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Abstract—Edge preserving regularization using partial differ-
ential equation (PDE) based schemes are now widely used in
image restoration. We propose an adaptive multiscale variable
exponent-based anisotropic variational PDE scheme that avoids
current limitations such as over smoothing and blockiness arti-
facts while still retaining and enhancing edge structures across
scale. The innovative model automatically balances between L2

Tikhonov and L1 total variation (TV) regularization effects using
scene content information by adopting a spatially varying edge
coherence exponent term constructed from the eigenvalues of
the smoothed structure tensor. The multiscale exponent model
considered here leads to a novel denoising method which pre-
serves edges and provides selective denoising without generating
artifacts for both additive and multiplicative noise models. Math-
ematical analysis of the proposed method in variable exponent
space demonstrates its robustness, unconditional stability of the
scheme supporting large (time evolution) step sizes and that the
approach theoretically satisfies the maximum-minimum principle
which guarantees that artificial edge regions are not created.
Extensive experimental results on synthetic and real biomedical
images indicate that the proposed Multiscale Tikhonov-Total
Variation (MTTV) and Dynamical MTTV (D-MTTV) schemes
perform better than sixteen other denoising algorithms in terms
of several metrics including signal-to-noise ratio improvement
and structure preservation. Promising extensions to handle
multiplicative noise models and multichannel imagery are also
provided.

I. INTRODUCTION

IMAGE restoration and enhancement to improve image
quality under different noise models is a critical require-

ment across many image processing application domains in-
cluding defense, space and biomedicine. Regularization and
partial differential equations (PDEs) based schemes are very
popular for removing noise and directionally smoothing im-
ages [1], see [3], [4] for a review. Despite the success
enjoyed by these methods, there are problems related to edge
and fine structure preservation, staircasing artifacts or over-
smoothing of images. Variational regularization approaches
use the classical quadratic Tikhonov [5] and total variation
(TV) function studied by Rudin et al [6]. The over smoothing
nature of the Tikhonov functional results in noise removal but
at the expense of edge dislocation. On the other hand the TV
regularization functional does a good job in retaining edges
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while sometimes creating blocky or staircasing artifacts in
homogeneous regions. Various remedies have been proposed
for mitigating the drawbacks of the functionals including
combining both Tikhonov and TV functionals in an adaptive
way. Note that the Tikhonov regularization corresponds to
p = 2 whereas the TV functional corresponds to p = 1 using
the traditional Lp-norm of the gradient image. That is, the
general functional can be written in terms of the gradient p-
norm

min
u
E(u) =

∫
Ω

|∇u|p dx, (1)

where the minimizer u is the restored image, and Ω ⊂ R2 is
the image domain with p ≥ 1.

Recently, the pseudo-p-norm with 0 < p < 1 has been
advocated by some researchers for better regularization of im-
ages [7]–[10]; see [11] for a review of different regularization
terms applicable for image segmentation. On the other hand,
generalizations of the exponent to adaptively vary p ∈ (1, 2]
has also been considered. The general energy minimization
model can be written as,

min
u
E(u) =

∫
Ω

Φ(x,∇u) dx+
µ

2

∫
Ω

f(u, u0) dx (2)

where f denotes the data fidelity function with u0 being the
noisy input image, and depends on the type of noise process
contaminating the image. The first term Φ is a gradient-based
regularization term. Nonstandard growth functionals like

Φ(x,∇u) = |∇u|p(|∇u(x)|) (3)

where p(·) is a smooth monotonically decreasing function
such that lims→0 p(s) = 2 and lims→∞ p(s) = 1 were first
proposed by Blomgren et al., [12]. Bollt et al [13] used
smoothed gradients in the exponent function p(|∇Gσ ? u0|)
and p(|∇Gσ ? u|). Chen et al [14] utilized the following
regularization,

Φ(x,∇u) =

{
1

p(x) |∇u|
p(x) if |∇u| < ε,

|∇u| − εp(x)−εp(x)

p(x) if |∇u| ≥ ε,
(4)

with ε > 0 is fixed, and the exponent is chosen as,

p(x) = 1 +
1

1 + k |∇Gσ ? u0(x)|
. (5)

where k > 0 is a parameter. This functional is connected to
the classical Chambolle and Lions model [15], see also [16].
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Recently, Li et al [17] used a variable exponent functional
p = p(x) which is studied in the Musielak-Orlicz spaces. Guo
et al [18] studied an adaptive exponent based on anisotropic
diffusion models, see also [16], [19]–[23] for related adaptive
anisotropic diffusion PDE models. Tremendous progress has
been made on the variable exponent spaces, corresponding
functionals, and p(x)-Laplacian diffusion models with appli-
cations in various applied mathematical areas, as reviewed
in [24].

In this paper our novel contribution is to develop an
adaptive variable exponent functional which automatically and
continuously balances between edge and corner preserving L1

total variation and L2 Tikhonov-smoothing using image-based
local feature information that is multiscale and anisotropic.
The exponent p(x) is chosen according to the pointwise
structure tensor computed from the image which allows the
regularization method to denoise the image by modifying the
amount of smoothness automatically to fit different image
features. The smoothed structure tensor can identify different
image features such as flat, edge and corner regions [25].
The variational model which we derive adapts between total
variation which is edge preserving to the quadratic Tikhonov
case which helps in removing noise effectively. In contrast
other gradient only choice of exponents [14], [17], [26] inherit
the undesirable blockiness artifacts associated with TV mod-
els, whereas our multiscale structure tensor approach provides
better image restoration that preserves edge and corner regions
more accurately. The adaptive anisotropic models such as
Chen et al [26] or Guo et al [18] are adhoc methods and
lack a strong theoretical foundation in contrast to the model
proposed in this paper.

The proposed adaptive exponent operator can be combined
with other regularization functions which makes the proposed
approach a global image model for selective smoothing and
restoration. Well-posedness results for our adaptive smoothed
structure tensor (SST) driven variational - PDE model are stud-
ied. Mathematical analysis of the proposed method in variable
exponent spaces is described for our method. Experimental
results on different noisy images indicate the advantage of
the proposed adaptive variable exponent variational - PDE
model. Moreover, we extend it to handle multichannel and
multiplicative noise corrupted images. Further applications
in smoothing based thresholding segmentation on real and
biomedical images highlight the applicability of the method.
The proposed approach is proven to provide better edge pre-
serving smoothing with effective noise removal as illustrated
by variety of examples.

The rest of the paper is organized as follows. Section II
introduces the structure tensor driven variational scheme along
with detailed mathematical analysis of the variational - PDE
scheme. Section III illustrates the implementation details
along with extensive noisy image denoising, segmentation and
restoration results. Finally, Section IV concludes the paper
indicating future directions.

(a) Corner (b) Steps

(b) Circles (b) Line− Circle
Fig. 1. Structure tensor components characterize shape features in a given
image. In each sub-figure we show the entries of the tensor (6) as images to
the right of various synthetic (noise-free) images including Corner, Steps,
Circles, and Line− Circle.

