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Abstract

In this note, we revisit a system of one self-interacting boson, de-
scribed by a non-Hermitian Hamiltonian H acting on an infinite dimen-
sional Hilbert space H. We determine the eigenfunctions of the Hamilto-
nian and of its adjoint, which constitute complete biorthogonal sets. The
probabilistic interpretation of quantum mechanics is not compatible with
the metric inherited from H, and attempts to overcome this problem are
presented. Consequences of losing self-adjointness in the quantum me-
chanical context are discussed and the necessity of a careful mathematical
analysis of unbounded operators is emphasized.

“In spite of the quasi-Hermiticity (without bounded inverse of Q), there is for
instance no hope of building functional calculus that would follow more or less
the same pattern of the self-adjoint operators.”
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1 Introduction

In quantum mechanics, the states of a particle, or system of particles, are rep-
resented by vectors in a separable Hilbert spaceH, endowed with an inner product
⟨·, ·⟩ and related norm ∥ · ∥. Measurable physical quantities are represented by
self-adjoint, or Hermitian (in the terminology of von Neumann), operators in
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H. Such operators are called observables. This mathematical structure is the
scenario we will be concerned with.

The states of the quantum system are represented by vectors in H, which
evolve in time according to the time dependent Schrödinger equation

i
d

dt
ψ = Hψ,

where ψ = ψ(t) is the time dependent wave vector. In this context, the eigen-
values En of H must be real and its eigenvectors ψn must constitute a complete
orthogonal system, and they can be easily orthonormalized. The time dependent
Schrödinger equation is solved by expanding the initial state vector as

ψ(0) =
∞∑
n=0

cnψn, cn ∈ C

and, at the instant t, the solution of the equation is given by

ψ(t) =
∞∑
n=0

cne
−iEntψn.

The relevance in physics of non-Hermitian operators with real eigenvalues is
being widely recognized not only in quantum mechanics, but also in other areas
of quantum physics such as quantum fluid dynamics, quantum optics, quantum
field theory, and so on [5]. Initially, the literature on these topics was mainly
written by physicists for physicists, but certain mathematical contents deserved
the mathematicians attention [5, 13], and now this is a crossed specialization area
of research of both scientific communities.

We will be mainly concerned with the following questions.
Firstly, in finite dimensions, self-adjointness of the Hamiltonian ensures the

existence of real eigenvalues and orthogonal eigenvectors, a fundamental issue
for the probabilistic interpretation of quantum mechanics. Eigensystems of non-
self-adjoint operators can show very wild properties and they present a very
different behaviour from the self-adjoint setup [13]. The occurrence, in the de-
scription of certain quantum systems, of non-self-adjoint Hamiltonians possessing
real eigenvalues, motivates the study of the implications of non-self-adjointness
in the mathematical apparatus of quantum mechanics.

Secondly, a Hamiltonian operator, whether it is self-adjoint or not, is in gen-
eral unbounded. As a consequence, domain problems, among others, arise out of
this feature. The unbounded nature of several operators appearing in this context
requires some attack subtleties. While quantum theory is well understood and
developed for systems involving bounded metric operators with a bounded in-
verse, the emergence of unbounded metric operators causes difficulties and places
challenging problems.
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Unbounded operators exhibit pathological properties, such as they can map
an orthonormal basis into a set that may not form any kind of reasonable basis
(see [4, 6, 7, 8, 9, 11, 10, 13, 16, 17] and references therein).

One of our main purposes is to study some implications of losing self-adjointness.
Concretely, our goal is to investigate spectral properties of a quantum system de-
scribed by a non-Hermitian Hamiltonian, acting on an infinite dimensional sep-
arable Hilbert space. The system is constituted by a self-interacting boson and
the Hamiltonian H has a real and discrete spectrum. The existence of a basis of
eigenfunctions, crucial for the interpretation of quantum mechanics, is discussed.
One second goal is to expose some distinctive features of unbounded operators.
It should be stressed that the problems identified in our simple model appear in
several situations, so it represents a good illustration of the problematics in the
area.

