
Modeling and Design Optimization of
Plug-In Hybrid Electric Vehicle

Powertrains

by

Maryyeh Chehresaz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2013

c© Maryyeh Chehrehsaz 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Hybrid electric vehicles (HEVs) were introduced in response to rising environmental chal-

lenges facing the automotive sector. HEVs combine the benefits of electric vehicles and

conventional internal combustion engine vehicles, integrating an electrical system (a bat-

tery and an electric motor) with an engine to provide improved fuel economy and reduced

emissions, while maintaining adequate driving range. By comparison with conventional

HEVs, plug-in hybrid electric vehicles (PHEVs) have larger battery storage systems and

can be fully charged via an external electric power source such as the electrical grid. Of the

three primary PHEV architectures, power-split architectures tend to provide greater effi-

ciencies than parallel or series systems; however, they also demonstrate more complicated

dynamics. Thus, in this research project, the problem of optimizing the component sizes of

a power-split PHEV was addressed in an effort to exploit the flexibility of this powertrain

system and further improve the vehicle’s fuel economy, using a Toyota plug-in Prius as the

baseline vehicle. Autonomie software was used to develop a vehicle model, which was then

applied to formulate an optimization problem for which the main objective is to minimize

fuel consumption over standard driving cycles. The design variables considered were: the

engine’s maximum power, the number of battery cells and the electric motor’s maximum

power. The genetic algorithm approach was employed to solve the optimization problem

for various drive cycles and an acceptable reduction in fuel consumption was achieved

thorough the sizing process. The model was validated against a MapleSim model.

This research project successfully delivered a framework that integrates an Autonomie

PHEV model and genetic algorithm optimization and can be used to address any HEV

parameter optimization problem, with any objective, constraints, design variables and

optimization parameters.
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Chapter 1

Introduction

1.1 Background

Dwindling natural resources, such as oil and gas, as well as noise and toxic tailpipe emissions

have been major concerns in the automotive sector for decades. Vehicle manufacturers

have been under constant pressure to address these problems through new, lower fuel

consumption, lower emissions vehicle platforms.

1.1.1 Electric Vehicles

Electric Vehicles (EVs) were introduced as a viable solution to noisy, gas guzzling internal

combustion engine (ICE) vehicles. Relying exclusively on electrical energy from the battery

system for power, EVs completely eliminate the need for direct fossil-fuel consumption and

produce no noise or tailpipe emissions. However, despite these advantages, EVs have not
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made a significant impact on global vehicle markets, where conventional ICE vehicles

continue to dominate. This is largely due to the high cost and limited electric range of

electric vehicles.

Consequently, as vehicle manufacturers work to address these drawbacks, they have

also had to introduce platforms that can effectively bridge the gap between ICE and zero-

emissions vehicles, serving as transition technologies until EVs can more deeply penetrate

the consumer market. This effort has resulted in hybrid electric, and later plug-in hybrid

electric, vehicles (HEVs and PHEVs, respectively).

1.1.2 Hybrid Electric Vehicles

As mentioned previously, the HEV was presented as a transitory solution that takes ad-

vantage of technologies from both EV and ICE platforms by integrating electric motors

from the EV with the internal combustion engine of conventional vehicles, providing an

alternative source of energy for vehicle propulsion. Therefore, HEVs are more efficient than

conventional vehicles because the electric system helps the engine stay within its most ef-

ficient operating range, allowing it to charge the batteries with excess power or turn off

during idling time. This is particularly useful in urban areas, where the electric system can

be used almost exclusively to drive the vehicle, allowing for a smaller engine and leading

to lower fuel consumption. Furthermore, energy typically wasted during braking can be

recaptured and used to charge the batteries. All of these advantages are helpful to achieve

a better fuel economy. However, while HEVs cannot run on the electric system alone, and

therefore must consume at least a small amount of fuel, they can be considered a feasible
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mid-term solution until zero-fuel consumption, zero-emissions EVs are fully realized

1.1.3 Plug-in Hybrid Electric Vehicles

PHEVs are essentially HEVs that can connect to the electrical grid and store electric energy

using rechargeable batteries. PHEVs have larger battery capacities than HEVs and as a

result offer an extended electric range. Therefore, PHEVs offer combined advantages of

HEVs and EVs, making them the best solution on the market today.

1.1.4 Powertrain Configurations

HEVs and PHEVs have four main components, including: an ICE, an electric motor, a

generator and a battery pack. These components can be connected to each other in many

different ways; however, the three configurations typically seen in HEVs/PHEVs are series,

parallel, and power-split.

In series architecture 1.1, the generator and battery are connected to the electric motor,

which propels the vehicle alone. The ICE in this architecture is coupled with the generator

to charge the battery or provide power to the electric motor. Series configuration is more

efficient at lower speeds and therefore it is appropriate for urban driving.

3



Figure 1.1: Series configuration

Parallel architectures 1.2 connect both the ICE and electric motor to the transmission,

which can simultaneously drive the wheels. Thus, this configuration is appropriate for

higher speeds and highway driving.
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Figure 1.2: Parallel configuration

The power-split configuration 1.3 combines benefits from series and parallel architec-

tures, offering the most efficient option, but the most complicated design. It includes a

planetary gear as the transmission where the electric motor, generator and ICE connect to

the ring, sun and carrier gears, respectively.
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Figure 1.3: Power-split configuration

1.2 Objective

Rising environmental concerns have forced governments all around the world to estab-

lish new and very ambitious regulations that will see vehicles produced with improved fuel

economy and lower emissions in the near-term. These regulations, such as the CAFE (Cor-

porate Average Fuel Economy) in the USA or those enacted by the European Economic

Committee, obligate manufacturers to pay steep penalties if the average fuel economy of

their products fall below the limits defined by these standards. Therefore, automotive

manufacturers are under constant pressure to reduce the fuel consumption of their vehicle

fleets. EV technologies are good solutions for these standards but have significant draw-

backs that limit their appeal to consumers, namely cost and driving range. Thus, finding
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alternative ways to minimize fuel consumption is always an essential objective for automo-

tive researchers and manufacturers. Consequently, this study attempted to minimize the

fuel consumption in a PHEV, specifically the Toyota plug-in Prius, as much as possible.

There are various ways to achieve this goal. One possible approach, and the one taken

here, is to size the main components of the PHEV in a way that minimizes fuel consumption

while maintaining acceptable vehicle performance. A vehicle model and an optimization

algorithm are prerequisites for optimizing the size of components.

For modeling, a simulation tool is required. In this work, Autonomie, which is a Matlab-

based vehicle simulator, was used and a model of a PHEV with Toyota Prius characteristics

was developed.

Many algorithms are available to support optimization. The most prominent in the

sizing of HEV/PHEV components are global optimization algorithms, such as Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), and Dynamic Programming (DP).

Gradient- based methods have also been integrated with global methods to provide a robust

sizing algorithm, which takes advantage of benefits from both methods and minimizes the

drawbacks.

Optimization can be carried out with respect to a single or multiple objectives. In

general, the most important objectives to HEV/PHEV component sizing are cost, weight

of the vehicle, emissions and fuel consumption.

Therefore, equipped with a PHEV model in one hand and an optimization algorithm

in the other, our aim in this study was to find the optimized sizing for powertrain com-

ponents with the objective of minimizing fuel consumption. As a result, we have created

7



a framework that integrates a high-fidelity model and optimization technique and can be

used to address a broad range of objectives, design variables and constraints.

1.3 Outline

The contents of this thesis are organized into five chapters. Following the brief introduc-

tion to hybrid vehicles and general purpose of this study provided in this chapter, Chapter

2 provides a review of the literature related to the modeling and sizing optimization of

HEV/PHEVs. In Chapter 3, the modeling of a PHEV with Toyota Prius characteristics is

described, and an evaluation of the developed model is presented to consider the impact of

different components on the fuel economy. In Chapter 4, the sizing of the powertrain com-

ponents is carried out by employing GA. Finally, Chapter 5 outlines the overall conclusions

that can be derived from this study.
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Chapter 2

Literature Review

Environmental concerns have become the primary drivers behind technological advance-

ment in the automotive manufacturing sector, and have subsequently spurred development

of HEVs/PHEVs. As described in Chapter 1, HEVs are complex electro-mechanical sys-

tems involving hundreds of design parameters. Thus, to achieve better HEV performance,

each parameter must be carefully chosen at the design stage. Since prototyping and testing

each design combination is expensive and time consuming, optimization algorithms and

simulation techniques, which reduce validation activities, are critical to achieving optimized

component sizing at minimal cost.

This chapter presents recent work on the modeling, sizing and design optimization of

HEVs/PHEVs.
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2.1 Powertrain Modeling

This section provides insights and outlines upcoming challenges related to the modeling of

HEVs/PHEVs.

Depending on the level of detail required, different techniques of physics-based dynamic

modeling or empirical modeling (using look-up tables or maps) can feasibly be applied to

develop an HEV or PHEV model. However, a trade off exists between the fidelity and

run-time of a model, where higher fidelity models, which more accurately represent the

behaviour of a system, typically require more time for computation and simulation. That

being said, a model should always be built with sufficient fidelity to address the desired

application and objective. For instance, the evaluation of a control strategy requires a

model with higher fidelity and detail.

Golbuff [1] developed a parallel PHEV model in PSAT (Powertrain System Analysis

Toolkit) for optimization purposes (primarily cost). A mid-sized sedan was used as a

baseline vehicle platform and specific vehicle components were integrated on it. Most

of the components in PSAT use look-up tables within their subsystems. The data for

these components models were measured and compiled at Argonne National Laboratory

(ANL) and are included with PSAT. Zeman et al. [2] modeled different PHEV architectures

(series, power-split,. . . ) to compare fuel economies and find optimized control strategies.

GT-SUITE, a multi-physics CAE (Computer Aided Engineering) platform for engine and

vehicle simulation supported this effort. More specifically, Zeman’s group exploited look-

up tables and maps to model the engine, electric motors and battery. Moreover, all the

control strategies were modeled using this tool as well.
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As a case for mathematics-based modeling, Dao et al. [3] used MapleSim, a physical

modeling tool developed by Maplesoft Inc., to develop a high fidelity model of a series HEV

for real-time applications, such as HIL (hardware-in-the-loop) simulations or to investigate

vehicle performance. Utilizing a mean-value engine, a chemistry-based battery and a 3D

multibody vehicle model have given a higher fidelity to the proposed symbolic model. In

most cases, physic-based and empirical modeling are considered together. Mapelli et al. [4]

and Cheli et al. [5] used Matlab/Simulink to model a PHEV and built a prototype to

experimentally validate their model. The VolksWagen Crafter was used as a base vehicle

platform and hybridized by adding and installing an electrical drive system. The validated

model was used for further analysis, design and control. In different driving modes, sim-

ulations were carried out with the objective of reducing emissions. To model the main

components, a math-based model was used to address the electric motor while maps were

used to model the engine and battery.

