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Abstract 
 
The aim of this work is the optimization  of a uniaxially compressed stiffened plate subjected 
to static and fatigue loading. The design variables are the thickness of the base plate, the 
number and stiffeners of the orthogonally stiffened plate. The constraints deal with the static 
overall plate buckling, the stiffener failure and the fatigue strength of the welded connections 
between the stiffeners and the interaction of the two types of failure. The cost function 
includes the cost of material, assembly, welding and painting. Randomness is considered both 
in loading and material properties. A level II reliability method (FORM) is employed. The 
overall structural reliability is obtained by using Ditlevsen method of conditional bounding. 
The costs of the plate designed to ensure a stipulated probability of failure will be compared 
with the solutions obtained for a code based method, which employs partial safety factors.  
Keywords: reliability-based optimization, stiffened plates, fatigue 
 
1. Introduction 
Stiffened plates are often the main structural components of load-carrying structures 
such as bridges, columns, towers, platforms, vehicles etc. The aim of this work is the 
optimization  of a uniaxially compressed stiffened plate. The thickness of the base plate as 
well as the numbers and dimensions of the longitudinal and transverse stiffeners are 
sought, which fulfil the design and fabrication constraints and minimize the cost 
function. The constraints relate to the static overall plate buckling, to the stiffener 
induced failure and to the fatigue strength of welded connections between the 
stiffeners. Interaction of the two types of failure, buckling and fatigue can be more 
dangerous than each individually: the fatigue crack propagation might affect the 
development of buckling. 
The buckling constraints are formulated according to the Det Norske Veritas design 
rules, the fatigue strength constraint is expressed using the data of Eurocode 3. The 
fabrication constraints limit the maximal number of stiffeners in one direction to 
ensure the welding of welds connecting the stiffeners to the base plate. The cost 
function includes the cost of material, assembly, welding and painting and is 
formulated according  to Farkas,J., Jármai,K.(2003).  
Stresses and displacements can be computed given the deterministic parameters of 
loads, geometry and material behaviour. Some structural codes specify a maximum 
probability of failure within a given reference period (lifetime of the structure). This 
probability of failure is ideally translated into partial safety factors and combination 
factors by which variables like strength and load have to be divided or multiplied to 
find the so called design values. The structure is supposed to have met the reliability 
requirements when the limit states are not exceeded. The advantage of code type 
level I method (using partial safety factors out of codes) is that the limit states are to 
be checked for only a small number of combinations of variables. The safety factors 



are often derived for components of the structure disregarding the system behaviour. 
The disadvantage is lack of accuracy. This problem can be overcome by using more 
sophisticated reliability methods such as level II (first order second order reliability 
method, FOSM [4] and level III (Monte Carlo) reliability methods. In this work 
FOSM was used and the sensitivity information was obtained analytically. Besides 
stipulating maximum probabilities of failure for the individual modes, the overall 
probability of failure which account for the interaction by correlating the modes of 
failure is considered. 
A branch and bound strategy coupled with a entropy-based algorithm is used to solve 
the reliability-based optimization. The entropy-based procedure is employed to find 
optimum continuous design variables giving lower bounds on the decision tree and 
the discrete solutions are found by implicit enumeration. Results are given 
comparing deterministic and reliability-based solutions and show how the optimum 
solution changes with the axial force and loading amplitude used to describe fatigue. 
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Figure 1. Orthogonally stiffened plate loaded by uniaxial compression 
 
2. Design variables 



The design variables are the base plate thickness t, sizes and number of stiffeners in 
both directions: hy, hx, ny, nx. 
Ranges of unknowns: 4 < t < 20 mm, 152 < h < 1016 mm, 4<n<nmax. The maximum 
values of ni is given by the fabrication constraints Eq. (1).  
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3  Constraints 
3.1  Overall buckling constraint according to DNV 
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It can be seen from the load-carrying capacity formula NE that, when  a0>b0, to have 
a larger NE, Bx  (hx) should be larger than By (hy). From the theoretical buckling 
strength  σE the critical strength  σcr is calculated by using a slenderness  λ to take 
into account the effect of initial imperfections. The factored compressive force is 
calculated as 

Nx = γstat Nxstat + γF ∆N/2,      (4) 
where  γstat = 1.1 and  γF = 1.35 are safety factors, Nxstat is the static component and a 
variable component has an amplitude  of   ∆N/2. 
 
