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Abstract

We propose a one-dimensional model to describe the sorption of a solvent by a poly-
meric membrane, followed by polymer swelling and drug release. We assume that the
solvent diffuses into the membrane and induces a stress driven diffusion, that causes a
non-Fickian mass flux. We assume that the drug is present in two states (dissolved and
undissolved) and that its transport occurs by Fickian diffusion and non-linear dissolu-
tion. Polymer swelling is tracked with a volume conservation equation. The system of
partial differential equations that define the model is numerically solved.

A qualitative analysis of the dependence of the solutions on the parameters of the
model shows a complete agrement with the expected physical behavior.
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1 Introduction

In this paper we study a one-dimensional model for the diffusion of a solvent into a polymeric
membrane containing an initial drug load, followed by drug release. One of the main
problems in controlled drug delivery is the accurate description of this kind of phenomena.
By understanding the physical aspects of drug release, mathematical models can be obtained
in order to help the design of polymeric drug carriers. In the literature several models have
been proposed to predict drug release kinetics [7, 8, 11, 12, 13, 17]. The model we propose
takes into consideration the viscoelastic properties of the polymer as we assume that the
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penetrant diffuses into the membrane and causes a deformation that induces a non-Fickian
mass flux. Assuming that drug release starts as soon as the solvent diffuses into the polymer
we combine the non-Fickian sorption with a Fickian desorption, a non-linear dissolution and
polymer swelling.

Several authors [2, 4, 14, 15, 16] agree that two main phenomena must be taken into
consideration when describing the diffusion of a liquid solvent into a polymer. First the rate
of diffusion of the solvent and second the change in the internal structure of the polymer. As
the classical Fick’s law does not take into consideration the second phenomenon, a modified
flux resulting from the sum of a Fickian flux JF and a non Fickian flux JNF must be
considered, that is

∂Cs

∂t
= −

∂

∂x
(JF (Cs) + JNF (σs)) , (1)

where Cs stands for the concentration of the solvent, σs stands for the stress, JF (Cs) =
−(D(Cs)

∂
∂x

Cs) and JNF (σs) = −(Dv(Cs)
∂
∂x

σs). The functions D(Cs)and Dv(Cs) denote
the Fickian diffusion coefficient and a viscoelastic diffusion coefficient respectively.

We will introduce the strain ε as a third variable in (1) by considering a constitutive
relationships between stress and strain. Many such relationships have been proposed in the
literature [3, 5, 9, 10]. In this paper we consider a Boltzmann integral of type

σs(t) = −

∫ t

0
E(t− r)

∂ε

∂r
(r)dr , (2)

where E(t) is the relaxation modulus corresponding to a Maxwell-Wiechert model [1].
In order to eliminate the strain as variable when (2) is introduced in (1), we consider a
non-linear functional relation between strain and concentration

ε = f(Cs) ,

where f will be obtained from physical considerations on polymer properties.
In Section 2 we establish a mathematical model to describe the absorbtion, swelling of

the membrane and drug release. In Section 3 we propose concentration dependent functional
relations for the strain and the viscoelastic diffusion coefficient. In Section 4 an implicit-
explicit (IMEX) numerical method is used to numerically solve the model. In Section 5 some
plots are shown to illustrate the behavior of the numerical solutions. Finally in Section 6
some conclusions are presented.

2 Mathematical Model

Let us consider a polymeric membrane, with initial drug loading C0
sd. As dissolved drug

diffuses out, solid (undissolved) drug dissolves. The following assumptions are made in the
model: (a) the transport of liquid within the membrane occurs by non-Fickian diffusion;
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(b) the transport of drug out of the membrane occurs by Fickian diffusion and non-linear
dissolution; (c) a perfect sink condition is maintained for the drug and an equilibrium
concentration is maintained for the liquid.

The evolution of solvent penetration, drug diffusion and dissolution are described by
the following equations in the domain Ω ⊂ R and t > 0,

∂Cs

∂t
=

∂

∂x

(

Ds(Cs)
∂Cs

∂x
+Dv(Cs)

∂σs
∂x

)

, (3)

∂Cd

∂t
=

∂

∂x

(

Dd(Cs)
∂Cd

∂x

)

+Kd

(

Csd − Cd

Csd

)

Cs , (4)

∂Csd

∂t
= −Kd

(

Csd − Cd

Csd

)

Cs , (5)

where Cd, Csd denotes the concentration of dissolved and undissolved drug respectively,
Ds, Dd the diffusion coefficients of the solvent and dissolved drug respectively and Kd the
constant dissolution rate of the drug.