In another example that combines maps and physics-based models, Zhumu et al. [6]

modeled a parallel HEV using Advisor. They established the main powertrain models by

combining experimental and mathematical modeling. The performance of their simulated

models were verified by comparing the results with Santana 2000GLi.

HEV modeling involves a variety of different physical domains, such as mechanical [7,8]

electrical [9, 10], and thermal [9, 11–14]. Within the collective body of HEV/PHEV mod-

eling and simulation research, only a few studies have addressed multi-domain modeling

of HEVs [3, 6, 12, 15,16]or PHEVs [1, 2, 4, 5] as an entire vehicle system, while other works

have produced high fidelity models of specific powertrain components, such as the elec-

tric motor [5] or battery pack [13, 14, 17, 18]. In addition to this category and based on

11



the physical domain, models have been developed for parallel [2, 6, 19, 20], series [2, 3] and

power-split [7, 21] configurations as well.

Models can be categorized as steady state, quasi-static, or transient [22]. By comparison

with steady-state models, transient models include more details and dynamics information

for the components considered, while quasi-static models fall somewhere between these

two. Fully detailed transient modeling is primarily used in real-time and HIL simulation,

which requires more time for computation.

From another perspective, models can be divided into backward and forward categories.

A backward model takes the driving cycle as the input and assumes the model tracks it

exactly. Therefore, the vehicle speed is assumed to be known and the model calculates the

demanded power. Steady-state models usually take advantage of backward modeling [22].

Backward modeling is an ideal method for component sizing purposes due to its simplicity

and low computation time. Forward modeling attempts to simulate real world driving

and therefore requires more simulation time. These models take acceleration and braking

commands from the driver as input and give the vehicle performance as output. Musardo

et al. [23] used a forward quasi-static model in their studies because it is more appropriate

for control strategy development.

It can be concluded that [4, 5, 16,24] many of the tools and simulation packages devel-

oped for vehicle powertrain modeling take advantage of the Matlab/Simulink environment.

ADVISOR, V-Elph, MapleSim, PSAT, and Autonomie are some other modeling simulators

used on the market. Each provides a user-friendly environment.

Butler et al. [16] developed a simulation and modeling package for HEV and PHEV
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design called V-Elph. V-Elph, which is based on Matlab/Simulink, consists of detailed

powertrain components models that can be integrated together to make different configu-

rations.

Taking advantage of model-based development processes, Che et al. [25] employed VMA

(Vehicle Model Architecture) to develop a Dual Drive HEV model for model-in-the-loop

(MIL) and hardware-in-the-loop (HIL) applications. The VMA was based on a Ford-

internal architecture, which was subsequently modified and released as the Vehicle Inter-

faces library [26]. The system described in this work has two mechanical drive paths in

EV and parallel operating modes. A dynamic model of the gear box was built in Dymola,

which was later integrated into VMA to create a vehicle system as well as a component

level subsystem. This vehicle model mainly utilizes a mean-value engine and dual clutch

transmission models.

In another effort, a dynamic Graphical User Interface vehicle model was developed for

PHEVs using Matlab [24]. This tool provides users with the option of selecting vehicle

and driving conditions in manual or automatic modes. Models for each component of a

series-parallel HEV were developed based on dynamic principles and simulated for four

Toyota hybrid platforms [24].

Consequently, work done in the modeling of HEV/PHEV can be categorized in terms

of what simulation tool has been used, what type of architecture was addressed or which

components were modeled. However, in terms of model fidelity, it can be concluded that

the trend is toward developing models that contain enough information and detail, but also

do not require lengthy simulation times. Graphical user interface simulation tools ease this
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process.

2.2 Powertrain Component Sizing Methodology

Efforts to optimize HEV/PHEV component sizing are summarized here. Work done in

this field can be classified according to the components considered, objectives pursued,

optimization methods used, configurations addressed, and type of drive cycle selected.

2.2.1 Powertrain Configurations

As explained in the previous chapter, among the three main HEV/PHEV powertrain con-

figurations, the power-split architecture is recognized as the most feasible configuration

to significantly improve fuel economy and emissions [27]. Sizing methodology utilizing a

power-split configuration was investigated in [27–29]. Series and parallel architectures have

also been considered; for example, Hasanzadeh et al. [30] provides the optimum design of

a diesel engine for a hybrid series bus and for a particular driving cycle, whereas Wu et

al. [31] attempted to improve fuel consumption in a parallel HEV. Multi-objective sizing

optimization of a parallel PHEV bus also has been studied in [32].

2.2.2 Powertrain Components

Several different components have been considered for sizing in the literature. Many stud-

ies have focused on individual component sizing, such as the battery [9,13,14,17,18,22,33]
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or electric motor [10]; however, powertrain component sizing, as an entire sub-system,

has received more attention. The target in these cases is to size the key powertrain com-

ponents, such as the engine, electric motor, and battery in a way that, together, they

meet the requirements of the vehicle under different driving conditions, including braking,

accelerating, or cruising.

Several studies on battery sizing [9, 13, 14, 17, 18, 22, 33] have been undertaken; among

them, Tara et al. [22] showed that NiMH battery technology is a viable alternative to

Lithium-ion (Li-ion) batteries due to its lower cost and its acceptable volume and weight.

However, Li-ion battery technologies are undergoing further development to reduce cost,

possibly making them the best option for future HEVs/PHEVs.

2.2.3 Optimization Algorithms

There are a number of methodologies used to address hybrid vehicle component sizing.

Due to the various design variables and their effects on performance objectives, HEV

component sizing optimization can be dealt with as a constrained non-linear optimization

problem [32]. The optimization algorithm is one of the main issues in optimal sizing.

Dynamic Programming [34], Particle Swarm Optimization [31], Genetic Algorithm [29,

30, 35] and, in general, evolutionary algorithms are among the most commonly applied

optimization methods in recent HEV component sizing studies. Evolutionary algorithms

mimic natural evolutionary principles to constitute search and optimization. In general,

evolutionary methods are employed to search the design space defined by the objective

and constraint functions and identify a point or points that maximize or minimize the
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design criteria. There are several challenges in applying these methods to design problems.

For instance, gradient-based optimization algorithms, such as the well-known Sequential

Quadratic Programming (SQP algorithm), can run into trouble when inaccurate gradient

information is used to determine the search directions and convergence. Derivative-free

optimization techniques can be used to address these issues; however, they require many

more iterations and/or function evaluations, which may make them impractical. Another

way to address these problems is to integrate a local search algorithm with a global one, such

as a Genetic Algorithm (GA). This could help to overcome deficiencies in both methods,

like the probabilistic characteristics of GA or trapping in local minima in SQP. Basically,

GA limits the search space and is suitable for non-linear objective functions. Liu et al. [35]

developed a new algorithm, combining the global search ability of GA and fast convergence

ability of SQP that resulted in a good convergence speed.

Fellini et al. [36] classified the algorithms currently used in the hybrid powertrain sys-

tem design environment into gradient-based, derivative-free and metamodels, and used

two derivative-free optimization algorithms, namely DIRECT (Divided RECTangles) and

Complex, to solve the HEV optimization problem. Both algorithms were able to con-

verge to approximately the same solution; however, DIRECT, which is a sampling algo-

rithm, proved to be the most efficient for some sizing problems [35]. This algorithm has

(Figure 2.1) fast convergence because it divides the domain into rectangles and finds the

minimum by evaluating the objective at the midpoints at each iteration [37].
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From n dimensional hypercube

Sample and evaluate the center of the 
hypercube (fmin)

Select potentially optimal 
rectangles (n)

While n≥ 1

yes

Select one rectangle and 
trisect it (n=n-1)

Select the left rectangle and 
evaluate at its center (fleft)

If
fmin >  fleft

fmin =  fleftyes

Select the right rectangle and 
evaluate at its center (fright)

If
fmin >  fright

fmin =   frightyes

no

no

no

Figure 2.1: Flow chart of DIRECT algorithm

In terms of optimization objectives, most studies have targeted a single and primary

optimization objective, typically fuel consumption reduction [35, 36]. However some stud-

ies consider more than one objective for optimization; for example, many simultaneously
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target increased vehicle fuel economy as well as reduced emissions [28–31, 34, 36, 38], such

as Hydrocarbons (HC), Carbon Monoxide (CO) and Nitrous Oxide (NOx), or improving

vehicle performance [27,28,31,34,38,39]. These objectives may conflict with each other in

some situations; to achieve lower fuel consumption we might have to downsize the engine,

which will consequently affect vehicle performance. In other words, optimal solutions are

often not unique. In a multi-objective optimization problem without any further informa-

tion about the requirements and conditions, it would be difficult to choose one solution over

another. One solution for multi-objective optimization problems is to convert them into

single objective problems by giving weight to each objective based on its importance [38].

Chirag et al. [32] proposed a multi-objective genetic algorithm (MOGA) method for the

drivetrain sizing of a parallel PHEV transit bus, taking into consideration fuel economy

and emissions as design objectives. PSAT was used to evaluate the modeled PHEV.

Shahi et al. [40] proposed a method using a Pareto Set Pursuing (PSP) multi-objective

optimization algorithm to find the optimal combination of battery, engine and motor to

turn a 2004 Prius (included in PSAT) into a PHEV model. An optimal combination was

derived from a given set of battery, engine and motor types considering some constraints

and taking reduced fuel economy, emissions and cost as objectives. The optimization

problem was resolved into two sub-problems: i) defining the battery size with respect to

AER (All Electric Range); and ii) finding appropriate engine and motor sizes to satisfy the

required acceleration performance. This strategy significantly reduced the optimization

time. Matlab functions of FZERO and FMINSEARCH were used to size the battery, and

engine and motor sizing, respectively.

18



A set of constraints should be applied on the optimization problem to ensure that

meeting the objectives does not compromise desired vehicle performance. Gradeability,

acceleration time (0 to 60 mph), and AER [32,40] have been considered the most important

constraints thus far in the literature.

