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1. Abstract  
Conical shells can be applied in several types of structures such as towers, tanks, submarine and offshore 
structures. In the present work the following structural characteristics were chosen: steel, slightly conical shell, 
ring-stiffeners of welded square box section, equidistant (associated with variable shell thickness) and 
non-equidistant (associated with constant shell thickness) stiffening, external pressure, welding. Design rules of 
Det Norske Veritas are applied for shell and stiffener buckling constraints.  
The design variables are the number of shell segments, the dimensions of ring stiffeners, shell thicknesses in the 
equidistant stiffeners case or thickness and distances between stiffeners. The cost function includes the cost of 
material, assembly welding and painting and is formulated according with the fabrication sequence. The optimum 
design problem involves both discrete and continuous design variables. 
Randomness is considered here both in loading and material properties. A level II reliability method (FORM) is 
employed. Individual reliability constraints related with normal stress due to external pressure in a shell segment 
and local buckling of the compressed stiffener flange. The overall structural reliability is obtained by using 
Ditlevsen method of conditional bounding. The costs of the conical shell with equidistant stiffeners is compared 
with the shell designed assuming constant thickness.  
A branch and bound strategy is used to solve the reliability-based optimization. The design variables giving lower 
bounds on the decision tree can be obtained either by a closed form solution or by continuous optimization and the 
discrete solutions are found by implicit enumeration. Results are given illustrating the influence of the coefficient 
of variation of the loading and the probability of failure requirements. 
2. Keywords: reliability, optimization, stiffeners , conical, shells 
 
3. Introduction 
Conical shells are applied in numerous structures e.g. in submarine and offshore structures, aircraft, tubular 
structures, towers, tanks, etc. Their structural characteristics are as follows. 

- Material: steels, Al-alloys, fibre-reinforced plastics, 
- Geometry: slightly conical (transition parts between two circular shells), strongly conical (storage tank 

roofs), truncated, 
- Stiffening: ring-stiffeners, stringers, combined, equidistant, non-equidistant, 
- Stiffener profile: flat, box, T-, L-,Z-shape, 
- Loads: external pressure, axial compression, torsion, combined, 
- Fabrication technology: welding, riveting, bolting, gluing. 

Klöppel and Motzel [1] have carried out buckling experiments with truncated unstiffened and ring-stiffened steel 
conical shell specimens and proposed simple formulae for critical buckling stress. 
Rao and Reddy [2] have worked out an optimization procedure for minimum weight of truncated conical shells. 
Rectangular ring-stiffeners and stringers are used and constraints on shell buckling as well as on natural frequency 
are considered. 
In the book written by Ellinas et al. [3] experimental results and design of stiffened conical shells are treated. 
Spagnoli has written a PhD thesis on buckling behaviour and design of stiffened conical shells under axial 
compression [4]. Rectangular stringers are considered. Later Spagnoli also with co-authors [5,6,7] has published 
other articles in this field. 
Chryssanthopoulos et al. [8] have used finite element method for buckling analysis of stringer-stiffened conical 
shells in compression. 
Singer et al. [9] have given a detailed description of experiments carried out with stiffened conical shell models. 
Minimum cost design has been worked out for ring-stiffened circular cylindrical shell in our study [10,11]. 
In the present study we select the following structural characteristics: steel, slightly conical shell, ring-stiffeners of 
welded square box section to avoid tripping, both equidistant and non-equidistant stiffening, external pressure, 
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welding. Design rules of Det Norske Veritas [12,13] are applied for shell and stiffener buckling constraints. 
Stresses and displacements can be computed given the deterministic parameters of loads, geometry and material 
behaviour. Some structural codes specify a maximum probability of failure within a given reference period 
(lifetime of the structure). This probability of failure is ideally translated into partial safety factors and combination 
factors by which variables like strength and load have to be divided or multiplied to find the so called design values. 
The structure is supposed to have met the reliability requirements when the limit states are not exceeded. The 
advantage of code type level I method (using partial safety factors out of codes) is that the limit states are to be 
checked for only a small number of combinations of variables. The safety factors are often derived for components 
of the structure disregarding the system behaviour. The disadvantage is lack of accuracy. This problem can be 
overcome by using more sophisticated reliability methods such as level II (first order second order reliability 
method, FOSM [4] and level III (Monte Carlo) reliability methods. In this work FOSM was used and the sensitivity 
information was obtained analytically. Besides stipulating maximum probabilities of failure for the individual 
modes, the overall probability of failure which account for the interaction by correlating the modes of failure is 
considered. 
A branch and bound strategy is used to solve the reliability-based optimization. The design variables giving lower 
bounds on the decision tree can be obtained either by a closed form solution or by continuous optimization and the 
discrete solutions are found by implicit enumeration. Results are given illustrating the influence of the coefficient 
of variation of the loading and the probability of failure requirements. 
 
