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IBVP: STABILITY ANALYSIS
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Abstract: The aim of this paper is the qualitative analysis from theoretical and
numerical points of view of an integro-differential initial boundary value problem
where the reaction term presents a certain memory effect. Stability results are
established in both cases. As in certain cases the integro-differential initial bound-
ary value problem can be seen as a differential initial boundary value problem,
the results obtained for the integro-differential formulation are compared with the
correspondent results stated for the differential initial boundary value problem. Nu-
merical results illustrating the theoretical results are also included.
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1. Introduction

In this paper we study, from theoretical and numerical point of view, the
initial boundary values problem (IBVP)

∂u

∂t
= D

∂2u

∂x2
− �

∫ t

0

e−
(t−s)u(s) ds+ f(u) , t ∈ (0, T ] , (1)

where 
 and � are positive constants,

u(a, t) = ua(t), u(b, t) = ub(t), t ∈ (0, T ] , (2)

u(x, 0) = u0(x), x ∈ (a, b) . (3)

In (1), f represents a nonlinear term depending on u. In certain applications
f takes the form

f(u) = u(1− u)(u− �) , (4)

where � is a positive constant with 0 < � < 1.
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Equation (1) with f defined by (4) was studied for instance in [3] and [9]
and arises naturally from the system of partial differential equations

⎧



⎨



⎩

∂u

∂t
= D

∂2u

∂x2
+ f(u)− v

∂v

∂t
= �u− 
v .

(5)

This system, with f defined by (4), is used to model the nerve impulse
transmission and is known by FitzHugh-Nagumo equation. In this case u

represents the membrane potential , x measures the distance along the axon,
t represents the time, the term u(1− u)(u− �) is analogous to an instanta-
neous turning on of sodium permeability and v is a recovery variable and is
analogous to the turning on of potassium permeability. In the last decade
this problem has been largely considered in the literature and without be
exhaustive we mention [1], [6], [7], [8], [10] and [11].
Stability estimates with respect to the L2-norm of the solution of the

integro-differential model (1), (2), (3) and of its ”weight past in time” will
be established in this paper. The approach used here was considered by
the authors and their collaborators for instance in [2], [4] and [5]. As the
integro-differential IBVP (1), (2), (3) can be seen as the differential IBVP
(2), (3), (5), with convenient boundary and initial conditions on v, such sta-
bility estimates will be compared with the ones that will be deduced for the
last problem.
This paper also focuses the study of finite difference methods (FDM) to

solve numerically the IBVP (1), (2), (3) which can be seen as a fully piecewise
linear finite element method. Stability results for such FDM are established
being the stability estimates discrete versions of the correspondent estimates
for the continuous model. As the integro-differential IBVP (1), (2), (3), is
equivalent to the differential IBVP (2), (3), (5), the stability estimates for
the FDM of the the differential IBVP are compared with the ones obtained
for the discretizations of the integro-differential problem.
An inspection to the numerical methods studied enable us to conclude that

their application leads to the need of great storage of information in each
time level. However, as we will see, this disadvantage is apparent because
the methods can be rewritten as three times level schemes.
The paper is organized as follows. In Section 2 the stability of the integro-

differential problem (1),(2), (3) is studied. The correspondent study for the
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differential problem (2), (3), (5), is presented also in this section. FDM for
the integro-differential problem are proposed in Section 3. In this section are
also presented stability results for the FDM for IBVP (2), (3), (5). Finally,
in Section 4 are included some numerical results illustrating the theoretical
results.

2. Stability analysis

2.1. Integro-differential IBVP. By L2(a, b), H1(a, b) and H1
0(a, b) we rep-

resent the usual spaces. The norm in L2(a, b) and H1(a, b) are denoted by
∥.∥ and ∥.∥1, respectively. Let L2(0, T,H1

0(a, b)) be the space of functions u
defined on [a, b]× [0, T ] such that, for each t ∈ [0, T ], u(t) ∈ H1

0(a, b) and the
norm

∫ T

0

∥u(t)∥21 dt

is finite. By u(t) we represent the x-function u(., t).
As our aim is to establish stability results, we assume that the bound-

ary conditions (2) are homogeneous. Moreover the stability result is estab-
lished for the weak solution u ∈ L2(0, T,H1

0(a, b)) such that, for t ∈ (0, T ],
∂u

∂t
(t) ∈ L2(a, b) and
⎧









⎨









⎩

(
∂u

∂t
(t), w) +D(

∂u

∂x
(t), w′) = −�(

∫ t

0

e−
(t−s)u(s) ds, w) + (f(u(t)), w),

∀w ∈ H1
0(a, b) ,

u(0) = u0 .

(6)
The proof is based on the energy method.

Theorem 1. Let f be such that f(0) = 0 and f ′ is bounded. If u ∈

L2(0, T,H1
0(a, b)) satisfies (6) and is such that

∂u

∂t
(t) ∈ L2(a, b) then, for

t ∈ [0, T ],

(1)

∥u(t)∥2+�∥

∫ t

0

e−
(t−s) u(s) ds∥2 ds+2D

∫ t

0

∥
∂u

∂x
(s)∥2 ds ≤ Si,g(t)∥u0∥

2, (7)

with
Si,g(t) = e2 max{f ′

sup,0}t , (8)
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(2)

∥u(t)∥2 + �∥

∫ t

0

e−
(t−s) u(s) ds∥2 ≤ Si(t) ∥u0∥
2, (9)

with

Si(t) = e
2 max{f ′

sup−
D

(b−a)2
,−
} t ,

(10)

where f ′
sup = sup

y∈ℝ
f ′(y).