Researchers have evaluated the objective function by running simulation and optimiza-

tion models on different driving cycles, including actual driving profiles or standard cycles.

Only a few studies have evaluated HEVs on a real-world driving pattern. Tara et al. [22]

used recorded data from a number of vehicles to produce a real-world daily driving profile

representing average behaviour. Road specifications (such as specific speed limits, traffic

signs, etc.) for different segments of a specific area are required to generate a drive cycle.

However, standard test procedure cycles have been used widely in the literature. Rahman

et al. [41] utilized a highway drive cycle (HWFET) for simulation and evaluated their sized

PHEV model against an HEV model in ADVISOR.

Although this review has covered component sizing optimization only, it should be clear

that the optimization of control of propulsion systems as post-sizing design constraints will

lead to greater overall efficiencies for HEV/PHEV technologies.

2.3 Summary

Briefly, it can be concluded that limited work has been done on the component sizing of a

PHEV with a power-split configuration. Due to the high potential for this type of vehicle

to increase fuel economy and reduce related environmental impacts, we have worked to
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address the component sizing of a power-split PHEV. We took a relatively new approach

in using Autonomie as a simulation tool to develop a plug-in Prius model.
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Chapter 3

Plug-in Prius Powertrain Modeling

and Performance Evaluation

Modeling and simulation play important roles in the success of HEV/PHEV design and

development as they reduce both time and cost of production. The ability to use models

in virtual environments eliminates excessive work, eases the application of design modifica-

tions, and consequently postpones prototyping to later in the design cycle, thus accelerating

the design cycle.

3.1 Modeling in Autonomie

Autonomie, a vehicle simulator, which is a new version of the Powertrain System Analysis

Toolkit (PSAT), was used to build a sizing optimization model. Autonomie contains a
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library of vehicle models and components that have been collected and tested at Argonne

National Laboratory (ANL) [42]. On the basis of a default PHEV model provided in

Autonomie, we created a platform for a plug-in Prius (Prius model 2012).

Second and third generation Toyota Prius models, Toyota Hybrid System (THS) I/II,

already exist in the Autonomie library. The plug-in model differs from these models mainly

in the size and type of battery; plug-in hybrids require a larger battery capacity. That being

said, the engine and electric motor are also different sizes, requiring scaling processes to be

introduced. Ultimately, by using the default PHEV model and considering its differences

with the 2004 Prius (THSII or Prius MY04), along with the parameters and data available

for Prius 2012, we developed a model in Autonomie that can be used for optimization as

well as other applications, such as control validation.

To build the model, the vehicle characteristics, powertrain configuration, and specific

components must be defined. We chose a two-wheel drive PHEV with a power-split con-

figuration as a platform. All specifications, except the vehicle mass, were set according to

values available in the Autonomie Prius model. For example, the frontal area and drag

coefficient were set to 2.25 m2 and 0.26 respectively. All the specification except the mass

of vehicle are set according to their values in the Prius model already exists in Autonomie.

The vehicle mass was set to 1,525 kg [43]. The chassis mass is 824 kg.
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Table 3.1: Prius characteristics

vehicle characteristic Value

ρ 1.23 kg/m3

CD 0.26

A 2.25 m2

m 1525 kg

The top level Simulink model shown in Figure 3.1 includes the driver, vehicle powertrain

architecture (VPA), and vehicle powertrain controller (VPC) (with the default controller).
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VPA

VPC

Driver

Environment

Figure 3.1: Vehicle model in Autonomie environment

In order to give an idea of how the whole system works, a detailed description of each

model is provided below.

24



3.2 Powertrain

The powertrain configuration in Autonomie is shown in Figure 3.2. The main components

of the powertrain are: an ICE (Eng in the figure), two electric motors (more specifically,

a traction motor (m1) and a generator (m2)), a planetary gear (Gb), a battery pack, a

differential (Fd), a chassis, wheels (Whl), and power convertors (PC1 and PC2). The

model specification of each powertrain component is given below.

B: Battery
Eng: Engine (ICE)
m1: Traction Motor
m2: Generator
PC1: Power converter
PC2: Power conditioner
M-ac: Mechanical Accessories
E-ac: Electrical Accessories
Gb: Planetary Gear
Fd: Final drive 
Whl: Wheels

M-ac

B

ChassisWhlFdGb

m2PC2

E-acPC1

m1

Eng

Figure 3.2: VPA power-split powertrain configuration

3.2.1 Engine

The engine, which is the main power supply in conventional vehicles, was modeled using

look-up tables based on the engine torque and speed. The Prius 2012 has a 1.8L spark
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ignition engine with maximum power of 73 kW. However, because the Prius MY04 engine

(maximum power 57kW) was the default engine platform in our model, this engine had to

be scaled up to be compatible with the Prius 2012. This was done using a linear engine

scaling algorithm that linearly scales the fuel map. The data for this engine were measured

and compiled at ANL and are available beside the scaling files in Autonomie; therefore, the

fuel consumption and emissions can be calculated in this map-based engine model. Engine

efficiency maps for the Prius MY04 and 2012 (after scaling) are given in Figure 3.3.
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Figure 3.3: Engine efficiency maps before and after scaling

3.2.2 Electric Motors

As mentioned earlier, the power-split configuration utilizes two electric motors. The models

for these two permanent magnet electric motors are to some extent similar to each other,

and the same as the engine using look-up tables in their plants. The inputs to the maps

are voltage and speed of the motors, which give current as output. Data, such as inertia
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and motor efficiency maps, were provided by Oak Ridge National Laboratory (ORNL)

and have been included in Autonomie. We used the models and maps provided in Prius

MY04 for our model; however, we had to scale them, using the same process as was used

to scale the engine model, to ensure compatibility with the Prius 2012. According to the

literature [22, 24, 44, 45], the peak power of the traction motor would rise from 50 kW in

the Prius MY04 to 60 kW in the Prius 2012. The other motor, called the generator (m2)

in this case, has a peak power of 30 kW.

3.2.3 Battery

As described above, the battery is the main difference between PHEVs and HEVs. We

chose the Lithium-ion battery, which is the prominent battery type used in power-split

HEVs, for our vehicle model. The battery pack, according to Prius 2012, consists of 4

modules of 14 elements connected in series with 21Ah capacity. This battery, developed

by Saft, uses 3.7 volts/cell. The battery capacity of the default PHEV in Autonomie is

different from what is required for the Prius 2012; therefore we had to correct the battery

specifications and parameters in the default PHEV battery to better align them with those

of the Prius 2012. In other words, a manual scaling process was applied to the battery, and

increasing the cell number and battery capacity in this way allowed us to linearly increase

the voltage and power of the battery pack. The battery plant receives current as input

and calculates the state of charge (SOC) required by the controller. This model includes a

constraint block that uses PI controllers. It also contains charging and discharging maps

which take current as input and give open circuit voltage and resistance values based on
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the SOC of battery. It should be mentioned that in this battery the initial SOC and the

minimum SOC were set to 0.9 and 0.2 respectively [46].

3.2.4 Power Accessories

The electrical and mechanical accessories simulate the vehicle’s power loss due to different

loads from the air conditioner, lights, pump and so on. A constant power loss of 300W

was considered [47].

3.2.5 Power Electronics

As can be seen from the configuration(Figure 3.2), there are two power converters, the

12v DC-DC converter used for the electrical accessories (PC1) and one used for electric

motors(PC2). These converters were modeled with the constant efficiency of 0.95 [48,49].

3.2.6 Transmission

According to information provided by the manufacturer, the Prius 2012 has two sets of

planetary gears. One splits the power flow from the engine and the other works as a

reduction gear for the motor [44]. The Electric Variable Transmission (EVT) efficiency is

calculated in Autonomie whereas the maximum efficiency is 0.98. Numbers of sun (Ns)and

ring teeth(Nr) are 30 and 78 respectively [50, 51]. The final drive ratio was set to 4.1130

with a constant efficiency of 0.97.
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3.2.7 Vehicle Longitudinal Dynamics

Wheels

For the wheels, a 15 inch rim diameter was selected with the tire identification P195/65

R15 [52,53]. The rolling resistance force FR(N) can be calculated in the wheel model from

the following equation:

FR = (crr + c
′

rrV )mg (3.1)

where crr and c
′
rr are the first and second rolling coefficients. The first represents a

typical friction coefficient due to a normal force and is set to 0.008, while the second is set

to 0.00012 in s/m [1]. In addition, V is the speed of the vehicle in m/s, m is the mass of

the vehicle in kg, and g is gravity, 9.81 m/s2, in the above equation.

Chassis

The chassis model contains the dynamics of the vehicle. The real velocity of the vehicle

is calculated based on the basic dynamic equations. Prius model MY04, available in the

Autonomie library, utilizes a coefficient-based model for chassis, wheel, and driver models.

This means that instead of using the vehicle dynamic equations, coefficient-based models

use some coefficients obtained from the tests carried out in ANL; however, for the Prius

2012 we used an equation-based vehicle dynamic model considering forces of drag, rolling

resistance, and forces due to the road grade. As mentioned previously, the chassis model

should be compatible with the driver and wheel models. Thus, in this case we had to

choose equation-based models for the wheels and driver as well. All the vehicle specification
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parameters, such as mass, frontal area, gear ratio, and, in general, the whole data for the

Prius 2012 were derived from the literature [22, 24, 44, 45, 50], Toyota website [53] and

experimental test results provided by ANL.

3.2.8 Interconnection Between Powertrain Components

The following block diagram (Figure 3.4) shows the input and output signals for each

component in the powertrain and the interconnection between the component models.
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Figure 3.4: Interconnection of powertrain components
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As a brief explanation, torque flows out of the engine into the mechanical accessories,

the mechanical accessories apply their losses and torque is given out to the planetary

gear. The engine is connected to the carrier, so the speed of the carrier is fed back to the

mechanical accessories and is basically fed back thorough to the engine.

As another example, voltage is released from the battery and currents are fed back into

it from each of the systems, such as the power conditioner (PC2) and also 12V DC to

DC converter(PC1) (for the electrical accessories). Electrical systems, such as the motors,

are connected to the power conditioner so that voltage flows out of the power conditioner

to each of the motors and a current is fed back into the power conditioner from each

motor. There is a plant and a controller inside each component model (systems). All of

the information from local info buses are aggregated together and then sent out and passed

upwards from subsystems to the next parent systems. As a result, signals from all systems

in the VPA enter into the VPC and other main blocks.