II. MULTISCALE TIKHONOV-TOTAL VARIATION (MTTV)
BLENDED RESTORATION

A. Adaptive smoothed scale space structure tensor

The p(x) growth regularization functionals studied before
typically are gradient based, i.e., p(x) = p(|∇u(x)|) or
p(x) = p(|Gσ ?∇u(x)|). Thus, the edge maps given by
these can inherit the traditional problems associated with
such gradient based functionals such as blocky artifacts [27],
edges dislocation [22], corner smoothing [28], etc. To mitigate
such problems one can consider the smoothed structure tensor
(SST),

Kσ(u) = Gσ ? (∇u∇uT ) =

(
Gσ ? u

2
x Gσ ? uxuy

Gσ ? uyux Gσ ? u
2
y

)
(6)

where Gσ(x) = (σ
√

2π)−1 exp (− |x|2 /2σ2) is the 2D Gaus-
sian kernel, ? denotes the convolution operator and super-
script T is the transpose. The use of the structure tensor
in locally adaptive regression steering kernels for adaptive
image filtering is noted as being exceedingly robust to noise
and perturbations of the data [29]. In Figure 1 we show the
entries of the matrix as images for different images with
commonly occurring features. Let the eigenvalues of the SST
Kσ be (λ+, λ−), with eigenvectors (θ+, θ−). The eigenvalues
(λ+, λ−) which are the maximum and minimum respectively,
describe average contrast within a neighborhood of size O(σ)
along the eigen-directions. The eigenvectors (θ+, θ−) describe
the orientation which maximizes gray value fluctuations and
preferred local direction of smoothing respectively. The SST
characterizes different image regions based on the range of
eigenvalues to indicate flat, edge and corner regions. The SST
has been advocated as an unifying choice and represents truly
anisotropic features as evidenced in Figure 1. We refer to [30]
for more discussion on anisotropic diffusion using SST.

Remark 1. The SST characterizes orientation energy and is
also called the second moment matrix with the pre-smoothing
by Gσ in each entry to avoid the ill-posedness of computing
derivatives. Thus, this smoothing makes it insensitive to small
scale details less than O(σ). This σ parameter is referred to
as integration scale and it provides a window size over which
orientation is analyzed.

Remark 2. An additional Gaussian convolution of the ten-
sor entries with standard deviation ρ can also be incorpo-



MULTISCALE TIKHONOV-TOTAL VARIATION IMAGE RESTORATION USING SPATIALLY VARYING EDGE COHERENCE EXPONENT SCHEME 3

(a) σ = 1 (b) σ = 3 (c) σ = 5 (d) σ∗ (11)

Fig. 2. Effect of parameter σ on the eigenvalue λ+ of the SST matrix (6)
for noise-free (top row) and noisy std σn = 30 (bottom row) Cameraman
image. λ+ is shown here with single scale based SSTs (6) (a-c), and multiscale
version of the SST (11).

rated [31],
Jρ,σ(u) := Gσ ? (∇uρ∇uTρ ),

where uρ := Gρ ? u is the additional smoothing and ρ can be
thought of as noise scale.

B. Growth variational regularization using adaptive expo-
nents

Following the above discussion, we make use of a vari-
able exponent based minimization functional driven by the
smoothed structure tensor. The proposed non-standard growth
variational functional,

min
u
E(u) =

∫
Ω

|∇u|p(x,σ)
dx+

µ

2

∫
Ω

(u− u0)2 dx (7)

where µ ≥ 0 is the regularization parameter; this variational
PDE operator is local, non-linear, anisotropic and spatially
varying. The quadratic data fidelity term in Eqn. (7) is by the
additive Gaussian model1 and can also be modified accord-
ing to other noise models, see Section III-C2. The variable
exponent function is chosen as,

p(x, σ) = 1 + exp

(
− 2 λ+(x, σ) λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)
× exp

(
−2

(
λ+(x, σ)− λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)2)
(8)

where parameter k > 0 is added for numerical stability.
Here, we use the notation p(x, σ) to indicate that the

eigenvalues of the SST matrix (6) are computed for the
particular scale σ > 0. The first exponential term is

H(x, σ) =

(
λ+(x, σ) λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)
=

detKσ

traceKσ
(9)

which we note is the harmonic mean of the eigenvalues (and
is also referred to as the Förstner corner operator [31] or
Noble corner measure [32], [33] that is sometimes used as an
alternative to the closely related Harris corner measure [34])
and emphasizes responses to local edge and corner structures

1Additive noise, u0(x) = u(x) + n(x). Noise follows a Gaussian
distribution with mean zero and variance σ2

n, i.e., n(x) ∼ N (0, σ2
n) =

(σn
√

2π)−1e(−|x|
2/2σ2

n).

(a) Images (b) k = 0.5 (c) k = 0.05 (d) k = 0.005

Fig. 3. Effect of parameter k on the variable exponent p(x, σ∗) in Eqn. (12)
for noise-free (top row) and noisy σn = 30 (bottom row) Cameraman
image.

in the image that contain high spatial frequencies. The second
term

C(x, σ) =

(
λ+(x, σ)− λ−(x, σ)

k + λ+(x, σ) + λ−(x, σ)

)2

(10)

is known as coherence and we normalize the eigenvalues to
[0, 1] before computing the coherence based exponent (8). The
motivation for introducing the variable exponent p(x, σ) ∈
(1, 2] based on the structure tensor (8) is due to the fact that
the amount of regularization on the gradient norm can be
automatically adjusted according to different image features.
The following image features are adaptively handled by the
above SST driven variational scheme:
• If 0 � λ− ≤ λ+, then a corner is present as both

eigenvalues are large and p(x, σ) → 1 which in turn
implies that corner points are not smoothed out with H
large and C ≈ 1.

• If 0 ≈ λ− � λ+, then an edge is present and p(x, σ)→
1.135 = (1+1/e2), thus object boundaries are preserved
with H ≈ 0 and C ≈ 1.

• Finally, if both λ+, λ− ≈ 0, then it represents homo-
geneous or noisy regions and p(x) → 2 which implies
stronger smoothing and hence the noise is removed from
flat regions with H ≈ 0 and C ≈ 0.

C. Multiscale TTV (MTTV)

Figure 2 shows the effect of pre-smoothing parameter σ
used in the SST (6) on λ+ eigenvalue for the Cameraman
test image. As can be seen a right balance of σ is important,
as the edge map provided by the exponent (8) depends on the
eigenvalues computed from the SST (6). Larger σ values tend
to blur the edge map and smaller can miss certain edge pixels.
We instead use a multi scale strategy for selecting the right
pre-smoothing parameter σ which is described in detail next.

Multi-scale structure tensor responses are computed by
selecting a range of Gσ where σ is the standard deviation
of the Gaussian distribution.

σ∗ = argmax
σ

|λ+(x, σ)| (11)

We take the corresponding λ− value and use it in the exponent,

p(x, σ∗) = 1 + exp (−2H(x, σ∗)) exp (−2C(x, σ∗)) (12)

and utilize the minimization of the functional (7). Controlling
the range of σ in (11) is important for getting the desired
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response and it is dependent on the amount of noise. The
normalized derivatives as shown in Eqn. (6) assume local
maxima over scales [35], [36] which corresponds to locally
strongest normalized feature response. Taking the maximum
over a range of σ results in responses from multiple scales.
Natural images have a variety of edge and corner features of
different sizes and intuitively, using a range of scales will help
capture responses that a single scale cannot do so.