Equations (3)-(5) are completed with initial conditions

Cs = C0
s , Cd = 0, Csd = C0

sd : for t = 0, −L0 ≤ x ≤ L0 , (6)

where C0
s , C

0
sd ∈ R are positive constants. Symmetry conditions are applied at x = 0, hence

we consider

∂Cs

∂x
=

∂Cd

∂x
= 0 : for t > 0, x = 0 . (7)

At the membrane surface the boundary conditions are

Cs = Ce
s , Cd = 0 : for t > 0, x = L(t) , (8)

where Ce
s ∈ R is a positive constant representing the concentration of the liquid agent in

the exterior of the membrane and L(t) is the thickness of the membrane for a given t.
In order to track the moving front due to swelling, we consider the following volume

conservation equation

L(t) =

∫ L(t)

0

[

1

ρs
Cs(x, t) +

1

ρd
(Cd(x, t) + Csd(x, t))

]

dx ,

where ρs and ρd denote the density of solvent and the drug respectively. Then taking time
derivative we deduce

∂L(t)

∂t
=

1

1−
(

Ce
w

ρs
+ Csd(L(t))

ρd

)

[

1

ρs

(

Ds(C
e
s )
∂Cs

∂x
(L(t), t) +Dv(C

e
s )
∂σs
∂x

(L(t), t)

)

+
1

ρd
Dd(C

e
s )
∂Cd

∂x
(L(t), t)

]

. (9)
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3 Viscoelastic behavior

In order to model the viscoelastic behavior of the polymer, we consider a Maxwell-Wiechert
model [1] with m+ 1 arms in parallel as shown in figure 1. Its relaxation modulus E(t) is
represented by

E(t) =

m
∑

i=1

Eie
−t

τi + E0 , (10)

where the E′
is and the µ′

is respectively denote the Young modulus of the spring elements
and the viscosity of the dampers. The parameters τi =

µi

Ei
represent the relaxation times

associated to each of the m Maxwell fluid arms and E0 stands for the Young modulus of
the free spring.

Figure 1: Maxwell-Wiechert model

To relate polymer deformation ε and solvent concentration Cs, we begin by assuming
that the deformation ε occurs only in one direction, thus we have

ε =
∆x−∆x0

∆x0
, (11)

where ∆x0 stands for the thickness of Ω in the dry state and ∆x for the thickness after
swelling.

Let V0 and Vs represent respectively the volume of the membrane in the dry state and
the volume of solvent absorbed up to time t. From (11) it follows that ε = Vs/V0.

Let ms and ρs denote the solvent mass and density respectively. As Vs = ms/ρs, we
deduce

ε =
ms

ρsV0
, (12)

and then considering that Cs is defined by Cs = ms/(V0 + Vs), we obtain

ε = f(Cs) =
Cs

ρs − Cs
. (13)

c©CMMSE ISBN: 978-84-616-2723-3



J.A. Ferreira, M. Grassi, E. Gudiño, P. de Oliveira

Then from (10) and (13) we rewrite (2) as

σs = −

(

m
∑

i=0

Ei

)

∇fs +

∫ t

0

(

m
∑

i=1

Ei

τi
e
− t−s

τi

)

∇fs(s)ds . (14)

To establish a functional relation for the viscoelastic diffusion coefficient Dv we begin
by assuming that there exists a stress gradient ∇σ. This implies the existence of a velocity
field ν. Then the non-Fickian flux JNF can be interpreted as a convective field of form

JNF = νCs . (15)

The velocity field ν can be computed using the Hagen-Poiseuille equation and thus we
have

ν = −
L2

8µ̂
∇p , (16)

where L stands for the length of a virtual cross section of the polymeric sample available for
the convective flux, p is the pressure drop and µ̂ represents the viscosity of a polymer-solvent
solution characterized by a polymer concentration equal to Cs (local solvent concentration).
Thus from (15), (16) and identifying the pressure p with the viscoelastic stress σs we con-
clude that

Dv(Cs) =
L2Cs

8µ̂
. (17)

From (11) and (13), we have

Vs =
Cs

ρs − Cs
V0 ,

and as V0 = ∆x0S, we have
Vs

∆x0
=

Cs

ρs −Cs
S . (18)

The first member in (18) can be interpreted as a virtual cross section Sv available for
convective flow. As Sv = L2 and S = L2

0 where L0 is the length of the dry sample, we
deduce from (17) and (18) that

Dv(Cs) =
C2
s

ρs − Cs

L2
0

8µ
. (19)