3.3 Driver

The driver model determines the differences between the real vehicle velocity and the

velocity of the cycle according to which the vehicle should be propelled and based on

which, vehicle torque loss is calculated and torque demand is determined.

It should be noted that the driver model must be compatible with the chassis and wheel

models as they all use vehicle dynamics equations. Therefore, we had to choose equation-

based models for the wheel, chassis, and driver models. This means these systems use
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equation-based models within them instead of models based on some specific coefficient.

Figure 3.5: Driver model

The driver model calculates the torque demand of the vehicle based on the vehicle

torque losses due to rolling resistance, drag and gravity forces which can be calculated as:

F = mg sinα +
1

2
CDV

2 + Crmg cosα +ma (3.2)

where,α is the road grade, Cr and CD are the rolling resistance and drag coefficients

respectively. Cr is obtained from the parentheses term (crr + c
′
rrV ) in equation 3.1. a is

the vehicle acceleration in m/s2. Thus the vehicle torque losses would be:

Tloss = R× F = R(mg sinα +
1

2
CDV

2 + (crr + c
′

rrV )mg cosα +ma) (3.3)

where R is the wheel radius in m; crr and c
′
rr (in s/m) are the rolling resistance coefficients,

the whole term crr + c
′
rrV represents the total rolling coefficient calculated based on the
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vehicle speed. The values for these parameters were given in Table 3.1.

The driver model (Figure 3.5) also contains a PID controller, which takes the speed

error into consideration.

3.4 Vehicle Propulsion Controller

The top level vehicle control strategy is considered in the VPC. Based on the SOC be-

haviour depicted in Figure 3.6, the control strategy can be separated into two modes:

• Charge Depleting (CD): the vehicle is propelled primarily using energy from the

battery, resulting in a net decrease in battery SOC.

• Charge-Sustaining (CS): the vehicle is propelled primarily using energy from the

engine, maintaining battery SOC within a range (very small changes).
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Figure 3.6: Battery State Of Charge for different drive cycles
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Figure 3.6 shows the SOC behaviour for two different drive cycles of EPA and HWFET

(will be explained in more detail in the next chapters). It can be observed that, in response

to the HWFET cycle, the SOC did not reach the CS mode but both CS and CD mode are

clearly presented in the EPA cycle.

The control strategy for power-split configurations has two subsystems: there are the

propelling and brake blocks and a block to merge these together based on the vehicle mode.

Figure 3.7 gives a high level depiction of the control strategy. From the figure it can be seen

that the vehicle controller receives the torque demand calculated in the driver block and

based on the vehicle speed it determines the vehicle mode, whether braking or propelling.

The engine on/off command and its torque demand are specified afterwards. Based on

this information and pre-determined values for maximum allowable motor and generator

power in both regenerative and propelling modes, the controller defines the torque demand

of generator (m2) and traction motor (m1).

36



Propelling

Braking

T
whl-d

<0

VPC

T
m1-d

T
brake-d

T
m1 

 
T
m2

  

T
eng 

Eng on/off   

Driver

Powertrain

Constraints

T
max-m1 

T
max-m2

(T,ω) 
m1

(T,ω) 
m2

P
max- b

Figure 3.7: Controller model(high level)

As stated above, torque demand for the main powertrain components (engine, motor

and generator) can be defined based on constraints calculated beforehand in the constraints

block. The controller block diagram shows that the maximum torque at the generator and

motor in different modes (whether producing electricity or consuming it) can be specified

from the speed and torque of the motor and generator, the maximum power of the battery

Pmax−b and using the following equation (with regard to Figure 3.2) as:

Pmax−m1 = ηpc2Pmax−b −
Pe−ac

ηpc
− Pm2 (3.4a)

Pmax−m2 = ηpc2Pmax−b −
Pe−ac

ηpc
− Pm1 (3.4b)

where ηpc and ηpc2 are the efficiencies of the power convertors PC1 and PC2 for the elec-

tric devices and battery, Pe−ac is the power of electric accessories, and Pm1 and Pm2 are
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the power of the electric motor and generator respectively. Pm1 and Pm2 can be deter-

mined from look-up tables containing relevant speed and torque values. Finally, from the

calculated maximum power, the maximum allowable motor torque (or generator) can be

obtained in reverse, from maps based on the power and speed of the motor (or generator).

It should be noted that this torque has to be lower than the maximum torque determined

in the powertrain level from the maps of the motor (or generator). Thus, this torque value

indicates the maximum torque that the motor and battery can handle.
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Figure 3.8: Inside VPC- propelling block
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For braking and regenerative modes, equation 3.4 would take the form:

Pmax−m1 =
Pmax−b

ηpc2
− Pe−ac

ηpc
− Pm2

Pmax−m2 =
Pmax−b

ηpc2
− Pe−ac

ηpc
− Pm1

 Regenerative mode (3.5)

The torque obtained here is the same as in the previous case; it represents the maximum

torque the electric system can handle.

The engine ON/OFF logic is the main and critical part of the control strategy that

determines when the engine will turn on in certain scenarios (Figure 3.9):

• The requested power is above a threshold

• The battery SOC is lower than a threshold

• The electric motor cannot provide the requested wheel torque
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Peng≥ Pthershold-on &   t>tmin-on

Or
m1 saturated

(Peng≥ Pthershold-off &   t>tmin-off)
&

m1 not saturated

Eng On

Eng Off

Figure 3.9: Engine ON/OFF logic

In order to determine the engine ON/OFF logic, the power term Peng can be defined from

the following form:

Peng = Pchassis + Pb−d (3.6)

where Pchassis is the requested power at the wheel and Pb−d is the additional power to

maintain the SOC of the battery during CS operation. In other words, the Pb−d function

regulates the SOC so that it can be positive or negative depending on the value of the

current SOC compared to the target. The target SOC differs from the minimum SOC

(0.2) and represents the start of the charge sustaining mode. This parameter is set to 0.3 in

the model [46]. Pchasis is calculated from the desired speed and torque demand. Basically,
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Pb−d is calculated from the following equation:

Pb−d = kp(SOCtarget − SOC) +
ki
s

(SOCtarget − SOC) + Pb (3.7)

where, kp and ki are the proportional and integral gain, respectively, and Pb is the power

derived from the maps based on the SOC. In our model, kp and ki values were set to zero,

therefore only battery power of Pb would determine the final value for Pb−d at each SOC.

Figure 3.10 shows Pb versus SOC plot for the battery model.

Figure 3.10: Pb versus SOC

Once the engine power (Peng) is known, the controller can determine the engine status

using engine on/off maps of power based on the SOC; i.e., if Peng is above the power

threshold for a certain SOC, the engine would turn on and vice versa, there is a similar map

for engine off thresholds. Engine speed can be determined from the map of engine power

to speed. The controller compares this speed with the one obtained from the planetary

gear by having the ring speed (ωr),Ns and Nr (number of sun and ring teeth, respectively),
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and selecting the minimum speed as the demand engine speed ωeng−d.
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Figure 3.11: Planetary gear

Once the engine speed and power are known, the engine torque can be calculated from:

Teng =
Peng

ωeng−d

(3.8)

This torque should be less than the maximum engine torque (Teng−max) and the maximum

allowable torque at carrier (Tc−max), otherwise the controller will replace this torque with

the minimum one. Teng−max can be obtained from the engine map based on engine speed

and Tc can be derived from:

Tc−max = (Tm2−max

Ns +Nr

Ns

) (3.9)

Once the engine torque and speed (as well as the desired wheel torque and speed) were

known, the electric machines torque could also be calculated considering the constraints

and governing relations between the engine and electric motors (m1 and m2) in the plan-
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etary gears. The resulting torque value would be delivered from the controller to relevant

components in the powertrain level.

3.5 Overview of the Model

VPA, VPC, driver and environment blocks are interconnected via buses that contain in-

formation about the vehicle. The main info bus leaves the VPA and collects all the signals

from the vehicle’s powertrain systems (VPA). According to Figure 3.12, this main VPA

info bus enters the VPC, driver and environment blocks. The environment block also sends

its bus with all of the signals that enter into VPC. So, the main VPA info bus and en-

vironment bus come together, along with input from the driver, and they enter into the

VPC where the control strategy can make used of them. Afterwards, signals from all of

the VPC subsystems enter the VPA as well.
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Figure 3.12: Interconnection of blocks

According to Figure 3.13, and based on the integrated nature of the subsystems (driver,VPA

and VPC), torque demands are determined in the controller. Based on these torque de-

mands, the motor and generator can feed back the obtained current to the battery. The

battery will determine its SOC and send it to the controller. The engine can specify the

vehicle’s fuel consumption based on the engine torque demand. The planetary gear can

verify the speed of sun(ωs), carrier(ωc) and ring (ωr) gear wheels based on the specified

torque demand in the gearbox. Vehicle torque and traction force would be determined

in the wheel block and finally the chassis will determine the vehicle speed based on the

received information.
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Figure 3.13: Vehicle block

In summary, all of the information from local info buses is aggregated together and

then sent upwards through subsystems to parent systems and then to the next level of

parent systems. This flow of information continues until it reaches the VPA level, where it

is then fed back out through a powertrain bus towards the VPC, driver and environment

blocks. This iterative process continues until the end of the drive cycle.

3.6 Evaluation

Many parameters and factors can affect a vehicle’s fuel consumption. Sensitivity analyses

can be important tools for identifying which parameters among many possible variables

have the greatest effect on performance.

Thus, before running an optimization algorithm on the PHEV model, a sensitivity

analysis was undertaken to find a trend that correlates key powertrain component sizing

with fuel consumption. The advantages of this analysis are twofold: it can provide an idea
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of what to expect from the optimization results beforehand and it can help validate the

objective function and optimized results.

For this purpose, simulations were run for different sizes of each component, while

the sizes of other components were held constant; this allowed us to directly monitor the

effects of specific component sizing on fuel consumption. Here, sizing of the key powertrain

components, electric motor, engine and battery, is the main goal. Therefore, the size of

each of these components was varied by 10% and 20% from their initial values while the

rest of the powertrain components were held constant.