2 The non-Hermitian shifted harmonic oscilla-

tor

Let us consider the Hilbert space H = L2(R) of square integrable functions
in one real variable, endowed with the standard inner product

⟨f, g⟩ =
∫ +∞

−∞
g(x)f(x)dx.

Let D(H) denote an unspecified domain of an operator H. Consider the stan-
dard unbounded bosonic operators a : D(a) → D(a) and a∗ : D(a∗) → D(a∗),
expressed as

a = − i√
2

d

dx
− i√

2
x =

1√
2
p− i√

2
x,

a∗ = − i√
2

d

dx
+

i√
2
x =

1√
2
p+

i√
2
x, (1)

where the Hermitian operator p is the so called momentum operator

−i d
dx

: D(p) → D(p)

and x : D(x) → D(x) is the position operator x.
We introduce the well-known non-Hermitian harmonic oscillator [5, pp. 145-

152] described by the Hamiltonian H : D(H) → D(H),

H =
1

2
(p2 + x2) + iα

√
2x− 1

2
, α ∈ R.
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This non-Hermitian operator is invariant under a simultaneous space reflection
P (x → −x) and time reversal T (complex conjugation). Moreover, it is un-
bounded and pertinent problems arise with unbounded operators. PT -symmetric
models have applications in several domains of physics; namely in optics, electro-
magnetism, super conductivity, solid state, Bose-Einstein condensates, etc. For
PT -symmetric Hamiltonians, see ref. [9] and references therein.

2.1 Some words on PT -symmetry

In the turning of the last century, PT -symmetry became a challenging issue
(see [9, 14, 16, 18] and their references). It is consensual that a quantum mechan-
ical interpretation of PT -symmetry must be implemented through an invertible
similarity transformation R,

h := RHR−1,

where h is a self-adjoint operator, h = h∗.
This relation is closely related to the so called quasi-Hermiticity

QH = H∗Q, (2)

where Q is a positive operator called a metric operator [15]. A Hamiltonian H
with this property is called quasi-Hermitian, because it is Hermitian with respect
to the inner product induced by the metric operator Q,

⟨·, Q·⟩ = ⟨Q1/2·, Q1/2·⟩.

It is not easy to give a good meaning of (2) when considering the respective
domains. The operator equality (2) requires that the operator domains D(QH)
and D(H∗Q) are equal and in addition the identity

QHψ = H∗Qψ

holds for every ψ ∈ D(QH)∩D(H∗Q). It should be stressed that if Q is invertible
and bounded, then fundamental properties of self-adjoint operators are valid for
H, e.g., real spectrum, spectral stability with respect to perturbations, etc. Oth-
erwise, if the metric is singular (i.e. noninvertible, unbounded, or unboundedly
invertible), the mentioned properties have no guaranteed validity, and this may
cause serious problems in the behavior of H.

2.2 Domain considerations

Let us initially chose the domain

D =
{
f(x)e−x2/2 : f(x) is a polynomial in x

}
, (3)
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which is dense in L2(R).
It is immediate to conclude that the operator p := −id/dx, with a domain

consisting of “nice” functions (like for instance the set D), is symmetric. This
symmetry implies that

D(p) ⊂ D(p∗),

But there is a big difference between symmetric and self-adjoint operators, the
latter meaning that actually p = p∗ and D(p) = D(p∗), that is, an operator is
self-adjoint if it is symmetric and its domain coincides with the domain of its
adjoint. There is even a big difference between self-adjoint and closed symmetric
operators ([5], pp.60-88). Of course, such subtleties do not arise for bounded
operators, but they are crucial in the setup of unbounded operators.

In our case, p := −id/dx is self-adjoint if its domain is correctly chosen in the
context of the Sobolev space H1, but this is definitely not the case, if we consider
our much smaller set D. The operator is not even closed on this set.

