
An algorithm for constructing a pseudo-Jacobi
matrix from given spectral data

N. Bebiano1, S. Furtado2, J. da Providência3

Abstract. The main purpose of this paper is the extension of the classical
spectral direct and inverse analysis of Jacobi matrices for the non-selfadjoint
setting. Matrices of this class appear in the context of non-Hermitian Quantum
Mechanics. The reconstruction of a pseudo-Jacobi matrix from its spectrum
and the spectra of two complementary principal matrices is investigated in the
context of indefinite inner product spaces. An existence and uniqueness theorem
is given and a strikingly simple algorithm, based on the Euclidean division
algorithm, to reconstruct the matrix from the spectral data is presented. A
result of Friedland and Melkman stating a necessary and sufficient condition for
a real sequence to be the spectrum of a non-negative Jacobi matrix is revisited
and generalized. Namely, it is shown that a suitable set of prescribed eigenvalues
defines a unique non-negative pseudo-Jacobi matrix, which is J-Hermitian for
a fixed J .
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1 Introduction

Consider Cn endowed with an indefinite inner product defined by [x, y] :=
〈Jx, y〉, where J = Ir ⊕ −In−r, 0 < r < n, and 〈·,·〉 denotes the usual in-
ner product. Let Mn be the associative algebra of n × n complex matrices. A
pseudo-Jacobi (or J-Jacobi) matrix is one of the form

T =




a1 b1 0 · · · 0
c1 a2 b2 · · · 0
0 c2 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an



∈ Mn, (1)

where all entries are real and, in addition, bi = ci, i 6= r, br = −cr. We denote
such an n × n pseudo-Jacobi matrix with main diagonal a = (a1, . . . , an) and
upper diagonal b = (b1, . . . , bn−1) by T (n, r, a, b). If bi = ci, i = 1, . . . , n−1, then
T reduces to a Jacobi matrix, i.e., a real symmetric tridiagonal matrix, and we
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denote it by T (n, a, b). The matrix T is J-Hermitian, that is, T = JT ∗J , being
JT ∗J the J-adjoint of T, usually denoted by T#. If the nondiagonal entries bi

do not vanish, T is said to be irreducible. In this case, we may consider all of
them positive, because the sign of any bi, i = 1, . . . , n− 1, can be changed by a
diagonal unitary similarity. We say that a pseudo-Jacobi matrix T = T (n, r, a, b)
is non-negative if a ≥ 0 and b ≥ 0.

It is well known that the eigenvalues of an irreducible Jacobi matrix are real
and simple [1]. In [2] the spectrum of a non-negative Jacobi matrix was charac-
terized. If the matrix is also required to be irreducible, further conditions on the
spectrum are needed, and some of which were also explored. It is known that
the eigenvalues of a pseudo-Jacobi matrix are real (and not necessarily simple),
or occur in pairs of complex conjugate numbers [3]. Jacobi and pseudo-Jacobi
matrices appear in connection with many problems of mechanics and theoretical
physics, see e.g. [4], [3], [6] and references therein. Inverse eigenvalue problems
on complex tridiagonal matrices have deserved the attention of researchers [7],
since they play an important role in the study of nonlinear discrete dynamical
systems. The history of inverse spectral analysis on Jacobi matrices is long and
the existing literature is rich. However, results focusing on the non-self-adjoint
Jacobi case comprise a small part of that literature, being of interest to extend
the classical theory for this framework.

In [3] the construction of a pseudo-Jacobi matrix T with prescribed spectra
for T and T (1|1), the principal submatrix obtained from T deleting the first
row and column, was studied and solved in Theorem 1. In this paper, we shall
investigate the problem of reconstruction of an irreducible matrix T (n, r, a, b),
which is J-Hermitian for J = Ir⊕−In−r, with prescribed real spectrum and pre-
scribed spectra for T1 and T2, where T1 and T2 are the complementary principal
submatrices of T in rows and columns 1, . . . , r−1 and r +1, . . . , n, respectively.
This problem, which is solved in the next Theorem 3, is essentially different from
the one studied in [3], since for J = Ir ⊕−In−r, T1 and T2 are both Hermitian,
while T (1|1) in [3, Theorem 1] is pseudo-Hermitian. We notice that Theorem 1
in [3] and Theorem 3 in the present note are independent, in the sense that one
can not be derived from the other and vice-versa. The proof techniques involve
in both cases expansions in continued fractions, however in Theorem 3 a sum
of two expansions of rational fractions is used instead of the only one needed in
[3, Theorem 1]. We further investigate the problem of finding a necessary and
sufficient condition for a given real sequence to be the spectrum of an n × n
non-negative pseudo-Jacobi matrix T (n, r, a, b). This question is inspired by
Friedland and Melkman results in [2].