According to Table 3.2, component simulations were run on EPA drive cycle (described

in Chapter 4) using different engine power (Pe) values, while the electric motor power (Pm)

was kept at its initial value in the model (60kW ). The engine needed to be scaled at each

level. Figure 3.14 shows the impact of engine power on fuel consumption. As was expected,

Table 3.2: Engine power values

Pm 60 kW
Pe 57 65 73 80 87

fuel consumption increased with increases in engine power. Therefore, it is expected that

the optimization results will show that the minimum possible engine size can meet the

desired performance.
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Figure 3.14: Fuel consumption versus engine power

The same process was used to analyze different values of the electric motor power

(Table 3.3) on fuel consumption. This time, engine power was kept at its initial value

(73kW ) and the motor was scaled at each level.

Table 3.3: Electric motor power values

Pe 73 kW

Pm 20 25 30 50 70

For the most part, the fuel consumption curve built based on varying electric motor

power (Figure 3.15) follows a pattern similar to that seen in response to large engine sizes

(high power). However, at small electric motor power values, fuel consumption behavior

deviates considerably from the expected trend. This can be explained based on the power
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distribution between the engine and the electric motor, where the engine is required to

propel the vehicle because of the electric motor capacity is too small. Therefore, the motor

could not provide the required power even if the engine efficiency was low, and as a result

more fuel was consumed.
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Figure 3.15: Fuel consumption versus electric motor power

In Figure 3.15, there is an optimum point that identifies the electric motor power

size required to achieve minimum fuel consumption. For power values larger than this

optimum, fuel consumption increases again. This fact can be explained using the electric

motor efficiency map (Figure 3.16). Figure 3.17 shows the motor efficiency in terms of

power for different angular velocities. Optimum points with higher efficiencies are clear in

this map. Therefore, for larger powers the optimum efficiencies do not match the working
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points of the motor in the considered drive cycle. This means they had lower efficiencies

than the optimum, resulting in increased fuel consumption.
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This same process was used to analyze battery capacity sizing on fuel consumption as

well. Larger battery capacities led to lower fuel consumption (Figure 3.18). This reflects

the fact that, with a small battery pack, the controller mostly uses the engine to propel
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the vehicle. And, in contrast, the smallest battery pack sizes led to high fuel consumption

rates - and these rates kept increasing until the engine’s power could not match the power

demand, forcing the battery to provide the remaining required power.
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Figure 3.18: Fuel consumption versus battery capacity

The vehicle’s power demand can be obtained from the dynamics of the vehicle, based on

drag and rolling resistance forces at specific times and speeds. Therefore, after obtaining

the traction force F from equation 3.2, the power demand can be derived as:

P = FV (3.10)

Based on equation 3.10, the power required to cruise the vehicle at different speeds and road

grades can be calculated. For instance, from equation 3.10 it is clear that the current engine

(the Prius engine with 73 kW kW peak power) would be sufficiently powerful to cruise the

vehicle at 40 m/s and with 1% road grade. This potentially presents an opportunity to

downsize the electric motor and battery by assuming a fixed size for the engine.
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So far we have considered the impact of different component sizes on fuel consumption

without paying attention to the possible consequences they might have on other vehicle

performance parameters. It is important to achieve a significant reduction in fuel con-

sumption; however, this should not be at the expense of desired vehicle performance. In

this regard, the sensitivity analysis was followed by an acceleration test, which allowed us

to observe changes in acceleration time caused by changes in electric motor size.

The desired vehicle performance was chosen according to PNGV (Partnership for the

Next Generation of Vehicles) goals [1, 54, 55], namely that the vehicle can accelerate from

0 to 60 mph (96km/h) in less than 12 seconds. Throughout this procedure, the engine and

motor worked together to provide the required power. If the engine size was assumed fixed

and according to its value in Prius 2012, the size of the electric motor could be determined

by subtracting the engine power from the total required power. It is clear from Figure 3.19

that the engine can solely provide the required power for accelerating from 0 to 60 mph in

the desired time. Therefore, a smaller electric motor can be used here provided that the

required performance of the vehicle is satisfied.
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Figure 3.19: Power demand for the Prius acceleration test

As stated above, the acceleration test for different electric motor sizes was run in order

to consider its effect on the 0-60 mph acceleration time. Table 3.4 shows that the results

aligned with our expectations; the acceleration time increased with a reduction in the

electric motor size. The acceleration time for the default motor(Pm = 60kW ) in the Prius

2012 was close to the acceleration time of the real vehicle, achieving 0-60mph in 9.7s [52,56].

This fact can be used as a cross validation for our model with acceptable error (3%) for

the acceleration time of 0-60 mph.

According to Table 3.4, and in order to maintain an acceptable vehicle performance

using the Prius engine (peak power of 73 kW ), an electric motor with peak power of more

than 40 kW would be preferred.
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Table 3.4: Acceleration test results

Pm(kW ) t(s) Fuel Economy(MPG)

70 8.7 20.08

60 9.4 20.05

50 10.9 19.97

40 12.8 19.75

30 15.6 19.44

20 20.1 18.96

15 23.6 22.3

10 35.8 21.85

Table 3.4 also includes fuel economy values. Fuel economy (fuel consumption) increased

(decreased) with increased in motor power. The table also reveals the same trend for the

very small motors as seen in the case for fuel consumption in the EPA cycle. In other

words, fuel consumption did not follow a specific trend (increasing or decreasing) as the

electric motor size increased.

Consequently, the overall vehicle performance is directly related to the performance of

each powertrain component.

In addition to the model evaluation activity described above, the model was cross-

validated against a PHEV model developed in MapleSim [57]. 1.7 l/100km predicted

fuel consumption by the MapleSim model in [57] was in response to 2 successive FTP

drive cycle, where the model developed in Autonomie showed fuel consumption rates of
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1.7 l/100km for this cycle. There is an acceptable margin of 5% error between these two

models. Therefore, with a good estimation, the Autonomie model was validated.
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Chapter 4

Optimal Sizing of Powertrain

Components

PHEV/HEV powertrain configurations are more complicated than conventional ICE pow-

ertrains, owing to the addition of electrical components such as electric motors and gen-

erators. Therefore, it stands to reason that PHEV/HEV component sizing optimization

is also more difficult as many new design variables must be considered. The number of

battery cells, maximum engine and motor power, as well as controller parameters are key

examples of these variables.

Several optimization methods have been considered to address PHEV/HEV sizing.

Each can generally be classified according to whether it is a gradient-based or derivative-

free, deterministic or stochastic, and local or global optimization method. HEV/PHEV

powertrain sizing involves a variety of design variables, constraints, and objectives, making
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the optimization problem non-linear with numerous local minima or maxima. Therefore,

methods that do not require derivative information and do not get trapped in local min-

ima or maxima are the most appropriate to address optimization of these complicated

platforms. Therefore, while gradient-based and local optimization methods demonstrate

higher rates of convergence, owing to the above-mentioned challenges, derivative-free and

global optimization methods have received more attention for sizing purposes in the liter-

ature [29, 32,34,35,38].

Most PHEV/HEV optimization problems have two or more objectives to be simultane-

ously addressed, and these objectives may often conflict with each other. Classical methods

for solving multi-objective optimization problems usually map multiple objectives into a

single objective and solve it one would a single objective problem. An alternative solu-

tion is to integrate several different optimization algorithms together, taking advantage

of the benefits from each individual algorithm while, at the same time, eliminating their

drawbacks. This method also decreases computational time, saving design and production

costs.

Evolutionary Algorithms (EA), such as Genetic Algorithm (GA), and similar tech-

niques, such as Particle Swarm Optimization (PSO) and Dynamic Programming (DP),

are among the many methods widely used for PHEV/HEV design optimization and com-

ponent sizing to meet fuel consumption, emissions, cost and other ambitious objectives.

These popular techniques provide very efficient solutions for multi-objective optimization

problems. Some are reviewed in the next sections.
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4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic and population-based search algorithm

developed by Kennedy and Eberthart in 1995 [58]. It is mainly inspired by social behaviour

withing natural systems, where large groups of individuals interact, such as in flocks of

birds, schools of fish, or swarms of bees, and even human social systems. The working

principle behind the PSO algorithm is based on the simulation of a simplified social system;

for instance, the behaviour of a flock of birds flying across an area seeking a location with

abundant food.

A PSO model consists of particles moving in a multi-dimensional search space, inter-

acting with their group. Each of the particles has two properties, a current position and

a velocity. Each particle remembers the best position it has experienced thus far in the

search space (among the swarm) and is also aware of the best-reached position of the group

so far. By considering the individual experience of each particle, which is the memory of its

best past position, and the experience of the most successful particle, the PSO algorithm

will predict the best next position for the particles at each iteration. Therefore, at each

step each particle moves with a velocity dynamically adjusted according to its own history

(experience), and those of its peers, which consequently result in global behaviour. Based

on this principle, the global optimum in optimization problems can be obtained.

Owing to its easy implementation and simple equations, PSO can be applied to address

the optimization of hard mathematical problems.

57



4.2 Dynamic Programming

Richard Bellman developed Dynamic Programming (DP), a numerical method based on

the principle of optimality, in the 1950s [59]. Similar to other optimization methods, this

global optimization approach aims to minimize the cost function while satisfying relevant

constraints. The term ”dynamic programming” is a bit misleading as it simply refers to

multi-stage decision processes. DP algorithms solve optimization problems by setting a

table and filling each spot in the table based on the other values in the table.

DP is widely applicable to complex optimization problems because it reformulates the

problem using a decomposition process. As a result, the n-variable problem breaks down

into n simplified one-variable (sub-) problems, each of which will be solved only once and

saved in a table. Afterwards, solutions for each sub-problem are combined together to

yield an overall solution. This dramatically reduces both computational time and effort.

In employing DP, there are some constraints on the problem that should be held, such as

non-negativity of the objective function.

4.3 Genetic Algorithm

Genetic Algorithm(GA) [60] belongs to the set of Evolutionary Algorithms (EA), which

are based on natural evolutionary principles. GA limits the design space using a natu-

ral selection scheme, which distinguishes it from traditional methods that use gradient

information to find optimum values. Therefore, GA is an efficient method for problems

with large design spaces. GA and PSO are very similar; the selection process in GA is
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substituted for a memory (for best social and individual location) in PSO.