In applied research, the specification of operator domains is often missing. We
must choose the most convenient closed domain among all possible ones. In the
majority of “applied situations”, that domain must be different from the operator
maximal domain. In what concerns our model, we recall that weighted shifts are
not closed, this is a basic fact, nevertheless they are closable.

It is well-known that H is a closed operator on its maximal domain

dom(H) = {ψ ∈ L2(R) : −ψ′′ + x2ψ + ixψ ∈ L2(R)}.

It may be easily shown that H is a shifted non-Hermitian operator. In fact, the
bosonic operators a, a∗ satisfy the following commutation relation

[a, a∗] = aa∗ − a∗a = 1,

where 1 is the identity operator inH (this means that [a, a∗]f = f for any f ∈ D).
In terms of a∗, a, the non-Hermitian operator H, is expressed as

H = a∗a+ α(a∗ − a), α ∈ R,

that is, a shifted non-Hermitian operator. Its Cartesian decomposition is H =
ℜA+ iℑA, where ℜH = a∗a and ℑH = −iα(a− a∗) . Obviously, ℜH is positive
definite. As a consequence, the numerical range of H, denoted and defined as

W (H) := {⟨Hψ,ψ⟩ : ψ ∈ D(H), ∥ψ∥ = 1},

is a subset of a sector in the closed right-half plane, which gives an accessible
spectral region for H.

Next, we determine an orthonormal basis for H. Assume that the nonzero
vector Φ0 ∈ D is the vacuum of a,

aΦ0 = 0.
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We easily find that Φ0 is the Gaussian

Φ0(x) =
1

π1/4
e−x2/2 ∈ D.

Then, the eigenvectors Φn of the number operator N0 = a∗a, are

Φn = a∗nΦ0 = fn(x)e
−x2/2 ∈ D, n = 0, 1, 2, . . . , (4)

with fn(x) proportional to the nth Hermite polynomial in x.
These eigenvectors constitute an orthogonal basis of H, orthogonality being

easily shown, as
⟨Φn,Φm⟩ = δm,nn!⟨Φ0,Φ0⟩ = δm,nn!,

where δmn is the Kroenecker symbol (δmn = 1 if m = n and 0 otherwise). The
basis may obviously be orthonormalized in a standard way:

e0(x) =
1

π1/4
e−x2/2, en(x) =

1√
2nn!π1/2

Hn(x)e
−x2/2, n = 1, 2, . . .

where Hn(x) is the nth Hermite polynomial in x.

2.3 Eigenvectors of the Hamiltonian and of its adjoint

We have that

[H, a∗] = a∗ − α, [H, a] = −a− α, [H,1] = 0.

In order to determine the eigenvalues and eigenvectors of H, we consider a (real)
linear combination of a∗, a,1, the generators of an Heisenberg algebra,

θ = xa∗ + ya+ z1.

The requirement

[H, θ] = xa∗ − ya− α(x+ y) = λ(xa∗ + ya+ z1), λ ∈ R,

leads to the following real linear system

x = λx

−y = λy

−α(x+ y) = λz.

Equivalently, in matrix form, we get 1 0 0
0 −1 0
−α −α 0

xy
z

 = λ

xy
z

 .
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The eigenvalues of the above linear system are readily obtained,

λ = 1,−1, 0,

and the associated eigenvectors are (1, 0,−1)T , (0, 1, 1)T , (0, 0, 1)T , respectively.
These eigenvectors allow the introduction of the operators Θ‡ : D(Θ‡) →

D(Θ‡) and Θ : D(Θ) → D(Θ), defined, respectively, by

Θ‡ = a∗ − α, Θ = a+ α, (5)

and satisfying the canonical commutation rule

[Θ,Θ‡] = 1.

