the results to the mortgage contract parameters.
We start with the initial LTV (α). When α reduces from 0.95 to 0.9, all borrowers have a
lower propensity to default. This is because a lower α corresponds to a smaller initial loan
balance, which leads to smaller mortgage payments for all contracts.32 However, a change
in α has no impact on rents. Hence, when α decreases, default becomes relatively less
attractive and the propensity to default reduces. Furthermore, in line with our conjecture
that the benefit of loan adjustments to the lender is less substantial when the borrower has
a lower propensity to default, we observe that the values of WGL for both PILMs become
smaller (and negative) as α reduces.

When α reduces from 0.95 to 0.9, all borrowers have lower equivalent consumptions.
The decrease in EC can be attributed to two reasons. First, as α becomes smaller, there is
a shift of consumption from t = 0 to t = 1, . . . , T , thereby resulting in a decrease in EC as
intertemporal utility discount applies to the consumptions beyond time 0. Second, because
the initial loan balance reduces, the borrower’s potential benefits arising from refinancing,
default and loan adjustments are less significant.33

Next, we consider parameters ᾱ and κ in the PILM adjustment schemes. According
to the specifications of the adjustment schemes, a lower target LTV (ᾱ) makes a PILM1
loan adjustment easier to be triggered, while a higher workout proportion (κ) increases the
extent of a PILM2 loan adjustment if it is triggered. When loan adjustments are easier
to trigger and/or stronger if triggered, PILM borrowers should have a lower propensity to
default and higher welfare. The relationship is confirmed in our simulation results. For the
PILM1, when ᾱ rises from 1 to 1.05, Cumdef increases but EC decreases; for the PILM2,
when κ increases from 0.5 to 0.6, Cumdef falls but EC rises. The exact opposite is true
when ᾱ reduces from 1 to 0.95 and κ decreases from 0.5 to 0.4. To the lenders, a lower ᾱ
or a higher κ means more benefits arising from the reduction in default costs but higher
costs of loan adjustments. Table 3.3 shows that the values of APV for both PILM lenders
become lower when ᾱ decreases and κ increases, indicating that the latter effect outweighs
the former.

We next move to sensitivity testing the mortgage rate spreads between the PILMs

32A reduction in α implies a decrease in FRM and PILM2 mortgage payments in all states of the world,
because FRM payments are proportional to α and are fixed at origination while PILM2 loan payments
(both adjusted and unadjusted) are proportional to M̄ (which is in turn proportional to α). A reduction
in α implies a decrease in PILM1 mortgage payments at times when no loan adjustment is triggered.

33In practice the borrower may prefer a higher down payment as it lowers the borrower’s contract rate
and/or mortgage insurance premium. These benefits may outweigh the utility loss due to consumption
shifting and reduced option values, but are not considered in our partial equilibrium framework.
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FRM
PILM1 PILM2

Direct Indirect Total Direct Indirect Total
RS1 = RS2 = 0

1576
799 488 1287 264 174 438

RS1 = RS2 = 0.01 348 1308 1656 343 1053 1396

Table 3.6: The number of defaults (out of the 10,000 simulated scenarios) for each of the
three contracts. For each PILM, the specific numbers of direct and indirect defaults are
also shown. The values are calculated at RS1 = RS2 = 0 (the baseline assumption) and
RS1 = RS2 = 0.01 (the alternative assumption)

FRM PILM1 PILM2
RS1 = RS2 = 0

5252
4817 2966

RS1 = RS2 = 0.01 9021 8211

Table 3.7: The number of scenarios (out of the 10,000 simulated scenarios) in which the
borrower refinances at least once in the first 5 years of the mortgage term for each of the
three contracts. The values are calculated at RS1 = RS2 = 0 (the baseline assumption)
and RS1 = RS2 = 0.01 (the alternative assumption),

and the FRM. When the rate spreads RS1 and RS2 increase from 0% to 1% (i.e., the
contract rate of the PILMs increases from 5% to 6%), the PILMs’ default probabilities rise
dramatically. From Table 3.6, which displays the breakdown of PILM defaults under the
baseline and alternative rate spread assumptions, we observe that the increase in default
probabilities is due primarily to the increase in indirect defaults. Moreover, it can be seen
from Table 3.7 that at the higher rate spread most of the PILM borrowers refinance during
the first 5 years of the mortgage term. As the PILM borrowers tend to refinance (into
a FRM) in early years, it is not surprising that the default probabilities for the PILM
borrowers become close to that of the FRM borrowers. It is also worth noticing that WGB

becomes negative while WGL becomes strictly positive. We may therefore view a positive
rate spread as a means to transfer welfare from borrowers to lenders.

Finally, we examine the consequences of setting the prepayment penalty parameters
(PRE1 and PRE2) to zero. The effects of having a zero prepayment penalty are threefold.
First, when the prepayment penalty is waived, the values of refinancing and the option to
refinance increase, because the PILM borrowers are able to lock in the low post-adjustment
loan balance at no cost if they refinance. As a result, the values of continuing and refinanc-
ing increase, leading to a reduction in direct defaults. Second, as the borrower’s propensity
to refinance rises, the probability of an indirect default tends to increase. Third, without
any prepayment penalty, the borrower is able to lock in the loan balance at a time when the
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loan adjustment is very substantial. A smaller loan balance at the moment of refinancing
tends to reduce the probability of an indirect default. The overall impact on the default
probability depends on the relative strengths of these three effects. Table 3.3 shows that
reducing the prepayment penalty to zero results in a substantial decrease in the PILM1
default probability but a slight increase in the PILM2 default probability. Again, we may
regard the prepayment penalty as a means to transfer welfare between lenders and borrow-
ers, since the removal of prepayment penalty increases the borrowers’ welfare but decreases
the lenders’.

In this sensitivity analysis, we see that a change in the value of contract-related pa-
rameter tends to have opposite effects on the borrower’s and lender’s welfare. Because the
values of these parameters are negotiable, they can be used to adjust the allocation of the
welfare gain arising from the loan adjustment feature between the borrower and lender.
If we assume that the mortgage market is perfectly competitive and that all lenders are
risk-neutral, then the PILM1 (PILM2) contract that would be offered in the market should
be the one with parameters ᾱ, RS1 and PRE1 (κ, RS2 and PRE2) that would result in
WGL = 0. The problem of PILM pricing then boils down to the calculation of such
parameters.

3.5.4 Sensitivity to the Parameters in the House Price and Mort-
gage Rate Processes

We conclude this section by analyzing the impact of changes in the parameters that are
associated with the dynamics of house prices and mortgage rates. We first estimate the
parameters in the processes for Ht and MRt on the basis of the historical annual log-
returns on the monthly S&P/Case-Shiller 10-City Composite Home Price Index and the
conventional conforming 30-year FRM mortgage rates, respectively.34 The estimation re-
sults (µH = 0.0449, σH = 0.0930, µMR = −0.0226, σMR = 0.1225, ρ = 0.2463) indicate that
over the calibration window, house prices were rising but mortgage rates were decreasing
on average.