According to the procedural flowchart shown in Figure 4.1, this stochastic approach

starts by randomly generating the initial population of solutions based on the range and

constraints of the design variables. Afterwards, GA narrows the search space by selecting

the best solution among the parent population using different operators, namely mutation

and crossover. These operators create a new generation of ”better” solutions by select-

ing and modifying current solutions to omit those that are bad. This natural selection

procedure, where only the best solutions survive, continues until the end criterion is met.

The deficiencies of GA, due to its probabilistic characteristics and slow convergence

rates, can be addressed by combining it with a local gradient-based method that can help

to achieve a satisfactory convergence speed.

GA has been widely applied to HEVs/PHEVs sizing problems.
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Figure 4.1: GA flowchart

4.4 Proposed Optimization Methodology

In our approach, GA was integrated with Autonomie as a simulation tool to create a

framework that can optimize PHEV powertrain components. As previously discussed, GA
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is considered an efficient method for optimal sizing of HEV and PHEV platforms.

Thus, GA combined with Autonomie, which can simulate both vehicle performance and

fuel consumption, provides a strong tool for complex PHEV component sizing optimization.

As explained in Chapter 3, a power-split PHEV was modeled in Autonomie using Prius

model 2012 specifications. This PHEV model was initially simulated using design values

given in Table 4.1. Peng, Pmotor, and Nb denote the engine power, motor power and number

of battery cells, respectively.

Table 4.1: Initial design value

Parameter Value

Peng 73kW

Pmotor 60kW

Nb 56

For these initial values, the objective function, which is the fuel consumption for a

specific drive cycle, was evaluated and determined. The results were then fed back into

the optimization algorithm, allowing GA to identify new design values. The model was

simulated with these new values and the objective value was determined. Again, the

simulation results were reported back to the GA, which generates a new set of design

variables. This iterative procedure (Figure 4.2) continued until the stopping criteria was

reached (the maximum number of generations, typically 20).

After the design parameters were optimized, the resulting vehicle design would have a

different weight from the initial weight (Prius mass). Therefore, the weights of the resulting
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designs were scaled and the new vehicle mass was calculated.

Optimization Algorithm

Evaluation

Engine Power
Motor Power

Number of battery cells Fuel Consumption for 
FTP,EPA,… drive cycles

New Design Variables

Figure 4.2: Optimization process

Figure 4.2 illustrates the whole framework of the methodology. Similar procedures have

been used in the literature to address vehicle platforms [35, 61]. It should be mentioned

that the design variables were restricted within their bounds. These bounds should be

determined based on the vehicle performance requirements, as discussed later.
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4.5 Drive Cycle

An appropriate driving cycle, which properly represents the vehicle behavior, should be

selected. The optimization must be run over different drive cycles in order to minimize

the fuel consumption across the driving profile. For example, highway driving requires

more power and as a result requires larger motor and engine components, on the other

hand, driving at low speeds or in urban areas, where frequent stopping, idling and braking

is required, does not impose high vehicle performance demands; thus, small engine and

motor components would be sufficient to meet performance expectations. In this study,

we considered the effect of several different driving cycles, including urban, highway, and

a combination of both cycles.

The FTP cycle (Federal Test Procedures) specifications, which characterize the urban

driving experience, are given in Table 4.2. It is obvious from Figure 4.3 that during this

urban cycle, which has a maximum speed of 96km/h and total distance of 17.77km, the

vehicle could be propelled by power derived from the motor and batteries, with very little

input from the engine. Therefore, we used a multiple of this cycle in order to achieve

nonzero fuel consumption.
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Table 4.2: FTP characteristics

Description Value

TotalT ime 2477s

Distance 17.77km

AverageSpeed 42.2km/h

MaxSpeed 91.2km/h

MaxAcceleration 1.47m/s2
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Figure 4.3: FTP drive cycle

The HWFET (HighWay Fuel Economy Test) drive cycle is shown in Figure 4.4, and

the specifications are given in Table 4.3. For the same reason as in the case of the FTP

cycle, we had to use a 2 ×HWFET for simulation and further optimization.
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Table 4.3: HWFET characteristics

Description Value

TotalT ime 764s

Distance 16.5km

AverageSpeed 78.2km/h

MaxSpeed 96.4km/h

MaxAcceleration 1.43m/s2
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Figure 4.4: HWFET drive cycle

We selected the EPA (Environmental Protection Agency) drive cycle (Figure 4.5) to

represent combined urban and highway driving cycles. EPA drive cycle characteristics are

given in Table 4.4.
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Table 4.4: EPA characteristics

Description Value
TotalT ime 2135s
Distance 28.5km

AverageSpeed 54.8km/h
MaxSpeed 96.4km/h

MaxAcceleration 1.47m/s2
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Figure 4.5: EPA drive cycle

To calculate fuel economy for combined city and highway driving patterns, according

to the equation 4.1 [12,35,37] a composite fuel economy can be obtained by combining the

highway and city fuel consumption:

CompositeFuelEconomy =
1

0.55/City FE + 0.45/Hwy FE
(4.1)

where City FE and Hwy FE represent the city and highway fuel economy values, respec-

tively.
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4.6 Simulation in Autonomie

Before running the optimization and sizing of the components, we simulated the base model

(Prius 2012) in Autonomie based on the specifications given in Chapter 3 and using the

EPA drive cycle. This method allowed us to obtain the behaviour of the model, which can

be compared against the optimization results later on.

Figure 4.6 depicts the difference between the real speed of the vehicle and the drive

cycle. As it can be seen, the vehicle could closely track the drive cycle.
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Figure 4.6: Tracking the EPA cycle

Power distributions between the powertrain components are depicted in Figures 4.7

through 4.10.

It is clear from Figure 4.7 that the engine mostly propelled the vehicle while in charge

sustaining mode. The engine also turned on when power demands were high, even if

the battery SOC was higher than the target (0.3) [46]. According to the power-split
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configuration, the generator worked when the engine turned on in order to bring it to its

optimum working points (Figure 4.8).
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Figure 4.7: Engine and battery power in EPA cycle
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Figure 4.8: Generator power in EPA cycle

Figures 4.9 and 4.10 show that the battery provided the primary propulsion power for

the vehicle until it reached its target SOC. As a result, the motor power (Figure 4.10) is
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similar to the battery power.
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Figure 4.9: Battery power in EPA cycle
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Figure 4.10: Motor power in EPA cycle
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4.7 Two Variable Optimization

We started optimization with two design variables, maximum engine and electric motor

power. The results, taking into consideration the boundary conditions (Table 4.5), show

that the engine and motor were both downsized; however, the reduction in the engine

size is more considerable. The downsized engine and motor can easily provide the power

required for the EPA cycle. Optimization completed without considering the performance

constraints resulted in downsized motor and engine components. This is due to the fact

that the power demands in typical driving patterns such as EPA are lower than the required

power for desired performances. Engines and motors with small sizes can easily provide

these powers (final value in Table 4.5).

Table 4.5: Two variable optimization results

Design variable Lower bound Upper bound Default value Final value

Pe 30kW 100kW 73kW 33.66kW

Pm 10kW 70kW 60kW 23.07kW

As mentioned earlier, during the optimization, the vehicle weight was adjusted as the

engine and motor sizes were optimized.
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4.8 Three Variable Optimization

Initially, the optimization ran with two variables, but given the important role batteries

play in PHEV platforms, it was important to obtain optimal batteries sizing in addition

to engine and motor sizes.

Therefore, before running the optimization for this case, the boundaries for the battery

were determined. The minimum boundary for the number of battery cells was calculated

based on the voltage ratio between the battery and the electric motor [29]:

Nb−min =
Vm
Vb

(4.2)

where Vm and Vb represent the minimum voltage of the motor and battery cell (120 and

3.7V , respectively). Thus, the minimum boundary for the third design variable was 32

battery cells.

Consequently, the optimization was carried out again, this time adding the number

of battery cells as the third design variable. No change in the objective and constraints

of the two variable optimization were set. The only difference was that in optimization

with the engine and electric motor sizes as the design variables, the mass of optimized

design parameters were adjusted but in this case changing in mass of battery cells were

not considered. In detail, during this optimization the number of battery cells, Nb, would

get a different value from 32 to 68. According to Toyota document, the mass of each li-ion

cell in Prius is about 700 grams [43], this would not have a significant effect on the fuel

consumption of the vehicle. So the vehicle mass were adjusted only with adjustment in the
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engine and electric motor masses. The change in battery mass due to different Nb were

not taken into consideration.

The battery sizing optimization results went toward the maximum allowed battery cells

(68, Table 4.6). This can be explained by the fact that in the PHEV, the battery propels

the vehicle until it reaches its target SOC (0.3 for our model) beyond which the engine

drives the vehicle and charges the batteries. Therefore, by increasing the number of battery

cells, the vehicle would mostly run by the electric power. As a result, the higher number

of batteries leads to lower fuel consumption. So, the optimization called for the largest

possible number of batteries in order to minimize fuel consumption.

Table 4.6: Optimization results for 3 design variables

Design variable Lower bound Upper bound Default value Final value

Pe 30kW 100kW 73kW 30kW

Pm 10kW 70kW 60kW 56.7kW

Nb 32 68 56 68

To solve the above mentioned problem, we could assume that the initial and final SOC

of the battery are the same (charge-depleting charge-sustaining mode). Based on this

assumption, the engine would mainly run the vehicle. However, this would result in the

vehicle working like a HEV, which was not the case. Therefore, an alternative solution had

to be found. Changing the objective could be helpful in this regard.
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4.9 Multi-Objective Optimization

Another way to obtain a reasonable optimization result for the number of battery cells is

to consider the cost of electricity in the objective function. This is particularly germane

since our model is a PHEV that can be charged by connecting to the grid. For this

purpose, the objective function was changed and defined in terms of cost of operating

fuels. So minimizing the gasoline consumption was no longer the primary interest, instead

the optimization would address both the optimum the cost of electricity and minimized

gasoline consumption as the new objectives. As a result, the single term objective function

turned to the following form:

J = Cf ×mf + Ce × Eb ×Nb (4.3)

where Cf is the cost of gasoline per litre ($/litre), mf is the gasoline consumption for

each drive cycle (litre), Ce is the electricity cost ($/kWh)for each drive cycle, Eb is the

electricity consumption for each drive cycle in kWh, and Nb is the total number of battery

cells. 1.2$/litre and 0.1$/kWh were assumed for the unit cost of gasoline and electricity,

respectively. These are the approximate values for Canada in the past year [62,63].