This note is organized as follows. The first problem above stated is solved in
Section 2 and the second one in Section 3, the irreducible case being treated in
Subsection 3.1, and the reducible one in Subsection 3.2. In Section 4 a strikingly
simple algorithm (based on the Euclidean division algorithm), to restore the
T (n, r, a, b) in terms of the given eigenvalues of T, T1 and T2, is provided. Some
illustrative examples are presented. Finally, two open questions are formulated.
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2 Reconstruction of a pseudo-Jacobi matrix from
prescribed spectral data

The main result of this section is Theorem 3, which states the unique recovery
of a pseudo-Jacobi matrix, which is J-Hermitian for J = Ir ⊕ −Jn−r, from
its spectrum and the spectra of two complementary principal submatrices. To
prove Theorem 3 some preliminary considerations are in order.

Let λ1, . . . , λn, µ1, . . . , µr−1, µr, . . . , µn−1 satisfy

λ1 > µ1 > λ2 > µ2 > · · · > µr−1 > λr ≥ λr+1 > µr > · · · > µn−2 > λn > µn−1,
(2)

and consider the polynomials

P0(z) =
n∏

j=1

(λj − z), (3)

P1(z) = P
(1)
1 (z)P (2)

1 (z), (4)

where

P
(1)
1 (z) =

r−1∏

j=1

(µj − z), (5)

P
(2)
1 (z) =

n−1∏

j=r

(µj − z). (6)

Dividing P0(z) by P1(z), we have

P0(z)
P1(z)

= ψr(−z + βr) +
P2(z)
P1(z)

= ψr(−z + βr) +
P

(1)
2 (z)

P
(1)
1 (z)

+
P

(2)
2 (z)

P
(2)
1 (z)

, (7)

where
ψr = 1, βr = λ1 + · · ·+ λn − µ1 + · · ·+ µn−1,

and P2(z), P
(1)
2 (z) and P

(2)
2 (z) are polynomials of degree at most n − 2, r − 2

and n− r − 1, respectively.
We say that the sequence

(λ1, . . . , λn, µ1, . . . , µr−1, µr, . . . , µn−1)

is admissible if
deg(P (1)

2 (z)) = r − 2,

deg(P (2)
2 (z)) = n− r − 1,

and there exist polynomials P
(1)
i (z) and P

(2)
j (z), i = 3, . . . , r and j = 3, . . . , n−

r + 1, such that:
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(i) deg(P (1)
i (z)) = r − i, for i = 3, . . . , r, and P

(1)
r (z) 6= 0;

(ii) deg(P (2)
j (z)) = n− r− j + 1, for j = 3, . . . , n− r + 1, and P

(2)
n−r+1(z) 6= 0;

(iii) P
(1)
i (z) = ψr−i(−z + βr−i)P

(1)
i+1(z) + P

(1)
i+2(z), i = 1, . . . , r − 2;

(iv) P
(2)
j (z) = ψr+j(−z + βr+j)P

(2)
j+1(z) + P

(2)
j+2(z), j = 1, . . . , n− r − 1,

for βl, ψl ∈ C, with ψl 6= 0, l = 2, . . . , r − 1, r + 1, . . . , n− 1.

Finally, let ψ1, β1, ψn, βn satisfy

P
(1)
r−1(z)

P
(1)
r (z)

= ψ1(−z + β1),
P

(2)
n−r(z)

P
(2)
n−r+1(z)

= ψn(−z + βn). (8)

Clearly, the coefficients of the polynomials P
(1)
i (z), P (2)

j (z) are rational functions
of λ1, . . . , λn, µ1, . . . , µn−1.

The proof of the following lemma can be easily obtained and is left to the
reader attention (cf. Section 2 of [3]).

Lemma 1 Let λ1, . . . , λk, µ1, . . . , µk−1 be real numbers satisfying

λ1 > µ1 > λ2 > µ2 > · · · > µk−1 > λk. (9)

Let P0(z) = φ0

∏k
j=1(λj−z), P1(z) = φ1

∏k−1
j=1 (µj−z) with φ0 = 1, φ1 ∈ R\{0}.

Then there exist polynomials Pj(z) such that

Pj(z) = ψj+1(−z + βj+1)Pj+1(z) + Pj+2(z), j = 0, . . . , k − 2, (10)

for some ψj+1 ∈ R, with degPj(z) = k − j, Pk(z) 6= 0. Moreover, φ1ψ1 = 1 and
ψiψi+1 < 0 for i = 1, . . . , k−1, where ψk is given by Pk−1(z) = ψk(−z+βk)Pk(z)
for a certain βk.