For the Fickian diffusion coefficients Ds(Cs) and Dd(Cd), a Fujita-type [6] exponential
dependence is assumed with

Ds(Cs) = Deqsexp(−βs(1−
Cs

Ce
s

)) , (20)

Dd(Cs) = Deqdexp(−βd(1−
Cs

Ce
s

)) , (21)

where Deqs , Deqd represent respectively the diffusion coefficient of the solvent and the dis-
solved drug in the fully swollen sample and βs, βd are positive dimensionless constants.
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4 Numerical scheme

In this section we propose a coupled IMEX method to solve the initial boundary value
problem (3)-(9). We denote by Csh , Cdh and Csdh the full-discrete approximations of
Cs, Cd and Csd respectively.

In [0, T ] we consider a grid J = {tn, n = 0, 1, ...,M} with t0 = 0, tM = T and tn−tn−1 =
∆t. We denote by D−t the usual backward finite difference operator with respect to the
time variable t.

To discretize the spatial domain, as the boundary is changing in time, we consider in
each interval [0, L(tn)] a grid I(tn) = {xi, j = 0, 1, .., N(tn)} with x0 = 0, rN(tn) = L(tn)
and xj − xj−1 = ∆x. We denote by D−x and Dx respectively the usual backward and
forward finite difference operators with respect to the space variable x.

The IMEX method is defined by

D−tC
n
sh
(xj) = Dx

(

Ds(MhC
n−1
sh

(xj))D−xC
n
sh
(xj)

)

+Dx

(

Dv(MhC
n−1
sh

(xj))D−xσ
n−1
sh

(xj)
)

, (22)

D−tC
n
dh
(xj) = Dx

(

Dd(MhC
n
sh
(xj))D−xC

n
dh
(xj)

)

+Kd

(

Cn
sdh

(xj)− Cn
dh
(xj)

Cn
sdh

(xj)

)

Cn
sh
(xj) , (23)

D−tC
n
sdh

(xj) = −Kd

(

Cn
sdh

(xj)− Cn
dh
(xj)

Cn
sdh

(xj)

)

Cn
sh
(xj) , (24)

where

Mhuh(xj) =
1

2
(uh(xj−1) + uh(xj)).

We couple (22)-(24) with initial conditions

C0
sh

= C0
s , C0

dh
= 0, Csdh = C0

sd : for t = 0, 0 ≤ xj ≤ L0 , (25)

and boundary conditions

Csh = Ce
s , Cdh = 0 : for n > 0, xj = L(tn) , (26)

DxCsh = DxCdh = 0 : for n > 0, xj = 0 . (27)

The moving front is tracked with the following discretization of equation (9):

L(tn+1) =
∆t

1−
(

Ce
w

ρs
+ Csd(L(tn))

ρd

)

[

1

ρs
Ds(C

e
s)D−xCsh(L(tn), tn)

+
1

ρs
Dv(C

e
s)D−xσsh(L(tn), tn) +

1

ρd
Dd(C

e
s )D−xCdh(L(tn), tn)

]

+ L0 .(28)
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We compute the concentration profiles at time step tn using the known concentration
profiles at tn−1 with boundary conditions (26) and (27). Then we use (28) to obtain the
new front position for the next time step.

5 Numerical Results

In this section we exhibit numerical results for the IBVP (3)-(9) using the method (22)-
(28). In the Maxwell-Wiechert model we consider m = 3, that is three Maxwell fluid arms
in parallel with a free spring. The following values for the parameters have been considered,

L0 = 1× 10−3 m, Deqs = 3.74 × 10−9 m2/s, Deqd = 2.72 × 10−9 m2/s, βs = 0.5,

βd = 0.6, µ̂ = 1× 105 Pas, E1 = 1000 Pa, E2 = 600 Pa, E3 = 400 Pa, E0 = 1000 Pa,

µ1 = 5 Pas, µ2 = 3 Pas, µ3 = 2 Pas, ρl = 1000 kg/m3, ρp = 1175 kg/m3,

ρd = 1400 kg/m3, Ce
s = 450 Kg/m3, C0

s = 0 Kg/m3, C0
sd = 400 Kg/m3,

Kd = 1× 10−1 s−1, ∆t = 0.015 s and ∆x = 1× 10−5 m .

