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Abstract

The representation of a signal using a learned dictionary instead of predefined operators,

such as wavelets, has led to state-of-the-art results in various applications such as denoising,

texture analysis, and face recognition. The area of dictionary learning is closely associated

with sparse representation, which means that the signal is represented using few atoms

in the dictionary. Despite recent advances in the computation of a dictionary using fast

algorithms such as K-SVD, online learning, and cyclic coordinate descent, which make

the computation of a dictionary from millions of data samples computationally feasible,

the dictionary is mainly computed using unsupervised approaches such as k -means. These

approaches learn the dictionary by minimizing the reconstruction error without taking into

account the category information, which is not optimal in classification tasks.

In this thesis, we propose a supervised dictionary learning (SDL) approach by incorpo-

rating information on class labels into the learning of the dictionary. To this end, we pro-

pose to learn the dictionary in a space where the dependency between the signals and their

corresponding labels is maximized. To maximize this dependency, the recently-introduced

Hilbert Schmidt independence criterion (HSIC) is used. The learned dictionary is compact

and has closed form; the proposed approach is fast. We show that it outperforms other

unsupervised and supervised dictionary learning approaches in the literature on real-world

data.

Moreover, the proposed SDL approach has as its main advantage that it can be eas-

ily kernelized, particularly by incorporating a data-driven kernel such as a compression-

based kernel, into the formulation. In this thesis, we propose a novel compression-based

(dis)similarity measure. The proposed measure utilizes a 2D MPEG-1 encoder, which

takes into consideration the spatial locality and connectivity of pixels in the images. The

proposed formulation has been carefully designed based on MPEG encoder functionality.

To this end, by design, it solely uses P-frame coding to find the (dis)similarity among

patches/images. We show that the proposed measure works properly on both small and

large patch sizes on textures. Experimental results show that by incorporating the pro-

posed measure as a kernel into our SDL, it significantly improves the performance of a

supervised pixel-based texture classification on Brodatz and outdoor images compared to
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other compression-based dissimilarity measures, as well as state-of-the-art SDL methods.

It also improves the computation speed by about 40% compared to its closest rival.

Eventually, we have extended the proposed SDL to multiview learning, where more

than one representation is available on a dataset. We propose two different multiview

approaches: one fusing the feature sets in the original space and then learning the dictionary

and sparse coefficients on the fused set; and the other by learning one dictionary and the

corresponding coefficients in each view separately, and then fusing the representations in

the space of the dictionaries learned. We will show that the proposed multiview approaches

benefit from the complementary information in multiple views, and investigate the relative

performance of these approaches in the application of emotion recognition.
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Chapter 1

Introduction

There are many mathematical models to describe data with varying degrees of success,

among which dictionary learning and sparse representation (DLSR) has attracted the in-

terest of many researchers in various fields. Dictionary learning and sparse representation

are two closely-related topics that have roots in the decomposition of signals to some pre-

defined bases, such as the Fourier transform. Representation of signals using predefined

bases is based on the assumption that these bases are general enough to represent any

kind of signal, however, recent research shows that learning the bases1 from data, instead

of using off-the-shelf ones, leads to state-of-the-art results in many applications [1]. In fact,

what makes DLSR distinct from the representation using predefined bases is that first, the

bases are learned here from the data, and second, only a few components in the dictionary

are needed to represent the data (sparse representation). This latter attribute can also be

seen in the decomposition of signals using some predefined bases such as wavelets [2].

1Here, the term basis is loosely used as the dictionary can be overcomplete, i.e., the number of dictionary

elements can be larger than the dimensionality of the data, and its atoms are not necessarily orthogonal

and can be linearly dependent.
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1.1 Related Topics

The concept of dictionary learning and sparse representation originated in different com-

munities attempting to solve different problems, which are given different names. Some of

them are: sparse coding (SC), which was originated by neurologists as a model for sim-

ple cells in mammalian primary visual cortex [3]; independent component analysis (ICA),

which was developed by researchers in signal processing to estimate the underlying hidden

components of multivariate statistical data (refer to [4] for a review of ICA); least absolute

shrinkage and selection operator (lasso), which was used by statisticians to find linear re-

gression models when there are many more predictors than samples, where some constraints

have to be considered to fit the model. In the lasso, one of the constraints introduced by

Tibshirani was the `1-norm that led to sparse coefficients in the linear regression model [5].

Another technique which also leads to DLSR is nonnegative matrix factorization (NNMF),

which aims to decompose a matrix to two nonnegative matrices, one of which can be con-

sidered to be the dictionary, and the other the coefficients [6]. In NNMF, usually both the

dictionary and coefficients are sparse [6,7]. This list is not complete, and there are variants

for each of the above techniques, such as blind source separation (BSS) [8], compressed

sensing [9], basis pursuit (BP) [10], and orthogonal matching pursuit (OMP) [11,12]. It is

beyond the scope of this thesis to include the description of all these techniques (interested

readers can refer to [1,13–15] for reviews on dictionary learning and sparse representation).

The main results of all these research efforts is that a class of signals with sparse nature,

such as images of natural scenes, can be represented using some primitive elements that

form a dictionary, and that each signal in this class can be represented by using only a few

elements in the dictionary, i.e., by a sparse representation. In fact, there are at least two

ways in the literature to exploit sparsity [16]: first, using a linear/nonlinear combination

of some predefined bases, e.g., wavelets [2]; second, using primitive elements in a learned

dictionary, such as the techniques employed in SC or ICA. This latter approach is the focus

of this thesis and has led to state-of-the-art results in various applications such as texture

classification [17–19], face recognition [20–22], image denoising [23, 24], biomedical tissue

characterization [25–27], motion and data segmentation [28, 29], data representation and

column selection [30], and image super-resolution [31]. Figure 1.1 summarizes the topics

2
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Figure 1.1: Topics related to and the applications of dictionary learning and sparse repre-

sentation.

related to and the applications of dictionary learning and sparse representation.

1.2 Taxonomy of DLSR

One may categorize the various dictionary learning with sparse representation approaches

proposed in the literature in different ways: one where the dictionary consists of predefined

or learned bases as stated above, and the other based on the model used to learn the dictio-

nary and coefficients. These models can be generative as used in the original formulation of

SC [3], ICA [4], and NNMF [6]; reconstructive as in the lasso [5]; or discriminative such as

3



SDL-D (supervised dictionary learning-discriminative) in [16]. The two former approaches

do not consider the class labels in building the dictionary, while the last one (i.e., the dis-

criminative one) does. In other words, dictionary learning can be performed unsupervised

or supervised, with the difference that in the latter, the class labels in the training set are

used to build a more discriminative dictionary for the particular classification task in hand.

1.3 Objectives and Contributions

The main objectives of this thesis are as follows:

• To develop a supervised dictionary learning (SDL) algorithm by incorporating class

labels into the learning of the dictionary;

• To design and incorporate a compression-based dissimilarity measure into the de-

signed SDL as a kernel to further improve the discrimination power of the algorithm

in subtle classification tasks;

• To extend the proposed SDL to multiview representations.

As the result of the research carried out, a novel supervised dictionary learning is

proposed in this thesis by incorporating information on class labels into the learning of the

dictionary. The dictionary is learned in a space where the dependency between the data

and their corresponding labels is maximized. It is proposed to maximize this dependency

by using the recently introduced Hilbert Schmidt independence criterion (HSIC) [32, 33].

Although supervised dictionary learning has been proposed by others, as will be reviewed

in the next chapter, this work is different from the others in the following aspects:

1. The formulation is simple and straightforward;

2. The proposed approach introduces a closed form formulation for the computation

of the dictionary. This is different from other approaches, in which the computa-

tion of dictionary and sparse coefficients has to be iteratively and often alternately

performed, which causes high computational load;

4



3. The approach is very efficient in terms of dictionary size (compact dictionary). The

results show that the proposed dictionary can produce significantly better results than

other supervised dictionary methods for small dictionary sizes. An important special

case is when the dictionary size is smaller than the dimensionality of data. This turns

the learning of a dictionary whose size is usually larger than the dimensionality of

the data, i.e., an overcomplete dictionary, into the learning of a subspace;

4. The proposed approach can be easily kernelized by incorporating a kernel into the

formulation. For example, data-dependent kernels based on normalized compression

distance (NCD) [34, 35], can be used in this kernelized SDL to further improve the

discrimination power of the designed system. To the best of my knowledge, no other

kernelized SDL approach has been proposed in the literature yet, and none of the

proposed SDLs in the literature can be kernelized in a straightforward way.

A novel compression-based dissimilarity measure, particularly designed for textures, is

also proposed. It is shown how it can be incorporated into the proposed kernelized SDL

as a data-dependent kernel to significantly improve the accuracy of a pixel-based texture

classification systems on benchmark datasets, such as the Brodatz album.

Eventually, the proposed SDL is extended to multiview representations. There are

situations where there are more than one view/representation for a dataset. An effective

way is proposed to make use of the complementary information available in all these rep-

resentations, by learning one dictionary per view and computing the corresponding sparse

coefficients. By fusing these coefficients, a multiview representation is provided where clas-

sification can be performed faster and more accurately. The effectiveness of this multiview

SDL in emotion recognition applications will be also shown .

1.4 Organization

The organization of the rest of the thesis is as follows: Chapter 2 provides an overview on

dictionary learning and sparse representation (DLSR). It first provides the formulation for

5



unsupervised dictionary learning, then extensively reviews many of the current supervised

dictionary learning approaches in the literature and their shortcomings.

Chapter 3 provides the mathematical formulation for the proposed supervised dictio-

nary learning approach. To this end, it first reviews the mathematical background for

the proposed SDL, i.e., Hilbert Schmidt independence criterion (HSIC). Then provides the

formulation for the proposed SDL and its kernelized version.

Chapter 4 presents the experimental setup and results on various datasets and in dif-

ferent applications such as face recognition, digit recognition, and texture classification.

The proposed compression-based dissimilarity measure and its properties are described

in Chapter 5. This chapter first reviews the normalized information distance (NID) and its

computable version, i.e., normalized compression distance (NCD). Then the formulation

for the proposed measure is provided. Finally, it shows how by incorporating the proposed

measure into the kernelized version of SDL, the performance of a texture classification

system can be significantly improved.

Chapter 6 extends the proposed SDL to multiview and regression problems. The former

is useful in applications where data is represented using more than one feature set, whereas

the latter is needed when the information category is defined in continuous domain rather

than a discrete one. The chapter shows the effectiveness of the proposed extensions to

emotion recognition applications using speech and visual expressions. Finally, Chapter 7

concludes the thesis.
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Chapter 2

Literature Review

In this chapter, an overview of the dictionary learning and sparse representation is provided.

Also a brief review of recent attempts to make the approach more suitable for classification

tasks is presented.

2.1 Unsupervised Dictionary Learning

Considering a finite training set of signals X = [x1,x2, ...,xn] ∈ Rp×n, where p is the

dimensionality and n is the number of data samples, according to classical dictionary

learning and sparse representation (DLSR) techniques (refer to [1,13,14] for a recent review

on this topic), these signals can be represented by a linear decomposition over a few

dictionary atoms by minimizing a loss function as given below

L(X,D,α) =
n∑

i=1

l(xi,D,α), (2.1)

where D ∈ Rp×k is the dictionary of k atoms, and α ∈ Rk×n are the coefficients.

This loss function can be defined in various ways based on the application in hand.

However, what is common in DLSR literature is to define the loss function L as the
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reconstruction error in a mean-squared sense, with a sparsity-inducing function ψ as a

regularization penalty to ensure the sparsity of coefficients. Hence, (2.1) can be written as

L(X,D,α) = min
D,α

1

2
‖X−Dα‖2F + λψ(α), (2.2)

where subscript F indicates the Frobenius norm and λ is the regularization parameter that

affects the number of nonzero coefficients.

An intuitive measure of sparsity is `0-norm, which indicates the number of nonzero

elements in a vector1. However, the optimization problem obtained from replacing sparsity-

inducing function ψ in (2.2) with `0 is nonconvex, and the problem is NP-hard (refer

to [14] for a recent comprehensive discussion on this issue). There are two main proposed

approximate solutions to overcome this problem: the first is based on greedy algorithms,

such as the well-known orthogonal matching pursuit (OMP) [11, 12, 14]; the second works

by approximating a highly discontinuous `0-norm by a continuous function such as the

`1-norm. This leads to an approach which is widely known in the literature as lasso [5] or

basis pursuit (BP) [10], and (2.2) converts to

L(X,D,α) = min
D,α

n∑
i=1

(
1
2
‖Xi −Dαi‖2F + λ‖αi‖1

)
. (2.3)

where αi is the ith column of α.

In (2.3), the main optimization goal for the computation of the dictionary and sparse

coefficients is minimizing the reconstruction error in the mean-squared sense. While this

works well in applications where the primary goal is to reconstruct signals as accurately

as possible, such as in denoising, image inpainting, and coding, it is not the ultimate

goal in classification tasks [36], as discriminating signals is more important here. Hence,

recently, there have been several attempts to include category information in computing

either dictionary, coefficients, or both. In the following section, a brief overview of proposed

supervised dictionary learning approaches in the literature will be provided. To this end,

the proposed approaches are categorized into six different categories, while it is admitted

that this taxonomy of approaches is not unique and could be done differently.

1`0 norm of vector x is defined as ‖x‖0 = #{i : xi 6= 0}.
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2.2 Supervised Dictionary Learning

As mentioned in the previous section, (2.3) provides a reconstructive formulation for com-

puting the dictionary and sparse coefficients, given a set of data samples. Although the

problem is not convex on both dictionary D and coefficients α, this optimization problem

is convex if it is solved iteratively and alternately on these two unknowns. Several fast

algorithms have recently been proposed for this purpose, such as K-SVD [37], online learn-

ing [38], and cyclic coordinate descent [39]. However, none of these approaches takes into

account the category information for learning either the dictionary or the coefficients.

2.2.1 Learning One Dictionary per Class

The first and simplest approach to include category information in DLSR is computing

one dictionary per class, i.e., using the training samples in each class to compute part of

the dictionary, and then composing all these partial dictionaries into one. In providing

the mathematical formulation for all the approaches in this category of SDL, it is always

assumed that the training samples are grouped based on the classes they belong to such that

X = [X1,X2, ...,Xc] ∈ Rp×n, where c is the number of classes and Xi = [xi1,xi2, ...,xim] ∈
Rp×m is the group of training samples in class i.

Supervised k-means

Perhaps the earliest work in this direction is the one based on the so-called texton-based

approach [19,40–44]. The texton-based approach, can be considered a dictionary learning

approach particularly tailored for texture analysis. In this approach, textons, which are

computed using the k -means clustering algorithm over patches extracted from texture

images, play the role of dictionary atoms. Although in a texton-based approach the texture

images are usually modeled with a histogram of textons and hence, the approach falls

mainly into the category of supervised dictionary learning explained in Subsection 2.2.6,

the idea of using k -means and the computed cluster centers as the dictionary elements

can still be considered here as a SDL approach that computes one dictionary per class.
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Therefore, a specific name is suggested for this technique, i.e., supervised k -means, to

differentiate it from a texton-based approach. In supervised k -means, k -means is applied

to the training samples in each class, and the k cluster centers computed are considered

to be the dictionary for this class. These partial dictionaries are eventually composed into

one dictionary.

In the mathematical framework, each subdictionary Di = [di1,di2, ...,diki ] ∈ Rp×ki can

be computed using the training samples in class i, i.e., using Xi = [xi1,xi2, ...,xim] ∈ Rp×m

and the optimization problem

arg min
Di

ki∑
l=1

∑
xij∈Sl

‖xij − dil‖ (2.4)

where S = {S1, S2, ..., Ski} are ki clusters that partition data samples Xi in class i. Usually,

ki, the number of dictionary atoms computed per class, is the same over all classes. By

composing all Di into one dictionary such that D = [D1,D2, ...,Dc] ∈ Rp×k, where k = ki·c,
the whole dictionary is obtained.

One can explain why it might be expected that a supervised k -means performs better

than an unsupervised one by understanding how k -means compute the cluster centers: it

essentially computes the cluster centers by taking the mean of the points. Hence, if k -

means was applied to the data points across classes, the resultant cluster centers might not

be corresponding to the data points in any of the classes, and consequently the resultant

cluster centers would not be identified uniquely with individual classes. In other words,

the cluster centers computed using k -means across classes would not be representing data

samples in a class properly. Thus, in classification tasks, it will be beneficial, particularly

at small dictionary sizes, to use k -means for the data points in one class at a time.

Sparse representation-based classification (SRC)

In [21], the training samples are used as the dictionary in face recognition and hence,

this technique, called sparse representation-based classification (SRC), effectively falls into

the same category as training one dictionary per class. However, no actual training is

performed here, and the whole training samples are used directly in the dictionary.
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To describe SRC more formally, suppose that xts ∈ Rp is a test sample. The SRC

algorithm assigns the whole training set X to the dictionary D, and computes the sparse

coefficients α for test sample xts using the lasso given in (2.3) as follows

min
α

1

2
‖xts −Xα‖22 + λ‖α‖1. (2.5)

In the next step, the residual error is computed for the reconstruction of the test sample

using training samples of each class and their corresponding sparse coefficients

ri(xts) = ‖xts −Xδi(α)‖22, (2.6)

where δi is a characteristic function that selects the coefficients associated with class i.

This residual error is found for each class separately, and then the class label of the given

test samples is assigned according to

label(xts) = arg min
i

ri(xts). (2.7)

However, using the training samples as the dictionary in this approach results in a very

large and possibly inefficient dictionary, due to the noisy training instances.

Metaface

To obtain a smaller dictionary, Yang et al. proposed an approach called metaface, which

learns a smaller dictionary for each class and then composes them into one dictionary [45].

Metaface was originally proposed for the application of face recognition, but it is general

and can be used in any application. In this approach, each subdictionary Di is computed

using the training samples Xi in class i using the lasso2

min
Di,αi

1

2
‖Xi −Diαi‖2F + λ‖αi‖1. (2.8)

2In this chapter, whenever `1-norm is used over a matrix, it is meant that `1-norms over each col-

umn of the matrix are summed such as what is used in (2.3). Hence the correct form for (2.8) is:

minD,α

∑m
j=1

(
1
2‖Xij −Dαij‖2F + λ‖αij‖1

)
. However, similar forms as in (2.8) are loosely used for `1-

norm in the rest of this chapter to avoid too long and complex formulations and to focus more on the

concept.

11



Since this optimization problem is nonconvex when both dictionary and coefficients

are unknown, it has to be solved iteratively and alternately with one unknown variable

considered fixed in each alteration. Computed subdictionaries are eventually composed

into one dictionary D = [D1,D2, ...,Dc] ∈ Rp×k. After computation of the dictionary,

the class label of a test sample xts is computed in the same way as explained in the SRC

approach, i.e., by finding the coefficients for this test sample using the computed dictionary

instead of the whole training set in (2.5), followed by the computation of the residuals given

in (2.6), and assigning the test sample to the class that yields the minimal residue.