Throughout the following analysis, we assume that each borrower’s view on the property
and mortgage markets is always consistent with the calibrated parameters. The borrowers

34We consider data over the period from Oct 1992 to Feb 2014. The
house price index is available at http://ca.spindices.com/indices/real-estate/

sp-case-shiller-10-city-composite-home-price-index. The mortgage rates are obtained from the
Freddie Mac Primary Mortgage Market Survey, available at http://www.freddiemac.com/pmms/pmms_

archives.html.
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considered here are more optimistic compared to the baseline borrowers, since an up-
ward expected trend in property values (characterized by a positive value of µH) increases
ownership benefit and bequest while a downward trend in mortgage rates (captured by a
negative value of µMR) reduces mortgage payments if the loan is refinanced. The realized
behaviour and welfare of a borrower depend on the real property and mortgage markets.
Two different cases concerning the real markets are considered.

In the first case, we assume the real markets are represented by the baseline processes
for Ht and MRt (with µH = µMR = 0). This assumption implies that the borrowers
are mistakenly optimistic, which in turns leads to suboptimal behaviour. Because the
overly optimistic borrowers do not default when it is actually optimal to default, the
default probabilities for all contracts become very low. As default risk reduces, the welfare
of all lenders (represented by APV) increases. The PILM lenders’ welfare increases less
significantly than the FRM lender’s. This is because as the borrower’s propensity to default
reduces, the loan adjustment feature in a PILM becomes more likely to be triggered and
hence more costly, thereby offsetting the benefit arising from the reduction in default risk.

In the second case, we assume that both the real markets and the markets perceived by
the borrowers are characterized by the calibrated parameters. Under this assumption, the
default probabilities further reduce (to zero). This is because under the current assumption
Ht and MRt are more likely to drift to values at which the action of default is not optimal,
but the borrowers’ decision rules (which are based on their perceived markets) remain
unchanged. The borrowers’ welfare (represented by EC) increases, because of an upward
trend in the actual property values and a downward trend in the actual mortgage rates. In
terms of Cumdef, EC and APV, the three mortgage contracts look similar to one another.
The similarity is in part because when µH = 0.0449 the simulated property values are so
high that PILM loan adjustments are seldom triggered, and in part because when µMR =
−0.0226 the simulated mortgage rates are so low that most PILM borrowers refinance their
loans (into FRMs) in early years.

3.6 Conclusion

The 2008-2009 financial crisis saw a dramatic increase in mortgage defaults. The once
thought to be the safest mortgage instrument – fixed rate mortgage (FRM) – experienced
a 5% delinquency rate in 2009. Such a high rate indicates that the threat of foreclosure is
not enough to deter default when house prices decline and the borrowers are deep under
water. It is well known that default imposes substantial deadweight costs to both borrowers
and lenders. Recent studies have also pointed out that foreclosures have negative social
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externalities. To remedy the weakness of FRM and save the deadweight costs of default,
property index linked mortgages (PILM) have been proposed. These contracts link the
balance and payment of the mortgage loan to a property index so that when property
values decline, the loan is adjusted correspondingly. Consequently, the borrowers repay
less and their incentives to default weaken.

This chapter considers two different designs of PILM. The first design (PILM1) aims
at controlling the current LTV ratio below a certain level, so the borrower will not be deep
under water. The second design (PILM2) aims at compensating the borrower whenever the
property is worth less than its purchase price. Despite the difference in loan adjustment
schemes, they both require the lender to protect the borrower’s equity in the mortgaged
property.

We analyze the two PILM designs from the borrower’s perspective. Under the baseline
assumptions, both PILM designs reduce the borrower’s propensity to default and increase
his/her utility. The PILM lenders may achieve a higher expected present value of cash flows
than the FRM lender, although we assume they do not charge for the equity protection
they provide. This finding suggests that the PILMs could be Pareto improving relative to
the FRM in the borrower-lender economy. The main reason behind this improvement is
that the cost of loan adjustments is covered by the savings of foreclosure costs arising from
the lower default probability. Comparing PILM1 with PILM2, we find that PILM2 has a
lower default probability and derives higher welfare for both the borrower and lender.

We also analyze how the results change when alternative parameter values are assumed.
The highlights of our findings are as follows. First, in all cases except when the PILM
lenders charge a higher mortgage rate or the housing market is favorable to the borrowers,
the PILM borrowers have lower default probabilities and higher welfare compared to the
corresponding FRM borrower, but the PILM lenders’ welfare could be higher or lower than
that of the corresponding FRM lender.

Second, for a given contract, we find that a lower default probability is usually associ-
ated with higher borrower welfare. However, this relation does not hold in a few cases. For
example, when the initial LTV is smaller (i.e., the down payment is increased), all borrow-
ers have lower default probabilities and lower welfare compared to the baseline borrowers.
A higher refinancing cost has a similar effect on PILM2.

Third, in the cases where the FRM borrower has a low default probability, the PILM
lenders tend to have smaller, or even negative, welfare gains over the FRM lender. For
example, when the ownership benefit increases or the borrower expects a bullish housing
market, the FRM default probabilities drop considerably from the baseline value and both
PILM lenders have smaller expected present values of cash flows compared to the FRM
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lender. In these cases, the borrower’s propensity to default is low without equity protec-
tion, so the savings from foreclosure costs is insufficient to cover the cost of PILM loan
adjustments, leading to lower expected present values of cash flows.

Lastly, since the contract-related parameters typically have opposite effects on the
welfare of the borrower and lender, they can be used to adjust the welfare allocation
between the borrower and lender. In our model, we can characterize a PILM1 contract by
(ᾱ, RS1, PRE1) and a PILM2 contract by (κ, RS2, PRE2). These contracts can be priced
through these parameters.

Finally we point out some limitations of our model. We assume no basis risk so that
the values of all properties are perfectly correlated with the underlying house price index.
We also assume a constant non-storable income for simplicity. These two assumptions can
be relaxed and incorporated into our model by adding a basis risk model (see Chapter 4)
and a stochastic income model (see Cocco et al. [29]), respectively. Our model can be
further enriched by considering uncertainty in the borrower’s lifespan.

Regarding mortgage decisions, we rule out some common practices in the real world,
such as equity withdraw refinancing and loan modification. We also simplify our analysis
by only allowing the PILM borrowers to refinance the loan into a FRM, and by prohibiting
the borrowers from purchasing a property after default. These simplifications help us avoid
complications while enable us focusing on comparing different mortgage designs.

Another strong assumption we make is that the housing market is exogenous to the
borrower’s choices and actions. This assumption may not hold when we consider a large
number of borrowers. If PILMs do prevent default and default drags down property values
during a recession, then PILMs do not only reduce default costs but also stabilize the
housing market. Furthermore, PILMs may increase housing demand because households
that do not want to bear the full house price risk and do not own property might consider
homeownership through PILM financing. To resolve these issues we need an equilibrium
model (see Kung [59]), which is beyond the scope of this paper.
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Chapter 4

House Price Basis Risk

House price basis risk refers to the risk arising from the difference between the changes
in individual property values and the changes in a house price index. This difference
is inevitable because an index only captures the changes of average house prices, while
properties have different characteristics and hence different appreciation rates. Basis risk
plays a role in many cases where house price index is involved, for example hedging house
price risk using property derivatives, pricing index linked mortgages, pricing home equity
release products, etc. Ignoring or underestimating basis risk may lead to mispricing or
suboptimal risk management. However the literature on house price basis risk is scarce.
In this chapter, we try to model this risk and calibrate parameters using empirical data.
We then apply this model to analyze the effect of basis risk on mortgage portfolios.

