UNPROJECTION AND DEFORMATIONS
OF TERTIARY BURNIAT SURFACES

JORGE NEVES AND ROBERTO PIGNATELLI

ABSTRACT. We construct a 4-dimensional family of surfaces of general type
with pg = 0 and K? = 3 and fundamental group Z/2 x Qs, where Qg is the
quaternion group. The family constructed contains the Burniat surfaces with
K2 = 3. Additionally, we construct the universal coverings of the surfaces in
our family as complete intersections on (P!)? and we also give an action of
7/2 x Qs on (P1)? lifting the natural action on the surfaces.

The strategy is the following. We consider an étale (Z/2)3-cover T of a
surface with pg = 0 and K 2 = 3 and assume that it may be embedded in a
Fano 3—fold V. We construct V' by using the theory of parallel unprojection.
Since V is an Enriques—Fano 3-fold, considering its Fano cover yields the simple
description of the universal covers above.

1. INTRODUCTION

A Burniat surface is the minimal resolution of singularities of a bidouble cover,
i.e., a finite flat Galois morphism with Galois group (Z/2)?, of the projective plane
branched along the divisors:

Di=A1+A2+ A3, Dy=B1+By+B;, D3=C1+Co+0C3,

where Ay, B;, Cy form a triangle with vertices xy,x2,x3, A1, As, A3 are lines
through x;, By, Ba, B3 are lines through x5 and C7, Csy, C5 are lines through xs.
(Cf. Figure[l]) Burniat surfaces were first constructed by Burniat [Bul, though a
substantial part of the initial study of these surfaces was done, about 10 years later
by Peters [Pet]. They have an equivalent description known as the Inoue surfaces
[no], given as the quotient of a divisor in the product of three elliptic curves by
a finite group. See [BCI] for an excellent introduction to the subject of Burniat
surfaces.
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Burniat surfaces are minimal surfaces of general type with p, = dim H(Q?) =0
and hence with irregularity, ¢ = dim H°(Q!), equal to 0. The study of the mo-
duli space of surfaces of general type with these invariants started in 1932 with
Campedelli’s celebrated construction of a surface of general type with p, = 0 and
K? = ¢2 = 2, as a double cover of the projective plane branched along a curve
of degree 10 with 6 singular points, not lying on a conic, all of type [3,3], that
is a triple point with another infinitely near triple point. Nowadays, this subject
is still the object of much attention, with new results on the description of whole
components of this moduli space (e.g. [APL [CS, [PY2]) and on
the proof of existence of new ones (e.g. PPS)).
See for a survey on surfaces of general type with p, = 0.

Let S be a Burniat surface. If we assume that the branch divisors D1, Dy, D3 in
the configuration described earlier, besides satisfying the conditions stated there,
are otherwise general, then K2 = 6. By the general theory of bidouble covers (see
[C]), imposing further, to the triple Dy, Do, D3, m singular points of type (1,1,1)
(which are points which belong to each D;, which are smooth for each D;, and
such that the three tangent directions are different), then K2 drops by m and the
other invariants do not change. This yields 6 families (two for m = 2: the family
of nodal type and the family of non nodal type) the dimensions of which are equal
to K2 —2 =4 — m, respectively.

FIGURE 1. Branching divisors for tertiary Burniat surfaces
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Following Bauer and Catanese [BCI], call a Burniat surface primary if K% = 6,
secondary if Kg = 4,5, tertiary if ng = 3 (see Figure|l)) and quaternary if Kg =2.
From a certain point of view, what sets apart primary and secondary Burniat sur-
faces from tertiary and quaternary Burniat surfaces is that the former families have
dimensions greater than or equal to the expected dimension 10x(Og) —2K3 of the
corresponding moduli spaces, while the latter families have dimensions stricly less
than the expected dimension of the corresponding moduli spaces. More precisely,
the family of tertiary Burniat surfaces is 1-dimensional, whereas the moduli space
of surfaces of general type with p; = 0 and K = 3 has expected dimension equal to
4 and the family quaternary Burniat surfaces is 0-dimensional, whereas the moduli
space of surfaces of general type with p, = 0 and K2 = 2 (the Campedelli surfaces)
has expected dimension equal to 6.

In 2001, Mendes Lopes and Pardini (¢f. [MP1]) proved that the 4-dimensional
family of primary Burniat surfaces forms a normal, unirational, irreducible con-
nected component of the moduli space of surfaces of general type with p, = 0
and K? = 6. In 2004, Kulikov (cf. [K]) proved that the class of the quaternary
Burniat surfaces belongs to the component of classical Campedelli surfaces, i.e.,
py = 0, K? =2 and torsion group (Z/2)3, which had been completely described
(cf. [Miy}[R]). In a deep recent analysis (¢f. [BCIL,[BC2,[BC3]), Bauer and Catanese
have continued the study of the components of the moduli space of surfaces of
general type containing the Burniat surfaces. They gave an alternative proof of
Mendes Lopes—Pardini’s result on primary Burniat surfaces. They showed that of
the 3 families corresponding to secondary Burniat surfaces the one with K2 = 5
and the one with K2 = 4 of non nodal type form irreducible connected components.
They have also described the whole connected component containing the Burniat
surfaces with K2 = 4 of nodal type, which turns out to have dimension 3, one more
than the expected dimension.

This article is devoted to a construction of a 4-dimensional family of minimal
surfaces, S, of general type with py(S) = 0 and K2 = 3, containing, as a codimen-
sion 3 subfamily, the family of tertiary Burniat surfaces. We do this by constructing
a 4-dimensional family of surfaces of general type T with x(Or) = 8 and K2 = 24,
equipped with a free G = (Z/2)* action. We take S as the quotient T/G. The
family of surfaces T is a linear subsystem of |—2Ky |, where V is an Enriques—Fano
3-fold in P(17, 2%) obtained from a complete intersection Fano 3-fold in P® on which
there exists an action of G inducing the action of this group on 7. In this respect,
we can see V as a key wvariety for this construction; just as weighted projective
space acts as key variety in most elementary constructions. This idea is reminis-
cent of the construction of a numerical Campedelli surface with torsion group Z/6
of [NP1]. Lifting the action of G to the Fano double cover of V' we obtain the
simple description of our family described in the next theorem, which synthesizes
Theorem Theorem [3.5] Theorem and Theorem of this work.

Theorem 1.1. Consider P* x P! x P! x P, with coordinates (too,to1), (t10,t11),
(ta0,t21), (t30,t31) and the group G < Aut(P! x P! x P! x P!) generated by the 3
automorphisms in the following table, where € is a chosen square root of —1:
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100 to1 t1o 11 tao o1 t30 31
a1 —etio (381 too  €lo l31  —€lso to1  €lao
dafs  —eta to1 t31  €lgo too  €lo t11 —e€tio
a3B1 —etso t31 to1  —e€tao tin €t too  €to

Then G = Z]2 x Qs, where Qg denotes the standard quaternion group. Consider
also the G-invariant hypersurface of multi-degree (1,1,1,1) given by

Zy := (to1tiot2otso + toot11tertss = 0)

and the G-invariant surfaces T cut out on Z1 by the multi-degree (2,2,2,2) hyper-
surfaces given by

3
b+c+d—a
Zy=> wvi| ][+ ]3] -2 >, ()TF TR B43,=0
1=0

YE) VE) a+b+c+deven

for vo,v1,va,v3,v4 € C. Then, if the v; are general, G acts freely on T and the
quotient S = T/é is the canonical model of a surface of general type with pg = 0,
K? = 3 and m(S) = Z/2 x Qs. The family obtained in this way describes a 4-
dimensional locus in the moduli space of the surfaces of general type, containing the
tertiary Burniat surfaces, for which —vy = vy = vy = v3.

Note that the fundamental group of tertiary Burniat surfaces has already been
computed in [BCI], which fixes a mistake in a previous computation in [Pet]. The
study of surfaces of general type with p, = 0, K* = 3 and fundamental group of
order 16 is of special interest as, according to a conjecture of M. Reid, this number
should be the maximum order of their (algebraic) fundamental groups.

Our construction gives a 4—dimensional stratum of the moduli space of the surfaces
of general type containing the tertiary Burniat surfaces. In [BC3], Bauer and
Catanese prove that the irreducible component of the moduli space of surfaces of
general type containing the tertiary Burniat surfaces has dimension 4, and they
construct a proper open set of it; it follows that also our family forms an open set
of the same component. We expect that our family is not a proper subset, covering
the full irreducible component. It is also reasonable to guess that this irreducible
component is a full connected component of the moduli space.

We now explain the motivation for our construction. Let T be a minimal
regular surface of general type with x(Or) = 8 and K2 =24. Assume that
T € |-2Ky|, where V is a Q-Fano 3-fold with n singular points of type %(1, 1,1).
Then h%(—Ky) = py =7, =K}, = K2%/2 = 12 and by the orbifold Riemann-Roch
formulas (cf. [ABR}BS]), 4p, = K% +12—n, i.e., n = 8. This leads to a candidate
3-fold V anticanonically embedded in P(17, 2%) that, by the Graded Ring Database
[Br], projects to a complete intersection W 2o C P®. On the other hand, suppose
that T is equipped with a free G = (Z/2)® action. By the Lefschetz Holomorphic
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Fixed Point Formula we know the character of the representation of G on H°(nKr).
Throughout the paper a,b, ¢, d vary in Z/2 = {0,1}, and we wil use the notation
0’ =1 and 1’ = 0. Writing Xape, for the irreducible representations of G, we get:

4
HO(K7) = @ (ap.0)c01\((0.0,0)) Xaver  HO2KT) = B (0 p0)c6 Xaber

(1) |
8* H(Kr) = x&0 @ xTop ® x&h @ x& @ x5h @ xT o x&) o x &3

We deduce that the canonical ring of T',

R(T,Kr) = ) H°(nKr),
neN
on which G acts, has 3 invariant quadric relations and needs 7 new generators in
degree 2, one for each of the nontrivial rank 1 representations G. This agrees with
the properties of V. The anticanonical ring R(V, —Ky ) has 8 generators of degree 2
and 3 quadric relations between the degree 1 generators, coming from the defining
equations of Wa o C PS. Note that R(T, K1) can be obtained from R(V,—Ky)
by taking a quotient by a degree 2 regular element.