Lemma 2 If (2) is satisfied, then (λ1, . . . , λn, µ1, . . . , µn−1) is admissible. More-
over, ψiψi+1 < 0, for i = 1, · · · , r − 1, r + 1, · · · , n− 1, and ψrψr+1 > 0, where
the ψj’s are defined above.

Proof. Let P0(z) and P1(z) be the polynomials defined in (3) and (4). Applying
the Euclidean division algorithm to P0(z) and P1(z) we obtain P0(z) = ψr(−z+
βr)P1(z) + P2(z), where ψr = 1, βr = λ1 + · · · + λn − µ1 + · · · + µn and
deg(P2(z)) ≤ n− 2.

By a partial fraction decomposition we have

P2(z)
P1(z)

=
r−1∑

j=1

ρj

µj − z
+

n−1∑

j=r

ρj

µj − z
,

for some ρj ’s, which are uniquely determined. From (2) we get

Resz=µj

P0(z)
P1(z)

= −
∏n

k=1(λk − µj)∏n−1
j 6=k=1(µk − µj)

{
> 0 if j = 1, . . . , r − 1,
< 0 if j = r, . . . , n− 1.
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Since

Resz=µj

P0(z)
P1(z)

= Resz=µj

P2(z)
P1(z)

,

it follows that

ρj = −Resz=µj

P2(z)
P1(z)

< 0, j = 1, . . . , r − 1,

and

ρj = −Resz=µj

P2(z)
P1(z)

> 0, j = r, . . . , n− 1.

Let P
(1)
1 (z), P

(2)
1 (z) be the polynomials defined in (4) and (5). Let us define

the polynomials P
(1)
2 (z), P

(2)
2 (z) so that

P
(1)
2 (z)

P
(1)
1 (z)

=
r−1∑

j=1

ρj

µj − z
and

P
(2)
2 (z)

P
(2)
1 (z)

=
n−1∑

j=r

ρj

µj − z
.

We have deg(P (1)
2 (z)) = r − 2 and, because the residues −ρj , j = 1, . . . , r − 1,

are positive, the zeros of P
(1)
2 (z) interlace with the zeros of P

(1)
1 (z). Similarly,

deg(P (2)
2 (z)) = n − r − 1 and its zeros interlace with the zeros of P

(2)
1 (z).

Note that the coefficients of (−z)r−2 and (−z)n−r−1 in P
(1)
2 (z) and P

(2)
2 (z)

are negative and positive, respectively. By Lemma 1, there exist polynomials
P

(1)
i (z) and P

(2)
j (z), i = 3, . . . , r and j = 3, . . . , n− r +1, satisfying (i), (ii), (iii)

and (iv) above, for some βl, ψl ∈ C, with ψl 6= 0, l = 2, . . . , r−1, r+1, . . . , n−1.
This proves the admissibility of (λ1, . . . , λn, µ1, . . . , µn−1).

We show that ψjψj+1 < 0 for j 6= r and ψrψr+1 > 0. Recalling that the
signs of the coefficients of (−z)r−2 and (−z)n−r−1 in P

(1)
2 (z) and P

(2)
2 (z) are

minus and plus, respectively, it follows that ψr−1 < 0 and ψr+1 > 0 . Moreover,
by Lemma 1, ψiψi+1 < 0 for i = 1, . . . , r − 2, r + 1, . . . n − 1. Since ψr = 1, we
also have ψrψr−1 < 0 and ψrψr+1 > 0.

The next theorem generalizes [2, Theorem 4]. Its proof requires some ad-
ditional considerations. The principal submatrix of T = T (n, r, a, b), b > 0
obtained by suppression of its r-th row and column is T1 ⊕ T2. Since T1 and
T2 are irreducible Jacobi matrices, they have real and distinct eigenvalues. We
adopt the following notation: σ(T1) = {µ1 > · · · > µr−1} and σ(T2) = {µr >
· · · > µn−1}. Notice that the µi’s are distinct from the λj ’s. We recall that
a matrix U ∈ Mn is said to be J−unitary if UU# = In. The matrix T is
J-unitarily diagonalizable, i.e., there exists a J-unitary matrix U such that
T = U#diag(λ1, . . . , λr, λr+1, . . . , λn)U . We say that λ ∈ σ+

J (T ) (resp. σ−J (T )),
if there exists x ∈ Cn such that Tx = λx and [x, x] = +1 (resp. [x, x] = −1).