In section 1 we introduce house price basis risk by emphasizing its importance in house
price index based contracts. We also review the related literature and discuss criterion for
a good basis risk model. Our basis risk model is specified in section 2. In section 3 we
calibrate our model by historical data and then use the calibrated model to simulate house
prices. In section 4, we use the simulated house prices to analyze the effect of basis risk
on different mortgage portfolios. Section 5 concludes.

4.1 Introduction

A house price index (HPI) reflects the changes in average prices of houses that are located
within a region or a country. It is computed based on property sales prices using statistical
methods. HPI is an important indicator of the real estate market and is useful to many
market players, since most of the real estate properties are not frequently traded and their
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prices are not easily observable. However when an index provides people with a broad
view of the aggregate market, it filters out information about individual properties. Each
individual property has its unique attributes, such as location, size, age, style, etc., hence
its appreciation in value is different from others’. This also means individual properties
appreciate at different rates from the index, and the actual property value deviates from
the value estimated from an index.

Basis risk refers to the risk arising from the deviation of an individual property value
from the corresponding index estimated value, or equivalently from the difference in the
appreciation rates of an individual property and the HPI. This risk is worth discussing be-
cause more and more HPI related financial instruments have been used and proposed. For
example, the futures on S&P/Case-Shiller Home Price Indices have been traded in Chicago
Mercantile Exchange since 2006. More recently, the property index-linked mortgage has
been proposed to mitigate mortgage default risk. Basis risk may affect the usefulness or
effectiveness of these products.

The idea of using HPI-based derivatives to hedge mortgage default risk has been pro-
posed and discussed since 1990’s (Case et al. [26], Case and Shiller [25], Shiller [74]).
Mortgage investors and insurers usually hold or insure a portfolio of mortgages. When
they hedge against default risk using index derivatives, it is ideal to construct a hedging
position for each loan and then sum over all individual positions to obtain the portfolio
hedging position. This is because the mortgaged properties have different values and hence
the mortgagors’ default propensities have different sensitivities to the changes in the index.
Ignoring basis risk implicitly assumes all property values are the same, which leads to a
uniform hedging position for all loans. In general the sum of different individual hedging
positions is different from the sum of the uniform one. Therefore ignoring basis risk may
result in suboptimal hedging strategies.

Basis risk is also an important element in pricing mortgage insurance premiums and
home equity release products. Pu et al. [72] show under their simple house price model
that an increase in the correlation among house prices increases the variance of a mortgage
insurer’s payout. This causes an increase in insurance premium if the insurer adopts a
variance premium pricing principle. Andrews and Oberoi [6] realize that basis risk plays a
role in the pricing of the non-negative equity guarantee embedded in a home equity release
product. They suggest this risk being borne and managed by a specialized agent, who
charges the borrower a basis risk premium. In both cases premiums would be inadequate
if basis risk was underestimated.

To mitigate default risk, researchers have recently proposed a new design of mortgage
contract that links loan balance and payments to a property index (Ambrose and Buttimer
[3], Shiller et al. [77], Mian and Sufi [65]). Although using a public index instead of property
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value avoids costly appraisals and reduces the risk of moral hazard, it introduces basis risk.
The loan balance and payments are over (under) adjusted if the property depreciates less
(more) than the index.1 This risk is recognized and briefly discussed by Ambrose and
Buttimer [3], but none of the literatures so far has analyzed the effect of basis risk on
index-linked mortgage quantitatively. In this chapter we try to quantify this effect as a
demonstration of the usefulness of our basis risk model.

Given the importance of house price basis risk in pricing, hedging and risk management,
it is surprising that the literature on it is very limited. One approach used to characterize
the dispersion of individual house prices is to assume the difference between the log house
price and the log index follows a Gaussian random walk plus an error term (see, e.g.
Calhoun [18]). This approach is used to construct repeat sales index from paired sales
prices. Another approach is to model both index and individual house prices by geometric
Brownian motions, and model the dependency by a constant correlation coefficient (see,
e.g. Pu et al. [72], Duarte and McManus [34]).

Our model is different from these. Follow the 2012 FHA actuarial review [51], we
model the log-return of the index by an AR-ARCH process. We assume the log-return
of individual house prices follows an AR process of the same order as the index, but the
distribution of its innovation is conditional on the innovation of the index. In particular,
the conditional mean is equal to the adjusted index innovation and the conditional variance
depends on a parameter and a standard zero-mean distribution. The conditional variance
controls the degree of the basis risk. We calibrate the parameters and the distribution
using regional HPIs, and then simulate individual house prices according to the calibrated
model. The simulated price paths are satisfactory in the sense that they meet the following
three criteria for a good basis risk model.

First, the average of individual house prices is close to the index at any time. This
assures the representativeness of the index. Second, the standard deviation of individual
house prices increases over time but the annualized standard deviation decreases over time.
This is observed from empirical data. Andrews and Oberoi [6] find that the annualized
return difference between individual homes and HPI becomes less variable over time. Third,
the individual house price paths do not fluctuate rapidly, which is a natural result of the
standard assumption that the quality of any house remains unchanged.

Using our model one can fix an index path first, and then simulate house price paths.
This procedure allows us to isolate the effect of changes in basis risk from the effect of
simultaneous change in basis risk and the index. If two sets of individual house prices are
simulated first then it is unlikely to have identical indices, i.e. averages of house prices.

1A similar problem exists in the design of home equity insurance policies (Shiller and Weiss [76]).
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As an example, we will use our model to estimate default rates and values of different
mortgage portfolios under different degrees of basis risk, while keeping the index fixed.

4.2 The Basis Risk Model

In this section we specify our basis risk model. We first model the index by a stochastic
process and then specify the distribution of the individual house prices conditional on the
index. This allows us to simulate house price paths after an index path is fixed. We
focus more on the conditional distribution than on the index process since the conditional
distribution has larger impact on the dispersion of house price paths.

Various models for HPI have been proposed and analyzed (Li et al. [62], Hanewald and
Sherris [44], FHA actuarial review [51], etc.). For simplicity, we assume the quarterly log
return of HPI follows an AR(r)-ARCH(q) process:

Y (t) = µ+ β1Y (t− 1) + β2Y (t− 2) + · · ·+ βrY (t− r) + εt (4.1)

σ2
t = γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + · · ·+ γqε

2
t−q

where

Y (t) = log
H(t+ 1

4
)

H(t)

is the quarterly log return of the index H(t) for the quarter starting at time t and σ2
t is

the variance of the innovation εt. Coefficients µ, β′is, γ
′
is are to be calibrated.

To ensure house prices do not fluctuate too much, we assume the log return of individual
house prices follows the same AR(r) process with the same coefficients as the index. Denote
the time-t value of the ith house by H i(t) and its log return by Y i(t), then

Y i(t) = log
H i(t+ 1

4
)

H i(t)
,

and
Y i(t) = µ+ β1Y

i(t− 1) + β2Y
i(t− 2) + · · ·+ βrY

i(t− r) + εit. (4.2)

For convenience, we normalize the initial prices of all houses to equal to the initial index,
i.e. H i(0) = H(0) for all i.