As in [NPT], the first goal is to construct V from Wa 25 C PS using parallel unpro-
jection, which is to say, unproject all at once 8 divisors in W satisfying sufficiently
general conditions.

The second goal is to set up an action of G = (Z/2)3 on P(18,2%) that leaves Y,
V and T invariant and is fixed point free on 7. With this in mind we establish
a (Z/2)% action on P(1%,2%) which leaves Y and V invariant and for which there
exists a subgroup H C (Z/2)® isomorphic to (Z/2)® which leaves T invariant. We
then show that H has a subgroup G =2 (Z/2)® which acts fixed point freely on T.
The upshot is that the quotient group H/G = (Z/2)? acts on S := T/G and the
quotient map coincides with the bicanonical map of S. (Cf. Proposition [4.1] )

The paper is divided up as follows. In Section [2] we describe the construction
of Y C P(18,2%) via parallel unprojection of a 4-fold complete intersection of 3
quadrics X C P7 using the format introduced in [NP2]. We obtain a Q-Fano 3-fold
V' C Y by taking a hypersurface section of degree 1 of V' and the surface T C V'
by taking a hypersurface section of degree 2 of V. The bulk of this section is
concerned with the study of the geometry of V' (with emphasis on its singularities)
and setting up of the group action described above. In Section [3| we show that ¥
is the quotient of P! x P! x P! x P! by an involution and we lift the action of G to
an action of G = Z/2 x Qg on P! x P! x P! x P!. We obtain a description of our
surfaces as quotient by a fixed point free action of G on a complete intersection in
P! xP! xP! xP!, which enables the computation of their fundamental group. Finally
we show that the family constructed is unirational and has 4 moduli. In Section
we carry out a detailed study of the bicanonical map of S = T'/G. We show that
the bicanonical map is a bidouble cover of a singular cubic surface S3 C P? and
compute the branch loci of this map. Via a birational map S3 --+ P? we reinterpret
this bidouble cover as a bidouble cover of P? and use it to show that the family of
surfaces constructed contains the family of tertiary Burniat surfaces.
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2. THE CONSTRUCTION OF S

Consider P7 with homogeneous coordinates oo, To1, £10, £11, 20, T21, £30, £31
and let X C P7 be the 4-fold complete intersection of 3 quadrics given by:

(2.1) To0To1 = T10T11 = T0T21 = T30T31-
Notice that X contains the 16 linear spaces given by:
(2.2) Haped = (0q = 21 = T2c = 230 =0), a,b,c,d € {0,1}

all of which have codimension 1 in X. These 16 linear spaces can be thought of as the
vertices of the 4-cube, by identifying their equations with the vertex (a, b, ¢, d).
An edge between two vertices means that the intersection of the corresponding
linear spaces has dimension > 2 or, equivalently, that the union of the sets of
equations of the linear spaces does not contain a regular sequence of length 6.

Since the homogenous coordinate rings of X and of each linear space are Goren-
stein graded rings, we can use Kustin—Miller parallel unprojection on a subset of the
set of linear spaces in . Indeed the format of the equations of X was studied
in [NP2 Section 3|, where a sufficient condition for the existence of the parallel
unprojection was given. In our case, a subset of linear spaces can be unprojected if
the defining equations of any two linear subspaces in it contain a regular sequence
of length 6. Since the 4-cube is a bipartite graph, there are 2 maximal subsets with
this property. These subsets yield isomorphic constructions, thus we shall fix one.
Let £ denote the subset of {0, 1}4 consisting of the 4-tuples with even sum and
consider the corresponding subset of linear spaces: {Huped | (a,b,c,d) € L}. Re-
call that throughout the paper we shall be using the following shorthand notation:
0=1and 1 =0.

Remark 2.1. Notice that Hypeq N Hyrprerqr = 0. Any other pair of distinct elements
in {Hapea | (a,b,¢,d) € L} intersect along a line. These 24 lines form the singular
locus of X.

According to [NP2, Lemma 3.2] we can perform the parallel unprojection of these
8 linear spaces in X, to obtain a projectively Gorenstein subscheme of a weighted
projective space, Y C P(18,28), as follows.

Definition 2.2. Consider, for each (a, b, c,d) € L the rational section of Ox(2)

(2 3) . T1yT2cT3d! Toa' T2c T3d! Loa’ T1b' T3d! Toa' T1b' T2c!

. Pabed = = = = 5
Zoa T1p T2c T3d

where the equalities follow from ([2.1). The divisor of the poles of @gpeq iS Habed-

We denote by ¢: X --» P(18,2%) the unprojection map, i.e., the rational map
@(200, To1s - - -, T31) = (To0, To1s - - -, T31, 00000 (Tia)s - - - » P1111(Tia))-
We define Y := p(X).
Notation 2.3. We denote accordingly the weight 2 variables of the ambient weighted
projective space by Yabed: Yabed is the variable corresponding to @aped(ziq) in the

definition of ¢. Let 7: P(18,2%) --» P7 denote the projection map, i.e., the rational
map obtained by forgetting the degree 2 variables.
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The ideal J of the subvariety Y C P(18,2%) is generated by the following ho-
mogenous polynomials: the original 3 quadrics — given by the difference of two
terms in (2.1) — 32 cubics, given by

(2 4) YabedToa — L1 T2¢' X3d! YabedT1b — L0a’ L2¢' L3d’
YabedT2¢ — L0a/ LT1b' T3d! 5 YabedZ3d — Loa' T1b' T2¢!
for every (a,b,c,d) € £; and 28 quartics, given by

LoalL1a’, L2a5T3al  LOb,L1b) L2bl, L3bYy

2.5 Y 3Ybobibabs —
( ) apaiazas 0010203 l‘za;xml ijngbj
for every distinct (ag,as,as,as), (bo,b1,ba,b3) € L, where, given (ag,as,as,as),
(bo, b1,b2,b3) in L, ¢ and j are such that a; # b; and a; # bj, so that the fractional
expression of ([2.5]) is always a polynomial.

Remark 2.4. The unprojection map ¢: X --+ Y is a birational map between X
and Y, with inverse my: ¥ --» X. Indeed, ¢ induces an isomorphism

(2:6) XA (Uabcdet H“de> =V (UabchL H“bc”l) ’

where Hgpeq is the subscheme of Y given by zg, = 15 = X2 = w39 = 0.

Notation 2.5. Firstly we make notation for the coordinate points of P7 and
P(18,2%). Given 0 < i < 3 and a € {0,1} we denote by x;, the point of P7,
or of P(18,28), depending on the context, having all but the coordinate z;, equal
to zero. Similarly, given (a,b,c,d) € £, we denote by yapea € P(18,2%) the point
defined in an analogous way. Note that the 8 points y.pcq are the intersection of YV
with the singular locus of the ambient space, and also the centers of the projection
mjy. Secondly we establish notation for a distinguish set of surfaces in P(18,28).
There are 24 quartic polynomials in involving the product of 2 squares. Such
is the case with yoo11¥0000 — #3123, This polynomial defines a subscheme, S}, of
dimension 2 of the 3-dimensional projective space P(12,22) with variables o1, 211,
Y0011, Yoooo that we can regard as a subscheme S?ll C IE”(187 28)7 by setting all but
the coordinates xg1, €11, Y0011, Yoooo €qual to 0. Similarly, given 0 < i < j < 3 and
a,b € {0,1} we denote by S’ the subscheme of P(12,22) C P(1%,28) defined by the
quartic polynomial of involving x7,x%. These are 24 surfaces contained in Y.

Lemma 2.6. Set-theoretically, Harprerqr = {yabcd}US% USS?US%US;EUS%US?;’.
In particular Hapeq is 2-dimensional, for all (a,b,c,d) € L.

Proof. We prove the lemma for (a, b, ¢, d) = (0,0,0,0). The proof for the remaining
(a‘,‘b, ¢,d) € L is similar. Comparing the definitions of Hgpeq in Remark and of
S.7 and yapeq of Notation it follows that

SHUSTTUSH USITUSTUST U{y1111} € Hoooo-

Conversely, let x € Hggog- From the cubic equations involving yooo0, We see
that there exist distinct 4,5 € {0,1,2,3} such that z;; = z;1 = 0. Assume that
t=0and j = 1. If yspeqa = 0, for all (a,b,¢,d) € L\ {(0,0,0,0),(1,1,0,0)}, then
000041100 — x%lx?ﬂ = 0 is the only equation of Y not made trivial. In this situation
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x € 8%, Suppose that yapeq # 0 for some (a,b, c,d) € L\ {(0,0,0,0),(1,1,0,0)}.
Then, from the quartic equations involving y.peq We see that all other weight
2 variables are zero and, using the cubic equations involving Yapeq, that
X9, = 234 = 0. Note that necessarily (¢, d) # (0,0). Now, if (¢,d) = (1,0) then all
variables but y4s10 and x3; vanish. In this case, either (a,b) = (0,1) and x € 83,
or (a,b) = (1,0) and x € 3. Similarly, if (c,d) = (0,1), x € 8% U S{2. Finally,
if (¢,d) = (1,1) then, x = y1111 or X = yoo11, and we conclude by observing that
yoo11 € SY}. The same reasoning applies for any other distinct i, j € {0,1,2,3}. O

Proposition 2.7. Y is a reduced and irreducible normal 4-dimensional subscheme
of P(18,28). Moreover Ky = Oy (—2) and degY = deg X + 4 = 12.