Proof: Considering in (6) w replaced by u(t) we easily get

1

2

d

dt
∥u(t)∥2 +D

d

dt

∫ t

0

∥
∂u

∂x
(s)∥2 ds = −�

(
∫ t

0

e−
(t−s)u(s) ds , u(t)

)

+
(

f(u(t)), u(t)
)

.

Due to the fact that f(0) = 0, we have f(u(t)) = f ′(�) u(t), for some �

between 0 and u(t), and so
(

f(u(t)), u(t)
)

≤ f ′
sup ∥u(t)∥

2. As

(
∫ t

0

e−
(t−s) u(s) ds, u(t)

)

= 
∥

∫ t

0

e−
(t−s) u(s) ds∥2

+
1

2

d

dt
∥

∫ t

0

e−
(t−s) u(s) ds∥2 ,

we deduce

d

dt

(

∥u(t)∥2 + �∥

∫ t

0

e−
(t−s) u(s) ds∥2 + 2D

∫ t

0

∥
∂u

∂x
(s)∥2 ds

)

≤ −2
�∥

∫ t

0

e−
(t−s)u(s) ds∥2 + 2f ′
sup∥u(t)∥

2.

(11)

The inequality (11) enable us to conclude (7) with Si,g(t) given by (8).

As ∥u(t)∥2 ≤ (b− a)2∥
∂u

∂x
(t)∥2 the proof of inequality (9) follows the proof

of (7).

Remark 1. Theorem 1 was established under the condition that f ′ is bounded.
This assumption can be weakened if the solution of (6) satisfies

∣u(x, t)∣ ≤ L, x ∈ [a, b], t ∈ [0, T ] , (12)
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for some positive constant L. Supposing that u satisfies (12) then we only
need to assume that f ′ is bounded in [−L, L]. Moreover, if f ′ is continuous
then f ′

sup should be replaced by f ′
max := max

∣y∣≤L
f ′(y) .

Remark 2. From the inequality (7) we conclude that if f ′
sup > 0 then

∥u(t)∥2 ≤ M,

∥

∫ t

0

e−
(t−s) u(s) ds∥2 ds ≤ M,

∫ t

0

∥
∂u

∂x
(s)∥2 ds ≤ M,

for some positive constantM when we consider bounded time intervals. More-
over from the inequality (9) we also conclude that if

f ′
sup <

D

(b− a)2
, (13)

then

∥u(t)∥2 → 0 ,

∥

∫ t

0

e−
(t−s) u(s) ds ∥2 ds → 0,
(14)

when t → +∞ .

2.2. Differential IBVP. Let L2(0, T, L2(a, b)) be the space of functions v
defined on [a, b]× [0, T ] such that, for each t, v(t) ∈ L2(a, b) and

∫ T

0

∥v(t)∥2 dt < ∞.

Let u ∈ L2(0, T,H1
0(a, b)) and v ∈ L2(0, T, L2(a, b)) be such that, for each

time t ∈ (0, T ]

v(a, t) = v(b, t) = 0,
∂u

∂t
(t),

∂v

∂t
(t) ∈ L2(a, b)
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and
⎧



















⎨



















⎩

(
∂u

∂t
(t), w) +D(

∂u

∂x
(t), w′) = (f(u(t)), w)− (v(t), w), ∀w ∈ H1

0(a, b) ,

(
∂v

∂t
(t), q) = �(u(t), q)− 
(v(t), q), ∀q ∈ L2(a, b) ,

u(0) = u0 ,

v(0) = v0 .

(15)
In what follows an estimate for ∥u(t)∥2+∥v(t)∥2 is established being its proof
based on the energy method.

Theorem 2. Let f be such that f(0) = 0 and f ′ is bounded. If u ∈
L2(0, T,H1

0(a, b)) and v ∈ L2(0, T, L2(a, b)) satisfying (15) and are such that
∂u

∂t
(t),

∂v

∂t
(t) ∈ L2(a, b) then, for t ∈ [0, T ],

(1)

∥u(t)∥2 + ∥v(t)∥2 + 2D

∫ t

0

∥
∂u

∂x
(s)∥2 ds ≤ Sd,g(t)

(

∥u0∥
2 + ∥v0∥

2
)

, (16)

with
Sd,g(t) = emax{∣�−1∣+2f ′

sup, ∣�−1∣−2
,0} t, (17)

(2)
∥u(t)∥2 + ∥v(t)∥2 ≤ SD(t)

(

∥u0∥
2 + ∥v0∥

2
)

, (18)

with
SD(t) = e

max{∣�−1∣+2f ′

sup−2 D

(b−a)2
, ∣�−1∣−2
} t

. (19)

Proof: Taking in (15) w and q replaced by u(t) and v(t) respectively, we
easily obtain

1

2

d

dt

(

∥u(t)∥2 + ∥v(t)∥2
)

= −D∥
∂u

∂x
(t)∥2 +

(

f(u(t)), u(t)
)

+(� − 1)
(

v(t), u(t)
)

− 
∥v(t)∥2 .