Being more precise, we can also consider the cost of battery maintenance in the above

objective function. For this purpose, battery maintenance cost would be added to the

objective function in the form:

J =
cost of each battery cell

battery life time
×Nb (4.4)
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The approximate daily battery cost assuming the cost of 80$/cell [64] and a 10 year life

time for the battery, yields:

J =
120

10 × γ
× (Nb) (4.5)

where γ in the above equation is defined as the number of cycles per year.

We assumed that the vehicle drives 20000 km per year. As a result considering the

EPA driving distance(Table4.4), γ would be 701.75 for EPA drive cycle. Consequently,

following equation 4.3 to 4.5, the cost function for the EPA drive cycle would be:

J = 1.2 ×mf + 0.1 × Eb × (Nb) +
80

10 × 701.75
(Nb) (4.6)

The optimization with this cost function and for about 400 evaluations (Figure 4.11) re-

sulted in the downsizing of all three target components with respect to their default values.

As was the case when optimizing two variables, this downsizing is due to the fact that we

did not consider any performance constraints (except the drive cycle requirements) in these

optimizations. Therefore, without constraints, the algorithm tended toward a cheaper bat-

tery cost and lesser fuel consumption, which yielded a smaller engine, motor and battery.

However, in comparison with the two-variable optimization, the engine was oversized, while

the electric motor was downsized. Fewer battery cells (Table 4.7)compared to the default

model can be the reason for getting the smaller size engine.
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Figure 4.11: GA results for three variable optimization regarding cost in EPA cycle

In the above figure, the fitness value is the value of the objective function at each

generation. 20 generations were considered as the end criteria for GA. The mean fitness

reveals the progress of the algorithm. This means that at each generation we would get

a new mean fitness due to changes in the population. This continues until the average

reaches the best fitness, which is the most desirable outcome.

Table 4.7: Multi-objective optimization results for 3 design variables

Design variable Final value

Pe 41.3kW

Pm 19.34kW

Nb 42
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4.10 Performance Constraints

As mentioned in the previous section, the large differences seen between the design vari-

ables and their default values in the model are the result of not taking any constraints into

account in the sizing optimization. Thus, in order to ensure that our optimized compo-

nent sizes can not only meet cost and fuel consumption objectives but also fulfill certain

vehicle performance requirements, some constraints were added as boundary conditions to

the optimization process and the optimization was carried out again. This is helpful in

preventing the GA algorithm from selecting low design variables.

The main vehicle performance constraints relate to grading, cruising, and accelerating

to a specific speed within a desired time limit. Cruising with constant speed at full power

will give the maximum vehicle speed, which can be used to calculate the power required

from the powertrain to reach this speed. Therefore, according to equations 3.2 and 3.10,

we have:

Pcruise = V (mg sinα +
1

2
CDV

2 + Crmg cosα) (4.7)

In this calculation, the acceleration term has been omitted due to the constant speed.

The values for the parameters were taken from Table 3.1 in the modeling chapter. The

road grade α is set to zero. Consequently, the powertrain should provide sufficient power

(95.6kW ) to reach the maximum speed of 180km/h. The electric motor and engine should

provide this power together. Therefore, we assumed that the total minimum power of these

two power supplies should be equal to the power required for the maximum speed.

Gradability, as another important vehicle performance constraint, was considered to
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calculate the minimum engine power. From equation 4.7, 45kW power required a 5%

grade with constant speed of 100 km/h. Assuming a 90% efficiency for the powertrain, the

minimum engine power would be about 50kW . Therefore, to achieve the maximum speed

of 180km/h, the electric motor requires a minimum power of 46kW .

Another criterion to verify the performance of a vehicle is acceleration time. As ex-

plained in the previous chapter, an acceleration time less than 12 seconds for 0 to 60mph

is desired according to PNGV consortium goals. We considered this acceleration time as

another performance constraint for the vehicle and optimization process in general and

calculated the power required for this constraint as [65]:

P =
δm

2t
(V 2

f + V 2
b ) +

2

3
mgCrVf +

1

5
ρACDV

3
f (4.8)

where Vf and δ are the final acceleration speed and mass factor respectively. The second

and third terms in the above equation are the power required for rolling resistance and

drag, and the corresponding parameter and coefficients are defined based on values given

in Chapter 3. Vb, the vehicle base speed, can be calculated from [27,65]:

Vb =
πωbR

30Kfd

(4.9)

In the above equation, ωb, the rotational speed at constant torque, was obtained from the

motor torque map based on speed (Figure 4.12) and is equal to 1250rpm(131rad/s). With

Kfd, the final drive ratio would equal to 4.113, the base speed would be 9.55m/s.
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Figure 4.12: Torque versus speed

The unit-less mass factor δ, which is due to the rotating components, can be obtained

from the following equation [65]:

δ = 1 + δ1 + δ2K
2
fd (4.10)

where δ1 is associated with the moment of inertia of the wheels with an estimated value of

0.04, δ2 is due to the rotating components of powertrain with an estimated value of 0.0025.

Therefore, the value for δ would be 1.046 [65].

As a result, based on equation 4.8 and the corresponding values, a power of about

70kW is required to accelerate from 0 to 100km/h in less than 12 seconds. This power is

less than the power required to reach the maximum speed (95.6kW ). So the latter is used

to find the minimum power required for the motor to satisfy all of the above constraints.
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The minimum engine power required to satisfy the gradability conditions was found to be

about 50kW . As a result the minimum power of about 45kW for the electric motor was

obtained.

Therefore, optimization was run again, this time taking into account the performance

constraints since the minimum boundaries for the design variables were determined with

respect to them. The GA for this case converged very quickly to the fittest value, before

it reached 10 generations (Figure 4.13).
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Figure 4.13: GA results for 3 variable constrained optimization with respect to cost in
EPA cycle

Results for the EPA cycle (Table 4.8) show that except for the battery, the engine and

motor were both downsized with respect to their values in the base model. However, a

comparison between these results and those without constraints (Table 4.7) illustrates the

fact that a better performance led to increased component sizes, which conflicts with the

fuel consumption objective.
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Table 4.8: Multi-objective optimization results for 3 design variables considering perfor-
mance constraints

Design variable Final value Size variation(%)

Pe 52.3kW -28.4

Pm 49.2kW -18

Nb 62 +10.7

We repeated the constrained optimization with two and three design variables, and fuel

consumption as the single objective. When three design variables were considered, the GA

(Figure 4.14) approached the best fitness after almost 10-12 generations.
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Figure 4.14: GA results for 3-variable constrained optimization to minimize fuel consump-
tion in the EPA cycle

The optimization results for the component sizes (Table 4.9) show that when the cost

of electricity does not matter, a larger size of motor and battery would be more desirable as

it may be more helpful in reducing fuel consumption because a larger portion of the power

demand would be provided by these components. This shows that increase in size of the
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components and in general the vehicle mass did not have a big effect on fuel consumption.

Table 4.9: Optimization results with objective of minimizing fuel consumption and con-
sidering performance constraints

Design variable
Final value

2 variables 3 variables

Pe 53.6kW 52kW

Pm 69kW 52kW

Nb - 68

The fuel consumption results for all 6 sets of optimizations are classified in the table

below to provide a general view of the results and facilitate an easy comparison.

Table 4.10: Fuel consumption results for EPA

Constraints Number of Variables Objective Fuel Consumption (l/100km)

1 + 3 total cost 1.073

2 − 3 total cost 2.039

3 + 3 fuel consumption 0.525

4 + 2 fuel consumption 1.156

5 − 3 fuel consumption 0.492

6 − 2 fuel consumption 1.078

As can be seen, in the first two sets, where optimizations were done in terms of total
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cost, the premier with constrained optimization has a lower fuel consumption due to its

larger battery pack, although it has a bigger engine to satisfy the performance constraints.

In the next two sets (3 and 4), the optimizations were run with constraints and with

the objective of minimizing fuel consumption. The fourth optimization produced a higher

fuel consumption rate because it had fewer battery cells; the relevant optimization was

with two variables and the number of batteries were fixed and was the same as in the base

model. The third optimization had the maximum allowable number of battery cells (a

third design variable optimization) and demonstrated the lowest fuel consumption to this

point.

The fifth and sixth sets were again optimized to meet the fuel consumption objective,

but without considering performance constraints. The fifth set provided the best result in

achieving the lowest fuel consumption. This was due to the maximum battery size and the

minimum engine size.

The comparison between optimizations undertaken with and without constraints, whether

considering two or three design variables, showed that the latter produced worse results in

fuel consumption. This was expected because of the fewer number of batteries, which led

more power producing by the engine and consequently higher fuel consumption.
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4.11 Comparison Between the Base Model and Opti-

mization Results

In order to assess our component size optimization results, we compared our model’s fuel

consumption results against those derived from the base model.

The error value in Table 4.11 reveals the comparison between fuel consumption results

before optimization (1.26l/100km) and after (Table 4.10) for the EPA cycle.

Table 4.11: Fuel consumption comparison before and after optimization

Constraints Number of Variables Objective Difference(%)

1 + 3 total cost 14.43

2 − 3 total cost -89.75

3 + 3 fuel consumption 58.37

4 + 2 fuel consumption 8.21

5 − 3 fuel consumption 60.94

6 − 2 fuel consumption 14.8

Figure 4.15 provides fuel consumption plots with default component sizes and obtained

component sizes from constrained optimization with both fuel consumption and cost objec-

tives. As expected, sizing optimization to address the fuel consumption objective produced

the lowest consumption. According to the power distribution described earlier, the fuel

consumption in all three results increased when the CS mode was initiated and the engine
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turned on.
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Figure 4.15: Fuel consumption plots for 3-variable constrained optimization and the base
model

Figure 4.16 depicts the SOC behaviour of the battery during the EPA cycle for the

model before and after sizing. In all three plots, SOC depleted from 90 percent and finally

reached the minimum level of 30 percent; however, the time and rate of depletion differs

across optimization results.
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Figure 4.16: SOC for 3-variable constrained optimization and the base model
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In accordance with the governing performance constraints, it was expected that the

time of less than 12s to accelerate from 0 − 60mph (96Km/h) would be achieved in the

simulation with the optimization results; Table 4.12 clearly shows that this was indeed the

case. Figure 4.17 shows the acceleration cycle for the three cases in Table 4.12.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

time(s)

S
pe

ed
 (

km
/h

)

 

 

Base model

Constrained Optimization regarding cost

Constrained Optimization regarding fuel consumption

Figure 4.17: Acceleration speed for 3-variable constrained optimization and the base model

Table 4.12: Acceleration results

Description Acceleration time (s)

Base model 9.4

Constrained 3 variable optimization regarding fuel consumption 11.1

Constrained 3 variable optimization regarding cost 11.6

Although lower fuel consumption rates were achieved by downsizing the main compo-

nents, Table 4.12 reveals that the base model has a better performance in comparison with

the optimization results. However, this trade-off always exists between performance and

fuel cost; which benefit is preferred depends on the target objective.
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4.12 Optimization with FTP Drive Cycle

To this point, the optimization results were carried out for the EPA cycle, which is a

combination of city and highway cycles. In order to consider the sizing for urban and

highway cycles individually, we ran the optimizations again for the FTP cycle, described

in this section, and HWFET, described in the next section.