Proof. Let R denote the coordinate ring of X. The fact that dimY = 4 is a
consequence of the fact that dim Ry, = dim R = 4, coming from the general theory
of Kustin—Miller unprojection. However it is also a consequence of the isomorphism
(2.6) and Lemma R,y is obtained as an unprojection of R, that has canonical
module equal to R(—2). Hence Ry, is Gorenstein and has a canonical module equal
to Run(—2), ¢f. [NP2]. In view of Remark isomorphism and Lemma
codim Sing Y > 2. Since Ry, is Cohen—Macaulay we deduce that R, is a normal
domain, ¢f. [E| Theorem 18.15]. Hence Y is a reduced and irreducible normal
subscheme of P(1%,28). That Ky = Oy (—2) follows from the computation of the
canonical module of Ry,. By [NP2, Proposition 3.4], degY =deg X +4=12. O

We can now define the key variety V. This variety is obtained intersecting
Y with the hypersurface given by xzog + 91 = 0. The reason for this choice of
degree 1 polynomial will be clear from the action of G 2 (Z/2)®3 on V that we
describe below. We will regard V as a subvariety of P(1%,2%) defined by the ideal
J 4+ (200 + o1), i-e., the ideal generated by xgo + xo1 and the polynomials in
([2-1), and (2.5). Since oo + o1 is a regular element of Ry, and this ring
is Cohen—Macaulay we deduce that V is a 3-fold of degree 12. Clearly, V is the
parallel unprojection of the 8 planes ypeqd := Hapea N (oo + 211 = 0) in the 3-fold
W =X N (zgo + 201 = 0). The following diagram shows the construction so far.
(2.7) “/C .Y CP(18,28)

[
I | Ty

\% \

We X cCP?
Proposition 2.8. The singular locus of V. =Y N (xg0 + x91 = 0) consists of 14
points, 8 quotient singularities of type %(1, 1,1) at the points Yabea and 6 isolated
singularities locally analytically isomorphic to the vertex of a cone over the Del
Pezzo surface Pt x P C P8 at the points x;, € P(18,28), fori > 0.

Proof. Consider W = X N (xgo + o1 = 0). The variety W is smooth away from
Uabede £ Habed- Since 7 is an isomorphism away from Ugpedez Habed (Cf- Remark,
we deduce that

(28) SlIlg(V) cvVn (UabchL'Habcd) =Vn (US;]}))
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We start by analyzing the points x of Sing(V') in the locus {yapea | (a,b,¢,d) € L}.
We assume, without loss of generality, that x = yggoo. Consider the affine piece
of V given by yogoo = 1. Then, using the quartic equations we can elimi-
nate all of the remaining y.pcq, using the cubic equations we can eliminate
00, T10, T20, T30 and using xgg + g1 we can eliminate xg;. The coordinates 11,
Ta1, 31, Yoooo Map an analytic neighborhood of ygogo € V isomorphically onto a
neighborhood of the point (0,0,0,1) € P(13,2), which is a quotient singularity of
type £(1,1,1).

Suppose now that x € Sing(V) \ {yabeda | (a,b,¢,d) € L}. Let V, C A6 denote the
affine cone of V. Among the equations of V,, besides xog + x¢1 = 0, we find the 7
quartic equations Yupeq¥oooo — - - - = 0, plus

Y0000T00 — 1172131 = 0,  YooooT10 — To1T21731 = 0,
9000020 — 01211231 = 0,  YooooZ30 — To1T11%21 = 0.

Let us take the 12 x 12 minor of the Jacobian matrix of the ideal defining V, of
the gradients of these 12 polynomials with respect to the variables xg1, Yapeq fOr
(a,b,c,d) € £\ {(0,0,0,0)} and zo0, 10, T20,¥30- This minor is equal to +yiioo,
where the sign depends on the order we give to the equations and to the variables.
Similarly we can find minors of the form +y!! .. for all (a,b,c,d) € L. Hence if
x € Sing(V) \ {¥yabea | (a,b,¢,d) € L} then yupeq = 0, for all (a,b,c,d) € L. From
(2.8) and Lemma we deduce x € {x19,X11,X20,X21,X30,X11}. We assume,
without loss of generality, that x = x39. Consider the affine piece of Y given by
r10 = 1. Here, we can use the cubic equations to eliminate all variables of the
form y,0c4 and one of the quadrics to eliminate x1;. After eliminating these
5 variables, we see that this affine piece of Y is isomorphic to the subvariety of A?
defined by the 2 x 2 minors of the symmetric matrix

Y1100  T31 T21 oo
Yo110  To1 20

Yo101 T30

Sy Y1111

with x;¢ being identified with the origin of A?. Hence xi¢ is a singular point of Y’
locally isomorphic to the cone over the 2-Veronese embedding of P3 in P?. Since
V =Y N (xzo0 + 201 = 0) we conclude that V is locally, near x10, analytically
isomorphic to a cone over the Del Pezzo surface P! x P! ¢ P8. Similarly for all
other points in {X19, X11, X20, X21, X30, X31 }- O

Corollary 2.9. V is a reduced and irreducible normal 3-dimensional subscheme of
P(18,28). Moreover Ky = Oy (—1) and deg(V) = 12.

Proof. The proof is similar to that of Proposition [2.7] O

The surface T, on which we will set up a group action of G' = (Z/2)3 will be a
suitable hypersurface section of V' of degree 2, and therefore a canonical surface.
In particular the group action is induced by action of G on the ambient weighted
projective space. What we do next is to set an action of the larger group (Z/2)® on
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the ambient space, which leaves V invariant. Following that, we single out a sub-
group G = (Z/2)? of (Z/2)° inducing on H°(Oy (1)) the regular representation of G
minus the trivial rank 1 representation. Finally, we choose the surface T' € |Oy(2)|
in such a way that G leaves it invariant and that the induced representation of G
on H°(Or(2)) = H°(K7) is the sum of 4 copies of the regular representation.

Let ai, az, as, Bi, B2, B3 be generators of (Z/2)°. Let them act on the space
(x;5) in the following way: «; exchanges xoo with z¢1 and exchanges x;o with z;1,
fixing all the remaining variables; §; takes x;9 to —x;p and x;; to —x;1, fixing all
the remaining variables. Since the actions of two generators commute, we obtain
an action of (Z/2)% on P7. Clearly, by inspection of , X is invariant under this
action. The identification of the variables yqpcq With the rational functions on X
of induces an extension of this action to P(18,28) so that Y, and V as well,
become invariant. Since

(2.9) Pabed = T2 Tk o, TITacTod Pa’b’ cds

T0oa Toa’

etc., it suffices to set o (Yabevd) = Yarvred; ¥2(Yabed) = Yarberds @3(Yabed) = Ya'bed’
and B;(Yabed) = —Yabed, for all 1 < i < 3. We summarize this in Table

TABLE 1. The (Z/2)%-action.

Qaq Too < o1 T10 < T11 Yabed <7 Ya'b' cd
(07 Too < To1 T20 < T21 Yabed €7 Ya'be'd
Qg Too < To1 T30 €7 31 Yabed €7 Ya'bed’
Bi Tio —> —Ti0  Til = —Til  Yabed — —Yabed

Consider the subgroup G C (Z/2)% given by

(2.10) G = (a1f2, afs, aspr) = (Z/2)°.
It is easy to see that the representation of G on H°(Oy (1)) is the regular represen-
tation minus the trivial rank 1 representation; indeed the representation of G' on
(00, o1, - - -, X31) 18 the regular representation and xg+ 21 generates the invariant
eigenspace. Likewise, given a character ¢ € Hom((Z/2)3,C), it is not hard to see
that the polynomial
(2'11) Z €(b7 c’ d)yabcd

abede L
is an eigenvector for the action of G on the space (Yaped | (a,b,¢,d) € L) and that
the 8 polynomials obtained in this way generate distinct eigenspaces of the action.
The expression for the trivial eigenvector, obtained from using the character
given by €(b, c,d) = (=1)¥**t4 for all (b, c,d) € (Z/2)3, is given by:

(2.12) Z (=1)"* Hygpeq = Z (—=1)"Yabed-

abede L abedeL
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The representation theory of G on the cohomology of T' dictates the eigenspace of
H°(Oy(2)) from which to take the equation of T € |Oy(2)|. According to (1.1
and the discussion above, the equation for T belongs to the invariant eigenspace of
H%(Oy(2)). Consider the following invariant quadratic forms in the z;, variables:

2 2

(2.13) S5 = w and t; = z;ow;1 for 1=0,1,2,3.
using zgo + o1 = 0 and (2.1)) we obtain

(2.14) li =10 = —50

on V and W. Hence sg, s1, S2, 83 form a basis for the invariant subspace of the
second symmetric power of HY(Oy (1)). From this and (2.12)) we see that a general
element of the invariant eigenspace of H°(Oy (2)) is given by:

(2.15) q=1l4vy Z (=1)*Yabed, where = wvgsg+ 181 + vass + V383
abcdeL

and vy, v1, Vg, V3, V4 are general complex parameters. Let AV =2 P4 be the linear

system of surfaces given by

(2.16) N=A{T=Vn(qg=0)| (vo,v1,v2,v3,v4) GIP’4}.
Then G acts on every T € N, and we can take the quotient S =T/G.