Figure 3 shows the test image Cameraman used in our
experiments and its corresponding edge map shown for the
exponent p(x, σ∗) defined in Eqn. (12) for different parameter
values k with multi scale SST based eigenvalues (11). For
medium noise level 10 ≤ σn ≤ 30, the threshold value
k = 0.05 works fine. As can be seen the flat regions are
indicated by the value greater than one and other edge and
ramp regions are correctly labeled as unity. Although the
adaptive SST driven variable exponent p(x, σ∗) in Eqn. (12)
is utilized in the simple energy minimization of the form in
Eqn. (7), it can be used in other variational and PDE models
as well2. Note that when the exponent attains the critical value
one (p(x) → 1, the TV case) the existence of a solution
to the corresponding minimization problem (7) is non-trivial,
see [37]. It can be seen that p(x) ∈ (1, 2] and thus the
smoothness is restricted from the TV case, p = 1, which can
lead to staircasing in the results. Detailed analysis (existence
theorems, decay of solutions) of the proposed MTTV method
using multiscale exponents in the variational PDE model for
blended restoration are given in the Appendix.

Remark 3. The best scale at each pixel (11) can also be de-
termined by taking the maximum response of each eigenvalue
separately (See Chap. 13 in [38]):

λmax+ = argmax
σ
|λ+(x, σ)| , λmax− = argmax

σ
|λ−(x, σ)| .

Surprisingly, we observed that using a mixture of scales for
the min and max eigenvalues, in Eqn. (8), instead of the same
scale as shown in Eqn. (11) leads to visually similar results
for edge preserving smoothing.

Remark 4. The best scale can be found by maximizing the
coherence function directly over scale space instead of for
the largest eigenvalue. But this selection of σ∗ may be more
sensitive to noise.

III. EXPERIMENTAL RESULTS

A. Discretization and implementation details

To implement the proposed SST feature driven varia-
tional exponent Multiscale Tikhonov Total Variation (MTTV)
method with p(x) in (12) computed from the initial noisy
image u0 and the dynamic D-MTTV method using p(x)
computed from the previous iteration image u(x, t−1) we use
the corresponding dynamical PDE (24-26). We use an explicit
finite difference approximation scheme (central differences for
the spatial variables, forward difference for the time variable)
to solve the above PDE. Following [39] we can prove that the

2In what follows we use the simplified notation p(x) for the exponent with
the understanding it represents the multi scale exponent (12).

(a) Noisy (b) TIREG (1), p = 2 iteration 10, 40 (c) TVREG (1), p = 1 iteration 100,

200

(d) p = 1.25 (e) p = 1.5 (f) p = 1.75 (g) p(x) (h) D-MTTV

Fig. 4. Comparison results for additive Gaussian noise corrupted synthetic
Shapes gray scale image with classical regularization methods and different
scalar p-exponent based regularizations. (a) Noisy image (b) TIREG (1) with
p = 2 (c) TVREG (1) with p = 1 (d)-(f) Different scalar p value based
results (g) Multiscale SST based exponent p(x) (12) from noisy image for
scales σ = {1, 2, 3, 4} (h) D-MTTV. Top row: images Bottom row: surface.

discrete scheme is unconditionally stable and thus the time
step size (taken here 4t = 0.2) can be chosen big without
worrying about instabilities. Moreover, the discrete scheme
satisfies the maximum-minimum principle, which ensures that
artificial edge regions are not created during the restoration
process. For images with Gaussian white noise level σn = 10
to 30 we set k = 0.05 and the range3 of σ in (11) to be the
interval [1, 4].

The smoothing with Gaussian kernel in (6) is approximated
by a fast box filtering in all our experiments4. Our scheme
takes on average 0.2 seconds for a gray scale image of size
256 × 256 using a MATLAB implementation on a 2.3 GHz
Intel Core i7, 8GB 1600 MHz DDR3 Mac Laptop. All the
schemes listed below for comparison were solved using their
corresponding time dependent PDE formulation and explicit
finite difference schemes [39]. The termination condition5

for all the schemes is chosen automatically according to the
stopping criteria

∥∥ut+1 − ut
∥∥

2
≤ 10−4.

B. Gaussian noise removal

1) Comparative results: We first compare our scheme
with classical schemes such as the regularization methods of
Tikhonov (TIREG, p = 2 in (1)), total variation of Rudin et
al [6] (TVREG, p = 1 in (1)) as well as scalar p exponent
based regularization. Figure 4 shows a comparison of different
regularization results for the Brain gray scale image of size

3We take maximum on discrete scale levels {1, 2, 3, 4} to find σ∗, see
Eqn. (11).

4See Supplementary for the justification of using Box filter, see also Section
Chap. 14 in [38].

5Other options are also possible, for e.g., stopping when a maximum
PSNR/SSIM value is reached, but will require extensive tuning of related
parameters in each scheme and noise-free image for reference.
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256 × 256 which is corrupted by Gaussian noise of strength
20%. Figure 4(b) illustrates the over smoothing effect of
Tikhonov regularization, though effective in noise removal
excessive smoothing of edges renders the result at higher
iteration not useful. In contrast TV regularization obtains a
better restoration though small staircasing is visible in low
iterations and piecewise constant result is obtained for higher
iteration. Intermediate scalar p exponent based regularizations
are given in Figure 4(d-f). The proposed variable exponent
p(x) map (12) is shown in Figure 4(g) which captures multi
scale edges. Figure 4(h) show that proposed scheme D-MTTV
provides better restoration without artifacts and edges are well
preserved. To show edge preservation properties of different
schemes we show the corresponding surface maps where the
traditional regularization methods such as TIREG, TVREG
and scalar exponent p-regularization have various artifacts
whereas the proposed MTTV schemes performs better overall.

We next compare some contemporary denoising filters
widely used in the image processing area. Although we do
not provide details of the different methods compared due
to space limitations6, the connections between a variety of
image denoising methods in the context of nonparametric point
estimation and kernel functions is discussed in [29]. Milan-
far [29] observes that the most successful modern filtering
approaches are nonparametric, adaptive to signal content and
iterative (repeated application of a filter or sequence of filters
followed by data aggregation). We note that the proposed
MTTV method and its variants incorporate all three elements
for improved performance.

Figures 5 illustrate the results along with their level lines
given to highlight various problems with other schemes. Fig-
ure 5(a) is the original synthetic test image, and Figure 5(b)
is the noisy image. Figures 5(c)-(t) show the denoising results
with the bilateral filtering (BLF) [40], Gauss curvature-driven
diffusion (GCDD) [41], Perona–Malik (PM) [1], nonlinear
complex diffusion (NCD) [42], adaptive smoothing via con-
textual, local discontinuities (ASCL) [43], nonlocal means
(NLM) [44], linear regression Yaralovsky neighborhood filter
(LYNF) [45], robust anisotropic diffusion (RAD) [46], adap-
tive TV method (ATV) [47], fourth-order PDE (FPDE) [48],
TVREG method [6], combined model of TV filter and fourth-
order PDE (TV2&4) filter [49], edge-flat-grey (EFG) scale fil-
tering [50], Gauss-TV (GTV) filtering [51], nonlinear diffusion
filtering with an additive operator splitting (AOS) scheme [39],
and ATVDC model [26] (see Eqn. (13) below), respectively.
Figure 5(s-t) are our MTTV and DMTTV results which shows
that we obtain improved noise reduction, edge preservation and
fewer staircasing artifacts especially for smooth gradients in
the horizontal and vertical grayscale ramps in the upper left
and lower right of the image.