Following the proof of Theorem 1 we conclude the proof of Theorem 2.

Remark 3. A remark analogous to Remak 1 can be stated for the smoothness
of the reaction term f.
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Remark 4. Let us suppose that we compute v(t) from the second equation
of (5) using the boundary and initial conditions such that (5) leads to (1).
Looking to the stability factors Sd,g(t) and SD(t) arising in the stability upper
bounds established in Theorem 2, we observe that they are greater than the
correspondent stability factors Si,g(t) and Si(t).

Remark 5. In the context of the previous remark, we are not able to conclude
the convergence (14) when f ′

sup satisfies (13).

3. FDM

3.1. Integro-differential IBVP. Let us consider in [a, b] the grid Iℎ :=
{xi : i = 0, . . . , N} with x0 = a, xN = b and xi − xi−1 = ℎ. In [0, T ] we
define a time grid {tj : j = 0, . . . ,M} with t0 = 0, tM = T and tj+1−tj = Δt.

We discretize the second partial derivative of u with respect to x in (1)
using the second order centered finite-difference operator D2,x defined by

D2,xwℎ(xi, tj) :=
w(xi+1, tj)− 2w(xi, tj) + w(xi−1, tj)

ℎ2
, i = 1, . . . , N − 1 .

By D−x and D−t we denote the backward finite-difference operators defined
by

D−xwℎ(xi, tj) :=
wℎ(xi, tj)− wℎ(xi−1, tj)

ℎ
, i = 1, . . . , N ,

D−twℎ(xi, tj) :=
wℎ(xi, tj)− wℎ(xi, tj−1)

Δt
, j = 1, . . . ,M .

The stability results will be established with respect to a norm that we
present in what follows and that can be seen as a natural descritization of
the L2-norm. By L2

0(Iℎ) we denote the space of grid functions wℎ defined in Iℎ
such that
wℎ(x0) = wℎ(xM) = 0. In L2

0(Iℎ) we consider the discrete inner product

(vℎ, wℎ)ℎ := ℎ

N−1
∑

i=1

vℎ(xi)wℎ(xi), vℎ, wℎ ∈ L2
0(Iℎ) , (20)

and ∥.∥ℎ denotes the norm induced by the above inner product.
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In this section we study the following FDM

D−tu
n+1
ℎ (xi) = DD2,xu

n+1
ℎ (xi)− �Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ(xi) + f

(

un+1
ℎ (xi)

)

,

i = 1, ..., N − 1, n = 0, . . . ,M − 1,
(21)

where

u
j
ℎ(x0) = ua(tj), u

j
ℎ(xN) = ub(tj), j = 1, . . . ,M,

u0
ℎ(xi) = u0(xi), i = 0, . . . , N .

(22)

This method can be seen as a discretization of the integro-differential IBVP
(1), (2), (3), when the spatial derivative is discretized by the operator D2,x

and the right rectangular rule is considered on the discretization of integral
term. However, method (21) can also be seen as a discretization of the weak
differential problem (6). In order to show that, at least for homogeneous
boundary conditions, let Pℎ be the piecewise linear interpolation operator
induced by the grid Iℎ. Let �i, i = 1, . . . , N − 1, be the usual hat functions.
Considering in the variational equality of (6) u(t) and w replaced by

Pℎuℎ(t) =

N−1
∑

i=1

uℎ(xi, t)�i(x)

and

Pℎwℎ =

N−1
∑

i=1

wℎ(xi)�i(x),

respectively, we get

(
∂Pℎuℎ

∂t
(t), Pℎwℎ) +D(

∂Pℎuℎ

∂x
(t), Pℎw

′
ℎ) = −�(

∫ t

0

e−
(t−s)Pℎuℎ(s) ds, Pℎww)

+(f(Pℎuℎ(t)), Pℎwℎ) ,
(23)
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for all wℎ ∈ L2
0(Iℎ). Replacing in (23) the inner product (., .) by the discrete

inner product (., .)ℎ we obtain

(
d

dt
uℎ(t), wℎ)ℎ +D(D−xuℎ(t), D−xwℎ)ℎ,+ = −�(

∫ t

0

e−
(t−s)uℎ(s) ds, ww)ℎ

+(f(uℎ(t)), wℎ)ℎ ,
(24)

for all wℎ ∈ L2
0(Iℎ), where

(D−xuℎ(t), D−xwℎ)ℎ,+ = ℎ

N
∑

i=1

D−xuℎ(xi, t)D−xwℎ(xi).