Theorem 2.10. A general element T € N is smooth surface of general type with
ample canonical divisor and with py(T) =7, ¢(T) =0 and K% = 24. Furthermore
the canonical map of T is a birational morphism onto a complete intersection of
three quadrics and a cubic in P®. For a general surface T € N, the action of G
is free and therefore S := T/G is a surface of general type with ample canonical
divisor and with py(S) =0 and K% = 3.

Proof. The base locus of A is contained in the locus given by (sg = s1 = s9 =

s3 = 0). Using (2.13) and (2.14), we get ;02,1 = 0 for all ¢ = 0,1,2,3; and since
2s; = a2y + 3 we deduce z;0 = x;1 = 0 for all i = 0,1,2,3. Therefore

(so=s1=s2=53=0)NV ={yabea | (a,b,¢,d) € L},

which, for general vy, v1, Vo, V3, does not intersect T'. By Bertini’s Theorem, Sing(T")
is contained in the union of the base locus of N and Sing(V'). For a general choice of
Vo, V1, Va2, V3, U4, the surface T' does not meet Sing(V'), (¢f. Proposition , and as
we showed, A is base point free. Hence T is nonsingular. Since the coordinate ring
of T is the quotient of Ry, by a regular sequence, it is a Gorenstein graded ring
and, in particular, Cohen-Macaulay. By [EL Theorem 18.15] the coordinate ring
of T is a domain and, accordingly, T is reduced and irreducible. By adjunction,
K1 = Or(1) which is ample, and the projectively Gorensteinness of T yields ¢ =
dim H' (K1) = 0 and py(T) = 7. Finally K7 = deg(T) = 2deg(V) = 24.

The canonical map ¢, of T' equals 77, the map given by the sections xog = o1,
10, £11, T20, T21, T30, T31, ¢f- Notation Since the locus of common zeros of
these sections is contained in the locus (sg = $1 = s2 = s3 = 0) we deduce that @g.,.
is a morphism. Moreover since Kt is ample, ¢, is finite. Since 7|y, is birational,
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and T € N is a general element of a movable linear system, @, is also birational.
Then the canonical image ¢, (T) is a nondegenerate surface of degree K2 = 24
in the hyperplane P% := (zoo + x01 = 0) C P7, contained in the locus defined by
(2.1). By elimination, we find a new cubic hypersurface through ¢g,.(T). From
=0 = v peace(—1)"Wabea = —I, substituting y.pca with W and
using xp; = —Top we get

_1\aZip/ Lo T34 o Tap/ToerTagr
V4 Y apedec(—1) Zon =l = 1 Zbcde{0,1}3 Too =1,

which yields the irreducible cubic equation:
(2.17) va(z10 + 211) (220 + T21) (230 + 31) = Tool.

Therefore g, (T) is a surface of degree 24 contained in the intersection of the
hyperplane (g9 + o1 = 0), the quadrics and the cubic defined by (2.17).
Since these polynomials form a regular sequence, we deduce that ¢k..(T) coincides
with the complete intersection of 3 quadrics and 1 cubic that, choosing xgg, =10,
T11,...,%30, 731 as basis for HY(Kr), are obtained substituting zo; for —zgg in
and .

Let us now show that the action of G on T is free. By symmetry it is enough to
check that the 3 elements o 82, ay B2 83 and o asaiz 818283 act on T without fixed
points. In the weighted projective space P(18,28) the fixed locus of an involution
splits into three spaces; the (4, +) part (i.e., positive on the x variables and positive
on the y variables), the (—,+) part and the (0,—) part (i.e., negative on the y
variables with all the x variables 0); since the last space cuts out the empty set
on 7', we will repeatedly ignore it. Denote these spaces by Fix(, ;) and Fix_ ).
Then, referring to Table |1}, we see that Fix(y y)(a1/52) is equal to:

(Too — To1 = 10 — 11 = T20 = T21 = Yabed + Ya'b'cd = 0, Vabeder)-

From we get xporor = 10211 = 0 and hence zgg = xp1 = 190 = 11 = 0.
Thus all coordinates x;, vanish except for, possibly, x3p or x3;. From the quartic
relation YobedVartyca = TaaTagy = 0, cf. , and Yabed + Yarvrea = 0 we deduce that
Yabea = 0 for all (a,b,¢,d) € L. Using ¢ = 0 we obtain 39 = x31 = 0. Hence T
does not meet Fix(y 1)(a152).

Next we consider the loci Fix(_ y(a182), Fixy 4y (a1a26283), Fix— 1) (a1aB203)
and Fix(y y)(cyaza3f:15283) which are given by:
(o0 + o1 = T10 + T11 = T30 = T31 = Yabed + Ya'v'ed = 0, Vabeder),
(710 — T11 = T20 + T21 = T30 = T31 = Yabed — Yab'c’d = 0, Vabeder )
(oo = o1 = T10 + T11 = T20 — T21 = Yabed — Yab'c’'d = 0, Vabeder),
(o0 — To1 = T10 + T11 = X0 + T21 = T30 + T31 = Yabed + Yarvrerd’ = 0, Vaveder),

respectively. Arguing as before (remembering, for the last locus, that xog +xo1 =0
holds) we see that none of them meets 7T

Finally Fix_ y)(a1aza3f15203) is given by:

(9600 + Zo1 = T10 — T11 = T20 — T21 = L30 — 31 = Yabed T Ya'bc'd! = O,Vabcde£)~
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Using we get ¥3, = —x3,. Hence s; = —so, for all j = 1,2,3. From the quartic
equations we get fygbcd = YabedYa'b' c'd! = T20T21T30T31 = zéo. Taking square
roots of this equation, substituting in ¢ = 0 and using the generality of vy, 11, s,
v3, v4 we deduce that zgg = 0; and hence zg1 = zj0 = ;1 = 0 for all j =1,2,3
and Yapeq = 0 for all (a,b,c,d) € L. Therefore T NFix(_ 1) (a1aza3818203) = 0.

Since the action of G on T is free, S = T/G is a nonsingular surface of general type
with py(S) = 0 and K% = 3. Since K7 is ample, we deduce that Kg is ample. O

Remark 2.11. Theorem [2.10] shows that for every T' € N such that

e T has at most canonical singularities,
e the action of G on T is free,

the quotient S = T/G is the canonical model of a surface of general type with
pg(S) =0 and K% = 3: this provides a 4-dimensional family of these surfaces.

Remark 2.12. By analysis of the proof of Theorem [2.10] we see that if, for a given
T € N, the action of G has any fixed points on T then either v1v5v3 = 0 or there
exists J in a finite set of (integer) multiples of i such that vy —1vq —vo —v3+dvy = 0.
We shall use this observation later on.

3. A DOUBLE COVER

Consider the Fano 4-fold P! x P! x P! x P! with coordinates (tg0,to1), (t10,%11),
(t20,t21), (t30,t31), and let o: P x Pt x PL x P! — P(18,28) be the map given by:

0*(20a) = toatiat2atsa, 0*(1a) = toat1art2atsa,
0*(x24) = toatiat2atsa,  0F(3a) = toat1at2atsar,
0% (Yabed) = 2ty taatiy, if a =b=c=dand o*(Yapea) = t2,t3, 13,12, otherwise.
It is straightforward to check that o(P' x P! x P! x P1) =Y c P(1%,28).

Proposition 3.1. The map o: P! x P! x P! x P! — Y is finite of degree 2 branched
exactly at the set {Xiq,Yabed : 0 < i < 3,(a,b,c,d) € L}.

Proof. Let U;, C Y be the open subset of Y given by x;, # 0. First note that
0" (Yabea) consists of a point, more precisely one of the coordinate points of P! x
P! x P! x P'. Moreover, the family {U;,}, with 0 <i < 3 and a € {0,1} is an open
affine cover of Y\ {yapca}. Consider the restriction o: oY (Ugo) — Ugo. The open
set 0= (Ugp) is simply C* with coordinates

ot o o
tor tio ta0 tso
The coordinate ring of Upg, which we denote by C[Upo], is generated by the regular
functions:
Lia  Yabed

b
Zoo Zoo

,  with 0 <4 <3 and (a,b,c,d) € L.

Computing the image by UIﬁ of each of the generators of C[Uy), we get the generators

of the ideal (§22, #&, 321 111)2 Hence oy: o~ (Ugo) — Uoo is finite of degree 2. The
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same computation on each U, yields the same result, showing that ¢ is a double
cover. Additionally, the involution s € Aut (P! x P! x P! x P!) given by

(3.1) $(tiq) = (—=1)%q, for 0<i<3andaec{0,1}

satisfies 0 0 s = 0. Note that s has exactly 16 fixed points, the coordinate points of
P! x P! x P! x P'. In particular, o branches exactly at their images, i.e. the points
in the set {X;q, Yabea : 0 <1 < 3,(a,b,c,d) € L}. O

Remark 3.2. We can deduce from Proposition [3.1] that SingY is the set of 16
points {X;a, Yabed : 0 <@ < 3,(a,b,c,d) € L}, which are quotient singularities of
type %(1, 1,1,1). This agrees with Proposition

Remark 3.3. The restriction of ¢ to the Fano 3-fold
(32) Zl = (t()ltlotgotgo + toot11t21ts1 = 0) - ]Pl X ]P)l X ]P)l X ]Pl

is a double cover of V, branched on the 14 singularities of V. The 3-fold Z;
is a (special) member of |O(1,1,1,1)|, the linear system of effective divisors on
P! x Pt x P! x P! of degree (1,1, 1, 1) anti-invariant respect to the involution s. A
general member of |O(1,1,1,1)|” is the canonical double cover of an Enriques—Fano
3-fold with only terminal singularities. These 3-folds were classified by Bayle and
Sano [Bal [S]. The image of a general member of |O(1,1,1,1)|” under o falls in case
10 of Sano’s list. Indeed the whole construction in this section has been inspired
by that case.