Although the metaface approach can potentially reduce the size of the dictionary com-

pared to the SRC, its major drawback is that the training samples in one class are used

for computing the atoms in the corresponding subdictionary, irrespective of the training

samples from other classes. This means that if training samples across classes have some

common properties, these shared properties cannot be learned in common in the dictionary.

Dictionary learning with structured incoherence (DLSI)

Ramirez et al. proposed to overcome the aforementioned problem with the metaface ap-

proach by including an incoherence term in (2.3) to encourage independency of dictionaries

from different classes, while still allowing for different classes to share features [46].

To enable sharing features among the data points in different classes for learning the

dictionary, instead of learning each Di independently and unaware of data points in other

classes, a coherence term is added to the lasso as described by the formulation below

min
{Di,αi}i=1,...,c

c∑
i=1

{
‖Xi −Diαi‖2F + λ ‖αi‖1

}
+ η

∑
i 6=j

∥∥D>i Dj

∥∥2
F
, (2.9)

where the last term is an incoherence term Q(Di,Dj), which has been proposed in [46]

to be defined as the inner product between two subdictionaries Di and Dj but it can

be defined differently. After finding the dictionary, the classification of a test sample is

performed the same way as with the SRC.

The main drawback of all the approaches in this first category of SDL is that they may
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lead to a very large dictionary, as the size of the composed dictionary grows linearly with

the number of classes.

2.2.2 Pruning Large Dictionaries

The second category of SDL approaches learn a very large dictionary unsupervised in the

beginning, then merge the atoms in the dictionary by optimizing an objective function

that takes into account the category information.

Information bottleneck (IB)

One major work in the literature in this direction is based on agglomerative information

bottleneck (AIB), which iteratively merges two dictionary atoms that cause the smallest

decrease in the mutual information between the dictionary atoms and the class labels [47].

The discriminative power of a dictionary D is characterized by the AIB as the amount

of mutual information I(d, y) shared by random variables d (dictionary atoms) and y

(category information):

I(d, y) =
∑
d∈D

c∑
y=1

P (d, y)log
P (d, y)

P (d)P (y)
(2.10)

where the joint probability P (d, y) is estimated from the data by counting the number of

occurrences of dictionary atoms d in each category y = {1, ..., c}. The mutual information

I(d, y) is monotonically decreased as the AIB iteratively compresses the dictionary by

merging dictionary atoms. This is continued until a predefined dictionary size is obtained.

Although the approach is slow, a solution is proposed in [47] to make it computationally

efficient.

Universal visual dictionary (UVD)

Another major work is based on merging two dictionary atoms so as to minimize the loss

of mutual information between the histogram of dictionary atoms over signal constituents,
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e.g., image patches, and class labels [48]. From this point of view, the difference between

this approach and the one based on AIB is in the way they measure the discriminative power

of the dictionary. In this approach, rather than measuring the discriminative power of the

dictionary on individual dictionary atoms, it is measured on the histogram of dictionary

atoms over signal constituents H. Therefore, I(h, y), where h is the random variable over

the histograms H is considered in UVD, instead of I(d, y) used by AIB. However, since the

dimensionality of histograms tends to be very high, estimation of I(h, y) is only possible

with strong assumptions on the histograms. In [48], it is assumed that histograms can

be modeled using a mixture of Gaussians, with one Gaussian per category. Based on

this assumption, in [48], category posterior probability p(y|h) is used instead of mutual

information I(h, y) for characterizing the discriminative power of the dictionary. Since this

approach works on a histogram of dictionary atoms over signal constituents, it can be also

categorized in the sixth category of SDL explained in Subsection 2.2.6.

One main drawback of this category of SDL is that the reduced dictionary obtained

performs, at best, as well as the original one. Since the initial dictionary is learned unsu-

pervised, even though with its large size it includes almost all possible atoms that helps

to improve the performance of the classification task, the consecutive pruning stage is in-

efficient in terms of computational load. This can be significantly improved by finding a

discriminative dictionary from the beginning.

2.2.3 Learning Dictionary and Classifier in One Optimization

Problem

The third category of SDL, which is based on several research works published in [16,49–53]

can be considered a major leap in the field. In this category, the classifier parameters and

the dictionary are learned in a joint optimization problem. Although this idea is more so-

phisticated than the previous two, its major disadvantage is that the optimization problem

is nonconvex and complex. If it is done alternatively between learning the dictionary and

classifier parameters, it is quite likely to become stuck in local minima. On the other hand,

due to the complexity of the problem (except for the bilinear classifier in [16]), other papers

only consider linear classifiers, which are usually too simple to solve difficult problems, and
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can only be successful in simple classification tasks as shown in [16].

Supervised dictionary learning-discriminative (SDL-D)

Mairal et al. were one of the first research teams who proposed a joint optimization problem

for learning the dictionary and the classifier parameters [16, 49, 53]. In [16] they proposed

the following formulation

min
D,W,α

(∑n
i=1 C(yif(xi,αi,W)) + λ0 ‖xi −Dαi‖22 + λ1 ‖αi‖1

)
+ λ2 ‖W‖22 , (2.11)

where C(x) = log(1 + e−x) is the logistic loss function, (yi ∈ {−1,+1})ni=1 are binary class

labels, f(.) is the classifier function, and W is the associated classifier parameters to be

learned. In (2.11), λ0 is the parameter that controls the relative importance of the recon-

struction error and the loss function on the classifier, λ1 is the regularization parameter

that controls the level of sparsity of the coefficients, and λ2 is the regularization parameter

to prevent overfitting the classifier. The actual discriminative formulation proposed in [16]

is sufficiently more complex than (2.11) and its description is not provided here. The op-

timization problem in (2.11), is a nonconvex problem and has many parameters to tune,

which makes the approach computationally expensive.

Discriminative K-SVD (DK-SVD)

In [50], Zhang and Li propose a technique called discriminative K-SVD (DK-SVD). DK-

SVD truly jointly learns the classifier parameters and dictionary, without alternating be-

tween these two steps. This prevents the possibility of getting stuck in local minima.

However, only linear classifiers are considered in DK-SVD, which may lead to poor perfor-

mance in difficult classification tasks.

To provide the formulation for DK-SVD, one may notice that after learning the dictio-

nary using the lasso (2.3), a linear classifier is to be learned on the coefficients α. Suppose

that W ∈ Rc×k are the classifier parameters (c is the total number of classes and k is the

number of dictionary atoms), and H ∈ Rc×n includes the class labels (n is the number of

training samples) such that each column of H is hi = {0, ..., 1, ..., 0}>, i.e., there is exactly
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one nonzero element in each column of H, whose position indicates the class of the corre-

sponding training sample. The classifier can be learnt using least square formulation by

minimizing the classifier error in the mean-squared sense using the optimization problem

min
W

1

2
‖H−Wα‖2F. (2.12)

This optimization problem can be combined with the lasso (2.3) into one optimization

problem

min
D,W,α

1

2
‖X−Dα‖2F +

γ

2
‖H−Wα‖2F + λ‖α‖1. (2.13)

To find the dictionary, coefficients, and the classifier, the optimization problem given

in (2.13) has to be solved iteratively and alternately, with two of these unknowns fixed

each time and solving for the third. This makes the solution very slow and very likely to

get stuck in local minima. To partially overcome these problems, it is proposed in [50] to

combine the first two terms in (2.13) into one term as follows

min
D,W,α

1

2

∥∥∥∥∥
[

X
√
γ H

]
−

[
D
√
γ W

]
α

∥∥∥∥∥
2

F

+ λ‖α‖1. (2.14)

Considering

[
X
√
γ H

]
as a new training set XN ∈ R(p+c)×n and

[
D
√
γ W

]
as a new dictionary

DN ∈ R(p+c)×k, (2.14) is converted to the lasso

min
DN,α

1

2
‖XN −DNα‖2F + λ‖α‖1, (2.15)

and can be efficiently solved by one of the recently developed fast algorithms for this

purpose such as K-SVD [37]. Deriving D and W from DN is straightforward and the

details are provided in [50].

One major problem with the approaches in this category of SDL is that there exist

many parameters involved in the formulation, which are hard and time-consuming to tune

(see for example [16,53]).
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2.2.4 Including Category Information in the Learning of the Dic-

tionary

The fourth category of SDL approaches includes the category information in the learning

of the dictionary.

Information loss minimization (info-loss)

In [54], it is proposed to include category information into the learning of the dictionary,

by minimizing the information loss due to predicting labels from a supervised dictionary

learned instead of original training data samples. This approach is known as info-loss

in the SDL literature. In fact, in supervised dictionary learning, the ultimate goal is

to represent the original high-dimensional feature space by a dictionary such that it can

facilitate the prediction of the class labels correctly. Ideally, the dictionary should maintain

all discriminative power of the original feature space. However, some of this information

is lost during the quantization of the feature space. In [54], it is proposed to learn the

dictionary such that the information loss

I(x, y)− I(d, y) (2.16)

is minimized, where I indicates the mutual information between its arguments as random

variables, and x, d, and y are the random variables on the original feature space X, learned

dictionary D, and the class labels Y, respectively.

Just the same as in the previous category of SDL, the info-loss approach has the major

drawback that it may become stuck in local minima. This is mainly because the optimiza-

tion has to be done iteratively and alternately on two updates, as there is no closed-form

solution for the approach (the details of the approach have not been provided here; inter-

ested reader can refer to the original paper for more information).

Randomized clustering forests (RCF)

In [55], it is proposed to learn the dictionary atoms using extremely randomized decision

trees. This approach can also fall into the second category of SDLs, as it seems that it
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starts from a very large dictionary using random forests, and tries to prune it later to

conclude with a smaller dictionary.

2.2.5 Including Category Information in the Learning of the Sparse

Coefficients

The fifth category of SDL includes class category in the learning of coefficients [36] or in

the learning of both dictionary and coefficients [22, 56]. Supervised coefficient learning

in all these papers [22, 36, 56] has been performed more or less in the same way using

the Fisher discrimination criterion [57], i.e., by minimizing the within-class covariance of

coefficients and at the same time maximizing their between-class covariance. As for the

dictionary, while [36] uses predefined bases by deploying an overcomplete dictionary as a

combination of Haar and Gabor bases, [22] proposes a discriminative fidelity term to learn

the dictionary, for which further description is provided below, along with the learning of

the coefficients.

Fisher discrimination dictionary learning (FDDL)

In [22], an approach called Fisher discrimination dictionary learning (FDDL) is proposed,

that uses category information in learning both dictionary and sparse coefficients. To

learn the dictionary supervised, a discriminative fidelity term is proposed that encourages

learning dictionary atoms of one class from the training samples of the same class, and

at the same time penalizes their learning by the training samples from other classes. As

stated above, the coefficients are learned supervised, by including the Fisher discriminant

criterion in their learning.

To provide a mathematical formulation for FDDL, suppose that the training samples

are grouped according to the classes they belong to, i.e., X = [X1,X2, ...,Xc] ∈ Rp×n,

where c is the number of classes. The objective function in FDDL consists of two terms:

a fidelity term and a discrimination constraint term on coefficients

J(D,α) = min
D,α

{
r(X,D,α) + λ1 ‖α‖1 + λ2f(α)

}
, (2.17)
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where r(X,D,α) is the fidelity term and f(α) is the discrimination constraint on the

coefficients.

The fidelity term is defined in [22] as follows

r(X,D,α) = ‖Xi −Dαi‖2F +
∥∥Xi −Diα

i
i

∥∥2
F

+
c∑

j=1
j 6=i

∥∥Djα
j
i

∥∥2
F
, (2.18)

where Di is the part of the dictionary associated with class i, and αi is the representation

of Xi over D. Also αi = [α1
i ,α

2
i , ...,α

c
i ], where αj

i is the part of the coefficients that

represent Xi over the subdictionary Dj. In (2.18), the first two terms indicate that the

whole dictionary and also the subdictionary associated with class i should well represent the

data samples in the same class Xi, whereas the last term indicates that the subdictionaries

from other classes have little contribution towards the representation of the data samples

in class i.

The Fisher discrimination term, on the other hand, is as follows

f(α) = tr(SW(α))− tr(SB(α)) + η ‖α‖2F , (2.19)

where tr is the trace operator; SW and SB are within- and between-class covariance ma-

trices, respectively. The last term is a penalty added to (2.19) to make the optimization

problem convex [22].

The joint optimization problem, due to the Fisher discrimination criterion on the co-

efficients and the discriminative fidelity term on the dictionary proposed in (2.17), is not

convex, and has to be solved alternately and iteratively between these two terms until it

converges. However, there is no guarantee to find the global minimum. Also, it is not clear

whether the improvement obtained in classification by including the Fisher discriminant

criterion on coefficients justifies the additional computation load imposed on the learning,

as there is no comparison provided in [22] on the classification with and without including

supervision on coefficients.
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2.2.6 Learning a Histogram of Dictionary Elements over the Sig-

nal Constituents

There are situations where a signal is made of some local constituents, e.g., an image is

made up of patches. However, the ultimate classification task is to classify the signal, not its

individual local constituents, e.g., the whole image, not the patches in the previous example.

This classification task is usually tackled by computing the histogram of dictionary atoms

computed over local constituents of a signal. The computed histograms are used as the

signature (model) of the signal, which are eventually used for the training of a classifier

and predicting the labels of unknown signals. Unlike the previous five categories, the

motivation of the approaches in the sixth SDL category is to design a supervised dictionary

which is discriminative over the histogram representation of signals, not over individual

local descriptors [58–60]. Hence, these approaches cannot be used in cases where a signal

does not consist of a collection of local constituents.

Texton-based approach

The texton-based approach [19,40–44], is one of the earliest that was proposed to compute

the histogram of dictionary elements, called textons, to model a texture image based on

patches extracted. This approach was particularly proposed for texture analysis, but is

sufficiently general to be used in other applications. In a texton-based approach, the first

step is to construct the dictionary. To this end, small-sized local patches are randomly

extracted from each texture image in the training set. These small patches are then

aggregated over all images in a class, and clustered using a clustering algorithm such as

k -means. Obtained cluster centers form a dictionary that represents the class of textures

used. In other words, supervised k -means is used to compute the dictionary atoms [19,44].

The next step is to find the features (learn the model) using the images in the training

set. To this end, small patches of the same size as the previous step are extracted by sliding

a window over each training image in a class. Then the distance between each patch to all

textons in the dictionary are computed, to find the closest match using a distance measure

such as Euclidean distance. Finally, a histogram of textons is updated accordingly for
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Figure 2.1: The illustration of two steps of a texton-based system: (a) the generation of

texton dictionary using supervised k -means (b) and the generation of features by computing

the texton histograms on an image (from [25]).

each image based on the closest match found. This yields a histogram for each image in

the training set, which is used as the features representing that image after normalization.

Figure 2.1 illustrates the construction of the dictionary and learning of the model in a

texton-based system.
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Histogram computation using dictionary learning and sparse representation

In the texton-based approach, supervised k -means was used to compute the dictionary. To

compute the histogram of textons, each patch was represented by the closest match in the

dictionary. This is the maximum sparsity possible as each patch is represented by only

one dictionary element. However, as proposed in [17], it is possible to use (2.3) and one

of the recent algorithms for its implementation, such as online learning [38], to compute

the dictionary and the corresponding sparse coefficients over the patches extracted from

an image. The same as the texton-based approach, building the dictionary and histogram

of dictionary elements can be done in two steps. In the first step, random patches are

extracted from each image in the training set. Next, by submitting these patches into the

online learning algorithm, the dictionary can be computed [17].

As the second step, it is needed to find the model (feature set) for each image. To

this end, patches of the same size as those in the dictionary learning step are extracted

from each image, i.e., X = [x1,x2, ...,xn] ∈ Rp×n, where n is the number of patches

extracted, and each patch size is
√
p×√p. Then using (2.3), the corresponding coefficients

α = [α1,α2, ...,αn] ∈ Rk×n are computed. For each patch xi, most of the elements in the

corresponding coefficient αi are zero. The nonzero elements in αi determine the atoms in

the dictionary D that contribute towards the representation of the patch αi. If all these

coefficients are summed up for all patches extracted from an image, one can effectively

find the histogram of primitive elements contributing towards the representation of this

particular image, i.e.,

H(X) =
n∑

i=1

αi. (2.20)

A histogram H with positive values in all bins can be eventually obtained by imposing a

positive constraint on αi in (2.3). The positive constraint also prevents canceling the effect

of different patches when they are summed up in (2.20). Equation (2.3) can be written as

follows to consider this constraint as well

min
D,α

n∑
i=1

(
1
2
‖Xi −Dαi‖2F + λ‖αi‖1

)
,

s.t. αi ≥ 0 ∀i = 1, ..., n

(2.21)
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In this way, while in a texton-based approach each patch is represented using only the

closest texton in the dictionary, here each patch is represented by using several primitive

elements in the dictionary, and hence can potentially provide richer representation than

the texton-based approach. The number of nonzero elements in αi can be controlled using

λ in (2.21), i.e., larger values of λ yield sparser coefficients [38].

Universal and adapted vocabularies (UAV)

The above two approaches do not include the class labels into the learning of the histograms.

In [60], it is proposed to learn one bipartite histogram per class for each image. Each

bipartite histogram, as the name implies, has two parts: a part adapted to the specific

class, and a universal part. In each histogram, ideally, if the object belongs to the class,

its adapted part is more significant than the universal one; otherwise the universal part is

more dominant.

Gaussian mixture models (GMM) are used to learn the universal vocabularies (dictio-

naries) using maximum likelihood estimation (MLE) for low level local descriptors such

as scale-invariant feature transform (SIFT) descriptors. Then class specific vocabularies

are adapted by the maximum a posteriori (MAP) criterion. Eventually, the bipartite his-

tograms are estimated by using the adapted and universal vocabularies [60].

Supervised dictionary learning model (SDLM)

A supervised dictionary learning model (SDLM) is proposed in [58], which combines an

unsupervised model based on a Gaussian mixture model (GMM) with a supervised model,

i.e., a logistic regression model in a probabilistic framework. As explained in the begin-

ning of this subsection, the motivation of this model is to learn the dictionary such that

the histogram representation of images are sufficiently discriminative over different classes.

Intuitively, in SDLM, a logistic loss function is used to pass the discriminative informa-

tion in class labels to histogram features. This information is subsequently passed to the

dictionary learned over image local features by affecting the GMM parameters [58].
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Figure 2.2 summarizes the taxonomy of dictionary learning and sparse representation

techniques as presented in this chapter for quick reference.

In the next chapter, the mathematical formulation for the proposed approach will be

explained, which I believe belongs to the fourth category of SDLs explained above, i.e.,

including category information to learn a supervised dictionary.
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Figure 2.2: Taxonomy of dictionary learning and sparse representation as presented in this

chapter. Supervised dictionary learning approaches are divided into six categories.
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Chapter 3

Proposed Supervised Dictionary

Learning

Given a finite set of data samples X ∈ Rp×n, where p is the dimensionality of the data

and n is the number of data samples, in this chapter, we address the problem of linear

decomposition of X over a learned dictionary D ∈ Rd×k, where k is the number of dictionary

atoms, by minimizing a loss function. The loss function is defined as the reconstruction

error and `1-norm is added as the regularization penalty. The goal is to make the dictionary

D sufficiently discriminative over the classes.

