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abstraCt

The study of aspartic proteases has been gaining interest due 

to their importance in the development of major concerning 

human diseases, as Alzheimer’s disease, breast cancer, or AIDS. 

The molecular basis of some of these diseases is associated 

to folding errors, which disables proteins proper functioning. 

Stability studies over this class of enzymes are extremely impor-

tant for characterising the pathology involved mechanisms and 

to discover therapeutic solutions.

The heterodimeric cardosin A is a plant aspartic proteinase of 

high yield purification. Besides having been traditionally used as 

milk clotting agent for cheese making, its characteristics have 

made it an interesting enzyme for biotechnological applications. 

This endopeptidase has thus been considered a good model 

for structural and functional studies of the aspartic proteinases 

group, and of proteins in general.



Abstractxii

Water availability is a fundamental factor for protein stability and 

conformation flexibility, and these characteristics are imperative 

for proper functioning. The present approach intends to upgrade 

the understanding of aspartic proteases native conformation as 

a mutable form. Along the last few years, cardosin A structural 

conformation has been characterized in biphasic systems, aqueous 

solutions saturated by organic solvents, and more extensively in 

the presence of the organic solvent acetonitrile. In sequence with 

the work developed by our group, the unfolding of cardosin A was 

here induced by 2,2,2-trifluoroethanol (TFE), a polar and protic 

organic solvent with very different properties from the previous 

organic solvents tested. TFE characteristics promote distinct 

alterations in water structure, interacting in a particular way with 

the protein hydration layer and with the protein structure itself. 

Furthermore, it is known to stabilize well ordered conformations 

rather than inducing denaturation. 

The aim of the present work was to follow the conformational 

and functional alterations promoted by TFE proximity to cardosin 

A structure. The function dependence on enzyme structure was 

related to the availability of water and/or of hydrogen bonds to 

the protein surface. Different spectroscopic methods (circular 

dichroism and intrinsic fluorescence), activity measurements, 

and calorimetric analysis were employed to detect and char-

acterize the organic solvent induced states. Finally, molecular 

dynamics/molecular mechanics (MD/MM) simulations were 

applied to the system in order to understand the interaction 

between protein and solvent molecules. 

The TFE in vitro assays with cardosin A promoted folding vari-

ations dependent of the alcohol concentration. TFE medium 

content below 4% decreased protein stability, but reversibly 

increased its enzymatic rate. TFE medium content over 20% 
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irreversibly inactivated the enzyme and unfolded its tertiary 

structure, while secondary helical content was progressively 

increased (mainly from previously unordered segments). At 

last, TFE medium content over 70% inactivated the enzyme 

and promoted a vast increase in structural complexity, taking 

form as characteristic open helical structures, and these altera-

tions proved to be reversible. 

MD simulations with TFE and water described local alterations in 

protein flexibility, but no large conformational transformations. 

Instead, the model described an exposition of local competition 

of TFE with water for solvation surface. TFE molecules were 

found replacing several hydration molecules in the active site. 

Despite the catalytic water was not lost in the last acquired 

conformation of the high TFE content MD simulation, the active 

site was occupied by several TFE molecules, and this occurrence 

was proposed to justify the activity loss. The same reasoning 

can explain the activity recovery upon aqueous dilution, with 

the release of the active site for substrate binding.
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xv

o estudo das proteinases aspárticas tem vindo a ganhar inte-
resse devido à importância desta classe de enzimas na etiologia 
e evolução de doenças humanas que são hoje fonte duma preo-
cupação crescente, como são os casos da doença de Alzheimer, 
do cancro da mama ou da sidA. 

A base molecular de algumas destas doenças está associada a 
erros de folding (enrolamento), que impossibilitam a sua função. 
estudos de estabilidade sobre esta classe de enzimas são de 
extrema importância para a caracterização dos mecanismos pato-
lógicos envolvidos, e para a descoberta de soluções terapêuticas. 

A proteína heterodimérica cardosina A é uma proteinase aspár-
tica de origem vegetal que pode ser purificada em elevadas 
quantidades. Apesar de tradicionalmente ser usada como agente 
coagulante do leite na produção de queijo, as suas características 
fizeram dela uma enzima interessante para aplicações biotecnoló-

Resumo
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gicas. esta endopeptidase tem sido considerada um bom modelo 
para estudos estruturais e funcionais do grupo das proteinases 
aspárticas e de proteínas em geral.

A disponibilidade de água é um factor fundamental para a 
estabilidade proteica e para a sua flexibilidade conformacional, 
características estas essenciais à sua função. 

com o presente trabalho esperamos ter contribuído para a 
compreensão da conformação nativa das proteinases aspárticas 
como uma forma mutável. Ao longo dos últimos anos a estrutura 
conformacional da cardosina A foi caracterizada em sistemas 
bifásicos, meio aquoso saturado com solventes orgânicos, e 
mais exaustivamente na presença do solvente orgânico acetoni-
trilo. na sequência do trabalho desenvolvido pelo nosso grupo, 
o unfolding (desenrolamento) da cardosina A foi induzido pelo 
2,2,2-trifluoroethanol (TFE), um solvente orgânico polar e prótico 
com propriedade muito diferentes dos solventes orgânicos previa-
mente usados. As características do tFe promovem alterações 
distintas na estrutura da água, interagindo de um modo parti-
cular com a camada de hidratação da proteína e com a própria 
estrutura proteica. Além disso o tFe é conhecido por estabilizar 
conformações complexas em vez de induzir a desnaturação.

Foi objectivo do presente trabalho seguir as alterações confor-
macionais e funcionais promovidas pela proximidade do tFe à 
estrutura da cardosina A. A dependência da função enzimática 
em relação à estrutura proteica foi relacionada com a disponi-
bilidade de água e/ou de pontes de hidrogénio na superfície da 
proteína. diferentes métodos espectroscópicos (dicroísmo circular 
e fluorescência intrínseca), medições de actividade enzimática, e 
análise calorimétrica foram utilizados para detectar e caracterizar 
os estados induzidos pelo solvente orgânico. 

Finalmente foram aplicadas ao sistema simulações de dinâmica 
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molecular/mecânica molecular (md/mm) de forma a compreender 
a interacção entre a proteína e as moléculas de solvente.

os ensaios in vitro com a cardosina A em tFe promoveram 
variações de folding dependentes da concentração do álcool. 
concentrações de tFe inferiores a 4% diminuíram a estabilidade 
proteica, mas aumentaram reversivelmente a actividade enzimá-
tica. concentrações superiores a 20% de tFe no meio inactivaram 
irreversivelmente a enzima e desenrolaram a sua estrutura 
terciária, enquanto o seu conteúdo secundário em hélices foi 
progressivamente aumentado (principalmente de segmentos 
sem estruturação prévia). por último, concentrações superiores 
a 70% de tFe no meio inactivaram a enzima e promoveram um 
vasto aumento na complexidade estrutural, na forma típica de 
estruturas helicoidais abertas, alterações estas que provaram ser 
reversíveis.

As simulações de md com tFe e água, descreveram alterações 
locais de flexibilidade proteica, mas sem grandes transformações 
conformacionais. em vez disso o modelo expôs os locais de 
competição entre o tFe e as moléculas de água da superfície 
de solvatação. moléculas de tFe foram encontradas a substituir 
várias moléculas de hidratação no local activo. Apesar da molécula 
de água catalítica não ter sido perdida na última conformação 
adquirida na simulação para alto conteúdo em tFe, o local activo 
apresentava-se ocupado por várias moléculas de tFe, e este 
facto foi proposto como justificação para a perda de actividade. A 
mesma lógica poderá explicar a recuperação de actividade após 
a diluição para sistema aquoso, com a libertação do local activo 
para interacção com o substrato.
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AIDS acquired immunodeficiency syndrome

a-C alpha carbon

AP aspartic proteinase

aw water activity

BCA bicinchoninic acid

B value atomic displacement parameter, or temperature 

factor

CD circular dichroism

cp heat capacity
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CPK Corey, Pauling and Koltun coloring scheme (CPK)

H-bond hydrogen bond

DHcal calorimetric enthalpy

DHvH van’t Hoff enthalpy

Dlmax = lmax(sample) - lmax(NATA)

DUF difference in the fluorescence intensity between 

the substrate and the peptide 
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DSC differential scanning calorimetry
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HIV human immunodeficiency virus

HPLC high-performance liquid chromatography
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The study of aspartic proteases has been gaining interest due 

to their importance in the development of major concerning 

human diseases, as Alzheimer’s disease, breast cancer, or AIDS. 

The molecular basis of some of these diseases is associated to 

folding errors, that disable proteins to function properly. Stability 

studies over this class of enzymes are extremely important 

for characterising the pathology involved mechanisms and to 

discover therapeutic solutions. There has been much effort in 

the development of aspartic proteinase inhibitors as therapeutic 

agents for treatment of hypertension, AIDS, amyloid diseases, 

gastric diseases, parasitic infections and cancer (Cooper, 2002).

The heterodimeric cardosin A is a plant aspartic proteinase of 

high yield purification. Besides having been traditionally used as 

milk clotting agent for cheese making, its characteristics have 

made it an interesting enzyme for biotechnological applications. 

1. introduCtion
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This endopeptidase has thus been considered a good model 

for structural and functional studies of the aspartic proteinases 

group, and of proteins in general.

Water availability is a fundamental factor for protein stability and 

conformation flexibility, and these characteristics are imperative 

for proper function. Their characterisation in water reduced envi-

ronments is of extreme importance. The depletion of water may 

promote protein unfolding, and through this process non-native 

conformational states may be stabilised and characterised.

1.1. Water aVailability

Biological systems, organisms and cells are currently realised as 

parts of a whole, related in organic and functional manners. This 

holistic view of the cell, of its compartments and constituents, is 

widened to its protein content. Protein conformation has become 

to be understood as a structure in constant change. 

The protein in vivo environment is substantially different from the 

common biochemical experiments conditions. Biochemical rates 

and equilibria have traditionally been studied in dilute solutions, 

where the consequences of steric repulsion between solutes 

are insignificantly small (Minton, 2006a). However, in cells, the 

total volume of all biological fluid media is jointly occupied by 

proteins, nucleic acids, and polysaccharides. The concentration 

of macromolecules inside cells is in the range of 300 – 400 mg/

ml, which corresponds to volume occupancy of 5 – 40% (Ellis 

and Minton, 2006; Homouz et al., 2008). As result, the cell is 

extremely crowded. 

Crowding plays a role in all biological processes that depend 

on noncovalent associations and/or conformational changes 
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(Al-Habori, 2001; Ellis, 2001; Sun and Weinstein, 2007). It has 

been proved that excluded volume effects in such crowded media 

can result in equilibrium and rate constant alterations by up to 

several orders of magnitude (Minton, 2006b). Recent works have 

proved that macromolecular crowding affects the overall “native” 

protein shape (Homouz et al., 2008) and its folding process 

(Engel et al., 2008). Biological macromolecules have evolved to 

function in such crowded environments, where a small change is 

sensed, allowing the proper cell/organism reaction to occur.

For molecular interactions to occur in such an environment (e.g., 

for a protein to meet its substrate), effective diffusion needs to 

take place. But the intermolecular space (1 – 2 nm; Ball, 2008) 

may be much inferior than the macromolecular dimensions (6.5 

nm is the approximate diameter of the aspartic protease cardosin 

A; Frazão et al., 1999). This idea emphasises the importance of 

protein conformation flexibility.

This narrow confinement was proved to alter the structure of the 

very immersing liquid1. The water hydrogen-bonded network gets 

significantly perturbed, and this structural change is widespread 

in the cytoplasm2. Water in the cell does not behave as it does in 

the bulk, suffering altered hydration and hydrophobic association 

behaviours (Price and Stevens, 1999). Several water molecules 

occupy cavities in the protein molecules and have approximately 

four hydrogen-bond partners, performing as glues for stabilizing 

the tertiary and quaternary structures of proteins (Nakasako 

et al., 2004). Water plays the hydration role, creating the non-

1 The water molecule is considered as a biomolecule: without it, other molecules 
would not only be unprotected and immobile, but also they would stop being bio-
molecules (they would be deprived of its biological function, given that its peculiar 
structure would be lost) (Ball, 2002).
2 Experiments with proton NMR relaxation times of water in cells differ from that 
in the bulk. Curiously, the relaxation becomes more “bulk-like” in diseased cells, 
such as cancerous ones (Damadian, 1971).
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covalent interactions responsible for the vital three-dimensional 

structure of proteins (Al-Habori, 2001). 

Hydration molecules are located closer than 4 Å from the protein 

surface, and beyond this distance, water molecules distribute 

randomly (Nakasako et al., 2004). Proteins may be regarded as 

entities that not only influence their solvation environments, but 

are fine-adjusted and modified by these environments, in ways 

that affect their biological function and behaviour (Ball, 2008). 

Water acts as solvent, but also mediate enzymatic catalysis, either 

directly by taking part in the reaction, or indirectly, providing a 

solvation medium for reactants, transition state, and products 

(Fersht, 1999). Water levels can be made variable on enzymes 

studies, and this should surely be a source of useful information 

about the role of water (Halling, 2004).

1.2. protein struCture

Any attempt to understand protein 
function cannot rely on statics 
(structure) alone but must consider 
also the dynamical behaviour.
(Ball, 2008)

1.2.1. Protein stability

Protein stability may be defined as a balance between the forces 

that determine its natively folded conformation and the forces 

that promote its structure unfolding (Creighton, 1990). There are 

two very different aspects of protein stability: one is the chemical 

stability of the structure, which involves covalent changes and is 

usually irreversible; the other is the conformational stability of 

the folded state, usually reversible, where covalent changes are 
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absent (Pace et al., 1989; Pace and Grimsley, 2001).

To be biologically active, proteins must correctly fold into specific 

three-dimensional arrangements with structural stability and 

functional flexibility. Yet the protein genetic information only 

specifies the primary structure (the linear sequence of amino 

acids in the polypeptide backbone). Protein folding proceeds from 

the disordered random coil polypeptide chain, to intermediates 

with increasing degree of conformation and dynamic order, to the 

final native state of the protein. When a fully extended unfolded 

polypeptide chain begins to fold, hydrophobic residues tend to be 

buried in the interior, and the number of possible conformations 

the chain can assume begins to decrease. Within milliseconds, 

the polypeptide chain achieves the molten globule state, a 

loosely packed hydrophobic core with some secondary structure. 

Some proteins have one preferred folding pathway, while others 

seem to have multiple parallel pathways to the native state. 

The final native state could be described by one predominant 

conformation, around which local fluctuations of low amplitude 

occur. There are certain high energy barriers to folding, like the 

formation of correct disulphide bonds and the isomerisation of 

proline residues. Cells contain enzymes, such as protein disulfide 

isomerases and cis-trans-proline isomerases, that catalyse these 

reactions (Creighton, 1990; Bieri and Kiefhaber, 1999; Daggett 

and Fersht, 2003; Fleming and Rose, 2005). 

Once regarded as a grand challenge, the protein folding problem 

has seen much progress in recent years. But it is still considered 

an important and challenging problem in molecular biology (Dill 

et al., 2007; Zhang et al., 2009).

Several pathologies are due to proteins incorrect folding or low 

structural stability resulting in aggregation or malfunction. Some 

examples are acquired spongiform encephalopathies, Alzheimer’s 
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disease, or Parkinson disease. The comprehension of protein 

folding will allow pharmaceutical industry to develop new thera-

peutics, such as inhibitors. For instance, inhibitors have shown to 

act as the best treatment for AIDS, since mature and active HIV 

protease is essential for virus maturation (Cooper, 2002).

1.2.2. Conformational stability

In physiological conditions, the free energy difference between 

native and denatured states defines the conformational stability 

of a protein. This energy difference between a biologically active 

protein and its inactive denatured state is quite small (approxi-

mately 5-15 kcal/mol)3. Some forces are responsible for these 

folded/unfolded energy differences. The major destabilising force 

is conformational entropy, which opposes to the stabilising forces 

of hydrogen bonding, hydrophobic effect and close-range elec-

trostatic interactions (Munson et al., 1996; Pace and Grimsley, 

2001; Kumar and Nussinov, 2002). The water molecules entropy 

is increased in the native state, since they no longer solvate the 

hydrophobic groups, and this is a very important factor favouring 

the native conformation. In aqueous environment the equilib-

rium shifts to the native state: despite the higher conformational 

entropy of the denatured state, its free energy of hydration is 

also very increased compared to the native conformation. On 

the other way the native state low conformational entropy is 

balanced by the low hydration free energy, that forces non-polar 

groups to concentrate in the molecule hydrophobic interior (Pace 

and Grimsley, 2001). 

The protein stabilisation/denaturation equilibrium may be studied 

3 For comparison, the energy contribution of a single hydrogen bond is of the 
order of 2-5 kcal/mol.
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by changing the physical and chemical properties of the environ-

ment. When a new equilibrium state is reached, it is possible to 

quantify native and denatured molecules, and to calculate the 

equilibrium constant, assuming that the denaturation is revers-

ible. When the denaturation is irreversible, the enzymatic activity 

can be used to quantify the active enzyme concentration (Melo, 

2003). The kinetic unfolding mechanism has also been charac-

terised for some oligomeric proteins in order to understand the 

sub-units interaction and folding. In these cases the unfolding 

intermediates may only be indirectly detected by the non-coin-

cidence of denaturation curves that follow different events (Neet 

and Timm, 1994). Some proteins may adopt stable and partially 

folded conformations. This capacity is considered intrinsic to the 

polypeptide chain, and depends on its charge and hydrophobicity. 

These conformations appear to be stabilised mainly by nonspe-

cific interactions between hydrophobic side-chains (Uversky, 

2002). Different intermediate or partially unfolded conformations 

may perform important roles on synthesis, folding, function and 

degradation of globular proteins. (Baldwin, 1991; Fink, 1995).

Irreversible denaturation may be originated by covalent causes 

(peptidic bond hydrolysis or intramolecular bond formations) or 

non-covalent sources (aggregation and misfolding). A variety 

of conditions can promote unfolding with some ease, such as 

extremes of pH, heating, and addition of organic solvents, deter-

gents, chaotropic agents, or high concentrations of denaturants 

such as urea or guanidium chloride. Loss of the three dimensional 

structure of the folded protein can be monitored by changes 

in spectroscopic parameters, measured by techniques such 

as circular dichroism or fluorescence, and also, in the case of 

enzymes, by the alteration of catalytic activity (Price and Stevens, 

1999).
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But the correlation between correct folding and function is not a 

rule, since there are a number of proteins that lack intrinsic globular 

structure in their normal functional form. Intrinsically unstructured 

or natively unfolded proteins are extremely flexible, non-compact, 

and under physiological conditions reveal little, if any, secondary 

structure. They are implied in the development of some neurode-

generative diseases, as their unstructured states play important 

roles in the development of fibrillar stages. This fact further supports 

the importance of investigations in detailed structural and dynamics 

of proteins nonnative states (Wirmer et al., 2005).

The described fragile stability of the native state over the 

denatured state is biologically very important. Living cells need 

proteins to be easily degradable and synthesised, and to readily 

respond to changes in environmental conditions (Lazaridis and 

Karplus, 2003). Catalytic activities, transport across membranes, 

ligand binding and allosteric regulation are protein functions that 

require structural flexibility (Závodszky et al., 1998; Matouschek, 

2003; Schimmele and Plückthun, 2005). 

In its native state, proteins are not static, but flexible and dynamic. 

Changes in conformation may be subtle, reflecting molecular 

vibrations and small movements of residues throughout the 

protein. All atoms are subjected to small temperature-dependent 

fluctuations, being in constant motion, which is reflected in the 

molecule as a whole. These atomic movements are generally 

random, but sometimes can be collective and cause groups of 

atoms to move in the same direction. Side chains can flip, loop 

regions may not be fixed in one single conformation, helices may 

slide in relation to each other, and entire domains can change 

their packing contacts, increasing or decreasing the distance 

between them. Some conformational alterations may be quite 

dramatic, with major segments of the protein structure moving 
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several nanometres between different functional states. These 

large collective movements are reflected in X-ray and NMR studies 

(Branden and Tooze, 1999; Ma et al., 2000). 