The distribution of individual innovation εit is the key to our basis risk model. First,
it must be related to the index innovation εt, otherwise we cannot guarantee the average
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of house prices being close to the index. Second, the variance of εit controls the degree of
basis risk. A larger variance generates more dispersed returns and hence higher basis risk.
We assume the distribution of εit conditional on εt is

εit|εt ∼ εt − δ + ωZ, (4.3)

where δ and ω are two parameters and Z follows some standard zero-mean distribution.
The δ is an adjustment factor that is necessary for the average of house prices to equal the
index.2 It is important to note that δ, ω, Z are essential to the basis risk. In the next section
when we calibrate the model we focus on identifying these quantities. Also note that the
conditional distribution of εit is independent of the main model and the variance structure
of εt. One can choose another set of coefficients or other ARMA-GARCH specifications
when modelling and simulating the index while retaining the basis risk structure (4.3).

4.3 Model Calibration and House Price Simulation

In this section, we calibrate the basis risk model parameters δ, ω and the distribution of Z
to the historical regional HPIs. We then use the calibrated model to simulate house price
paths under a given index path. Our model provides a good fit for the historical HPIs and
the simulated paths meet the three criteria mentioned in the introduction.

4.3.1 Calibration

Due to data limitation, we use regional HPIs to calibrate the parameters. The dispersion
of regional indices could have a similar pattern as the dispersion of individual house prices,
since each region has its own characteristics like each house does. In addition, using indices
has the advantage that we know the paths rather than only discrete pairs of prices if repeat
sales data were used. The regional HPIs we use are the S&P/Case Shiller (SPCS) Home
Price Indices for 20 Metropolitan Statistical Areas in the US and the calibration window
is from January 2000 to December 2013.3 The indices are updated monthly. The index

2Since we are modelling log returns, the arithmetic average of house prices without the adjustment
factor δ would be larger than the index (but the geometric average would equal the index). To see this,
note that property values are conditionally log-normally distributed. If εit has a conditional mean of εt
with a positive conditional variance, i.e. E[εit|εt] = εt, Var(εit|εt) = v2 > 0, then E

[
eε

i
t

∣∣εt] = eεt+v
2/2 > eεt .

Furthermore, the magnitude of the adjustment should depend on the conditional variance.
3Data can be retrieved at http://ca.spindices.com/index-family/real-estate/

sp-case-shiller.
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values are normalized to 100 in January 2000. Figure 4.1 shows all 20 index paths and
their unweighted average. We will treat these regional indices as individual house prices
and their average as the index.

Figure 4.1: S&P/Case-Shiller Home Price Indices for 20 MSAs and their unweighted aver-
age (the thick line), Jan 2000 – Dec 2013.

We use a two stage calibration procedure. In the first stage we convert the monthly data
to quarterly returns and calibrate the returns of the average of regional indices to an AR(3)-
ARCH(1) process.4 We then obtain index innovations εt. Note that these AR-ARCH
coefficients are not directly related to the basis risk parameters, but they are necessary for
obtaining εt and εit.

In the second stage we calibrate the parameters δ, ω and the distribution of Z. Using the
fitted coefficients from the first stage, we can infer the values of the individual innovations εit
by assuming AR(3)-ARCH(1) process for all 20 regional index paths. Consider centralized

4The fitted coefficients are µ = 3.9060 × 10−4, β1 = 2.3560, β2 = −2.1160, β3 = 0.7228, γ0 =
1.4562 × 10−5, γ1 = 0.4283. We choose r = 3 and q = 1 following the 2012 FHA actuarial review [51].
The estimated standardized residuals do not pass the Ljung-Box Q-test but do pass the Engle-ARCH test.
The lag of 3 not being enough to remove autocorrelation may be due to the trend and seasonality in the
return series. For simplicity we impose that r = 3. The order of q = 1 successfully removes the ARCH
effect.
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individual residuals of the form

ε̃it = εit − (εt − δ) ∼ ωZ.

Aggregating the 20 paths, we choose δ such that the average of ε̃it across all paths and all
time points is 0. This gives δ = 1.4376 × 10−5. To determine the distribution of Z and
the value of ω, we examine the sample distribution of ε̃it. Figures 4.2 shows the quantile-
quantile(QQ) plots of ε̃it against normal distribution (left panel) and against student t
distribution with degree of freedom 4 (right panel). From these plots we see that t distri-
bution provides a better fit than normal distribution except for the right tail. Assuming Z
follows a t4 distribution, we choose ω to match the sample variance of ε̃it to the theoretical
variance of ωZ.

The same estimation procedure is applied to the FNC residential price indices5 that
cover 30 MSAs. Using the same calibration window, we obtain similar results, despite FCN
indices are hedonic. The first two columns of Table 4.1 show the calibrated distribution
and parameter values.

Figure 4.2: QQ plot of centralized residuals(ε̃it) against standard normal (left panel) and
student t distribution with 4 degrees of freedom (right panel) based on 3240 samples.

5Data can be retrieved at http://www.fncrpi.com/tables.aspx.
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SPCS FNC simulated data
Distribution of Z t(df=4) t(df=8) t(df=4) normal

ω 0.0083 0.0176 0.0085 0.0085
δ(×10−5) 1.44 2.59 36 25

Values at the end of year 14
Index 608 610 298
Mean 608 610 296 299
Std 131 124 134 90

Table 4.1: The distribution and parameter values of the basis risk model. “Mean” and
“Std” are the mean and standard deviation of property values at the end of year 14 when
initial values are normalized to 400. They indicate the representativeness of the index and
the dispersion of property values. Simulation runs to year 15, we report the values at year
14 in order for them to be comparable with the SPCS & FNC data.

4.3.2 Simulation

Empirical data only contain very limited number of “house price paths”, which is usually
not enough for an analysis where one party is exposed to house price risk from many
houses. Therefore to use our basis risk model effectively, we need to simulate house price
paths. By simulation we can also fix an index path we want and control the level of basis
risk.

Assume there are N = 1000 houses (i = 1, 2, . . . , 1000). We first fix an index path as
shown in Figure 4.3. It is intentionally chosen to be a depressing scenario to facilitate our
later analysis about property index-linked mortgage. The index falls by about 40% from
its initial level at the end of year 5 and then gradually rises.

We re-estimate the AR-ARCH coefficients by fitting the quarterly index return to an
AR(3)-ARCH(1) process,6 and then use the fitted coefficients, together with the selected
δ and ω, to simulate property values.7 The columns under “simulated data” in Table 4.1
show some statistics of the simulated house price paths.

Using t distribution with 4 degrees of freedom for Z with a similar value of ω identified
previously, we need to select a larger δ to adjust the average to the index. The standard

6Coefficients are: µ = 0.0024, β1 = 0.6878, β2 = −0.3966, β3 = 0.5169, γ0 = 3.0202×10−5, γ1 = 0.9248.
Similar to model calibration, the autocorrelations are not completely removed by the AR(3) terms but the
ARCH effect is removed.

7We need three initial values for Y and Y i, they are Y−2 = 0.011042, Y−1 = −0.007145, Y0 = −0.028071.
These values have insignificant effect on simulation.
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deviation at the end of year 14 is similar to the empirical data but the basis risk is relatively
higher because the index at the end of year 14 in our depressing scenario is much lower
than in the empirical data. We in addition consider a lower level of basis risk by using a
normal distribution for Z.

Figure 4.3: The fixed HPI and mortgage rates. The two dashed lines are averages of
simulated house prices assuming Z follows t4 and normal distributions.