In the case of sizing to achieve minimized fuel consumption, we ran optimizations with

and without constraints for two and three design variables for the FTP cycle (2 times).

Table 4.13: Optimization results for 2 and 3 design variables for FTP

Design variable
with constraint without constraint

2 variables 3 variables 2 variables 3 variables

Pe 50kW 54.9kW 36.4kW 41kW

Pm 58.3kW 68.3kW 29.8kW 29.4kW

Nb - 68 - 68

The results (Table 4.13) are completely justifiable. Adding the performance constraints

to the optimization led to increased component sizes. When the number of battery cells

was added as a third design variable, the optimization results went toward integrating the

maximum possible number of batteries to minimize fuel consumption.

In another attempt, we changed the optimization objective and tracked the effect of

cost on the sizing of the components, again with and without performance constraints.

The results were as follows:
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Table 4.14: Multi-objective optimization results for FTP

Design variable with constraint without constraint

Pe 48.89kW 30.12kW

Pm 60.58kW 23.07kW

Nb 49 39

The fuel consumption results for all optimizations carried out for this drive path are

given in Table 4.15. In general, if we compare the fuel consumption results for this cycle

with those for the EPA cycle (Table 4.10), without exception, the former one produced

higher consumption rates in all cases. This obviously could be because of the difference in

the driving cycle. As an urban cycle, the FTP path requires more fuel consumption due

to its stop and go pattern.

Table 4.15: Fuel consumption results for FTP

Constraints Number of Variables Objective Fuel Consumption (l/100km)

1 + 3 total cost 2.591

2 − 3 total cost 2.039

3 + 3 fuel consumption 1.143

4 + 2 fuel consumption 1.661

5 − 3 fuel consumption 1.094

6 − 2 fuel consumption 1.582
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In the above table, the optimization results listed in the first and second row were run

with respect to cost. The first optimization has a lower fuel consumption result due to a

larger size battery. The second one has smaller size engine and motor; however, this had

little benefit to fuel economy since the objective function cares more about the total cost

than fuel consumption solely.

Considering the optimizations undertaken to minimize fuel consumption, and with con-

straints considered, the three variable one (third row) shows a better result because its

larger battery would take over the role of propelling the vehicle to save fuel.

The last two optimization results did not consider performance constraints and therefore

achieved the minimum fuel consumption (fifth row) with the maximum number of battery

cells and minimum sized engine and motor components. Table 4.16 summarizes a fuel

consumption comparison before and after optimization with FTP as a drive cycle.

Table 4.16: Fuel consumption comparison before and after optimization

Constraints Number of Variables Objective Difference(%)

1 + 3 total cost -70.72

2 − 3 total cost -110.71

3 + 3 fuel consumption 44.22

4 + 2 fuel consumption 3.1

5 − 3 fuel consumption 48.06

6 − 2 fuel consumption 9.32
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4.13 Optimization with HWFET Drive Cycle

The same processes described above were carried out for the HWFET drive cycle. The

results are given below:

Table 4.17: Optimization results for 2 and 3 design variables for HWFET

Design variable
with constraint without constraint

2 variables 3 variables 2 variables 3 variables

Pe 53.41kW 50kW 31kW 43.76kW

Pm 74.67kW 78.56kW 31kW 23.13kW

Nb - 68 - 68

Re-running the optimization by changing the objective function to address cost, yielded:

Table 4.18: Multi-objective optimization results for HWFET

Design variable with constraint without constraint

Pe 50kW 30kW

Pm 51.28kW 18.74kW

Nb 35 32

Fuel consumption results for this cycle are given in Table 4.19. With exception of the

cases with cost as the objective, a reasonable reduction in fuel consumption can be seen

considering the base model consumption with this cycle is 1.84l/100km
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Table 4.19: Fuel consumption results for HWFET

Constraints Number of Variables Objective Fuel Consumption (l/100km)

1 + 3 total cost 3.497

2 − 3 total cost 2.67

3 + 3 fuel consumption 1.155

4 + 2 fuel consumption 1.7

5 − 3 fuel consumption 1.102

6 − 2 fuel consumption 1.586

Table 4.20 provides a comparison of fuel consumption rates before and after optimiza-

tion with HWFET cycle.

Table 4.20: Fuel consumption comparison before and after optimization

Constraints Number of Variables Objective Difference(%)

1 + 3 total cost -90.04

2 − 3 total cost -45.12

3 + 3 fuel consumption 37.24

4 + 2 fuel consumption 7.67

5 − 3 fuel consumption 40.1

6 − 2 fuel consumption 13.8
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4.14 Summary

This chapter summarized and compared optimization results for different driving cycles,

considering 2 and 3 design variables, with and without constraints, and both fuel con-

sumption and cost objectives. Considering results provided in Tables 4.10, 4.15 and 4.19,

in general the EPA cycle revealed better results in most cases and a desirable reduction of

fuel consumption was achieved.

In the EPA drive cycle, component sizing to address cost, and with three design vari-

ables considered, resulted in the lowest fuel consumption rate by comparison with all the

optimization results (Tables 4.10 and 4.11). This was largely due to reaching the maximum

possible number of batteries in the resulting configuration. When performance constraints

were not considered, these results showed an even deeper reduction in fuel consumption.

In general, among the six modes of optimization done for the EPA cycle (Tables 4.5 to

4.9), the engine was downsized with respect to its initial size. This is also true for the motor

except when two design variables performance constraints were considered (Table 4.9),

and where the number of batteries were fixed and equal to the initial value. In this case,

the engine reached its maximum size with respect to the other five cases. The number

of batteries could increase and as a result the motor had to be oversized to meet the

performance requirement. Battery sizes were fixed or oversized in most of the cases, except

when the cost was the objective (indicating larger size batteries would be costly). Clearly

the minimum size for the components was obtained when performance constraints were

not considered.

Similarly, in the optimization using the FTP drive cycle, the minimum fuel consumption
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was found when three design variables were considered and the objective was minimized fuel

consumption, whether with or without constraints (Table 4.15). With a maximum battery

size and downsized engine and motor components, reduced fuel consumption was achieved.

Again, the minimum sized battery was achieved when cost was the objective, which is

obvious when the cost of the battery is considered in addition to fuel cost. The engine

size was reduced significantly in all cases. This was also the case for the motor when there

were no constraints on the optimization (Tables 4.13 and 4.14). The maximum size for the

engine, motor and battery were obtained during the optimization with fuel consumption

as the objective and where performance constraints were considered (Table 4.13).

According to Table 4.19, the minimum fuel consumption for HWFET cycle, likewise

the other two drive cycles (EPA and FTP), was achieved when three design variables were

considered and fuel consumption was the design objective. Again, the engine was downsized

in all cases, while the motor had a lager size than its initial design when constraints

were placed on the optimization and fuel consumption was the objective (Table 4.17). By

comparison with the FTP results, the battery size with this cycle was extremely downsized

when cost was the objective. This is due to the fact that FTP, as an urban cycle, would

require larger battery.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this research project, we developed a power-split PHEV model based on the Toyota Prius

platform model. Autonomie was used as a simulation tool to support development of the

vehicle model, which was evaluated before running the optimization to determine the effect

of sizing on fuel consumption and vehicle performance. Based on this analysis, we were able

to validate the optimization results beforehand. Using this model, an optimization problem

was formulated to minimize fuel consumption, our primary objective. We were able to find

optimized sizes for key components of the vehicle, including the engine, electric motor, and

batteries. Thus, engine and motor maximum power, and the number of battery cells were

our primary design variables. The Genetic Algorithm (GA) approach was employed as

the optimization algorithm, and the problem was solved for various drive cycles, including
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urban, highway, and a combination of both.

Based on this component sizing effort, a significant reduction in fuel consumption

achieved by comparison with rates derived from the initial model and in different drive

cycles, whether urban (FTP) or highway (HWFET) or a combination of urban and high-

way cycles (EPA). Although some of our optimization results, found without considering

constraints, showed significantly reduced fuel consumption, the resulting vehicle platform

could not meet required performance criteria and were therefore undesirable.

In this research project, we integrated Autonomie PHEV models and GA optimization

to create a framework that can be used to address any optimization problem to meet any

objective, constraint, design variables and optimization parameters.

We can derive several conclusions from this research, including:

• Finding optimized powertrain component sizing can lead to significant reductions in

fuel consumption.

• Fuel consumption rates are tightly linked to the driving cycle considered. This was

validated in Chapter 4, which directly evaluated the effects of urban, highway, and

combined driving cycles on fuel consumption.

• Fuel consumption results vary considerably depending on whether performance con-

straints are or are not taken into account. This demonstrates the close interconnec-

tion between fuel consumption and performance constraints, suggesting they should

always be taken into account.
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• Going forward, the objective function should be modified to include the total cost

of battery maintenance and fuel consumption. Optimal sizing for the powertrain

components to minimize cost were derived. This process was repeated for different

drive cycles and took the performance constraints into account. The influence of drive

cycle and performance on fuel consumption followed the same trend as described

earlier, although fuel consumption results are much higher with total cost as the

objective.

5.2 Future Work

The following can be considered for continuation of this research:

• Optimization can be developed by considering more design parameters including

other powertain parameters (such as fd ratio) and the controller parameters (such as

SOCmin).

• More objectives can be considered in the optimization such as emission or the total

cost of vehicle.

• Rather than GA, other alternative Optimization approaches can be utilized such as

global optimization methods (like PSO, DP, . . . ) or integrating GA with a gradient-

based method and obtain a robust algorithm. The results of different optimization

algorithms can be compared.
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