Finally, we compare various adaptive exponent based
variational-PDE schemes from the recent literature. Adaptive
variable exponent based scheme of Chen et al [14] (VAREG,
Φ is given in (4)), Li et al [17] (IGEDV, p(x) = 1 +
(1 + |Gσ ?∇u0(x)|)−1 in (7)). Further, we compare with
three recent works which consider ad-hoc formulations for

6See Supplementary materials.
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Fig. 5. Comparison results for additive Gaussian noise corrupted synthetic
Shapes gray scale image with different denoising methods. (a) Original
image (b) Noisy image obtained by adding Gaussian noise σn = 30 (c)
[40] (d) [41] (e) [1] (f) [42] (g) [43] (h) [44] (i) [45] (j) [46] (k) [47] (l) [48]
(m) [6] (n) [49] (o) [50] (p) [51] (q) [39], (r) [26] (s) MTTV (t) D-MTTV.
Better viewed online and zoomed in.

controlling the smoothness7:

• Adaptive total variation with difference curvature
(ATVDC) model of Chen et al [26]:

min
u
E(u) =

∫
Ω

|∇u|p(D)
dx (13)

where the exponent p(D) = 2 −
√
D with D the

normalized difference curvature, D = ||uηη| − |uξξ||,
with derivatives parallel and perpendicular to the gradient
direction.

7Note that we have excluded the fidelity term in ATVDC, LAADE, α(x)-
PM, D-α(x)-PM models and our scheme i.e., we take µ = 0 in Eqn. (7).
Adding the fidelity term in the Gaussian noise case decreased the final PSNR
values and adaptive fidelity can be used to improve the results, see [23].



6 SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING

• A locally adaptive version of the classical Chambolle-
Lions model [15] (LAADE) recently studied by Zhou et
al [16]:

min
u
E(u) =

∫
|∇u|<β(x)

1

2β(x)
|∇u|2 dx

+

∫
|∇u|≥β(x)

|∇u| dx− β(x)

2
(14)

where the adaptive parameter β(x) is obtained by solving
a separate energy minimization problem

min
β
F (β) =

1

2

∫
Ω

|∇β|2 dx+
λ

2

∫
Ω

(
β − |∇u|

2

)2

dx.

• Adaptive Perona - Malik models of Guo et al [18]:

∂u

∂t
= div

(
∇u

1 + (∇u/K)α(x)

)
(15)

with

α(x) = 2−

(
2

1 + k |∇Gσ ? u0|2

)
(16)

called α(x)-PM, and

α(x) = 2−

(
2

1 + k |∇Gσ ? u|2

)
(17)

called the dynamic α(x)-PM (or D-α(x)-PM) methods
respectively.

We consider restoring the Cameraman gray scale image
of size 256 × 256 which is corrupted by Gaussian noise of
standard deviation σn = 30 for testing different variable
exponent models. Figure 6 shows noisy images and their SSIM
maps (in [0, 1]). Figure 7 show corresponding denoised results
and close-up shots which highlight some of the problematic
regions in other schemes. Overall, our MTTV and D-MTTV
methods outperform other related methods in terms of multi-
scale edge preservation and improved noise reduction without
introducing staircasing artifacts seen in other variable exponent
and adaptive models. For example, the mouth region of the
cameraman is much better preserved in MMTV and D-MMTV
compared to other methods as shown in the close-up images
in Figure 7.

2) Error metrics: To compare the restoration results quan-
titatively, we use four error measures including three standard
error metrics peak signal to noise ratio (PSNR), improvement
in signal to noise ratio (ISNR), Mean structural similarity
(MSSIM), which are widely used in image processing lit-
erature and a new metric (PSNRE) based on gradient edge
maps [18] which uses the PSNR of the edge maps (EM),
EM(u) = 2−(2/(1+k |∇Gσ ? u|2) with k = 0.0025, σ = 0.5.

PSNRE(u) = 20 ∗ log10

(
max EM(uO)−min EM(uO)

MSEE

)
dB

where MSEE = (mn)−1
∑∑

(EM(u) − EM(uO))2. Higher
PSNRE indicates the scheme performs better edge preservation
by way of matching the derivatives.

Tables I-II show MSSIM, SNR, PSNR (dB) values for
contemporary denoising filters and adaptive, exponent based

(a) Original (b) Noisy image and SSIM map

(c) Cropped image, pixel map, SSIM map

Fig. 6. Noisy Cameraman gray scale image used in our experiments and
their SSIM maps. (a) Original image (b) Noisy image obtained by adding
Gaussian noise σn = 30 and its SSIM map (c) Zoomed region with detail
(left) image (middle) pixel map (right) SSIM map.

TABLE I
MSSIM/SNR(DB) VALUES CORRESPONDING TO FIGURE 5.

Fig. (b) (c) (d) (e) (f) (g) (h) (i) (j)

MSSIM
SNR

0.3378
7.64

0.6276
11.69

0.4040
8.42

0.7858
12.11

0.7213
7.27

0.7287
7.00

0.7575
13.49

0.6520
7.12

0.7189
11.24

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

0.8244
11.93

0.6460
10.65

0.7494
9.31

0.7853
10.06

0.7237
7.78

0.6850
8.66

0.8364
11.69

0.7702
10.79

0.8012
10.47

0.8318
12.64

variational-PDE schemes corresponding to Figures 5-7 re-
spectively. Tables III-IV show PSNR/PSNRE (dB), ISNR
(dB)/MSSIM values for synthetic and other test images for
different schemes8. Overall our scheme performs better and
higher MSSIM values indicate we preserve salient structures
and PSNR improvements further support our claim of efficient
noise removal. Following [26], [41] we use the normalized step
difference energy (NSDE) at every iteration,

NSDE =
|u(·, t)− u(·, t− 1)|2

u(·, t)2
(18)

as measure of convergence and Figure 8 shows a comparison
with [26] for the restoration of noisy synthetic test image from
Figure 5(b) and Cameraman image from Figure 6(b). Our
scheme converges faster and few iterations are usually enough
to obtain good denoising results. Figure 9 shows PSNRE values
for different noise levels on standard test images and our D-
MTTV outperforms all the schemes overall.

C. Further applications

1) Thresholding based segmentation: Improved denoising
leads to improved threshold estimation for image binarization
and foreground-background region partitioning. Our nonlinear
D-MTTVsmoothing can be used as a pre-processing step

8For the restoration of Gaussian noise corrupted (σn = 30) for different
schemes are given here. We provide error metrics for the restoration results
of 17 standard test images from the USC-SIPI Miscellanies data-set in a
supplementary file. Further results for different noise levels, stopping criteria,
data-sets, error metrics, SSIM maps, and denoised images are available at the
project website: http://cell.missouri.edu/pages/mttv

http://cell.missouri.edu/pages/mttv
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TABLE III
PSNR/PSNRE (DB) COMPARISON OF VARIOUS SCHEMES FOR SYNTHETIC AND BIOMEDICAL TEST IMAGES. NOISY IMAGE IS OBTAINED BY ADDING
GAUSSIAN NOISE OF STRENGTH σn = 30 TO THE ORIGINAL IMAGE. EACH COLUMN INDICATES THE PSNR/PSNRE VALUES FOR DIFFERENT TEST

IMAGES. BEST RESULTS ARE IN BOLDFACE.