To address this problem, we incorporate the class labels associated with the data sam-

ples into the learning of the dictionary to make it discriminative. To incorporate the class

labels into dictionary learning, it is proposed to decompose signals using some learned

bases that represent them in a space where the dependency between the signals and their

corresponding class labels is maximized. To this end, a(n) (in)dependency test measure

between two random variables is needed. Here, it is proposed to use the Hilbert-Schmidt

independence criterion (HSIC) as the (in)dependency measure. In this chapter, we first

describe HSIC, and then provide the formulation for the proposed supervised dictionary

learning (SDL) approach. Subsequently, kernelized SDL is formulated to enable embed-

ding kernels, including data-dependent ones, into the proposed SDL. This can significantly

improve the discrimination power of the designed dictionary, which is essential in difficult
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classification tasks, as will be shown in our experiments in Section 5.6 later.

3.1 Hilbert Schmidt Independence Criterion

There are several techniques in the literature to measure the (in)dependence of ran-

dom variables including mutual information [61] and the Kullback-Leibler (KL) diver-

gence [62]. In addition to these measures, there has recently been great interest in measur-

ing (in)dependency using criteria based on functions in reproducing kernel Hilbert spaces

(RKHSs). Bach and Jordan [63] were the first to accomplish this, by introducing ker-

nel dependence functionals that significantly outperformed alternative approaches. Later,

Gretton et al. [32] proposed another kernel-based approach called the Hilbert-Schmidt in-

dependence criterion (HSIC) to measure the (in)dependence of two random variables X
and Y . Since its introduction, the HSIC has been used in many applications, including

feature selection [64], independent component analysis [65], and sorting/matching [66].

One can derive HSIC as a measure of (in)dependence between two random variables X
and Y using two different approaches: first by computing the Hilbert-Schmidt norm of the

cross-covariance operators in RKHSs as shown in [32, 33]; or second, by computing maxi-

mum mean discrepancy (MMD) of two distributions mapped to a high dimensional space,

i.e., computed in RKHSs [67,68]. I believe that this latter approach is more straightforward

and hence, use it to describe HSIC.

Let Z := {(x1,y1, ), ..., (xn,yn)} ⊆ X × Y be n independent observations drawn from

p := PX×Y . To investigate whether X and Y are independent, one needs to determine

whether distribution p factorizes, i.e., whether p is the same as q := PX × PY .

The means of the distributions are defined as follows

µ[PX×Y ] := Exy[v((x, y), .)], (3.1)

µ[PX × PY ] := ExEy[v((x, y), .)], (3.2)

where Exy is the expectation over (x, y) ∼ PX×Y and kernel v((x, y), (x′, y′)) is defined in

RKHS over X × Y . By computing the mean of distributions p and q in RKHS, higher
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order statistics than the first order are effectively taken into account by mapping these

distributions to a high-dimensional feature space. Hence, one can use MMD(p, q) :=

‖µ[PX×Y ]− µ[PX × PY ]‖2 as a measure of (in)dependence of the random variables X and

Y . The higher the value of MMD, the closer the two distributions p and q and hence, the

more dependent are random variables X and Y .

Now suppose that H and G are two RKHSs in X and Y , respectively. Hence, by the

Riesz representation theorem, there are feature mappings φ(x) : X → R and ψ(y) : Y → R
such that k(x, x′) = 〈φ(x), φ(x′)〉H and l(y, y′) = 〈ψ(y), ψ(y′)〉G. Moreover, suppose that

v((x, y), (x′, y′)) = k(x, x′)l(y, y′), i.e., the RKHS is a direct product of H⊗G of the RKHSs

on X and Y . Then MMD(p, q) can be written as

MMD2(p, q) = ‖Exy[k(x, .)l(y, .)]

− Ex[k(x, .)]Ey[l(y, .)]‖22
= ExyEx′y′ [k(x, x′)l(y, y′)]

− 2ExEyEx′y′ [k(x, x′)l(y, y′)]

+ ExEyEx′Ey′ [k(x, x′)l(y, y′)]. (3.3)

This is exactly the HSIC, and equivalent to the Hilbert-Schmidt norm of the cross-covariance

operator in RKHSs [32].

For practical purposes, HSIC has to be estimated using a finite number of data samples.

Considering Z := {(x1,y1, ), ..., (xn,yn)} ⊆ X × Y as n independent observations drawn

from p := PX×Y , an empirical estimate of HSIC is defined as follows [32]

HSIC(Z) =
1

(n− 1)2
tr(KHLH), (3.4)

where tr is the trace operator, H,K,L ∈ Rn×n, Ki,j = k(xi, xj), Li,j = l(yi, yj), and H =

I − n−1ee> (I is the identity matrix, and e is a vector of n ones, and hence, H is the

centering matrix [69]). It is important to notice that according to (3.4), to maximize the

dependency between two random variables X and Y , the empirical estimate of HSIC, i.e.,

tr(KHLH) should be maximized.
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3.2 Supervised Dictionary Learning Formulation

To formulate the proposed SDL, one can start from the reconstruction error given in (2.3).

Let there be a finite training set of n data points, each of which consists of p features, i.e.,

X = [x1,x2, ...,xn] ∈ Rp×n. Also suppose that features in data samples are centered, i.e.,

their mean is removed and hence, each row of X sums to zero. The problem statement is

to find a linear decomposition of data X ∈ Rp×n using some bases U ∈ Rp×k such that the

reconstruction error is minimum in the mean-squared sense, i.e.,

min
U,Vi

n∑
i=1

‖xi −Uvi‖22 , (3.5)

where vi is the vector of k reconstruction coefficients. Equation (3.5) can be rewritten in

matrix form as follows

min
U,V
‖X−UV‖2F , (3.6)

where V ∈ Rk×n is the matrix of coefficients. Since both U and V are unknown, this prob-

lem is ill-posed and does not have a unique solution unless some constraints are imposed

on the bases U. If one, for example, assumes that the columns of U are orthonormal, i.e.,

U>U = I, (3.6) can be written as a constrained optimization problem as follows

min
U,V

‖X−UV‖2F .

s.t. U>U = I
(3.7)

To further investigate the optimization problem in (3.7), one can assume that the matrix

U is fixed, and find the optimum matrix of coefficients V in terms of X and U by taking

the derivative of the objective function given in (3.7) in respect to V

∂

∂V
‖X−UV‖2F =

∂

∂V
tr[(X−UV)>(X−UV)]

=
∂

∂V
[tr(X>X)− 2tr(X>UV)

+ tr(V>U>UV)]

= −2U>X + 2U>UV.
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Equating the above derivative to zero and knowing that U>U = I, one obtains

V = U>X. (3.8)

By plugging the V found in (3.8) into the objective function of (3.7) we obtain

min
U

∥∥X−UU>X
∥∥2
F

= min
U

tr[(X−UU>X)>(X−UU>X)]

= min
U

[tr(X>X)− 2tr(X>UU>X)

+ tr(X>UU>UU>X)]

= max
U

tr(X>UU>X)

= max
U

tr((U>X)>U>X).

Let K = (U>X)>U>X, which is a linear kernel on the transformed data in the subspace

U>X; recalling that the features are centered in the original space, multiplying the data

X by the centering matrix H does not have any effect. Hence, one can write

max
U

tr((U>X)>U>X) = max
U

tr((U>XH)>U>XHI)

= max
U

tr(H(U>X)>U>XHI)

= max
U

tr([(U>X)>U>X]HIH)

= max
U

tr(KHIH), (3.9)

where I is the identity matrix. To derive (3.9), the identities H> = H and XH = XHI

are used and it is also noted that the trace operator is invariant to the rotation of its

arguments.

To enable providing an interpretation for (3.9), we recall that identity matrix I repre-

sents a kernel on a random variable, where each data sample has maximum similarity to

itself and no similarity, whatsoever, to others. Hence, based on empirical HSIC, the ob-

jective function given in (3.9) indicates that the transformation U transforms the centered

data1 XH to a space where the dependency of random variables x and another random

1Here, centered data means that the features are centered, not individual data samples.
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variable whose kernel is identity matrix I is maximized. This means that using transfor-

mation U, the random variable x is transformed such that each data sample has maximum

similarity/correlation to itself and no similarity to other data samples. It is well known in

the literature that these bases are the principal components of the signal X that represent

the data in an uncorrelated space. With a few manipulations, the objective function given

in (3.9) can be rewritten as follows:

max
U

tr((U>X)>U>X) = max
U

tr((U>XH)>U>XHI)

= max
U

tr(HX>UU>XHI)

= max
U

tr(U>XHIHX>U).

In other words, it is shown that the optimization problem in (3.7) is equivalent to

max
U

tr(U>XHIHX>U),

s.t. U>U = I
(3.10)

According to the Rayleigh-Ritz Theorem [70], the solution of the optimization problem

in (3.10) is the top eigenvectors of Φ = XHIHX> corresponding to the largest eigenvalues

of Φ. Here, XHIHX> is the covariance matrix of X.

To summarize, it was shown above that the linear decomposition of signals that min-

imizes the reconstruction error in the mean-squared sense, represents the data in an un-

correlated space. This is, in fact, the same as in the principal component analysis (PCA),

where the top eigenvectors of the covariance matrix are computed. However, as mentioned

before, although minimization of reconstruction error is the ultimate goal in applications

such as denoising and coding, in classification tasks, the main goal is maximum discrimi-

nation of classes. Hence, one is looking for a decomposition that represents the data in a

space where the decomposed data have maximum dependency with their labels. To this

end, we propose the new optimization problem as follows

max
U

tr(U>XHLHX>U),

s.t. U>U = I
(3.11)

where L is a kernel, e.g., a linear kernel, on the labels Y ∈ {0, 1}c×n, i.e., L = Y>Y and c

is the number of classes. Here, each column of Y is yi = {0, ..., 1, ..., 0}>. In other words,
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Algorithm 1 Supervised Dictionary Learning

Input: Training data, Xtr, test data, Xts, kernel matrix of labels L, training data size, n,

size of dictionary, k.

Output: Dictionary, D, coefficients for training and test data, αtr and αts.

1: H← I− n−1ee>

2: Φ← XtrHLHX>tr
3: Compute Dictionary: D← eigenvectors of Φ corresponding to top k eigenvalues

4: Compute Training Coefficients: Replace X with Xtr in (2.3), use (2.3) to compute

αtr given D

5: Compute Test Coefficients: Replace X with Xts in (2.3), use (2.3) to compute αts

given D

there is exactly one nonzero element in each column Y, where the position of the nonzero

element indicates the class of the corresponding data sample. Similar to the previous

case, the solution for the optimization problem given in (3.11) is the top eigenvectors of

Φ = XHLHX>. These eigenvectors compose the supervised dictionary to be learned.

This dictionary spans the space where the dependency between data X and corresponding

labels Y is maximized. The coefficients can be computed in this space using the lasso as

given in (2.3). The optimization problem given in (3.11) compromises the reconstruction

error to achieve a better discrimination power. In conclusion, the proposed supervised

dictionary learning is given in Algorithm 1.

One important advantage of the proposed approach in Algorithm 1 is that the dictionary

can be computed in closed form. Besides, learning the dictionary and the coefficients are

performed separately, and it is not needed to learn these two iteratively and alternately,

as is common in most supervised dictionary learning approaches in the literature (refer to

Section 2.2).
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3.3 Proposed Kernelized SDL

One of the main advantages of the proposed formulation for SDL, compared to other

techniques in the literature, is that one can easily embed a kernel into the formulation.

This enables nonlinear transformation of the data into a high-dimensional feature space

where the discrimination of classes can be more efficiently performed. This is especially

beneficial when incorporating data-dependent kernels2, such as those based on normalized

compression distance [34].

Kernelizing the proposed approach is straightforward. Suppose that Ψ is a feature map

representing the data in feature spaces H as follows:

Ψ : X → H
X 7→ Ψ(X).

(3.12)

To kernelize the proposed SDL, it is sufficient to express the matrix of bases U as a

linear combination of the projected data points into the feature space using representation

theory [71], i.e., U = Ψ(X)W. In other words, W ∈ Rn×k represents U ∈ Rp′×k in feature

space Ψ(X) ∈ Rp′×n. Replacing X by Ψ(X) and U by Ψ(X)W in the objective function

of (3.11), one obtains

tr(U>Ψ(X)HLHΨ(X)>U) = tr(W>Ψ(X)>Ψ(X)

HLHΨ(X)>Ψ(X)W)

= tr(W>KHLHKW),

with the constraint

U>U = W>Ψ(X)>Ψ(X)W

= W>KW,

where K = Ψ(X)>Ψ(X) is a kernel function on data. Combining this objective function

2Although it is true that all kernels are computed on the data and hence, are data-dependent, the term

is used in the literature to refer to those types of kernels that do not have any closed form.

33



and the constraint, the optimization problem for the kernelized SDL is

max
W

tr(W>KHLHKW),

s.t. W>KW = I
(3.13)

whose solution is the top generalized eigenvectors of (KHLHK,K) according to the

Rayleigh-Ritz Theorem [70]. To realize how the coefficients can be computed for the

training and test sets, U = Ψ(X)W can be replaced in (3.8), knowing that X has to be

also replaced by Ψ(X), to obtain

V = W>Ψ(X)>Ψ(X)

= W>K.

In other words, one can write

K = (W>)†V, (3.14)

where (W>)† is the left pseudoinverse of W>. In (3.14), V includes the coefficients, and

they can be made sparse by using the lasso as given in (2.3) with proper replacements, i.e.,

replacing X by the kernel over the training or test set, and D by the left pseudoinverse of

W>. Hence, the algorithm for kernelized SDL is given in Algorithm (2).
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Algorithm 2 Kernelized Supervised Dictionary Learning

Input: Kernel on training data, Ktr, kernel on test data, Kts, kernel on labels L, training

data size, n, size of dictionary, k.

Output: Dictionary, D, coefficients for training and test data, αtr and αts.

1: H← I− n−1ee>

2: Φ← KtrHLHKtr

3: W← top k generalized eigenvectors of (Φ,Ktr)

4: Compute Dictionary: D← (W>)†

5: Compute Training Coefficients: Replace X with Ktr in (2.3), use (2.3) to compute

αtr given D

6: Compute Test Coefficients: Replace X with Kts in (2.3), use (2.3) to compute αts

given D
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Chapter 4

Experiments on the Proposed SDL

and KSDL

In this chapter, the performance of the proposed SDL is evaluated on various datasets and

in different applications such as analyzing face data, digit recognition, and in classification

of real-world data such as satellite images and biomedical data. The main advantages

of the proposed SDL, such as a compact dictionary i.e., a discriminative dictionary even

at small dictionary size and fast performance, will be shown through various experiments

. In the next chapter, it will be shown how the kernelized version of the proposed SDL

enables embedding data-dependent kernels into the approach to significantly improve the

performance on difficult classification tasks. Table 4.1 provides the details of the datasets,

their dimensionality, number of classes, and the number of instances per class, as well as

in the training and test sets as being used in the experiments in this chapter.

4.1 Implementation Details

In the proposed approach, the first step is to compute the dictionary by computing the

eigenvectors of Φ as provided in Algorithms 1 or 2 for the proposed SDL or its kernelized

version, respectively. To avoid rank deficiency in the computation of kernel on labels, the
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identity matrix of the same size is added to the kernel, i.e., L = Y>Y + I. The next step

is to calculate the coefficients in the lasso provided in (2.3). The GLMNET1, which is

an efficient implementation of the lasso using cyclic coordinate descent [39], is used. The

optimal value of the regularization parameter in the lasso (λ∗), which controls the level

of sparsity, has been computed by 10-fold cross-validation on the training set to minimize

the mean-squared error. This λ∗ is then used to compute the coefficients for both training

and test sets2.

For the first two datasets in Table 4.1, i.e., Olivetti Face and USPS Digit datasets, since

intensity levels of pixels are used as features, the dimensionality of feature sets is high, i.e.,

4096 and 256, respectively. In this high dimensional feature space, usually a linear kernel

is sufficient to represent the data and hence, we have only provided the results for the

proposed SDL with a linear kernel. The kernelized version of the proposed SDL do not

usually help in this high dimensional feature space and hence, we have not provided the

results for the proposed kernelized SDL (KSDL) for these two datasets. However, for

other datasets in Table 4.1, we have also provided the results using an RBF kernel for the

proposed KSDL.

As is suggested in [72], the coefficients computed on the training set are used for training

a support vector machine (SVM). RBF kernel has been used for the SVM and the optimal

parameters of the SVM, i.e., the optimal kernel width γ∗ and the trade-off parameter C∗,

are found by grid search and 5-fold cross-validation on the training set3. The coefficients

computed on the test set are then submitted to this trained SVM to label unseen test

examples.

Two measures are considered to evaluate the performance of the classification systems:

1The necessary tools and their Matlab interface can be accessed at http://www-

stat.stanford.edu/∼tibs/glmnet-matlab/.
2GLMNET handles one data sample at a time and hence one λ∗ is computed for each data point in the

training set. However, the averaged λ∗ over the whole training set is used to compute the coefficients on

the training and test sets, as it yields better generalization.
310-fold cross-validation yields very close results. Thus to avoid higher computation load, 5-fold cross-

validation is adopted.
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classification error and balanced classification error, which are defined as follows:

E =
nwr

n
, (4.1)

BE =
1

c

c∑
i=1

ni
wr

ni

, (4.2)

where E and BE are classification error and balanced error, respectively; nwr is the total

wrongly classified data samples; n is the total number of data samples; c is the number

of classes; ni
wr is the number of wrongly-classified objects in class i; and ni is the number

of data samples in class i. According to this definition, E is the total number of wrongly-

classified data samples over the total number of objects. Hence, if there are fewer objects

in one class, wrongly-classified objects in that class contribute less towards the overall

classification system error. The definition of BE, however, gives the same weight to all

classes irrespective of the number of objects in each class. To further clarify the difference

between these two measures, an extreme case example is provided. Suppose that in a

two-class problem, there are 98 objects in one class and 2 objects in another class. If

all 98 objects are correctly classified in class one, and out of two objects in class two,

only one is correctly classified, the classification error is E = 1/100 = 1%, whereas the

balanced error is BE = (1/2 + 0/98)/2 = 25%. If, for example, this classification system

is supposed to classify healthy versus unhealthy cases, BE is a better measure to evaluate

the classification system, because both classes equally contribute towards the estimation

of error, irrespective of the number of data samples in each. Since as indicated on the

third column of Table 4.1, some datasets used in the experiments, such as Face, Sonar,

Ionosphere, and Satimage, are not balanced4, both E and BE are provided for them in the

next subsections.

4The USPS digit dataset is also somewhat imbalanced. However, since in the literature, particularly

in [53] with which our results are compared, only classification error (E) is provided, our results are also

presented using this measure only. Also since the publically available USPS data comes in separate training

and test sets, and representing the number of instances per class takes space for 10 classes, this information

is not provided for the USPS dataset in Table 4.1.
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4.2 Face Data

In this experiment, the main goal is to show the compactness of the proposed dictionary.