Theorem 3 Let λ1 > . . . > λn and µ1 > . . . > µr−1, µr > . . . > µn−1. If

λ1 > µ1 > λ2 > µ2 > · · · > µr−1 > λr > λr+1 > µr > · · · > µn−2 > λn > µn−1,
(11)
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then there exists a unique T = T (n, r, a, b), with positive b and such that σ+
J (T ) =

{λ1 > . . . > λr}, σ−J (T ) = {λr+1 > . . . > λn}, σ(T1) = {µ1 > . . . > µr−1} and
σ(T2) = {µr > . . . > µn−1}, and conversely. Moreover, the matrix T depends
continuously on the eigenvalues {λ1, . . . , λn}, {µ1, . . . , µn−1}.

Proof. We prove the existence of a matrix T with the asserted properties. We
denote by T ′1 the principal submatrix of T in rows and columns 1, · · · , r − 2,
and T ′2 the principal submatrix of T in rows and columns r + 2, · · · , n. Using
the Laplace expansion of det(T − zIn) along the r-th row we find

det(T − zIn)
det(T1 ⊕ T2 − zIn−1)

= −z + ar − cr−1br−1
det(T ′1 − zIr−2)
det(T1 − zIr−1)

− crbr
det(T ′2 − zIn−r−1)
det(T2 − zIn−r)

. (12)

Evaluating det(T1 − zIr−1) and det(T2 − zIn−r), using the Laplace expansion
along the last and first rows of T1 and T2, respectively, we get

det(T1 − zIr−1)
det(T ′1 − zIr−2)

= −z + ar−1 − cr−2br−2
det(T ′′1 − zIr−3)
det(T ′1 − zIr−2)

, (13)

and

det(T2 − zIn−r)
det(T ′2 − zIn−r−1)

= −z + ar+1 − cr+1br+1
det(T ′′2 − zIn−r−2)
det(T ′2 − zIn−r−1)

, (14)

where T ′′1 is the principal submatrix of T1 in rows and columns 2, · · · , r−2, and
T ′′2 is the principal submatrix of T2 in rows and columns r + 3, · · · , n. Subse-
quently, similar expansions are performed for det(T ′1 − zIr−2)/det(T ′′1 − zIr−3)
and for det(T ′2 − zIn−r−1)/det(T ′′2 − zIn−r−2), and so on until we obtain poly-
nomials of degree 1. From Lemma 2 and using the notation introduced in the
definition of admissible sequence, we have, bearing in mind (7),

P0(z)
P1(z)

= −z + βr +
1/(ψr−1ψr)

−z + βr−1 +
1/(ψr−2ψr−1)

. . .

−z + β2 +
1/(ψ1ψ2)
−z + β1

+
1/(ψrψr+1)

−z + βr+1 +
1/(ψr+1ψr+2)

. . .

−z + βn−1 +
1/(ψn−1ψn)
−z + βn

. (15)

Further, by Lemma 2, ψjψj+1 < 0 for j 6= r and ψrψr+1 > 0. Having in mind
(12), (13), (14) and (15), it follows that the matrix T (n, r, a, b) is the unique
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pseudo-Jacobi matrix with positive b satisfying

aj = βj , j = 1, . . . , n,

−bjcj = 1/(ψjψj+1), j = 1, . . . , n− 1.

Bearing in mind that

Resz=λj

P1(z)
P0(z)

< 0, j = 1, · · · , r, Resz=λj

P1(z)
P0(z)

> 0, j = r + 1, · · · , n,

we conclude that σ+
J (T ) = {λ1, · · · , λr}, σ−J (T ) = {λr+1, · · · , λn} (see Corollary

2 of [5]). The continuity of T on the λj , µj is an obvious consequence of the
fact that the βj and ψj are algebraic functions of the λj and µj .

We prove the converse. Assume that T = T (n, r, a, b) satisfies the claimed
conditions. We have σ(T1 ⊕ T2) = {µ1, . . . , µr−1, µr, . . . , µn−1}. Let ε1 = · · · =
εr = 1, εr+1 = · · · = εn = −1. Since T is J-unitarily diagonalizable, there exists
a J-unitary matrix U = [uij ] such that U#TU = diag(λ1, . . . , λn). A calculation
shows that

p(z) :=
det(T1 ⊕ T2 − zIn−1)

det(T − zIn)
= 〈(T − zIn)−1er, er〉 =

n∑

j=1

εj |urj |2
λj − z

. (16)

Note that urj 6= 0, j = 1, . . . , n, as λj is a (simple) pole of p(z). Taking into
account that

lim
z→λ+

j

|urj |2
λj − z

= −∞ and lim
z→λ−j

|urj |2
λj − z

= +∞,

it follows that p(z) has one root in each interval ]λj , λj+1[, for j = 1, . . . , r − 1
and for j = r + 1, . . . , n− 1. The missing root of p(z) lies in ]−∞, λn[ as

lim
z→−∞

p(z) = +0 and lim
z→λ−n

εn|urn|2
λn − z

= −∞.