Images TIREG TVREG VAREG IGEDV ATVDC LAADE APM DPM D-MTTV
p = 2 p = 1 [14] [17] [26] [16] [18] [18]

Corner 25.61
10.60

34.56
24.92

34.62
21.66

36.81
24.31

37.18
25.75

34.77
21.37

36.07
22.34

33.83
19.15

44.78
34.61

Steps 27.33
15.59

35.85
25.28

37.76
26.92

36.01
26.81

38.04
27.98

38.23
26.99

36.66
24.60

36.21
24.69

43.44
32.12

Circles 14.33
6.13

30.51
20.87

31.13
20.77

30.18
20.39

31.02
20.99

31.40
20.66

29.95
20.13

29.89
20.35

36.35
28.49

Line-C. 21.31
11.96

34.98
23.20

35.36
21.51

34.01
22.82

35.46
22.97

36.12
20.98

33.51
21.41

33.29
21.51

43.13
30.27

Kiki 25.27
12.73

33.18
21.52

33.85
21.77

33.15
21.95

34.13
22.13

34.35
21.85

34.20
21.65

33.56
21.04

36.23
23.83

Shapes1 14.69
7.18

30.80
22.07

32.64
22.73

32.46
23.13

33.36
23.66

32.74
22.54

36.17
23.63

35.59
23.60

37.16
29.43

Shapes2 12.10
4.61

29.59
21.02

30.98
21.73

30.06
21.17

30.81
21.85

31.30
21.76

29.02
20.20

28.97
20.41

36.41
29.19

Bacteria1 17.27
4.20

25.49
10.00

25.16
9.26

25.88
10.60

25.70
9.99

24.48
8.74

23.64
8.47

24.02
8.69

28.55
12.50

Bacteria2 19.19
6.65

29.68
14.80

30.08
14.85

30.32
16.24

30.57
16.00

28.71
13.62

25.90
11.45

27.08
12.25

34.51
19.58

Mammo. 31.57
20.93

31.49
21.37

31.91
21.43

31.44
21.72

31.86
21.54

31.86
21.16

31.82
21.08

31.81
21.37

32.78
22.16

Brain 15.23
2.37

23.96
9.92

23.50
9.18

24.71
11.11

24.40
10.43

22.99
8.51

22.69
7.95

22.88
8.19

27.96
13.76

Nemacb3 24.37
9.24

26.91
12.16

26.48
11.03

27.15
12.96

26.99
12.06

25.78
10.39

25.77
10.40

26.14
10.61

28.64
14.78

TABLE IV
TABLE2 ISNR (DB)/MSSIM COMPARISON OF VARIOUS SCHEMES FOR SYNTHETIC AND BIOMEDICAL TEST IMAGES. NOISY IMAGE IS OBTAINED BY
ADDING GAUSSIAN NOISE OF STRENGTH σn = 30 TO THE ORIGINAL IMAGE. EACH COLUMN INDICATES THE ISNR/MSSIM VALUES FOR DIFFERENT

TEST IMAGES. BEST RESULTS ARE IN BOLDFACE.

Images TIREG TVREG VAREG IGEDV ATVDC LAADE APM DPM D-MTTV
p = 2 p = 1 [14] [17] [26] [16] [18] [18]

Corner 6.53
0.7244

15.48
0.9756

15.54
0.9546

17.72
0.9766

18.09
0.9781

15.69
0.9553

16.99
0.9777

14.74
0.9507

25.70
0.9960

Steps 8.77
0.8966

17.28
0.9327

19.20
0.9527

17.45
0.9211

19.48
0.9539

19.68
0.9584

18.09
0.9500

17.65
0.9416

24.89
0.9827

Circles −4.27
0.2975

11.90
0.8337

12.52
0.8587

11.57
0.8183

12.41
0.8563

12.79
0.8911

11.34
0.8470

11.28
0.8319

17.74
0.9410

Line-C. 2.75
0.7658

16.42
0.8412

16.80
0.8661

15.52
0.8032

16.90
0.8626

17.56
0.9322

14.95
0.8822

14.73
0.8418

24.57
0.9679

Kiki 6.56
0.8488

14.62
0.9177

15.29
0.9327

14.59
0.9044

15.57
0.9332

15.79
0.9415

15.64
0.9369

15.00
0.9251

17.66
0.9515

Shapes1 −3.87
0.4241

12.23
0.7783

14.08
0.8139

13.90
0.7634

14.80
0.8164

14.18
0.8747

17.61
0.8402

17.03
0.8001

18.60
0.9480

Shapes2 −6.45
0.3671

11.03
0.8823

12.43
0.9092

11.50
0.8717

12.26
0.9056

12.75
0.9378

10.46
0.8929

10.41
0.8862

17.85
0.9707

Bacteria1 −1.30
0.2925

6.93
0.6407

6.60
0.6129

7.32
0.6658

7.13
0.6421

5.92
0.5735

5.07
0.5665

5.46
0.5886

9.99
0.7454

Bacteria2 0.61
0.5367

11.10
0.8527

11.51
0.8611

11.75
0.8687

12.00
0.8724

10.14
0.8287

7.33
0.7811

8.51
0.8147

15.94
0.9133

Mammo. 13.00
0.8336

12.93
0.8273

13.34
0.8436

12.87
0.8200

13.30
0.8426

13.29
0.8378

13.26
0.8410

13.24
0.8400

14.22
0.8768

Brain −3.31
0.3156

5.42
0.7120

4.96
0.7138

6.17
0.7193

5.85
0.7435

4.45
0.7234

4.14
0.6788

4.33
0.6668

9.42
0.8857

Nemacb3 5.81
0.3739

8.35
0.4897

7.92
0.4564

8.59
0.5101

8.43
0.4864

7.22
0.4180

7.21
0.4228

7.57
0.4450

10.08
0.5642

TABLE II
MSSIM/PSNR(DB) VALUES CORRESPONDING TO FIGURE 7.

Fig. (a) (b) (c) (d) (e) (f) (g) (h)

MSSIM
PSNR

0.7741
25.49

0.7923
26.58

0.7954
26.30

0.7607
25.05

0.7674
25.59

0.7689
25.67

0.8359
28.06

0.8673
29.29

for thresholding based bi-modal segmentation and can be of
potential use in machine vision and biomedical imagery [52],
[53]. For comparison with ground-truth (GT) we use the Dice
coefficient between two binary images,

D(A,B) =
2 |A ∩B|
|A|+ |B|

(19)

where |A| denotes the number of elements in the set. Dice
coefficient closer to one indicate that automatic segmentation

is closer to ground truth. Figure 10 shows segmentation results
for synthetic Spiral image used in [54] for different high
Gaussian noise levels. As can be seen from corresponding
histograms, we obtain good binary segmentations even at
higher noise levels. For example, at severe noise σn = 150
the bi-modality of the histogram is lost (Figure 10(c)) and
after smoothing with our D-MTTV method the histogram
(Figure 10(g)) cleary shows a separation of peaks and thresh-
olding works quite well. Additionally, comparing with the
segmentation model tested in [54] our scheme is accurate as
shown by Dice values. Figure 11 shows some sample images
used in the non-destructive evaluation (NDT) field and their
corresponding smoothing based thresholding results. As can
be seen, our D-MTTV smoothing based thresholding obtains
good segmentations compared to ground truth results.
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(a) VAREG (b) IGEDV (c) ATVDC (d) LAADE

(e) APM (f) DAPM (g) MTTV (h) D-MTTV

Fig. 7. Comparison results for additive Gaussian noise (σn = 30) corrupted
Cameraman gray scale image with adaptive methods. Top to bottom:
Image, SSIM map, cropped image, pixel map, SSIM map. Best results of:
(a) [14] (b) [17] (c) [26] (d) [16] (14) (e) [18] (15) with (16) (f) [18] (15)
with (17) (g) Our MTTV (7) with (12) computed from noisy image u0 (h)
Our dynamic MTTV (7) with (12) computed from updated image u(x, t).
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(a) Synthetic image
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(b) Cameraman image

Fig. 8. Iteration versus NSDE for the restoration of (a) noisy synthetic image
in Figure 5(b) and (b) noisy cameraman image in Figure 6(b) with different
schemes. Convergence curves for our D-MTTV, GCDD [41] and ATVDC [26]
using NSDE (18).
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(a) Shapes1
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(b) Cameraman
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(c) Barbara
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(d) Peppers
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(e) Lena
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(f) Boat

Fig. 9. Noise level σn = {10, 15, 20, 25} along the x-axis versus PSNRE
(dB) values for six different images to evaluate seven different denoising
algorithms VAREG, IGEDV, ATVDC, LAADE, APM, DAPM and D-MTTV
(colored bars).