The Olivetti face dataset of AT&T [73] is used. This data consists of 400 face images of

40 distinct subjects, i.e., 10 images per subject, with varying lighting, facial expressions

(open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses). The original

size of each image is 92×112 pixels, with 256 gray levels per pixel. However, in the

experiments, each image has been cropped from the center to be 64×64 pixels.

The main task in these experiments is to classify the faces into glasses/no-glasses classes.

To this end, the images are labeled to indicate these two classes, with 119 in the glass class

and 281 in the no-glass. Typical images of these two classes are shown in Figure 4.1. All im-

ages are normalized to have zero mean and unit `2-norm. Half of the images are randomly

selected for training, and the other half for testing; the experiments are repeated 10 times,

and the average error (E) and balanced error (BE) are reported in Table 4.2. The experi-

ments are performed on varying dictionary sizes, including 2, 4, 8, 16, and 32. The results

are compared with several unsupervised and supervised dictionary learning approaches,

as shown in Table 4.2. The dictionaries learned at the dictionary size of two are shown

in Figure 4.2. For K-SVD, the fast implementation provided by Rubinstein [74] has been

used. DK-SVD has been implemented using K-SVD as the core. The difference between

supervised and unsupervised k -means is that in unsupervised k -means, the dictionary is

learned on the whole training set, whereas in the supervised one, one dictionary is learned

per class as suggested in the texton-based approach by Varma and Zisserman [19, 44].

The code for metaface approach has been provided by the authors [45]. The same as the

proposed approach, the parameter(s) of all these rival approaches are tuned using 5-fold

cross-validation on the training set.

As can be seen in Table 4.2, our approach performs the best among these approaches.

The compactness of the dictionary learned using the proposed SDL is noticeable from the

results at small dictionary size. For example, at the dictionary size of two, while the error

of our approach is 12.8%, unsupervised k -means yields a 27.4% error, which is more than

twice as large as our approach. The best result obtained by other supervised dictionary

approaches (here metaface) yields a 17.55% error at this dictionary size, which is about
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Figure 4.1: Typical face images from the Olivetti face dataset in two classes of glasses vs.

no-glasses.

5% above the error generated by the proposed SDL. The same conclusion can be made

using balanced error. Interestingly, supervised k -means performs significantly better than

the unsupervised one, particularly at small dictionary sizes. Also as can be seen from

Figure 4.2, the dictionaries learned using supervised approaches (Figures 4.2c to 4.2f) are

more discriminative on the classification task, which is distinguishing between the faces

with and without glasses, than the dictionaries learned using unsupervised approaches

(Figure 4.2a and 4.2b). The main conclusion of this experiment is that the proposed

SDL generates a very discriminative and compact dictionary, compared to well-known

unsupervised and supervised dictionary learning approaches.

4.3 Digit Recognition

The second experiment is performed on the task of handwritten digit classification on the

USPS dataset [75]. As most of the supervised dictionary learning approaches show results

on this dataset, the proposed approach is applied on the same data for the purpose of

comparison with existing approaches. This dataset consists of handwritten digits, each

with the size of 16×16 pixels with 256 gray levels. There are 7291 and 2009 digits in the

training and test sets, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The dictionaries learned at the dictionary size of two on the Olivetti Face

dataset for (a) unsupervised k -means, (b) unsupervised K-SVD, (c) proposed SDL, (d)

DK-SVD, (e) supervised k -means, and (f) metaface.

Our results are compared with the most recent SDL technique, which yields the best

results published so far on this dataset [53]. To facilitate a direct comparison with what

is published in [53], the same setup as they have reported is used. To this end, since

the most effective techniques on digit recognition deploy shift invariant features [76], and
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since neither our approach nor the one reported in [53] benefit from these kind of features,

as suggested in [53], the training set is artificially augmented by adding digits which are

shifted version of original ones, moved by one pixel in all four directions. Although this is

not an optimal and sophisticated way of introducing shift invariance to the SDL techniques,

it takes into account this property in a fairly simple approach. Each digit in training and

test sets is normalized to have zero mean and unit `2-norm.

Table 4.3 shows the results obtained using the proposed approach in comparison with

the unsupervised and supervised dictionary learning techniques reported in [53]. As can be

seen, again our approach introduces a very compact dictionary such that its performance

at dictionary size of 50 is the same as the performance of the system reported in [53] using

a dictionary of 100 atoms. With increasing the dictionary size, the performance of our

approach slightly degrades. This is mainly because the bases or dictionary atoms in our

approach are associated with the directions of maximum separability of the data, as has

been enforced by the optimization problem in (3.11). Nevertheless, the number of useful

bases depends on the intrinsic dimensionality of the subspace, which in turn depends on

the nature of the data. If the number of dictionary atoms goes beyond this intrinsic dimen-

sionality, then adding more atoms does not improve the performance but may degrade it,

as they are not associated with the separable directions but related to noise. On the other

hand, it is important to notice that a reasonable performance using much less complexity

than the best rival can be achieved. It should be also noted that the best performance

achieved by our approach (happening at a small dictionary size of 50) is just 0.25% worse

than the best results obtained by [53] (happening at dictionary size of 300, i.e., with much

higher complexity). This means that our approach misclassifies only 5 more digits com-

pared to the best results obtained in [53], whereas for the same dictionary size (50), our

approach performs 0.55% better, i.e., classifies 11 more digits correctly. On the other hand,

with respect to the complexity, our proposed approach offers a much simpler solution for

SDL than the approach in [53]: there are fewer parameters to tune, the dictionary can

be computed in closed form, and there is no need to solve a complicated nonconvex op-

timization problem as is used in [53] by iteratively and alternatively optimizing classifier,

dictionary, and coefficients learning.

As a final remark, due to the orthonormality constraint in the optimization problem
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Table 4.3: Classification error on test set for digit recognition on USPS data using proposed

SDL compared with the most effective SDL approach reported in the literature on the same

data [53]. Highlighted entries represent the best results obtained at each dictionary size.

Approach Dictionary Size

50 100 200 300

Proposed SDL 3.09 3.19 3.64 -

Unsupervised [53] 8.02 6.03 5.13 4.58

Supervised [53] 3.64 3.09 2.88 2.84

of our proposed SDL as given in (3.11), overcompleteness is not possible in our proposed

SDL. This is the reason that in Table 4.3, no results are reported for a dictionary size

of 300 for our approach. However, as mentioned above, due to the compactness of our

dictionary, good results are obtained at a much smaller dictionary size, which is a desired

attribute as it decreases the computational load. Also, the proposed kernelized version

of our proposed approach given in (3.13) and Algorithm 2 can learn dictionaries as large

as n, i.e., the number of data points used for training, which is usually greater than the

dimensionality of the data p (see Table 4.1 for the relative size of p and n for the data used

in our experiments).

4.4 Other Real-World Data

In the two previous sections, the classification task was performed on the pixels of images

directly. In this section, the performance of the proposed approach is evaluated on the

classification of some real-world data represented using features extracted. Six datasets

with varying complexity from 2- to 11-class, with the dimensionality of up to 60 features,

and also with as many as 6435 data samples are used in these experiments (refer to Table 4.1

for detailed information on these datasets). Sonar, Ionosphere, and Texture datasets are

preprocessed to have zero mean and unit `2-norm, whereas for the Heart, Parkinsons, and

Satimage datasets, the features are normalized to be in the range of [0, 1] due to the large

variation of their feature values.
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Since the rival approaches are the same as that used for face data, their implementations

are the same as was explained in Section 4.2. There is one additional remark here, on the

implementation of supervised k -means on datasets with more than two classes, such as the

Texture and Satimage datasets. This approach has been implemented in a way to ensure

that the dictionary atoms are evenly distributed over different classes as much as possible.

For example, in the case of dictionary size of 8 and for the Texture dataset that has 11

classes, first 11 dictionary atoms are selected, one from each class, then 8 of them are

randomly retained and the rest are removed.

On all datasets, the experiments are repeated ten times over a random split of data

into half for training and half for testing. The average and standard deviation of classifi-

cation error (E) and balanced error (BE) are reported in Tables 4.4 to 4.7, in comparison

with several other unsupervised and supervised dictionary learning approaches. Since the

texture dataset is balanced, the error and balanced error are the same, therefore, the bal-

anced error has not been reported for this dataset in Table 4.5. The results of classification

are also included using a kernelized version of the proposed SDL with radial basis function

(RBF) as the kernel. The width of the RBF kernel has been selected based on a self-tuning

approach [77].

As can be seen from Tables 4.4 to 4.7, the proposed SDL or its kernelized version

performs the best in all cases, except on the Sonar dataset at the dictionary sizes of 8 and

16. The better performance of supervised k -means at the dictionary sizes of 8 and 16 on

the Sonar data is not significant, as the resultant standard deviation is very high. DK-SVD

performs poorly (even worse than the unsupervised K-SVD approach) on all these datasets

mainly because, by design, it uses a linear classifier (refer to Section 2.2 and [50] for more

detail on this approach). The poor performance of metaface is because it usually performs

well at very large dictionary size. Hence, at reported dictionary sizes, its training is not

sufficient to capture the underlying data structure. For example, for Sonar data, while the

proposed SDL can achieve an error of 20.77±4.67 at the dictionary size of 32, the metaface

approach can only achieve this accuracy at the dictionary size of 64 (error 20.00±4.75).

However, using large dictionary size adds to the computational load of the approach.

As a final remark on the results presented in this subsection, I would like to comment

on the relative performance of the proposed SDL and its kernelized version KSDL. The
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relative performance of these two approaches mainly depends on the nature of the data to

be classified, and whether it has a linear or nonlinear behavior. In other words, it depends

whether the data can be represented as a subspace or a submanifold. In the former case,

the proposed SDL should be sufficient to model the data, while in the latter case, the

KSDL should potentially perform better. However, the success of KSDL depends on the

proper selection of the kernel and its parameter(s). In fact, even if the data has a linear

nature and can be represented in a subspace, the KSDL should also perform as well as

SDL, but this again depends on proper kernel and model selection.

4.5 Computation Cost of the Proposed SDL

The proposed SDL is computationally fast and efficient due to three main attributes of the

approach, i.e., a compact dictionary, a closed form dictionary, and few parameters to tune.

As related to the first attribute, i.e., compact dictionary, it was shown using many

experiments that the proposed approach almost always (except on the Sonar data for

which the better performance of supervised k -means is not significant) performs better

than other unsupervised and supervised dictionary learning approaches. For example, on

digit recognition, it was shown that the approach at the dictionary size of 50 performs

the same as the SDL proposed in [53] using a dictionary size of 100. Performing at the

same level as another SDL approach using half the dictionary size, significantly saves the

computational cost. This can also be observed on face and some other real-world datasets.

With regards to the second attribute, as elaborated in Section 2.2, most unsupervised

and supervised methods are based on the lasso formulation, and since the formula is

nonconvex when both dictionary and coefficients are unknown, it has to be solved iteratively

and alternately. For the third category of SDL, for which the classifier has to also be learned

in the optimization problem, learning the classifier is also added to this list. In addition

to the possibility of getting stuck in local minima, this makes the computation expensive.

The computation load will be even higher considering that there are several parameters

in proposed SDL approaches in the literature that must be tuned by cross-validation on

the training set. Our approach, proposes a closed form for the dictionary. Except for
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unsupervised and supervised k -means, none of the other dictionary learning approaches

benefit from a closed-form dictionary. Note that even in k -means, the cluster centers have

to be found using an iterative approach, and the dictionary does not have a closed form.

However, the approach does not have to iteratively and alternatively learns the dictionary

and coefficients, i.e., the dictionary can be computed first and then the coefficients are

learned. Hence, except k -means, the other approaches are slower than the proposed SDL

from this point of view.

As was explained in the second attribute of the proposed SDL above, usually dictionary

learning approaches have several parameters to be tuned. Because these parameters are

to be tuned within an iterative method, their fine tuning is very time-consuming. This is

especially elaborated in [16, 53] (refer to the part related to parameter tuning in the “Ex-

perimental Validation Section” of these two papers). In our approach, the only parameter

to tune is λ, and this can be quickly tuned as the dictionary is computed in closed form.

Table 4.8 provides the computation time (in seconds) using an 8-core machine on the

Sonar and Heart datasets for one iteration. Only one core is used in these computations

and no parallel processing is performed. The computation time includes all processing

necessary for classification, such as tuning the parameters, training, and testing. As can

be observed from Table 4.8, the computation time for the proposed approach is not signif-

icantly increased with increasing the dictionary size. This can be related to the number of

directions of separation, which is data dependent. If sufficient number of these directions

are already included, with increasing the number of atoms in the dictionary, the number

of nonzero coefficients are not very much increased and hence, the computation time for

the training and testing the classifier remains almost the same. In other words, the ad-

ditional computation time is just due to the computation of more dictionary atoms and

corresponding coefficients.

The relative magnitude of computation time for other datasets is almost the same, i.e.,

our proposed approach is the fastest, then k -means, followed by DK-SVD and K-SVD.

Metaface is the slowest partly due to its non-optimized implementation, and partly due to

its intrinsic high computational load.

52



Table 4.8: The average computation time per fold (in seconds) on Sonar and Heart datasets

for various unsupervised and supervised dictionary learning approaches. The computation

is performed using an 8-core machine (only one core has been used in the computation and

no parallel processing is used).

Approach Sonar Heart

8 16 32 4 8 12

Unsupervised
k -means 3.23 7.67 29.00 5.14 6.14 15.94

K-SVD [37] 22.24 36.88 55.72 51.33 35.12 58.87

Supervised

Proposed SDL 2.06 2.39 3.83 4.41 4.51 6.58

KSDL-RBFa 2.12 2.44 3.33 0.35 0.34 0.36

DK-SVD [50] 13.42 32.78 58.52 11.61 20.96 44.60

k -means [19] 3.12 8.48 31.03 4.25 6.08 21.71

Metaface [45] 496.5 883.89 1937.87 444.92 969.41 1638.07

aProposed kernel SDL with RBF kernel.

4.6 The Effect of Noisy Labels on the Performance of

the Proposed SDL

Since in supervised dictionary learning approaches the information category is used in the

learning of the dictionary, one main question will be: “to what extent are these approaches

sensitive to noisy labels?”. In this subsection, it is tried to address this question.

As defined in Section 3.2, the labels Y ∈ {0, 1}c×n can only take the values 0 or 1.

Therefore, what is meant by noisy labels is that 0 might be converted to 1, or vice versa.

It is assumed that in each column of noisy labels Ŷ, there is still only one nonzero element,

which indicates the class of the corresponding object.

Almost all the categories of SDL mentioned in Section 2.2 utilize the labels directly or

indirectly in the learning of the dictionary. For example, in the first SDL category, one

dictionary is learned per class. Therefore, if one object is wrongly assigned to a class, this

object will contribute to learning dictionary atoms in the wrong class, which consequently
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may lead to reducing the efficiency of the learned dictionary in the classification task. In

our proposed approach, as indicated in the optimization problem (3.11), a linear kernel

over the labels is used to include the category information in the learning of the dictionary.

Hence, it is natural that one expects that noisy labels degrade the efficacy of the dictionary

learned in the classification task.

To address the question raised in the beginning of this subsection, some experiments

are performed on the Olivetti face dataset. In these experiments, a certain percentage

of wrong labels are included into the learning of the supervised dictionary, and then the

classification task is performed using this dictionary. Since the main concern is to see how

sensitive the dictionary is to noisy labels, correct labels are used in the classifier over the

training set. In other words, in our experiments, noisy labels are only used in the learning

of the dictionary, and correct labels in the classifier. This may not be a realistic setup

as when there are wrong labels, the assumption is that correct labels are not available,

otherwise one could also use them in the learning of the dictionary. However, if wrong

labels are used in the classifier as well, one do not know to what extent the dictionary is

affected by wrong labels because wrong classification might be also due to misguiding the

classifier.

The results are shown in Figure 4.3 for the dictionary sizes of 2, 4, 8, and 16, and for

various supervised dictionary learning approaches as used in the experiments on the Olivetti

face dataset (refer to Table 4.2). As can be seen from this figure, our proposed SDL is the

least sensitive one to noisy labels. Also, by increasing the dictionary size, the sensitivity

to noisy labels is reduced for our proposed SDL as well as for the supervised k -means.

It makes sense to see lower sensitivity to noisy labels at larger dictionary sizes for the

proposed SDL, because noisy labels will cause the discriminative directions to move away

from leading atoms or bases in the learned dictionary, which degrades the effectiveness of

the dictionary at small dictionary sizes, while at larger dictionary sizes, these discriminative

directions will appear again, although not in leading atoms. Also in supervised k -means,

by increasing the dictionary size, it is more likely that some of the cluster centers in each

class, which are the dictionary atoms in that class, correspond to the correctly-labeled data

samples. For example, if the dictionary size is two in a two-class problem, there is only one

dictionary atom per class. Hence, if this dictionary atom represents wrong data samples
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due to noisy labels, the dictionary learned completely fails to model the data samples

correctly. However, by increasing the dictionary size, this catastrophic failure is less likely

to happen.

However, this phenomenon cannot be observed for the DK-SVD and the metaface

approaches. DK-SVD does not follow this behavior mainly because the learning of the

dictionary and classifier is performed in one optimization problem, as explained in Sub-

section 2.2.3 and in [50]. Hence, noisy labels also affect the learning of the linear classifier

involved, and I could not find any way to include the noisy labels only in the learning of

the dictionary, not the classifier.

Similarly, in the metaface approach, the class labels used during learning the dictionary

are used to tag each dictionary as to what class it belongs to. This tag is later used to

indicate the class label of the test object that minimizes the residue obtained using the

reconstruction error computed on the subdictionary elements belonging to a class and a test

object. Therefore, similar to the DK-SVD approach, there is no way to include the noisy

class labels only in the learning of the dictionary, and not in the classifier. This explains

why noisy labels have greater impact on DK-SVD and metaface approaches, as they affect

both the dictionary learning and training of the classifiers. Based on these explanations,

I admit that comparing the effect of noisy labels on the proposed SDL with DK-SVD or

metaface is not completely fair, as in the proposed approach (as well as in supervised k -

means) the impact of noise on the training of classifiers was deliberately avoided, whereas

there was no way to avoid it in the DK-SVD and metaface approaches.
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Figure 4.3: The error rate of the classification system for Olivetti face recognition system to

discriminate between faces with and without glasses. The effect of noisy labels in learning

dictionary are shown for the dictionary sizes of (a) 2, (b) 4, (c) 8, and (d) 16.
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Chapter 5

Data-Dependent Kernels

As was shown in Section 3.3, one of the main attributes of the proposed supervised dictio-

nary learning (SDL) approach is that it can be easily kernelized. This makes it possible

that the proposed SDL can benefit from data-dependent kernels, which are specifically

designed for the application in hand.

In this chapter, a novel compression-based (dis)similarity measure is proposed. This

measure is computed using MPEG-1, a lossy compressor for 2D data.The properties of

the proposed measure will be investigated, i.e., it will be shown that it properly works on

both small and large patch sizes of texture images. Eventually, it will be demonstrated

that embedding the proposed measure into the kernelized SDL introduced earlier in Sec-

tion 3.3 significantly improves the performance of classification systems in texture analysis

applications.