As the roots of p(z) are the eigenvalues of T1 ⊕ T2, it follows that

λ1 > µγ1 > λ2 > · · · > λr−1 > µγr−1 > λr >

λr+1 > µγr > λr+2 > · · · > µγn−2 > λn > µγn−1 , (17)

where {γ1, . . . , γn−1} is a permutation of {1, . . . , n− 1}. We will show that
γj = j, j = 1, · · · , n − 1. Indeed, suppose that U1 and U2 are unitary matrices
such that U∗

1 T1U1 = diag(µ1, · · · , µr−1), U∗
2 T2U2 = diag(µr, · · · , µn−1). Then,
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for U = U1 ⊕ [1]⊕ U2,

U#TU =




µ1 0 · · · 0 d1 0 · · · 0 0
0 µ2 · · · 0 d2 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · µr−1 dr−1 0 · · · 0 0
d1 d2 · · · dr−1 dr −dr+1 · · · −dn−1 −dn

0 0 · · · 0 dr+1 µr · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 dn−1 0 · · · µn−1 0
0 0 · · · 0 dn 0 · · · 0 µn




, dj ∈ R,

implying that

1
p(z)

=
det(T − zIn)

det(T1 ⊕ T2 − zIn−1)
= −z + dr −

r−1∑

j=1

d2
j

µj − z
+

n−1∑

j=r

d2
j

µj − z
. (18)

For sufficiently small ε > 0, from (18) we get p(µj + ε) > 0 and p(µj − ε) < 0 for
j = 1, · · · , r, while for i = r, · · · , n−1, we obtain p(µi+ε) < 0 and p(µi−ε) > 0.
On the other hand, according to (17), p(µγj + ε) > 0 and p(µγj − ε) < 0, for
j = 1, · · · , r − 1, while p(µγi + ε) < 0 and p(µγi − ε) > 0, for i = r, · · · , n − 1.
Thus, µγi = µi for i = 1, · · · , n− 1, and so (11) follows.

3 On the eigenvalues of a non-negative pseudo-
Jacobi matrix

3.1 The irreducible non-negative case

We shall consider the following problem.
Given a set

σ = {λ1 > · · · > λn} ⊂ R, (19)

find necessary and sufficient conditions for the existence of an irreducible non-
negative pseudo-Jacobi matrix T (n, r, a, b) with

σ+
J (T ) = {λ1 > · · · > λr} and σ−J (T ) = {λr+1 > · · · > λn}. (20)

Firstly, we analyze the 2× 2 irreducible case. If the matrix

T =
[

a c
−c b

]
,

with a, b > 0, c > 0, has real eigenvalues λ1 and λ2, then λ1, λ2 > 0. In fact,
having in mind that λ1 + λ2 = a + b > 0 and λ1λ2 = det(A) = ab + c2 > 0, this
implies the conclusion.

The next two results will be needed in our proofs. The first one, generally
attributed to Hochstadt [10, Theorem 2], may be found in [9] (cf. also [2,
Theorem 4]).
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Lemma 4 Let λ1, . . . , λn and µ1, . . . , µn−1 be real numbers satisfying

λ1 > µ1 > λ2 > · · · > µn−1 > λn.

Then there exists a unique Jacobi matrix T = T (n, a, b) with positive b and such
that the eigenvalues of T are λ1, . . . , λn and the eigenvalues of the principal
submatrix of T in rows and columns 2, · · · , n are µ1, . . . , µn−1. Moreover, the
matrix T depends continuously on the eigenvalues {λ1, . . . , λn}, {µ1, . . . , µn−1}.

Lemma 5 [2, Theorem 3]Let λ1, . . . , λn, be real numbers satisfying λ1 > · · · >
λn and λi + λn−i+1 > 0, i = 1, . . . , n. Then there exists a Jacobi matrix
T = T (n, a, b) with eigenvalues λ1, . . . , λn such that a and b are strictly pos-
itive vectors.

The next theorem is the main result of this section. It extends Theorem 3
in [2].

Theorem 6 Let λ1 > · · · > λn be real numbers. If there exists a nonnegative
irreducible pseudo-Jacobi matrix T = T (n, r, a, b) satisfying (20), then

λr+j + λn−j+1 > 0, (21)

j = 1, . . . , n− r. The converse holds in the case r = 1.