Recall that (Z/2)% acts on Y as given in Table

TABLE 2. Automorphisms of P* x P! x P! x P!. (For the last 4,
since the action is diagonal we list only the eigenvalues. Here € is
a square-root of —1.)

too to1 t10 11 t20 21 t30 31

Qg t10 t11 100 to1 31 30 to1 t20
Qg t20 to1 t31 130 too to1 t11 t10
Qs tso otz tar t20 fin tio too  to1
Bl -€ 1 1 —€ 1 € 1 €
52 -€ 1 1 € 1 —€ 1 €
B3 -€ 1 1 € 1 € 1 —e
s 1 -1 1 -1 1 -1 1 -1

In Table [2| we distinguish a set of automorphisms of P! x P! x P! x P!, one of
which, s, has already been defined in and the remaining ones are meant to
lift the actions of oy, as, ag, f1, B2, 3. One can check by direct computation that
5[1, 6&2, dBth 52,53 lift the action of aq, g, ag,ﬁl, 62,63, i.e., that o o dz =100
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and o o BZ = pfyoo, for ¢ = 1,2,3. On the other hand, there are a number
of small checks that are straightforward. It is clear that s commutes with every
other automorphism listed in Table [2; it is also clear that &1, &s, &g are automor-
phisms of order 2 commuting with each other, that 51, Bg, 33 commute with each
other and that 37 = 52 = 32 = s. Finally, a less straightforward (but still ele-
mentary) computation shows that &Z‘Bj = g0 Bj&i, where §;; is Kronecker’s delta.
These identities are useful in the proof of the next proposition, where we char-
acterize the group G generated by the automorphisms that lift the generators of

G = (01 B2, 2233, a3f) ~ (Z/2)3.

Lemma 3.4. G := <d1ﬂ~2, 6{253,5[351> is isomorphic to Z/2 x Qg, where Qg is the
classical quaternion group.

Proof. Since dego = 2, |G| equals either 2|G|, if s € G, or |G|, if s ¢ G. Since
(@12)% = s, we get |G| = 2|G| = 16. Consider the standard presentation of Qg
given by

(—Li,5,k | (-1)> =1,i* = j* = k* = ijk = —1)

and, for clarity, let us use multiplicative notation for Z/2 = {1, —1}. Set:

p(l,—1)=s, p(—=1,1) = é1202B303P1,
p(1,i) = Gofsasfy,  p(l,j) = asPraafa,  p(l,k) = a1Badafs.
Using the identities stated earlier, one can check easily that these definitions respect
all the relations of (Z/2) x Qg and therefore determine a group homomorphism
w: (Z/2) x Qs — G. Since:
(=1, =) = p(—=1,1)p(1,4) " = Gy BodiaBdsfi By 'as By Lz = o,

(=1, —j) = (G1B2)a2Bs03P1(By ' 61) By ' as = Gofssfify G = Gafs,

(=1, —k) = G1B2(62P3)a3B1(B; ' G2) By a1 = s@1fadsfrfy 'an = asph,
we deduce that p is surjective, which, as |G| = |(Z/2) x Qg|, implies that x is an
isomorphism. ([l

We can now give a good description of the family of surfaces T/G, for general T
in the linear system N

Theorem 3.5. Let T' € N be a surface with at most canonical singularities for
which the action of G on it is free. Then m(T/G) 2 7Z/2 x Qs and the universal
cover of T is a complete intersection of the two hypersurfaces in P' x P! x P! x P!,
Zy and Zs, of multi-degrees (1,1,1,1) and (2,2,2,2), respectively, given by:

Z1 = (tort1ota0tso + toot11t21ts1 = 0) and

3
bt+ct+d—a
Zy=> v B[+ —2n Y. (-DTFTR B8, =0.
i=0 j#i i abede L
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Proof. We note that T does not contain any of the 16 points in the set
{Xia, Yabed | 0 <1< 3,(a,b,c,d) € L}.

Indeed T is a Cartier divisor in V, which contains 14 of these points that, by
Proposition [2.8] are singular points of V' with Zariski tangent space of dimension
5 or 8. In particular, if T' contains one of these points, the Zariski tangent space
of T at this point has at least dimension 4, whereas every canonical singularity
of a surface has Zariski tangent space of dimension 3. Since T is the complete
intersection of two divisors (V' and a quadric section, given by o + xo1 = 0 and
, respectively) in Y, the surface T := o~ !(T) is the complete intersection of
their pull-back to P! x P! xP! xP!, which one easily sees are the hypersurfaces Z; and
Zs, respectively, of the statement of this theorem. By the Leftschetz hyperplane
section theorem, m(T) = 0. Now as the composition T AT 5 Sis étale, we
conclude that T is the universal cover of S. In particular, 71(S) is isomorphic
to the group of automorphisms of the cover, which coincides with the group of
automorphisms of T lifting the action of G. This is G, which, by Lemma is
isomorphic to Z/2 x Qs. |

We conclude this section by studying the locus of the moduli space of the surfaces
of general type described by the surfaces S.

Theorem 3.6. Let U be the dense open set of N' = P* consisting of the surfaces
T with at most canonical singularities on which G acts freely. Then, the map
associating to each point of U the class of the surface S/G, in the Gieseker moduli
space of surfaces of general type with x = 1 and K? = 3, is finite. In particular,
its image is 4-dimensional and unirational.

Proof. Let Sy := T1/G, So := T/G be surfaces with 71,75 € U. Assume that
S1 =S, By Theorem m1(S1) 2 71(S2) = (Z/2) X Qs. Since the Abelianization
of (Z/2) x Qg is (Z/2)3, each S; has exactly one (Z/2)3-cover up to isomorphism.
Therefore from S; = Sy, it follows that 77 = T5. This isomorphism induces an
isomorphism of the canonical rings of 77 and T5. Choose an automorphism ® of
P(18,2%) that lifts the isomorphism between Proj R(T, K7,) and Proj R(Ts, Kr,).
Note that ® is not unique, as the image by ®* of each generator of the underlying
polynomial ring is determined only modulo the ideal of Ty and therefore, in par-
ticular, ®%(z;,) is determined only up to xgo + z10. In what follows we show that
D@ (200+20,=0) belongs to a finite set.

The restriction of the isomorphism ®* to the variables of degree 1 yields an auto-
morphism of P7, which we denote by ®, mapping the canonical image of T} to the
canonical image of Ty. In particular ® preserves the hyperplane (zo9 4 zo; = 0),
which is the linear span of both surfaces, and W C P7, given by , which is their
quadric hull. Recall that, as in Deﬁnition for every (a,b,c,d) € L, Hypeq is the
divisor of poles of the rational function ©*(yaped) = Pabed on W. Let us consider
the 8 planes given by Mypeq := Hapea N (oo + o1 = 0) € W. Then <i>_1(Habcd)
is a plane, it is contained in W, and it is the intersection of (xgg + zp1 = 0) with
the divisor of the poles of @*®(yapeq). Since ®F(yapeq) € s? (i) ® (Yabed), We
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deduce that @' permutes the 8 planes I ,.q. The first consequence is that &1
preserves the linear span of these 8 planes, (zgo = z19 = 0). Now, as we are
only interested on ®|(,.4z0,—0), We may modify ® so that ®*(20,) = Azoq, for
a = 0,1 and for some A € C*. Then, rescaling ®f, and thus still without changing
P (300-+20,=0), We may finally assume that ®*(zo,) = wo,. Another consequence
of the fact that ®—! permutes the 8 planes Il,p.q is that there exists 7 € Gg,
(a,b,c,d) € L, with a = 0 and Aj, A2, A3 € C* such that ®%(z19) = M Zr (1),
Pt (299) = A2Z7(2)c and P (239) = A3Tr(3)p- Since ®F must also preserve we
deduce that ®*(z1;) = )\fle(l)b/, Pt (z91) = A;le(Q)C/ and ®f(x31) = )\glmT(g,)b/.