Small differences in the environment, as pH modification, the 

presence or absence of ligands or the enhancement of media 

hydrophobicity, can stabilise different conformational states. The 

promoted structural movements are essential for function, for 

enzyme catalysis, binding of antigens to antibodies, receptor-

ligand interactions and energy transduction, among others 

(Branden and Tooze, 1999; Tsai et al., 1999; Henchman and 

McCammon, 2005; Dobbins et al., 2008). 

1.3. Conformational Changes promoter

Alcohols are frequently considered minimal models for mimicking 

hydrophobic interactions, protein proximity environment, and 

proximity to biological membranes (Baskakov et al., 1999; 

Perham et al., 2006; Ball, 2008). 

The water available for the protein depends on several charac-

teristics of the medium. Considering the presence of an organic 

solvent (OS), its polarity is an important factor to consider. A more 

polar solvent holds more water molecules in solution, making a 

lower amount of molecules available for binding to the enzyme 

(Bell et al., 1995). 

In alcohols, the hydroxyl group enhances tetrahedral structure 

in water surrounding it. The polar interaction with the water 

-OH group is bigger than water restructuring effect induced by 

hydrophobic CH3- groups, and has stronger influence on the 

thermodynamic properties. Thus, simultaneous hydrophobic and 

hydrophilic hydrations occur, with water reorganizing around 

alcohol non-polar groups (Kiselev et al., 2001; Dixit et al., 2002).
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There are no sharp boundaries between polar and non polar 

solvents. Trifluoroethanol (TFE) is comparable to acetonitrile in 

terms of its bulk solvent polarity parameter (only slightly higher), 

but demonstrates a stronger hydrogen bonding ability (Jamison 

et al., 2006). Mixed in water, both OS promote a lowering in the 

dielectric constant of the water mixture, and create a new dispo-

sition of the bulk water molecules. Acetonitrile (C2H3N) contains 

a large bond dipole (cyanide) and does not contain a hydroxyl 

group, being a dipolar aprotic solvent, while TFE (CF3CH2OH) is a 

polar protic solvent (figure 1.1). 

1.3.1. The fluoroalcohol TFE

2,2,2-Trifluoroethanol (TFE) is a fluoroalcohol with nine times the 

size of a water molecule (Buck, 1998). Alcohols are small organic 

molecules that induce partially folded intermediates of proteins, 

and stabilize otherwise unstable folding intermediates. They are 

categorized as denaturants that tend to stabilize well-ordered 

conformations, from which TFE is considered to promote stability 

rather than inducing denaturation (Dill et al., 1995; Viseu et al., 
2004). The effectiveness of alcohols in inducing conformational 

transition varies substantially among its class. Besides several 

important characteristics, TFE is also popular for its relatively 

strong effects on protein conformation and low absorbance in the 

far-ultraviolet region, making far-UV circular dichroism measure-

ments feasible (Hamada and Goto, 2005). 

1.3.1.1. Application and mechanisms of action

TFE is commonly used in several experimental conditions. TFE 

is extremely useful to analyse the intrinsic conformational 

propensity of protein fragments and peptides with no appreci-
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able ordered conformation in aqueous solution since it induces 

the formation of secondary structures (Sönnichsen et al., 1992; 

Luo and Baldwin, 1997). In order to optimise its sequence to 

be structurally rigid, newly designed proteins with low structural 

properties in aqueous media have also been characterised using 

this solvent (Reiersen et al., 1998).

In many other situations, TFE transforms proteins into molten 

globule-like intermediates (Buck et al., 1993; Gast et al., 1999). 

Although these structures are recognised by some authors as 

being locally alcohol-induced, and hence as off-pathway products 

(Bhakuni, 1998), they are frequently accepted as kinetic molten 

globules (Hamada and Goto, 2005).

The protein early folding stage occurs before fixed strong tertiary 

interactions are formed, and when backbone conformational 

preferences neutralise long-range interactions (Schönbrunner 

et al., 1996; Sanz et al., 2002). TFE decreases the strength of 

hydrophobic interactions, diminishing native tertiary contacts. 

On the other hand, it increases the number of intramolecular 

hydrogen bonds, stabilizing local interactions (Dill et al., 1995; 

Luo and Baldwin, 1998). Thus, TFE can induce states of folding 

similar to the in vivo early and intermediate ones. This was 

proved for several proteins such as lysozyme from hen egg-white 

Figure 1.1 – Molecular representations of acetonitrile, water and TFE solvent mol-
ecules (molecular representations from Wikipedia c1).
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(129 residues), whose TFE induced conformation was shown to 

be nearly identical to an early folding intermediate (Buck et al., 
1993), and b-lactoglobulin (162 residues), whose non-native 

a-helical structure was transiently accumulated during refolding 

in the absence of TFE (Shiraki et al., 1995). By the same reasons, 

small amounts of TFE are also used to accelerate folding kinetics 

(Lu et al., 1997).

Another common use for TFE is as dissolvent for protein aggre-

gates, for peptide during protein synthesis and for prion and 

Alzheimer’s amyloid b-peptide when these aggregate or form 

amyloid fibrils (Yamamoto et al., 2005). But it also has shown 

to induce protein aggregates at neutral pH, probably due to the 

reduced electrostatic repulsion between molecules (Hamada and 

Goto, 2005). On the other hand, for the formation of fibrils, while 

hydrophobic interactions contribute to the intermolecular asso-

ciation of peptides through side-chain–side-chain interactions, 

polar interactions contribute to the intermolecular hydrogen 

bonds substantiating the cross-β-structure (Yamaguchi et al., 
2006). TFE is also known to induce well-ordered fibrillar struc-

tures similar to amyloid fibrils (Zerovnik et al., 2007; Marcon et 
al., 2005).

Although proteins assume significant levels of nonnative a-helical 

conformations at high concentrations of TFE, several short 

peptides form b-turn or b-hairpin structures (Roccatano et al., 
2002), b-strands (Zhao and Liu, 2006), and there are also some 

examples of longer polypeptides or proteins showing stabilization 

of b-sheet structures (Schönbrunner et al., 1996). The exact type 

of secondary structures stabilized in TFE/water solvent depend 

on the protein amino acid sequence, since these secondary struc-

tures are stabilized by local hydrogen bonds (Hamada and Goto, 

2005). Moreover, several peptides do not follow the predicted 
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behaviour (Luidens et al., 1996).

Besides all the referred characteristics and actions of this fluoro-

alcohol, several authors defend TFE as being able to simulate 

some physiological environments. Providing hydrophobic surface 

areas and decreasing the medium dielectric constants, TFE 

mimics the close contact of the polypeptide chain with the inner 

part of membranes (Torta et al., 2008). The structural proper-

ties of membrane proteins can be analysed in TFE/water solvent 

(Akitake et al., 2007), as well as soluble protein behaviour during 

membrane translocation (Gast et al., 1999). By similar reasons, 

TFE can mimic the environment in the protein interior (Waterhous 

and Johnson, 1994; Umezaki et al., 2008). Moreover, alcohols 

have been used to mimic the proximity to biological membranes 

(Perham et al., 2006) and the in vivo conditions under which a 

disordered domain interacts with a target molecule (Baskakov et 
al., 1999). 

Despite the numerous publications, the detailed mechanism by 

which alcohols induce protein conformational alterations is still 

in debate. Alcohols have very similar chemical properties to 

detergents: both exhibit hydrophobic (hydrocarbon or halogen-

ated hydrocarbon) and hydrophilic (hydroxyl) groups. Theoretical 

studies on the effect of TFE on protein structure suggest two 

different mechanisms:

(1) destabilisation of intramolecular hydrophobic interactions 

between side chains, by displacing water and modifying its struc-

ture (Cammers-Goodwin et al., 1996), and indirectly disrupting 

the solvent shell of a-helices (Luo and Baldwin, 1999). The 

hydrophobic part of the molecule, formed by the CF3-group, may 

preferentially bind to hydrophobic residues and hydrophobic 

portions of proteins, thus modifying or disrupting hydrophobic 

interactions (Buck, 1998).
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(2) promotion and/or strengthening of local backbone hydrogen 

bonds formation. TFE is a less polar solvent than water, and a less 

potent hydrogen bond competitor (Buck, 1998). 

So, in aqueous media containing TFE, hydrophobic interactions 

stabilizing the native structure are weakened, while local hydrogen 

bonds are strengthened. The result is unfolding and simultaneous 

formation of “open helical conformations” or “open helical coils”, 

i.e., solvent-exposed helices (Hamada and Goto, 2005). It has 

also been stated that TFE destabilizes unfolded species and, 

thereby, indirectly enhances the kinetics and thermodynamics of 

folding of coiled coils (Kentsis and Sosnick, 1998). Therefore, TFE 

effect on a polypeptide is a sum of all these effects and capacities, 

which will be dependent on the specific sequence of the chain.

A subject of discussion is whether TFE attains its effects by direct 

binding to the polypeptide chain (Jasanoff and Fersht, 1994; Luo 

and Baldwin, 1997), or by indirect mechanism, over the peptide 

solvent shell (Cammers-Goodwin et al., 1996; Walgers et al., 
1998). Gast et al. (2001) defend that an indirect mechanism 

is more probable, and that replacement of water by alcohol 

molecules is the most important process.

1.3.1.2. Miscibility and concentration effects

Although TFE is miscible with water at any concentration, alcohol 

molecules form cluster structures (Iwasaki and Fujiyama, 1977; 

Kuprin et al., 1995). However, the exact nature of these clusters 

is not easily characterized by experimental techniques. 

Gast et al. (1999) studied the TFE/water mixture properties by 

dynamic light scattering. TFE/water mixtures (at 20ºC) behave 

like ideal solutions, where (H2O)18TFE clathrates are present. 

Clathrate hydrates are structures in which small non polar 
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molecules are trapped inside “cages” of hydrogen bonded water 

molecules. At concentrations higher than 20% TFE a new type 

of clathrate hydrates (H2O)l(TFE)m (where l and m are integers) 

are dispersed. The decrease in light scattering above 50% TFE is 

explained by the breakdown of the larger clathrate hydrate struc-

tures (10 Å) (Gast et al., 1999). Hong et al. (1999) have shown 

by solution X-ray scattering that clusters are formed between 0 

and 80% TFE (v/v), being maximal at about 30%. However, no 

macroscopic phase separation takes place. 

In 2000, Reiersen and Rees proposed a cluster model to explain 

the TFE-induced conformational transitions, in which the clusters 

size varies according to alcohol concentration (figure 1.2). At 

low concentrations, these clusters will not be fully developed or 

stabilized, and can pull the water molecules from the proteins 

surface. In subsequent steps, the clusters can directly associate 

with hydrophobic side chains, which will lower their confor-

mational entropy, a key factor for a-helices folding. At higher 

concentrations, TFE clusters are smaller, but present a higher 

local intra-cluster TFE concentration (Reiersen and Rees, 2000). 

NMR studies involving small peptides in TFE provide some support 

for this thesis (Díaz et al., 2002).

More recently, Yamaguchi et al. (2006) described these TFE clusters 

as micelle-like clusters instead of clathrate hydrates. In these 

clusters, alcohol molecules associate dynamically via hydrophobic 

interactions through hydrocarbon groups, although no macroscopic 

phase separation takes place. The transition phase from a dispersed 

TFE monomeric state to the clustered state, defined as the alcohol 

clustering concentration value, is 35% (v/v). These hydrophobic 

clusters of TFE are much more dynamic than micelles. They can 

reduce the polarity around protein molecules, strengthening the 

hydrogen bonds more effectively than dispersed alcohol molecules. 
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At higher concentrations of alcohol, the micelle-like clusters disap-

pear, resulting in a homogenous solution. Yet, peptides remain in 

a-helical conformation, because the increased bulk hydrophobicity 

is enough to stabilize them (Yamaguchi et al., 2006). 

The existence of clusters was also confirmed by several molecular 

dynamics simulations (Fioroni et al., 2000; Chitra and Smith, 

2001; Roccatano et al., 2002), and by other techniques, such as 

FTIR (Scharge et al., 2006, 2007), resonant two photon ioniza-

tion spectroscopy (Giardini et al., 2007), Raman spectroscopy 

and simple force field approaches (Scharge et al., 2007).

All the previous theories imply that local concentration of TFE in 

these clusters is many times larger than the bulk concentration. 

According to the proposed clathrate hydrates type of clusters, 

involvement of water molecules in its formation can result in 

a drastic decrease of water activity in the mixed solvent (Gast 

et al., 1999). This can justify the special characteristics of TFE 

as a secondary conformation inducer. Other molecular simula-

tions, along with intermolecular NOE (nuclear overhauser effect) 

measurements, showed that, in a TFE/water mixture the alcohol 

aggregates around the peptide and forms a matrix that partly 

excludes water. This matrix promotes formation of local interac-

tions and, thus, of ordered secondary structure. By displacing 

water from the surface, TFE removes alternative hydrogen-bonding 

partners, providing a lower dielectric constant environment, and 

favouring the formation of intrapeptide hydrogen bonds (Díaz et 
al., 2002; Roccatano et al., 2002). 

Despite those theories, calorimetric and spectroscopic results, 

obtained in the work of Banerjee and Kishore (2005), suggest 

that solvent-mediated effects dominate in the TFE-protein inter-

action, since its binding appeared to be very weak. Some authors 

defend that the fluoro-alcohols cluster formation cannot be the 
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Figure 1.2 – Model for TFE effect on local side chains of a short peptide, and 
the   concentration-dependent cluster size. a) - A peptide backbone with two hy-
drophobic groups; each group is hydrophobically hydrated with water molecules 
forming polygons. b) – The same peptide is shown after addition to a  TFE/water 
mixture; the TFE clusters are shaded, and have destroyed the water structure on 
the side chains, providing a solvent matrix for side-chain-side-chain interactions. 
c) – Relative cluster size of TFE as a function of concentration; the intra-cluster 
TFE concentrations are indicated by the grey intensity (light to dark equals low to 
high). Reproduced from Reiersen and Rees, 2000.
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primary cause of the induced structural changes, because these 

often happen before the critical concentration is reached (Gast 

et al., 2001). Lately, NOE measurements proved that there are 

no indications that the aggregation of fluoro-alcohol molecules 

is necessary for the interactions of TFE with the tested peptides. 

Rather, these strong and long-lived interactions are primarily the 

result of the greater hydrogen-bonding ability and hydrophobicity 

of this solvent (Chatterjee and Gerig, 2007). 

Although the existence of clusters can be unnecessary for most of 

the observed structural changes, the ability to form clusters and 

the efficiency to induce structural changes are correlated, since 

both phenomena are based on the same effect: the hydrophobic 

interactions between halogenated alcohol molecules either with 

itself or with hydrophobic groups of the polypeptide chain.

On the other hand, some authors claim that the low dielectric 

constant of this solvent is the main reason that justifies TFE 

induction of secondary structures and loss of native folding 

(Buck, 1998; Walgers et al., 1998; Zhao and Liu, 2006; Akitake 

et al., 2007). Alcohols exhibit lower dielectric constant than 

water and are much weaker hydrogen bond acceptors, promoting 

perturbation of the proteins water shell (Walgers et al., 1998), 

attenuation of intramolecular hydrophobic interactions, strength-

ening of intraprotein hydrogen bonding, and decreased shield of 

electrostatic interactions. These types of effects are dependent of 

the solvent concentration (Akitake et al., 2007). 

Javid et al. (2007) measured the dielectric permittivity for different 

water/TFE concentration mixtures, at 25ºC, and described a 

multiphasic effect of TFE. Dielectric permittivity value decreases from 

79.8 (aqueous buffer) to 77 at 10% TFE. According to the authors, 

this variation can be translated in diminution of intramolecular hydro-

phobic interactions in the protein. But at higher TFE concentrations 
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(35%), medium dielectric permittivity drops drastically to 58.8 and, 

hence, the solvent hydrophilicity decreases markedly. At these TFE 

concentrations, the attractive as well as the repulsive part of the 

interaction are enhanced. Protein molecules start to change their 

conformation and more hydrophobic residues of the protein molecules 

become exposed to the solvent (Javid et al., 2007). 

It is than clear that TFE effects result from the effects superposi-

tion of its different intrinsic properties (such as solvent polarity, 

dielectric constant, length of the carbohydrate chain, number 

of OH groups, degree of halogenation), which can hardly be 

adequately separated.

1.4. Cardosin a

1.4.1. General characteristics

Cardosin A (EC 3.4.23.-) is an aspartic proteinase (AP) present in 

large amounts in cynara cardunculus flavescens L.. The pistils of 

this cardoon have been traditionally used as milk-clotting agent 

for cheese production in the Iberian Peninsula. Cardoon APs are 

encoded by a multigene family, which also comprises cardosins B, 

C, D, E, F, G, H and cyprosins 1, 2 and 3 (Brodelius et al., 1995; 

Pimentel et al., 2007; Sarmento et al., 2009a). 

APs are proteolytic enzymes, generally characterised as having 

low optimal pH values, and being competitively inhibited by the 

bacterial peptide pepstatin A. The catalytic centre is formed by 

two aspartic acid residues (Asp32 and Asp215), with conserved 

catalytic triads (Asp-Thr-Gly or Asp-Ser-Gly), and has preference 

for bonds between residues with bulky hydrophobic side chains. 

APs show high sequence homologies, and their molecular weights 

are typically in the 35,000 dalton region (Dunn, 2002). 
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They show bilobated structures, with two similar domains, each 

one contributing with a catalytic aspartate. The APs most studied 

families are A1 (pepsin-like family, that includes cardosin A) and 

A2 (retroviral APs), and belong to the clan AA (Barrett et al., 
1998). In the A1 family, different oligomeric structures can be 

found, despite the high structural homology. Monomeric struc-

tures as pepsin and plasmepsin, or heterodimeric, as cathepsin 

D and phytepsin. Retroviral proteases are smaller and require 

dimerisation for catalytic function, since each molecule only 

presents one catalytic residue (Barrett et al., 1998).

This class of proteases has high biological relevance since their 

members are present in organisms from all kingdoms. They are 

involved in numerous physiologic processes, such as digestion, 

intracellular proteolysis and extracellular matrix degradation 

(Cooper, 2002). Important class members are partly responsible 

for nowadays major concerning diseases, as renin (in hypertension; 

Cooper, 2002), b-secretase (in Alzheimer’s disease; Stockley and 

O’Neill, 2008), cathepsin D (in breast cancer; Liaudet-Coopman et 
al., 2006), and HIV-1 proteinase (in AIDS; Kohl et al., 1988).

1.4.2. Structure 

Cardosin A is an heterodimeric protein composed by two polypep-

tide chains with an apparent molecular weight of 31 and 15 kDa 

(Veríssimo et al., 1996). It has been the first plant AP to have 

its three dimensional structure determined (figure 1.3, Frazão et 
al., 1999). Both active site aspartates are located in the heavy 

chain. Nine sugar rings are distributed over the protein surface in 

two glycosylation sites, one in each chain (Asn67 and Asn257), 

away from the active site. These glycosilations may be important 

for conformational stability and for correct enzyme processing. 
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Three disulfide bridges are found in the cardosin A mature form, 

two within the heavy chain and the third within the light chain, 

at conserved positions. These three covalent bridges do not link 

the two peptide chains, which are held together by hydrophobic 

interactions and hydrogen bonds. As representative of the AP 

family, cardosin A is essentially formed by the duplication of 

a motif of four anti-parallel b-strands and one helix, which is 

repeated twice in each domain (Frazão et al, 1999). 

1.4.3. Active site and catalytic mechanism

Cardosin A is active between pH 2.5 and 7.5 with maximum 

activity at pH 5 (Veríssimo et al., 1996; Pina et al., 2003). Unlike 

other APs that show narrower pH activity preferences that restrict 

them to a specific cellular compartment function, cardosin A could 

remain active in most cellular environments (Oliveira, 2007).

Its active site cleft is located between the two domains, and 

accommodates substrate residues in specificity sub-sites S3 to 

S’3 (Frazão et al., 1999). Catalytic aspartates belong to the well 

preserved triads Asp32-Thr-Gly and Asp215-Ser-Gly (Barrett et 
al., 1998).

Over the active site, a loop region with high mobility can be 

found. This region (Tyr75-Gly-Thr), known as “flap”, presents 

highly conserved sequence among the AP class, and its residues 

participate in the specificity sub-sites (Frazão et al., 1999). 