To visualize what simulated house price paths look like, we also plot their averages
in Figure 4.3. They stick close to the index over time, which indicates that the first-
simulated index is representative. Figure 4.4 plots 20 house price paths under each assumed
distribution for Z. Paths intersect the index and each other, but do not exhibit high-
frequency fluctuation. For the same value of ω, paths are more dispersed when Z has
a larger variance. Standard deviations of house prices are shown in Figure 4.5. They
increase over time but the annualized standard deviations (standard deviation divided
by time) decrease over time. This is consistent with the assumption about house price
volatility in Calhoun [18] and the empirical findings in Andrews and Oberoi [6].

Numerical results in the next section are all based on these two sets of simulations.
Since we simulate house prices quarterly, linear interpolation is used to compute the house
prices within a quarter. The case of Z ∼ N(0, 1) will be referred to as low basis risk and
Z ∼ t4 as high basis risk. In addition we will consider the case of no basis risk where all
house prices equal the index at all times.
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Figure 4.4: Twenty house price paths are plotted under each assumed distribution for Z.

Figure 4.5: The standard deviations and annualized standard deviations of house prices
over time.

4.4 The Effect of Basis Risk on Mortgage Portfolios

In this section we use the simulated house prices to analyze the effect of basis risk on port-
folios of different mortgage contracts. We consider two types of mortgages: the traditional
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fixed rate mortgage (FRM) and the property index-linked mortgage (PILM) introduced in
Chapter 3, and three levels of basis risk: no, low and high. We assume a lender holds a
portfolio of mortgages (either all FRMs or all PILMs) with homogeneous characteristics,
except that the values of the mortgaged houses evolve differently according to the simu-
lated paths. The potential effect of basis risk on PILM is qualitatively analyzed in section
3.1.3.2. In this section we try to quantify this effect by comparing portfolio default rates
and values across different levels of basis risk and different contract types.

4.4.1 Mortgage Contracts and Their Values

We first specify the FRM and PILM contracts. They are very similar to the FRM and
PILM1 contracts specified in Chapter 3 except that we use a continuous framework.8 The
value of a contract to the lender depends on the timing and mode of mortgage termination,
which in turn depends on house prices and the index (for PILM). We use the multiple state
model specified in Chapter 1 for mortgage termination.

FRM

In a FRM contract, the loan is fully amortized at origination such that the borrower
repays the same amount within any time interval of the same length. The rate of mortgage
payment at time t (in year) is

M(t) = αH(0)
rc

1− e−rcT
,

where rc is the continuously compounded contract rate for the FRM, α is the initial loan-
to-value (LTV) ratio and T is the loan term. The value of M(t) is determined at loan
origination and does not change over time. The loan balance at time t is

B(t) = αH(0)
1− e−rc(T−t)

1− e−rcT
.

There is no prepayment penalty.

8There are two reasons we consider continuous framework here. First, it has been well established in
Chapter 1. Second, we only simulate house prices at the end of each quarter but to the lender loan default
and prepayment can occur within a quarter, say at month ends.
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PILM

Following the specification of PILM1 in section 3.2.3, we define the reference balance to be
the balance determined at loan origination by amortizing the initial loan amount over the
loan term with continuously compounded contract rate rc, which is the same as the FRM
contract rate. Denote the reference balance at time t by Ut, then

U(t) = αH(0)
1− e−rc(T−t)

1− e−rcT

The actual loan balance B(t) may deviate from U(t) if the loan is adjusted due to a
significant drop in HPI. We assume that at the beginning of each quarter, the loan balance
is adjusted so that the current LTV (value indicated by HPI, not necessarily the actual
value) does not exceed a target. Mathematically the post-adjustment loan balance is

B(t) = min[ᾱH(t), U(t)], for t = 0,
1

4
,
2

4
, · · · , 4T − 1

4
,

where 0 < ᾱ < 1 is the target LTV. The payment rate is then calculated by amortizing
B(t) over the remaining term of the loan:

M(t) = B(t)
rc1

1− e−rc(T−t) .

There is no balance adjustment within each quarter, so for t ∈ [ i
4
, i+1

4
), i = 0, 1, 2, . . . , 4T−

1,

B(t) = B
( i

4

) 1− e−rc(T−t)

1− e−rc(T− i
4

)
,

and M(t) = M
(
i
4

)
.

Should the borrower choose to prepay at time t, he/she is subject to a prepayment
penalty of

PP(t) = θ(U(t)−B(t))

due at the time of prepayment, where 0 ≤ θ ≤ 1 is a constant prepayment. Upon prepay-
ment the lender receives the sum of the post-adjustment balance U(t) and the prepayment
penalty PP(t).

110



Contract and Portfolio

We consider two portfolios of loans. One consists of 1000 FRMs and the other 1000
PILMs. These loans and the borrowers of the loans have homogeneous characteristics,
except that the values of the mortgaged houses evolve differently over time. We assume
the portfolios are well diversified in the sense that the underlying houses represent the real
estate market and their average values approximately equal the index. We further assume
that conditional on the house values, mortgage terminations are mutually independent.

We define the contract value of a mortgage loan to be the present value of the cash flow
from that loan. This is a random variable since it depends on when and how the loan is
terminated, and also on the market condition if the loan is a PILM. We denote the value
of the i-th loan of type k by V k

i , where i ∈ {1, 2, . . . , 1000}, k ∈ {FRM,PILM}. Then the
value of a portfolio is V k =

∑N
i=1 V

k
i .

In general it is very difficult to derive analytically the distribution of V k since it is
the sum of a sequence of random variables. We have two additional difficulties: 1) the
distributions of V k

i are not known, and 2) V k
i have different distributions for different i

when basis risk is present. Therefore we approximate these distributions by simulating
loan terminations.

We assume the process of loan status follows the multiple state model specified in Chap-
ter 1,9 and the values of the mortgaged house underlying the i-th loan in both portfolios
follow the i-th house price path generated previously. The mortgage rates are shown in
Figure 4.3. Basis risk affects loan portfolios through the effect of house values on loan
status transitions, since transition intensities depend on loan balances and house values.

We denote the j-th realized present value of cash flows from the i-th loan of type k by
vkij. It is a random sample of V k

i , and is calculated as follows

vFRM
ij =


∫ t

0
d(s)M(s)ds+ d(t)U(t) if prepaid at t∫ t

0
d(s)M(s)ds+ d(t)γU(t) if defaulted at t∫ T

0
d(s)M(s)ds if not prepaid or defaulted before T

,

9For each mortgage we simulate the times and destination states of all transitions occurred from origi-
nation to termination. Transition times are simulated using “stay” probabilities p11 and p22. Conditioning
on the time of each transition, the probability that a state is selected as the destination is proportional to
the corresponding transition intensity. Simulation ends as soon as state “Prepay” or “Default” is reached.
We then record the ending time as loan termination time, and the ending state as the mode of termination.
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and

vPILM
ij =


∫ t

0
d(s)M(s)ds+ d(t)(B(t) + PP(t)) if prepaid at t∫ t

0
d(s)M(s)ds+ d(t) min[B(t), γU(t)] if defaulted at t∫ T

0
d(s)M(s)ds if not prepaid or defaulted before T

.

The function d(t) is the time varying discount factor, and the parameter 0 < γ < 1
represents the fraction of (reference) loan balance the lender can recover following loan
default. We simulate 50,000 samples for each mortgage in both FRM and PILM portfolios,
i.e. j = 1, 2, · · · , 50, 000. The j-th realized value for a portfolio is

vkj =
1000∑
i=1

vkij.