4. Design variables 
The variables to be optimized for the non-equidistant stiffening are as follows: shell segments length (Li) for a 
given shell thickness (t), dimensions of ring-stiffeners (hi, tri). When the distance between stiffeners is identical, 
segments shell thicknesses (ti) and dimensions of ring-stiffeners (hi, tri) must be determined. 
Stiffeners should be used at the ends of the shell and  are placed in a small distance from the circumferential welds 
connecting two segments to allow the inspection of  welds, this is marked in Figure 1 by dotted lines. The number 
of segment (n) is determined given the shell thickness. 
 
5.  Constraints 
5.1  Overall buckling constraint  
According to DNV rules [13], for shell segments between two ring-stiffeners of radii Ri and Ri+1 the buckling 
constraint valid for circular cylindrical shells with equivalent radius 
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Figure 1:. Main dimensions of the conical shell 
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Figure 2: shell segment with the ring-stiffener of welded square box section 
   
For non-equidistant stiffeners ti = t and Li becomes a design variable. Here t must be specified and the condition of 
the sum of Li to be equal to L0 must be enforced. Eq. (1)-(2) remain valid. 
The normal stress due to external pressure in a shell segment should be smaller than the critical buckling stress 
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The unknowns ti or Li are evaluated by using the shell buckling constraint (5).  
 
5.2   Constraint on stiffener buckling  
For ring-stiffeners a square box section welded from 3 parts is selected to avoid tripping, which is dangerous 
failure mode for open-section stiffeners (Fig.1). 

The constraint on local buckling of the compressed stiffener flange according to Eurocode 3 [14] is expressed by 

yiri fht /235,42/1, ==≥ εεδδ        (8) 

for  fy = 355 MPa  1/� = 34. Eq (8) gives tri once the height hi is determined. This dimension can be determined from 
the stiffener buckling constraint relating to the required moment of inertia of a stiffener section about the axis x of 
the point E, which is the gravity center of the cross-section including the 3 stiffener parts and the effective part of 
the shell (Fig.1) 
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The required hi can be calculated from Eq (9). 
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6.  The cost function 
The cost function is formulated according to the fabrication sequence as follows [11]. 

(1) Forming of 3 plate elements for shell segments into slightly conical shape (KF0). 
(2) Welding 3 curved shell elements into a shell segment with GMAW-C (gas metal arc welding with CO2) 

butt welds (KF1). 
(3) Welding of n+1 ring-stiffeners each from 3 elements with 2 GMAW-C fillet welds (KF2). 
(4) Welding of a ring-stiffener into each shell segment with 2 GMAW-C fillet welds (KF3). 
(5) Assembly of the whole stiffened shell structure from n shell segments (KF4A). 
(6) Welding of n shell segments to form the whole shell structure with n-1 circumferential GMAW-C butt 

welds (KF4W). 
(7) Painting of the whole shell structure from inside and outside (KP). 