Residues 76 and 77 are known to contribute to the active site 

hydrogen bonds wire, responsible for substrate alignment and 

catalysis efficiency (Okoniewska et al., 2000).

The accepted catalytic mechanism for all pepsin-like aspartic 

proteinases assumes that Asp215 is charged while Asp32 is 

protonated (Pearl and Blundell, 1984). Adjacent regions to the 
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Figure 1.4 - Mechanism of peptide cleavage by aspartic proteases according to 
Suguna et al., 1987 (image credits: Wikipedia c2).

Figure 1.3 – Cardosin A three-dimensional structure representation (PDB 1B5F). 
Cartoon representation exhibiting large (green) and small (light blue) chains, cat-
alytic aspartates (red), cysteine residues participant in disulfide bridges (orange) 
and glycosilations represented as sticks (yellow and pink). The representation 
was created using PyMOL software (DeLano Scientific LLC).
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catalytic centre preserve the charged and protonated states. 

The water molecule located between the active carboxyls plays 

the role of nucleophile, becoming deprotonated on substrate 

binding, in order to initiate the general base catalysis (figure 

1.4; Suguna et al., 1987). Another water molecule at the vicinity 

of the active groups was found to be completely conserved. This 

second water molecule plays an essential role in the formation 

of a chain of hydrogen-bonded residues between the active site 

flap and the active carboxyls on ligand binding (Andreeva and 

Rumsh, 2001). 

The active site aspartates side chains in the crystallised cardosin 

A were found coplanar, with hydrogen bonds involving main 

chain and conserved side chain groups. A possible catalytic 

water molecule is maintained hydrogen-bounded to both aspar-

tate carboxyls (Frazão et al., 1999).

1.4.4. Processing, localization and function

Being synthesised as a preproenzyme with 66 kDa, cardosin 

A is cotranslationally translocated to the ER, where the signal 

peptide is excised and the protein becomes glycosylated (Costa 

et al., 1997), prior to Golgi processing (Duarte et al., 2008a). 

This precursor form is catalytically inactive towards its natural 

substrates. Alignment with prophytepsin4 (PDB5 1QDM; Kervinen 

et al., 1999) suggests that its N-terminal pro-sequence wraps 

around the enzyme, sterically blocking the active site. But the 

proform inactivation of cardosin A may not occur in the exact same 

way (Simões and Faro, 2004). Besides the regulatory function, 

4 Phytepsin (EC 3.4.23.40) is considered to be a plant homologous to mammalian 
cathepsin D and yeast vacuolar proteinase A. It has very high structural and se-
quence homologies with cardosin A (1.918 Å RMS, 1.82 E-78 E-value).
5 Protein Data Bank (PDB) code (Berman et. al., 2000).
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the propeptide is important for zymogen folding, stability and 

intracellular location (Khan and James, 1998). 

Cardosin A auto-activates at acidic pH by proteolysis of the acti-

vation segment (Khan et al., 1999; Castanheira et al., 2005). 

Besides the propeptide, most APs of plant origin present a plant-

specific insertion (PSI) in their primary structure, a domain of 

about 100 amino acids that is removed upon activation of the 

zymogen, yielding the two mature subunits (Simões and Faro, 

2004). The PSI sequence has high similarity with mammalian 

saposins (sphingolipid-activator proteins) (Egas et al., 2000). 

Several PSI functions have been proposed, such as controlling 

exit from the endoplasmic reticulum and targeting to the vacuole, 

vesicle leakage, and a structure–function role (Egas et al., 2000; 

Törmäkangas et al., 2001; Payie et al., 2003; Simões and Faro, 

2004). 

After glycosylation, cardosin A maturation continues with the 

cleavage at the N-terminus of the PSI preceding the prosegment 

removal. The formed 35 kDa intermediate is believed to be the 

secreted form, and the final step in its processing should occur 

after sorting from the trans-Golgi, to the vacuolar or secretory 

pathways (Duarte et al., 2008a). Cardosin A localisation and 

deposition appears to be organ dependent. Procardosin A form is 

observed inside protein bodies in embryo cells, and in cell walls in 

cotyledonary and endosperm cells (Pereira et al., 2008).

As the great majority of plant APs, no definitive biological function 

has been attributed to cardosin A. Cardosin A presents the 

binding sequence RGD (Arg176-Gly-Asp) in the surface opposing 

the active site (Faro et al., 1999). Plant phospholipase Da was 

identified as cardosin A binding protein through RGD and KGE 

(Lys278-Gly-Glu) interaction sequences (Simões et al., 2005). 

This association has been proposed to facilitate vacuoles disin-
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tegration during the dismantling phase of vacuolar-type cell 

death (Simões et al., 2005). The accumulation of the enzyme, 

in mature cardoon flowers, may indicate roles in the senes-

cence of this organ as an effector in programmed cell death, in 

pollen-pistil interaction through its RGD binding domain, or in an 

adhesion-mediated proteolytic mechanism associated with pollen 

recognition and tube growth (Ramalho-Santos et al., 1997, 1998; 

Faro et al., 1999; Simões and Faro, 2004; Duarte et al., 2006). 

Several functions were proposed for cardosin A in the seed, 

namely in the membrane reorganisation and lipid transformation 

(necessary for water uptake, tissue reorganisation, radicle and 

cotyledon growth), and senescence during seed germination. In 

addition, their proteolytic activities and/or processing of seed 

protein reserves should be crucial to embryo nourishing (Pissarra 

et al., 2007; Pereira et al., 2008).

1.4.5. Biotechnological interest and applications

The research interest in cardosin A started with its purification 

and characterisation as a protease responsible for milk-clotting 

capacity of cardoon pistils, traditionally applied in Iberian cheeses 

production (Veríssimo et al., 1996). Cardosins contribution to the 

alimentary industry continues to be explored (Barros and Malcata, 

2006). Several reasons make cardosin A a very interesting candi-

date for various kinds of biotechnological experiments. 

Cardosin A can be directly purified from fresh biological material 

using a simple and high yield technique (Sarmento et al., 2004), 

or it can be synthesised in a recombinant form (Castanheira et 
al., 2005). Along the last decade cardosin A has been character-

ised structurally (Frazão et al., 1999) and functionally, in terms 

of catalytic specificity (Sarmento 2002, 2004), peptidic synthesis 
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potential (Sarmento et al., 1998, 2004), and activity in non- 

-aqueous media (Sarmento et al., 2003, 2004b, 2006). 

The fact of being a two chain enzyme belonging to the important 

AP class increased interest on stability and unfolding studies. Its 

functional characterisation in organic media makes of cardosin A a 

good probe in limited proteolysis studies (Sarmento et al., 2006). 

Cardosin A uses a mechanism of collagenolytic activity similar to 

the mammalian cathepsin K (Duarte et al., 2005). This activity 

has been used in pre-clinical studies, where the enzyme acts as 

prevention and reduction agent of peritoneal post-surgical fibrosis 

and adhesions (Pereira et al., 2005). Another biotechnology 

practice using cardosin A tissue disaggregation capacity is the 

isolation of neuronal cells from embryonic rats, with superiors 

neurite outgrowth and dendritic extension (Duarte et al., 2008b).

Other studies focused on the conformational changes promoted 

by the presence of denaturing agents, as urea and guanidine 

hydrochloride (Pereira, 2007), and organic solvents, namely 

acetonitrile (Pina et al., 2003; Shnyrova et al., 2006; Oliveira 

et al., 2009; Sarmento et al., 2009b). However, the relationship 

between cardosin A conformational structure and physiologic 

function still needs to be clarified. Comprehension of this relation 

will be essential to elucidate its biochemical and biological role, 

and to open new biotechnological perspectives.
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Along the last few years, cardosin A structural conformation 
has been characterized in biphasic systems, aqueous solutions 
saturated by organic solvents, and more extensively in the 
presence of the organic solvent acetonitrile. Following the work 
developed by our group, the unfolding of cardosin A was here 
induced by 2,2,2-trifluoroethanol, a polar and protic organic 
solvent with very different properties from the previous organic 
solvents tested.

TFE characteristics promote distinct alterations in water 
structure, interacting in a very particular way with the protein 
hydration layer and with the protein structure itself. Furthermore, 
it is known to stabilize well ordered conformations rather than 
inducing denaturation (Dill et al., 1995), and several authors refer 
TFE as a mimetic agent for some physiological environments, as 
membrane proximity (Perham et al., 2006) or polypeptide chain 
close contact (Torta et al., 2008).

2. obJeCtiVes
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The aim of the present work was to follow the conformational 
and functional alterations promoted by TFE proximity to cardosin 
A structure. Different spectroscopic methods (e.g., circular 
dichroism, intrinsic fluorescence), activity measurements, and 
calorimetric analysis were employed to detect and characterize 
the organic solvent induced states. Finally, molecular dynamics/
molecular mechanics simulations were applied to the system in 
order to understand the interaction between protein and solvent 
molecules. 

The comprehension of this process may give light on the flexibility of 
the native state structure, and on the structural plasticity of tertiary 
and secondary structural elements. The understanding of the native 
conformation as a mutable form may be upgraded for aspartic 
proteases by the present approach. The relation between proteases 
structure and function is essential to elucidate the biochemical and 
biological role of these enzymes, and to open new perspectives for 
biotechnological application and pharmaceutical purposes. 



29

3. materials and methods

3.1. ChemiCals

Fresh flowers from cynara cardunculus L. flavescens were 

collected in Ansião (Coimbra, Portugal) in July of 2000 and 

2007. Pistils were harvested and frozen at -20ºC until enzyme 

purification.

Acetonitrile (HPLC grade) was purchased from romil. 
2,2,2-Trifluoroethanol (TFE) was purchased from merck 

(Darmstadt, Germany). All other chemicals were of analytical 

grade and were obtained from sigma or Amresco.

3.2. enzyme purifiCation

Cardosin A was purified according to Veríssimo et al., 1996 with 

minor alterations (Sarmento et al., 2004). Briefly, frozen pistils 
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were disrupted with a mortar in 100 mM sodium citrate, pH 

3.5. After being centrifuged at 14,000 rpm for 10 minutes, the 

supernatant was filtered. The sample was injected in a Hiload 
26/60 superdextm 75 preparation grade gel filtration column, 

equilibrated in 25 mM Tris/HCl pH 7.6 at room temperature, 

and coupled to an ÄKtA Basic 10 (Ge Healthcare). The fraction 

containing cardosins was collected and applied to an anion 
exchange Hiprep 16/10 QFF, Q Sepharose. Elution of cardosin A 

was achieved by a gradient of NaCl. After desalted (Hiprep 26/10 
desalting), the enzyme was lyophilized, and stored at -20ºC or 

used immediately. Cardosin A purity was assessed by SDS-PAGE 

(Laemmli, 1970).

3.3. protein ConCentration determination

Protein concentration was determined by the BcA protein assay 

(pierce) according to the manufacturer’s instructions. Alternatively, 

protein concentration was determined spectrophotometrically at 

280 nm, using an extinction coefficient of 43.8x103 M/cm and 

considering 42 kDa as cardosin A molecular weight (Veríssimo, 

1996).

3.4. aCtiVity determination

3.4.1. Discontinuous assay

The synthetic peptide Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu 

was used as cardosin A substrate as described before (Veríssimo 

et al., 1996). Hydrolysis occurs between the two phenylalanine 

residues, and the rate of hydrolysis was followed by HPLC to avoid 

results distortions by the OS (Sarmento et al., 2009b).

Cardosin A was incubated at 25ºC for 1 hour, in 0.2 M sodium 



31

chloride, 50 mM sodium acetate, pH 4.7, with the adequate 

concentration of TFE. Enzyme concentration was typically 0.0292 

mg/ml. The reaction started by adding an aliquot of this enzyme 

solution (146 ng) to 0.3 ml of the same buffer with 4% DMSO, 

and 0.063 mg of the substrate (1:19,000, enzyme:substrate 

molar ratio). At 5, 10, 20 and 30 minutes an aliquot (0.06 ml) 

was removed and reactions stopped by adding 0.54 ml TFA (1,5% 

v/v). Samples were centrifuged and injected by an autosampler 
A-900 into a C18 column (teknokroma) coupled to an ÄKtA Basic 
10 (Amersham Biosciences, Ge Healthcare). The elution was 

carried out by an acetonitrile gradient (30 - 100% v/v) acidified 

with 0.1% TFA. Detection was made continuously at 257 nm.

data handling
A calibration curve was built for correlation of the product peak 

area with product concentration.

At least 3 replicates of each condition were analysed and substrate 

hydrolysis velocities calculated (mol/min). 

3.4.2. Continuous assay

Alternatively, rates of hydrolysis were followed by fluorimetry 

(Simões et al. 2007) using the synthetic peptide (MCA-Lys)Lys-Pro-

Ala-Glu-Phe-Phe-Ala-Leu(Lys-DNP) (Genosphere Biotechnologies).

In order to validate the method for the presence of TFE, some 

controls were run. The deviations of the peptide emission spectra 

and maximum intensity emission wavelengths were followed for 

the different percentages of TFE used. The fluorescence intensity 

at the emission wavelength (393 nm) was followed for substrate 

(intact peptide) and products (completely digested peptide), 

at different substrate and TFE concentrations. The variations 
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detected by the presence of TFE were not significant.

In order to determine cardosin A activity typically assay was 

carried out as follows: cardosin A was incubated at 0.0292 mg/

ml, at 25º C, for 1 hour, in 0.2 M sodium chloride 50 mM sodium 

acetate pH 4.7, with the adequate concentration of TFE. Reaction 

started by adding the peptide (450 ng/ml) to the enzyme (15 

ng/ml) solution (1:800, enzyme:substrate molar ratio). Digestion 

rate was followed in a perkin elmer ls50B luminescence spec-

trometer, with the sample excitation wavelength at 328 nm and 

emission recorded at 393 nm.

data handling
All spectra were corrected for background signal; the rate of 

hydrolysis (slope, in UF/s) was determined for each reaction, 

averaged with least 3 replicates; the maximum fluorescence 

Figure 3.1 – Typical digestion spectra. The curve represented in red corresponds 
to a complete digestion of the substrate; in green it can be found a typical diges-
tion time course.
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emission (uF(p), see figure 3.1), produced for the complete 

digestion of the peptide, was determined for each percentage of 

TFE tested, as well as the minimal one [for the intact substrate, 

uF(s)]. The specific activity, in ng/s/mg E, was calculated 

according to equation 3.1 (where m stands for mass and E for 

enzyme).

3.4.2.1. Reactivation studies

After incubated in the presence of TFE (1 hour at 25ºC, as 

described in section 3.4.2.), cardosin A was diluted (100 fold) in 

aqueous buffer (1 h at 25 ºC) and assayed for activity (section 

3.4.2).

3.5. hydrodynamiC studies

Proteins can be separated based on their hydrodynamic volume 

by size exclusion chromatography (SEC). This technique is based 

on the existence of a good correlation between the retention time 

in a gel filtration column, and the Stokes radius of the protein 

molecule (Uversky, 1993). Cardosin A volume variation promoted 

by the presence of TFE in the media was followed by SEC (Oliveira, 

2007).

Cardosin A (1.54 mg/ml) in 10 mM sodium phosphate buffer,    

pH 5, with the required TFE concentration, was incubated for 1 

hour at 25ºC. The protein (1.5 mg) was injected in a superdex 
75 Hr 10/30 Fplc column coupled to an ÄKtA Basic 10 (Ge 
Healthcare) previously equilibrated in the same buffer, and eluted 

at a flow rate of 1 ml/min. The elution was monitored at 280 nm, 

and at least 3 replicates were run per condition. A Gel Filtration 
lmW calibration Kit (Ge Healthcare) was used according to the 

manufacturer’s instructions, and blue dextran (2,000 kDa) elution 
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volume was used in order to determine the column void volume. 

data handling
The apparent molecular weight was calculated according to 

manufacturer’s instructions, using the standard curve plotted 

of log(MW) versus Kav; this parameter was calculated according 

to equation 3.2, where ve is the elution volume, v0 is the void 

volume determined by the elution of blue dextran, and vg is the 

geometric column volume (Whitaker, 1963).
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3.6. intrinsiC fluoresCenCe

Optical spectroscopy provides standard techniques for meas-

uring the conformational stability of proteins, and for following 

the kinetics of unfolding and refolding reactions. Practically all 

unfolding and refolding reactions can be followed by changes in 

absorbance, fluorescence, or optical activity (usually measured 

by CD). Proteins fluorescence spectra derives from the aromatic 

amino acids (Trp, Tyr and Phe), but, at 295 nm, it is usually 

dominated by the contribution of tryptophan residues. During 

protein unfolding, Trp fluorescence wavelength shifts and inten-

sity changes can be followed (Schmid, 2005).

Cardosin A intrinsic fluorescence was measured in a Jasco Fp-777 
Spectrofluorometer (Jasco co.), in the laboratory of Professors 

Adelaide Almeida and Angela Cunha, from the Department of 

Biology of the Centre for Environmental and Marine Studies, in 

the University of Aveiro, Portugal. Protein samples at 0.2 mg/ml 

in 10 mM sodium phosphate buffer, pH 5, with different concen-

trations of TFE, were incubated at 25ºC for 1 hour. 
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After being centrifuged, protein in solution was quantified by spec-

trometry (section 3.3). The excitation wavelength was set at 295 

nm, in order to avoid the emission contribution of other residues 

than tryptophan, and emission spectra were recorded from 275 

to 400 nm. All measurements were performed with a 5 nm band-

width for both the excitation and emission monochromators. 

N – Acetyl – L – tryptophanamide (NATA) was used as control 

and measured in the same conditions described for cardosin A. At 

least 3 replicates were measured per condition. 

data handling

All spectra were corrected for background signal and for protein 

concentration; emission fluorescence intensity variation was 

followed at the wavelength where it showed to vary the most 

through the different conditions tested (326 nm); the maximum 

emission wavelength was calculated as the average between 

the wavelengths in which the emission intensity was 80% of the 

major one (Pina et al., 2003); Dlmax stands for the difference 

between the maximum emission wavelength for the condition, 

subtracted by the correspondent maximum emission wavelength 

for NATA (Dlmax = lmax(sample) - lmax(NATA)).

3.6.1. Tertiary structure reversibility

In order to assess to the reversibility of the alterations induced 

by TFE, another set of experiments were run. After incubation in 

the presence TFE, 1 hour at 25ºC (as described in section 3.6.), 

cardosin A was diluted (100 fold) in aqueous buffer, (1 h at 25 ºC) 

and intrinsic fluorescence was measured as described previously 

(section 3.6).
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3.7. CirCular diChroism speCtrosCopy

The different types of regular secondary structure found in 

proteins give rise to characteristic circular dichroism (CD) spectra 

in the far-UV (van Holde et al., 2006). This technique was used 

for examining the structure of cardosin A in the different condi-

tions tested, and was performed in the laboratory of Professor 

Rui Brito, from the Department of Chemistry of the Center for 

Neurosciences and Cell Biology, in the University of Coimbra, 

Portugal.

Far-UV CD measurements were carried out in a dms20 olisb cd 
module (on-line instrument systems, inc.) in a 1 mm path-length 

cell, in the range of 190 to 260 nm, and under constant nitrogen 

flow at 25ºC. Protein samples (0.25 − 0.27 mg/ml) in 10mM 

sodium phosphate buffer, pH 5, with different concentrations of 

TFE, were incubated for 1 hour at 25ºC. Afterwards, samples 

were centrifuged and protein concentration was determined 

spectrofotometrically as described before (section 3.3.).

data handling
Each scan was subtracted to the correspondent baseline; the 

molar ellipticity ([Q]mrW) was calculated using equation 3.3 

(Schmid, 2005), where qobs stands for the ellipticity (degrees) 

measured at the wavelength, mr is the protein molecular mass 

(Da), c is the protein concentration (mg/ml), l is the optical path-

length of the cell (cm), and nA is the number of amino acids of the 

protein; the ellipticity values at 222 nm were analysed in order 

to follow the variation of the protein a-helical content (Kelly et 
al. 2005); secondary structure percentage calculation was done 

using contin software (Provencher, 1982) and comparing with a 

43 soluble proteins database.
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Far-ultraviolet circular dichroism spectroscopy was also run upon 

different time incubations. Cardosin A samples in 5% TFE in 10 

mM sodium phosphate buffer, pH 5, were incubated for various 

times from 20 minutes to 114.5 hours at 25ºC, before being 

prepared for the CD scan, as explained in the previous section.