Proof. We prove the necessity condition. Assume T under the stated con-
ditions. As before, let T1 and T2 be the principal submatrices of T in rows
1, · · · , r − 1 and r + 1, · · · , n, respectively. Since T1 and T2 are irreducible
Jacobi matrices, their eigenvalues are real and distinct and we may assume
them decreasingly ordered. Suppose that σ(T1) = {µ1 > · · · > µr−1} and
σ(T2) = {µr > · · · > µn−1}. Applying [2, Theorem 1] to the nonnegative Jacobi
matrix T2, we obtain

µr+j−1 + µn−j ≥ 0, j = 1, . . . , r.

By Theorem 3, the following interlacement holds:

λ1 > µ1 > λ2 > · · · > µr−1 > λr > λr+1 > µr > λr+2 > · · · > µn−2 > λn > µn−1.
(22)

So the result easily follows.
We prove sufficiency. Suppose that r = 1, so that J = [1]⊕−In−1, and (21)

holds. By Lemma 5, there exists an irreducible Jacobi matrix T2 = T (n−1, a, b)
with eigenvalues λ2, . . . , λn and such that a, b are strictly positive vectors. Let
T = [λ1]⊕T2. Let P0(z) = det(T − zIn) and P1(z) = det(T2− zIn−1). We have

P0(z) =
n∏

j=1

(λj − z) = (λ1 − z)P1(z).
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Consider the polynomial in z, t

Q(z, t) = P0(z)− t2 det(T ′2 − zIn−2) =
n∏

i=1

(λi(t)− z), (23)

where T ′2 is the matrix which is obtained by deleting the first row and column
from T2. As Q(z, 0) = P0(z) and the roots of P0(z) are real and simple, we
conclude that, for a sufficiently small positive t, the roots λi(t) of Q(z, t) are
also real and simple. Moreover, by the continuity of each λi(t), we may write

λ1(t) > · · · > λn(t).

Let

P1(z, t) =
n∏

i=2

(λi(t)− z).

Because the eigenvalues of T2 and T ′2 strictly interlace, it follows that the roots
of P1(z, t) also strictly interlace with the eigenvalues of T ′2, for sufficiently small
t, that is, denoting by γ1, . . . , γn−2 the eigenvalues of T ′2, we find

λ2(t) > γ1 > λ3(t) > · · · > γn−2 > λn(t).

Let T2(t) = T (n− 1, a(t), b(t)) be the unique Jacobi matrix given by Lemma 4
such that its eigenvalues are the roots of P1(z, t) and the eigenvalues of T ′2(t),
the submatrix of T2(t) obtained by deleting the first row and column, are the
eigenvalues of T ′2, so that

det(T2(t)− zIn−1) =
n∏

j=2

(λj(t)− z), det(T ′2(t)− zIn−2) = det(T ′2 − zIn−2).

(24)
Since a(0) = a, by continuity (Lemma 4), a(t) > 0, for sufficiently small t.
Let c(t) = (λ1(t), a1(t), . . . , an−1(t)) and d(t) = (t, b1(t), . . . , bn−1(t)) and let us
consider the matrix

T (t) =
(

λ1(t) t
−tT T2(t)

)
= T (n, 1, c(t), d(t)), (25)

where t = (t, 0, . . . , 0) ∈ Cn−1. Having in mind (23) and (24), it follows that

det(T (t)− zIn) = (λ1(t)− z) det(T2(t)− zIn−1) + t2 det(T ′2(t)− zIn−2)

=
n∏

j=1

(λj(t)− z) + t2 det(T ′2 − zIn−2)

=
n∏

j=1

(λj − z).

Since σ(T2(t)) = {λ2(t), . . . , λn(t)}, we must have λ1 > λ2 > λ2(t) > · · · >
λn > λn(t). Thus, because Resz=λ1(

∏n
i=2(λi(t) − z)/

∏n
i=1(λi − z)) < 0, we

have σ+
J (T (t)) = {λ1} and σ−J (T (t)) = {λ2, . . . , λn}.
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3.2 The reducible non-negative case

Theorem 7 Let λ1 ≥ · · · ≥ λr > λr+1 ≥ · · · ≥ λn. There exists a non-negative
pseudo-Jacobi matrix T = T (n, r, a, b), with

σ+
J (T ) = (λ1, · · · , λr)

and
σ−J (T ) = (λr+1, · · · , λn),

if and only if
λr+1+p + λn−p ≥ 0, p = 0, · · · , n− r − 1. (26)