Consider the action of &3 on P(1%,2%) given, for every 7 € &3 by,

Tﬁ (x()a) = T0a, Tn(ajia) = xr(i)aa Tﬁ(yaoalagag) = yaoa,r,l(l)a,r,la)aT,](S)7

for all 1 < ¢ < 3 and (a,b,c,d) € L. We note that given 7 € S35, we have
Toym ! = ary and 73,771 = fB(;), where, recall, a; and 3; generate (Z/2)° and
act on P(1%,2%) as given in Table These actions generate a finite group A of
automorphisms of P(18,2%) preserving V and Y which is a semidirect product,
A = (Z/2)% x &3. Accordingly, going back to ®, there exists ¥ € A and constants
Aia € C* such that

((I) © \I’)u(xia) = (\Ilu o (bn)(xia) = )\iamia

with Agp = Ag1 = 1 and ;1 = /\;01. Notice that from the cubic relations
we get (® o U (yaped) = A1y A2er A3d/Yabed. Since for both 11, Ty € U C N we must
have v4 # 0 (for otherwise T} or T» would be too singular), from the equation of the
quadric section , we deduce that the products A1y Aaer Asar, for (a,b,c,d) € L
are all equal. This can only happen if A\;; = Ay for i € {1,2,3}. Hence \;, € {£1},
for i = 1,2, 3 and thus there are only finitely many possibilities for @, 4x0,)=0° V-
Since ¥ belongs to the finite group A, we deduce that there are, as well, only finitely
many possibilities for |00 120;)=0- ([l

4. THE BICANONICAL MAP OF S

The main goal of this section is to compare the surfaces we have constructed
with the other constructions existing in literature. To reach this goal we study the
bicanonical map of S, which is interesting in its own right. We show that, as in the
Burniat case, the bicanonical map of S is a bidouble cover of a cubic surface in P3
with 3 nodes. This induces a birational description of these surfaces as bidouble
covers of the plane. We compute the branch divisors, and then identify the Burniat
surfaces. Not surprisingly, the branch divisors corresponding to a general surface
in our family (cf. Figure[d)) correspond exactly to the one used in the recent paper
[BC3| to define the extended tertiary Burniat surfaces.

Consider the action of (Z/2)® on V as given in Table|ll For a subgroup of (Z/2)%
to act on T it must preserve the equation ¢ = 0. An element of (Z/2)%, written as
a2 ag B0 552 653 sends ¢ = 0 to a scalar multiple of it if and only if the integer



18 JORGE NEVES AND ROBERTO PIGNATELLI

aj + as + as + by + by + b3 is even. Let H be the subgroup of (Z/2)° given by
(4.1) H = {a‘flag"‘ag?’ﬂfl b2 8% € (2/2)° | a1 + ag + az + by + by + bz is even} .

The group G defined in (2.10]) is obviously a subgroup of H. Hence the quotient
I := H/G = (Z/2)? acts on S = T/G. Denote by v: S — S/T' the quotient
morphism. In the next proposition we show that « is the bicanonical map of S.

Proposition 4.1. Let T € N be a surface with at most canonical singularities
and such that the action of G on it is fixzed-point free. Consider S = T/G. Then,
the bicanonical map of S is a bidouble cover of the cubic surface Sz C P3 given by
8v2(s1 — 50)(52 — 50) (83 — S0) — S0(VoSo + V151 + vasa + v3s83)? = 0.

Proof. The bicanonical system of S is generated by the 4 invariants quadratic forms
S0, 81, 2, s3. We showed in the proof of Theorem [2.10] that sy = s1 = s3 = s3 =0
cuts out the empty set on T'; therefore |2K¢| has no fixed part and no base points.
Since S is a minimal surface of general type with p, = 0 and K? > 2, by [X], the
bicanonical system is not composed with a pencil. Hence the image of pax . is a
surface. To find its equation, we square both sides of :

Vi (w10 + 711)% (@20 + 221)% (T30 + 731)% = 230>

and use (0 +i1)% = 2(s; +t;) = 2(s; — s0), for i = 1,2,3, and s¢ = 3, cf. ,
. Substituting, we get 8v(s1 — s0)(s2 — 50)(s3 — s0) — 80/2 = 0. For a general
choice of vy, v1, Vs, V3, V4 this cubic is irreducible, hence the cubic surface S5 C P3
it defines coincides with gk, (S). S has no (—2)-curves, as by construction Kg is
ample, thus ok is a finite morphism of degree 4. Since sg, 51, 2, 53 are invariant
for the action of H on T, ok factors through -+, which is also a finite morphism
of degree 4. Hence, since S3 is normal (c¢f. Remark , S/T = S3 and, up to
isomorphism, ar, = 7. O

Remark 4.2. For general vy, . .., vy, the cubic S5 C P? has 3 ordinary double points:
ny = (82 — 89 = 83 — So = pSo =+ V181 —+ V952 —+ V383 = 0),

(4.2) ng = (s1 — 8o = 83 — S0 = VoSo + V151 + V2sa + 1353 = 0),
ng = (81 — 80 = 82 — 50 = VoS + V151 + V28 + 353 = 0);

and these are the only singularities of S3.
Let us denote by 6; € T' = H/G the class of «;f3;, i.e.,
(4.3) 0; = [aifBi] = {eifig | g € G} .

By Proposition Y2k is the quotient by the action of T' = {1,6,62,65}. To
study this map, by the general theory of the bidouble covers (see [C]), we study its
branch locus. A ramification point of ax is the image of a point x € S fixed by
some 0;, i.e., for which Iy # {1}, where I, = {g € T' | gx = x} is the inertia group
of x. When S is smooth, there are 3 possibilities for Iy:
(a) Ix = (#;) and x is an isolated fixed point of 6;. Then, in suitable local
coordinates, 6; acts by (z1,22) — (—21, —22) and @2k, (%) is a node.
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(b) Ix = {#;) and x is not an isolated fixed point of ;. Then, in local coordi-
nates, 0; acts by (z1,22) — (—21, 22) and the locus of all such points is a
smooth curve R; C S.

(¢) Ix =T. Then x belongs to exactly two R;, intersecting transversally in x.

Let D; := @ox(R;) and denote by A; the image of the set of isolated fixed points
of 6; the inertia group of which is not the whole of I' — as in type (a), above. Then
each A; is a set of nodes of S3. The bidouble cover is determined by D;, Do, D3
and Al, A27 A3.

To describe D; we introduce some notation. The intersection of S3 with the plane
so + s; = 0 splits as the union of a line with a conic. Denote these by L; and Cj,
respectively. In other words, set

L; = (sp = s; =0) and

(4.4)
C; = (30 + s = 16V§(Si+1 . 30)(si+2 — SO) + 12 = O),

taking the indices in {1, 2,3}, modulo 3.

Proposition 4.3. Let D;, A;, for i = 1,2,3, be the branch loci of the map
Yors: S — Sz C P3. Then A; = {n;} and D; = Ciyq + L;_1, taking indices
in {1,2,3}, modulo 3.

Proof. By cyclic symmetry, it is enough to compute A; and D;. On the other hand,
the fixed points of 6; are the images on S of the points of T fixed by an element
of [a151]. Recall that the elements of §; = [a181] are a1 51, f182, a1aaf1Ps, aras,
2018283, azfBa, arasasBs and azaszfaBs.

Fix(4 4)(2B1283) and Fix(_ y)(aoB15203) are given by:

(oo — To1 = T10 = T11 = T20 + T21 = T30 = 31 = Yabed + Ya'be'd = 0, Vabeder)s
(zoo + To1 = T20 — T21 = Yabed + Ya'be'd = 0, Vabeder),
respectively. We have Fix(y (a2f18263) NT = 0. This can be seen either directly
on T or by noticing that its image in S5 must have sqg = s; = s3 = 0 and, by ,
s3 = 0. In Fix_ 4)(aB18283) NT we have xoo = —wo1 and x99 = 221, which by
imply that sg 4-s2 = 0. We deduce that the image of Fix(_ (a2f18283) N T
in S3 is contained in Lo U Cs. Suppose that sg = so = 0. Then

Top = To1 = Tog = T21 = T10Z11 = T30T31 = 0.

Assume that 219 = 230 = 0. Then using (2.5)), we get y2,.; = —YabcaYa'bera = 0, for
all (a,b,¢,d) € £\ {(0,0,0,0),(1,0,1,0)}. Hence we are left with the 2 equations:

2 2 .2
—Yoooo = 11251 = 4s153  and  2v4Yooo0 +1 =0,

given by and ¢ = 0. Eliminating yggpo, we get the equation of Cs with
sop = so = 0. This is independent of the choices we made. We deduce that the
image of Fix(_ ;(a2f18283) N T is contained in Cs. To see that the image of this
locus coincides with Cs it suffices to check that it is 1-dimensional. The equations
Zoo + o1 = 0 and x99 — x91 = 0 define in W a 2-dimensional subscheme (in fact,
Zoo + xo1 is an equation of W). It is clear that this subscheme is not contained
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in the exceptional locus of ¢: W --s V. Denote by Z its strict transform in V.
Assume zqg, g1 # 0. Then

YabedToa = T1b/ T2’ L3d! = T1b/ T2cT3d" = —Ya'be'dL0a’ = Yabed = —Ya'bc'd-

Hence on the open set zgg # 0 of Z C V, the equations Yuped + Yarbera = 0 are
redundant. Hence dim Z = 2. Since we obtain T from V by taking a hypersur-
face section (¢ = 0) we deduce that Fix_ i)(afB162083) NT is 1-dimensional. We

conclude that the fixed points of 818283 do not contribute to Ay and that their
contribution to Dy is Cs.

Fix(y 4)(B162) and Fix(_ ;(B81/2) are given by:
(4.5) (r10 = 211 = @20 = x21 = 0) and (2op = To1 = 30 = 31 = 0),

respectively. The image of Fix(_ )(8182) NT equals L3 = (so = s3 = 0): it is
clearly contained in Lz and the equality follows since Fix_ 4y(8182) D Sif and
S12 N T is positive dimensional. Hence Ly C D;. Notice that by symmetry of
the indices we have just shown that L; C Dy and Ly C Dj3. For the image of
Fix(y y(B1f2) NT, in S3 we get s; = s = 0 and then so = 0, which means that
Fix(4,4)(B162) NT consists of the preimages of the point L; N Ly; these are points
in Ro N R3 — type (c) above. We conclude that the fixed points of 5182 do not
contribute to A; and that their contribution to Dy is Ls.