Taking in (24) t = tn+1 and considering the time derivative replaced by the
backward finite difference operator and the integral term descritized by the
right-hand side rectangular rule we obtain

(D−tu
n+1
ℎ , wℎ)ℎ +D(D−xu

n+1
ℎ , D−xwℎ)ℎ,+ = −�Δt

n+1
∑

j=1

e−
(tn+1−tj)(uj
ℎ, wℎ)ℎ

+(f(un+1
ℎ ), wℎ)ℎ ,

(25)
for all wℎ ∈ L2

0(Iℎ).
Finally, the method (21)-(22) is established using the fact

(D−xu
n+1
ℎ , D−xwℎ)ℎ,+ = −(D2,xu

n+1
ℎ , wℎ)ℎ,

and replacing in (25) wℎ by the grid function

wℎ,i(xj) =

{

1 , j = i

0 , j ∕= i ,

for i = 1, . . . , N − 1.
The previous considerations allow us to conclude that the numerical ap-

proximation computed with method (21),(22), un
ℎ(xi), i = 1, . . . , N, n =

1, . . . ,M − 1, is a finite difference approximation for u(xi, tn), where u is
solution of (1),(2),(3) being Pℎu

n
ℎ an approximation for the weak solution

defined by (6).

Theorem 3. Let u
j
ℎ be defined by (21), (22) with homogeneous boundary

conditions. If the source term f is such that f(0) = 0 and f ′ is bounded,
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then

∥un+1
ℎ ∥2ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ ≤ (Si(Δt))n+1 ∥u0∥

2
ℎ , (26)

where

Si(Δt) =
1

min{1, 1 + Δt
(

�Δt+ 2
(

D
(b−a)2 − f ′

sup

))

}
(27)

provided that Δt satisfies

1 + Δt
(

�Δt+ 2
( D

(b− a)2
− f ′

sup

))

> 0 . (28)

Proof:

(a) Let us consider (21) with n ∈ ℕ. Taking in (25) wℎ replaced by un+1
ℎ

and combining the obtained equality with

2(

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ, u

n+1
ℎ )ℎ = ∥

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ

−e−2
Δt∥
n
∑

j=1

e−
(tn−tj)u
j
ℎ∥

2
ℎ + ∥un+1

ℎ ∥2ℎ

and with the discrete Friedrich-Poincaré inequality

∥un+1
ℎ ∥2ℎ ≤ (b− a)2∥D−xu

n+1
ℎ ∥2ℎ,+,

where ∥D−xu
n+1
ℎ ∥2ℎ,+ = (D−xu

n+1
ℎ , D−xu

n+1
ℎ )ℎ,+, we deduce

∥un+1
ℎ ∥2ℎ +

�

2
Δt2∥un+1

ℎ ∥2ℎ +
ΔtD

(b− a)2
∥un+1

ℎ ∥2ℎ +
�

2
Δt2∥

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ

≤
(

un
ℎ, u

n+1
ℎ

)

ℎ
+ e−2
Δt �

2
Δt2∥

n
∑

j=1

e−
(tn−tj)u
j
ℎ∥

2
ℎ +Δt

(

f(un+1
ℎ ), un+1

ℎ

)

ℎ
.

(29)
Using the Cauchy-Schwarz inequality and the estimate

(

f(un+1
ℎ ), un+1

ℎ

)

ℎ
≤ f ′

sup∥u
n+1
ℎ ∥2ℎ ,



INTEGRO-DIFFERENTIAL IBVP VERSUS DIFFERENTIAL IBVP: STABILITY ANALYSIS 11

we obtain

(

1 + �Δt2 +
2ΔtD

(b− a)2
− 2Δtf ′

sup

)

∥un+1
ℎ ∥2ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ

≤ ∥un
ℎ∥

2
ℎ + e−2
Δt�∥Δt

n
∑

j=1

e−
(tn−tj)u
j
ℎ∥

2
ℎ .

(30)

The inequality (30) easily leads to

∥un+1
ℎ ∥2ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ ≤ Si(Δt)

(

∥un
ℎ∥

2
ℎ + �∥Δt

n
∑

j=1

e−
(tn−tj)u
j
ℎ∥

2
ℎ

)

,

with Si(Δt) defined by (27) and provided that Δt satisfies (28).
(b) We now consider (21) with n = 0. From (25) with n = 0 and wℎ

replaced by u1
ℎ, following (a) it can be shown that

(

1 + Δt
(

�Δt+
2D

(b− a)2
− 2f ′

sup

)

)

∥u1
ℎ∥

2
ℎ + �∥Δt u1

ℎ∥
2
ℎ ≤ ∥u0

ℎ∥
2
ℎ .

Finally, the inequality (26) follows from (a) and (b).

Remark 6. Theorem 3 holds assuming that f ′ is bounded. This assumption
can be weakened if ∣un

ℎ(xi)∣ ≤ L for all i and for all n, for some constant
L > 0. In this case, Theorem 3 can be established if f ′ is bounded in [−L, L]
being f ′

sup = sup
∣y∣≤L

f ′(y). Moreover, f ′ is continuous in [−L, L], then Theorem

3 holds with f ′
sup replaced by f ′

max = max
∣y∣≤L

f ′(y).