3.8. differential sCanning Calorimetry

Differential scanning calorimetry (DSC) is an experimental tech-

nique to directly measure the heat energy uptake that takes place 

in a sample during controlled variation of temperature. It is very 

useful for studying the thermodynamics of unfolding transitions 

of proteins (Cooper, 2004).

The calorimetric experiments were performed on a high-sensitivity 

microcal vp-dsc calorimeter (microcal inc., Northampton, MA), 

in the laboratory of Professor Alan Cooper, from the WestChem 

Department of Chemistry, in the University of Glasgow, Scotland, 

UK. All solutions were degassed by stirring under vacuum prior to 

being carefully loaded into the calorimeter cells. A scanning rate 

of 60ºC/h was used, and protein (0.55 mg/ml in 10 mM sodium 

citrate buffer, pH 5, with different concentrations of TFE) was 

incubated for 1 or 24 hours at 25ºC.

data handling
Calorimetric data were converted to excess heat capacity by 

subtracting the instrumental baseline, normalizing for molar 

concentration, and subtracting the sample baseline. Data were 

analyzed by non-linear regression statistical fitting using the 

non-two-state folding/unfolding model (origin software, supplied 

by microcal). The following variables were calculated: thermal 

transition temperature (tm), the temperature at which, in an ideal 

dynamic reversible two-state equilibrium, any molecule spends 
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50% of its time folded and 50% unfolded; calorimetric enthalpy 

(DHcal), determined by the area under the transition peak; and 

van’t Hoff enthalpy (DHvH), determined by the shape of the curve. 

Transition reversibility was tested by promoting a new transition 

after the first one (by reheating the sample after cooling it down).

3.9. moleCular dynamiCs simulations

3.9.1. System setup

These experiments were run by Doctor Nuno Micaêlo (Molecular 

Modelling and Simulation Group, Minho University, Braga, 

Portugal). The general simulation methodology applied in the 

MD⁄MM simulations of cardosin A in TFE was similar to the one 

done by Micaêlo and Soares (2007). The cardosin A X-ray struc-

ture with PDB ID: 1B5F was used (Frazão et al., 1999), and the 

protonated state of tritable residues was estimated accordingly 

to their protonation state at pH 7. Three systems were prepared, 

a fully hydrated cardosin A, a 90% and a 10% (weight of water / 

weight of protein) hydrated cardosin A in TFE. Sodium ions were 

added until full system neutrality was reached. The system was 

built in dodecahedral box with a minimum distance between the 

protein and box wall of 0.8 nm, and solvated with an equilibrated 

configuration of water or organic solvent molecules at 298 K.

3.9.2. Molecular dynamics simulations

MD⁄MM simulations were performed with the GROMACS package 

(Hess et al., 2008) using the GROMOS 53a6 force-field (Oostenbrink 

et al., 2004). Bond lengths of the solute and TFE molecules were 

constrained with lincs (Hess et al., 1997), and those of water with 
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settle (Miyamoto and Kollman, 1992). Non-bonded interactions 

were calculated using a twinrange method (van Gunsteren and 

Berendsen, 1990) with short-range and long-range cut-offs of 8 

Å and 14 Å, respectively. The SPC water model (Hermans et al., 
1984) was used in aqueous and in non-aqueous simulations. A 

reaction field correction for electrostatic interactions (Barker and 

Watts, 1973; Tironi et al., 1995) was applied, taking a dielectric of 

54 for the fully hydrated system with SPC water (Smith and van 

Gunsteren, 1994). For the TFE system, the dielectric constant was 

18. The simulations were started in the canonical ensemble with 

initial velocities from a Maxwell–Boltzmmann distribution at 300 

K, and run for 100 ps with position restraints applied to all heavy 

atoms of the protein (force constant of 106 kJ•mol-1/nm-2) and a 

temperature coupling constant of 0.01 ps, allowing the equilibra-

tion of the organic solvent and water molecules. A second step of 

100 ps was done with restraints only applied to the a-C carbons 

of the enzyme and a temperature-coupling constant of 0.1 ps. 

The unrestrained simulations were done in the isothermal–isobaric 

ensemble with an integration time step of 2 femtoseconds. The 

protein, organic solvent, and water and ions, were coupled to three 

separated heat baths (Berendsen et al., 1984) with temperature 

coupling constants of 0.1 ps and a reference temperature of 298 

K. The pressure control (Berendsen et al., 1984) was implemented 

with a reference pressure of 1 atm and relaxation times of 0.5 ps 

and 1.0 ps, for water or TFE ⁄ water solvent simulations, respec-

tively. The aqueous simulation was simulated for 10 ns and the 

organic solvents system for 100 ns.
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4.1. struCtural CharaCterisation

The lyophilised native protein was diluted in several solutions 

with different TFE contents. To visualize this event, one can 

imagine the solvent molecules penetrating the space between 

the protein molecules, separating them, and contacting with 

the protein hydration layers that survived to the lyophilisation 

procedure. During this process the protein recovers its mobility, 

and the proper native folding. The protein hydration shell is 

recreated, considering that the freeze-drying process did not 

promote considerable aggregation, inactivity or permanent 

unfolding of the protein. The presence of the organic solvent 

(OS) in the solution will produce new and different effects in this 

solubilisation process. The TFE molecules will possibly compete 

with water in this contact layer, promoting new interactions with 

4. the tfe-induCed unfolding
of Cardosin a: results and disCussion
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protein groups, and/or between them. This new interactions may 

promote small and local changes, but also big conformational 

changes in the protein. It is the aim of this section to follow and 

to characterise these alterations.

4.1.1. Tertiary structure

An easy way to follow conformational changes is by using the 

intrinsic fluorescence of the protein. Cardosin A intrinsic fluo-

rescence was measured in the laboratory of Professors Adelaide 

Almeida and Angela Cunha, from the Department of Biology of the 

Centre for Environmental and Marine Studies, in the University 

of Aveiro, Portugal. The five tryptophans present in cardosin 

A responded to an excitation beam of UV light with the proper 

wavelength (lexc), and gave rise to a characteristic emission of 

fluorescence, with a meaningful maximum wavelength (lmax). 

The other aromatic amino acids (tyrosine and phenylalanine) are 

also fluorescence emitting residues, but their contribution to the 

global spectra is usually masked by the tryptophan emission. 

Moreover, the samples were analysed with an lexc of 295 nm, 

where only tryptophan residues absorb. This amino acid changes 

its lmax and intensity according to environmental factors as solvent 

polarity, pH, and the presence or absence of quenchers, making 

this technique perfect to follow unfolding processes (Daughdrill 

et al., 2005). The lmax is the most straightforward interpreta-

tion parameter to follow molecular environment changes. In 

contrast, fluorescence intensity values variation is less informa-

tive in terms of solvent exposure of fluorophoric groups, for it 

may either increase or decrease upon protein unfolding (Schmid, 

1990, 2005).

Cardosin A is represented in the figure 4.1, with the tryptophan 



43

residues highlighted in yellow, and from those only Trp299 is present 

in the small chain. All exhibit low temperature factor (B) values 

(see discussion below), and only Trp154 seems to be partially at 

the protein surface, while all the others present very low or null 

relative solvent accessible surface area values (table 4.1). 

Fresh lyophilised cardosin A samples were sequentially solubilised 

in the presence of increasing amounts of TFE, and incubated for 

1 hour at 25ºC before being analysed in the fluorimeter. Along 

with the protein samples, a free modified tryptophan control 

(N–acetyl–L–tryptophanamide, or NATA) was scanned in order 

to minimize the direct effects of solvent polarity and viscosity on 

the tryptophan emission analysis. It can be seen that the lmax for 

NATA decreases steadily with increasing TFE content (see figure 

4.2 inset), which validates the sample results, proving the fluo-

rescence alterations to occur only by OS effect over the protein 

structure.

Following the difference between the maximum wavelength value 

for each condition and the correspondent maximum wavelength 

for NATA (Dlmax), along the increasing TFE concentrations tested 

(figure 4.2), a clear transition can be observed from 20 to 30% 

TFE. The cardosin A lmax suffered a red shift to higher values, 

consequence of a change in tryptophan residues exposition. The 

lmax values became closer to the free tryptophan ones, and the 

Dlmax decreased. This transition is interpreted as a protein tertiary 

structure unfolding promoted by the OS, where any/some tryp-

tophan residue(s) become exposed to a more polar environment. 

Before this transition, there was no significant variation in the 

Dlmax of the sample, and for higher TFE concentrations these 

values were gradually reduced. But even at 90% TFE, the highest 

concentration tested, the tryptophan residues did not show a 

complete exposition to the solvent.
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Figure 4.1 – Cardosin A three-dimensional structure representations (PDB 1B5F). 
A – Front and back scheme of the protein structure, with the large (green) and 
small (light blue) chains, the catalytic aspartates (red), the tryptophans (yellow), 
the KGE (Lys278-Gly-Glu) (dark blue) and the RGD (Arg176-Gly-Asp) (orange) 
domains represented. B – Front and back representations of cardosin A according 
to the B values: warmer colours and thicker cartoon segments represent residues 
with higher mobility. The protein is represented with the exact same rotation as 
in A. C – Cartoon representation of cardosin A with numbered tryptophans (same 
corresponding colours as in A). The representations were created using PyMOL 
software (DeLano Scientific LLC).
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Figure 4.2 – TFE effect over cardosin A intrinsic fluorescence. Oscillation of the 
emission maximum wavelength variation (Dlmax), which corresponds to the sample 
emission maximum wavelength (lmax (sample)) subtracted by the corresponding value 
for NATA (lmax(NATA)), promoted by the presence of TFE. Protein (at 0.2 mg/ml) and 
NATA samples, in 10mM sodium phosphate buffer, pH5, with different amounts of 
TFE, were incubated for 1 hour at 25ºC, before running the spectra (see section 
3.6). Each point corresponds to a minimum of 3 replicates. The inset presents the 
original wavelengths variation.
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TFE is typically expected to disrupt the native tertiary structure 

of proteins. The present results reflect this effect, with the clear 

opening of cardosin A tertiary structure. This transition occurred 

at the same TFE concentration described for the maximum X-ray 

scattering of the TFE/water mixture (Hong et al., 1999), inter-

preted by Reiersen and Rees (2000) as the concentration where 

TFE clathrates start to significantly enlarge. In the micelle-like 

cluster theories, 35% TFE is the lower concentration from which 

the alcohol molecules start to cluster (Yamaguchi et al., 2006). 

It should be noticed that no macroscopic phase separation was 

observed under our experimental conditions. 

At lower concentrations (where clusters, if present, would be 

smaller in size and less stable), TFE molecules could compete 

with the hydration layer ones, but this interaction would not be 

strong enough to attack the tertiary structure of cardosin A. TFE 

exhibits lower dielectric constant than water, and is a much weaker 

hydrogen bond acceptor (section 7, table 7.1). Increasing in 

concentration, alcohol molecules could have bound directly to the 

protein, disturbing protein water shell, increasing local hydropho-

bicity, and decreasing intramolecular hydrophobic interactions, 

leading to tertiary structure unfolding (Buck, 1998; Corrêa and 

Farah, 2007; Javid et al., 2007). These effects may be magnified 

by local high concentrations, sustained by clusters. Placing the 

dried enzyme in 90% TFE seemed to promote an unfold similar 

to the observed for TFE concentrations higher than 30%. Despite 

the disappearing of clusters at higher alcohol concentrations, 

the increased bulk hydrophobicity is enough to stabilize the not 

completely unfolded tertiary structure (Yamaguchi et al., 2006).

Cardosin A disulphide bonds (two in the large chain and one in 

the small) may hold up the total unfolding of the molecule. The 

comparison between the various tryptophans and their exposure 
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Relative Solvent Accessible Surface Area (%)

Trp39 Trp137 Trp154 Trp190 Trp299

AsAview 0.0 0.8 6.2 0.4 0.0

GetAreA 1.1 0.2 0.8 8.0 0.5 0.0

Secondary structure b-sheet a-helix b-sheet loop loop

a-carbon B value (Å2) 20.79 19.18 18.74 18.00 16.53

Distance to Disulfide Bonds (Å)

C45 – C50 11.77 24.73 30.08 28.82 (31.32)

C206 – C210 32.49 29.57 25.66 16.17 (7.45)

C249 – C282 (34.51) (37.14) (23.28) (30.40) 23.50

Primary structure proximity (number of amino acids)

C45 – C50 6 87 104 140 -

C206 – C210 167 69 52 16 -

C249 – C282 - - - - 17

Table 4.1 - Cardosin A tryptophans. Relative solvent accessible surface area val-
ues calculated (in %) for cardosin A tryptophan residues, based on the native 
PBD structure, using AsAview and GetAreA 1.1 application servers (Ahmad et 
al., 2004, and Fraczkiewicz and Braun, 1998, respectively). Residues secondary 
structure localization and a carbon temperature factor (B) according to the crys-
tal structure (Frazão et al., 1999). Distance to disulfide bonds calculated using 
pymol software (DeLano Scientific LLC). Numbers in brackets quantify distances 
between elements in different chains.
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probabilities is done in table 4.1, using relative solvent accessible 

surface area values, secondary structure in which the residue is 

involved, distance values from the disulfide bonds in the quater-

nary and primary structures, and residue a-carbon B values. The 

temperature factor or B value (atomic displacement parameter) 

in protein crystal structures reflects the fluctuation of an atom 

about its average position. Therefore, its distribution along the 

protein sequence is an important indicator of the protein struc-

ture, reflecting its flexibility and dynamics (figure 4.1 – B). A 

large B value indicates high mobility of individual atoms and side 

chains (Yuan et al., 2005). The presented tryptophan B values are 

pretty close to each other, and low when compared, for instance, 

to Gly76 (B: 124.76) or Thr77 (B: 133.34)1. Comparing among 

them, the Trp39 has the higher mobility, in spite of its interaction in 

a b-sheet structure, and its relative proximity to a disulfide bridge. 

Trp154, the most natively exposed, is also in a b-sheet structure 

and is one of the most distant to the two disulfide bridges in its 

chain. Trp137 belongs to an a-helix, and it is probable to continue 

interacting in this structure, since TFE is known to protect and induce 

helical configurations. The tryptophans number 190 and 299 are in 

more mobile structures (loops), despite of their low B values. Trp190 

is closer to a disulfide bridge and to a beta structure, while Trp299 is 

pretty far from its chain disulfide bridge, and has additional distance 

from any secondary structure. Thus, cardosin A tryptophan residues 

incomplete exposition would have been expected.

In the same way, cardosin A did not undergo complete unfolding 

when submitted to denaturing environments promoted by urea 

or guanidine hydrochloride (Pereira, 2007), nor upon thermal 

denaturation (Pina et al., 2003). In all these studies, and also 

1 These are two of the most mobile residues of the cardosin A structure, located 
in the highly conserved flap region, that projects out over the active site cleft and 
interacts with the protein substrate.
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in the presence of acetonitrile (Oliveira, 2009), the tryptophans 

were more effectively exposed than in TFE.

To sum up, under the presence of TFE, cardosin A tertiary 

structure showed to be partially unfolded (from 20 to 30%), but 

the tryptophans exposition was not complete, not even for the 

highest TFE concentration tested. 

4.1.2. Secondary structure

The tertiary structure loss may have occurred with changes in 

the secondary one. The far-UV circular dichroism is the perfect 

technique to follow these alterations (Kelly and Price, 2000). 

This technique was performed in the laboratory of Professor 

Rui Brito, from the Department of Chemistry of the Center for 

Neurosciences and Cell Biology, in the University of Coimbra, 

Portugal. CD results for cardosin A in the presence of TFE can 

be observed in figure 4.3. In this UV range (170 - 250 nm), the 

peptide backbones chirality (in the amidic bond) is employed to 

analyze the secondary elements present in the protein sample. 

Cardosin A is a characteristic representative of the AP family, 

essentially formed by the duplication of a motif of four anti-parallel 

b-strands and one helix, which is repeated twice in each domain. 

The crystallographic analysis showed a structure composed of 

45.3% of b-strands and 13.5% of helical motifs (table 4.2; Frazão 

et al., 1999). In the far-UV spectra, b proteins show weaker and 

more dissimilar spectra compared to helical proteins. The shape 

of the CD spectrum of a b protein depends, among other factors, 

on the length and orientation of the strands, and on the twist 

of the sheet, but most spectra show a positive ellipticity (q) 

between 190 and 200 nm (Schmid, 2005). The aqueous cardosin 

A spectrum fits under this description, with negative ellipticity 
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values from 210 to 240 nm, a minimum at 217 nm, and a single 

maximum at 196 nm (figure 4.3 – A; Pina et al., 2003; Shnyrova 

et al., 2006). 

Mixtures with increasing amounts of TFE were used to solubi-

lise fresh lyophilised cardosin A samples. After an incubation 

of 1 hour at 25ºC, samples were run in the spectropolarimeter 

(section 3.7). Incubations during lower and higher periods (from 

20 minutes to 24 hours) were run in the presence of 5% TFE, 

but did not show considerable variation in ellipticity (section 4.2, 

figure 4.15). 

The far-UV profile changed progressively. At 20% TFE the q values 

became closer to the origin, indicating loss in protein stability 

(Kelly et al., 2005). Moreover, the profile maximum and minima 

changed, corresponding to a change in the structural elements 

proportion. Increasing TFE concentrations remarkably increased 

the helicity content of the sample, resulting in a typical a-helical 

profile for 60% TFE and beyond, with a maximum at 192 nm, 

and minima at 209 and 221 nm (figure 4.3 – A). It was there-

fore confirmed that TFE induces a-helical conformations, even in 

proteins consisting predominantly of b-sheets. 

This TFE effect is usually justified by two types of action. The 

hydrogen bonds between the alcohol-rich medium and the 

protein would become weaker, making the hydrogen bonds 

within the polypeptide chain comparatively stronger. This would 

weaken the hydrophobic interactions within protein chains, 

resulting in destabilization of their folded state (Thomas and 

Dill, 1993). Additionally, the decreased polarity of the medium 

could be relieved by transition of the secondary structure into 

a-helices, that have less polar groups exposed to the solvent. In 

this way polar peptide groups would become less available for 

hydration, and non-polar groups would remain on the surface of 
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Figure 4.3 – TFE effect over cardosin A CD spectra. Cardosin A was incubated for 
1 hour at 25ºC, in the absence and in the presence of increasing TFE concen-
trations. A - selected far-UV CD spectra. B - ellipticity values at 222 nm for all 
tested TFE concentrations. C - q222 for the lower TFE percentages. Each spectrum 
was produced by solubilisation of a new sample in a medium with the mentioned 
concentration (section 3.7). In A and B, each point corresponds to a minimum of 
3 replicates.
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the helix (Fatima et al., 2006). Thus, the progressive addition of 

TFE destroyed the native structure of cardosin A and induced the 

formation of a-helices.

The various resulting spectra were compared using the value for 

222 nm ellipticity (q222) (figure 4.3 – B and C). The polypeptide 

chain q222 is considered as an index of its secondary structures 

content. This wavelength is also a characteristic minimum for 

helical structures (along with another minimum at 208 nm, and 

a maximum at 195 nm). In proteins with helices and sheets, 

is common for the helical contributions to dominate the CD 

spectrum (Kelly and Price, 2000). For these reasons 222 nm was 

the chosen wavelength to follow the ellipticity of our system. 

At lower TFE concentrations, the q222 values did not significantly 

vary, but beyond 10% TFE, the values slowly came near the 

origin (figure 4.3 – B and C). Observing the spectra for 20% TFE 

the loss of structure is clear. Solubilising the enzyme in 30% TFE 

increased its secondary elements content to values higher than 

for 20% TFE and water. Nevertheless, the spectrum presented 

a reasonably different profile than the native one, with a new 

minimum at 223 nm. This new minimum decreased its q values 

along with TFE enhancement in the medium content until 90% 

TFE, where the spectrum presented a typical a-helical profile. 