The total cost includes the cost of material, assembly, welding and painting 

PFFFFFM KKKKKKKK ++++++= 43210      (14) 

kgkVkK MMM /$0.1, == ρ        (15) 
The volume of the whole structure includes the volume of shell segments (V1i) and ring-stiffeners (Vri) 
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where the factor of fabrication difficulty is taken as 3=Θ  and the steel density is  
� = 7.85x10-6 kg/mm3. 
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where 
( ) ( )iiiriiiiriri hRhthRhttV −+−= ππ 22/4     (21) 

and the fillet weld size  awi = 0.7�hi. 
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7. Reliability-based optimization 
A failure event may be described by a functional relation, the limit state function, in the following way  

F={g(x)�0}         (27) 
In the case the limit state function g (x) is a linear function of the normally distributed basic random variables x the 
probability of failure can be written in terms of the linear safety margin M as:  

( ){ } ( )00 ≤=≤= MPxgPPF         (28) 
which reduces to the evaluation of the standard normal distribution function  

( )β−Φ=FP          (29) 



 
 

5 

where β  is the reliability index given as  

MM σµβ /=          (30) 
The reliability index has the geometrical interpretation as the smallest distance from the line (or the hyperplane) 
forming the boundary between the safe domain and the failure domain. The evaluation of the probability of failure 
reduces to simple evaluations in terms of mean values and standard deviations of the basic random variables.  
When the limit state function is not linear in the random variables x, the linearization of the limit state function in 
the design point of the failure surface represented in normalised space u. was proposed in Hasofer, A.M. & Lind, N.C. 
(1974),  

( )
ii xxii xu σµ /−=         (31) 

As one does not know the design point in advance, this has to be found iteratively. Provided that the limit state 
function is differentiable, the following simple iteration scheme may be followed:  
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which will provide the design point u* as well as the reliability index �.  
 
The reliability assessment requires an enumeration of the reliability indices associated with the two limit state 
functions to evaluate the structural system probability of failure. Collapse modes are usually correlated through 
loading and resistances. By taking into account the probabilities of joint failure events such as  ( )ji FFP ∩ which 

means the probability that both events iF and jF will simultaneously occur. The resulting closed-form solutions for 

the lower and upper bounds are as follows:  
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The above bounds can be further approximated using Ditlevsen (1979) method of conditional bounding [10] to find 
the probabilities of the joint events. This is accomplished by using a Gaussian distribution space in which it is 
always possible to determine three numbers 21, ββ and the correlation coefficient ijρ for each pair of collapse 

modes iF  and jF  such that if ijρ >0 ( iF  and jF  positively correlated): 

2 2
( )  { ( ) ( ) ; ( ) ( )}

1 1
i j ij j i ij

i j j i

ij ij

P F F Max
β β ρ β β ρ

β β
ρ ρ

− −
∩ ≥ Φ − Φ − Φ − Φ −

− −
    (36) 

2 2
( ) ( ) ( ) ( ) ( )

1 1
i j ij j i ij

i j j i

ij ij

P F F
β β ρ β β ρ

β β
ρ ρ

− −
∩ ≤Φ − Φ − +Φ − Φ −

− −      (37) 

In which βi and βj are the safety indices of the ith and the jth failure mode and Φ[ ] is the standardized normal 
probability distribution function. 
The probabilities of the joint events P(Fi∩Fj) in (34) and (35) are then approximated by the appropriate sides of 
(36) and (37). For example, if Fi and Fj are positively dependent for the lower (34) and upper (35) bounds it is 
necessary to use the approximations given by the upper (37) and lower (36) bounds, respectively. In this problem 
the system probability of failure can be represented by the minimum distance β concerning overall buckling given 
the high mode correlation. 
 
8. Optimization Strategy 
The optimization process has the following parts: 

(a) design of each shell segment length for a given shell thickness (non-equidistant stiffening) or the 
thickness for a given segment length (equidistant stiffening) using the shell buckling reliability constraint, 

(b) design of ring-stiffeners height hi (and hence tri) for each shell segment using the stiffener buckling 
reliability constraint and the Eurocode expression, 

(c) cost calculation for each shell segment and for the whole shell structure. 
8.1 Branch and Bound 
The problem is non-linear and the design variables are discrete. Given the small number of discrete design 
variables an implicit branch and bound strategy was adopted to find the least cost solution. The two main 
ingredients are a combinatorial tree with appropriately defined nodes and some upper and lower bounds to the 
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optimum solution associated the nodes of the tree. It is then possible to eliminate a large number of potential 
solutions without evaluating them. A partial solution is said to be fathomed if the best completion of the solution 
can be found or if it can be determined that, no matter how the design variables are assigned to the remaining free 
members it will be impossible to find a feasible completion of smaller cost than the previous found. If a partial 
solution is fathomed this means that all possible completions of the partial solution have been implicitly 
enumerated. When the last node is fathomed the algorithm ends up with the optimum design. Backtracking in the 
tree is performed so that no solution is repeated or omitted from consideration. 
 