5.1 Introduction

Objects can be represented by either features or (dis)similarities. In feature-based repre-

sentation, a set of measurements (features) are computed based on expert knowledge of the

domain. In (dis)similarity-based representation, objects are represented by their pairwise

comparisons [78]. (Dis)similarity-based representation can be computed either on features,

57



or by comparing objects directly using a (dis)similarity measure [79]. There are cases,

however, that computing descriptive features to represent objects for a specific learning

task is difficult or impossible due to insufficient knowledge of the domain [80]. For instance,

as texture is a complicated phenomenon, there is no definition that is agreed upon by the

researchers in the field [81]. This is one of the reasons that there are various feature-based

techniques in the literature, each of which tries to model one or several properties of tex-

tures depending on the application in hand. The performance of each of these features

depends on the texture type, and there is no single feature method that performs well on

all different texture types [82,83]. To avoid this problem, objects, for example textures in

this case, can be represented in (dis)similarity space. In this approach, pairs of texture

patches are compared by a (dis)similarity measure reflecting their mutual resemblance.

Early twenty first century, a similarity measure based on Kolmogorov complexity, i.e.,

so-called normalized information distance (NID), has been introduced in the literature

with attractive attributes such as being metric, parameter-free, and universal [84]. It is

parameter-free in the sense that it does not use any feature or background knowledge

about the data, and universal as it minorizes all other distances. However, due to non-

computability of Kolmogorov complexity, it has been mainly approximated using either

real-world lossless compressors [34] or by the entropy rate [85]. The former introduced

normalized compression distance (NCD), and the latter led to the introduction of nor-

malized entropy-rate distance (NED). Intuitively, NCD is a compression-based similarity

measure, i.e., two objects are considered close or similar if one can be significantly com-

pressed by providing the information in the other. NCD has been successfully utilized

in many applications such as alignment-free whole genome phylogeny, chain letter history,

language history, plagiarism detection, music classification and clustering, protein sequence

classification, and heart rhythm analysis (refer to [86,87] for a list of applications).

5.2 Normalized Information Distance

Normalized information distance (NID) [84] is a metric and a universal parameter-free sim-

ilarity measure based on Kolmogorov complexity that minorizes all other distance mea-
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sures [84]. Intuitively, NID is a measure of the complexity of objects by finding their

shortest description. If the shortest description of an object is long, the object is consid-

ered a complex object.

To understand the definition of the NID, one needs to define two notations: K(x) and

K(x|y). The former is the Kolmogorov complexity of string x, which is defined as the

length of the shortest binary program to compute x on a universal computer such as a

universal Turing machine, whereas the latter is the conditional Kolmogorov complexity,

which is defined as the length of the shortest program to compute x if y is provided as an

auxiliary input for the reference [84]. The NID is defined as

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
. (5.1)

5.3 Normalized Compression Distance

Since Kolmogorov complexity is a noncomputable measure, the NID defined in (5.1) is

computed by approximating Kolmogorov complexity using a compressor denoted by C as

follows [34]

NCD(x, y) =
min{C(xy), C(yx)} −min{C(x), C(y)}

max{C(x), C(y)}
, (5.2)

where xy means that the strings x and y are concatenated. While NID is a universal

measure, i.e. it minorizes all other distances, NCD inherits this property from NID to some

extent - but not fully. In other words, NCD is quasi-universal; since NID is not computable,

it is impossible to estimate how far NCD is from its ideal counterpart NID [34].

To have more insight into (5.2), the case is considered that C(y) ≥ C(x)1 and the

compressor is symmetric such that C(xy) = C(yx). In this case, (5.2) can be rewritten

as NCD(x, y) = C(xy)−C(x)
C(y)

, which means that the NCD distance between x and y is an

improvement on compressing y using x (the numerator, which is also denoted as C(y|x))

over compressing y by its own (the denominator) [34]. This interpretation will help to

explain our proposed measure later in next subsection.

1The opposite condition can be interpreted similarly, as the NCD distance defined in (5.2) is symmetric.
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5.4 1D vs. 2D Compressors

NCD was initially defined on binary strings and one-dimensional (1D) data with the ex-

planation that all data can be converted to this kind of representation. Also, lossless

compressors were originally used in NCD, as they satisfy the conditions required for a

compressor to be a normal compressor as defined in [34], using which it can be proved that

NCD is a metric. Further, a lossless compressor can adequately explore repeated structures

in 1D data, which are needed for finding similarities among strings [88]. Many of the initial

applications of NCD were based on 1D data, as can be seen from typical NCD applications

listed earlier in Section 5.1.

However, there has been a high demand for using (dis)similarity-based representation

in 2D data such as images,2 and the extension of NCD to 2D data does not seem to

be straightforward for several reasons. First, converting 2D data to 1D does not fully

preserve the spatial locality and connectivity of neighboring pixels. Second, there is no

single approach to convert 2D to 1D data as there are two degrees of freedom in this

conversion: how to scan an image and how to take the pixels from two images whose

similarities are to be computed [85]. The first degree of freedom leads to many different

approaches of linearizing 2D data such as row by row, column by column, scan filling

curves, global line sampling, zigzag linearization, Hilbert-Peano curve, and self-describing

context-based pixel ordering (SCPO) [85, 89]. The effect of linearization using four of

the above linearization approaches was empirically investigated on the computation of

NCD in [89]. They concluded that: “images may not be fully expressible as a string, at

least using current compression algorithms” and also that their results “certainly indicate

that the method of linearization does matter”. This is confirmed by [90], as row by row

linearization produces better results than column by column in color image retrieval on

the Corel dataset, which means that the method of linearization has an impact on the

results, which is not desirable. As for the second degree of freedom, it is possible that the

pixels from two images are taken alternately, or all pixels are scanned from the first image

and then from the other. In another attempt to encode the spatial locality in converted

2In this chapter, our application is mainly on images and therefore, from now on, whenever 2D data is

mentioned, images are meant.
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2D data to strings, it was proposed in [91] to add an extra bit when converting images

to strings to consider the vertical connection of pixels, but the improvement in the results

was almost negligible.

The next step was to use JPEG and JPEG 2000 as 2D compressors to compute NCD-

based measures. However, this led to contradictory results in the literature: while it is

shown in [92] that using JPEG2000 yields better results than string compressors on the

classification of satellite images, [89] and [93] conclude that JPEG and JPEG2000 does not

yield better results than string compressors on images. Also, Bardera et al. conclude that

string compressors perform better than an image compressor (using JPEG2000) in image

registration [85].

An alternative approach is using MPEG encoders as 2D compressors in NCD. The

main advantage of an MPEG compared to a JPEG encoder is that while JPEG is designed

for compressing one image, MPEG encodes frames of images and hence, by considering

two images as two frames, they can be compressed in reference to each other, a desirable

trait in NCD. In the next section, a novel formulation based on the MPEG encoder is

proposed for measuring (dis)similarity between images/patches. It will be shown that this

new measure works well on both small and large patch sizes. Introducing this new measure

in this thesis, it will be also shown that the results of pixel-based texture classification can

be significantly improved compared to other NCD-based approaches in the literature.

5.5 Proposed Compression-Based Similarity Measure

Since an MPEG-1 encoder is used in the proposed (dis)similarity measure, some description

of how this encoder works will be first provided.

MPEG-1 is a 2D encoder and thus, it takes into account the spatial locality and con-

nectivity of the neighboring pixels in images for compression. MPEG-1 was originally

designed for compressing movies based on three different coding schemes, i.e., intra-frame

(I-frame) coding, predictive frame (P-frame) coding (also called inter-frame coding), and

bidirectional frame (B-frame) coding [94]. I-frame coding is performed on individual frames

without reference to other frames using discrete cosine transform (DCT). P-frame codes
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a frame in reference to the previous one by using a block-matching algorithm for motion

estimation and using DCT on the residual. Finally, B-frame coding compresses a frame

with reference to its next and previous frames. To utilize MPEG-1 as the compressor in

compression-based similarity measures, patches/images are considered as two successive

frames and compressed using the MPEG-1 encoder. This avoids the need to linearize the

images, which causes loss of spatial locality, as explained in the previous section. Since

there are only two frames (two images whose similarity are to be computed), B-frame

coding is not utilized.

To use MPEG-1 as the compressor in a (dis)similarity measure, one needs to use a

proper formulation based on how MPEG-1 works. To this end, based on the description

provided above for the MPEG-1 encoder, and also the explanation of (5.2) at the end

of Section 5.3, the new dissimilarity measure is proposed considering these two points:

first, MPEG-1 is utilized for the computation of C(x|y) (the conditional compression of x

given y) using only P-frame coding - and I-frame coding is bypassed as it does not provide

any information on the similarity of x and y - and it is denoted as Cp(x|y). Since the

P-frame coding indicates the differences between two frames, which is essential in finding

the (dis)similarity between them, it is encoded with maximum resolution, i.e., minimum

quantization scale, which is one in MPEG-1 (the quantization scale for I-frame does not

have any effect, as I-frame coding is bypassed). Second, it is noticed that because the

second image/patch is compressed in reference to the first one, Cp(x|y) (also C(x|y)) is not

symmetric. However, if both x and y are from the same distribution (class), one expects

Cp(x|y) to be close to Cp(y|x) (because x and y are from the same class and it does not

make very much difference whether x is compressed in respect to y or y in respect to x),

while if x and y are from different distributions (classes), Cp(x|y) and Cp(y|x) should be

largely different. Hence, the new measure is proposed as follows

dN(x, y) =
|Cp(x|y)− Cp(y|x)|
Cp(x|y) + Cp(y|x)

, (5.3)

where the absolute of the difference is taken in the numerator to ensure positive distances.

Cp(x|y) + Cp(y|x) is used as the normalizing factor. The proposed distance is symmetric

and nonnegative.

Although MPEG-1 has also been used in [88] for a dissimilarity measure, our proposed
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measure is different in the following aspects. First, our proposed formulation is different

from what they have proposed. Their distance measure is defined as follows

dCK(x, y) =
C(x|y) + C(y|x)

C(x|x) + C(y|y)
− 1, (5.4)

where C(x|y) is computed based on both I- and P-frame coding, while in our approach,

it is computed solely based on P-frame coding (denoted by Cp(.|.)). Second, in (5.4), the

compression is maximized by using large quantization scales for both I- and P-frame coding

through MPEG-1 external parameters, to prefer compressibility over image quality [88]. In

our approach, since P-frame is essential in finding the (dis)similarity between two frames, it

is encoded with maximum resolution. Since I-frame coding is not utilized in our approach,

it can be bypassed in MPEG-1 coding, which improves the speed of the computation by 40%

compared to the computation of the dCK measure. Third, our proposed measure performs

properly on both small and large patches, while dCK(x, y) cannot represent dissimilarity

between small patches properly. This is explained more in the next subsection.

5.5.1 Some Illustrative Results on Textures

To better realize how dCK(x, y) works, the distances are computed among patches of 17×17,

33×33, 65×65, and 129×129 extracted from two texture images of Brodatz, i.e., D4 (Fig-

ure 5.1a) and D5 (Figure 5.1f), as shown in Figure 5.1b-5.1e. As can be seen, the dis-

tances computed (300 patches per class) among patches are normalized to the interval

of [0, 1] to ease the comparison, and displayed using a color code. one expects to see

smaller distances among patches extracted from the same class, i.e., in ci − ci, i = 1, 2

areas, and larger distances among the patches extracted from two different classes, i.e., in

ci − cj, i, j = 1, 2 & i 6= j areas (see Figure 5.1b as a reference). However, except for the

large patch size of 129×129, this behavior cannot be observed in Figure 5.1b-5.1e. This

problem can be also seen for any other texture pair, the main reason for which is explained

next.

The major problem with dCK(x, y) defined in (5.4) is that it compresses the concate-

nated patches based on both I- and P-frames. This is while only P-frame coding is based
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on the (dis)similarity of patches and I-frame coding is performed using DCT solely based

on the frequency contents of a patch/image. This means that for small patch sizes, where

the compression based on P-frame is still limited (due to the small search region) compared

to I-frame coding, the distances are mainly dominated by I-frame coding, i.e., frequency

contents and distributions of the first frame. Hence, the patches from the texture class

that have low frequency contents usually show lower distances (in this case D5; one can

investigate this by taking the Fourier transform of both textures and looking at their spec-

trum). However, in this example, due to D4’s greater homogeneity, lower distances are

expected among the patches extracted from D4, i.e., in region c1 − c1.

Figure 5.1g-5.1j shows the distances computed using our proposed measure among the

same patches used for dCK, to illustrate the effectiveness of the proposed distance on finding

the (dis)similarities among texture pairs. It can be seen that the distances are consistently

small among the patches of the same class for all patch sizes, and also that the distances

among the patches extracted from D4, which is a more homogeneous texture than D5,

are smaller. This behavior can be consistently observed on other texture pairs; two more

examples are shown in Figure 5.2.

5.6 Kernelized Supervised Dictionary Learning Using

Data-Dependent Kernels

Here, the benefit of using data-dependent kernels, such as kernels computed using the

proposed compression-based measure, in the application of texture classification is shown.

Texture provides important information in various fields of image analysis and com-

puter vision. It has been used in many different problems including texture classification,

texture segmentation, texture synthesis, material recognition, 3D shape reconstruction,

color-texture analysis, appearance modeling, and indexing [81,95–97].

Texture analysis is an important area of research, judging by the vast literature in this

field and its numerous applications in different disciplines [81]. Some of these applications

are in remote sensing [98], medical imaging [25–27, 99–101], industrial applications like
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Figure 5.1: The distances computed on patches extracted from (a) D4 and (f) D5 of

Brodatz album. (b) to (e) distances computed on various patch sizes as indicated in the

figures using dCK and (g) to (j) using proposed measure (dN).

fabric defect detection [82], and object recognition [102].

Texture images can be divided into two broad types: stationary, containing only one

texture type per image, and nonstationary consisting of more than one texture type per

image [95]. The main application domain on stationary texture images is supervised clas-

sification of each texture image into one class, whereas for nonstationary texture images,

there are two main application domains [82,95]. First, unsupervised texture segmentation,

which partitions the texture image into disjoint regions of uniform texture. Second, pixel-

based texture classification, which is similar to texture segmentation in the sense that the

given texture image is segmented to uniform texture regions. The difference, however, is

that in pixel classification, the segmentation is performed using supervised techniques [82].

In the following subsections, it is demonstrated how the data-dependent kernels can be

incorporated into the kernelized SDL to significantly improve the classification of stationary
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Figure 5.2: The distances computed on patches extracted from two more texture pairs

from the Brodatz album. The first two rows display the texture pair (a) D5 and (b) D92,

and the corresponding distances computed using (b)-(e) dCK and (g)-(j) proposed measure

(dN). Rows 3 and 4 display similarly these distances for texture pair (k) D15 and (p) D32,

where (l)-(o) are distances based on dCK and (q)-(t) are those based on proposed measure

(dN).
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and nonstationary texture images.

5.6.1 Texture Classification on Stationary Images

In this subsection, classification is performed on patches extracted from stationary texture

images. To show the gain obtained from incorporating data-dependent kernels into the

proposed kernelized SDL (Chapter 3), the results are provided for texture classification

with and without kernels using the proposed SDL, and also compared to the results pub-

lished in [16], i.e., two supervised dictionary learning approaches called SDL-G BL (G for

generative and BL for bilinear model) and SDL-D BL (D for discriminative). To ease the

comparison, the same data as in [16] is used, i.e., classification on texture pair of D5 and

D92 from the Brodatz album, shown in Figure 5.3. Also the same as [16], 300 patches are

randomly extracted from the left half of each texture image for training and 300 patches

from the right half for testing. This is to ensure that there is no overlap among the patches

used in the training and test sets.

An RBF kernel and also two data-dependent compression-based kernels as described in

previous sections, i.e., dCK [88] and dN, proposed in Section 5.5 are used as the kernel for the

proposed kernelized SDL. As was explained in previous sections, both dCK and dN deploys

MPEG-1 as the compressor for the computation of the compression-based dissimilarity

measure. However, in contrast to dCK that only performs well at large patch sizes, dN

performs well on both small and large patch sizes (refer to the end of Section 5.5 for a

comparison between dN and dCK).

Table 5.1 provides the results of classification using the proposed SDL with and without

kernels. It also compares the results with k -means as an unsupervised approach to compute

the dictionary, and with the results published in [16] for the same number of patches (300)

and the same dictionary size, i.e., 64. The sparsity of the coefficients, i.e., the number

of nonzero coefficients, are also provided in this table (this is not reported for SDL-G

BL and SDL-D BL in [16]). As can be seen, using a compression-based data-dependent

kernel based on dN dramatically improves the results. The classification error is even

lower than the one obtained by the SDL-D BL approach using 30000 patches for training,

which yields the best results on this data with the classification error = 14.26% in [16].
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Figure 5.3: Texture images of D5 and D92 from Brodatz album.

Moreover, as the sparsity of the coefficients indicates, the proposed approach with data-

dependent kernel dN deploys the smallest number of dictionary atoms in the reconstruction

of the signal, i.e., benefits the most from the sparse representation, as it uses almost half

of the dictionary elements compared to other approaches. This has a great impact on

the computation load of the classification task, especially in the stage of training and

testing of the classifier. Our experiments show (not reported in Table 5.1) that by using

a slightly larger regularization parameter λ in the lasso such that the reconstruction error

is within one standard deviation of the minimum, the sparsity of coefficients can be even

greater. That is, the average number of nonzero coefficients can be reduced to about 5%

of the total number of coefficients, without compromising the classification error. The

classification error is 9.90±1.43 in this case, which is even slightly better than what is

reported in Table 5.1.

5.6.2 Pixel-Based Texture Classification on Nonstationary Im-

ages

In this subsection, the effectiveness of the proposed measure as a data-dependent kernel in

the kernelized SDL is shown in the application of supervised pixel-based classification on

nonstationary texture images. In this application, there is a trade-off between the patch

sizes at smooth areas and on the borders. While a large patch size at the uniform texture

areas improves the performance of classification (as more information is included to identify
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Table 5.1: Classification error and the number of nonzero coefficients on the test set for

texture pair D5-D92 of Brodatz album. The dictionary size is 64. Using data-dependent

kernels and the proposed kernelized SDL can significantly improve the results.

Approach Average No. of Nonzero Coefficients

Train Set Test Set Classification Error (%)

k -means 47.85 48.99 27.75±2.29

Proposed SDL 59.80 59.85 26.43±2.95

Proposed

kernel SDL

RBF 62.88 62.51 28.85±1.84

CK-1 [88] 64 64 26.05±1.07

dN [35] 33.46 31.53 10.03±1.31

SDL-G BLa [16] - - 26.34

SDL-D BLa [16] - - 26.34

aThe average no. of nonzero coefficients is not provided for this approach in [16].

the textures correctly), small patch sizes are more desired on the borders to prevent mixing

textures from two different classes.

Here, the distances are first computed on 200 patches per class with the size of 17×17

extracted from the training images. A linear kernel ktr = dtr.d
′
tr is then computed, where

dtr is the distance matrix computed on the patches extracted from the training set. This

kernel is used in Algorithm 2 (given in Section 3.3) to learn a dictionary of size 64, and

subsequently the coefficients for the training set. Then the patches of the same size are

extracted from the test image, and the distances among these patches and the training

patches are computed using a distance function. A linear kernel is computed subsequently

using kts = dts.d
′
tr, where dts is the computed distances from the test to training patches.