FiX(+7+) (agagﬁgﬂg) and FiX(_7+)(0420(352ﬂ3) are given by:

(w20 + 21 = T30 + 31 = Yabed — Yabe'd’ = 0, Vabeder),
(oo = To1 = T10 = T11 = T20 — T21 = T30 — T31 = Yabed — Yaberd’ = 0, Vabeder),

respectively. The locus Fix(_ yy(aza3B283) NT is clearly empty. For the image
of the locus Fix(4 ;)(az2a38263) N'T we get sp — sz = 0 and sp — s3 = 0 and
then from the equation of Ss, sgl> = 0. If sy = 0 then sy = s3 = 0 and then in
Fix(4 4)(easBafs) we get woo = o1 = oo = T21 = T30 = 31 = T10T11 = 0.
From this we deduce that all y,p.q are zero, which together with ¢ = 0 forces all
variables to be zero. Hence sqg # 0 and we must have [ = 0. To show that the
image of Fix(y y)(aeasf283) N T coincides with ny, as in , it suffices to show
that this locus is nonempty. The equations xo9 + 21 = x30 + 31 = 0 define in
W a subscheme of dimension 1 which is not contained in the exceptional locus of
ow: W --» V hence in V they define a positive-dimensional subscheme Z’ C V.
If L0, L0o1 7§ 0 then,

YabedT0a = T1b'T2c' T3d! = T1b' T2cT3d = Yabe!'d' T0a = Yabed = Yabe'd’

which means that in the corresponding (nonempty) open set of Z’ the equations
Yabed = Yabe'dr Of Fix(y (a3 B2f3) are redundant. Hence Fix (4 1) (aza38263) NV
is positive-dimensional. Since T is obtained from V by taking a hypersurface sec-
tion, we deduce that Fixy yy(aza3B283) NT is nonempty. We conclude that the
fixed points of asavzF2/33 do not contribute to D; and that their contribution to Ay

is {n1}.
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The arguments we have used so far can be used to show that the 5 remaining
elements of [«131] contribute neither to Ay nor to Dj. O

The cubic surface with 3 nodes S35 contains exactly 12 lines, as represented in
Figure [2| (courtesy of [LvS]). The plane (so = 0) cut the lines Ly, Lo, L3, forming

FIGURE 2. Lines on S3

the black triangle in the picture. The plane through the nodes cut the lines
(46) Nij = (80 — S = | = O),

where {4, j,k} = {1, 2,3}, forming the blue triangle. Each L; intersects exactly one
of the NV;;: Ly intersects Nag, Lo intersects Vi3 and L3 intersects Nyo. Consider
the plane P; through L, and ni, given by

(47) (VO —+ vy + 1/3)50 + 1151 =0,

and the analogous planes P, through Ly and ns and Ps through L and n3. S3NP;
splits as union of 3 lines: SsNP; = L1 UAUA’, S3NPy = Ly UB U B’ and
S3 NP3 = L3 UCUC’'. We have labeled these last 6 lines as in Figure [2] so that

A, B, C are pairwise disjoint.

Let (: ¥ — S3 be the the blow-up of the 3 nodes, and let E; denote the
exceptional divisor of m;. With abuse of notation, let us denote by A, A’, B,
B, C, ', L;, N;j the strict transforms in ¥ of the namesake lines. Similarly we do
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not change the notation for the strict transforms in 3 of C; C S3. Denote by Hx, be
the pull-back of an hyperplane section. Since Ky = —Hy, the strict transform of
every line in S5 is a (—1)-curve. The curves Nio, Ny3, Nog, A, B', C' are pairwise
disjoint rational curves with self-intersection —1; by Castelnuovo’s criterion we can
contract them to a smooth rational surface with K2 = 9. Therefore, the contrac-
tion of these curves yields a morphism &: ¥ — P2. Again, with abuse of notation,
we shall continue using the same notation for a curve in Ss, its strict transform in
¥, and, when it is not contracted to a point, its image in P2. Let us denote by
r12,713, 723 and by X1,Xs, X3, the points of P2 to which ¢ contracts Nya, N1z, Nos
and A', B, (', respectively. In P? we get the configuration of curves of Figure
We leave to the reader the straightforward check that Ly, Lo, L3, F1, Es, FE3, A, B,

FIGURE 3. The branch divisors of v"/: " — P?

C in P? are in the configuration of Figure [3| As for Cs, using the equations of Cs
and Ny, and , we see that it meets Ny in S3. Similarly Co meets Nos.
Hence in the plane C5 contains the points r12, 723. To see that C5 contains the
points x; and xj3 it is enough to show that, in S3, Co meets the lines A, A’ and
the lines C,C’. Indeed, as Cy = Hg, — Ly and A+ A’ = Hg, — L; in S3, we have
CQ(A+A/) = (HS3 7L2)(H53 7L1) = H»%d 7HS3L1 7H5'3L2 +L1L2 = 2. Likewise
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one shows that Cy(C' + C') = 2. Additionally, Co(B + B’) = 0, hence Cs does
not contain x5. The conics 'y and C'5 have similar properties, obtained by cyclic
permutation of the indices {1, 2, 3}.

Remark 4.4. Consider the following commutative diagram:

(4.8) S< g o

N

Sy~ N — P2

13

where S', S”, +', 4", C, € are constructed as fiber products to make both squares
cartesian. Notice that é is the contraction of the preimages of Ni3, Niz, Nog,
A’) B’, C’. All horizontal maps in are birational morphisms and all vertical
maps are bidouble covers. Consider each of the non-trivial involutions of I, 8;, and
denote by Dj and D! the images via 4’ and 4" of the fix locus of §;. According to
Proposition 0; fixes each of the 2 pre-images of the node n;. Since these are
smooth isolated fixed points for 6;, 6; fixes each point in the exceptional divisor of
their blow up and accordingly E; is in the branch divisor of 7" associated with 6;.
In conclusion, we have

(4.9) DY =F1+Cy+ Ly Dy=EFEy+Cs5+Ly Di=EFE;+C+ Lo.

In the Figure[3| we have depicted the divisor D in green and in red the divisor Dj.
Note that S” is singular and £ is a resolution of its singularities.

Theorem 4.5. A general surface in the 1-dimensional linear subsystem
B = {T: VN (q: 0) | (V05V17V27V35V4) = (71/51/71/71/71/4)7 fOT (V7V4) GPI} CN

is a surface with 24 isolated rational double points as only singularities and G acts
freely on it. The quotient T/G is the canonical model of a tertiary Burniat surface
and, conversely, every tertiary Burniat surface arises in this way.

Proof. Analyzing the base locus of B, like in the proof of Theorem we get
Sing(T) € (I = > apeder (1) Yabea = 0), where | = v(—sg + 51 + 52 + s3). Let
T, Ty € B be given in V by so — s1 —s2 —s3 =0 and >, sc(—1)*Yabea = 0.

Fix coordinates z1, 7,3 on C3. Consider the open set Qoo = V \ {zgo = 0} and
the map &;: Qgop — C3 given by

oo Zoo Xoo
Since xgpz01 # 0 and (2.1)) hold, & (Qo) is contained in C?\ {z 2923 = 0} and the
map &x: C3\ {z12903 = 0} — Qo given by

(4.11) §a(w1, w0, 23) = (1, =1, 01, =1 /21, 22, —1/22, 73, =1 /73, . .. ),
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is the inverse of &;. Let Bgq,, denote the pencil {T'N Qo : T € B} on Qgo. The
pencil & Bq,, is spanned by & (T N Qo) and & (T2 N Qoo), whose equations are:

Fri=1-3% ., (2 +1/2}) =0,
Fy = (1 — 1/x1) (22 — 1/22) (23 — 1/23) = 0,

respectively. We show next that a general member of £5B8q,, is smooth outside a
(fixed) set of 24 rational double points. Since % = 1/x? — x;, the singularities of
&1 (T1 N Qqo) lie in the set defined by xf = x5 = 23 = 1. These equations define 64

points. However only the 24 points of the set

(4.12)

(4.13) D = {(de, +1,+1), (£1, £, +1), (£1,£1, £6)},

where € is a square root of —1, actually belong to &1 (71 N Qgp). As 62%5315 =0, for
©;0x;

i # 7, and ‘9;;;1 = —3/z} — 1, we see that the determinant of the Hessian matrix
is nonzero at the points of ©, showing that they are indeed ordinary double points
of & (T1 N Qo). For every point of D, two factors of Fy vanish, thus it is clear that
&1(To N Qo) is also singular at the points of ©. This shows that a general member
of &5Bq,, has a rational double point at each point of ©. Since & (71 N Q) is
smooth away from ®© it follows that a general member of £5Bq,, is also smooth

away from 2.