3.2   Constraint on stiffener torsional buckling according to DNV 
The constraint is formulated as 
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3.3  Constraint on fatigue strength of welded connections of stiffeners 
The constraint on fatigue strength is defined by 
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where  α0 is the interaction factor to avoid the danger of interaction of the buckling 
and fatigue phenomena, ∆N is the variable load range,  ∆σN is the fatigue stress range 
corresponding to the number of cycles NC,  γMf is the safety factor for fatigue. 
 
4.  Cost function 
The cost function includes the cost of material, assembly, welding as well as painting 
and is formulated according to the fabrication sequence. 
The cost of material 

012 .k;VkK MMM    $/kg.     (7) 
Welding of the base plate from butt welds (3 in direction of a0 and 3 in direction of 
b0) (SAW - submerged arc welding) Farkas,J., Jármai,K.(2007): 
The fabrication cost factor is taken as kF = 1.0 $/min, the factor of complexity of the 
assembly 2W : 



  0000 333116 batC.VkK n
WWF   ,    (8) 

Welding (nx-1) stiffeners to the base plate in y direction with double fillet welds 
(GMAW-C - gas metal arc welding with CO2): 

  12103394031 0
23

11  
xwxxWFW nbax.x.VnkK    (9) 

Welding of (ny – 1) stiffeners to the base plate in x direction with double fillet welds. 
These stiffeners should be interrupted and welded with fillet welds to the stiffeners in 
the y direction. 

    10
23

22 121033940311 Tnaax.x.VnnnkK ywyxxyWFW   (10) 

which is rounded to  0.4twy. 
Painting 

PPPP SkK         (11) 
kP = 14.4x10-6 $/mm2 ,  ΘP = 2, 
Surface to be painted 
SP = 2a0b0 + a0 (ny – 1)(h1y + 2by) + b0 (nx – 1)(h1x + 2bx)   (12) 
The total cost 
K = KM + K0 + KW1 + KW2 +KP      (13) 
 
 
5. Reliability-based optimization 
A failure event may be described by a functional relation, the limit state function, in 
the following way  

F={g(x)≤0} (14) 
In the case the limit state function g (x) is a linear function of the normally 
distributed basic random variables x the probability of failure can be written in terms 
of the linear safety margin M as:  

    00  MPxgPPF  (15) 
which reduces to the evaluation of the standard normal distribution function  

 FP  (16) 

where   is the reliability index given as  
MM  /  (17) 

The reliability index has the geometrical interpretation as the smallest distance from 
the line (or the hyperplane) forming the boundary between the safe domain and the 
failure domain. The evaluation of the probability of failure reduces to simple 
evaluations in terms of mean values and standard deviations of the basic random 
variables.  
When the limit state function is not linear in the random variables x, the linearization 
of the limit state function in the design point of the failure surface represented in 
normalised space u. was proposed in Hasofer, A.M. & Lind, N.C. (1974),  

 
ii xxii xu  /  (18) 

As one does not know the design point in advance, this has to be found iteratively in 
a number of different ways. Provided that the limit state function is differentiable, 
the following simple iteration scheme may be followed:  
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 vG  ,..., 21  (20) 
which will provide the design point u* as well as the reliability index β.  
The reliability assessment requires an enumeration of the reliability indices 
associated with limit state functions to evaluate the structural system probability of 
failure. Collapse modes are usually correlated through loading and resistances. For 
this reason, several investigators considered this problem by finding bounds for pF. 
By taking into account the probabilities of joint failure events such as  
 ji FFP  which means the probability that both events iF and jF will simultaneously 

occur. The resulting closed-form solutions for the lower and upper bounds are as 
follows:  

     























 



0;

1

12
1

i

j
jii

m

i
F FFPFPMaxFp  (21) 