This kernel, along with the dictionary learned in the previous step, is used in Algorithm 2

to learn the coefficients for the test set. A linear SVM, whose optimal cost function (C∗)

is tuned in a 5-fold cross-validation on the training set, is used as the classifier.

The data used is the same as that used in [82]. It is comprised of some texture com-

posites from Brodatz and some outdoor images. The test images are shown in the first

column of Figure 5.4. The results are compared to two other distance measures using the
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Table 5.2: The classification rate (%) compared among the proposed method and other

distance- or feature-based approaches. The results on LBP (local binary pattern) and

MeasTex (Gabor, 5NN) methods are based on what is reported in [82] for the same images.

Approach Test Images

Figure 5.4a Figure 5.4f Figure 5.4k Figure 5.4p Average

Proposed (dN) 88.5 82.2 74.6 71.3 79.2

dCK 83.4 74.2 72.6 73.8 76.0

dNCD 82.7 74.4 74.2 70.6 75.5

LBP riu2
8,1 [82] 85.4 77.5 69.4 37.9 67.6

MeasTex (Ga-

bor, 5NN) [82]
83.7 70.5 68.5 55.1 69.5

dCK and NCD approach, and also to two feature-based approaches published in [82] that

yield the best results on these texture images, i.e., local binary pattern (LBPriu2
8,1 ) and Meas-

Tex (Gabor, 5NN) (refer to Table 3 of [82]). To get rid of the speckle-noise type in final

classification, just as in [82], a median filter with the same size as the patch sizes (17×17

in this case) is applied to the final classified pixels. The results are shown quantitatively

in Table 5.2, and qualitatively in Figure 5.4. As can be seen, our results are better than

other distance-based approaches as well as those reported in [82].

5.7 Summary

In this chapter, a novel compression-based distance measure using an MPEG-1 encoder is

proposed that takes into account the spatial locality and connectivity of pixels in images.

The proposed measure computes distances based on P-frame coding, and can properly find

the distances on both small and large patch sizes. By bypassing the I-frame coding, which

is not necessary in the computation of distances in the proposed approach, the performance

in terms of speed is improved by 40% compared to the closest rival, i.e., the dCK , which

has also been designed based on an MPEG-1 compressor [88]. The effectiveness of the

proposed measure was shown in the application of texture classification to stationary and
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nonstationary texture images. It was shown that embedding the proposed measure as a

data-dependent kernel into the kernelized version of the proposed SDL can significantly

improve the results of texture classification of stationary images compared with another

state-of-the-art SDL approaches, such as those published in [16]. It was also shown that the

proposed measure outperforms other compression-based measures, and also feature-based

approaches, in the application of pixel-based texture classification.
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Figure 5.4: The results of supervised pixel-based texture classification on Brodatz and

outdoor images. (a, f, k, and p) test images; (b, g, l, and q) ground truth; (c, h, m, and r)

proposed measure dN; (d, i, n, and s) dCK; (e, j, o, and t) NCD.
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Chapter 6

Extension of the Proposed SDL to

Multiview Representations

In previous chapters, a supervised dictionary learning (SDL) technique and its kernelized

counterpart were developed based on the Hilbert Schmidt independence criterion (HSIC).

It was also shown how embedding data-dependent kernels into the proposed kernelized

SDL can significantly improve the performance of the classification systems in subtle prob-

lems. Thus far, however, our focus has been on single-view problems. In this chapter, the

proposed SDL is extended to multiview signals, and it will be shown how it works in the

application of emotion recognition.

6.1 Introduction

There are instances where the data in a dataset is represented in multiple views [103]. This

can be due to the availability of several feature sets for the same data such as represen-

tation of a document in several languages [104], representation of webpages by both their

text and hyperlinks, etc., or due to the availability of information from several modalities,

e.g., biometric information for the purpose of authentication may come from fingerprints,

iris, face, and so on. Although single-view representation might be sufficient in a ma-
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chine learning task for the analysis of the data, complementary information provided from

multiple views usually facilitates the improvement of the learning process.

Multiview analysis has been used in many applications, such as emotion recognition

by using both audio and visual information [105, 106], biometry and authentication [107,

108], and multilingual document analysis [104]. It has also been used in many different

learning paradigms such as in: clustering (unsupervised learning) [109]; semisupervised

learning, mainly using techniques based on co-training [103] in applications such as domain

adaptation [110]; supervised learning, based on so-called multiple kernel learning (MKL)

techniques; also in dimensionality reduction [111].

In classification tasks, learning from multiview data is usually performed either by

combining at the feature level or at the decision level. In the former, features from different

views are fused, possibly after some normalization, to make a single fused feature set, which

is then submitted to a classifier. In the latter case, the feature subset from each single view

is submitted to a classifier, and then decisions of these classifiers are combined [112–114].

In the next section, the formulation is provided for the extension of the proposed SDL

to multiview representation.

6.2 Multiview Supervised Dictionary Learning

In this section, the formulation for two-view supervised dictionary learning is provided; the

extension to more than two views is straightforward. The main assumption is that both

views agree on the class labels of all instances in the training set. Let X(v) ∈ Rp1×n and

X(w) ∈ Rp2×n be two views/representations of n training samples with the dimensionalities

of p1 and p2, respectively. Having these two representations, the main question is how to

perform the learning task using the proposed SDL provided in Algorithm 1. There are two

approaches, as follows:

Method 1: One approach is to fuse the feature sets from the two views to obtain

X =

[
X(v)

X(w)

]
, where X ∈ R(p1+p2)×n. To learn the supervised dictionary, one needs to use
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the optimization problem in (3.11), which is repeated below for the ease of reference.

max
U

tr(U>XHLHX>U),

s.t. U>U = I.
(6.1)

The columns of U, which are the eigenvectors of Φ = XHLHX>, construct the dictionary

D ∈ R(p1+p2)×k, where k is the number of dictionary atoms. Using the lasso given in (2.3),

one can subsequently compute the sparse coefficients α ∈ Rk×n. These coefficients are

submitted to a classifier such as SVM for training.

Method 2: The alternative approach is to learn one subdictionary from the data

samples in each view. In other words, by replacing X(v) ∈ Rp1×n into (6.1) we have

max
U(v)

tr(U(v)>X(v)HLHX(v)>U(v)),

s.t. U(v)>U(v) = I.
(6.2)

By computing the top k1 eigenvectors of Φ(v) = X(v)HLHX(v)> , a subdictionary D(v) ∈
Rp1×k1 is obtained, where k1 is the size of the subdictionary for this view.

Similarly, another subdictionary D(w) ∈ Rp2×k2 with the size of k2 can be computed by

replacing X(w) ∈ Rp2×n into (6.1), i.e.,

max
U(w)

tr(U(w)>X(w)HLHX(w)>U(w)),

s.t. U(w)>U(w) = I
(6.3)

and computing the top k2 eigenvectors of Φ(w) = X(w)HLHX(w)> . By replacing the

data samples of each view and their corresponding subdictionaries computed in previous

step in the lasso given in (2.3), the corresponding coefficients α(v) ∈ Rk1×n and α(w) ∈
Rk2×n can be computed for each view. Each of these coefficients can be interpreted as the

representation of the data samples in the space of the subdictionary of the corresponding

view. These coefficients are then fused such that α =

[
α(v)

α(w)

]
, where α ∈ R(k1+k2)×n.

Fused coefficients α are eventually submitted to a classifier such as SVM for training.
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Remark: The approach provided in Method 2 can be considered to be a special case

of Method 1. To better realize how these two approaches are related, U in Method 1 can

be considered to be of the special form as follows

U =

[
U(v) 0

0 U(w)

]
. (6.4)

Considering this form of U, it is easy to show:

(a) The constraint given in (6.1) is equivalent to two constraints given in (6.2) and (6.3):

U>U = Ik

⇒

[
U(v) 0

0 U(w)

]> [
U(v) 0

0 U(w)

]
= Ik

⇒

[
U(v)>U(v) 0

0 U(w)>U(w)

]
=

[
Ik1 0

0 Ik2

]
, (6.5)

where Ik is a k× k identity matrix and k = k1 + k2. From the last equality in (6.5), it

is easy to conclude the constraints given in (6.2) and (6.3), i.e., U(v)>U(v) = Ik1 and

U(w)>U(w) = Ik2 , where the dimensionality of the identity matrices is explicitly shown

to prevent confusion. This, consequently means that the dictionaries learned by the

two approaches are the same for this special form of U given in (6.4).

(b) Also, the coefficients α obtained from Method 1 will be equivalent to the coefficients

α =

[
α(v)

α(w)

]
computed using Method 2. This can be shown by using the lasso given

in (2.3), the special form of U given in (6.4), and by recalling that X =

[
X(v)

X(w)

]
as

follows1:

‖X−Uα‖2F + λ‖α‖1 =

∥∥∥∥∥
[

X(v)

X(w)

]
−

[
U(v) 0

0 U(w)

][
α(v)

α(w)

]∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥
[
α(v)

α(w)

]∥∥∥∥∥
1

=

∥∥∥∥∥
[

X(v)

X(w)

]
−

[
U(v)α(v)

U(w)α(w)

]∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥
[
α(v)

α(w)

]∥∥∥∥∥
1

. (6.6)

1U is used instead of D in the lasso as the dictionary elements are the columns of U. See also footnote

2 in Chapter 2.
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Algorithm 3 Multiview Supervised Dictionary Learning-Method 1 (MV1)

Input: Training data at multiple views, X
(v)
tr , v = 1, ...,V, test data at multiple views,

X
(v)
ts , v = 1, ...,V, kernel matrix of labels L, training data size, n, size of dictionary, k.

Output: Dictionary, D, coefficients for training and test data, αtr and αts.

1: Xtr =

X
(1)
tr
...

X
(V)
tr


2: Xts =

X
(1)
ts
...

X
(V)
ts


3: H← I− n−1ee>

4: Φ← XtrHLHX>tr
5: Compute Dictionary: D← eigenvectors of Φ corresponding to top k eigenvalues

6: Compute Training Coefficients: Replace X with Xtr in (2.3), use (2.3) to compute

αtr given D

7: Compute Test Coefficients: Replace X with Xts in (2.3), use (2.3) to compute αts

given D

The bottom line of (6.6) is effectively consisting of two lasso formulations, i.e., ‖X(v)−
U(v)α(v)‖2F + λ‖α(v)‖1 for view v and ‖X(v)−U(w)α(w)‖2F + λ‖α(w)‖1 for view w. This

shows that for the special form of U given in (6.4), the coefficients computed using

Method 1 are the same as what are computed using Method 2.

In summary, it can be concluded that by adding an additional constraint on U, Meth-

ods 1 and 2 yield the same results, i.e., the same dictionary and coefficients. This additional

constraint on U is that it should be of the form given in (6.4). This special form, effectively,

decouples the computation of the dictionary and coefficients over two views. Algorithms 3

and 4 provides the computation steps for the two multiview approaches proposed above.

In the following sections, the relative performance of these two multiview approaches is

shown in the applications of emotion recognition.
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Algorithm 4 Multiview Supervised Dictionary Learning-Method 2 (MV2)

Input: Training data at multiple views, X
(v)
tr , v = 1, ...,V, test data at multiple views,

X
(v)
ts , v = 1, ...,V, kernel matrix of labels L, training data size, n, size of dictionary, k.

Output: Dictionary, D, coefficients for training and test data, αtr and αts.

1: H← I− n−1ee>

2: for v = 1→ V do

a: Φ(v) ← X
(v)
tr HLHX

(v)>

tr

b: D(v) ← eigenvectors of Φ(v) corresponding to top k eigenvalues

c: Replace X with X
(v)
tr in (2.3), use (2.3) to compute α

(v)
tr given D(v)

d: Replace X with X
(v)
ts in (2.3), use (2.3) to compute α

(v)
ts given D(v)

3: end for

4: Compute Dictionary: D←


D(1) 0 · · · 0

0 D(2) · · · 0
...

...
. . .

...

0 0 · · · D(V)


5: Compute Training Coefficients: αtr ←

α
(1)
tr
...

α
(V)
tr


6: Compute Test Coefficients: αts ←

α
(1)
ts
...

α
(V)
ts



6.3 Multiview SDL in Facial Expression Recognition

Emotion/expression recognition is an emerging field of research due to its wide range of

applications, including human-computer interaction, security and surveillance, data-driven

animation, interactive video, indexing video and images, driver safety, health care, and

game/entertainment industries [115–117].

Most of the research in recent years has focused on emotion recognition using voice
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and facial expressions. Despite many recent advances in the field, audio/visual expression

recognition remains a difficult task, due to the variability and complexity of these expres-

sions. In this section, the focus is on facial expression recognition, and in next, speech

emotion recognition is addressed.

Psychophysical and neurophysiological research indicates that there are six basic emo-

tions, which are universal across cultures. The pioneer work by Ekman in this direction

specifies these basic emotions as happiness, surprise, disgust, fear, anger, and sadness [118].

The main goal in many research works conducted on facial expression recognition is to cat-

egorize the human face to one of these prototypical emotions, along with a neutral facial

expression [105, 115, 119–122]. The same 7-class problem is used for the classification of

facial expressions in this section.

There have recently been much research published in the area of facial expression recog-

nition (FER), each of which addresses one or several aspects of this demanding research

area. For example, which feature representation works better in FER was empirically in-

vestigated in [115]. They concluded that local binary patterns (LBP) along with SVM

perform slightly better than Gabor-wavelet-based SVMs. Further, LBP is much more ef-

ficient than Gabor-wavelets in terms of speed and memory usage. There are other papers

that address the dimensionality reduction in FER. For example, Liu et al. propose a di-

mensionality reduction based on tensor rank-one decomposition for multidimensional data

in FER [122]. 3D FER has been addressed in [119,120]. A survey of the field can be found

in [117].

Extracting significant and discriminative facial features to represent the face images is

a vital step in the design of a successful FER system. The facial features can be broadly

divided into two categories: geometric [123] and appearance-based features [105,115]. Ge-

ometric features are computed by extracting the shape and location of the most important

components of the face, such as mouth, eyes, eyebrows, and nose. Some parameters may

subsequently be measured on these prominent components to represent the face emo-

tion [123, 124]. Appearance-based features, on the other hand, rely mainly on deploying

predefined operators such as filter banks to extract features from face images. The most

common appearance-based features are Gabor-wavelet features and local binary patterns

(LBPs). Although many researchers use features extracted by applying Gabor-wavelet filter
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banks to face images for FER, the computation of these features are time- and memory-

intensive [115]. LBP features were originally proposed for texture analysis as predefined

operators that could efficiently extract important textural characteristics [125]. Ahonen

et al. were the first who proposed to use them as descriptors in face recognition [126].

Computation of LBP features is much faster than Gabor-wavelets in the application of

FER, as shown in [115].

Since geometric and appearance-based features rely on two different procedures for the

extraction of facial features, they can potentially provide complementary information on

facial expressions. Hence, our conjecture is that deploying both feature sets can improve

the performance of a FER system. Among appearance-based features, LBP has been

selected due to its lower computational cost. For geometric features, facial measure features

(FMF), recently proposed in [123], has been adopted. The proposed SDL and its multiview

extensions are used on some face datasets to show the effectiveness of combining these

feature sets in an FER system.

6.3.1 Datasets

In this subsection, a brief overview is provided for the face expression datasets used in

this research. Table 6.1 summarizes the details of the datasets as used in our experiments.

Figure 6.1 shows some sample images from CK+ and JAFFE datasets at various emotion

states, while Figure 6.2 displays typical successive frames from several subjects in the VAM

dataset.

Extended Cohn-Kanade (CK+) dataset

CK+ dataset [127] is the extended version of the original Cohn-Kanade dataset [128]. CK+

was recorded on 210 adults in ages between 18 and 50 years. Among the participants,

69% were female, 81% Euro-American, 13% Afro-American, and 6% other groups. The

participants were requested to perform twenty-three different facial expressions including

six basic emotions. The images were recorded in the resolution of 640×490 or 640×480
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(a)

(b)

Figure 6.1: Sample images from six face emotion classes (i.e., Anger, Disgust, Fear, Hap-

piness, Sadness, and Surprise) along with the neutral state for (a) CK+ and (b) JAFFE

datasets.

pixels with 8-bit gray level or 24-bit color scales. The full description of the dataset is

provided in [127].

In our experiments, the face data of 109 sequences were selected. The only criterion

for this selection was that the facial expressions can be assigned to one of the six basic

emotions. In each sequence, the neutral face, along with the last three frames at the peak

of emotion expression, were selected. In total, 1254 frames were selected with 135, 177,

75, 207, 84, 249, and 327 frames/samples in the Anger, Disgust, Fear, Happiness, Sadness,

Surprise, and Neutral classes, respectively.
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Figure 6.2: Sample frames from four subjects of Vera Am Mittag (VAM) dataset. Seven

successive frames from each subject are shown.

Table 6.1: Face emotion datasets used in the experiments.

Samples per Class

Dataset Samples Subjects Anger Disgust Fear Happiness Sadness Surprise Neutral

CK+a 1254 118 135 177 75 207 84 249 327

JAFFEb 213 10 30 29 32 31 31 30 30

VAMc 1320 20 326 29 11 345 143 149 317

ahttp://www.pitt.edu/∼jeffcohn/CKandCK+.htm
bhttp://www.kasrl.org/jaffe.html
chttp://emotion-research.net

The Japanese female facial expression (JAFFE) dataset

The JAFFE dataset [129, 130] is a facial expression database collected from 10 Japanese

females. It consists of 213 images at six basic emotions plus neutral state. The images are

available at the resolution of 256×256 pixels.
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Vera Am Mittag (VAM) dataset

VAM is an authentic spontaneous audio-visual database from real-life conversations, which

were recorded from the German TV talk show “Vera am Mittag”, in which guests mostly

talk about their personal issues in a spontaneous, affective and unscripted manner [131].

The images are extracted from twenty speakers with a total number of 1867 images. A

subset of the VAM dataset has been selected, for which the prototypical emotions and

geometric features are available. This subset contains 1320 images, which are used in

our experiments. The emotions have been ranked by eight to thirty-four evaluators, and

majority voting was used to assign the class label to each face image. There are 326,

29, 11, 345, 143, 149, and 317, images in the Anger, Disgust, Fear, Happiness, Sadness,

Surprise, and Neutral classes, respectively. Since the number of data samples in classes

Disgust and Fear is very small, the classification has been only performed on the 5-class

problem excluding these two classes.

6.3.2 Facial Features

As mentioned earlier in this section, two sets of facial representations are extracted for face

images. These are local binary patterns (LBP), which is an appearance-based representa-

tion, and facial measure features (FMF), which is a geometric-based feature set.