 
 

Figure 2: Branch and Bound tree 
 
In the equidistant stiffeners case number of stiffeners n is fixed at the top of the tree, the remaining levels 
corresponding to ti associated with hi and tri. When n is defined Li follows from (3) and the minimum values of the 
design variables ti are obtained by a reliability-based constraint based on (5) by used a closed form algorithm. hi and 
tri follow by using another reliability constraint based on (9) and (8).  
The combinatorial tree covers the cost obtained by employing larger ti (and smaller hi and tri) corresponding to a 
branching rule. Each node can be branched into new nodes, each of these being associated with larger ti values. At 
the last level the resulting minimum discrete solution becomes the incumbent solution (upper bound). Any leaf of 
the tree whose bound is strictly less than the incumbent is active. Otherwise it is designated as terminated and need 
not to be considered further. The B&B tree is developed until every leaf is terminated. The branching strategy 
adopted was breadth first, consisting of choosing the node with the lower bound. 
The non-equidistant stiffener case puts put the thickness at the top of the combinatorial tree. It differs from the 
previous as the sum of length segments must be equal to the defined length of the shell and n is not known at this 
stage. The adopted strategy was to find the maximum segment lengths Li which are obtained once the thickness t is 
defined by using a reliability constraint based on (5). n is found when the number of Li is not less than Lo. The 
stiffener design variables hi and tri are evaluated when t and Li known. This procedure was attempted with the 
starting Li being evaluated at either end of the shell. The results of these two procedures differ usually less than 
0.5%. Alternatively an optimization method involving n-1 design variables Li was used. The conjugate direction 
was used to minimize the total cost as there are no constraints involved and hi and tri are available. This 
optimization method leads to no significant improvement on the previously obtained optima. The branch and 
bound strategy previously described remains valid. 
 
9.   Numerical results 
Total shell length L = 15000, side radii Rmin = R1 = 1850 and Rmax = Rn+1 = 2850 mm, , Poisson ratio  � = 0.3, elastic 
modulus  E = 2.1x105 MPa. 
Consistent with the traditional limit state design (level 1 approach), yield stress of steel fy=355 MPa were 
considered. With a safety factor for structural steel of 1.10 and an assumed coefficient of variation of 0.10 this 
corresponds to mean values of 440 MPa. Design and mean values for external pressure intensity are p = 0.75 MPa, 
and 0.3765 MPa, respectively. These are given by assuming a safety factor for loading �b = 1.5 and coefficient of 
variation of 0.20. The randomness of the Young modulus was not considered for the sake of simplicity. 
Although the randomness of Young modulus also plays an important role in the structural reliability, this was not 
considered here for the sake of simplicity. In this example the probability of failure will be connected with the 
buckling stresses throughout the structure, the stringer panel buckling and the horizontal displacement of the shell 
induced by loadings. Gaussian distribution was adopted for the random variables.  
In the equidistant stiffener case calculations were carried out for n=4-8. Increasing coefficients of variation for the 
loading and pF requirements were defined. The probability of failure is defined for the limit state equation relating 
the normal stress due to external pressure in each shell segment with the critical buckling stress. The limit state 
equations governing the ring stiffeners design are highly correlated with the overall buckling requirement and the 
highest probability of failure is representative of both modes.  The total costs are summarized in Table 1. 



 
 

7 

 
Table 1 Cost x 103. Optima are marked by bold letters 

 
 n=4 n=5 n=6 n=7 n=8 

Cov=0.15 pF=10-3  73.5 73.0 72.7 73.6 
Cov=0.20 pF=10-4 80.0 78.4 79.2 79.1  
Cov=0.25 pF=10-5 85.4 84.9 84.2 84.5  

 
The results are similar to those obtained for an increased deterministic loading 
In order to characterize the optimum structures, the main data is displayed in Table 2. 
 