We proceed to show that a general T' € B is smooth along T'N (zg0 = 0) = T\ Qoo-
If x990 = 0, then zg; = —2g0 = 0 and, from , T10T11 = TooTo1 = Tzox31 = 0.
Let QZ) denote the open set of V' given by i,z 7# 0. Since a general T € B
has Sing(T") C (I = 0), if all the variables xgo, Zo1, . . ., Z30, 31 but one vanish at
a point of Sing(T) N (zgp = 0), then from ! = 0 we deduce the remaining one
must vanish also. From this, using and the fact that Sing(T") is contained in
Ty = (3 apeacr(—1)*Yabea = 0), we deduce that all variables must vanish, which is
impossible. Hence, for a general T' € B, there exist 4, j, a, b with j > 4 > 0 such that
Sing(T) N (xgp = 0) C QZ). Since the role that 19, x11, T20, T21, T30, 31 play in the
equations of V and T' € B is symmetric, we may reduce to showing that a general
member T' € B is smooth along T'N(xgp = 0)NN33. Similarly to what we did earlier,
we consider a map (;: Q33 — P(13,2) given by (1(x,y) = (200, T21, 31, Y0000)-
This map has image the (affine) open set defined by 2123190000 # 0. This is
a consequence of the quartic relation yooooy1100 — 23,73, in which holds in
V. As before, to show that an inverse (a: P(13,2) \ (22173190000 # 0) — Q% to
(1 exists, it is enough to express every variable on Q27 has a rational function of

Z0o, T21, T31, Yoooo- Using the equations of V, i.e., [2.1)), (2.4), (2.5) and zgo +z01 =
0, on 923 we have:

2,2
_ _ T3
Zo1 = —Zoo, Yii00 = — —
Y0000
2 2
(4.14) gy = T00TOL __Too . TooTor _ _ Too
- - b - - )
T21 T21 T31 T31
01221231 T0o0T21T31 TooT2131 Z00Y0000
10 = = - , T11 = =

Y0000 Y0000 Y1100 Z21T31
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which are all rational functions of xgg, €21, 31, Yoooo- Moreover
Toa' T1b' T2c! Loa’ T1b' T3d!
(415) Yabel = and Yabld = 5
T31 T21

which, using (4.14]), can be seen to be also rational functions of xgg, Z21, 31, Yo000-

Consider Bgzs the pencil {T nNO#E:.Te B}. Next we show that a general member
of (3Bgzs is smooth along g = 0. It suffices to show that ¢;(Ty N Q37) is smooth
along zgo = 0. Additionally, since ¢1(71 N Q%3) does not meet the singular point
of P(13,2) we can reduce to showing quasi-smoothness, or, more precisely, non-
vanishing of the Jacobian matrix of the polynomial F3, obtained from the equation
of ¢1(T1 N Q%) by setting yoooo = 1, at the points of ¢1 (71 NO33 N (xgo = 0)). From
we deduce Fy = 2823, 03 — 250251251 — 280 — 20051 — 231251 — 005 — 23175
using, to ease notation, xgg, T21, 31 as coordinates for the corresponding affine
piece of P(1%,2). Hence, at xgg = 0,

0F3

021

0F3
O0x31

3 .2 4 4 2 3
= —dx5, x5, — 2x2123; and = 225,231 — 45,75,

which have no common zeros for xo1231 # 0.

We have shown that a general member of B is a smooth away from a set of 24 rational
double points given by & (D) where D is the set of points , in other words,
the set of points given in local coordinates by . Notice that by Remark
the group G acts freely on a general member of B. To show that S := T/G for
a general T in B is the canonical model of a Burniat surface we analyze for
this case in detail. We start by observing that if (vo, v1, 12, Vs, 14) = (—v, v, 1,1, 1y)
then the plane P; defined in is nothing other that the plane (sg+s; = 0) and
hence the conic C splits as AU A’. Likewise, C5 splits up as BU B’ and Cj splits
up as CUC’. Recall that ny € ANA’, no € BNB’ and n3 € CNC’. Also, the nodes
become n; = (1,—1,1,1), no = (1,1,—1,1) and ng = (1,1,1, —1). Their pre-image
in T coincides with the 24 ordinary nodes of T'. Indeed we see that 8 points of T,
written in local coordinates of Qpp ~ C3 \ (z12923 = 0) as (e, £1,41), map to
nq; the 8 points (+1, +e, £1) map to ng and the 8 points (+£1, £1, +¢€) map to ng.
Since G acts freely on T', each of these sets of 8 points maps to a single point in
S :=T/G which is a node of S and is fixed by every element of I". Denote these 3
nodes of S by 71,79, 3. Using the notation of Proposition we claim that

Ay ={ny,n3}, Dy =B+ B +Ls,
Ag ={ng,n1}, Dy=C+C"+ Ly,
As ={ns,n2}, D3=A+ A + Ls.
We compute A; and Dy by analyzing the fixed loci on T of the elements of:

[a181] = {1 B, B1B2, cnaa 153, aras, a1 B B3, iz fBa, s B3, oz Pa B3} .

The computation of Ay, Do, Az and D3 follows by symmetry. Recall from the
proof of Proposition that Fix(8182) N T maps to Lz on S, Fix(asf18203) NT
maps to Co which is now B U B’ and that Fix(asaz/828;3) N'T maps to ny. With
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the assumptions of that proposition, all of the other elements of [a 8] have empty
fixed locus on T'. In case of T' € B this is no longer true. Indeed all but a;asasfs
have empty fixed locus on T. To see this, recall that Fix(+7+)(a1a2a353) and
Fix_ ;)(ai1azasf3) are given by:

(oo — To1 = T10 — T11 = T20 — T21 = 30 + 31 = Yabed + Yarberd = 0, Vabeder)s
(oo + o1 = T10 + T11 = Too + T21 = T30 — 31 = Yabed — Yaberd’ = 0, Vabeder),

respectively. It is easy to see that Fixy y)(aiaza383) NT is empty. However the
locus Fix(_ ;)(a1apa3f3) now contains the set of points {(41,41,=%e€)}, given in
local coordinates in §2gg. Since m; and mg are the only isolated fixed points of 6,
(notice that ny € BN B’) we have Ay = {ny,n3} and D; = B+ B’ + Ls.

We claim that the branch loci of 7/: S — X are:

Dy =E;+ B+ B + L3,
DL,=FEy+C+C"+ Ly,
Di=FE,+A+ A + L.

Again by symmetry it is enough to compute D}j. To do this we must analyze the
action of A, on the tangent cone at n1, Ny and n3, showing that it fixes every tangent
direction in the tangent cone at n3 and that it does not act in this way on the tangent
cones at the nodes 7; and fiy. This will mean that the action of 6; on S’ will fix
pointwise F3 and will not fix pointwise E; and Fs. (Recall that S” can be obtained
by blowing up 71, fig, fi3.) To analyze the action of 8; on each of the nodes we will
study the action of the corresponding involutions of [ 1] on the local model given
by Qoo C V. As we showed earlier, the involutions in [a; 81] which fix in T' points in
the pre-image of ny,ns, N3 are asasfB2P3, asB1 P03 and ajasasfs. We have seen
that aof1 82083 fixes a positive dimensional locus containing the pre-images of 7,
hence, locally at each pre-image, this involution cannot fix every tangent direction
to it and therefore Fs is not in D. The involution asasf23, whose fixed locus on
T maps to {71}, can be written in the local model C? \ (z122w3 = 0) =~ Qg as:

Tip T20 T30 Tip T2 T3l 11
(1’1,{172,%3): — Y — | — Y —— | =\ 1, —,— |-
oo Too Too Zoo  Too 00 Ty T3
(Recall that zgo + xo1 = 0 and xooTo1 = TioTi1 = Zoo/Tio = Ti1/To1.) We see
that (e, £1, £1) are fixed. However we see also that the fixed loci of this involution
in the ambient C3 \ (217223 = 0) is a set of four lines, going through the 8 points
(de,£1,+1). Hence this involution does not fix all of the tangent directions at any

of these points. This implies that 6, does not fix all of the tangent directions of 71
and thus Ej is also not in D). Finally, writing a;asas 3 in the local model:

(T T2 30 x11 21 @z (1 1 1
(.’171,{1}2,(E3)— ) 3 = 3 sy - Ty Ty T T )
oo Too Too To1 To1  To1 T1 T2 X3
we see that this involution fixes exactly the set of points given in local coordinates

by {(£1,£1,+¢)}. This coincides with the pre-image of {ri3}. Moreover, since
it fixes only finitely many points, it must fix every tangent direction at each of
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these points. We conclude that 65 fixes every tangent direction of 73 and thus
1 =FEs+ B+ B+ Ls.

It is now easy to compute the ramification divisors of " : S — P2. Since S” can be
obtained by contracting the pre-images of N3, N13, N1o, A, B', C" it is clear that
DY =E5+ B+ Ls,

(4.16) DY =FEy,+C+ Ly,
i =E1+ A+ L.

With the help of Figure [3] we see that these are exactly the branch loci for a tertiary
Burniat surface.

The space of tertiary Burniat surfaces is parameterized by A € C* \ {1} as follows.
In Figure [l we may always choose coordinates (ug, u1,u2) such that x; = (1,0, 0),
x2 = (0,1,0),x3 = (0,0, 1) and the further 3 marked points are respectively (1,1, 1),
(1,1,A) and (A, 1, ). The bicanonical image of the Burniat surface is the image of
P2 in P? by the linear system of cubics through the 6 marked points. If we choose,
as basis for this system, the cubics:

8o = —%(uo — Aug)(ug — ug)(ua — Aug)

(

S1 1-— )\)uo(ul — UQ>()\’U,1 - UQ> — 80
S9 = (1 — )\)ul(uQ — UO)(UQ — /\UO) — S0
S3 = (1 — )\)UQ(UO — ul)(’ll,o — )\ul) — S0

then, one can check that
(A +1)%(s1 — s0)(52 — 50) (53 — 50) = —2As0(83 + 52 + 51 — 50)*

and we easily conclude that the tertiary Burniat surface under consideration is
isomorphic to S = T/G with T € N given by —vg = 11 = v3 = v3 = vV/—X\ and
vy =4(A+1). |
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