Local binary patterns (LBP)

LBP features are extracted from face images in this work using the approach described

in [115]. The face region in each frame is first detected using the real time face detection

approach by Viola and Jones [132]. The resulting face regions are then normalized as

follows: the coordinates of the two eyes are identified, then the size normalization is done by

resizing the image with distance between the eyes of 55 pixels. Afterwards, the whole face

image is cropped to the size of 150×110, relative to the eyes’ position. The resulting face

images are then divided into 7×6 subregions. Finally, the LBP descriptors are extracted for

each region, and the histograms are mapped into uniform patterns in an (8,2) neighborhood.

The final feature vector is of size 2,478 (7×6×59) for each face.

83



Facial measure features (FMF)

FMF features are proposed in [123] as geometric features and extracted from three regions

of face, i.e., eyes, nose, and mouth. In total, sixteen features are extracted, including seven

features from eyes, six from mouth, and three from the nose region. The interested reader

can refer to [123] for more details on how these features are computed.

6.3.3 Implementation Details

The features extracted by LBP and FMF are used as views v and w for facial expressions,

respectively. In other words, the two views are: X(v) ∈ R2478×n and X(w) ∈ R16×n.

The implementation of the supervised dictionary learning in single and multiview is

similar to that explained in Section 4.1. In all the experiments, the data is normalized

such that each feature is in the range of [0,1]. The evaluation of the system is performed in

person-independent setting, meaning that the training and test sets are disjoint at subject

level, not sample level. To this end, 10-fold cross-validation has been performed on CK+,

where the single fold in the test set do not share the face images from the subjects in

the folds belonging to the training set to guarantee person-independent evaluation. For

the JAFFE and VAM datasets, as there are only ten and twenty subjects, respectively,

leave-one-subject-out is computationally feasible and hence, was adopted. Since the labels

of all face images in the dataset are eventually predicted in a cross-validation system,

the predicted labels are compared with the ground-truth and the performance of the facial

expression recognition systems is reported using classification accuracy, where classification

accuracy is A = 1− E and E is the classification error defined in (4.1). For the CK+ and

VAM datasets, which are highly imbalanced, balanced classification accuracy BA = 1−BE

is also reported, where BE is balanced classification error as defined in (4.2).

An SVM with RBF kernel is used for the classification of face emotions. The optimal

parameters of the SVM, i.e., the optimal kernel width γ∗ and trade-off parameter C∗,

are tuned on the training set in a 5-fold cross-validation. This tuning is also performed

in a person-independent setting to get more realistic optimal parameters. It should be

emphasized here that tuning SVM parameters by 5-fold cross-validation at sample level
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instead of subject level does not violate the person-independent setting in our experiments.

However, since the tuned SVM is eventually used in a person-independent setting, the

optimal parameters would better replicate the actual situation and therefore, lead to a

better performance if they are tuned in the same setting.

6.3.4 Results

Here, the accuracy of the classification systems are compared among single-view (SV)

and multiviews (MV) approaches. The classification accuracy (A) of the facial expression

recognition systems are provided in Table 6.2. For the CK+ and VAM datasets, which

are highly imbalanced, balanced classification accuracy (BA) has been also reported in

Table 6.3. Table 6.4 provides the average time per fold for the two multiview FER systems,

including the time required to learn the dictionary and the coefficients, tune the parameters

of the SVM, and its training and testing to compare the speed of the two multiview systems

proposed in this chapter. The experiments are performed on varying dictionary sizes. For

single-view using LBP features and for multiview approaches, the results are reported at

the dictionary sizes of 8, 16, 32, and 64. For single-view using FMF geometric features, the

results are reported at dictionary sizes of 2, 4, 8, and 12. This is because there are only 16

features in FMF, and as discussed before for the proposed SDL, the dictionary size can be

at most the same size as the dimensionality of the data, which is 16 in this case.

The results reveal several important points. First, in single view, the LBP features are

more discriminative on the CK+ and particularly VAM datasets, whereas FMF features

are more discriminative on the JAFFE dataset. Second, these two sets of features, one of

which is appearance-based (LBP) and the other geometric-based (FMF), indeed provide

complementary information such that using both sets in a multiview system benefits from

this information and improves the performance of the FER system. Third, the performance

of the FER system on the VAM dataset is rather poor compared with the other two

datasets. This is mainly because VAM is a spontaneous dataset, as opposed to the other

two which contain posed emotions, and hence, it is a much more challenging dataset.

To improve the performance of the FER system on VAM, it is needed to extract more

discriminative features. Fourthly, overall, the performance of the multiview system based
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on Method 2, i.e., the fusion of features at the dictionary spaces, leads to better performance

in terms of both accuracy and speed than Method 1, in which the feature sets are fused in

the original feature spaces. An interesting fact is that the speed of FER system based on

MV2 on average is twice the speed of the one based on MV1.

There are several reasons why MV2 performs better than MV1 in this application. A

comparison between the dimensionality of LBP and FMF features shows that the number

of features in LBP (2478) is much larger than the number of features in FMF (16). Fusing

these two feature sets in the original space may mean that one feature set is dominated

by the other and subsequently eclipses the influence of the smaller feature set to some

extent. In the MV2 approach, this does not happen, as the dictionary and coefficients

are learned in each view separately and then the representations of the data in the new

spaces are fused. The dimensionality of feature sets in these new spaces is the same as

the number of dictionary atoms that can be controlled to be at the same order. In other

words, each of the representations can evenly contribute towards the overall performance

of the classification system. Moreover, MV2 provides the flexibility to the designer of the

FER system to choose the number of dictionary atoms learned in each view or to tune the

optimal number of dictionary atoms in each view by cross-validation on the training set.

In MV1, there is no control of the dictionary atoms learned from each view and hence, one

cannot determine the ratio of dictionary atoms learned from each view.

To explain why MV2 is faster than MV1, it is noticed that most of the computation

time is spent on the tuning and training of the SVM classifier. Also recall from Chapter 3

that the proposed SDL in single-view finds the directions of maximum separation by finding

a space where the dependency between the data points and the corresponding labels are

maximized based on Hilbert Schmidt independence criterion (HSIC). In MV2, the data

in each view is already mapped to a space where it is represented by the directions of

maximum separation, and this is done for each view separately. Hence, one should expect

that learning in this spaces to be carried out faster.

As a final remark, the proposed multiview SDL introduces a general framework that

can be applied to any multiview representation. In this section, it was demonstrated how

using the proposed multiview SDL can benefit from the complementary information in

different feature sets. By computing more discriminative feature sets from face images, the
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Table 6.2: Classification accuracy (%) of facial expression recognition system based on

single-view (SV) and multiview (MV) supervised dictionary learning approaches discussed

in this thesis. MV1 and MV2 are the multiview SDL approaches based on Method 1

and Method 2 as discussed in Section 6.2. The experiments are performed in a person-

independent setting. Highlighted entries show the best performance for each dataset.

Dictionary Sizea

Dataset Approach 8 16 32 64

CK+ 6-Class

SV-LBP 91.05 92.34 92.13 93.42

SV-FMF 75.62 85.65 86.62 87.38

MV1 92.45 93.10 92.77 93.96

MV2 92.02 93.20 93.31 94.17

CK+ 7-Class

SV-LBP 85.17 88.68 88.68 89.23

SV-FMF 67.70 78.07 77.03 75.68

MV1 86.20 89.31 89.15 90.03

MV2 86.44 90.43 89.79 91.07

JAFFE 7-Class

SV-LBP 52.11 62.44 62.44 64.32

SV-FMF 46.01 61.97 66.20 68.08

MV1 56.81 65.73 64.32 66.20

MV2 61.97 67.14 71.83 73.24

VAM 5-Class

SV-LBP 31.02 36.72 37.89 40.16

SV-FMF 22.81 23.75 28.91 22.34

MV1 31.64 36.88 39.84 40.94

MV2 33.44 39.69 42.19 41.48

aThe dictionary sizes in case of single-view with geometric features (SV-

FMF) are 2, 4, 8, and 12 instead.

performance of the proposed multiview SDL can be improved.
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Table 6.3: Balanced classification accuracy (%) of facial expression recognition system

for CK+ and VAM datasets, which are highly imbalanced, based on single-view (SV)

and multiview (MV) supervised dictionary learning approaches discussed in this thesis.

MV1 and MV2 are the multiview SDL approaches based on Method 1 and Method 2 as

discussed in Section 6.2. The experiments are performed in a person-independent setting.

Highlighted entries show the best performance for each dataset.

Dictionary Sizea

Dataset Approach 8 16 32 64

CK+ 6-Class

SV-LBP 84.85 86.25 86.12 88.36

SV-FMF 68.54 78.68 80.64 81.44

MV1 87.08 86.11 87.79 85.20

MV2 86.62 88.33 88.78 89.96

CK+ 7-Class

SV-LBP 76.45 80.46 80.54 80.99

SV-FMF 55.25 66.08 65.77 65.86

MV1 77.94 81.26 80.87 81.59

MV2 78.28 83.49 81.51 83.99

VAM 5-Class

SV-LBP 25.36 30.21 32.45 34.19

SV-FMF 19.37 19.81 24.19 18.77

MV1 26.14 30.41 34.11 34.20

MV2 28.25 32.36 35.70 35.10

aThe dictionary sizes in case of single-view with geometric features (SV-

FMF) are 2, 4, 8, and 12 instead.

6.4 Multiview SDL in Speech Emotion Recognition

(SER)

Although automatic speech recognition has been around for many years now, it is not

always sufficient only to know what is said in a conversation, but sometimes we need

to know how something is said. That is due to the fact that speech can convey much

more information than the mere verbal content [133]. Hence, speech emotion recognition
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Table 6.4: The average time (in seconds) over each fold for the single-view and multiview

FER systems including the time required for learning the dictionary and the coefficients,

tuning the SVM parameters, and eventually training and testing the SVM using tuned

parameters. Highlighted entries show the fastest execution time for each dataset.

Dictionary Sizea

Dataset Approach 8 16 32 64

CK+ 6-Class

SV-LBP 26.73 43.03 67.46 117.68

SV-FMF 17.82 17.60 22.51 27.95

MV1 47.59 69.28 102.06 169.88

MV2 16.14 27.95 48.90 78.41

CK+ 7-Class

SV-LBP 50.88 82.59 129.47 208.98

SV-FMF 38.95 39.92 48.19 56.71

MV1 85.13 126.60 185.44 309.17

MV2 33.15 52.79 92.80 175.89

JAFFE 7-Class

SV-LBP 3.90 5.20 7.77 13.32

SV-FMF 2.56 2.74 3.12 3.62

MV1 5.35 7.00 9.88 16.47

MV2 3.09 4.10 5.63 8.43

VAM 5-Class

SV-LBP 87.80 104.53 150.35 257.57

SV-FMF 119.59 100.05 106.04 97.67

MV1 87.71 104.78 150.79 257.06

MV2 66.16 69.14 92.42 151.27

aThe dictionary sizes in case of single-view with geometric features (SV-

FMF) are 2, 4, 8, and 12 instead.

attempts to identify this information. A natural application of this is to human-computer

interaction. That is, to enable computers to adapt to the emotional states of the users,

in order to reduce their frustration during interactions [134]. Different modalities (also

referred to as social cues) have been used for this purpose, among which only voice cues

have led to the discussion of the current section.

89



Given the speech signal s[n], there are two major stages into a solution for speech

emotion recognition: 1) extraction of low-level descriptors (LLD) from speech, and 2)

statistical modeling. Extraction of LLDs is essential, as on the one hand, each speech

sample does not convey more than the air pressure recorded by the microphone at a

very small fraction of time, meaning one is required to calculate some useful measures of

speech that have closer relationship with its affective qualities; on the other hand, speech

signals are usually of very high dimensions, therefore extracting LLDs also counts as a

dimensionality reduction stage. Subsequently, at the second stage, given the LLDs, as the

covariates (i.e., X ∈ Rp×N)2, and an affective quality of speech, as the response variable

(i.e., Y ∈ [−1, 1]N), the idea is to find a mapping between them: X → Y. Later, this

mapping will be used to make predictions on the affective qualities of speech samples.

As for the affective qualities, which is denoted by Y, two points of view for representing

emotional states have been used: categorical and dimensional. According to the categorical

view, emotional states [118,135] can be described using discrete emotion categories such as

anger or happiness, as discussed in the previous section. On the other hand, a dimensional

point of view, also known as primitive-based, suggests the use of some continuous lower

level attributes, e.g., arousal and valence. Theories behind the dimensional representation

claim that the space defined by those representations can subsume all the categorical

emotional states [136–138]. Therefore, depending on the choice of affective qualities, the

modeling problem can be recognized as either classification or regression, for categorical

(discrete) and dimensional (continuous) representations, respectively.

Acoustic LLDs are categorized by their domain of extraction. Those which are inter-

preted in the time and frequency domains are respectively known as prosodic and spectral

LLDs. Among prosodic LLDs, pitch, speaking rate, jitter, shimmer, and harmonics-to-

noise ratio (HNR) are frequently applied to emotional speech recognition. On the other

hand, Mel frequency cepstrum coefficients (MFCC), formant frequencies, energy in differ-

ent spectral bands (250-650 Hz and 1-4 kHz), and spectral characteristics such as flux,

entropy, variance, skewness, and kurtosis, are among the most commonly-used spectral

LLDs [139]. A list of about forty LLDs, including prosodic and spectral, has been recently

2In this thesis, n is used as the number of data samples. However, since in this section, n is the notation

for discrete time, N is used as the number of data samples instead.
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set as a standard [139–141], and it appears that the list has been adopted by the research

community [142–147]. Except for a very few studies [146–150], the recent research does

not show a major investigation for introduction of new LLDs.

On the statistical modeling side, various models and learning algorithms have been

used to tackle the problem at hand. To begin with, all sorts of linear models and learning

algorithms for such models have been used: least squares [143], linear discriminant analy-

sis [151], support vector machines (SVM) [142], and support vector regression (SVR) [152].

Furthermore, decision trees [153], specifically random forests [154], and neural networks

[155] have been adopted in various studies. K -nearest neighbors (k -NN) has been put into

practice in many works [156, 157]. Also, different types of probabilistic models, including

näıve Bayes [158], mixture of Gaussian [159], hidden Markov models [160], and conditional

random fields [145] have been used in the literature of this problem.

In the remainder of this section, first an overview of the emotional speech database

used in our experiments is provided, then our choice of acoustic LLD is descriv=bed, and

eventually the experiments and the results are presented.

6.4.1 Datasets

Dozens of emotional speech databases have been collected in the past few years. However,

not all of them could attract the attention of the research community. In this subsection,

SEMAINE, which has been used in our experiments, is introduced.

SEMAINE

SEMAINE is a database recorded based on the sensitive artificial listener (SAL) interaction

scenario [161]. The aim of SAL is to evoke strong emotional responses in a listener by

controlling the statements of an operator (the script is predefined in this scenario). For

this purpose, four agents are introduced, and a user can decide which operator to talk to

at any time. Each of those agents tries to simulate a different personality: Poppy tries to

evoke happiness, Obadiah tries to evoke sadness, Spike tries to evoke anger, and Prudence
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tries to make people sensible. Therefore, the combination of those decisions is claimed to

result in a highly emotional conversation.

Solid SAL [162,163] is a similar scenario to SAL, for which there is no predefined script

given to the operators. Instead, they are free to act as one of the four SAL agents at any

time. This is done for the sake of a more natural face-to-face conversation. As in the SAL

scenario, reading the script or recalling it (in case operators have memorized the script)

may not allow such non-verbal interactions.

SEMAINE is recorded using three different scenarios: solid SAL, semi-automatic SAL,

and automatic SAL. 150 participants (93 female and 57 male) have taken part in the

recordings, and their ages range from 22 to 60 (32.8±11.9).

A major part of the recent studies on emotional speech recognition [139,142–150,164–

167] have been conducted relying on the solid-SAL part of the database. For this part of

the database, there are 475 minutes of audio and video available for the user’s role, and

the same amount of time for the operator’s role. The total number of sessions is 95. Solid

SAL is annotated by five emotional dimensions: valence, activation, power, expectation,

and intensity. To briefly explain these dimensions, valence is a measure of indicating

pleasantness, activation is a measure of indicating both mental and physical energy, power

indicates the extent of control of a subject over a situation, expectation is a measure of

evaluating the situational awareness of a subject, and intensity indicates the distance of a

subject from rationality, in any direction.

Despite the relatively young age of the database, it has been a target of various studies

already. The main reasons for the attraction towards the SEMAINE are first [139] and

second [168] audio/visual emotion challenge (AVEC), which have set the solid SAL part of

the database as the benchmark. For the sake of these challenges, four out of five dimensions

were used, excluding intensity. Our study is conducted based on the fully-continuous sub-

challenge (FCSC) of the AVEC 2012. In FCSC, the features are extracted at 0.5 second

intervals only during speech [168]. According to the settings of this challenge, three subsets

of the database were used for the training, development, and testing purposes. Due to the

fact that the labels of the test subset were not released to the public, the experiments are

performed based on the other two subsets. That is, the model is trained using the training
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set, and then the it is evaluated using the development set. The number of samples in each

of the subsets is 10806 and 9312, respectively.

6.4.2 Audio Features

Different acoustic low-level descriptors (LLD), also known as speech features, have been

employed for the emotional recognition of speech. In the following, a review of the spectral

energy distribution is provided as our choice of LLD followed by the baseline features

provided by AVEC 2012 [168].

Spectral energy distribution (SED)

Spectral energy distribution (SED) is comprised of a set of components, where each compo-

nent represents the relative energy of the signal in a specific band of the spectrum [150,169].

For a speech signal s[n], the definition of the component i is as follows.

SEDi
s =

N∑
k=1

[H[k − Ui]−H[k − Li]]g(S[k])2, (6.7)

where S[k] is the discrete Fourier transform of s[n]; H[k] is the unit step function (a.k.a. the

Heaviside step function); Li and Ui indicate the lower and upper bounds of the component

in the spectrum; and g(.) is a normalizing function, the use of which is discussed in the

remainder of this section. In this equation, N denotes the number of samples of the signal,

which by principle equals the length of the signal times its sampling frequency.

Figure 6.3a and 6.3b show an arbitrary speech signal and the SED components of the

signal, respectively. In Figure 6.3b, the normalizing function g(.) is assumed to be the

identity function, therefore the SED components form a binned power spectrum of the

speech signal.

Regardless of how informative each of the components are, they can take arbitrarily

large or small values. In other words, although some intervals appear to carry a relatively

minor part of the energy of the signal, they can play as important of a role as others, if not
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Figure 6.3: (a) A speech signal (b) SED component for q = 1, and (c) SED component for

q = 0.25

more so. Therefore, as a natural solution, it is inclined to normalize the Fourier transform

of the signal over the spectrum by incorporating the function g(.) in the definition of the

SED:

g(S[k]) = Sq[k]; 0 < q ≤ 1. (6.8)

The reason why q is set to take values from [0, 1] is due to the characteristic of speech
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signals that their amplitude is necessarily less than or equal to one; since this property

will be preserved by the discrete Fourier transform, raising to the power of q inflates S[k].

Figure 6.3c shows the effect of this normalization on SED components.

As for the parameter setting of SED, except the maximum value of the higher bound on

the spectrum, which is dictated by the sampling frequency (Nyquist theorem), the length

of each interval and the power q have to be set according to the modeling criteria.