The vacuum of Θ is given by the nonzero vector Ψ0 ∈ D such that

ΘΨ0 = 0,

that is, Ψ0 = exp(−(x+ i
√
2α)2/2). Then, the eigenvectors of H are

Ψn = Θ‡nΨ0 = Hn(x+ i
√
2α)e−(x+i

√
2α)2/2, (6)

where Hn(z) are polynomials in z of degree n, with real coefficients, obtained
from the polynomials in (4) by changing x into x+ i

√
2α.

The eigenvectors of the adjoint H∗ : D(H∗) → D(H∗), denoted by Ψ̃n, can be
similarly determined. Let the nonzero vector Ψ̃0 ∈ D denote the vacuum of Θ‡∗,

Θ‡∗Ψ̃0 = 0.

By (1), we find (
d

dx
+ x− i

√
2α

)
Ψ̃0 = 0,

and so
Ψ̃0(x) = exp(−(x− i

√
2α)2/2), n = 0, 1, 2, . . . .

Then we easily obtain the eigenvectors of H∗:

Ψ̃n = Θ∗nΨ̃0 = Hn(x− i
√
2α)e−(x−i

√
2α)2/2,

where Hn(z) are polynomials of degree n in z, with real coefficients. The eigen-
vectors of H∗ and H constitute biorthogonal systems of vectors, as

⟨Ψ̃n,Ψm⟩ = δm,nn!⟨Ψ̃0,Ψ0⟩, m, n = 0, 1, 2, . . . .

In fact

⟨Ψ̃n,Ψm⟩ =
∫ +∞

−∞
Ψm(x)Ψ̃n(x)dx =

∫ +∞

−∞
Φm(x+ i

√
2α)Φn(x− i

√
2α)dx

=

∫ +∞

−∞
Φm(x+ i

√
2α)Φn(x+ i

√
2α)dx = n!δmn.

Under a suitable normalization, we obtain two biorthonormal systems of vectors.
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2.4 Eigenvalues of H and H∗

Next, we determine the eigenvalues of H and H∗. From (5) it follows that we
have

H = Θ‡Θ+ α21, (7)

implying that the eigenvalues of H are given by

n+ α2, n = 0, 1, 2, . . . , (8)

the eigenvalue of H associated with the eigenvector Ψn being n+ α2, as a conse-
quence of (6),

HΨn = (n+ α2)Ψn.

Thus, all the eigenvalues of H are real and simple. From (7) it follows that

H∗ = Θ∗Θ‡∗ + α21,

implying that eigenvalues of H∗ are given by (8), the eigenvalue n + α2 of H∗

being associated with the eigenvector Ψ̃n,

H∗Ψ̃n = (n+ α2)Ψ̃n.

The operator Θ‡ increases the eigenvalues of H by one unit, because

Θ‡Ψn = Ψn+1,

so Θ‡ is said to be a creation operator. On the other hand, the operator Θ
decreases the eigenvalues ofH by one unit, because, keeping in mind that [H,Θ] =
−Θ, we have that

ΘΨn = ΘΘ‡nΨ0 = [Θ,Θ‡n]Ψ0 +Θ‡nΘΨ0 = nΘ‡(n−1)Ψ0 + 0

= nΨn−1, n > 0,

so Θ is said to be an annihilation operator.
From [H,Θ‡] = 1 and [H,Θ] = −1, we conclude that [H∗,Θ‡∗] = −1 and

[H∗,Θ∗] = 1. Thus, the creation and annihilation operators for H∗ are, respec-
tively,

Θ∗ and Θ‡∗,

because, when acting on an eigenvector of H∗, the operator Θ∗ increases the
respective eigenvalue by 1, while Θ‡∗ decreases the respective eigenvalue by the
same amount. We recall that creation and annihilation operators are unbounded
operators.

The operators Θ‡, Θ do not describe bosons, as [Θ,Θ‡] = 1 with Θ∗ ̸= Θ‡,
but they describe D-pseudo bosons (cf. [1]) because

(ΘΘ‡ −Θ‡Θ)f = f for all f ∈ D.