Several studies approached the TFE effect over protein confor-

mation. The analysis of several types of proteins, with different 

secondary structures in TFE, using q222 variations, was done by 

Goto and co-workers (Shiraki et al., 1995). They found a good 

correlation between the a-helical content of proteins in the 

presence of TFE, and their predicted propensities to form a-helix 

based on the amino acid sequence. In the obtained transition 

curves two phases could be told. After the initial transition, 

proteins with a relatively low propensity for a-helices showed 
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a low helical content, which gradually increased in the second 

stage with further increases in TFE. This post transitional helical 

content increase was less obvious for proteins with intrinsic high 

propensity for a-helices, in which the helical content was already 

high after the first transition. Cardosin A helical propensity is 

relatively low, as shown in table 4.2. Besides the crystallographic 

data, the results from protein secondary structure predictors and 

from a helical content predictor are presented. The method of 

Muñoz and Serrano for helix prediction (AGAdir) considers short 

range interactions, and conditions such as pH, temperature and 

ionic strength are used in the calculation (Muñoz and Serrano, 

1994a, b, 1997). It suggested a higher helicity than the observed 

cardosin A helical content. The results obtained for cardosin A in 

TFE seem to confirm the previous idea: placing cardosin A in the 

non-helical tendency group, only in a second phase the a-helical 

Table 4.2 – Comparison between cardosin A relative secondary structure content 
(PDB 1B5F) and predicted values. psipred (Jones, 1999; McGuffin et al., 2000) 
is a secondary protein structure predictor algorithm. It is based on the submitted 
primary sequence and uses neural networks. AGAdir is an algorithm that pre-
dicts the helical content of peptides (Muñoz and Serrano, 1997, 1994a, b).

Chain b-sheet a-helix other total

PDB Large 78 21 146 239

32.6% 8.8% 59.6%

Small 30 10 47 87

34.5 % 11.5 % 54.0 %

psipred Large 50.6 % 8.4 % 47.7 %

Small 50.6 % 8.0 % 41.4 %

AGAdir Large 36 %

Small 40 %
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content increase is noticeable. However, Wu and co-workers 

studied another b-sheet protein, snake venom cardiotoxin (60 

residues), and defended that the TFE-induced structural transi-

tion is governed by protein stability, rather than by the intrinsic 

a-helix formation propensity (Chiang et al., 1996).

The figure 4.4 graph was built using contin software for esti-

mating protein secondary structure fractions from CD spectra 

(Provencher, 1982). The predicted proportion calculated for the 

native aqueous cardosin A (11% of a-helices to 63% of b-sheets) 

was considered close to the crystallographic calculated proportion 

(13.5% of helical motifs to 45.3% of b-strands). From the native 

aqueous environment till 10% TFE, the q222 values, together with 

the Dlmax ones (figure 4.2), did not present significant variations. 

Meanwhile a subtle decrease in the helical and b-sheet content 

was noticed. This structure loss tendency was maintained up to 

20% TFE, along with an increase in q222 values. But from 20 to 

30% TFE, another transition occurred, with a strong decrease in 

the Dlmax values, a decrease in the ellipticity, on with an increase 

in the helical content. From then on, the helical content of the 

protein increased in a remarkable extent, transforming a native 

13.5% a-helical structure in a 63% one. The major contribution 

of residues to take part in these newly a structures seem to come 

from previously unordered ones, despite of the noticed increase in 

the tryptophans exposition to polar environments.

The final TFE concentration tested was approximately 100%. 

The results for cardosin A in this medium showed not to follow 

the tendency of the remaining samples tested. Instead of a high 

helical content, the 99.9% sample protein presented a spectrum 

closer to the origin than the previous ones, and a less negative 
q222 value, similar as the registered for the 30 – 40% TFE range. 

The predicted secondary structure contents also exhibited a soft 
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Figure 4.4 – Secondary structure calculation from the far-UV CD spectra of car-
dosin A, in different concentrations of TFE, using contin software (Provencher, 
1982). 
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structural alteration when compared to other high TFE concen-

trations. When the dried protein is submerged in a solution 

where only TFE molecules are in interaction with each other, the 

solvent competition proposed for the water/OS media would only 

happen in the remaining structural water molecules. The cardosin 

molecule was probably trapped in a more rigid conformation 

(Klibanov, 2001), not suffering such an extensive unfolding as in 

other high TFE concentrations.

In order to better compare the structural modifications followed 

by CD and fluorescence techniques, the figure 4.5 graph was built. 

The major structural distortion modifications were considered to 

occur in the presence of 90% TFE. The tryptophans exposition 

showed an abrupt transition for lower TFE levels, comparing to a 

slow and progressive increase in the secondary structure content 

read by far-UV CD. At 30% TFE, for instance, the tryptophans 

exposition was already 87% of the final exposition, while only 8% 

of the total newly formed secondary structure was built. 

NMR studies showed that the secondary structures formed in 

the TFE state are mobile and rapidly converted to the extended 

configurations (Hamada and Goto, 2005). This fact, along with 

small-angle solution X-ray scattering results, lead the TFE state 

to be considered an “open helical configuration”, in which the 

a-helical rods are exposed to the solvent because of the absence 

of strong hydrophobic attraction between them (Hamada and 

Goto, 2005). This kind of structure may explain the obtained 

results, where high helical content was observed with large 

solvent exposition, with non-overlapping transitions.

Traditionally it was accepted that TFE would help the polypeptide 

chain to express its local and intrinsic conformational preference 

(Buck, 1998). But, as cardosin A, predominantly b-sheet proteins, 

such as b-lactoglobulin (162 residues; Hamada et al., 2000; Gast 
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Figure 4.5 – Changes in structural properties of cardosin A upon exposure to 
growing concentrations of TFE for 1 hour at 25ºC, as detected by CD and fluo-
rescence.
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et al., 2001), concanavalin A (237 residues; Jackson and Mantsch, 

1992), cardiotoxins (60 residues; Chiang et al., 1996; Lo et al., 
1998), monellin (94 residues; Fan et al., 1993), and cellular 

retinoic acid binding protein (Liu et al., 1994), among others, have 

shown to exhibit high helical tendency in TFE. The induced partially 

folded states have lost the specific side-chain interactions, being 

largely stabilized by local backbone interactions. Based on these 

observations, some authors defend that the folding mechanism of 

some b-proteins might be explained by a non-hierarchical model 

in which the transient formation of a helical structure preceded 

the native b-sheet structure (Shiraki et al., 1995). The formation 

of such structures might be less effective in terms of rapid folding 

since the structure would need to be disrupted at a later stage 

of folding. Probably the formation of these non-native a-helical 

segments would be useful for preventing intermolecular aggrega-

tion, since the polypeptide chain would become relatively compact 

(Hamada and Goto, 2005). 

Contrary to this, for another b-sheet protein, tendamistat (a 

specifically mammalian alpha-amylases inhibitor with 74 amino 

acid residues long), a native-like b-structure was observed in the 

partially folded state induced by a high concentration of TFE. Far 

UV-CD results presented a clear increase in the helical content 

upon TFE addition, while amide hydrogen exchange and FTIR 

measurements proved that most of the native b-sheets were still 

intact. The a-helical induction appeared to be located mainly in 

regions corresponding to loops or random structure in the native 

state. So, although the shape of the CD spectrum is dominated 

by a small amount of helical structure, b-sheets contribute 

significantly to the CD spectrum of the tendamistat TFE state 

(Schönbrunner et al., 1996). As cardosin A, tendamistat also has 

a low intrinsic helix-forming propensity. Also the aspartic protease 

apparently presents the TFE induced helical portions formed from 
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native non-structured elements of the protein. Similar effect was 

observed in studies over peptide fragments of the a-spectrin SH3 

domain (62 residues), where non-native a-helical structure could 

be induced by addition of TFE in unordered regions of the native 

state, but not in b-strand or b-turn regions (Viguera et al., 1996). 

So we should not exclude the hypothesis of a similar situation 

occurring for cardosin A. The obtained high helical content results 

would not translate an exchanging from b strands to a-helices. 

Instead, unordered segments would get their helicity increased, 

masking the maintained b-sheet structures dichroic contribution.

Moreover, studies on b-lactoglobulin (162 residues) and 

a-chymotrypsin (141 residues), both predominantly b-sheet 

proteins, under high TFE content medium showed that the non-

native a-helical structure is unstable and converts readily to an 

intermolecular anti-parallel b-sheet aggregate. This transition 

was a gradual and time dependent process, and apparently 

independent on the protein concentration. Aggregates with a 

large content of intermolecular b-sheet seemed to be the ther-

modynamically favoured states for these b-sheet proteins in the 

presence of high concentrations of TFE (Dong et al., 1998). This 

tendency for aggregation was not observed in cardosin A results, 

though it could be happening.

4.1.3. Hydrodynamic behaviour 

Many properties can be used to monitor folding-unfolding equi-

librium, including the large volume changes associated with 

it. Although intrinsic viscosity remains the most theoretically 

straightforward method for determining such volume changes, 

gel filtration techniques offer an alternative approach (Corbett 

and Roche, 1984; Oliveira, 2007). Size exclusion chromatog-
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raphy (SEC) can be applied to the study of protein unfolding, 

since it is able to resolve changes in the hydrodynamic proper-

ties along the denaturation pathway. Besides it can detect the 

presence of intermediate states, provided they are kinetically 

stable within the time scale of the chromatographic run (Reyes 

et al., 2003).

SEC was the technique used to follow cardosin A volume changes 

in the presence of TFE. The protein was maintained for 1 hour 

in the incubation buffer (10 mM sodium phosphate buffer, pH 5) 

with the TFE percentage to test, and applied to a gel filtration 

FPLC column equilibrated with the same buffer (section 3.5). The 

SEC elution profiles and the correspondent apparent volume vari-

ation are presented in figure 4.6. 

Increasing the content in TFE produced a slight increase in the 

protein ve (elution volume), with a bigger shift around 10%. The 

cardosin A apparent Stokes radius decreased, which by definition 

means a decrease in the radius of a hard sphere that diffuses at 

the same rate as the molecule, whose behaviour includes hydration 

and shape effects. Among these TFE concentrations, the apparent 

MW was slowly reduced in 9,7 kDa (apparent MW10%TFE=24.1 kDa). 

This decrease in the apparent molecular weight was not followed 

by alterations in the tryptophans exposition, nor in the far-UV CD 

results. 

This behaviour may describe loss in hydration layer molecules, 

given that they should be accounted in the hydrodynamic data 

analysis (Koenig et al., 1975). At this low TFE percentage, TFE 

cluster formation is not found to be reported in the literature. This 

attack to the protein hydration layer would happen with no direct 

effect over the protein structure. Nevertheless, a competition 

between water and solvent molecules would happen, resulting in 

the observed decrease of the protein hydrodynamic volume.
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Figure 4.6 - TFE effect over cardosin A hydrodynamic volume. A - SEC elution 
profiles of cardosin A at different TFE concentrations: from bottom to top TFE 
concentrations are 0, 2, 4, 6, 7, 8, 10, 12 and 20%; V0 indicates the column void 
volume. B - Elution volumes (ve) and estimated molecular weight values of car-
dosin A as a function of TFE concentration. Each point corresponds to a minimum 
of 3 replicates (section 3.5).
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For TFE percentages of 12 and higher the protein elution peaks 

became to have weaker definition, and from 20% on the protein 

became attached to the column matrix, promoting an unfeasible 

elution. Besides, the same adherence may justify the elution 

described for lower TFE concentrations. The superdex matrix is 

produced by covalently bonded dextran to highly cross-linked 

porous agarose beds, where the dextran is the principal respon-

sible for the separation properties. The manufacturers declare it 

can be used in the presence of polar organic solvents, like 20% 

acetonitrile, with no damage to the medium. To our knowledge, 

the only reported remark in the literature that relates dextran 

with TFE describes that, when put together in a solution, turbidity 

is produced, and from this observation it was suggested the 

formation of a complex between these two chemicals (Naseem 

and Khan, 2004). If the TFE present in the media would associate 

itself with the matrix, this would decrease the interaction of the 

protein with the column, which would decrease the ve of the 

protein, whereas the opposite was observed. 

The unfolding of cardosin A from 10 to 20% TFE, followed by fluo-

rescence and far-UV CD, would expect an increase in the apparent 

MW of the protein. As an example, TFE molecules penetrated the 

b-rich protein b-lactoglobulin matrix (162 residues), and magnetic 

relaxation dispersion data were consistent with a strong accu-

mulation of TFE at the surface as well as in the interior of the 

protein (Halle et al., 2005). TFE transformations from native, to 

intermediate, and to helical structures, are characterised as being 

accompanied by a progressive expansion of the protein and loss 

of specific long-lived hydration sites (Gast et al., 2001). Molten 

globule states and kinetic molten globule states also present 

higher Stokes radii than the native conformation (Gast et al., 
1998). 
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Supposing the imperfect elution in the gel filtration column, 

where samples were not separated according to molecular weight 

and volume, the presence of the OS would be responsible for 

increasing the interaction between the protein and the matrix. 

This would happen in such a way that the elution started to be 

delayed, and lately becoming not possible. In fact, the column 

was effectively clean by 0.5 M NaOH application, which denotes 

a non-specific or hydrophobic interaction of the protein to the 

polymer, and the elution ended out to be impossible for percent-

ages of TFE higher than 20%. 

This approach was also performed for cardosin A in the presence of 

another OS, acetonitrile (Oliveira, 2007). The results also showed 

a decrease in the apparent molecular weight of 28 kDa from 0 

to 50% acetonitrile, but they were characterised as incongruent.

Some conclusions might be made regarding this technique. From 

aqueous to 10% TFE media, the protein may have lost some of its 

hydration layer thickness. This occurrence would characterise the 

first step in the TFE attack to the protein structure, while no other 

changes were observed in the secondary and tertiary conforma-

tions. But these conclusions are not certain due to doubt on data 

reliability.

4.1.4. Thermal stability

There are many different ways in which the changes in conformation 

of a macromolecule can be observed experimentally. Some of these 

methods, such as the calorimetric techniques, give thermodynamic 

information directly. A thermodynamic study characterises the 

structure and the behaviour of biological systems, and it is ruled by 

the interplay between thermal motion of molecules and the various 

interaction forces between them (Cooper, 2004). Differential 
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scanning calorimetry (DSC) is the method of choice to study the 

conformational stability of biological molecules. The calorimetric 

experiments were performed in the laboratory of Professor Alan 

Cooper, from the WestChem Department of Chemistry, in the 

University of Glasgow, Scotland, UK. Through this technique the 

heat capacity of the sample is calculated, and using this numeric 

value the enthalpy is obtained. At constant temperature, the 

enthalpy describes the heat effects promoted by reactions like 

folding/unfolding (Makhatadze, 2005).

The normalized thermograms for cardosin A incubated with 

increasing percentages of TFE are presented in figure 4.7 - A 

(for details, see section 3.8). Each thermogram shows a sharp 

and single endothermic peak, nearly but not quite symmetric: 

the changes in the heat capacity (cp) look slightly more gradual 

at lower temperatures and more abrupt at higher temperatures. 

This asymmetry tends to be enhanced with the increase in TFE 

concentration. For percentages higher than 5%, the post transi-

tion profile appears to be typical of an exothermic reaction, as 

occurs during aggregation. The thermal transition scans showed 

to be nearly independent of incubation time.

Aggregation of protein alcohol-induced states during thermal 

denaturation has also been reported earlier for concanavalin 

A (237 residues; Jackson and Mantsch, 1992) and hen egg 

white lysozyme (129 residues; Bhakuni, 1998), to give some 

examples. For cardosin A in the presence of 15 and 20% TFE, no 

transition was observed in the temperature range (0 to 100ºC), 

only an exothermic fall in the thermogram. Hence, at 25ºC, 

the temperature at which all the other experiments were run, 

the protein would already present some kind of open structure 

for TFE percentages as 15 and 20% (higher TFE concentra-

tions were not tested). These subtle open conformations did not 
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Figure 4.7 – DSC thermograms of cardosin 
A in the presence of different concentrations 
of TFE, upon 24h incubation at 25ºC. A - 
Experimental data obtained after subtraction 
of instrumental baseline, concentration 
normalization, and sample baseline, for 
different percentages of TFE. B – Thermal 
transition temperature values variation 
according to TFE content; each point 
corresponds to a minimum of 3 replicates. 
C - Table C presents the DHcal /DHvH ratio 
values for the different TFE percentages 
(see section 3.8). cp – excess heat capacity; 
tm - thermal transition temperature.
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present enough structure damage to be observed through the 

remaining used techniques. The TFE presence in the polypep-

tide chain proximity promoted the aggregation capacity. This 

may resolve the previously questioned hypothesis from the 

hydrodynamic results, confirming the protein hydration volume 

decrease.

The thermal transition temperature values (tm) decreased 

with the raise in the OS content (figure 4.7 - B), denoting a 

clear weakening of the protein structure. It was not expected 

any improvement on the thermal-stability of cardosin A, since 

water is not only a reactant in nearly all thermal degradative 

reactions, but also a facilitator in protein mobility leading to 

thermo-unfolding and aggregation of enzymes. Irrespective of 

the type of alcohol or protein studied, a clear decreasing trend 

of tm, with increasing alcohol concentration, has been observed 

(Bhakuni, 1998). 

None of the tested and presented transitions was reversible. 

This is in agreement with previous studies over cardosin A, 

during pH variation (Pina et al., 2003), and in the presence of 

10% acetonitrile (Shnyrova et al., 2006), in which the thermal 

transitions also showed to be irreversible. Even in the absence of 

aggregation, thermal unfolding is rarely completely reversible, 

since exposure of the unfolded polypeptide to higher tempera-

tures can lead to improper refolding, aggregation, improper 

disulfide bond formation, proline isomerization, de-amidation, 

hydrolysis of peptide bonds at aspartic acid residues, or other 

chemical changes that give rise to mis-folded forms (Lepock et 
al., 1992). Heating the samples using different scan rates (30, 

60 and 90ºC/h) promoted a tm medium variation of approxi-

mately 1ºC. These variations, as well as the ones promoted by 

varying protein concentration, are usually accounted for kinetic 
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irreversible processes occurring during the transition (such as 

aggregation or chemical degradation at higher temperatures). 

The system was not in equilibrium, as it was proved by the 

transitions irreversibility, the scan rate dependence, and the 

post-transitional aggregation. Therefore, a correct thermo-

dynamic description on the protein stability was unfeasible 

(Privalov, 1979).

The cooperative index Hcal /DHvH for each transition is present 

in figure 4.7 - C. In a simple two-state denaturation process, 

carried out under equilibrium conditions, DHcal should be equal 

to DHvH. But, if the denaturation involves the formation of a 

relatively long-lived intermediate structure, the resulting DSC 

curve will be a convolution of the heat capacities and enthalpies 

of all relevant forms of the protein, ending in a broader peak. 

This would create a higher cooperative index, as happens in the 

present case (Sturtevant, 1987). Distortion of the thermograms, 

due to irreversible phenomena, disabled the cooperative index 

calculation for percentages of TFE higher than 5%, since the 

enthalpy changes would be unreliable. However, the present 

results comparison cannot be made with much confidence in 

the absence of supporting evidence from other methods, since 

factors as aggregation and others (incorrect baseline correc-

tion, wrong estimation of protein concentration) can affect the 

shape of the transition (Cooper et al., 2000). 

To sum up, TFE induced a decrease on cardosin A thermal 

stability, and also in the denatured protein solubility. The loss 

of the hydration layer integrity could be one of the justifications 

for this behaviour. Small amounts of the OS disrupted and/or 

weakened the effects responsible for maintaining the natively 

ordered state of the protein, without provoking measurable 

unfolding.
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4.1.5. Structural analysis conclusions

While in small quantities in the medium, TFE may have gently 

attacked cardosin A hydration layer, as suggested by the protein 

hydrodynamic volume results and supported by the DSC ones. 