Remark 7. Theorem 3 is established provided that the time stepsize Δt sat-
isfies (28). We consider in what follows practical conditions that imply the
last stepsize restriction.
If f ′

sup, D and � are such that

( D

(b− a)2
− f ′

sup

)2

< �, (31)

or
( D

(b− a)2
− f ′

sup

)2

> � and
D

(b− a)2
− f ′

sup ≥ 0, (32)
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then (28) holds for all time stepsize. Otherwise, if
( D

(b− a)2
− f ′

sup

)2

> � and
D

(b− a)2
− f ′

sup < 0, (33)

then Δt satisfies (28) if and only if

Δt < Δt0 :=
1

�

(

f ′
sup −

D

(b− a)2
−

√

( D

(b− a)2
− f ′

sup

)2

− �
)

. (34)

Remark 8. i) If (32) holds then min{1, 1+Δt
(

�Δt+2
(

D
(b−a)2

−f ′
max

))

} =

1 and consequently Si(Δt) = 1. In this case (26) is equivalent to

∥un+1
ℎ ∥2ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ ≤ ∥u0∥

2
ℎ ,

without any restriction on the time stepsize which means that the
method (21) is unconditionally stable.

ii) If (33) holds then for Δt satisfying

Δt < Δt1 := min{
2

�

(

f ′
sup −

D

(b− a)2

)

,Δt0}, (35)

the inequality (26) holds. Since Si(Δt) verifies

Si(Δt) ≤ 1 + Δt
2
(

f ′
sup −

D
(b−a)2

)

1 + Δt1

(

�Δt1 + 2
(

D
(b−a)2

− f ′
sup

)) ,

from (26) we obtain

∥un+1
ℎ ∥2ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ ≤ e(n+1)Δt�∥u0∥

2
ℎ ,

with � =
2
(

f ′
sup −

D
(b−a)2

)

1 + Δt1

(

�Δt1 + 2
(

D
(b−a)2 − f ′

sup

)). In this case the method

(21) is stable for Δt ∈ (0,Δt1) with Δt1 defined by (35).

Remark 9. In the computation of the numerical solution at time level n+1
with the method (21) we use u

j
ℎ, j = 0, . . . , n. Consequently, if n increases
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then increases the storage of needed information. Nevertheless this disadvan-
tage is only apparent because the method can be rewritten in the following
form:

D−tu
1
ℎ(xi) = DD2,xu

1
ℎ(xi)− �Δte−
Δtu1

ℎ(xi) + f(u1
ℎ(xi)), i = 1, . . . , N − 1,

D−tu
n+1
ℎ (xi) = DD2,xu

n+1
ℎ (xi)− �Δtun+1

ℎ (xi) + f(un+1
ℎ (xi))

+e−
Δt
(

D−tu
n
ℎ(xi)−DD2,xu

n
ℎ(xi)− f(un

ℎ(xi))
)

, i = 1, . . . , N − 1,

n = 1, . . . ,M − 1.

In the method (21),(22) the reaction term f is considered at time level
tn+1. Due to this fact, we need to solve a nonlinear system in each time step.
When the reaction term f is nonstiff this term can be considered at time
level tn. In this case the previous method is replaced by the following one

D−tu
n+1
ℎ (xi) = DD2,xu

n+1
ℎ (xi)− �Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ(xi) + f

(

un
ℎ(xi)

)

,

i = 1, . . . , N − 1, n = 0, . . . ,M − 1 ,
(36)

that belongs to the well known class of IMEX methods.
For the IMEX method (36) holds a stability result analogous to Theorem

3. In fact, as

(

f(un
ℎ), u

n+1
ℎ

)

ℎ
≤

1

2
∥un

ℎ∥
2
ℎ +

1

2
f ′ 2
sup∥u

n+1
ℎ ∥2ℎ ,

following the proof of this result, it can be shown that

min{1 + �Δt2 +
2DΔt

(b− a)2
− f ′ 2

supΔt, 1}

(

∥un
ℎ∥

2
ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ

)

≤ max{1 + Δt, 1}

(

∥un
ℎ∥

2
ℎ + �∥Δt

n
∑

j=1

e−
(tn−tj)u
j
ℎ∥

2
ℎ

)

,
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which is equivalent to

∥un
ℎ∥

2
ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ

≤ Si,e(Δt)

(

∥un
ℎ∥

2
ℎ + �∥Δt

n
∑

j=1

e−
(tn−tj)u
j
ℎ∥

2
ℎ

)

,

with

Si,e(Δt) =
1 + Δt

min{1 + Δt
(

�Δt+ 2D
(b−a)2 − f ′ 2

sup

)

, 1}
, (37)

provided that the time stepsize Δt satisfies

1 + Δt
(

�Δt+
2D

(b− a)2
− f ′ 2

sup

)

> 0. (38)

The stability result for the IMEX method (36) is established now.

Theorem 4. Let uj
ℎ be defined by (36) with homogeneous boundary condi-

tions. Under the assumptions of Theorem 3 we have

∥un+1
ℎ ∥2ℎ + �∥Δt

n+1
∑

j=1

e−
(tn+1−tj)u
j
ℎ∥

2
ℎ ≤

(

Si,e(Δt)
)n+1

∥u0
ℎ∥

2
ℎ , (39)

provided that Δt satisfies (38) and with Si,e(Δt) defined by (37).