The respective pseudo-bosonic number operator is defied by N = Θ‡Θ.
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2.5 Eigenbases

It may be shown that the set {Ψn} of the eigenvectors of the non-Hermitian
Hamiltonian is complete, that is, 0 is the only vector orthogonal to all its vectors.
An analogous situation holds for {Ψ̃n}, the eigenvectors of H∗.

In the present case, the sets {Ψn} and {Ψ̃n} do not constitute bases for H
[1], essentially because the eigenvectors Ψn and Ψ̃n are given by polynomials
multiplying a shifted gaussian, and so

lim
n

∥Ψn∥ = lim
n

∥Ψ̃n∥ = ∞, (9)

For more details, see [1].
When H is infinite dimensional, completeness of {Ψn} is equivalent to {Ψn}

being a basis if {Ψn} is an orthonormal set. Nevertheless, in general, when
orthonormality does not hold, completeness by its own does not ensure basicity.

We recall that completeness of a non-orthogonal family {Ψn} does not imply
that any ψ ∈ H has a unique expansion of the form ψ =

∑
n cnΨn. The existence

of an eigenbasis forH (orH∗) would be important from the physical point of view,
because it would mean that that any vector inH would represent a physical state,
and so it could be uniquely written as a linear combination of the eigenvectors,
as required by the Superposition Principle.

A simple reminder: {Ψn} is a (Schauder or conditional) basis of H if any
ψ ∈ H, may be written as

∞∑
n=0

cnΨn (10)

for a unique set of scalars cn, where the infinite sum is understood as a limit in
the strong topology of H.

It is known that eingenfunctions of a Hamiltonian H with discrete spectrum
forms a Riesz basis if and only if H is quasi-Hermitian with bounded and bound-
edly invertible metric [13, Proposition 4]. If {Ψn} is a Riesz (or unconditional)
basis of H, a unique representation of the form (10) is ensured, and this fact is
crucial in the quantum mechanical perspective. It should be noticed that, like
the spectrum, Riesz basicity property is not preserved by unbounded transfor-
mations.

Neither {Ψn} nor {Ψ̃n} are Riesz bases. It should be stressed that this is
not a consequence of the chosen normalization, but an inevitable consequence of
H being non self-adjoint and possessing a nontrivial pseudospectrum (see next
section). Nevertheless, this does not exclude the possibility that they constitute

D̃-quasi bases. We recall that for D̃ a dense subspace of H, we say that the
biorthogonal sets {ψn}, {ψ̃n} constitute D̃-quasi basis if, for all f, g ∈ D̃, the
following holds

⟨f, g⟩ =
∑
n≥0

⟨f, ψn⟩⟨ψ̃n, g⟩ =
∑
n≥0

⟨f, ψ̃n⟩⟨ψn, g⟩.
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Inded, let us consider D defined in (3), which coincides with span{Φn}. Let us
moreover assume that

S := span{Ψn} ⊂ D, S̃ := span{Ψ̃n} ⊂ D.

We show that {Ψn}, {Ψ̃n} are D̃-quasi basis for D̃ = S ∩ S̃.
In fact, for f, g in S and S̃ we have

f =
∑
n

ψn⟨f, ψ̃n⟩, g =
∑
n

ψ̃n⟨f, ψn⟩,

so that
⟨g, f⟩ =

∑
n

⟨g, ψn⟩⟨f, ψ̃n⟩ =
∑
n

⟨g, ψn⟩⟨ψ̃n, f⟩.

Similarly, we may show that

⟨g, f⟩ =
∑
n

⟨g, ψ̃n⟩⟨ψn, f⟩.

Since S and S̃ are dense in D (see [1]), D is dense in H, and the result follows.

2.6 Metric operator

From the procedure in [14] it can be shown that there exists a bounded metric
operator for H, as a consequence of the reality, simplicity and completeness of
its eigenfunctions. Further, H∗ shares these properties. Nevertheless, any metric
operator for this model possesses an inevitable singularity. The analysis of this
situation requires the notion of pseudospectrum.