In Figure 2 we plotted the behavior of the concentration of the solvent as it diffuses
into the membrane for different values of t. The left part of the domain correspond to the
inner part of the membrane where symmetry conditions were considered. The right part
correspond to the swelling front where the constant source of concentration Ce

s is assume.
We observe that the solutions develop from low levels of concentration to high levels of
concentration as expected, since the transport occurs from right to left in the plot. Also
the amount of solvent inside the membrane increases with time.
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Figure 2: Cs for different values of t
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In Figure 3 we show a plot of the concentration of dissolved drug inside of the membrane
for different values of t. As before, the left part of the domain correspond to the inner part
of the membrane where symmetry conditions were considered. The right part correspond to
the swelling front where a perfect sink condition is assumed. We observe that as expected
regions where the concentration of dissolved drug is high correspond to regions where the
concentration of the solvent is high. As we are removing the dissolved drug that reaches
the moving front, we also observe that after some time the amount of dissolved drug inside
of the membrane decreases, since the initial drug load C0

sd is constant.
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Figure 3: Cd for different values of t

In Figure 4 we present a plot of the concentration of solid drug inside of the membrane
for different values of t. We observe that the solutions are consistent with the plots of the
concentration for the solvent and dissolved drug. Regions where the concentration of solid
drug is low correspond to regions where the concentration of solvent and dissolved drug are
high and vice versa.

In Figure 5 we plotted the dimensionless movement in time of the swelling front defined
by L(t)/L0. We observe that the initial solvent absorption causes an initial rapid growth of
the swelling followed by the reach of an equilibrium state.

By Md/Msd0(t) we represent the relative drug release at time t, defined as

Md/Msd0(t) = 1−
1

L0C0
sd

∫ L(t)

0
(Cd(x, t) + Cs(x, t)) dx .

and by Ms/M∞(t) the mass of the liquid solvent inside of the matrix at time t, defined as

Ms/M∞(t) =
1

L0Ce
s

∫ L(t)

0
Cs(x, t)dr dx .
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Figure 4: Csd for different values of t
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Figure 5: Swelling front

In Figures (6) and 7 we show respectively plots of L(t)/L0 and Md/Msd0 as functions
of E0. We observe that L(t)/L0 is a decreasing function of E0. As the swelling is decreases,
more dissolved drug accumulates at the moving front where the perfect sink condition is
assumed. Then as we observe in Figure 7 the relative drug release is an increasing function
of E0.

In order to compare the effects of swelling on the drug release in what follows we
consider that the boundary is fixed, that is L(t) = L0 for all t. In Figures (8) and 9 we
plotted respectively Ms/M∞ and Md/Msd0 as functions of E0. We observe that Ms/M∞

is a decreasing function of E0. As less solvent diffuses into the matrix, a smaller amount
of dissolved drug is present inside of the membrane. Since the effect of swelling is not
considered, the amount of drug that accumulates at the moving front decreases. Then as
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Figure 6: Swelling front, L(t)/L0 as a function of
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Figure 7: Relative mass of drug released, Md/Msd0

as a function of E0

we observe in Figure 9 the relative drug release is a decreasing function of E0.
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Figure 8: Mass of solvent inside of the membrane,
Ms/M∞ as a function of E0 with L(t) = L0
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Figure 9: Relative mass of drug released, Md/Msd0

as a function of E0 with L(t) = L0

In order to illustrate the effects of drug release in the swelling we consider that no
dispersed drug is present in the membrane, that is C0

sd = 0. In Figures 10 and 11 we plotted
respectively Ms/M∞ and L(t)/L0 as functions of E0. We observe that in both cases they
are decreasing functions of E0. If we compare Figures 10 and 8 we observe that the effects
of E0 over the solutions are more significant when we consider swelling. Comparing Figures
6 and 11 we observe that when no drug is present the membrane shows more swelling for
the same values of E0.

6 Conclusions

In this paper, the drug release from a polymeric membrane is described by a mathematical
model consisting of a system of partial differential equations coupled with initial conditions
over a moving boundary that represents the swelling of the polymer. The viscoelastic
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Figure 10: Mass of solvent inside of the membrane,
Ms/M∞ as a function of E0 with C0
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Figure 11: Swelling front, L(t)/L0 as a function of
E0 with C0

sd
= 0

behavior of the polymer is defined by considering that the transport of solvent into the
membrane occurs by non-Fickian diffusion. The swelling associated to solvent uptake is
tracked with a volume conservation equation and the drug release is described with an
equation that combines Fickian drug diffusion (associated to solvent uptake) and non-linear
dissolution. The qualitative behavior of the model is in agreement with expected physical
behavior. The model can be used to predict drug release kinetics and help in drug delivery
design.
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