This is a random sample of V k.

The cumulative default rate of a mortgage portfolio is the proportion of mortgage loans
that have defaulted by the end of loan term T . This is also a random variable and we
denote it by Dk. We can easily obtain an estimation for default rate from simulated loan
terminations. Let dkij indicate whether the j-th simulation of the i-th loan of type k is
terminated through default; that is, dkij = 1 if default occurs and dkij = 0 if not. Then the

default rate for the portfolio k based on the j-th simulation is dkj = 1
1000

∑1000
i=1 d

k
ij, and the

average of dkj (over j) is an estimation of the expected value of Dk.

4.4.2 Results and Analysis

We consider three levels of basis risk: 1) no basis risk – all house prices are perfectly
correlated with the index, 2) low basis risk – Z follows a normal distribution, and 3) high
basis risk – Z follows a t distribution with 4 degrees of freedom. When there is no basis risk,
all mortgages within a portfolio have the same stochastic process for its loan status, hence
they have the same probability of default and the same distribution for their values. We
call a mortgage with underlying house value being the same as the index “index mortgage”,
and a portfolio consisting of index mortgages “index portfolio”. With the presence of basis
risk, each mortgage loan follows a stochastic process of status transition different from
another.

The specified parameter values are shown in Table 4.2. We assume a 15 year loan term
with initial LTV of 95%. The PILM balance is adjusted as soon as the index falls below
the reference balance, but the PILM lender does not charge for this adjustment provision.
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Upon prepayment, the borrower has to repay the reference balance and upon default, the
lender can recover half of the reference balance from foreclosure.

Parameter Description Value

H(0) Initial hosue price 400
rc FRM contract rate 0.048
α Initial LTV 0.95
T Mortgage term 15
ᾱ PILM target LTV 1
θ Prepayment penalty parameter 1
γ Recovery rate 0.5

Table 4.2: Parameter specification.

Default Rate

Table 4.3 shows the default rates. For both FRM and PILM portfolios, default rate in-
creases with the level of basis risk.10 According to our loan termination model, lower house
values increase the probability of defaults. When a mortgaged house has a value below
the index, the corresponding mortgage has a higher probability to default than the index
mortgage. On the other hand if the house value is above the index, the corresponding
mortgage is less likely to default than the index mortgage.

Default(%) No Low High
FRM 31.33 35.67 38.46
PILM 19.99 24.08 27.84

Table 4.3: Default rates for FRM and PILM portfolios under different levels of basis risk
(no, low, high).

Since the average of house prices approximately equals the index, the fact that default
probability increases with the level of basis risk suggests that the effect of negative deviation
of house prices from the index on default propensity is stronger than the effect of positive
house price deviation. It is also clear that in all cases the PILM portfolio has a lower default
rate than the FRM portfolio. This shows that loan adjustment is effective in preventing
default in a depressing scenario, even with the presence of basis risk.

10The PILM default rate is not zero because we are using the multiple state model that incorporates
defaults due to any reason.
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Value of a Mortgage Contract

We have obtained 50,000 random samples (vkij, j = 1, 2, . . . , 50000) for the present value
random variable (V k

i ) of the i-th loan in the portfolio k under all three levels of basis risk.
These samples can be used to examine the distribution of V k

i . Figure 4.6 shows the density
estimation of the values of FRM and PILM index mortgages. In this case the distributions
of V k

i are the same for all i so we randomly pick one and use its 50,000 samples.11 The
two densities are irregular and do not belong to any standard family. They have multiple
modes and heavy left tails. The sample mean and sample standard deviation (std) for the
FRM index mortgage are 370.70 and 66.81, for the PILM mortgage are 378.86 and 56.57.
In this depressing scenario, PILM is superior to FRM in terms of risk and return when
there is no basis risk.

Figure 4.6: Density estimation of the present value random variables of the FRM and
PILM index mortgages based on 50,000 samples.

When there is basis risk, V k
i have different distributions for different i because the value

of each mortgaged property evolves differently. We plot in Figure 4.7 the sample means
and sample stds for all V k

i , i = 1, 2, · · · , 1000, k = FRM,PILM, under high basis risk. The
figure shows that for a given index, our basis risk model effectively disperses mortgage
values on the mean-std plane. We also find that in the high sample mean region, PILMs

11We could have used all 1000×50000 samples but that would not make much difference.
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have lower values than FRMs. However this does not imply PILMs have lower average
values, as there are fewer PILMs having low sample means.

Figure 4.7: A scatter plot of the sample means and sample stds of V k
i , i =

1, 2, · · · , 1000, k = FRM,PILM under high basis risk. The two dots represent the index
FRM and the index PILM.

Value of A Mortgage Portfolio

The value of a portfolio is the sum of the values of all mortgage contracts in that portfolio,
i.e. V k =

∑N
i=1 V

k
i . When there is no basis risk, V k

i , i = 1, 2, . . . , N are independent and
identically distributed. By the classical central limit theorem,∑n

i=1 V
k
i − nµk√

n(σk)2
→ N(0, 1) in distribution as n→∞,

provided that the mean µk and variance (σk)2 of V k
i are finite. This suggests that the value

of an index portfolio can be approximated by a normal distribution when N is large:

V k =
N∑
i=1

V k
i approx ∼ N(Nµk, N(σk)2). (4.4)
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The classical central limit theorem is not applicable to the cases of low and high basis
risk because the distributions of V k

i are not identical. Nevertheless we can use a more
general version of central limit theorem that only requires independency among individual
random variables.12 The theorem states that for a sequence of random variables Xi, i =
1, 2, . . . each with mean 0 and variance σ2

i <∞, if the following Lyapounov’s condition

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Xi|2+δ

]
= 0 (4.5)

holds for some positive δ, where s2
n =

∑n
i=1 σ

2
i , then∑n

i=1Xi

sn
→ N(0, 1) in distribution as n→∞.

This theorem implies that when N is large,

V k =
N∑
i=1

V k
i approx ∼ N

(
N∑
i=1

µki ,
N∑
i=1

(σki )2

)
, (4.6)

where µki is the mean of V k
i and (σki )2 is the variance. When µki = µk and (σki )2 = (σk)2

for all i, (4.6) reduces to (4.4).

To use normal approximation, we first need to verify that the Lyapounov’s condition
(4.5) holds. We do that numerically. Let Ṽ k

i = V k
i − E[V k

i ], and ṽkij = vkij − 1
50000

(vki1 +

vki2 + · · · + vki50000) be samples of Ṽ k
i . We take δ = 1 and approximate the third moment

and variance of Ṽ k
i using ṽkij. The left hand side of (4.5), with Xi being substituted with

V k
i , is calculated for each n from 1 to 1000, and is plotted in Figure 4.8 for the case of high

basis risk. The tendency towards zero is clear. We have similar results for the low basis
risk case.

Next we need to check whether N = 1000 is large enough to achieve good approxi-
mations shown in (4.4) and (4.6). We use QQ plot as an examination tool. Figure 4.9
shows the QQ plot of vPILM

j from high basis risk case against standard normal. It strongly
supports normality. The QQ plots for vFRM

j , and under low and no basis risk cases are
similar.