Trefethen and Embree, in their 2005 monograph [21], advocate the use of
pseudo-spectra when studying non-self-adjoint operators. The spectrum does
not contain sufficient information to derive quantum mechanically relevant con-
clusions for non-Hermitian operators.

Non-Hermitian operators have spectral instability, with small perturbations
changing the spectrum. For instance, complex eigenvalues can appear very far
from the original ones. The analysis of pseudospectrum is crucial for correctly
understanding the Hamiltonian behaviour. Given a positive number ϵ, the ϵ-
pseudospectrum (or simply pseudospectrum) of H is defined as

σϵ(H) = σ(H) ∪ {z ∈ C : ∥(H − z)−1∥ > ϵ−1},

where σ(H) consists of the complex numbers z for which the resolvent (H − z)−1

does not exist as a bounded operator on H. It is known that if H is quasi-
Hermitian, with a positive, bounded and boundedly invertible metric, the pseudo-
spectrum of H is trivial [4]. Therefore, a given operator H with nontrivial pseu-
dospectrum cannot possess a nonsingular bounded or boundedly invertible metric.
The Hamiltonian H possesses a nontrivial pseudospectrum [13], so the singularity
of the metric operator is unavoidable.
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3 Conclusions

Interpreting the imaginary part of H as a perturbation, even infinitesimally
small, we conclude that it has severe consequences on the behavior of H, as far
as eigenvectors of H cease to be a basis of H. In fact, we have proved that the
eigenvectors of H and H∗ originate two biorthogonal complete families of vectors
of H which are not bases.

The eigenvectors of H cannot form a Riesz basis and the imaginary shifted
operator cannot be similar to any self-adjoint operator via a bounded and bound-
edly invertible transformation.

Singular metrics are not adequate to the physical interpretation of non-Hermi-
tian Hamiltonians. Nevertheless, singular metrics may give rise to new physics
and mathematics, since the transformed Hamiltonians exhibit new features and
open up completely new perspectives.
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dade de Coimbra (CMUC), funded by the European Regional Development Fund
through the program COMPETE and by the Portuguese Government through
the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-
C/MAT/UI0324/2011.

References

[1] F. Bagarello, Construction of pseudo-bosons systems, J. Math. Phys. 51
(2010) 023531;

[2] F. Bagarello, Pseudo-bosons, so far, Reports on Mathematical Physics, 68
(2011) 175-210;

[3] F. Bagarello, More mathematics for pseudo-bosons, J. Math. Phys, 54
(2013) 063512.

[4] F. Bagarello, F. Gargano, D. Volpe, D-deformed harmonic oscillators, Inter-
national Journal of Theoretical Physics 01/2015.

[5] F. Bagarello, J.-P. Gazeau, F.H. Szafraniec, M. Znojil, Eds., Non-Selfadjoint
Operators in Quantum Physics: Mathematical Aspects, Wiley, 2015, pp 145-
152.

[6] N. Bebiano and J. da Providência, Non-Hermitian Hamiltonians with un-
bounded metric, submitted.

11



[7] J. da Providência, N. Bebiano and JP. da Providência, Non Hermitian oper-
ators with real spectra in Quantum Mechanics, Brazilian Journal of Physics,
41 (2011) 78-85.

[8] N. Bebiano, J. da Providência , J. P. da Providência, Mathematical As-
pects of Quantum Systems with a Pseudo-Hermitian Hamiltonian, Brazilian
Journal of Physics, 46 (2016) 152-156.

[9] C.M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians
Having PT Symmetry , Phys. Rev. Lett., 80 (1998) 5243-5246.

[10] C.M. Bender, D.C. Brody and H.F. Jones, Complex Extension of Quantum
Mechanics, Phys. Rev. Lett, 89 (2002) 27041.
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