     
  

m

i

m

i ij
iF jFiFMaxPFPp

1 2
 (22) 

The above bounds can be further approximated using Ditlevsen (1979) method of 
conditional bounding [10] to find the probabilities of the joint events. This is 
accomplished by using a Gaussian distribution space in which it is always possible to 
determine three numbers 21,  and the correlation coefficient ij for each pair of 
collapse modes iF  and jF  such that if ij >0 ( iF  and jF  positively correlated): 
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In which i and j are the safety indices of the ith and the jth failure mode and [ ] is 
the standardized normal probability distribution function. 
The probabilities of the joint events P(FiFj) in (8) and 89) are then approximated by 
the appropriate sides of (23) and (24). For example, if Fi and Fj are positively 
dependent for the lower (21) and upper (22) bounds it is necessary to use the 
approximations given by the upper (24) and lower (23) bounds, respectively. 
 
6. Optimization Strategy 
6.1 Branch and Bound 
The problem is non-linear and the design variables are discrete. Given the small 
number of discrete design variables an implicit branch and bound strategy was 
adopted to find the least cost solution. The two main ingredients are a combinatorial 
tree with appropriately defined nodes and some upper and lower bounds to the 
optimum solution associated the nodes of the tree. It is then possible to eliminate a 
large number of potential solutions without evaluating them.  
Three levels were considered in the combinatorial tree. The plate thickness is fixed at 
the top of the tree, the remaining levels corresponding to nx (and the appropriate UB 
profile hx) and ny associated with hy. A strong branching rule was employed. Each 
node can be branched into ns new nodes, each of these being associated with the 
number of stiffners needed in the x direction. This requires using continuous values 
close to the geometric characteristics of an UB section,  wfs ttbA ,,, , which are 



approximated by curve-fitting functions written as a function of h. The stiffener 
height is also obtained from a curve fitting of the heights h. Care has to be taken to 
find geometrical properties leading to convex underestimates of the actual UB 
section, so that the solution obtained by using the real UB geometric characteristics 
is more costly than the solution given by using continuous approximations. In the 
second level of the tree the branches correspond to different stiffener UB profiles. At 
the third level the resulting minimum discrete solution becomes the incumbent 
solution (upper bound). Any leaf of the tree whose bound is strictly less than the 
incumbent is active. Otherwise it is designated as terminated and need not to be 
considered further. The B&B tree is developed until every leaf is terminated. The 
branching strategy adopted was breadth first, consisting of choosing the node with 
the lower bound. 

6.2 Optimum design with continuous design variables 
For solving each relaxed problem with continuous design variables the simultaneous 
minimization of the cost and constraints is sought. All these goals are cast in a 
normalized form. For the sake of simplicity, the goals and variables described in the 
following deal with stiffened shells. If a reference cost 0K  is specified, this goal can 
be written in the form, 

   1 0, , , , / 1 0g t n h K t n h K     (25) 
Another two goals arise from the constraint on overall buckling and single panel 
buckling: 

 3 , , / 1 0c crg t n h      (26) 
 2 , , / 1 0l acrg t n h      (26) 

The remaining goal deals with the fatigue strength of the stiffeners connections: 
 4 , / 1 0ng t h        (28) 

The objective of this Pareto optimization is to obtain an unbiased improvement of the 
current design, which can be found by the unconstrained minimization of the convex 
scalar function Simões, L.M.C. & Templeman, A.B.(1989): 
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This form leads to a convex conservative approximation of the objective and 
constraint boundaries. Accuracy increases with ρ. 
The strategy adopted was an iterative sequence of explicit approximation models, 
formulated by taking Taylor series approximations of all the goals truncated after the 
linear term. This gives: 
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This problem has an analytic solution giving the design variables changes dt and dh . 
Solving for a particular numerical value of ojg forms an iteration of the solution to 
problem (30). Move limits must be imposed on the design variable changes to 
guarantee the accuracy of the approximations. Given the small number of design 
variables an analytic solution is available. During the iterations the control parameter 
ρ, which should not be decreased to produce an improved solution, is increased.  
 