Based on the theory and the evidence just presented, we can assume the distribution of
portfolio value is normal for both FRM and PILM portfolios and under all levels of basis

12See for example Theorem 27.3 of Billingsley[13]. The mortgage contract values V ki are independent
when house price paths are fixed.
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Figure 4.8: Numerical verification of Lyapounov’s condition (4.5) based on centralized
samples from high basis risk case.

Figure 4.9: The normal QQ plot of vPILM
j from high basis risk case.

risk. Hence we only need to estimate and report the mean and std of portfolio values,
as they fully characterize normal distributions. Given the random samples vkij, there are
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two approaches for estimation. One is to use the sample mean and sample std of vkj as
the estimators. The other is to estimate the means and stds of the values of all mortgage
contracts in a portfolio and then use central limit theorems ((4.4) and (4.6)) to obtain the
estimates of the mean and std of portfolio values. The two approaches produce the same
estimation for the mean portfolio values because

1

50000

∑
j

vkj =
1

50000

∑
j

(∑
i

vkij

)
=
∑
i

(
1

50000

∑
j

vkij

)
.

The estimates of std could be different but based on unreported calculation they are very
close to each other in all cases. Table 4.4 shows the means and stds of portfolio values
estimated using the first approach.

Portfolio No Low High
value Mean Std Mean Std Mean Std
FRM 370.70 2.11 363.65 2.04 359.17 2.01
PILM 378.86 1.79 373.00 1.83 367.74 1.84

Table 4.4: Sample means and sample stds of vkj , j = 0, 1, · · · , 50000 under different levels
of basis risk. The distributions of portfolio values are approximately normal so only means
and stds are estimated. All values are in thousand (×103). The initial portfolio loan size
is 380, 000.

It is clear from the table that the mean portfolio values decrease as basis risk becomes
larger, but the stds are not affected much. We have previously demonstrated that negative
deviation of house prices from the index has larger impact on default probability than
positive deviation. Similarly we see here that negative shocks of house values have larger
impact on mortgage values than positive shocks with similar magnitudes.

We can alternatively interpret these observations by the “concavity/convexity” of our
model. To see this, let H i(t) be the value of the i-th house at time t, and denote the average
house value by E[H i(t)], which approximately equals 1

N

∑N
i=1 H

i(t). Taking H i(t), t ∈ [0, T ]
as input, our model outputs the mean of the value of the corresponding mortgage contract
(µki ≈ E[V k

i ]). If we denote our model by an operator f , then f should be “increasing”, and
the expected portfolio value with and without basis risk can be expressed by

∑N
i=1 f(H i(t))
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and Nf(E[H i(t)]) respectively.13 Our numerical results imply that

Nf(E[H i(t)]) >
N∑
i=1

f(H i(t)),

i.e.

f(E[H i(t)]) >
1

N

N∑
i=1

f(H i(t)) ≈ E[f(H i(t))].

This would be the Jensen’s inequality for a concave function if H i(t) were real numbers.
Similarly if we let g be the operator mapping property value path to the probability of
default, then g is “decreasing” and “convex”, according to the results in Table 4.3. The
effect of basis risk on the changes of default rates and portfolio values may depend on
many factors, including the degrees of “concavity” and “convexity” of operators f and g,
the fixed index, the deviation of house prices from the index, the pattern of house price
dispersion, etc.

Tables 4.3 and 4.4 show that basis risk has similar effects on FRM and PILM portfolios.
The PILM portfolio has lower default rates and higher expected value than the FRM
portfolio under all levels of basis risk under discussion, despite that the PILM lender does
not charge for the loan adjustment. These results suggest that PILM could be preferred
to FRM even when basis risk is present and the individual house values are not known
to the lender. Note that our results are based on a fixed depressing scenario. In thriving
scenarios where loan adjustments are seldom or never triggered, FRM and PILM portfolios
should have similar default rates and values.

Symmetric Information

In the previous analysis, we assume the PILM lender adjusts loan balances based on the
index. This is because we assume the lender does not know the actual house prices. We also
assume the borrower knows the house prices so the transition of loan status depends on the
house prices. In this section we assume information is symmetric between the borrowers
and the lender, hence the PILM lender adjusts loan balance according to the house values
rather than the index. That is, the balance of the i-th PILM becomes

Bi(t) = min[ᾱH i(t), U(t)], for t = 0,
1

4
,
2

4
, · · · , 4T − 1

4
.

13When there is no basis risk, the value of each property follows the index, which equals the average of
property values with basis risk(E[Hi(t)]).
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The reference balance U(t) is the same for all PILM loans since they all start with the same
initial loan amount and contract rate. The simulation of loan status is the same as before
except that the loan balances are different. Portfolio values can also be approximated by
normal distributions. Results are shown in Table 4.5.

No Low High
Default(%)

PILM
19.99

24.08 27.84
PILM(SI) 17.58 17.28
Mean portfolio value(×103)

PILM
378.86

373.00 367.74
PILM(SI) 379.46 377.45
Std portfolio value(×103)

PILM
1.79

1.83 1.84
PILM(SI) 1.69 1.66

Table 4.5: The effect of symmetric information on the default rate and value of the PILM
portfolio under different levels of basis risk. “SI” denotes symmetric information.

Compared to the case of asymmetric information, default rates decrease significantly,
mean portfolio values increase and the stds of portfolio values decrease. These results
show that adjusting loan balance according to actual house prices is superior to adjusting
according to the index. They also imply that knowing house prices increases the advantage
of PILM over FRM. Comparing the cases with and without basis risk, we do not find much
difference in mean portfolio values, but default rates are lower when basis risk becomes
stronger.

4.5 Conclusion

As house price indices are being used more often in housing related financial products,
house price basis risk becomes an important consideration for designing, pricing, valuing
and managing these products. Ignoring or underestimating house price basis risk may lead
to under pricing or ineffective hedging. Therefore an appropriate model for house price
basis risk is needed.

In this chapter, we propose a basis risk model that have the following desired properties.
First, it is relatively independent of the model for the index. Any ARMA-GARCH type of
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process can be used to model the index. The basis risk structure is specified through the
conditional distribution of innovations for individual house prices. Second, it is easy to use
the model for simulation. One can fix an index first and then simulate house prices under
different levels of basis risk. Third, the simulated house prices are reasonable. The paths
look random but do not fluctuate wildly; their averages are close to the index and the
standard deviation increases over time. We calibrate our model using historical regional
house price indices by treating these indices as house prices and their average as the index.

Since basis risk is considered as a problem for PILM, we use simulated house prices to
analyze the effect of basis risk on a PILM portfolio. In particular, we compare the PILM
portfolio default rate and value with the corresponding FRM portfolio under different
levels of basis risk. We fix a depressing scenario where the index falls significantly in the
first five years. When there is no basis risk, all mortgage loans within a portfolio has
the same probability to default and the same contract value. When basis risk is present,
contract values of different mortgage loans have different means and variances. Our results
show that when the level of basis risk increases, default rates increase and portfolio values
decrease for both FRM and PILM portfolios, but the PILM portfolio always has lower
default rates and higher values than the FRM portfolio. This implies that PILM could be
preferred to FRM despite the existence of basis risk.