Meanwhile no other changes were observed in the secondary 

and tertiary conformations, but clearly its rising presence 

was decreasing the structural stability of the enzyme. Further 

increasing the OS content promoted a clear tertiary structural 

transition from 20 to 30% TFE, with tryptophan residues being 

exposed to the solvent. At the same time, some secondary 

structure alterations were observed, beginning with an increase 

in the protein helical content, and progressively creating new 

helical structures in this predominantly b-sheet protein. The 

presented results suggest that these new a-helical structures 

were formed from previously unordered segments, but also from 

some b-sheet ordered forms, implying partial destruction of the 

native secondary conformation. These new a–helical forms may 

be claimed as open structures, in which the tryptophan residues 

are maintained in contact with the solvent, though not completely 

exposed.

4.2. funCtional CharaCterisation

All the structural alterations observed must have an effect over the 

active site cleft and neighbouring conformation, reflecting changes 

in the enzyme function. In fact, enzyme activity evaluation is fairly 

expedited in recognizing slight conformational perturbations in the 

active site and other structural elements implicated in catalysis. 

For this reason enzymatic activity variations usually occur prior to 

global protein unfolding. Peptidolytic activity assays were run on 

cardosin A in the presence of increasing percentages of TFE. 
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The presence of the OS disables the use of a common absorb-

ance substrate cleavage reading, since it deforms the relation 

between the absorbance and the substrate quantity in a non 

linear way. The chosen method to follow cardosin A activity in 

TFE was developed to overcome this problem (Sarmento, 2002), 

and uses the Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu peptide 

as substrate. It is cleaved by cardosin A at one peptide bond 

(Phe-Phe(NO2)) (an essential requisite for kinetic studies), and 

the product formation is quantified by HPLC. This same method 

had already been used to study cardosin A activity under other 

unfolding conditions such as temperature, pH (Pina et al., 
2003), use of denaturants, as urea and guanidine hydrochloride 

(Pereira, 2007), and other organic solvents (Oliveira, 2007; 

Sarmento et al., 2004b, 2008). At pH 5 and 25ºC, after one hour 

of enzyme incubation in the presence of the OS, the reaction 

started by adding substrate. Samples were collected at different 

times (5, 10, 20 and 30 minutes), the reactions were stopped, 

and the product formation was quantified using a C18 column 

(section 3.4.1). In this way, the OS present during the hydrolysis 

could not interfere in the results analysis, since its quantity was 

extremely depleted. 

The hypothesis of TFE increasing the peptide secondary structure 

was refuted by far-UV CD (figure 4.8). The peptide aqueous 

secondary conformation proved to be clearly unordered, with 

weak signal after 210 nm, and a pronounced minimum between 

195 and 200 nm. Within the TFE range in which cardosin A 

presented activity (see below), there was a progressive loss in 

the peptide secondary structure content, responsible for the 

decrease in the absolute ellipticity values for 195 and 222 nm. It 

is thus concluded that any activity variation would not be owed to 

peptide availability alterations.
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Figure 4.8 - Circular dichroism results for Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu 
peptide, in the absence and in the presence of increasing TFE concentrations. A - 
Far-UV CD spectra. B - ellipticity values at 195 nm. C – ellipticity values at 222 nm. 
The peptide was incubated at 0.80 – 1.40 mg/ml for 1 hour at 25ºC, and read in 
a cuvette with a 0.2 mm path length. 
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Figure 4.9 presents the peptidolytic activity of cardosin A for 

increasing TFE content in the media. Some would expect the 

catalytic activity to be higher in aqueous medium, where the 

enzyme is in its native conformation (Ulijn et al., 2002). But for 

low OS concentrations the enzyme was not inhibited. Instead, 

an increase in cardosin A activity was observed until 6% TFE. 

The maintenance of catalytic activity indicates retention of the 

native conformation of the active site. The hypothetical enzyme 

hydration layer attack took by TFE (proposed by thermostability 

and hydrodynamic results), could be responsible for enhancing 

the enzyme flexibility and consequently increasing the activity 

(Halling, 2004). By increasing the mobility of the flap and active 

site regions, the accessibility for the substrate would be increased 

and its interaction enhanced. The decrease in the hydration shell 

thickness could also provide a similar effect, since the contact 

between substrate and enzyme would occur closer. 

The electrostatic forces between the reacting species depend on 

Figure 4.9 – Cardosin A peptidolytic activity in the presence of TFE, analysed by 
HPLC. Each point corresponds to a minimum of 3 replicates (section 3.4.1).
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the solvents dielectric constant, and their degree of solvation 

is known to affect rate constants (Levine, 1995). As examples, 

off all the steps in hexokinase turnover, glucose binding is the 

step with the major conformational change and most affected by 

solvation (hexokinase is a glucokinase (transferase); Rand et al., 
1993). For glutaminyl-tRNA synthetase (glutamine-tRNA ligase), 

the active site preorganisation and its slow solvation dynamics 

were recognised as important factors for molecular recognition 

and enzyme specificity (Guha et al., 2005). The electrostatic 

stabilisation promoted by the lysozyme cleft over the substrate 

molecule has been described to be reinforced in a low dielectric 

constant medium, enhancing 3 x 106 fold its rate (lysozyme is an 

O-glycosyl hydrolase; Price and Stevens, 1999). 

The increase in the medium TFE content could promote a decrease 

in the substrate solvation. This would increase the activity values, 

since less driving force would be necessary for association with 

the enzyme (Gupta and Roy, 2004). Nonetheless, this altera-

tion could also be reflected in a more difficult conformational 

change to the transition state, thus providing a decrease in the 

velocity of catalysis instead of the observed increase (Wangikar 

et al., 1995). For a proper discussion on this subject a more 

profound understanding of cardosin A machinery is required. The 

access of the substrate to the active site may be facilitated, or 

the conformational alterations may have stabilised the transition 

intermediate state, or still the resulting products may be released 

rapidly. 

This increased activity for low TFE percentages was also observed 

in other proteins, as bovine carbonic anhydase II (carbonate 

dehydratase; Wei et al., 2006), ervatamin C (cysteine protease; 

Sundd et al., 2004), horseradish peroxidase (Zhou et al., 2002) 

and calf intestinal alkaline phosphatase (Zhang et al., 2000).
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The initial activity raise was followed by a linear decrease, which 

progressively led to the loss of protein activity when at 20% TFE. 

This was the expected behaviour, since OS are often reported to 

decrease rates of enzyme-catalyzed reactions (Klibanov, 1997). 

The functionality of an enzyme should be maximal at an optimum 

level of water, beyond which the enzyme performance is declined 

due to the loss in enzyme stability (Rezaei et al., 2007). This 

activity loss occurs before any detectable structural alteration.

From these 20% TFE on, the tryptophans exposition was also 

observed (figure 4.2), as well as the major loss of cardosin A 

secondary structures (figures 4.3 and 4.4). These facts point to 

severe disarrangements in the protein integrity with subsequent 

functional loss. Increasing the media TFE content would provide 

an effective attack to the protein hydration layer. Being clus-

tered, the TFE molecules get their unfolding capacity enhance, 

destroying the H-bonds between the protein and the water mole-

cules, destabilizing intramolecular hydrophobic interactions, but 

also strengthening or inducing the formation of local backbone 

hydrogen bonds (Hamada and Goto, 2005). So the structure 

would become looser, disabling the formation of an effective 

enzyme-substrate complex.

Another important condition to provide an active performance is 

the presence of water in the microenvironment of the catalytic 

cleft. TFE lowers the dielectric constant of the medium, which 

modifies the stabilization of the overall structure and reduce 

the residues motion. This decrease can also directly affect cata-

lytic activity by disturbing the active site hydration. Moreover, 

water is one of the reactants in hydrolysis, and as a result its 

presence is of vital importance to the reaction kinetics. Besides 

the water molecule located between the active carboxyls, which 

plays the role of nucleophile during catalytic reaction, another 
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water molecule is essential to form a chain of hydrogen-bonded 

residues between the active site flap and the active carboxyls on 

ligand binding (Pearl and Blundell, 1984; Andreeva and Rumsh, 

2001). The progressive substitution of water for TFE molecules 

could reach a value upon which the presence of these catalytic 

essential water molecules would be compromised. Competitive 

inhibition has also been hypothesised (Valivety et al., 1994), as 

observed for subtilisin in acetonitrile (serine protease; Schmitke 

et al., 1998).

There is no question that enzymes can function in the absence of 

bulk water. They frequently show sufficient catalytic activity and 

unique selectivity, and are exploited as synthesis promoters in the 

non-aqueous environment (Klibanov, 2001). In fact, this study 

was already done for cardosin A in aqueous–organic biphasic 

systems of n-hexane/ethyl acetate and sodium phosphate buffer. 

The aspartic protease stability was characterised under the 

referred conditions (Barros et al., 1992), and it proved to be 

successfully used as a biocatalyst in peptide synthesis (Sarmento 

et al., 1998). But the activity loss presented here for such a low 

OS content should not be due to the functional transition just 

referred.

Despite the increase in the secondary structures content for 

TFE percentages higher than 20% TFE, the functionality of the 

enzyme could not be recovered. 

TFE promoted a denaturation in the cardosin A molecules that 

can be described in different phases. Initially, the gentle attack of 

the hydration layer may have decreased its thickness and protein 

thermal resistance, but also improved its catalytic performance. 

These changes occurred in the absence of global conformational 

changes. Increasing amounts of the OS led the protein to a second 

phase where activity was lost, but where structural changes were 
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not significant enough to be observed by the chosen sensible 

techniques. For percentages higher than 20% TFE, a series of 

events occurred in the protein structure that could explain the 

catalytic loss, while new conformations arose.

To ensure that 1 hour incubation time was long enough to allow 

the protein to reach the equilibrium of its new conformation, 

another assay was performed. The effect of the incubation 

time was followed for three TFE concentrations. The results are 

presented in figure 4.10, and confirm that 1 hour incubation is 

an appropriate duration for analysing the peptidolytic activity of 

the sample, since the results obtained for this period fairly char-

acterise the slight variations observed beyond. This incubation 

period was also convenient for comparing results with the other 

techniques employed. 

Throughout this work, different protein concentrations were used 

for each procedure, depending on the technique characteris-

tics and limitations, and also on the available protein. In order 

Figure 4.10 – Effect of incubation time over cardosin A enzymatic activity. Car-
dosin A was incubated in 0.2 M sodium chloride, 50 mM sodium acetate, pH 4.7, 
in 5 and in 10% TFE (black, red and blue open circles, respectively) and activity 
determined by HPLC, according to section 3.4.1. Each point corresponds to a 
minimum of 3 replicates.
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to verify if this activity profile was dependent on the enzyme 

concentration, different enzyme concentrations were incubated 

previously to the assay, in the presence of the TFE concentration 

under study. The protein amounts tested (0.003 mg/ml, 0.0292 

mg/ml, and 0.3 mg/ml) resembled the concentrations used in CD 

experiments (0.267 mg/ml) and intrinsic fluorescence (0.020 mg/

ml). The digestion assays were run in TFE using the same amount 

of enzyme and the same enzyme:substrate ratio (figure 4.11). It 

would be expected that the different enzyme concentrations in 

the incubation would not have any effect in the activity results, 

since these were run in the same conditions. However, there was 

some variation separating each condition. The curve tendency 

described in figure 4.9 is observed for all the enzyme concentra-

tions tested. However, the complete inactivation did not occur at 

the same TFE concentrations. The most concentrated samples 

still presented some activity at 20% TFE, while the others failed 

to act. This could mean that, for TFE concentrations equal to 

20%, the drastic structure effects that inactivate the enzyme are 

kind of shielded by the higher protein concentrations. Notice that 

all of the conditions tested are more than 1000 times diluted 

compared to the in vivo one (400 mg/ml) (Homouz et al., 2008).

The activity increase for low TFE concentrations also showed 

to be dependent of the enzyme concentration in the incubation 

previous to the assay. If this variation would translate an effect 

dependent on the number of protein molecules in the proximity 

of each other, some kind of protection from TFE effect for higher 

protein percentages would be expected. This would lead to a 

minor increase in the activity for low TFE values. But the variation 

occurred in the opposite way: the higher protein concentration 

tested in the incubation, presented the higher increase in activity 

for lower TFE values. This result would make sense if some char-

acter, improved by the presence of low amounts of TFE, would 
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Figure 4.11 – Peptidolytic activity in the presence of TFE for different protein con-
centrations in the incubation. Results analysed by HPLC. Each set of experiments, 
presented in a different colour and connected by a line, corresponds to assays 
preceded by enzyme incubations with the following concentrations: 0.003 mg/ml 
in red, 0.0292 mg/ml in blue, and 0.3 mg/ml in green. All the assays were done 
with the same enzyme concentration and the same enzyme: substrate propor-
tion. Each point corresponds to a minimum of 3 replicates (section 3.4.1).
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be encouraged by the proximity of other protein molecules. To 

understand this trend, additional experiments need to be run.

In similar work run for cardosin A in the presence of acetonitrile, 

the opposite tendency was observed, with higher activity increase 

for lower protein concentrations. The meaning attributed to the 

variation was the same as explained before for 20% TFE (Oliveira, 

2007).

4.2.1. Functional characterisation using a continuous method

Since we were using a discontinuous method to access for 

cardosin A activity, with possible sample errors and considerable 

work in separation and estimation of the products, a continuous 

method was established. Most conditions of the activity assay 

were maintained, and the reaction was carried out using the same 

buffer and temperature. These new method included another 

peptide, (MCA-Lys)Lys-Pro-Ala-Glu-Phe-Phe-Ala-Leu(Lys-DNP), 

with the same residues sequence, but presenting a fluorophore 

(MCA-Lys) and a quencher (Lys-DNP). Cleavage of the suscep-

tible bond (Phe-Phe) was detected as an increase of reaction 

medium fluorescence over time, due to increase in the product 

content, allowing the determination of hydrolysis rate (section 

3.4.2; Simões et al., 2007). 

To validate this method for the presence of the OS used in this 

study, several controls were run. At first it was necessary to 

prove that the fluorescence emission wavelength (lmax) for the 

peptide and for its degradation product would not significantly 

vary with the presence of TFE (figure 4.12). Besides being 

small, only 2 nm in cardosin A activity range, the substrate and 

product lmax variations occurred in broad emission spectra, which 

reduces their meaning (see figure 4.12 inset as an example). 
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Upon these observations, the reading emission wavelength was 

considered appropriate to follow the product formation along the 

TFE percentages tested. 

Since the method is based on following emission intensity varia-

tions, it was necessary to test them under several conditions. The 

intact peptide and its product emission fluorescence were read for 

different concentrations in the presence of 3 percentages of TFE. 

Figure 4.13 - A presents how the emission fluorescence intensity 

varies for each tested condition. As expected, the products revealed 

higher emission intensity values. Assembling these results, it was 

shown that the difference in the emission fluorescence intensity 

between the substrate and the peptide (DUF) was not constant for 

the same peptide concentration along the TFE tested concentra-

tions (figure 4.13 - B). For the same TFE concentration, the DUF 

increased with the increase in peptide concentration, as would 

be expected and necessary (figure 4.13 - C). This increase was 

not always linear (still smaller than the typical equipment vari-

ations), and so it was necessary to perform a normalization for 

each replicate (equation 3.1, section 3.4.2). There it is considered 

the emission fluorescence intensity of the intact substrate and of 

the completely degraded substrate. These substrate and product 

emission intensities (minimal and maximal emission intensities 

respectively; figure 3.1, section 3.4.2), besides normalizing the 

OS effect, convert the activity values from emission fluorescence 

intensity per second (UF/s), in nanograms of degraded peptide 

per second (ng/s). In this way the only varying aspect is the 

one we are interested in: the normalized slope of the increasing 

product formation, i.e., the protein activity.

The variation of cardosin A activity in the presence of increasing 

contents of TFE in the medium was once more characterised, 

this time using this fluorescence based approach. The activity 
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Figure 4.12 – Fluorescent peptide and product maximal emission wavelength 
variation along the increasing media content in TFE. Conditions: excitation wave-
length - 328 nm; emission wavelength - 393 nm. Each point corresponds to a 
minimum of 3 replicates. Inset – emission fluorescence intensity variation upon 
excitation of the substrate at 328 nm for 5% TFE. The complete peptide degra-
dation was performed before the addition of TFE to the medium. The emission 
wavelength used in the assay (393 nm) is indicated (section 3.4.2). 
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Figure 4.13 – Emission intensity variation of the fluorescent peptide and its prod-
uct in the presence of TFE. A – Intensities of fluorescence emission at 393 nm 
of the peptide and its product in five different concentrations depending on the 
TFE medium content. B – DUF variation for 4 peptide concentrations according to 
TFE medium content. C - DUF variation according to their concentration for 3 TFE 
percentages. The complete peptide degradation was performed before the addi-
tion of TFE to the medium. Conditions: excitation wavelength - 328 nm; emission 
wavelength - 393 nm. At least 3 replicates were run per each represented point 
(section 3.4.2). DUF – emission fluorescence intensity difference between the 
substrate and the product.
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profile presented in figure 4.14 (in black, continuous method) was 

obtained using the same enzyme incubation conditions performed 

in the discontinuous method. The figure also compares both 

data obtained for cardosin A activity. In this new approach the 

activity increase was even more pronounced: the activity for 4% 

TFE presented medium values 59% higher than the native ones, 

versus an increase of 17% in the discontinuous method. After this 

maximum, the activity was lost more abruptly, with a residual 

activity for 20 and 30% TFE, and a complete loss over these 

concentrations. Despite the difference in the activity profile, the 

curve tendency was similar, and the activity increase for lower TFE 

values, as well as for the other OS percentages was confirmed. 

Some variations among results proceeding from both methods 

were expected, since we are comparing activity assays using 

completely different enzyme concentrations and enzyme:substrate 

ratios. Being less laborious, and less disposed to mistakes, the 

continuous method was chosen to continue the present study.

Maintaining the low TFE percentage (5%), and increasing the incu-

bation time, secondary structure variation was studied using the 

far-ultraviolet CD technique (figure 4.15). From 30 minutes to 1 

hour incubation, cardosin A secondary structure suffered an adap-

tation, with a small loss in the minimum ellipticity (216 nm). For 

longer incubations, the spectra maintained its tendency, and the 

structural loss was very small (figure 4.15 - A). These structural 

variations were better analysed by following the ellipticity values 

for 222 nm. For incubations higher than the chosen one, these 

values presented some variation among them, but confirmed 

very slight structural modifications (figure 4.15 - B). It was not 

observed a marked structural loss nor a helicity increase, as 

could be observed for TFE concentrations like 20 or 40% (figure 

4.3). This secondary analysis presumes the enzyme functional 

preservation already confirmed (figure 4.9). 
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Figure 4.14 – Cardosin A activity profile in the presence of TFE accessed by flu-
orimetry and HPLC. Activity results obtained by continuous and discontinuous 
methods are plotted in closed black circles, and in open blue circles, respectively. 
Each point corresponds to a minimum of 3 replicates (sections 3.4.1 and 3.4.2). 
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4.3. Reversibility assays

The presence of the OS around cardosin A molecules promoted 

a specific alteration for each condition tested. The subsequent 

purpose was to follow the reversibility extent of these conforma-

tional changes. The protein return to an aqueous environment 

was reproduced through the 100 fold dilution with buffer of the 

TFE incubated sample, followed by another incubation of 1 hour 

(sections 3.4.2.1 and 3.6.1). The figure 4.16 presents the activity 

(using the fluorimetry assay) and the intrinsic fluorescence results 

for these reversibility conditions, and compares them with the 

previous data. 

The lower TFE percentages, that allowed the increase in the 

activity, were found to have their activity profile completely 

reversible. For these TFE values the intrinsic fluorescence tech-

nique did not sense any alteration. From 4 to 10% TFE diluted 

samples, there was some activity recovered, with an increase 

from 8.6% to 52.5% activity when returned to aqueous environ-

ment. Beyond 20% TFE, the tryptophans exposition appears to 

be partially recovered, even for the higher percentages. However, 
the vestigial activity for 20 and 30% TFE did not recover with 

the return of the enzyme to the aqueous environment. In these 

OS ranges, the CD experiments proved an extensive loss of 

the protein secondary structure (figure 4.3). This loss, even if 

regained in some extent, as intrinsic fluorescence showed, should 

have been severe enough to turn out impossible any activity 

recovery. 