(a) σn = 50 (b) σn = 100 (c) σn = 150 (d) GT image

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(e) Results for σn = 50, Dice 0.9939

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(f) Results for σn = 100, Dice 0.9937

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(g) Results for σn = 150, Dice 0.9934

Fig. 10. Synthetic Spiral image segmentation by D-MTTV smoothing based
thresholding method. (a-c) Different Gaussian noise corrupted images with
their histogram at top left corner (d) Ground truth binary image (e-f) show
p(x) map, restoration, histogram, and thresholded results for each case.
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Dice 0.9990

Dice 0.9375

Dice 0.9628

Dice 0.8789

(a) Input (b) p(x) (c) Restoration (d) Segmented (e) GT

Fig. 11. Non-destructive evaluation (NDT) image segmentation with our
proposed D-MTTV smoothing based segmentation. (a) Input image (b)
Computed p(x) exponent from the input image (c) Restored image using
our scheme (d) Simple thresholding on the resultant denoised image in (d)
results in good segmentation (e) Ground truth (GT) for comparison.

(a) Input (b) p(x) (c) Restoration (d) Segmentation

Fig. 12. Cryo-electron microscopy images denoised and segmented based
on our adaptive scheme. Top row: GroEL suspended in vitreous ice (Image
Courtesy of Dr. Neil R. Voss, The Scripps Research Institute, USA). Bottom
row: Tomato Bushy Stunt Virus (Image Courtesy of Dr. Ricardo Aramayo,
Université Pierre et Marie Curie, France). (a) Input image (b) Computed
p(x) from the input image. (c) Restored image using our scheme. (d)
Simple thresholding on the resultant denoised image in (b) results in reliable
segmentation of compact viruses.

The applicability of image denoising using our D-MTTV
scheme on biomedical cryo-electron micrograph of bacteria
and viruses is illustrated in Figure 12. After smoothing out se-
vere multiplicative noise degradation using our D-MTTV (20),
a simple thresholding of grayscale values suffices to show
a clear separation of foreground-background. Note that the
amount of noise level is unknown and the segmentation shows
separation of bacteria, and viruses against a non-homogeneous
background. Thus, the proposed D-MTTV scheme can be used
for effective denoising based segmentation processes.

2) Multiplicative noise removal: Next, we consider the
multiplicative noise model for images and the corresponding
MTTV scheme based restoration,

min
u
E(u) =

∫
Ω

|∇u|p(x)
dx+

µ

2

∫
Ω

(
log u+

u0

u

)
dx, (20)

where the fidelity term is important and the fidelity parameter
µ determines the amount of noise removed. We compare with
a recent work of Liu et al [55] which uses a scalar p(x) ≡ p
based scheme (with µ values set approprietly). Figure 13

(a) Noisy u0 (b) Noise, σ2
n =

1/9

(c) p = 1, µ = 40, SNR = 8.34

dB

(d) p = 1.2, µ = 75, SNR= 8.52

dB

(e) p = 1.5, µ = 225, SNR= 8.50

dB

(f) p = 1.8, µ = 605, SNR= 8.78

dB

(g) D-MTTV, µ = 120, SNR=

9.23 dB

(h) p = 1 (i) p = 1.2 (j) p = 1.5 (k) D-MTTV

Fig. 13. Multiplicative noise removal results for the Barbara grayscale
image based on highest possible SNR (dB). (a) Noisy image with multiplica-
tive Gamma noise with mean 1 and deviation 1/3. (b) Amount of noise level
(u0−uO), where uO is the original image. (c-f) Result of [55] with different
scalar exponent p values. (g) Result based on our scheme, see Eqn. (20). The
right side image in each sub-figure is residue (u0 − u) image indicating the
amount of noise and details removed by each scheme. (h)-(k) Comparison
with close-up showing noticeable improvements obtained with our D-MTTV
scheme.

shows restoration results of Barbara 256 × 256 image with
heavy multiplicative Gamma noise9 with mean 1 and variance
1/9. Note that noise level depends on the intensity, that is
the noise is larger in bright areas, see Figure 13 (b) which
shows the amount of noise added. Figure 13 (c)-(f) show
results of with increasing scalar p values in Eqn. (20) with
our adaptive p(x) based scheme. To compare the performance
of the schemes we use signal to noise ratio (SNR)10. As
can be seen using the corresponding residue (u0 − u) images
for different p values, the proposed approach using adaptive
exponent leads to improved SNR values compared to the
method studied in [55].

3) The multichannel case: Extending the variable exponent
model to the multichannel (color, multi spectral) images is
an interesting option and is currently our focus of attention.
We let u : Ω → RN be the multichannel image u =

9Multiplicative noise model is given by u0(x) = n(x) × u(x). Noise
n(·) follows a Gamma law of mean 1 and variance σ2

n, i.e., n(x) ∼
(baΓ(a))−1xa−1e−x/b, ab = 1, ab2 = σ2

n. We used the following
MATLAB command to generate noise: n = gamrnd(1/σ2

n, σ2
n, 256,

256).
10This was the metric used in [55] to present their restoration results.

Note that PSNR values were similar to SNR values and our scheme out-
performed [55] in PSNR values as well.
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(a) Original image (b) M-MTTV (c) Residue (d) P(x)

(e) VTVREG [56] (f) p(x) (g) M-MTTV (h) P(x)

Fig. 14. Color image smoothing of noise free image 100007 (top row)
and restoration of a noisy image 101087 (bottom row) from BSDS500 with
different schemes (MSE values). (a) Original noise free image (b) Denoising
with M-MTTV (c) Residue ‖u0 − u‖2 scaled to [0, 1] for visualization (e)
VTVREG [56] (f) Channel-wise p(x) exponent (h) Multichannel SST (21)
based p(x) exponent. Better viewed online and zoomed in.

(u1, u2, . . . , uN ). Then the definition of the multichannel SST
is given by,

Kσ = Gσ ?