Our basis risk model can also be used to analyze other index related contracts. For
example, the effectiveness of hedging house price basis risk using index derivatives. The
model can be incorporated into Chapter 3 by assuming all borrowers behave optimally
according to the prices of their own houses. We then examine the cash flow and default
rate of a portfolio. When estimating the basis risk parameters we may assume different
levels of basis risk within different time periods and identify the periods with high/low
basis risk. We can further try to improve our estimation of basis risk parameters, and/or
our identification of basis risk structure, by using real estate transaction data when they
are available.
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Appendix A

A Numerical Procedure for
Transition Probabilities Calculation

To price a policy using formula (1.3) or (1.5), one needs to evaluate λ14(t), which involves
p11(0, t). Equations (1.1) & (1.2) form a system of integral equation for p11(x, t) and
p21(x, 0, t). In general it is very difficult to find analytic solutions to integral equations.
Instead numerical methods that approximate analytic solutions are used widely in appli-
cation. They are easy to implement and provide acceptable results if used appropriately.

In this appendix, we try to solve equations (1.1) & (1.2) simultaneously by trapezoidal
rule, which approximates an integral by the values of integrand at both ends,∫ h

0

f(x)dx ≈ h

2

[
f(0) + f(h)

]
.

For a large integration interval, we may divide the interval into subintervals and use the
above rule repeatedly,∫ t

0

f(x)dx ≈ h

2

[
f(0) + 2

N−1∑
j=1

f(jh) + f(Nh)

]
,

where the interval [0, t] is divided intoN equal subintervals with cutting points 0, h, 2h, · · · , (N−
1)h,Nh = t. This is also called composite trapezoidal rule.1 For convenience, we shall

1The absolute value of the difference between the true and approximated value is

t3K

12N2
,
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replace the approximation sign(≈) by equal sign(=) in the following derivations.

Assume transition intensities µ12(x), µ21(x, u), and “stay” probabilities p11(x, t), p22(x, u, t)
are known for all x, t, u. Divide the interval [0, T ] into N equal subintervals of length h
such that 0, h, 2h, · · · , (N − 1)h,Nh = T are cutting points. Our goal is to find function
values p11(x, t) and p21(x, 0, t) at each point on the square {0, h, 2h, · · · , (N − 1)h,Nh} ×
{0, h, 2h, · · · , (N − 1)h,Nh}, where Nh = T .2 Suppose we are at point (x, ih), expand
(1.1) by trapezoidal rule, we have

p11(x, ih) =
h

2

[
p11(x, 0)µ12(x)p21(x, 0, ih)

+ 2
i−1∑
j=1

p11(x, jh)µ12(x+ jh)p21(x+ jh, 0, (i− j)h)

+ p11(x, ih)µ12(x+ ih)p21(x+ ih, 0, 0)

]
+ p11(x, ih)

=
h

2

[
µ12(x)p21(x, 0, ih) +m(i)

]
+ p11(x, ih),

where

m(i) = 2
i−1∑
j=1

p11(x, jh)µ12(x+ jh)p21(x+ jh, 0, (i− j)h)

for i ≥ 2 and m(1) = 0. The initial conditions

p11(x, 0) = 1 and p21(x, 0, 0) = 0 ∀x ≥ 0

where K is an upper bound for f ′′(x) x ∈ [0, t], see[81][10].
2Note that the transition probabilities are not used in policy pricing when x+t > T but mathematically

they can be calculated.
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have been substituted in to simplify the expression. Similarly,

p21(x, 0, ih) =
h

2

[
p22(x, 0, 0)µ21(x, 0)p11(x, ih)

+ 2
i−1∑
j=1

p22(x, 0, jh)µ21(x+ jh, jh)p11(x+ jh, (i− j)h)

+ p22(x, 0, ih)µ21(x+ ih, ih)p11(x+ ih, 0)

]
=
h

2

[
µ21(x, 0)p11(x, ih) + n(i)

]
,

where

n(i) = 2
i−1∑
j=1

p22(x, 0, jh)µ21(x+ jh, jh)p11(x+ jh, (i− j)h) + p22(x, 0, ih)µ21(x+ ih, ih)

for i ≥ 2 and
n(1) = p22(x, 0, h)µ21(x+ h, h).

Note that m(i) and n(i) only involve p11(x, t), p21(x, 0, t) for t < ih. So our calculation
sequence is [p11(x, h), p21(x, 0, h)], [p11(x, 2h), p21(x, 0, 2h)], · · · ,
[p11(x,Nh), p21(x, 0, Nh)], and both m(i) and n(i) are known values when solving for
[p11(x, ih), p21(x, 0, ih)]:3

p11(x, ih) =
n(i)µ12(x)h2 + 2m(i)h+ 4p11(x, ih)

4− µ12(x)µ21(x, 0)h2

p21(x, 0, ih) =
m(i)µ21(x, 0)h2 + 2n(i)h+ 2p11(x, ih)µ21(x, 0)h

4− µ12(x)µ21(x, 0)h2
.

3The calculation sequence for different x with fixed ih does not matter.
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Appendix B

Numerical Detail for the
Optimization Problem in Chapter 3

Discretization of the state space
To numerically solve the optimization problem posed in chapter 3 using dynamic program-
ming, the first step is to discretize the state space (t,Ht,MRt,ERt,Mt). We then calculate
the action value It, contract value Jt and the associated optimal action at all grid points.
The space is divided into hypercubes with coordinates in each dimension given by

• t ∈ {0, 1, 2, · · · , T};

• H ∈ SH = {e3+0.092i, i = 0, 1, 2, · · · , 49};

• MR/ER ∈ SR = {e−4.6+0.194i, i = 0, 1, 2, · · · , 17};

• M ∈ SM = {2i, i = 0, 1, 2, · · · , 24}.

Any combination of these values is a grid point in the state space that represents a partic-
ular state.

Calculation of expectations
Since contract values Jt are only known at finite number of states, the expectation E[Jt]
taken over (Ht,MRt) must be approximated numerically. We choose the simplest approx-
imation by assuming transition can only occur between grid points of (Ht,MRt). We
further assume the transition probability follows a two dimensional discrete distribution
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with probability mass function P(·, ·) proportional to the bivariate normal density defined
by (3.2). Hence,

Et[Jt+1] ≈
∑

(Ht+1,MRt+1)∈{SH×SR}

J(t+ 1, Ht+1,MRt+1)P(Ht+1,MRt+1|Ht,MRt).

The largest and smallest values in SH and SR become bounds for property value and
mortgage rate. According to the original definition (3.2), the marginal distribution of
(logHt+1, log MRt+1) is centered at (logHt, log MRt). However this is not the case under
our discrete transition probability unless (logHt, log MRt) is at the center of SH×SR, since
the bounds of the state space are fixed and independent of time-t state. This should not
be a serious problem because we divide each dimension equally in log scale within a wide
range and normal distribution has a thin tail. The discrete transition distribution is not
much biased as long as the time-t state is away from the boundary.

Interpolation
We simulate (Ht,MRt) process in the continuous space so their values are not constrained
by discretization. This means (ER,M) can be at any point between the grid points, hence
we need to interpolate the value of Jt using its values at nearby grid points. By the na-
ture of contract value, we require the interpolation method to be monotonicity preserving.
For example Jt must be decreasing in Mt when other variables being fixed. We choose
to use the Fritsch-Butland piecewise cubic interpolation1 along the dimension Mt and the
linear interpolation along ER, in order to achieve a relative high degree of accuracy and
meanwhile control for complexity and computational burden.2

1See Hyman[49] for the formulas.
2The monotonicity preserving bicubic algorithm is much more complicated than the univariate one, see

Carlson & Fritsch[24].
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