Higher TFE percentages, as 70% TFE, produced severe effects in 

the protein secondary and tertiary structures, with an extraordi-

nary increase in the helical content (figure 4.4) and tryptophans 

exposition to the medium. Intrinsic fluorescence reversibility for 
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Figure 4.15 - Far-ultraviolet CD monitoring of the conformational changes of car-
dosin A during incubation with 5% TFE. A – Selected cardosin A CD spectra after 
different incubation times. B - Ellipticity changes at 222 nm for cardosin A at 
various incubation times (section 3.7.1). Results for 1 hour incubations are high-
lighted in orange.
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this range would guess enzyme activity loss, since the tryptophans 

exposition recovery was similar to the one obtained for 30% TFE. 

Nonetheless, the enzyme partially regained its activity (48% for 

70% TFE, and 47.5% for 99.9% TFE). Again, the partial functional 

recovery occurred without the total reburying of tryptophans, 

as maintained for functional TFE range. The partial activity 

recovery was only obtained for the highest TFE concentrations. 

Several reasons for these occurrences were hypothesised. The 

lyophilised enzyme placing in high TFE concentrations may have 

not resulted in a successful solubilisation (although precipitation 

was not observed). The posterior effective dilution with aqueous 

buffer would thus justify the activity recovery. On the other way, 

cardosin A could be trapped in a more rigid conformation for 

these high OS concentrations. This fact would hold it back from 

undergoing to an irreversibly unfolded state. The wash out of TFE 

would result in native-like active conformation recovery. 

Observing figure 4.4, the highest content in unstructured secondary 

structures is achieved at 30% TFE. When returning to aqueous 

environment, a large recovery of b and a structures would be 

necessary to obtain an activity recovery. For 70% TFE, high helical 

content was formed with loss in unstructured elements but also in 

b-sheets. The removal to aqueous environment with some activity 

recovery admits the loss of this structure. Cardosin A active site 

is located between the two lobes of the molecule at the bottom of 

a large cleft. The base of the active site cleft is made of b-strands 

forming two contiguous y-like structures, where the two catalytic 

aspartates are located, with no disulfide bridges near it. Probably 

these b structures were not lost during the 70% TFE promoted 

unfolding, but could have been in 30% TFE. The TFE promoted 

helical state has been proposed as an open helical structure, which 

would enable it to regain an active and near-native like form. 

Moreover, NMR studies showed that the secondary structures 
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Figure 4.16 – Cardosin A TFE induced effects and their reversibility monitored by 
activity and fluorescence experiments. A - Initial rates of hydrolysis of the fluo-
rescent peptide catalysed by cardosin A in the presence of varying TFE concen-
trations. Residual activity was measured after 1 hour incubation at 25ºC (closed 
circles) and also after 100 fold dilution of the TFE in cardosin A incubation solution 
(opened circles) (Section 3.4.2.1). B - Changes in intrinsic fluorescence maximal 
emission wavelength variation for cardosin A incubated at different TFE concen-
trations, measured in the presence of TFE (closed circles) and after dilution (up 
to 100 fold) with buffer (open circles) (Section 3.6.1). Each point corresponds to 
a minimum of 3 replicates.
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formed in the TFE state are mobile and rapidly converted to the 

extended configurations (Hamada and Goto, 2005). The presented 

structural results appear to be in accordance to those descriptions. 

The increase in the helicity would have occurred within the more 

flexible native structures, not unfolding the more rigid and func-

tional important ones, as the active site and surroundings. The last 

hypothesis would be the 70% TFE state non activity to be due to 

an excessive decrease in the water content of the media, disabling 

the catalytic function. The return to an aqueous medium would 

allow the recovery of enzyme functions.

Note that all the studies run in this work were independently 

handled: each sample was only used in one recorded condition. 

Other results would certainly be obtained if the same sample was 

hydrated without TFE, and subsequently submitted to growing 

concentrations of the OS. Probably the enzyme in 70% TFE, 

which had already been submitted to 30%, would not recover its 

activity after the re-hydration.

Cardosin A in 99.9% TFE showed a slight loose in the b content 

and an increase in the helical content compared with the native 

structure (figure 4.4). When its UV-spectrum was analysed by 

contin, the b content was close to the 15% one, but with larger 

content in a-helices. The almost absence of water could have 

promoted the described changes in the protein structure and the 

inactivity. Replacing TFE by water would unfold the new a-helical 

structures, resulting in a conformation similar to the 15% TFE 

one, which would allow for some proteolytic activity regaining. 

Far-UV CD analysis of these reversibility tested samples would 

enlighten this discussion.

Previously, in a similar approach, cardosin A was also submitted 

to increasing concentrations of acetonitrile (Oliveira, 2007). For 
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low percentages (10% acetonitrile), the activity also increased 

to even higher values (up to 182% for 5% acetonitrile), and was 

completely lost for concentrations over 30%. The reversibility 

was nearly total until 20%, in activity and in the intrinsic fluores-

cence emission. For 90% acetonitrile, cardosin A showed to be 

reversible, with a new 85% activity, and a complete recovery of 

the tryptophans exposition. It was proved that the activity raise 

for low acetonitrile concentrations was not due to an increase in 

the catalytic efficiency. TFE is comparable to acetonitrile in terms 

of its bulk solvent polarity parameter (only slightly higher), but 

demonstrates a stronger hydrogen bonding ability (Jamison et 
al., 2006). In the presence of hydrophobic solvents, a higher 

amount of water remains associated with the enzyme structure, 

leading enzymes to exhibit higher activity levels in hydrophobic 

solvents than in hydrophilic solvents (Rezaei et al., 2007), and 

this characteristic could justify the bigger increase in cardosin A 

activity for acetonitrile. Besides, TFE would compete with water 

for enzyme surface interactions, namely for the active site hydra-

tion molecules, impairing cardosin A function.

Using another approach, cardosin A hydrolytic behaviour in the 

presence of other organic solvents was also run (Sarmento, 

2002; Sarmento et al., 2004b, 2008). Ethyl acetate, n-hexane 

and isooctane (ordered by growing hydrophobicity) were used in 

aqueous saturated media, and the enzyme showed to be active 

under all the tested conditions, with slight changes in specificity. 

It was concluded that the most hydrophilic solvents induced the 

lowest activity of cardosin A along with a higher destabilising 

structural effect. More hydrophobic solvents are less soluble in 

the aqueous phase, and therefore less solvent molecules can 

interact with the protein (Sarmento et al., 2008). In addition to 

the alteration of active enzyme concentration, a factor affecting 

cardosin A affinity for the substrate could be an alteration of its 
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ionisation state (of the catalytic cleft or of the enzyme as a whole) 

induced by the solvent. But this alteration would imply an altera-

tion of the pH profile, which was not observed (Sarmento et al., 
2004b). In the present work the activity profile in the presence 

of TFE also presented lower values for the same OS range when 

compared to the more hydrophobic OS acetonitrile.

Since TFE can exert its effect via different ways, it could be       

interesting in the future to determine kinetic constants for 

cardosin A activity. This would allow getting further insights on 

the enzyme catalytic performance modifications in the presence 

of this OS.
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The aim of the present work was to comprehensively study the 

cardosin A conformational changes induced by the presence of 

the fluoro-alcohol 2,2,2-trifluoroethanol (TFE) in the media. 

The folding variations described by TFE in vitro results can be 

resumed in the following items:

- TFE medium content below 4% reversibly decreased protein 

stability, and reversibly increases its enzymatic rate.

- TFE medium content over 20% irreversibly inactivated the 

enzyme and unfolded tertiary structures, while secondary 

a-helices were progressively increased in content (mainly, but 

not always, from previously unordered segments).

- TFE medium content over 70% inactivated the enzyme and 

promoted a vast increase in structural complexity, taking form as 

open helical structures. These alterations proved to be reversible.

5. general disCussion
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Upon analysing these conformational and functional results one 

question remains. How did the solvent molecules interact with 

the protein to justify the obtained results? 

To answer that question it would be important to measure, char-

acterise and localise the number of water molecules bound to the 

enzyme (Bell et al., 1997; Halling, 2004). For these purposes 

Doctor Nuno Micaêlo has kindly performed molecular dynamics/

molecular mechanics (MD/MM) simulations of the system.

5.1. understanding struCtural alterations

Computer simulations provide detailed atomic information of 

processes that would be difficult (if not impossible) to study 

experimentally. One of those processes is the solvation mecha-

nism of biomolecules in aqueous and non-aqueous environments. 

MD simulations studies of enzyme dynamics in water/cosolvent 

mixtures have provided molecular evidences that support solvent 

mediated effects as water stripping, reduced protein mobility, 

and the pH memory effect (Roccatano, 2008).

The MD/MM simulation approach used in this work simulates one 

cardosin A molecule in a box of organic solvent and water mixtures. 

This probably corresponds to a situation that is harder on the 

protein than the real one (possibility of aggregation and adhesion to 

support material), but various works with similar approaches have 

been proved to capture the overall physical features of the system 

(Colombo et al., 1999; Soares et al., 2003; Micaêlo and Soares, 

2007). The simulations where run for 0, 10 and 90% of TFE, repre-

senting absence, low and high amount of the OS molecules relatively 

to the water ones. The root mean square deviations1 (RMSD) of the 

alpha carbon atoms (a-C) of the protein fitted against the X-ray 

1 The root mean square deviation (RMSD) is a frequently-used measure of the 
differences between values predicted by a model or an estimator and the values 
actually observed from the thing being modeled or estimated.
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structure are presented in figure 5.1. Simulations in 0% TFE have 

reasonable values of RMS deviation from X-ray structure (medium 

value is 2 Å), showing that the simulation conditions are reproducing 

the correct physics of the system (Soares et al., 2003). 

The MD/MM simulations run for 10% TFE (data not shown) repro-

duced similar RMSD profile than the aqueous one. This suggests 

that the protein has largely maintained its native structure, at 

least during the time scale sampled in these simulations. These 

data are in agreement with the in vitro results discussed in the 

previous chapter. The conformational alterations promoted by the 

presence of low amounts of TFE on the in vitro system were not 

detected by the employed techniques in terms of secondary or 

tertiary structure. In fact DSC results showed a thermal stability 

decrease. Hydrodynamic volume results could suggest a gentle 

attack from TFE over cardosin A hydration layer. Simulation 

Figure 5.1 – Structural stability analysis for simulations in media with different 
TFE contents. Root mean square deviation of a-C atoms of cardosin A from X-ray 
structure (PDB 1B5F) in 0 and 90% TFE.



General Discussion94

results do not support this idea, since the low amount of TFE 

molecules present in the simulation medium did not alter the 

structure stability in a different way than its absence did.

Results for 90% TFE are deviated from the control in more than 

3 Å, expressing a consistent stability alteration of the enzyme 

structure. These structural properties adjustment was expected 

for such a high content of a polar solvent as TFE (section 7, table 

7.1). Previous work from Micaêlo and Soares (2007) showed that 

the optimal water content that minimizes the difference from the 

X-ray structure is displaced to higher water level as the polarity 

of the organic solvent is increased. Simulations ran for the 98 

residues a/b protein acylphosphatase in 25% TFE presented 

RMSD values quite high (5 Å), traducing a considerable instability 

of the protein in that environment, despite no secondary structure 

alteration had been found (Flöck et al., 2004). On the other hand 

different kinds of peptides showed lower RMSD values in TFE/

water medium than in pure water medium simulations, stating a 

more stable and further confirmed ordered structure (Roccatano 

et al., 2002). 

Important information about protein dynamics prediction is 

reflected by the atoms average positions fluctuation, and is 

represented in the figures 5.2 via the protein B-factor profiles. 

Cardosin A is presented according to crystal and simulation 

predicted structures, and various altered or important domains 

are marked in cartoon, as well as in surface representations. As 

expected, the model for aqueous environment (MD/MM simula-

tion 0% TFE, figure 5.2 – B and E) expresses slight different 

B-factors than the original crystal structure (figure 5.2 – A and D). 

Locations of the peaks in the RMS fluctuation profile correspond 

to residues on the enzyme surface, and are well correlated with 

the temperature factors reported in the crystal structure (Frazão 
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et al., 1999). Curiously, the model presents the flap region less 

dynamic than the crystal, and a general increase in the atomic 

fluctuation. Other crystallographic significantly displaced domain 

that has this character decreased is the N47SK, not implicated in 

the catalytic cleft. A new domain arises from the model without 

TFE: T292LL, a turn segment located opposite to the flap over the 

active site. 

But both predictions place protein atoms in the same locations, 

not inducing major secondary or tertiary structural alterations. 

The presence of TFE in higher proportion than the water molecules 

(figure 5.2 – C and F, MD/MM simulation 90% TFE) promoted the 

protein atomic displacement enhancement in general. And also 

locally, in segments related and closely located to the active site, 

such as the flap and T292LL, respectively. Such a high content of the 

alcohol in the simulation medium was expected to be translated 

differently. No large structural change has been observed by this 

model in the presence of high contents of TFE, in opposition to 

the fluorescence (section 4.1.1, figure 4.2) and circular dichroism 

(section 4.1.2, figure 4.3) results obtained. A discussion about 

the validity of the CD results interpretation was conducted in 

that section. The obtained high helical content results would not 

translate an exchanging from b strands to a-helices, but instead, 

unordered segments would get their helicity increased, masking 

the dichroic contribution of the maintained b-sheet structures. 

All solvation models, even those computationally more demanding, 

are approximations. Their range of validity is difficult to explore, 

and some authors defend that experimental approaches and 

results are essential to validate force field and simulation results 

(Caflisch and Paci, 2005). For others, the direct comparison 

between simulations and experimental data is not possible, both 

due to the limited time scale  that  can  be  simulated,  and  the  
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Figure 5.2 - Three-dimensional structure representations of cardosin A crystal-
lographic form (A and D), and MD/MM simulations 0% TFE (B and E) and 90% 
TFE forms (C and F). Front and back representations according to the B values: 
warmer colours and/or thicker cartoon segments represent residues with higher 
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mobility in cartoon (A, B and C) or surface view (D, E and F). PDB 1B5F, flap re-
gion corresponds to Y75GT (Frazão et al., 1999). The representations were created 
using pymol software (DeLano Scientific LLC).
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fact  that  the  effect  of aggregation can never be fully eliminated 

from the experiment (Villa et al., 2006). But the obtained simula-

tion results will undoubtedly provide usefull information for the 

discussion of the present work. 

The graphical distribution of the RMS fluctuation2 values for 

cardosin A in 0% TFE, in 90% TFE, and the difference between 

the two conditions is presented in figure 5.3. The same values are 

structurally explored in figure 5.4. Differences higher than 0.5 Å 

are reported on figure 5.4 – B, and are highlighted in red in the 

B-factor cartoon structural representation of figure 5.4 – A. The 

domain with the biggest flexibility increase is KGE, followed by 

flap. Alanine 291 is also evidenced, and domains M140LNQ, V159DEE 

and others are shown up in red in figure 5.4 – A. Secondary 

structure determined by crystallography is exhibited for each 

residue (figure 5.4 – B), and it was maintained in the 90% TFE 

simulation structure, except for L170D where the hydrogen bonded 

turn was lost for a coil3. This sequence, as others, is not expected 

to be related to alterations in the enzyme function, because of its 

distance to active site.

The effect of the media over the protein structure is also reflected 

in its exposure to the solvent. Hydration details of enzyme surface, 

interior, or active site region for a given level of hydration are 

difficult to obtain from experiments alone (Yang et al., 2004). 

The MD/MM simulations can help to understand the solvation 

tendency of the protein structure. Figure 5.5 presents the solvent 

accessible area of cardosin A in absence and presence of TFE. In 

the presence of large amounts of the OS the protein structure 

2 When a dynamical system fluctuates about some well-defined average position 
the RMSD from the average over time can be referred to as the root mean square 
fluctuation. The size of this fluctuation can be measured and can provide impor-
tant physical information.
3 Residues secondary structure comparison run in vmd 1.8.7 (Humphrey et al., 
1996)
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becomes more exposed to the solvent, namely the hydrophobic 

area (hydrophobic area : hydrophilic area ratio is higher), due 

to the increase on medium hydrophobicity. These values are 

consistent with the RMSD results (figure 5.1), that admit the 

presence of the OS as a structural stability modifier, as seen in 

other simulation studies (Soares et al., 2003; Villa et al., 2006). 

Solvent molecules distribution through the protein surface is 

represented in figure 5.6, with illustrations depicting cardosin 

A after 10 ns of  MD simulation in water (A), and in the last 

acquired conformation of the MD simulation at 100 ns in 90% 

TFE coloured by chain (B), or by residue polarity (C and D). The 

represented solvent molecules are localised closer than 5 Å from 

protein atoms. 

In aqueous media water molecules are spread all over the enzyme 

surface (figure 5.6 – A). The presence of high amounts of TFE 

promotes a very different distribution. By visual inspection we 

Figure 5.3 – Structural flexibility analysis for simulations in media with different 
TFE contents. Root mean square fluctuation of cardosin A residues in 0 e 90% 
TFE, and the difference between these values.
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Figure 5.4 – Analysis of the residues with higher RMS fluctuation between 0% and 
90% TFE. A – Front and back three-dimensional representations of the MD/MM 
cardosin A in 90% TFE, according to the B values: thicker cartoon segments rep-
resent residues with higher mobility in cartoon structure. Highlighted in red are 
the domains with bigger variation. B – Table presenting the residues with varia-
tion values (in nm) higher than 0.5 Å and the respective crystal secondary struc-
ture (* mark structures transformed in coil in the 90% TFE simulation structure). 
Relevant domains are shown up, as well as residues participant on the active site. 
Variation values higher than 1 Å are underlined in red. The representations were 
created using PyMOL software (DeLano Scientific LLC).
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Figure 5.5 – Analysis of cardosin A solvent accessible surface for simulations in 
the presence of 90% TFE and in water. 
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Figure 5.6 – Spatial distribution of solvent molecules in MD simulations for car-
dosin A. Solvent molecules represented are localised closer than 5 Å from protein 
atoms. A - Front and back three-dimensional representations of the cardosin A 
after 10 ns of the MD simulation in water, in a surface representation, coloured 
according to chains. Water molecules represented as spheres and coloured ac-
cording to atoms. B, C and D - Front and back three-dimensional representations 
of the cardosin A in last acquired conformation of the MD simulation 90% TFE 
at 100 ns, in a surface representation, coloured according to chains (B, green:
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cyan: light chain) or according to residues type (C and D, red: residues with 
positively charged R groups, blue: residues with negatively charged R groups, 
yellow: residues with polar uncharged R groups, grey: residues with non-polar R 
groups). Solvent molecules are represented as spheres (A, C and D) or sticks (B) 
and coloured according to the Corey, Pauling and Koltun coloring scheme (CPK) 
(red: oxygen, white: hydrogen, dark blue: carbon, light blue: fluorine). The rep-
resentations were created using pymol software (DeLano Scientific LLC).

are able to identify regions of higher density of water molecules 

(figure 5.6 – B and C). The tendency is apparently similar to 

the one followed in aqueous environment. By simple observation, 

water molecules localisation in TFE/water solvent environment is 

similar to the localisation of the closest (2 Å) to the protein water 

molecules in the aqueous simulation (data not shown).

Micaêlo and Soares (2007), by similar simulation studies, 

compared different OS and water distribution over a protein 

surface and showed that water is distributed over similar regions 

of the enzyme in different solvents. For more polar solvents, 

such as ethanol and acetonitrile, water was found in regions also 

present in the non-polar solvents. As surface did not change 

dramatically when the enzyme was placed in different organic 

solvents, water molecules apparently populated equivalent sites. 

Sites that corresponded to the areas of exposed charged ⁄ polar 

side chains, hydrated to a higher or lower degree according to 

the polarity of the organic solvent (Micaêlo and Soares, 2007). 

In our results no tendentious distribution of the water molecules 

was found visually, since they are concentrated close to polar 

and hydrophobic residues. TFE molecules cover the non-hydrated 

protein surface (figure 5.6 – D). This emphasises TFE role in the 

protein conformation, given that a significant enzyme surface 

area is solvated by the OS.