Remark 10. i) For the IMEX method (36) hold remarks analogous to

Remark 6 and 7 with f ′
max and f ′

sup replaced by
1

2
f ′ 2
max and

1

2
f ′ 2
sup, re-

spectively.
ii) Remark 8 also holds for the IMEX method (36) with Si(Δt) and f ′

sup

replaced by Si,e(Δt) and
1

2
f ′ 2
sup, respectively. For Si,e holds

Si,e(Δt) ≤ 1 + Δt
1 + 2

(

1
2f

′ 2
sup −

D
(b−a)2

)

1 + Δt1

(

�Δt1 + 2
(

D
(b−a)2 −

1
2f

′ 2
sup

)) ,

where Δt1 is defined by (35) with f ′
sup replaced by

1

2
f ′ 2
sup.
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3.2. Differential IBVP. We mentioned above that the integro-differential
IBVP (1), (2), (3) is equivalent, for certain initial and boundary conditions,
to the differential IBVP (2),(3), (5). Then we can solve computationally the
first problem considering numerical methods for the second one.
In this section we study the implicit FDM

⎧

⎨

⎩

D−tu
n+1
ℎ (xi) = DD2,xu

n+1
ℎ (xi)− vn+1

ℎ (xi) + f
(

un+1
ℎ (xi)

)

D−tv
n+1
ℎ (xi) = �un+1

ℎ (xi)− 
vn+1
ℎ (xi) ,

(40)

i = 1, . . . , N − 1, n = 0, . . . ,M − 1, and
⎧



⎨



⎩

u
j
ℎ(x0) = ua(tj), u

j
ℎ(xN) = ub(tj), j = 1, . . . ,M,

v
j
ℎ(x0) = va(tj), vnℎ(xN) = vb(tj), j = 1, . . . ,M,

u0
ℎ(xi) = u0(xi), v0ℎ(xi) = v0(xi), i = 1, . . . , N − 1,

(41)

where f(u) represents the reaction, not necessarily defined by f(u) = u(1−
u)(u − �). This methods can be seen as a discretization of the differential
problem (2), (3), (5) or it can be used to compute an approximation to
the weak solution of the variational problem (15) because, for homogeneous
boundary conditions, un

ℎ, v
n
ℎ satisfy

{

(D−tu
n+1
ℎ , wℎ)ℎ +D(D−xu

n+1
ℎ , D−xwℎ)ℎ,+ = −(vn+1

ℎ , wℎ)ℎ + (f(un+1
ℎ ), wℎ)ℎ,

(D−tv
n+1
ℎ , qℎ)ℎ = �(un+1

ℎ , qℎ)ℎ − 
(vn+1
ℎ , qℎ)ℎ ,

(42)
for all wℎ, qℎ ∈ L2

0(Iℎ), with u0
ℎ, v

0
ℎ defined as in (41).

Theorem 5. Let uj
ℎ, v

j
ℎ, j = 1, . . . ,M, be defined by (40), (41) with homo-

geneous boundary conditions. If f(0) = 0 and f ′ is bounded then

∥un+1
ℎ ∥2ℎ + ∥vn+1

ℎ ∥2ℎ ≤
(

Sd(Δt)
)n+1 (

∥u0
ℎ∥

2
ℎ + ∥v0ℎ∥

2
ℎ

)

, (43)

with the stability factor Sd(Δt) defined by

Sd(Δt) =
1

min
{

1 + Δt( 2D
(b−a)2 − 2f ′

sup − ∣� − 1∣), 1 + Δt(2
 − ∣� − 1∣)
}.

(44)
and provided that Δt satisfies

1 +Δt(
2D

(b− a)2
− 2f ′

sup − ∣� − 1∣) > 0 and 1 +Δt(2
 − ∣� − 1∣) > 0 . (45)
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Proof: Let us consider (42) with wℎ and qℎ replaced by un+1
ℎ and vn+1

ℎ ,
respectively. It is easy to show that the following inequality holds

1
2∥u

n+1
ℎ ∥2ℎ + (12 + 
Δt)∥vn+1

ℎ ∥2ℎ ≤
1
2∥u

n
ℎ∥

2
ℎ +

1
2∥v

n
ℎ∥

2
ℎ −Δt∥D−xu

n+1
ℎ ∥2ℎ,+

+Δt(f(un+1
ℎ ), un+1

ℎ ) + Δt(� − 1)(un+1
ℎ , vn+1

ℎ ).
(46)

Considering in (46) the discrete Friedrich-Poincaré inequality

∥un+1
ℎ ∥2ℎ ≤ (b− a)2∥D−xu

n+1
ℎ ∥2ℎ,+

and the inequality (f(un+1
ℎ ), un+1

ℎ ) ≤ f ′
sup∥u

n+1
ℎ ∥, we obtain

(

1 + Δt(
2D

(b− a)2
− 2f ′

sup − ∣� − 1∣)∥un+1
ℎ ∥2ℎ +

(

1 + Δt(2
 − ∣� − 1∣)
)

∥vn+1
ℎ ∥2ℎ

≤ ∥un
ℎ∥

2
ℎ + ∥vnℎ∥

2
ℎ

witch allow us to conclude (43) provided that the time stepsize satisfies (45).