Proof. Necessity: The matrix T is a direct sum

T1 ⊕ T2 ⊕ · · · ⊕ Ts,

where all the blocks are irreducible. Further, the blocks are Hermitian, with
the possible exception of one block, which is pseudo-Hermitian. Assume Tl

is J (l)-Hermitian for J (l) = Irl
⊕ −Inl−rl

. Let σ(Tj) = {λ(1)
j > · · · > λ

(j)
nj },

j = 1, · · · , s. Observe that, by hypothesis, λr > λr+1, so that we also have
λ

(l)
rl > λ

(l)
rl+1. It follows from [2, Theorem 1] and Theorem 6 that

λ
(j)
rj+1+k + λ

(j)
nj−k ≥ 0, k = 1, · · ·nj , j = 1, · · · , s,

where rj = 0 for j 6= l.
Now we show that (26) holds. Clearly, there exists a permutation σ of

(1, . . . , n) and an integer κ such that {σ(r + 1), · · · , σ(n)} = {r + 1, · · · , n},
λσ(r+i) + λσ(n−i+1) ≥ 0, λσ(n−i+1) < 0, i = 1, . . . , κ, (27)

and
λσ(r+i) ≥ 0, i = κ + 1, · · · , n− r − κ. (28)

Let p, q ∈ {1, · · · , n− r−κ} be such that σ(r + p) = r +1 and σ(n− q +1) = n.
If λσ(n−q+1) ≥ 0, then λi ≥ 0 for all i, and (26) trivially follows. Suppose that
λσ(n−q+1) < 0, that is, q ∈ {1, · · · , κ}. If p = q we have λr+1 + λn ≥ 0. If p 6= q,
we will meet either the inequalities

λσ(r+p) + λσ(n−p+1) ≥ 0, λσ(n−p+1) < 0,

λσ(r+q) + λσ(n−q+1) ≥ 0, λσ(n−q+1) < 0,

or the inequalities

λσ(r+p) ≥ 0,

λσ(r+q) + λσ(n−q+1) ≥ 0, λσ(n−q+1) < 0,

which imply, obviously, either

λr+1 + λn = λσ(r+p) + λσ(n−q+1) ≥ 0, λσ(r+q) + λσ(n−p+1) ≥ 0,
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or
λr+1 + λn = λσ(r+p) + λσ(n−q+1) ≥ 0, λσ(r+q) ≥ 0.

In particular, this settles the inequality λr+1 + λn ≥ 0.
If p = q, we will consider next the inequalities

λσ(r+i) + λσ(n−i+1) ≥ 0, λσ(n−i+1) < 0, p 6= i = 1, . . . , κ,

and
λσ(r+i) ≥ 0, i = κ + 1, · · · , n− r − κ.

If p 6= q, we will consider the inequalities

λσ(r+i) + λσ(n−i+1) ≥ 0, λσ(n−i+1) < 0 i = 1, . . . , κ, i 6= p, q,

λσ(r+i) ≥ 0, i = κ + 1, · · · , n− r − κ, i 6= p,

and either
λσ(r+q) + λσ(n−p+1) ≥ 0, λσ(n−p+1) < 0,

or
λσ(r+q) ≥ 0.

In order to treat the inequality λr+2 + λn−1 ≥ 0, we take the permutation π
and an integer κ′ such that

π(r + 1) = r + 1, π(n) = n, {π(r + 2), · · · , π(n− 1)} = {r + 2, · · · , n− 1},
and

λπ(r+i) + λπ(n−i+1) ≥ 0, λπ(n−i+1) < 0 i = 2, . . . , κ′

λπ(r+i) ≥ 0, i = κ′ + 1, · · ·n− r − κ′.

We proceed as previously, searching for integers p, q such that π(r + p) = r +
2, π(n− r + q) = n− 1. And so on. Finally, we obtain the desired result.

Sufficiency: Suppose that (26) holds. Set

Ti =
1
2

[
λr+i + λn−i+1 λr+i − λn−i+1

λr+i − λn−i+1 λr+i + λn−i+1

]
,

for i = 1, · · · , [n−r
2 ], and Ti = λi, if i = n−r+1

2 (n− r odd). Consider

T ′i =
1
2

[
λi + λr−i+1 λi − λr−i+1

λi − λr−i+1 λi + λr−i+1

]
,

for i = 1, · · · , [ r
2 ], and T ′i = λi, if i = r+1

2 (r odd).
Thus, (λ1 ≥ · · · ≥ λr > λr+1 ≥ · · · ≥ λn) is the spectrum of the following

block diagonal pseudo-Jacobi matrix

diag(T ′1, · · · , T ′(r+1)/2)⊕ diag(T1, · · · , T(n−r+1)/2).