Table 2. Main dimensions (in mm) of the optimum designs 
 

n=7, Cost =72.7 103 n=5, Cost =78.4 103 n=6, Cost =84.2 103 
ti hi tri ti hi tri ti hi tri 

15 110 4 19 119 4 19 131 4 
16 118 4 20 133 4 20 143 5 
16 128 4 21 146 5 21 156 5 
17 136 4 22 160 5 22 169 5 
17 146 5 23 174 6 22 184 6 
18 155 5 24 188 6 23 198 6 
18 164 5    24 211 7 
19 173 6       

 
The solutions for the non-equidistant stiffeners are given in Table 3: 
 

Table 3 Cost x 103. Optima are marked by bold letters 
 

 t=16 t=17 t=18 t=19 
Cov=0.15 pF=10-3 74.2 73.8 72.8 75.0 
Cov=0.20 pF=10-4 80.1 78.2 78.2 80.5 
Cov=0.25 pF=10-5 103.2 86.6 90.0 90.9 

 
The data corresponding to these optima is represented in Table 4. 
 

Table 4. Main dimensions (in mm) of the optimum designs 
 
t=18, n=6, Cost 72.8 103 t=18, n=7, Cost 78.2 103 t=17, n=8, Cost 78.2 103 t=17, n=9, Cost 86.6 103 

Li hi tri Li hi tri Li hi tri Li hi tri 
2433 108 4 2628 120 4 2415 120 4 2055 134 4 
3012 118 4 2458 133 4 2190 133 4 1896 147 5 
2686 131 4 2246 145 5 2022 144 5 1772 160 5 
2452 142 5 2085 157 5 1892 155 5 1670 174 6 
2277 154 5 1958 169 5 1787 167 5 1588 189 6 
2140 164 5 1856 181 6 1700 178 6 1518 205 7 

   1769 194 6 1627 190 6 1456 224 7 
      1042 203 6 1404 248 8 
         1315 279 9 

 
 
10.  Conclusions 
The optimum design problem is solved for a slightly conical shell loaded in external pressure with equidistant and  
non-equidistant ring-stiffeners of welded square box section. The reliability-based design minimizes the cost 
function and fulfils the design requirements. The cost function includes the cost of material, forming of plate 
elements into shell shape, assembly, welding and painting. The fabrication cost function is formulated according to 
the fabrication sequence. The forming, welding and painting costs play an important role in the total cost.  
The thickness (equidistant stiffeners) or the length of each shell segment (non-equidistant stiffeners) are calculated 
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from the shell buckling reliability requirements.  
The dimensions of ring-stiffeners for each shell segment are determined on the basis of the ring buckling reliability 
requirements. This constraint is expressed by the required moment of inertia of the ring-stiffener cross-section. 
In the case of equidistant stiffeners, there is no general conclusions concerning the optimum number of stiffeners 
or the trend of the cost of fabrication vs cost of material as the requirements become more demanding. There are 
close discrete solutions the best of these being selected by the implicit enumeration procedure. 
In the case of non-equidistant stiffeners the general conclusion now seems to indicate more stiffeners are required 
as the cov of loading increases and pF is reduced. Given the discrete nature of the solutions there are two distinct 
but very close optimum designs (less than 1%o difference) for loading cov of 0.2 and pF=10-4 . The cost data show 
the ratio material/fabrication costs is reduced as loading and PF requirements increase because more stiffeners are 
needed to ensure the stability of a thinner shell. 
Concerning the cost comparison of both types of design the optimum results for the equidistant stiffeners are 
usually better than those for non-equidististant for larger loading and pF requirements given the smaller number of 
stiffeners involved. This conclusion remains valid with less stringent requirements as it is possible to have now a 
smaller number of stiffeners in the non-equidistance case. The minimum cost for the intermediate loading do not 
differ much, although corresponding to different designs.  
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