Remark 11. Theorem 5 was established assuming that the reaction term f ′ is
bounded. This assumption can be weakened if we suppose that the numerical
solution un

ℎ(xi) is bounded for all i and n.

Remark 12. If the coefficients D, 
 and the reaction term t are such that

D

(b− a)2
− f ′

sup − 
 < 0, (47)

and Δt0 is fixed satisfying the following restriction

1 + Δt0(
2D

(b− a)2
− 2f ′

sup − ∣� − 1∣) > 0, (48)

then (43) holds, for Δt ∈ (0,Δt0], with Sd(Δt) such that

Sd(Δt) = 1 + Δt � (49)

and

� =
2f ′

sup −
2D

(b−a)2
+ ∣� − 1∣

1 + Δt0(
2D

(b−a)2 − 2f ′
sup − ∣� − 1∣)

.

Consequently we have

∥un+1
ℎ ∥2ℎ + ∥vn+1

ℎ ∥2ℎ ≤ e(n+1)Δt�
(

∥u0
ℎ∥

2
ℎ + ∥v0ℎ∥

2
ℎ

)

,
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for Δt ∈ (0,Δt0], which means that the implicit method (40) is conditionally
stable.
Otherwise, if (47) does not holds then (43) holds with

Sd(Δt) = 1−
Δt
(

2
 − ∣1− �∣
)

1 + Δt0
(

2
 − ∣1− �∣
) ,

for Δt ∈ (0,Δt0] where Δt0 satisfies 1 + Δt0
(

2
 − ∣1− �∣
)

> 0.
and without any restriction on the stepsize Δt. Consequently we have

∥un+1
ℎ ∥2ℎ + ∥vn+1

ℎ ∥2ℎ ≤ ∥u0
ℎ∥

2
ℎ + ∥v0ℎ∥

2
ℎ,

which means that the implicit method (40) is conditionally stable.

If the reaction term in nonstiff then the term f can be considered evaluated
at un

ℎ, and the method (40) is replaced by the IMEX method
{

D−tu
n+1
ℎ (xi) = DD2,xu

n+1
ℎ (xi)− vn+1

ℎ (xi) + f (un
ℎ(xi))

D−tv
n+1
ℎ (xi) = �un+1

ℎ (xi)− 
vn+1
ℎ (xi) ,

(50)

i = 1, . . . , N − 1, n = 0, . . . ,M − 1 . Using the IMEX method (50) we reduce
the computational cost of method (40) because in each time step we only
need to solve a linear system.
For the IMEX method (50) holds a result analogous to Theorem 5 with

f ′
sup replaced by

1

2
f ′ 2
sup, that is

1 + Δt(
2D

(b− a)2
− f ′ 2

sup − ∣� − 1∣) > 0 and 1 + Δt(2
 − ∣� − 1∣) > 0 . (51)

Moreover Remarks 11 and 12 also hold with the previous modifications.

4. Numerical results

In this section our aim is to illustrate the theoretical results obtained in
the last section. Let SCi and SCi,e be defined by

SCi = max{0, 1 + Δt(�Δt+
2D

(b− a)2
− 2f ′

sup)}

and

SCi,e = max{0, 1 + Δt(�Δt+
2D

(b− a)2
− f ′ 2

sup)}.
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These two terms arise in the definitions of the stability conditions (28) and
(38) and allow us to compare these conditions when the implicit method (21)
and the IMEX method (36) are used.
By SCd and SCd,e we represent the following quantities

SCd = max{0,min{1+Δt(
2D

(b− a)2
−2f ′

sup−∣�−1∣), 1+Δt(2
−∣�−1∣)} },

SCd,e = max{0,min{1+Δt(
2D

(b− a)2
− f ′ 2

sup−∣�− 1∣), 1+Δt(2
−∣�− 1∣)} }

which arise in the stability restrictions (45) and (51) for the methods (40)
and (50), respectively.
In what follows we measure the stability conditions (28), (38), (45) and

(51) using SCi, SCi,e, SCd and SCd,e. We consider D = 1, � = 0.008, 
 =
0.02032, (a, b) = (0, 100) and different values of f ′

sup.
In Figure 1 we plot SCi, SCi,e, SCd and SCd,e for f ′

sup = −1. The condi-
tions (38), (45) for the methods (36) and (40), respectively, have the same
behaviour. The condition (51) for the method (50) is the strongest condition
being the condition (28) the weaker one.
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Figure 1. SCi, SCi,e, SCd and SCd,e for f
′
sup = −1

In Figure 2 we plot SCi, SCi,e, SCd and SCd,e for f
′
sup = 0.5. In this case the

IMEX method (36) presents the weaker stability condition and the strongest
condition is presented by the implicit method (40).
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Figure 2. SCi, SCi,e, SCd and SCd,e for f
′
sup = 0.5

The functions SCi, SCi,e, SCd and SCd,e for f
′
sup = 5 are plotted in Figure 3.

The stability restrictions for the two methods (28) and (40) with the implicit
reaction term present the same behaviour while the stability restrictions for
the methods (36) and (50) have the same behaviour.
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Figure 3. SCi, SCi,e, SCd and SCd,e for f
′
sup = 5.