This matrix is obviously non-negative, being brr = −crr = 0. Moreover,
σ−J (T ) = (λr+1 ≥ · · · ≥ λn) and σ+

J (T ) = (λ1 ≥ · · · ≥ λr) for J = Ir ⊕ −In−r.
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4 An algorithm and numerical examples

Now we present a new algorithm to construct the solution of the inverse prob-
lem considered in Theorem 3. Namely, a pseudo-Jacobi matrix T (n, r, a, b) is
constructed, given its spectrum and the spectra of the two principal submatrices
obtained by deleting its rth row and column, such that certain interlacing condi-
tions are satisfied. In the case of real symmetric Jacobi matrices two algorithms
were proposed by Shieh [11] and by Xu and Jiang [12]. Our algorithm also allows
the construction of Jacobi matrices, the condition λ1 > µ1 > · · · > µn−1 > λn

being then considered instead of (2).

Algorithm

Step 1 Let the sequence (λ1, . . . , λn, µ1, . . . , µr−1, µr, . . . , µn−1) of real numbers
satisfying (2) be given.

1.1 Form

P0(z) =
n∏

j=1

(αj − z); P (1)
1 (z) =

r−1∏

j=1

(µj − z); P (2)
1 (z) =

n−1∏

j=r

(µj − z).

1.2 Set P1(z) = P
(1)
1 (z)P (2)

1 (z).

1.3 Obtain (−z + βr) and P2(z), respectively, as the quotient and the
rest of the Euclidean division algorithm applied to P0(z) and P1(z).

1.4 Determine P
(1)
2 (z), P (2)

2 (z) such that

P2(z) = P
(1)
2 (z)P (2)

1 (z) + P
(2)
2 (z)P (1)

1 (z),

and deg(P (1)
2 (z)) < deg(P (1)

1 (z)), deg(P (2)
2 (z)) < deg(P (2)

1 (z)).

Step 2 2.1 For j = 1, · · · , (r − 2), obtain ψr−j(−z + βr−j) and P
(1)
j+2(z), respec-

tively, as the quotient and the rest of the Euclidean division algorithm
applied to P

(1)
j (z) and P

(1)
j+1(z). Finally, ψ1, β1 are given by (8).

2.2 For j = 1, · · · , (n − r − 1), obtain ψr+j(−z + βr+j) and P
(2)
j+2(z),

respectively, as the quotient and the rest of the Euclidean division
algorithm applied to P

(2)
j (z) and P

(2)
j+1(z). Finally, ψn, βn are given

by (8).

Step 3 Obtain a matrix of the form (1) with

aj = βj , j = 1, · · · , n;

bj =
√

1/|ψjψj+1|, j = 1, · · · , n− 1

cj = −sign(ψjψj+1)
√

1/|ψjψj+1|, j = 1, · · · , n− 1.

We illustrate the algorithm presenting two examples.
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Example 8 We construct a matrix T = T (5, 3, a, b) such that σ(T ) = {6, 4, 2, 2, 0},
σ(T1) = {5, 3}, σ(T2) = {1,−1}, where T1, T2 are the principal submatrices ob-
tained from T by deleting the 3rd row and column. The algorithm yields

T =
1
4




15
√

15 0 0 0√
15 17 2

√
6 0 0

0 2
√

6 24 2
√

30 0
0 0 −2

√
30 −3

√
7

0 0 0
√

7 3




.

Example 9 We construct a matrix T = T (5, 3, a, b) such that σ(T ) = {6, 4, 2, 2, 0},
σ(T1) = {5, 3}, σ(T2) = {1,−1/4}, where T1, T2 are the principal submatrices
obtained from T by deleting the 3rd row and column. The algorithm yields

T =




405
107

√
10920
11449 0 0 0√

10920
11449

451
107

√
321
182 0 0

0
√

321
182

21
4

√
4479
1456 0

0 0 −
√

4479
1456

2147
5972

√
1740375
4458098

0 0 0
√

1740375
4458098

583
1493




.

Final remarks

In Theorem 3, the existence of T remains valid even if (2) holds, with the
condition λr > λr+1 replaced by λr = λr+1, except that, then, σ+

J (T ) =
{λ1, . . . , λr−1}, σ−J (T ) = {λr+2, . . . , λn}. The proof follows unchanged, but,
in that case, the eigenvector associated with λr = λr+1 may be an isotropic
vector. This may be easily confirmed in the 2 × 2 and in the 3 × 3 case. We
conjecture that the converse part of Theorem 3 still holds when λr = λr+1. The
following open problem also arises. If r > 1, does the converse of Theorem 6
follow?
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