In simulation studies with peptides it was also observed the 

coating by TFE molecules, limiting the accessibility of water to 

the surface (Roccatano et al., 2002). A more detailed MD simula-
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tion study with a protein placed in 25% TFE (acylposphatase, a/b 

protein with 98 residues) showed that the cosolvent builds dense 

hydrogen-bonding networks with the charged residues of the 

protein, while water molecules cannot be found in the immediate 

neighbourhood. TFE also clusters around hydrophobic side chains 

with its tri-fluoride head (Flöck et al., 2004). Other study showed 

by densimetry that the interaction of the amino acids hydrophobic 

groups with –CF3 and –OH group in TFE dominates over the inter-

action of the ionic and hydrophilic groups with –OH group of the 

alcohol (Kundu and Kishore, 2004). Another MD simulation study 

affirms the strong tendency of the TFE molecules to coat the 

peptide, but with uniform solvation and no correlation between 

local TFE concentrations and either the nature of the residues or 

the secondary structure (Mehrnejad et al., 2007). The interac-

tions between the cosolvent and the peptide are weak, with the 

formation of a layer over the surface, but the interactions between 

peptide and TFE do not displace the peptide-peptide interactions 

(Mehrnejad et al., 2007). 

In the X-ray structure of hen egg-white lysozyme (129 residues, 

mainly a-helical, PDB 1YL1) co-crystallized in 16% TFE, a smaller 

number of water molecules was found in the primary shell when 

compared to other less hydrophobic alcohols (Deshpande et al., 
2005). Porcine pancreatic elastase (240 amino acid residues, 

composed of two b-barrel domains, PDB 2FOG) has been crystal-

lised, and transferred to a solution containing 40% TFE. Besides 

the common water space replacements and alcohol interactions 

with the protein, no structural alterations were detected when 

compared to the native crystal (Mattos et al., 2006). In a similar 

work from the same group ribonuclease A (124 residues, a + b 

protein, PBD 3EV4) was analysed in a crystal in 50%TFE, and 

once more no significant changes were found besides water 

space replacement (Dechene et al., 2009). In these study cases, 



105

TFE oxygen atom was found as H-bond donor to threonine or 

valine main chain oxygens, to hydroxyl oxygen of serine, or 

to glutamin carboxyamide nitrogen. It also interacted with the 

protein molecule as an acceptor from the main chain nitrogen 

of glycine or serine, or from the side chain amino group of 

lysine. GTPase HRas (166 residues with a and b structures, PDB 

1P2S) crystal in 50% of TFE presented a drastic reduction in the 

number of water molecules, despite no explicit binding of TFE 

molecule has been observed, and only a single alcohol molecule 

has been detected in a small hydrophobic cleft. However the 

secondary structure was slightly altered, with some polar inter-

actions failing to be kept and new being created, contributing 

for the reinforcement of the a-helical structure (Burhman et al., 
2003)4.  

By simple observation of cardosin A last acquired conformation 

for the simulation with TFE, it cannot be interpreted if it inter-

acts mainly with the -OH group or with the fluorine atoms. Two 

snapshots of intermolecular interactions formed between TFE and 

hydrophilic or hydrophobic side chains of the protein are shown 

in figure 5.7. The illustrations seem to confirm the fluoro-alcohol 

interaction tendency defended in the references above. Note that 

in these pictures no water molecule was caught. Moreover, the 

water molecules in the TFE simulation do not have a marked 

tendency to remain associated with the protein (data not shown), 

as occurs for other more hydrophobic OS. This observation proves 

the solvent polar characteristics, and its claimed hydrophobic 

effect reduction in water (Luo and Baldwin, 1999).

The simulations may suggest that the stabilizing effect of TFE is 

4 In other protein crystals with TFE, the alcohol is used as substrate analogue 
(PDB 1A71, Colby et al., 1998), as an inhibitor (PDB 1AXG and 1AXE, Bahnson et 
al., 1997), or as a ligand (PDB 2NUD, Desveaux et al., 2007; PDB 1SBY, Benach 
et al., to be published).
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induced by the preferential aggregation of TFE molecules around 

the peptides. This coating displaces water, thereby removing 

alternative hydrogen-bonding partners and providing a low 

dielectric environment that favors the formation of intrapeptide 

hydrogen bonds(Roccatano et al., 2002). 

The protein secondary structure variation between aqueous and 

90% TFE simulations was calculated and is presented in figure 

5.8. Contrarily to the results obtained by CD (section 4.1.2, figure 

4.3), and to the secondary structure calculation run over them 

(section 4.1.2, figure 4.4), the results describe secondary struc-

ture elements quite undisturbed through the simulation time. As 

just mentioned, it is known that TFE is able to stabilise individual 

secondary structure elements by stabilizing the peptide hydrogen 

Figure 5.7 – Snapshots of solvent molecules around some cardosin A surface 
residues in the last acquired conformation of the cardosin A MD simulation in 
90% TFE; A – around a hydrophobic residue; B – around a polar residue. Protein 
portions are represented in surface and coloured according to residues type (red: 
residues with positively charged R groups, blue: residues with negatively charged 
R groups, yellow: residues with polar uncharged R groups, grey: residues with 
non-polar R groups). Solvent molecules are represented as sticks and coloured 
according to the CPK coloring scheme (red: oxygen, white: hydrogen, dark blue: 
carbon, light blue: fluorine). Polar interactions are represented as yellow dashes. 
Representations were created using pymol software (DeLano Scientific LLC).
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bond (Luo and Baldwin, 1999). Curiously, despite the structural 

stability decrease defended by the models, the simulation with 

OS in the medium denotes an increase in the b-sheets content, 

and a decrease in poorly structured formations (non-hydrogen-

bond based secondary structure) (figure 5.8).

Several studies in the literature also merge in vitro results with 

MD simulations. However, these results are used to complement 

the in vitro results obtained, more than to compare or confirm 

them5. MD simulation studies with TFE are scarce, and most of 

them use peptides. Peptides showed good agreement between its 

MD simulation results and CD spectra (Daidone et al., 2004; Kaur 

5 References for MD simulations with TFE: Roccatano et al., 2002; Abbate et al., 
2006; Mehrnejad et al., 2007; Kaur et al., 2008.

Figure 5.8 – Cardosin A secondary structure proportions for simulations in the 
presence of 90% TFE and in water. 
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et al., 2004; Sforça et al., 2004; Villa et al., 2006; Gopal et al., 
2009), vibrational CD and infrared absorption (Bour et al., 2008), 

and NMR structure (Sforça et al., 2004; Mazzini et al., 2007). 

The MD simulation studies used for a protein (98 residues) in TFE 

also presented good agreement with the CD spectra data (Flöck 

et al., 2004).

Our in vitro results apparently showed different scenarios. 

Environment with intermediate TFE content opened the tertiary 

structure, despite increasing the secondary structure content 

of the protein. The cosolvent content increase enhanced this 

tendency. The simulation results confirm the propensity found in 

similar published studies, with the preferential interaction of the 

alcohol for protein, limiting water accessible surface. This binding 

exchange upon water stripping is considered very important 

in modelling TFE effects over protein structures (Jasanoff and 

Fersh, 1994). This induced local hydrophobicity may induce the 

opening of the tertiary structure. This tendency is depicted by 

the increase in the hydrophobic portion exposed to the solvent 

(figure 5.5), and is followed in vitro by the fluorescence results. 

Moreover cardosin A conformational alteration in medium with 

high TFE content resulted in the typical “open helical configura-

tion” (Hamada and Goto, 2005), where the a-helical rods are 

exposed to the solvent, confirming the previously admitted 

propensity. The helicity increase may be another result of the 

surface water stripping promoted by the OS: being less polar 

than water and less powerful hydrogen-bond competitor, it may 

promote local backbone H-bond formations.

The structural modifications promoted by the chosen OS would 

be conclusively characterised by application of techniques such 

as light scattering and liquid-state NMR.
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5.2. understanding funCtional alterations

Some of the higher RMS fluctuation residues take part in the cata-

lytic cleft. The closer observation of its structure in figure 5.9 – B 

presents catalytic aspartates in red, and residues with higher varia-

tion (values in figure 5.9 – A) in light blue, if belonging to the active 

cleft, or in magenta, if close located. Alanine 291 and leucine 293 

are contiguous to S’1 and S’2 specificity sub-sites respectively. The 

overall structural changes do not promote a significant loss of the 

active site residues conformation. The increase in flexibility upon 

the presence of high amounts of the OS could propose an increase 

in the enzyme activity (Klibanov, 2001). This may justify the 

increased in vitro activity profile for TFE low percentages (section 

4.2, figure 4.9). But for concentrations higher than 20% no activity 

is detected. The maintenance of the active site conformation is 

coherent with the nature of the enzyme folding in keeping these 

residues at their relative positions. 

The reduced structural flexibility in typical OS is an important 

reason for diminished enzymatic activities. In aqueous environ-

ments, enzymes possess the conformational mobility necessary 

for optimal catalysis. In contrast, organic solvents lack water’s 

ability to engage in multiple hydrogen bonds, and also have lower 

dielectric constants, leading to stronger intra-protein electrostatic 

interactions. Consequently, enzyme molecules are expected to be 

much more rigid in organic media (Klibanov, 2001). There is some 

ambiguity regarding the protonation states of ionisable amino 

acids of the enzyme in organic solutions. But it is known that the 

pH of the aqueous solution from which enzymes are extracted 

influences the enzyme activity in organic solvents, referred to 

as the ‘‘pH memory’’ phenomenon (Zaks and Klibanov, 1985). 

Another important factor of activity regulation is the solvation. 

In low aqueous media water preserves the essential function of 
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controlling the catalytic properties of the enzyme, preserving 

the sufficient conformational flexibility needed for catalysis. 

Enzymatic activity in organic media is thus determined by the 

interactions of the solvent with the water on the enzyme, more 

than with the enzyme itself (Zaks and Klibanov, 1988a). But the 

direct effect of the solvent on the protein (e.g. through binding or 

changing the dielectric constant of the reaction medium) may as 

well be important and should be considered (Zaks and Klibanov, 

1988b). In fact, this activating effect of water can be mimicked 

by other solvents capable of forming multiple hydrogen bonds, 

such as alcohols (Klibanov, 2001).

Besides changing enzyme flexibility, the solvation water can 

affect catalytic activity by affecting specific details of the active 

site hydration. The observed decrease in enzyme activity with 

increasing organic solvent polarity reflects the tendency of these 

solvents to strip water molecules from the enzyme surface, and 

the extent of water stripping increases with the OS polarity (Yang 

et al., 2004).

The bound water is usually measured experimentally in terms 

of the thermodynamic activity of water (aw), assuming that the 

level of water associated with the enzyme is essentially the same 

in different solvents at fixed aw (Bell et al., 1995; Partridge et 
al., 1998; Gupta and Roy, 2004). The same enzyme placed in 

different aqueous/organic mixtures with the same water activity 

has similar catalytic constants, which supports the idea that it is 

the enzyme bound water that modulates the catalytic properties 

of the enzyme. Although there is a good correlation between the 

thermodynamic activity of water and the amount of hydration 

water, it does not always capture the true partitioning of water 

molecules between enzyme and the bulk organic solvent (Bell 

et al., 1997). And once more this relationship does not hold for 
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Figure 5.9 – Analysis of the active site residues with higher RMS fluctuation be-
tween 0% and 90% TFE. A – Table presenting the active site residues and its 
variation values. Variation values higher than 0.5 Å are highlighted, and values 
higher than 1 Å are written in red. B – Active site cleft represented in surface 
mode with the catalytic aspartates in red, some sub-site specificity mapped (S’1 
in orange and S’2 in yellow), and residues with high mobility in light blue. Not 
participating in the catalytic cleft other high variation residues close located are 
represented in magenta. The representation was created using pymol software 
(DeLano Scientific LLC).
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polar solvents such as alcohols, where higher water concentra-

tions are required to reach a particular aw. The capability of acting 

as hydrogen bond partners with the protein, replacing water, 

makes water activity comparisons useless (Bell et al., 1997). The 

decrease in water activity on increasing alcohol concentration 

might be stronger for alcohols such as hexafluoropropanol and 

TFE, which have a pronounced tendency to form clusters (Gast 

et al., 1999).

Cardosin A active cleft sensed the medium alterations. Figure 

5.10 compares the two simulation structures (in water: A and 

D, in 90% TFE: B and E) and the crystal coordinates (C). In the 

last acquired conformation of the TFE simulation, the active site 

surface is also filled in with alcohol molecules, along with some 

water molecules (figure 5.10 - B). As typically, the enzyme surface 

and the active site region are well hydrated in aqueous medium. 

TFE stripped the hydration waters from the enzyme surface and 

active site, confirming the previously studied solvent behaviour. 

MD simulations ran by Yang et al. (2004) showed that water strip-

ping is accompanied by the penetration of polar OS molecules 

(tetrahydrofuran and acetonitrile) into surface crevices and into 

the active site. Polar solvents replaced mobile and weakly bound 

water molecules in the active site and left primarily the tightly 

bound water in that region. On the other hand, the lack of water 

stripping in non-polar OS (octane) allowed efficient and uniform 

hydration of the active site by mobile and weakly bound water 

and some structural water similar to that in aqueous solution. 

In addition to polarity, the ability of penetration of the solvent 

will also depend to some extent on the overall size of the solvent 

molecules (Yang et al., 2004).

The water molecules that resisted TFE striping attack on cardosin 

A active site (figure 5.10 – B and E) are thus the more tightly bond 
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Figure 5.10 – Spatial distribution of solvent molecules in the active site of cardo-
sin A crystal structure (C), in the first 10 ns of the MD simulation in water (A and 
D), and the last acquired conformation of the MD simulation 90% TFE (B and E). A 
and B - Active site cleft represented in surface mode with the catalytic aspartates 
in red and some sub-site specificity mapped (S’1 in orange and S’2 in yellow). 
Solvent molecules are represented as sticks and coloured according to the CPK 
coloring scheme (red: oxygen, white: hydrogen, green: carbon, light blue: fluo-
rine). B, C and D – Representation of the catalytic aspartates and flap residues 
(sticks), solvent molecules (lines) and polar interactions (yellow dashes). The 
representations were created using pymol software (DeLano Scientific LLC).
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and actively important. Beyond its solvent role, water molecules 

mediate enzymatic catalysis: either directly by taking part in the 

reaction, or indirectly through providing a solvation medium for 

reactants, transition state, and products (Fersht, 1999). In the 

aspartic protease catalytic reaction one water molecule, located 

between the active carboxyl, plays the role of nucleophile, and 

another water molecule conserved at the vicinity of the active 

groups forms of a chain of hydrogen-bonded residues between 

the active site flap and the active carboxyls on ligand binding 

(Andreeva and Rumsh, 2001). 

Observation of snapshots from the simulations in aqueous 

medium, 90% TFE and of the protein crystal structure can be 

done in figure 5.10 (D, E and C, respectively). The entrance of 

TFE molecules on the active site may thus have potential conse-

quences in catalysis. However, single TFE molecules are not 

perceived bound to specific zones of the active site, suggesting 

that the interaction between the OS and the protein is fluid like. 

In the cardosin A crystal, each catalytic aspartate is interacting 

with a water molecule, while in the simulations snapshots only 

one aspartate (Asp215) maintains this interaction, and the TFE 

presence is not impairing this H-bonding to the catalytic water. 

The proximity of TFE molecules may have disabled other polar 

interactions with water molecules, but did not replace them. 

Sites with similar characteristics, including amino acids sequence 

homology, have been observed as alcohol common binding 

sites in other proteins (Dwyer and Bradley, 2000). Pepsin, the 

archetype of the AP class, has been crystallised in 20% ethanol 

(Abad-Zapatero et al., 1990). There were ethanol molecules 

in H-bond donation to backbone carbonyl groups at Ser36 and 

Ile128, and also H-bond formation to side-chain group of Ser219. 

The cardosin A correspondent residues found by structural align-
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ment (cardosin A PBD 1B5F vs. porcine pepsin in 20% ethanol 

PDB 3PEP) are 1B5F-Ser36, 1B5F-Thr128 and 1B5F-Ser219, all 

residues participating in specificity sub-sites. When compared, 

TFE is a better H-bond donor, and is more polar than ethanol 

(see section 7, table 7.1), and so these residues may be nomi-

nated as good candidates for the fluoroalcohol interaction. Being 

these residues responsible for interacting with the substrate, this 

capacity for H-bond with the OS emphasizes the hypothesis of 

enzyme activity decrease by competition.

Moreover, the simple presence of TFE may well be disabling 

the substrate access to cardosin A active site. Besides possible 

conformational alterations that may have changed the affinity 

for the (MCA-Lys)Lys-Pro-Ala-Glu-Phe-Phe-Ala-Leu(Lys-DNP) 

peptide, and despite no major changes have been noticed in the 

active site cleft conformation, the presence of TFE molecules may 

certainly preclude the catalytic activity. No secondary structure 

has been found for the peptide in TFE by CD spectra (section 4.2, 

figure 4.8). But its solvation should also be taken into account.

When considering the presence of the alcohol on the active site 

as the main reason for the peptidolytic activity loss, the reactiva-

tion of the enzyme upon dilution in water medium is easy to 

understand. The new water molecules would wash out the excess 

TFE, and compete with the remaining alcohol molecules for the 

totality of the protein surface. By this way the active cleft would 

also be left free for hydration, which would repair the activity 

previously lost.
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This work project followed the conformational alterations of an 

aspartic proteinase promoted by the presence of trifluoroethanol 

in its vicinity. The different conformational states of cardosin A 

were monitored and characterised by a combination of in vitro 
(by intrinsic fluorescence, far-UV circular dichroism, differential 

scanning calorimetry, and size exclusion chromatography) and 

in silico techniques (by molecular dynamics simulations). These 

results were followed by functional evaluation (through peptidol-

ytic activity measurements in vitro).

The presence of 4% TFE content in the medium promoted a 

decreased structural stability, but also an increase in cardosin A 

peptidolytic activity (33-59%). A diminished protein stability was 

detected by calorimetry. This subtle conformational adjustment 

might have occurred in response to modifications of the solvation 

layer of the protein, as suggested by the hydrodynamic results 

6. ConClusions
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for the lowest TFE contents tested. No alterations were detected 

in cardosin A secondary or tertiary structures, neither by spec-

troscopic techniques nor by MD simulations. This conformational 

alteration was interpreted as reversible. The protein return to 

aqueous media recovered activity values to normal. These results 

reinforce the enzyme biological function as being dependent on 

the delicate relationship with its environment. The structural 

machine showed to present some structural flexibility before 

losing its purpose.

Nevertheless, the activity recovery was not possible for higher 

TFE percentages. TFE medium content over 20% irreversibly 

inactivated cardosin A, probably due to the detected tertiary 

structure unfolding, which was characterised as partially revers-

ible. This conformational state showed interesting features, since 

it was detected some increase in secondary structures content, 

along with the opening of the native conformation.

The described structural ordering tendency of TFE was intensified 

for concentrations higher than 70%. A considerable increase in 

the helicity of cardosin secondary structure was detected, despite 

the opened tertiary conformation. These characteristic “open 

helical conformations” promoted by TFE showed to be reversible 

upon solubilisation in aqueous media, with partial recovery of 

activity and tryptophans burying.

MD simulations with TFE and water described local alterations in 

protein flexibility, but no large conformational transformations. 

Instead, the model could offer an exposition of local competition 

of TFE with water for surface solvation. TFE molecules were found 

replacing several hydration molecules in the active site. Despite 

the catalytic water was not lost in the last acquired conforma-

tion of the high TFE content MD simulation, the active site was 

occupied by several TFE molecules, and this occurrence may 
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justify the activity loss. The same reasoning would explain the 

activity recovery upon aqueous dilution, with the release of the 

active site for substrate binding.  

It is our belief that the present work contributed to the compre-

hension of aspartic proteinases conformational native state as a 

flexible and mutable form. 
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water ethanol tfe

Molecular
formula H2O CH3CH2OH CF3CH2OH

Dipole moment
(D) 1.84 2 1.69 2 2.52 2

Dielectric constant
at 25º C 78.5 1 25 2 27 1

Size
(compared to water) 9x

Molecular mass
(g/mol) 18.0153 46.07 100.04

Density
(g/ml) 0.998 0.789 1.393

7. anneXe

Table 7.1 – Chemical and physical parameters for water, ethanol and 
2,2,2-trifluoroethanol (TFE). References: 1 Buck, 1998; 2 Perham et al., 2006.
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