For the purpose of our experiments, extraction of SED components is done from 100

ms windows of speech signal. The spectral interval length is set to 100 Hz. They cover

from 0 to 8 kHz. The value of q is selected as 0.2. These parameters are all chosen based

on a line search. The min, max, median, mean, and standard deviation of the features are

used as the statistics computed over the windows of the speech signal. the dimensionality

of this SED feature set is 400.

AVEC 2012 audio baseline features

The baseline features provided by AVEC 2012 [168] have the dimensionality of 1841, con-

sisting of 25 energy- and spectral-related LLD × 42 functionals, 6 voice-related LLD ×
32 functionals, 25 delta coefficients of the voice-related LLD × 19 functionals, and 10

voiced/unvoiced durational features. The details of the features and functionals are pro-

vided in Tables 4 and 5 of [168]

6.4.3 Implementation Details

Two feature sets described above have been used, i.e., SED and baseline features, as the

two views v and w for a speech emotion recognition (SER) system based on the multiview

SDL proposed earlier in this chapter. Hence, the two views are X(v) ∈ R400×n and X(w) ∈
R1841×n, where n is 10806 in the training set and 9312 in the test set for the FCSC part of

the dataset used in our experiments.

There are four dimensional affects, i.e., arousal (A), expectation (E), power (P), and

Valance (V), as the continuous response variables to be predicted. Hence, a regressor is
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to be deployed in our SER system as opposed to the FER system in Section 6.3, where a

classifier was used to predict the discrete categorical states. The lasso regressor and its

GLMNET3 implementation are used in our experiments. The sparsity parameter of the

lasso has been optimized over the training set by a 10-fold cross-validation.

An RBF kernel is used over the response variable in each dimension, which serves as

the kernel over the target values (L) to compute Φ in Algorithms 3 and 4. The kernel

width of the RBF kernel has been set by using a self-tuning approach similar to what is

explained in [77].

In all experiments, the data in each view is normalized such that each feature is mapped

to the range of [0,1]. As suggested in [168], the performance of the SER system is evaluated

using Pearson’s correlation coefficient (r), which is defined as follows

r =

∑N
i=1(Yi − µY)(Ŷi − µŶ)√∑N

i=1(Yi − µY)2
√∑N

i=1(Ŷi − µŶ)2
(6.9)

where Y is the actual dimensional affect and Ŷ is the predicted one; µY and µŶ are the

mean of the actual and predicted dimensional affects, respectively.

6.4.4 Results

The correlation coefficient for single-view and multiview SER systems computed over the

two feature sets, i.e., SED and baseline features, are reported in Table 6.5 for the arousal,

expectation, power, and valence dimensions. The computation time, including the time

required to learn the dictionary and coefficients, the tuning time for the sparsity coefficient

of the regressor, and also the time for training and testing the regressor, is provided in

Table 6.6.

As can be seen from Table 6.5, both MV1 and MV2 benefit from the complementary

information in two-view features sets. The performance of the single-view system based

on the SED is usually inferior to the one based on the baseline feature set. However,

3http://www-stat.stanford.edu/∼tibs/glmnet-matlab/.
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combining these two representations using one of the multiview approaches discussed earlier

leads to higher correlation coefficients in all dimensions. Unlike the FER system, where

MV2 clearly outperformed the MV1 approach, here these two multiview approaches have

more or less similar performance. By taking the maximum correlation coefficient in each

dimension and then the average over all dimensions, MV1 and MV2 achieve an average

correlation coefficient of 14.73% and 14.58%, respectively, which is very close to each other.

However, comparing the computation time, MV2 is faster than the MV1 approach. Unlike

the facial expression recognition system, where the two views had significant differences

in the dimensionality of the feature sets, here, the dimensionality of the two views is not

significantly different. Hence, one feature set does not dominate the other when they are

fused in the original space. Hence, MV1 can capture the complementary information of

both views and performs more or less the same as MV2.

Unlike the FER system, here, most of the computation time is spent on learning the

dictionary and the coefficients, due to the high number of data samples in the training set

(10806). Also, here, tuning the regressor is very fast, and hence its training takes a small

portion of the overall learning time of the system. Here, the computation load of the two

different multiview approaches is not significantly different, as was observed in the FER

system.

As a final remark, it is worth to mention that MV2 learns the dictionary and coefficients

in the two views independently, and only fuses the features in the space of dictionaries

learned at the final stage. It was shown that this is beneficial in the case of the FER

system, where the dimensionality of one feature set is much larger than the other one and

hence, fusing in original space diminishes the effect of one view. This is expected to be

useful when the two views are independent or not very much correlated. If this is not

the case, learning the dictionary in a fused space of two views might be beneficial, as the

dictionary learned can share the common properties of both views. This can be especially

useful in small dictionary size.
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Table 6.5: The percentage of correlation coefficient (r) of the speech expression recognition

system based on single-view (SV) and multiview (MV) supervised dictionary learning ap-

proaches discussed in this thesis. MV1 and MV2 are the multiview SDL approaches based

on Method 1 and Method 2 as discussed in Section 6.2. Highlighted entries show the best

performance in each dimension.

Dictionary Size

Dimension Approach 8 16 32 64

Arousal

SV-SED 10.07 10.51 10.02 9.37

SV-baseline 13.22 13.99 15.08 14.90

MV1 14.30 15.39 15.70 17.04

MV2 14.61 15.40 16.66 16.52

Expectation

SV-SED 5.19 4.61 3.66 4.12

SV-baseline 19.56 19.30 20.31 20.73

MV1 17.08 18.25 17.80 20.00

MV2 20.57 20.57 20.57 20.88

Power

SV-SED 1.37 1.51 1.83 1.51

SV-baseline 8.22 7.18 7.41 6.19

MV1 9.87 7.89 8.60 8.34

MV2 8.56 8.21 8.37 8.21

Valence

SV-SED 8.89 7.99 7.45 8.09

SV-baseline 9.50 11.23 11.56 10.35

MV1 9.82 11.94 12.10 12.00

MV2 11.57 11.65 12.20 11.82

6.5 Summary

In this chapter, the proposed SDL approach in Chapter 3 was extended to multiview

representations. Two different multiview methods were proposed: fusing the feature sets

in the original space, and learning one dictionary and corresponding coefficients in this

fused space (MV1), or learning one dictionary and the corresponding coefficients in each
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Table 6.6: The computation time (in seconds) for the single-view and multiview SER

systems including the time required for learning the dictionary and the coefficients, tuning

the sparsity parameter for the lasso regressor, and eventually training and testing the

regressor using tuned parameters. Highlighted entries show the fastest execution time in

each dimension.

Dictionary Size

Dimension Approach 8 16 32 64

Arousal

SV-SED 33.89 39.27 90.32 284.54

SV-baseline 81.43 95.64 149.16 353.56

MV1 104.61 124.56 200.89 386.51

MV2 79.16 93.00 128.17 134.43

Expectation

SV-SED 34.51 41.69 64.87 170.42

SV-baseline 82.33 97.67 141.57 295.07

MV1 104.21 123.97 188.85 425.94

MV2 77.53 76.80 77.51 260.16

Power

SV-SED 36.48 46.69 70.93 148.61

SV-baseline 82.54 97.53 334.62 850.89

MV1 104.27 125.58 187.21 364.10

MV2 81.70 83.95 112.93 87.04

Valence

SV-SED 33.72 39.55 64.76 192.58

SV-baseline 82.99 97.99 195.77 459.60

MV1 104.64 125.19 191.97 357.63

MV2 79.40 87.53 112.50 107.69

view, and then fusing the representations in the learned dictionary spaces (MV2).

It was shown that both methods benefit from the complementary information in mul-

tiple views. However, MV2 learns in the space of each view independently from others,

whereas MV1 learns in the space of all views simultaneously.

The relative performance of the two proposed multiview SDL approaches was demon-

strated in two emotion recognition applications, i.e., facial expression recognition (FER)
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and speech emotion recognition (SER). In the former, the dimensionality of two views

was such that one view dominated the other one. In this case, it was shown that MV2

performs better than MV1, as it can perform learning in the spaces of two views inde-

pendently and consequently, give equal chance to both views to contribute towards the

overall performance of the classification system. In SER, on the other hand, both views

had the same order of dimensionality, and both MV1 and MV2 performed similarly and

could capture the complementary information in both views to improve the performance

over single views.

In terms of computational cost, MV2 runs faster in both applications, especially in

FER. It also provides one additional parameter to tune, which is the relative dictionary

sizes in multiple views. This additional parameter gives higher flexibility to this approach

as it can be tuned over the training set to achieve higher performance. To avoid spending

too much time on tuning this parameter, the relative size of the dictionaries in multiple

views can be selected based on the relative performance of their corresponding single views,

and assigning more dictionary atoms to those views with higher performance in the single

view.

There are other multiview approaches in the literature, which are specifically applied to

emotion recognition, such as canonical correlation analysis (CCA) [170] and cross-modal

factor analysis (CFA) [121, 171]. However, the proposed multiview SDL is different from

these approaches as it provides a supervised framework of multiview learning by maximizing

the dependency of each view with the class labels, whereas CCA and CFA are unsupervised

and perform learning by merely maximizing the correlation between two views of the data.

Hence, these approaches are not directly comparable.
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Chapter 7

Conclusions and Future Work

In this chapter, the summary and conclusion for the thesis is provided followed by few

suggestions for the directions of future research.

7.1 Summary and Conclusion

Supervised Dictionary Learning. In this thesis a novel supervised dictionary learn-

ing was proposed. The proposed approach learns the dictionary in a space where the

dependency between the data and category information is maximized. Maximizing this

dependency has been performed based on the concept of the Hilbert Schmidt indepen-

dence criterion (HSIC). This introduces a data decomposition that represents the data in

a space with maximum dependency with category information. It was shown that the dic-

tionary can be learned in this space in closed form. The sparse coefficients can be learned

by using the lasso as given in (2.3). Our experiments using real-world data with varying

complexity shows that the proposed approach is very efficient in classification tasks, and

outperforms other unsupervised and supervised dictionary learning approaches in the lit-

erature. Also, the proposed approach is very fast and efficient in computation. However,

all these improvements are achieved at the cost of more reconstruction error, which is not

essential in classification tasks as the main goal is to achieve optimal discrimination not
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optimal representation. The reason for increasing reconstruction error in the proposed

approach is that in the optimization problem provided in (3.11), the reconstruction error

is compromized to find a more discriminative dictionary.

Kernelized Supervised Dictionary Learning. Moreover, It was shown how the pro-

posed SDL can be kernelized. This enables the proposed SDL to benefit from data-

dependent kernels. It was shown using some experiments that the proposed kernelized

SDL can significantly improve the results in difficult classification tasks compared to other

SDL approaches in the literature. To the best of our knowledge, this is the first SDL in the

literature that can be kernelized, and thus benefit from data-dependent kernels embedded

into the SDL.

Properties of the Supervised Dictionary Learning. The proposed approach learns

a very compact dictionary, in the sense that it significantly outperforms other approaches

when the size of the dictionary is very small. This shows that the proposed SDL can

effectively encode the category information into the learning of the dictionary such that it

can perform very well in classification tasks using few atoms. In the dictionary learning

literature, usually the dictionary learned is overcomplete, i.e., the number of elements in

the learned dictionary is larger than the dimensionality of the data/dictionary. In our

proposed SDL, due to the orthonormality constraint on the dictionary atoms, as in (3.11),

the dictionary cannot be overcomplete. However, there are two remarks here: first, as

discussed above, our dictionary is very compact and as the experiments show, the proposed

SDL performs very well at small dictionary size, which is usually below even a complete

dictionary size. This is a main advantage of the proposed approach, as small dictionary size

means lower computational cost. Second, the kernelized version of the proposed approach

can easily learn dictionaries as large as n, the number of data samples in the training set.

This is because the kernel computed on the data is of the dimensionality of n, which is

usually greater than the dimensionality of the data (p). Note that for all datasets provided

in this paper except the Olivetti face dataset, the number of data in the training set is

larger than the dimensionality of data (refer to Table 4.1). For the face dataset, it is worth

noting that a dictionary as small as 32 atoms leads to extremely good results using the
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proposed SDL, and overcompleteness is not necessary here.

Another advantage of the proposed approach is that there is only one parameter to be

tuned, which is the regularization parameter λ in the lasso. Since the dictionary is learned

in closed form, it is extremely fast to tune this parameter within the classification task or

by minimizing the reconstruction error. Other SDL approaches in the literature usually

have several parameters to be tuned, and since learning the dictionary and coefficients

have to be performed alternately and iteratively, it is very time-consuming to tune these

parameters using a cross-validation on the training set.

Through experimentation, it was shown that the proposed approach is less sensitive to

noisy labels compared to other SDL approaches. It was also shown that by increasing the

number of atoms in the dictionary, the proposed approach becomes less sensitive to noisy

labels.

As mentioned above, the proposed approach is computationally efficient and fast. This

is especially the case when either the dimensionality of the data (p) or the number of

data samples (n) is small. In these two cases, the computation of the eigenvectors of

Φ given in Algorithm 1 can be performed very efficiently. However, in case that both

p and n are large, efficient and fast algorithms such as recently proposed stochastic sin-

gular value decomposition (SSVD) [172] can be deployed to compute the eigenvectors of Φ.

Compression-Based Similarity Measure. A compression-based similarity measure

was proposed designed using MPEG-1, which is a 2D compressor. It preserves spatial

locality and connectivity of neighboring pixels. Through some experiments on textures, it

was shown that the proposed measure works properly on both small and large patch sizes.

Also, it was demonstrated that by embedding the proposed measure into the kernelized

version of the introduced SDL, it outperforms the rivals in texture classification applica-

tions.

Multiview Supervised Dictionary Learning. Eventually, an extension of the proposed

SDL to multiview representations was provided. Two multiview methods were formulated

based on either fusing features in the original spaces and then learning the dictionary
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and the coefficients (MV1), or learning one dictionary and the corresponding coefficients

per view, and then fusing representations in the spaces of learned dictionaries (MV2).

The relative performance of these two multiview approaches were discussed through some

examples of emotion recognitions applications.

7.2 Future Work

In this research, it was proposed to use L = Y>Y + I as the kernel on the labels. As

proposed in [173, 174], it is possible to encode the relationship among the classes into a

matrix M ∈ Rc×c, where c is the number of classes, and use L = Y>MY + I instead to

build up the kernel on the labels. This may consequently better encode the data structure

into the learning of the dictionary, and also reduce the sensitivity of the proposed approach

to noisy labels. As a future work, this new kernel will be implemented in the formulation

provided for Algorithm 1.

Also, most of the time in this research a linear kernel was used over the class labels,

except for the regression problem in the speech recognition application, where an RBF

kernel was used on the response variable. However, other kind of kernels can be investi-

gated. Also, it might be possible to give weights to class labels such that when the kernel

is learned over the class labels, more weight is given to some specific classes. This can be

particularly useful when the data is highly imbalanced, to improve the performance of the

classification system in terms of balanced classification error/accuracy.

The usefulness of data-dependent kernels was shown in a texture classification appli-

cation by designing a compression-based measure and incorporating it into the proposed

kernelized SDL. However, other kind of kernels can be designed in other applications and

this can be one direction for future work. Particularly, it could be very interesting if similar

kernels can be designed for the purpose of emotion recognition to improve its performance.

Also, an SVM with an RBF kernel was used on the sparse coefficients learned for

performing the classification task. However, model selection is still an open research prob-

lem [175]. For example, the RBF kernel may not fully utilize the sparsity of the coefficients.

In future work, other kernels for the SVM will be considered such that the classifier can
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benefit more from the sparse nature of data points submitted for classification, as suggested

in [72].

7.3 List of Publications

Several papers were published as the result of research carried out in this thesis. In the

following, the list of these publications is provided.

Book Chapter

• L. Sørensen, M.J. Gangeh, S.B. Shaker, and M. de Bruijne, Texture Classification

in Pulmonary CT, In: A. El-Baz and J.S. Suri (ed.) Lung Imaging and Computer

Aided Diagnosis, CRC Press, 2011.

Journal Paper

• M.J. Gangeh, A. Ghodsi, and M.S. Kamel, ”Kernelized Supervised Dictionary Learn-

ing”, Accepted in IEEE Trans. on Signal Processing, 2013.

Refereed Conference and Workshop Papers

• M.J. Gangeh, A. Sadeghi-Naini, M.S. Kamel, and C. Czarnota, ”Assessment of

Cancer Therapy Effects Using Texton-Based Characterization of Quantitative Ultra-

sound Parametric Images”, To Appear in Proceedings of International Symposium

on Biomedical Imaging: From Nano to Macro, pp. 1360-1363, Apr. 2013.

• M.J. Gangeh, A. Ghodsi, and M.S. Kamel, ”Supervised Texture Classification Us-

ing a Novel Compression-Based Similarity Measure”, International Conference on

Computer Vision and Graphics (ICCVG), LNCS, vol. 7594, pp. 379-386, Springer,

Heidelberg, 2012.

• H. Parsaei, M.J. Gangeh, D.W. Stashuk, and M.S. Kamel, ”Augmenting the Decom-

position of EMG Signals Using Supervised Feature Extraction Techniques”, Proceed-

ings of the 34th International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBS), pp. 2615-2618, 2012.
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• M.J. Gangeh, A. Ghodsi, and M.S. Kamel, ”Dictionary Learning in Texture Clas-

sification”, In: M. Kamel and A. Campilho (eds.), 8th International Conference on

Image Analysis and Recognition (ICIAR), LNCS, vol. 6753, pp. 335-343, Springer,

Heidelberg, 2011.

• M.J. Gangeh, L. Sørensen, S.B. Shaker, M.S. Kamel, and M. de Bruijne, ”Multiple

Classifier Systems in Texton-Based Approach for the Classification of CT Images

of Lung”, In Proceedings of the Medical Computer Vision: Recognition Techniques

and Applications in Medical Imaging, (MCV 2010), LNCS, vol. 6533, pp. 153-163,

Springer, Heidelberg, 2010.

• M.J. Gangeh, L. Sørensen, S.B. Shaker, M.S. Kamel, M. de Bruijne, and M. Loog, ”A

Texton-Based Approach for the Classification of Lung Parenchyma in CT Images”,

In: T. Jiang, N. Navab, J.P.W. Pluim, and M.A. Viergever (eds.), 13th Interna-

tional Conference on Medical Image Computing and Computer Assisted Intervention

(MICCAI), LNCS, vol. 6361, pp. 595-602, Springer, Heidelberg, 2010.

• M.J. Gangeh, A.H. Shabani, and M.S. Kamel, ”Nonlinear Scale Space Theory in

Texture Classification Using Multiple Classifier Systems”, In: A. Campilho and

M. Kamel (eds.), 7th International Conference on Image Analysis and Recognition

(ICIAR), LNCS, vol. 6111, pp. 147-156, Springer, Heidelberg, 2010.

• M.J. Gangeh, M.S. Kamel, and R.P.W. Duin, ”Random Subspace Method in Text

Categorization”, 20th International Conference on Pattern Recognition (ICPR), pp.

2049-2052, 2010.
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