5. Numerical Examples 
Numerical data (Figure 1): a0 = 24000, b0 = 8000 mm, steel yield stress fy = 355 
MPa, elastic modulus E = 2.1x105 MPa, shear modulus G = 0.8x105, density ρ = 
7.85x10-6 kg/mm3, selected rolled I-sections UB profiles. Consistent with the 
traditional limit state design (level 1 approach), the following solutions consider a 
deterministic behaviour of all the variables for several load combinations of the 
original compressive force Nxstat and the load range for fatigue ∆N. 
 

 Nxstat ∆N hx hy t nx ny Cost 
1 2x107 6x106 403.2 257.2 13 6 19 54198 
2 3x107 6x106 533.1 403.2 16 5 11 57097 
3 4x107 6x106 533.1 403.2 18 6 13 64831 
4 2x107 9x106 454.6 353.4 19 4 15 64499 
5 2x107 12x106 403.2 353.4 27 4 12 76865 

 
By adopting coefficients of variation of 0.15 for the compressive force, 0.25 for the 
load amplitude and 0.10 for the design stress, solution 1 was used to tune mean 
values for the static force, load amplitude and design stresses. The Gaussian 
distribution was adopted for all the random variables. Although the randomness of 
Young modulus also plays an important role in the structural reliability, this was not 
considered here for the sake of simplicity. In this example the probability of failure 
will be describe with the overall buckling stresses, the stiffener torsional buckling 
and the fatigue strength of the welded connections of stiffeners induced by the 
loadings. A maximum individual probability of failure pf ≤ 1.0E-4 (beta larger than 
3.72) was established. The following reliability based optimum solutions were 
obtained: 
 

 Nxstat ∆N hx hy t nx ny Cost 
1 1.145x107 2.95x106 403.2 257.2 13 6 19 54418 
2 1.172x107 2.95x106 454.6 203.2 13 8 19 56336 
3 2.29x107 2.95x106 607.6 403.2 15 6 14 61045 
4 1.145x107 4.43x106 403.2 308.7 18 5 19 64389 
5 1.145x107 5.9x106 403.2 403.2 24 4 16 75479 

 
The reliability-based solutions are generally least costly than the deterministic and 
ensure the safety level adopted. If the all the modes are considered and the overall 
probability of failure pf ≤ 1.0E-4 is imposed by using Ditlevsen improved second 
order bounds, the reliability based solutions for problems 4 and 5 are changed as in 
the first both the local buckling and fatigue have small  values and in the later the 
overall buckling and fatigue are critical. 
 

 Nxstat ∆N hx hy t nx ny Cost 
4 1.145x107 4.43x106 403.2 257.2 19 6 18 64977 
5 1.145x107 5.9x106 403.2 353.4 25 4 15 76336 

The solutions are 1% more costly, being thicker but reducing the number and sizes of 
the stiffeners in the y direction. The influence of the coefficient of variation of the 
static compressive force on solution 1 was also studied. If the coefficient of variation 
is increased by 10% to 0.165 the reliability-based solution becomes: 



 
 Nxstat ∆N hx hy t nx ny Cost 
1 1.145x107 2.95x106 403.2 308.7 14 6 16 54419 

The fatigue constraint is now more important, replacing the local bucking constraint 
obtained in the previous reliability-based solution. There is almost no change in the 
cost, the solution now being thicker and with larger stiffeners in the y direction. 
Fatigue is usually associated with a Weibull type II probability distribution and it is 
usually more demanding in terms of design than the normal distribution. If the 
probability distribution functions of the random variables are not Gaussian, the 
Rosenblatt transformation may be used. It consists of finding for each random value 
an “equivalent” Gaussian distribution function. An increased coefficient of variation 
for load variation of of 0.275 was specified in problem 1. The following result was 
obtained: 
  

 Nxstat ∆N hx hy t nx ny Cost 
1 1.145x107 2.95x106 403.2 257.2 13 6 20 55072 

This reliability-based solution is now 1% more costly. However this is obtained by 
increasing the number of stiffeners in the y direction. 
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