N∑
i=1

∇ui(∇ui)T (21)

where as before we compute the variable exponent p(x) (see
Eqn. (12)) with the largest and smallest eigenvalues of Kσ as
Λ+, Λ−. Then the following regularization is used

min
u
E(u) =

N∑
i=1

∫
Ω

∣∣∇ui∣∣p(x)
dx+

µ

2

∫
Ω

(ui − ui0)2 dx, (22)

where we assume the noisy image u0 = (u1
0, u

1
0, . . . , u

N
0 )

is obtained by adding adding Gaussian noise of standard
deviation σn = 30 to each channel. Figure 14(a) shows
smoothing a noise free RGB color image (from the Berkeley
Segmentation Data Set (BSDS500), image id 101087) with
our multichannel MTTV (M-MTTV) scheme. The result in
Figure 14(b) shows strong piecewise smoothing occurring with
edge preservation, and Figure 14(c) shows the amount of
texture removed by the scheme. Figure 14(d) shows the vari-
able exponent map. Figure 14(bottom row) shows an example
comparison in color image restoration for a noisy (image id
101087) of size 201 × 201 × 3. We compare with Bresson
and Chan [56] vectorial total variation (VTVREG), and our
MTTV applied with channel-wise p(x) (C-MTTV) estimation,
and multichannel SST (21) exponent P(x) based scheme (M-
MTTV). Note that the regularization couples different color
gradients using the multichannel SST (21) based variable
exponent P(x) (Figure 14(h)) whereas the channel-wise uses
the exponent function (8) in each channel separately. As can
be seen, M-MTTV model provides better restoration result
without staircasing artifacts when compared to VTVREG.
Table V shows PSNR(dB) and MSSIM values obtained with
our schemes against VTVREG method. We obtain better
structural similarity scores indicating better edge preservation.
Other approaches can also be incorporated and the implicit
coupling of regularization in each channel can further improve
denoising results [57]–[59].

TABLE V
PSNR/MSSIM COMPARISON OF OUR SCHEMES CHANNEL-WISE MTTV
(C-MTTV), MULTICHANNEL MTTV (M-MTTV) WITH VTVREG [56]

FOR RGB IMAGES. NOISY IMAGES WERE OBTAINED BY ADDING
GAUSSIAN NOISE OF STRENGTH σn = 30 TO ORIGINAL IMAGES. BEST

RESULTS ARE IN BOLDFACE.

Images Noisy VTVREG [56] C-MTTV M-MTTV
Baboon 18.59

0.4339
19.09
0.5052

19.10
0.5372

19.33
0.6383

Barbara 18.59
0.7416

17.04
0.7400

20.39
0.7884

24.27
0.8360

Boat 18.57
0.5338

16.16
0.6584

19.01
0.6971

23.69
0.7530

House 18.57
0.3493

14.79
0.7256

17.92
0.7718

24.72
0.8141

Lena 18.59
0.6884

15.36
0.7744

17.84
0.8102

22.41
0.8681

Peppers 18.59
0.6884

18.28
0.8574

21.97
0.8926

28.83
0.9303

IV. CONCLUSIONS

In this paper we developed a novel adaptive multiscale
PDE regularization-based denoising method using smoothed
structure tensor variable exponents that preservers coherent
image structures. The proposed non-linear anisotropic operator
incorporates the local structure tensor eigenvalues for coherent
feature adaptation. Wellposedness of the proposed model is
studied using the theory of variable exponent spaces and we
obtain existence and long time behavior of solutions to the
proposed model. The MMTV method incorporates elements
of recently successful filtering approaches including nonpara-
metric operators, adaptation to signal content and repeated
filtering with aggregation. Extensive experiments on noisy syn-
thetic, machine vision and biomedical imagery demonstrated
the effectiveness of the proposed MMTV method and its
variants compared to other denoising methods especially those
related to variational-PDEs. The proposed adaptive multiscale
exponent provides robust fine structure maps that enables
smoothing without generating staircasing artifacts typically
associated with point-wise estimators. We show analytically
that the proposed method satisfies the maximum-minimum
principle ensuring that artifact edge structures are not created
in the denoising process. Extensions to the MMTV method
readily handle multiplicative noise, RGB or multispectral
images and lead to improved binary segmentation results.
Extending the multiscale exponent to handle other types of
noise and image decompositions defines our future work in
this area.

APPENDIX

ANALYSIS OF THE VARIATIONAL PDE MODEL

A. Existence of minimizer

We recall the basic notions of variable exponent spaces,
for further details we refer to the recent monograph [24]. Let
M(Ω) be the set of measurable functions in Ω. Though in
imaging problems Ω ⊂ R2 is a rectangle, we can study general
open domain Ω ⊂ RN for any N > 1 as well. The Orlicz-
Lebesgue spaces Lp(x)(Ω) are a generalization of the classical
Lp spaces to the variable exponent case p(x). Let

p− = ess inf
Ω
p(x), and p+ = ess sup

Ω
p(x).

The exponent sets are

P(Ω) = {p ∈M(Ω) : 1 ≤ p− ≤ p+ <∞}

Po(Ω) = {p ∈M(Ω) : 1 < p− ≤ p+ <∞} .



MULTISCALE TIKHONOV-TOTAL VARIATION IMAGE RESTORATION USING SPATIALLY VARYING EDGE COHERENCE EXPONENT SCHEME 11

We next recall the variable exponent spaces.
Let p ∈M(Ω), ρ(u) =

∫
Ω
|u(x)|p(x)

dx. Then

Lp(x)(Ω) := {u ∈M(Ω)|∃λ > 0 : ρ(u/λ) <∞}.

The Luxemburg-Nakano norm on Lp(x) is ‖u‖p(·) := inf{λ >
0 : ρ(u/λ) ≤ 1}. The Orlicz-Sobolev space is defined as11

Wm,p(x)(Ω) := {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), ∀ |α| ≤ m}

with ‖u‖m,p(·) :=
∑
|α|≤m ‖Dαu‖p(·). We first recall a

general existence result for a variable exponent p(x) that
is bounded away from 1 in the variable Sobolev space
W 1,p(x)(Ω).

Lemma 1. The regularization functional E(u) given in (7) is
lower semi-continuous in W 1,p(x)(Ω), i.e., for every sequence
uj → u in W 1,p(x)(Ω) we have,∫

Ω

|Du|p(x)
dx ≤ lim inf

j→∞

∫
Ω

|Duj |p(x)
dx.

Proof: This follows from the facts that the space
W 1,p(x)(Ω) is a Banach space with the norm ‖u‖1,p(·) :=
‖u‖p(·) +‖Du‖p(·), and the semi-norm part of it, |Du|1,p(x) =
‖Du‖p(·) dx is sequentially lower semi-continuous, and from
the following inequality∫

Ω

|Du|p(x)
dx ≤ max{‖Du‖p+p(·) , ‖Du‖

p−
p(·)}.

We recall the following fact from functional analysis (see
[60, Sec. 25]).

Lemma 2. Let B be a reflexive Banach space. If F : B →
[0,∞) is convex, lower semicontinuous, and coercive, then
there is an element in B which minimizes F .

Theorem 1. Let p ∈ Po(Ω). Then

F (u) =

∫
Ω

|Du|p(x)
dx+

µ

2

∫
Ω

|u− u0|2 dx

has a unique minimizer in W 1,p(x)(Ω).

Proof: From Lemma 1, the first term is lower semicon-
tinuous in W 1,p(x)(Ω). The second term is strictly convex and
continuous in u. Since p− > 1 the function F is coercive as
|Du|p(x) satisfies |Du|p(x) ≥ |Du|1+δ and the space W 1,p(x)

is reflexive. Thus from Lemma 2 we have a minimizer in
Wm,p(x)(Ω). Since ξ → |ξ|p(x) is strictly convex if p− > 1,
the minimizer is unique.