From Figures 1, 2 and 3 we observe that the stability restrictions for the
methods for the IBVP in the integro-differential form are weaker than the



20 J.R. BRANCO AND J.A. FERREIRA

stability conditions for the correspondent methods for the IBVP in the dif-
ferential form.
We now illustrate the behaviour of the stability factors Si(Δt) and Si,e(Δt)

defined by (27), (37), respectively, for the methods (21) and (36) used for the
IBVP in the integro-differential form. In what follows we also consider the
behaviour of the stability factors Sd(Δt) defined by (44) and Sd,e(Δt) defined
by

SCd,e(Δt) =
1 + Δt

min{1 + Δt( 2D
(b−a)2

− f ′ 2
sup − ∣� − 1∣), 1 + Δt(2
 − ∣� − 1∣)}

for the methods (40) and (50), respectively, that were considered for the
IBVP in the differential form.
In Figure 4 we plot Si(Δt), Si,e(Δt), Sd,e(Δt) and SCd,e for f

′
sup = −1. The

stability factors of the implicit methods are lower than the stability factors
of the correspondent IMEX methods. Moreover, when the parameter f ′

sup

increases the same behaviour can be observed as it can be seen in Figure 5.
However the methods (40), (50) for the IBVP in the differential form present
higher stability factors. For greater values of f ′

sup the implicit methods (21)
and (40) present lower stability factors. This behaviour is well illustrated in
Figure 6.
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Figure 4. The stability factors Si(Δt), Si,e(Δt), Sd(Δt) and
Sd,e(Δt) for f ′

sup = −1.
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Figure 5. The stability factors Si(Δt), Si,e(Δt), Sd(Δt) and
Sd,e(Δt) for f ′

sup = 0.5.
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Figure 6. The stability factors Si(Δt), Si,e(Δt), Sd(Δt) and
Sd,e(Δt) for f ′

sup = 5.

Finally, we illustrate the performance of the methods considered for the
IBVP in the integro-differential form. In Figures 7 we plot the numerical solu-
tions obtained with the implicit method (21) and with the IMEX method (36)
for f(u) = u(1− u)(u− �), D = 1, � = 0.008, 
 = 0.0203, � = 0.1, (a, b) =
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(0, 100), T = 200, ℎ = 1, Δt = 4 and u0(x) = 0, x ∈ (0, 100), u(0, t) = 1, t >
0, u(100, t) = 0, t > 0.
As f ′

sup < 0 the stability condition (28) is verified for the previous parame-
ters being the condition (38) violated, which leads to a pathologic behaviour
of the method (36) as it can be seen in Figures 7 and 8. In this last figure
we plot time and space cuts of the IMEX solution presented in Figure 7.
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Figure 7. The implicit solution (left side) and the IMEX solu-
tion (right side) defined by (21) and (36), respectively.
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Figure 8. The IMEX solution defined by (36).

5. Conclusions

In this paper we studied the stability of the IBVP (1), (2), (3) and IBVP
(5), (2), (3). For convenient initial and boundary conditions these two IBVPs
are equivalent. In this case, in Theorems 1 and 2 are obtained estimates for

E1,�(u(t)) = ∥u(t)∥2 + �∥

∫ t

0

e−
(t−s)u(s) ds∥2 + 2D

∫ t

0

∥
∂u

∂x
(s)∥2 ds,
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for � = �, � = �2.

If � > 1 the upper bound obtained using the differential form of the IBVP
is greater than the upper bound obtained using the integro-differential form
provided that ∣� − 1∣ − 2
 ≥ 0. If � = 1 then the two results give the same
upper bound. Finally, if 0 < � < 1 and ∣� − 1∣ − 2
 ≥ 0, then the upper
bound given by the second result is greater than the one given by the first
result.
For

E2,�(u(t)) = ∥u(t)∥2 + �∥

∫ t

0

e−
(t−s)u(s) ds∥2,

with � = �, � = �2, hold conclusions analogous to those established for
E1,�(u(t)), for � = �, �2.

From the previous considerations we conclude that the integro-differential
form (1), (2), (3) leads to more accurate estimates than the differential form
(5), (2), (3) for convenient initial and boundary conditions for v.
Let us compare now the stability properties of the methods (21) and (36)

for the integro-differential IVBP (1), (2), (3), with the stability properties of
the methods (40) and (50) for the IBVP (2), (3), (5).
In what concerns the stability restrictions (28) and (38) for the methods

(21) and (36) we remark that for lower value of f ′
sup the two conditions

have the same behaviour which means that the stability behaviour of both
methods will be the same. When f ′ increases the first method will be more
stable than the IMEX method because in the condition (38) arises the term
−f ′ 2

sup which is negative.
Considering now the methods (21) and (36), for the integro-differential

IVBP (1), (2), (3) and the methods (40) and (50), for the IBVP (2), (3), (5),
we conclude that the first group is more stable than the second one.
As the stability condition (51) for the method (50) can be obtained from

(45) replacing f ′
sup by

1

2
f ′ 2
sup we conclude that the two methods (40) and (50)

have the same stability behaviour for lower values of f ′
sup, being the implicit

method (40) more stable than the IMEX method (50) for higher values of
this parameter.
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