Our proposed variable exponent function (12) satisfies
p(x) ∈ [1, 1.5), hence Theorem 1 is not applicable. Therefore,
it requires a careful treatment as in [37] and it represents
the border case of total variation [6] regularization. This also
means we leave the realm of reflexive Sobolev spaces and need
a new space with the properties of the traditional functions of
bounded variation space BV (Ω). Before extending the results
to the variable bounded variation space BV p(x)(Ω) we require
the following notations and preliminary results.

11We revert to the notation of Du for the generalized gradient function.
Note that if u ∈W 1,2(Ω) then Du = ∇u.

Recall [61] the definition of BV (Ω) and its norm defined
in terms of test functions: u ∈ BV (Ω) if u ∈ L1(Ω), and its
total variation

TV (u) := sup

{∫
Ω

u divφ : φ ∈ C1
0 (Ω), ‖φ‖L∞ ≤ 1

}
is finite; the norm in BV (Ω) is given by

‖u‖BV := ‖u‖1 + TV (u).

The distributional gradient Du is in fact a vector-valued Radon
measure, and its “modulus” can also be interpreted as a Radon
measure, which is called the total variation measure, and is
denoted by ‖Du‖. Note that

‖Du‖(Ω) = TV (u).

For more details and results about the bounded variation space
we refer to [61]–[63].

Let p(x) ∈ P(Ω) be a lower semicontinuous function.
Similarly to W 1,p(x)(Ω) spaces, we can define BV p(x)(Ω).
Let Y (Ω) := {x ∈ Ω : p(x) = 1}, that is the critical set where
the exponent takes the value 1.

We now put BV p(x)(Ω) := BV (Ω) ∩W 1,p(x)(Ω \ Y (Ω)),
and define the modular

Γ(u) := TV (u) +

∫
Ω\Y (Ω)

|Du|p(x)
dx.

Then the norm in BV p(x) is

‖u‖BV p(x)(Ω) := ‖u‖p(.) + inf {λ > 0 : Γ(u/λ) ≤ 1} .

One can get a similar existence result like that of Theorem 1
in the BV p(x) space.

Theorem 2 (see [37]). Assume that Ω has Lipschitz boundary,
and p(x) ∈ P(Ω) is lower semicontinuous. Then the functional

F̃ (u) =

∫
Ω\Y (Ω)

|Du|p(x)
dx+‖Du‖(Y (Ω))+

µ

2

∫
Ω

|u− u0|2 dx

has a minimizer in BV p(x)(Ω).

B. Wellposedness of the PDE flow
To derive the PDE flow associated with the energy min-

imization in Eqn. (7) we need to use the weight 1
p(x) , i.e.,∫

Ω
|∇u|p(x)

p(x) dx, the derivation is straightforward using the
Euler-Lagrange formulation [4] and is omitted here for brevity;

µ(u(x, t)− u0(x)) = 4p(x)

:= div
(
|∇u(x, t)|p(x)−2∇u(x, t)

)
, x ∈ Ω. (23)

This is the p(x)-Laplacian which generalizes the traditional
p-Laplacian and has been found useful in various scenarios,
see the recent monograph [24]. We next turn our attention to
the corresponding dynamic time-dependent version of the PDE
given in Eqn. (23),

∂u(x, t)

∂t
= div

(
|∇u(x, t)|p(x)−2∇u(x, t)

)
− µ(u(x, t)− u0(x)) in Ω× (0,∞), (24)

u(x, t) = 0 on ∂Ω× (0,∞), (25)
u(x, 0) = u0(x) in Ω. (26)
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This is an inhomogeneuous p(x)-Laplacian PDE, and the
existence result may be proven via a subdifferential approach,
cf. [64]. The above time dependent PDE flow paves the way
to relate to the concept of scale-space {u(x, t)}∞t=0 and is
related to the classical Perona-Malik [1] anisotropic diffusion
paradigm [65].

To prove the existence result, we define the following
subspaces of L2:

L2,p(x)(Ω) =

{
u ∈ L2(Ω) :

∂u

∂xi
∈ Lp(x)(Ω), i = 1, . . . , N

}
with the norm ‖u‖L2,p(x)(Ω) =

(
‖u‖22 + ‖∇u‖2p(x)

)1/2

, and

L
2,p(x)
0 (Ω) = L2,p(x)(Ω) ∩W 1,p−

0 (Ω).

Now the main existence result can be stated as follows.

Theorem 3. Let p ∈ Po(Ω). Then the following hold:
(i) For u0 ∈ L2(Ω), the problem (24-26) admits a unique

solution

u ∈W 1,2
loc (0,∞, L2(Ω)) ∩ C((0,∞), L

2,p(x)
0 (Ω)).

(ii) For u0 ∈ L2,p(x)
0 (Ω) and T > 0,

u ∈W 1,2(Ω)(0, T ;L2(Ω)) ∩ C([0, T ];L
2,p(x)
0 (Ω)).

(iii) The solution u continuously depends on the original
image u0:

‖u1(t)− u2(t)‖2 ≤ (t+ 1) ‖u0,1 − u0,2‖2 , ∀t ≥ 0,

where u1 and u2 are the two solutions of (24-26) with
u0 = u0,1 and u0,2, resp.

To prove the above theorem, we note that the functional
ϕp(x) : L2(Ω)→ [0,∞] defined by

ϕp(x)(ψ) ={∫
Ω
µ
2ψ

2(x) + 1
p(x) |∇ψ(x)|p(x)

dx if ψ ∈ L2,p(x)
0 (Ω),

∞ otherwise,
(27)

is proper, lower semicontinuous and convex functional on
L2(Ω) (cf. [64]). Then, the subdifferential12 satisfies

∂ϕp(x)(ψ) = µψ −4p(x)ψ.

Therefore, the parabolic problem (24-26) is equivalent to an
abstract Cauchy problem,

du

dt
(t) + ∂ϕp(x)(u(t)) = µu0 in L2(Ω), u(0) = u0.

Then the proof follows from the results of [66] and [64].

Remark 5. The critical case p ∈ P(Ω) \ Po(Ω) seems to be
much more involved, and existence of any kind of solution to
(24-26) is an open problem in this case.

12The subdifferential of the functional
ϕp(x) is defined as usual: ∂ϕp(x)(u) ={
ρ ∈ L2 : ϕp(x)(v)− ϕp(x)(u) ≥

∫
Ω(ρ, v − u), ∀v ∈ L2,p(x)

0

}
.

Assume in addition that p satisfies the log-Hölder condition.
Then one can obtain decay of solutions if we have a strong
growth in our exponent:

Theorem 4 (see [64]). Let p− > 2, u0 ∈ L2,p(x)
0 (Ω) \ {0},

and u = u(x, t) be the solution of (24-26) with µ = 0. Then
a constant C > 0 such that,

(t+ 1)−1/(p−−2)

C
≤ ‖u(t)‖2 ≤ C (t+1)−1/(p+−2), ∀t ≥ 0.

One can also obtain extinction of solution if we restrict our
exponent to less than a quadratic:

Theorem 5 (see [64]). Let 2N
N+2 ≤ p− ≤ p+ < 2, u0 ∈

L
2,p(x)
0 (Ω) \ {0}, and u = u(x, t) be the solution of (24-26)

with µ = 0. Then there exists a finite time t∗ > 0 and a
constant C > 0 such that

(t∗ − t)1/(2−p−)
+

C
≤ ‖u(t)‖2 ≤ C (t∗ − t)1/(2−p+)

+ , ∀t ≥ 0.

Thus, the solution u = u(x, t) vanishes at time t∗ (extinction
time of u).
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